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Abstract

In this work, we present the first side channel collision based key recovery attack on TWINE
block cipher with 80-bit secret key and also present the improved version of the work done by
Jongsung et al. in [14] on DES. We focus on TWINE-80 security when the first 7, 8 and 9-rounds
of the cipher are masked. Our 7-masked round attack requires the lowest measurements (222.58)
and can recover 12-bits of the secret key. In our 8-masked round attack, we can find 24-bits of
the secret key with 232.58 measurements whereas in our 9-masked round attack, we are able to
find 40-bits of the secret key information with 246.17 measurements. The fact that encryption
and decryption functions of TWINE-80 are similar can be utilized to launch the above attacks
when the last 7, 8 and 9 rounds of the cipher are masked. Thus, we show that atleast 20 rounds
of TWINE-80 need to be masked to ensure security against side channel leakage. The differential
characteristics constructed to demonstrate our attacks are new and hitherto not been reported
before for TWINE-80.

In our work on DES, we improved the 7-round masked attack in [14] using one more charach-
teristic mentioned in [15] and we recover full round 48-bit subkey of the first round. The data
complexity of our attack is 236.99. The time complexity is 236.99 measurements and 235.99curve
comparisons.
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Chapter 1

Introduction

Side channel attacks (SCA), proposed by Kocher [16,17], exploit weaknesses in the physical im-

plementation of block ciphers to recover the secret key information. These attacks treat ciphers

as grey box and capitalize on the side channel leaks such as timing information, power con-

sumption, electromagnetic leaks etc. to correlate them with the internal states of the processing

device which are dependent on the secret key. Several flavors of side channel attacks have been

proposed depending upon the type of leakage investigated. Among them, power attacks are the

most popular and extensively studied class of attacks. Power attacks analyze the power con-

sumption of a cryptographic hardware device to recover the secret information. Several types

of power attacks exist, e.g., simple power analysis (SPA) [17] [21], differential power analysis

(DPA) [17] [18], higher order DPA attacks [11] [1] etc. In SPA attacks, the attacker exploits

the relation between the operations executed and the corresponding power consumed. He vi-

sually analyzes the power traces over a period of time and then tries to map the variations in

power consumption to specific operations, e.g., multiplication operations, xoring operation with

key bytes etc. In DPA attacks, the attacker studies the correlation between the intermediate

processed data and the side-channel output. In it power traces are collected and statistically

correlated to make guesses at the secret key to derive the correct one. In this work, we study

one such variant of side channel power attack termed as - side channel collision attack.

1.1 Notations

We use the following notations in this chapter:

∆X : byte input difference

si : denotes ith sbox

SKl : lth round subkey

WKm : mth whitening subkey
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1.2 Background and Related work

In side channel collision (SCC) attacks, the aim of the attacker is to detect collision between

two intermediate values by comparing their power consumption traces and recover information

about the secret key. It is assumed that in case of a collision, since identical instructions have

been executed, power consumed would be same and hence power traces would be similar [5].

SCC attack for block ciphers was first proposed in [23] by Schramm et al. when they applied the

technique on DES to recover 10.2 bits of the secret key. Their attack on DES was later improved

by Ledig et al. in [19]. This attack was also investigated against AES in [23]. Bogdanov et al.

further improved the collision attack on AES in terms of reduced measurements by proposing

variants of SCC attack such as linear collisions [6], algebraic collisions [9] and collisions based

on multiple differentials [7]. In [3], SCC attack on AES based MAC construction was presented.

Following these, security of block ciphers against SCC attacks was evaluated under circumstances

when countermeasures such as masking were available. Biryukov et al. in [5] showed that full 10

rounds of AES-128, 10 out of 12 rounds of AES-192 and 10 out of 14 rounds of AES-256 need to

be masked to guarantee resistance against side channel attacks. New variants of collision attack,

termed impossible collision attack and multiset collision attack, were proposed and utilized in

this work.

In [14], Kim et al. showed SCC attack on DES with first 5, 6 and 7 rounds masked and

suggested full round masking to prevent these attacks. Let us discuss 7-masked rounds attack

presented by Jongsung et al. in [14] which suggests full round masking to prevent DES from side

channel attacks. In this attack, authors considered a 2-round iterative differential characteristic

mentioned in [2] of probability ≈ 2−7.87. They construct 7-round differential characteristic from

this 2-round iterative charcteristic with probability 2−31.5 using the characteristic three and half

times having input output difference both 00 00 00 00 19 60 00 00(shown in Fig. 3.1).

The basic idea of the attack is that if a plaintext pair satisfy input output difference both of the

differential characteristic, then that pair is considered as right pair and we use that pair for key

filtering in first round. For each right pair we get 32-bit collision after F function in 8th round

which means wrong pairs can be fitered out with probability 2−32. To increase the wrong pair

filtering rate, we can filter out in 9th round also after F function. Since the difference for the

differential characteristic is 19 60 00 00 in 9th round, so we can get collision at 22 bits after E

expansion box with probability 2−22, therefore we can filter out all wrong pairs at filtering rate

2−54. The attack procedure is as follows:

1. Choose 234.5plaintext pairs with satisfying input difference 19 60 00 00 and encrypt then

with DES first 7 and last 7 masked rounds.

2. For each plaintext pair,collect it’s power traces and check for collision at input positions

of s1, s2, s3, s4, s5, s6, s7 and s8 s-boxes in 8th round and if collision doesn’t occur discard

that pair.

3. For remaining pairs check for collision at input positions of s4, s5, s6, s7 and s8 s-boxes in

2



9th round and if collision doesn’t occur discard that pair.

4. Now using those pairs which satisfy above test, analyse s1, s2 and s3 s-boxes in the first

round using difference distribution table which suggest key candidates because s1, s2 and

s3 are active in the first round, active means s-box having nonzero input difference.

5. output key which give maximum hits.

Right key will give 8 hits always as 8 plaintext pairs expected to be right pairs, since the

differential characteristic holds with probability 231.5 and we choose 234.5 plaintext pairs and the

filtering rate is 2−54, so there will be no wrong pair out of 234.5 chosen plaintexts. Now, we have

to calculate that wrong key will give how many hits.

In case of each active s-boxes s1, s2 and s3 respectively, there will be 2, 2 and 2 equivalent

keys. Suppose, for s1 we have a set S of 14 plaintext pairs, then equivalent means {a · b|b ∈ S},
thus S = 03x · S. So k, k ⊕ 03x are equivalent where k is any key candidate suggested through

difference distribution table of s1. For, any right pair following the differential characteristic,

20 keys will never be suggested, so 20 wrong keys will give 0 hits and since we are remaining

with 44 keys out of which one is correct and 2 will be equivalent to it, so 42 will be wrong keys.

Therefore wrong key hits = (14t− 2t)/42 hits, where t is number of right pairs i.e 8. So, wrong

key will give 2.29 hits.

In case of s2, 14 keys will be suggested only and out of which 12 will be wrong keys as two are

equivalent keys i.e k, k ⊕ 32x and 8 plaintext pairs satisfies the input output difference of s2,

therefore wrong key will give = (8t− 2t)/12 i.e 4 hits.

In case of s3, 22 keys will be suggested only and out of which 20 will be wrong keys as two are

equivalent keys i.e k, k ⊕ 2cx and 10 plaintext pairs satisfies the input output difference of s3,

therefore wrong key will give = (10t− 2t)/20 i.e 3.2 hits.

So, finally through this differential characteristic, they were able to recover 15(5+5+5) bit key

information using s1, s2 and s3.

Therefore the data complexity of attack is 235.5 chosen plaintexts. The time complexity is

calculated as : 235.5 measurements and 234.5 curve comparisons, so the total time complexity is

235.5. Therefore, they suggested full round masking of DES to prevent from side channel attacks.

In [5], Biryukov et al. showed side channel collision attack on AES with 2-rounds masked.

They performed this attack using 2-round differential characteristic of probability 2−6(shown in

Fig. 1.1).

The attack procedure is as follows:

1. Choose 4-active bytes in the first round as shown in Fig. 1.1.

2. Then, 4-active bytes in the first round reduce to 3-active bytes in the second round with

probability 2−8 × 4 = 2−6.

3. After that, 3-active bytes are expanded into 12-active bytes in the third round with prob-

ability p = 1.
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p = 1

round 1

round 2

round 3

detect collision at these 4-bytes

plaintext
difference

Figure 1.1: 2-round diffrential characteristic

4. Now, the aim is to find collision in the rest 4-passive bytes in the third round as shown in

Fig. 1.1.

5. The plaintext pair which satisfies the input difference and gives collision at the 4-passive

bytes in the third round with probability 2−6 is called right pair.

6. They used structures to reduce data complexity i.e take 24 texts having same random

constants at the place of passive bytes in the first round. Then generate 28 plaintext pairs

using 24 texts.

7. They got 28 × 2−6 = 4 right pairs.

8. One right pair is responsible for reducing the key space by 8-bits [23], so 4 right pairs will

reduce the key space by 32-bits.

In this attack, overall measurements calculated as follows: online measurements=72 (as 24 × 3

texts are required to get 96-bits of key information) and offline measurements ≈ 232(as rest

32-bits of key are found through exhaustive search).

Biryukov et al. also showed impossible collision attack on AES with 3-rounds masked using

3-round differntial characteristic of probability 2−22(shown in Fig. 1.2).

The attack procedure is described as follows:

1. Choose 4-active bytes in the first round as shown in Fig. 1.2.

2. Then, 4-active bytes in the first round reduce to 1-active bytes in the second round with

probability 2−22.

3. After that, 1-active bytes are expanded into 4-active bytes in the third round with proba-

bility p = 1.

4. Then 4-active bytes are expanded into 16-active bytes after third round with probability

p = 1.

5. Now, the idea is to detect impossible collision at these 16-active bytes as shown in Fig. 1.2.
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Figure 1.2: 3-round diffrential characteristic

The probability that atleast one byte out of 16 bytes is same = 1− (1− 2−8)16 ≈ 1
16 . Therefore,

the wrong pair survival rate is 15
16 which is very high and they need to filter out these wrong

pairs.

For each tested pair, they constructed its variation by varying only the passive bytes and keeping

active bytes same, so total 16 such variations were possible which significantly reduced the wrong

pair survival rate to (1− 2−8)16·16 ≈ 0.36. Then repeat this for all tested remaining pairs which

pass first filtering again and again untill get a right pair which reduces the key space by 8-bits

[23].

For efficient measurements, they used structures of 212 texts which generate 223 plaintext pairs.

Since the filtering rate is low, therefore they considered 27−28 such structures as 15
16

256 ≈ 2−23.8

which means it will filter out 223 − 2 wrong pairs. Therefore overall measurements required

219 − 220 and 16× 223 curve comparisons(as 16 trials are needed for each 223 pairs).

In [5], authors also discussed another type of side channel attack on AES called multiset collision

attack using 3 and 4-round distinguisher.

Lee et al. applied impossible collision attack on HIGHT in [20] to recover secret key bits when

the first 11, 12 & 13 rounds are masked. Let us discuss impossible collision attack when the first

11 rounds are masked.

They constructed a 10-round truncated differential characteristic of probability p = 1(as shown

in Fig. 1.3 which was never used before and used it to present 11, 12 and 13 round attack on

HIGHT.

The attack procedure is as follows:

1. Attach one round at the front of 10-round distinguisher(shown in Fig. 1.4) and masked

10-rounds from 2nd to 11th round and rest rounds were unmasked.

2. Guess the subkey of the attached round and collect t plaintext pairs which satisfy the
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Figure 1.3: Truncated differential of 10-round

input difference of the second round(as 2nd round input differnce depends only on WK2,

WK3, SK2 and SK3, so we need to guess 232 keys(shown in Fig. 1.4)).

3. Then test each t pair that we get nonzero after 11th round at 1st byte i.e ∆X11,7 6= 0, if

this condition satisfies then the guessed key is correct otherwise discard that key.

Since the probability of getting impossible collision at a byte is 1 − 2−8, if we take t = 213,

then probability that atleast one pair out of 213 gives collision is 1− (1− 2−8)213(probability of

filtering out wrong key).

Figure 1.4: Extended one-round backward

The probability of filtering out all 232 − 1 wrong keys is, (1 − (1 − 2−8)213)232−1 ≈ 0.99. Thus,

the data complexity is t · 232 = 245, so to reduce the data complexity, they constructed two

structures of 16 plaintexts each as:

S = S(i, j) and S′ = S(i′, j′)

S = i‖x0‖‖j‖x1‖x2‖x3‖x4‖x5

S′ = i‖x0 ⊕ 08x‖‖j‖x1‖x2‖x3‖x4‖x5 where (i,j)ε {00x....FFx}. The attack procedure is same

as described above except that we select plaintext pair from S and S′. The data complexity is

6



reduced to 2 · 216 = 217 and curve comparisons is 213 and time measurements is 213 · 232 = 245.

To reduce computations, authors improved 11-round attack as follows:

Instead of guessing all 232 keys, they calculated two values α and β where

α = F1(x1 +WK2)⊕ SK2 and β = (F0(x0 +WK3)⊕ SK3)⊕ (F0((x0 ⊕ 08x) +WK3)⊕ SK3),

they found that for many guessed keys, α and β were same, so they called that keys to be

equivalent keys and finally they found 128 distinct α and 24 distinct β. Then, they calculated

two structures S = S(i, j) and S′ = S(k, l) as:

S = i‖x0‖‖j‖x1‖x2‖x3‖x4‖x5 and S(k, l) corresponding to plaintext S(i, j) is computed as

follows:

k = β ⊕ i and l = (E9x ⊕ (α + j)) − α and using this information the attack procedure is as

follows:

1. Select a plaintext pair from above defined S and S′.

2. Guess α and β from 128 and 24 possible values respectively.

3. Then test each selected plaintext pair that we get nonzero after 11th round at 1st byte i.e

∆X11,7 6= 0, if this condition satisfies then the guessed key is correct otherwise discard

that key.

If we take t = 212, then probability that atleast one pair out of 212 gives collision is 1 − (1 −
2−8)212(probability of filtering out wrong key).

As the guessed values are 211.6(128 α and 24 β), the probability of success i.e recovering all 11.6

secret bit information is (1− (1− 2−8)212)211.6−1 ≈ 0.99.

So, we need 212 curve comparisons and 211.6 · 212 = 223.6 time complexity .

Similarly, by extending 10-round truncated differential(shown in Fig. 1.3) by 2 and 3-round

backward, they performed 12 and 13-round attack respectively with the data complexity 232

and 240 chosen plaintexts respectively.
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Chapter 2

Side channel collision attack on

TWINE-80

The field of lightweight cryptography encompasses the current state-of-the-art cryptographic

algorithms designed for implementation in constrained environments (e.g., RFID tags, sensors,

smartcards etc.) and addresses the security concerns of low cost devices. With the growing

interest of symmetric cryptographic community in this field, several lightweight variants of tra-

ditional cryptographic primitives such as lightweight block ciphers - PRESENT [8], HIGHT [13],

LED [12], TWINE etc. have been proposed and studied in literature.

In this work, we focus on the side channel security of one such lightweight block cipher - TWINE

which was proposed by Suzaki at al. in SAC 2012 [25]. TWINE is a 64-bit block cipher which

supports two key sizes - 80-bit and 128-bit and consists of 36 rounds. It is a type-2 based

Generalized Feistel Structure (GFS) [22] with 16 branches. The high branch number allows

TWINE to have very small input-output branch size (4-bits), thus enabling it to be used in

extremely small hardware settings. At the same time, such a design ideology also suffers from

slow diffusion property since a k-branch GFS requires k-rounds to achieve full diffusion. This

may provide vantage point to an attacker to attack large number of rounds. To mitigate this

limitation, the designers of TWINE adopted an improved permutation configuration as suggested

by Suzaki et. al in [24]. This improved permutation allowed TWINE to achieve full diffusion

in just 8 rounds. These above mentioned properties enable TWINE to achieve reasonably good

performance in both hardware and software implementations under lightweight settings [4,10,25].

Its each round consists of 8 F-functions, where one F-function (as shown in Fig. 2.1) comprises

of subkey (SK) xoring and 4-bit S-box (S) operation. It is followed by a diffusion layer in which

all the 16 branches are shuffled using the permutation shown in Table 2.2. The key schedule

algorithm of TWINE-80 generates 36 32-bit round keys where each 32-bit round key is split into

8 4-bit subkeys which enter the corresponding 8 F-functions in each round. The first round key

is directly derived from the 80-bit master key. For further details, one can refer [25].

The main contributions of this work are as follows:

8



Table 2.1: Summary of our results on TWINE-80

Rounds Key bits Time Data Reference

attacked recovered complexity complexity

7 12 222.58 222.58 This work, § 2.3

8 12 226.58 226.58 This work, § 2.6

8 24 232.58 232.58 This work, § 2.4

9 12 232.58 232.58 This work, § 2.6

9 40 246.17 246.17 This work, § 2.5

• We present the first side channel analysis of TWINE-80 block cipher to recover the secret

key.

• We present side-channel collision attack on TWINE-80 when the first 7, 8 and 9 rounds of

the cipher are masked.

• Our 7, 8 and 9-masked round attacks recover 12, 24 and 40-bits of secret key respectively

with 222.58, 232.58 and 246.17 measurements respectively.

• We also report 8 and 9-masked round attacks with lower data and time complexities but at

the expense of lesser key bits recovery. In our 8-masked round attack, we can find 12-key

bits of the secret key with 226.58 measurements whereas in our 9-masked round attack, we

can recover 12 secret key bits with 232.58 measurements. This reduction depends upon the

type of differential characteristic chosen for the attack.

• We construct new (previously unreported) differential characteristics for TWINE-80 to

carry out all our attacks.

• In our above attack results, first r = 7, 8, 9-rounds are masked. The same attack can be

applied in the last r-masked rounds with similar complexity as well. Therefore, our results

show that a powerful attacker possesses the capability to recover secret key bits even when

the first 9 and the last 9 rounds of TWINE-80 are masked and hence, atleast 20 rounds of

TWINE-80 should be masked to guarantee resistance against side channel leakage.

Our summarized results are shown in Table 2.1.

Table 2.2: Permutation table of TWINE-80

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(j) 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1(j) 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

In this chapter, first we will discuss about the basic layout of our attack on TWINE-80 which is

necessary to understand the attack procedure. Then later, we will present attack on TWINE-80
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F

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

⊕ F ⊕ F ⊕ F ⊕ F ⊕ F ⊕ F ⊕ F ⊕

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x14 x15

⊕ S

SK

where F is :

x13

Figure 2.1: One round of TWINE

with first 7, 8 and 9 masked rounds where we can extract maximum number of key bits. In our

attack, we assume that the attacker can detect collisions in the intermediate state positions by

analyzing the power traces [19].

2.1 Notations

We use the following notations in this chapter:

#R : Round number (1 ≤ R ≤ 36)

#Ri : ith input branch of round R (1 ≤ i ≤ 16)

∆ : branch input difference where |∆| = 4 bits

F l : lth F-function in a round (1 ≤ l ≤ 8)

∆F
in : F-function input difference where | ∆F

in | = 4-bits

∆F
out : F-function output difference where | ∆F

out | = 4-bits

∆in : input difference of differential characteristic where | ∆in |= 64-bits

∆out : output difference of differential characteristic where | ∆out |= 64-bits

2.2 High level layout of the attack

Our attack consists of two phases: online phase and offline phase.

Online phase : Detection of right pairs

In the online phase :

1. We first choose an appropriate differential characteristic over first r-rounds (∆in
r−→ ∆out)

such that collisions occur in some nibble positions in the output after r-masked rounds,

i.e., ∆ = 0 at these positions. Such a differential characteristic holds with some probability

2−p over r-rounds.

2. We then collect 2t plaintext pairs satisfying the input difference (∆in) of the differential

characteristic (where t > p ) such that we get 2t−p right pairs which follow the differential

trail over r-rounds. We call other pairs to be wrong pairs, i.e., pairs for which (∆in 6→ ∆out)

over r rounds.
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3. To detect the right pairs, we collect the power traces of all 2t plaintext pairs (2t mea-

surements) and perform curve comparisons to check whether collisions at pre-determined

positions happen or not. If collisions do not happen, we discard that pair.

4. The pairs which pass the above step are analyzed in the offline phase.

Offline phase : Key detection phase

In the offline phase:

1. We use the right pairs obtained in the online phase to examine the first round of the cipher.

2. In the first round, we select F-functions in which underlying Sboxes are active (i.e., ∆F
in 6=

0). We call such F-functions as active F-functions.

3. For each active F-function, depending on the right pair chosen and the difference distri-

bution table of the Sbox, certain 4-bit subkey candidates will be suggested (out of the 16

possible subkey values). For example, for a given right pair (P , P ′) and F-function F (as

shown in Fig. 2.2) for which ∆F
in and ∆F

out are known to the attacker, those subkeys which

satisfy the relation S(P ⊕SK)⊕S(P ⊕∆f
in⊕SK) = ∆f

out will be suggested as candidate

subkeys.

4. For each right pair, a different set of subkey candidates will be suggested for each active

F-function.

5. Once all the right pairs are tested, it is expected that among the set of subkeys suggested

for one active F-function, only a single subkey will be common in all the 2t−p sets. That

subkey will be the actual subkey for the corresponding F-function. The same will hold

true for other active F-functions as well.

If more than one potentially correct key candidates are suggested. In the offline

phase, it may happen that more than one correct subkey candidates are suggested for few

active F-functions (i.e., more than one subkey candidates will be common in all the 2t−p sets).

Such subkeys will be called equivalent subkeys. In order to identify the actual subkey among

the equivalent subkeys, we then choose a second differential characteristic that should differ

from the first characteristic at positions where the corresponding active F-functions suggested

equivalent subkeys. We repeat the whole attack procedure again with this second differential

characteristic. This will provide us a new set of subkey candidates with respect to those active

F-functions. The key candidate which is common in both the older and the newer subkey sets

will be our actual secret subkey.

Attack on the last r-masked rounds. The above described attack is a chosen plaintext

attack in which the first r-rounds are masked. Since TWINE-80 decryption function is exactly

the same as the encryption function except inverse block shuffle being used during decryption,

11



S

SK

P ⊕ P ′ = ∆F
in S(P ⊕ SK)⊕ S(P ⊕∆F

in ⊕ SK) = ∆F
out??

F-function
⊕

Figure 2.2: Suggested subkey candidates

the same attack procedure can be applied in the last r-masked rounds as well with similar attack

complexity but with chosen ciphertexts. Thus, a powerful attacker possesses the capability to

recover secret key bits even when the first r and the last r rounds of TWINE-80 are masked.

2.3 Detailed attack on TWINE-80 with r = 7

In this section, we discuss the detailed attack on TWINE-80 with 7-masked rounds in which we

can recover 12-secret key bits. The differential characteristics used in this attack are new and

have not been reported in any of the previously existing TWINE-80 attacks.

Let us first discuss some key points which will facilitate better understanding of the attack

subsequently:

• We choose the initial plaintext difference ∆in =0 0 0 0 0 E 0 1 4 C E C E 0 0x. This

differential characteristic will give an output difference of ∆out = 0 0 0 0 1 0 E 0 0 0 0 0 0

C 0 0x with a probability of 2−18 after first 7-masked rounds (as shown in Fig. 2.3).1

• From Fig. 2.3, we can see that collisions occur at #81, #82, #83, #84, #86, #88, #89,

#810, #811, #812, #813, #815, #816, #91, #92, #93, #95, #96, #97, #910, #912, #914,

#915, #916. We call such collisions - 0-collisions.

• To detect these collisions, we use the Hamming weight model. We assume that if the

Hamming weights of the two intermediate values at the input and output positions of

the F-function are same, then collision happens and can be detected. We call such a

collision - Hamming Weight (HW)-collision. It can be easily verified that 0-collision =⇒
HW-collision. As mentioned earlier, we assume that such a collision can be detected by

an attacker through curve comparisons. With this assumption, we thus check Hamming

weight collisions at #81, #83, #89, #811, #813, #815, #91, #93, #95, #97, #915 (shown

in squared boxes in Fig. 2.3), i.e., total 11 positions.

• The probability that for any random plaintext pair which satisfies ∆in, HW-collision occurs

at all the 11 positions is 2−35.97. The details of this calculation are shown in § .2.

• Since, we are able to detect only HW-collisions, cases may arise where they do not cor-

respond to actual 0-collisions(as shown in Fig. 2.4). However, we later show that in our

1Readers can verify the probability calculation from the difference distribution table (DDT) of TWINE Sbox
given in the § .1.
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Figure 2.3: First 7-round differential characteristic for TWINE-80
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attack, depending upon our choice of differential characteristic, we can safely assume that

HW-collision so detected corresponds to actual 0-collisions with very high probability.

F

a=1011

b=0111

c=0011

d=1001

HW (a) = HW (b) = 3 but a⊕ b = 1100⇒ ∆F
in 6= 0000

HW (c) = HW (d) = 2 but c⊕ d = 1010⇒ ∆F
out 6= 0000

Figure 2.4: A case where HW-collision 6=⇒ 0-collision

• As shown in Fig. 2.3, the active F-functions in the first round are F 5, F 6, and F 7 (i.e.,

F-functions with ∆F
in 6= 0). Let us consider F 5 where ∆F

in = 4x and ∆F
out = Bx (as shown

in Fig. 2.5). If we consider the difference distribution table of the Sbox (given in § .1), we

see that 4 values exist which satisfy this input-output difference of the Sbox. These values

suggest 4 subkey candidates for this Sbox. Similarly, we found that for all the other active

F-functions in the first round, 4 subkey candidates are possible.

S

SK
4x

F-function

∆F
out = Bx

Bx

04x

⊕⊕∆F
in = 4x

Figure 2.5: Input - Output difference of F 5

Utilizing this information we have, the attack steps are as follows:

1. We choose 220 plaintext pairs having ∆in =0 0 0 0 0 E 0 1 4 C E C E 0 0x, and encrypt

them with Twine-80 with the first seven rounds masked.

2. For each pair, we collect its power traces during encryption process and check for HW

collision at #81, #83, #89, #811, #813, #815, #91, #93, #95, #97, #915 positions (shown

in Fig. 2.3 in squared boxes).

• Since this differential characteristic holds with probability 2−18, 4 right pairs (220 ×
2−18) exist. This means that 4 right pairs yield 0-collisions and give HW-collision

with probability 1.

• Since, for any random pair satisfying ∆in, collisions are detected with a probability

of 2−35.97, thus, out of 220 pairs, the number of pairs generating HW-collision are:

= (number of right pair)× (probability of HW-collision) +

+ (number of wrong pairs)× (probability of HW-collision)

= (4× 1) + (220 − 4)× 2−35.97 ≈ (4× 1) + 2−15.97 = 4

Thus, we can safely assume that the pairs detected in our attack as right pairs through

HW-collision are pairs which correspond to actual 0-collisions.
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3. Once we get 4 right pairs, we move to the offline stage.

4. In the offline stage, as discussed in § 2.2, we analyze the 3 active F -functions (F 5, F 6 and

F 7) in round 1 with each of the four right pairs. Let us consider the first active F -function

F 5. As seen in Fig. 2.5, the input-output difference for this F-function are 4x and Bx

respectively. Based on the DDT table of the Sbox, the four input pairs satisfying the

given input-output difference over the Sbox are - (5x, 1x), (1x, 5x), (Ax, Ex), (Ex, Ax).

This gives us a set of 4 subkey candidates. We then analyzed F 5 with the second right

pair to obtain another set of 4 subkeys. However, we found that the sets of 4 candidate

subkeys obtained from both the first and second right pair respectively were exactly the

same. This was true for each of the remaining two other right pairs as well. Occurrence

of this peculiar behaviour can be explained as follows. Let us suppose that the four right

pairs are labelled as - (P1, P ′1), (P2, P ′2), (P3, P ′3) & (P4, P ′4). If SK denotes the correct

subkey for F 5, then

S(P1 ⊕ SK)⊕ S(P1 ⊕ 4x ⊕ SK) = Bx (2.1)

S(P2 ⊕ SK)⊕ S(P2 ⊕ 4x ⊕ SK) = Bx (2.2)

S(P3 ⊕ SK)⊕ S(P3 ⊕ 4x ⊕ SK) = Bx (2.3)

S(P4 ⊕ SK)⊕ S(P4 ⊕ 4x ⊕ SK) = Bx (2.4)

Let us suppose, P1⊕ SK = 5x, P2⊕ SK = 1x, P3⊕ SK = Ax and P4⊕ SK = Ex. Then,

S(5x)⊕ S(1x) = Bx (2.5)

S(1x)⊕ S(5x) = Bx (2.6)

S(Ax)⊕ S(Ex) = Bx (2.7)

S(Ex)⊕ S(Ax) = Bx (2.8)

Now, if we replace SK by SK ⊕Bx in Eqs. 1-4, we see that Eqs. 1-4 again reduce to Eqs.

6-8 (though in different order). This holds true even when we replace SK by SK ⊕ 4x or

SK ⊕ Fx. Hence, we call SK, SK ⊕ 4x, SK ⊕ Bx and SK ⊕ Fx as “equivalent keys”, as

all of them produce the same set of input values to the Sbox. Since, in our attack, all the

four subkey sets (corresponding to each right pair) will have the correct key and its three

other equivalent keys as well, we get the same set of four subkeys for each pair.

Thus, at this stage we get 4 “equivalent keys” for F 5 and cannot determine which among them

is the actual key. The same property is observed in other active F -functions as well, i.e., 4

equivalent keys are obtained for each of the three active F -functions in #1. Hence, as discussed

in § 2.2, we now choose a second differential characteristic and repeat the whole attack again.
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2.3.1 Recovering the actual key from the set of equivalent keys

We choose the second differential characteristic as ∆in =0 0 0 0 0 B 0 C D 1 E 4 4 B 0 0x. This

gives us ∆out =0 0 0 0 C 0 4 0 0 0 0 0 0 E 0 0x after 7 rounds with a probability of 2−19 (as

shown in Fig. 2.6). Our choice of second differential characteristic is driven by two factors:

1. It should differ from the first characteristic at positions where F -function in round 1 are

active.

2. For each active F -function, the new set of subkeys so obtained should suggest only one

subkey (and not more than one) that is common with the corresponding older set. We

then claim that key as the correct subkey.

Let us discuss how we can ensure this second condition before carrying out the actual attack.

If we repeat the whole 7-round masked attack with the second differential characteristic in a

manner similar to that discussed in § 2.3 and focus on F -function F 5 in #1, the new set of 4

keys so obtained will be of the form: SK ′, SK ′ ⊕ 8x, SK ′ ⊕Dx and SK ′ ⊕ 5x.

We now have 2 sets of 4 subkeys for F 5 in #1 as shown in Table 2.3.

Table 2.3: Set of subkey candidates obtained for F 5 from two differential characteristics.

Set1 Set2

(from characteristic 1) (from characteristic 2)

SK SK ′

SK ⊕ 4x SK ′ ⊕ 8x

SK ⊕ Bx SK ′ ⊕ Dx

SK ⊕ Fx SK ′ ⊕ 5x

Since, we do not know the actual values of these 8 subkeys at this stage, hence we cannot do

an intersection operation on both sets and find out the common subkey. Instead, we xor each

element in Set1 with each element in Set2 and propose the following Lemma:

Lemma 1. Let A and B be two sets of subkey candidates obtained from differential character-

istics 1 and 2 respectively. Let P be a set as defined below,

P = {x|y ⊕ z = x,where, y ∈ A and z ∈ B}
Here |P | = 16, i.e., P will have 16 elements. If all the 16 elements in P are unique, then only

one single key will be common in both the sets - A and B.

The proof of this lemma is given in § .3

16



F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

0 0 00 0 B 0 C D 1 E 4 4 B 0 0

0 0 00 0 B 0 C D E 4 0 0

0 0 00 0 0 C E B D 0 4

0 0 00 0 0 C B 0 4

0 0 00 0 0 C 4 B

0

0

0 0 00 0 C E 0 0

0

0 0 0

0 0 0 0

0 0 0000

0 0 0 0 0 0 0

0 0 00 0 0 C 40 0 0 0 0 0 0 0

0 0 00 0 00 0 0 0 C 4 0 0 0

00 0 00 0 00 0 0 0 C 0 0 00

00 0 00 0 00 0 0 C 0 0 000

0

00 0 0 0 00 0 0 00

00 0 00 0 C0 0 0 0 0 000

0 0 C 0

0

0 0 0 0 0 0 0

0 0 C0 0 00 E 0 0 0 0 00 0

0 0 C0 0 00 E 4 0 0 0 00 0 0

0

F F F F F F F F

F F F F F F F F

0 0 00 C 4 B 0 0

0

000 0 0 C 0 E 000

E 0 0 0 0 0 E

0 0 40 0 0B 0 E 0 E 00 C

0 0 40 0 00 B D E 4 E 40 C 0

4 0 00 00

0

HW-collision positions

b

b

b

masked rounds

unmasked rounds

active F-function

#1

#2

#3

#4

#5

#6

#7

#8

#9

p=2−6

p=2−4

p=2−2

p=2−3

p=1

p=2−2

p=2−2

F

Figure 2.6: Second 7-round differential characteristic for TWINE 80
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It is easy to check that in our attack, the set P constructed for the two sets - Set1 and Set2

have 16 distinct elements. Hence, only a single subkey will be obtained for F -function F 5 which

will be our correct subkey. We can similarly find the actual secret subkey for each of the other

active F -functions, i.e., F 6 and F 7.

Thus, in the attack, we collect 221 plaintext pairs satisfying ∆in and run the attack as discussed

in § 2.3. We will get 12-bits of secret key information. Therefore, total key bits recovered from

the first round are 12-bits.

Attack Complexity. In the attack using the first and second differential trails, we need 221

and 222 chosen plaintexts respectively. Therefore the total data complexity is - 221+ 222= 222.58

chosen plaintexts. In the online stage, we trace 221+ 222 power curves (measurements) and do

220+ 221= 221.58 curve comparisons. Thus, the total time complexity is approximately 222.58.

As mentioned in § 2.2, since TWINE-80 encryption and decryption functions are similar [25], the

same attack procedure can be launched in chosen ciphertext model when the last 7 rounds are

masked. This shows that an attacker can attack both top 7 and bottom 7 rounds of TWINE-80

and hence atleast 16 rounds (top 8 + last 8) of TWINE-80 should be masked.

2.4 Detailed attack on TWINE-80 with r = 8

In this section, we discuss the detailed attack on TWINE-80 with 8-masked rounds. First let us

discuss some key points.

• We choose initial plaintext difference ∆in =E 4 0 0 1 0 0 4 E 4 B D 0 C E 4x. This

differential characteristic will give an output difference of ∆out = 0 0 0 0 1 0 E 0 0 0 0 0 0

C 0 0x with the probability of 2−28 after first 8-masked rounds (as shown in Fig. 2.7).2

• From Fig. 2.7, we can see that with this trail collisions happen at #91, #92, #93, #94,

#96, #98, #99, #910, #911, #912, #913, #914, #915, #101, #102, #103, #105, #106,

#107, #1010, #1012, #1014, #1015, #1016, #111, #112, #114, #116, #118, #1112, #1113,

#1115. We call such collisions - 0-collisions.

• To detect these collisions, we again use the hamming weight model. With the same

assumption made in § 2.3, we check hamming weight collision at #91, #93, #99, #911,

#913, #915, #101, #103, #105, #107, #1015, #111, #1113, #1115 (shown in squared

boxes in Fig. 2.7) i.e., total 14 positions.

• The probability that for any random plaintext pair which satisfies ∆in, HW-collision oc-

curs, can be calculated as discussed in § .2. Since we check HW-collision at all the above

14 positions in our attack, so the total probability of getting HW-collisions at all these 14

positions is 2−45.78.

2The reader can verify the computation of probability by the difference distribution table of TWINE sbox
given in the § .1.
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Figure 2.7: First 8-round differential characteristic
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• Since, we are able to detect only HW-collisions, cases may arise where they do not cor-

respond to actual 0-collisions(as shown in Fig. 2.4). However, we later show that in our

attack, depending upon our differential characteristic so chosen, we can safely assume that

HW-collision so detected corresponds to actual 0-collisions with very high probability.

• As shown in Fig. 2.7, the active F-functions in the first round are F 1,F 3,F 5,F 6 and F 8(i.e.,

F-functions with ∆f
in 6= 0).

• By applying the same procedure as discussed in § 2.3, we found that for all active F-function

in the first round, 4 key candidates will be suggested.

Now, using this information we have, the attack steps are as follows:

1. We choose 230 plaintext pairs having ∆in =E 4 0 0 1 0 0 4 E 4 B D 0 C E 4x, and encrypt

them with TWINE-80 with first eight masked rounds.

2. For each pair, we collect its power traces during encryption process and check for HW

collision at #91,#93,#99, #911,#913,#915, #101,#103,#105,#107

,#1015,#111,#1113,#1115 positions.

• Since this differential characteristic holds with probability 2−28, 4 right pairs(230 ×
2−28) exist. This means that 4 right pairs yield 0-collisions and give HW-collision

with probability 1.

• Since, for any random pair satisfying ∆in, collisions are detected with a probability

of 2−45.78. Thus, out of 230 pairs, the number of pairs generating HW-collision are:

= (number of right pair)× (probability of HW-collision) +

+ (number of wrong pairs)× (probability of HW-collision)

= (4× 1) + (230 − 4)× 2−45.78 ≈ (4× 1) + 2−15.78

= 4

Thus, we can safely assume that the pairs detected in our attack as right pairs through

HW-collision are pairs which correspond to actual 0-collisions.

3. Once we get 4 right pairs, we move to the offline stage.

4. In the offline stage, as discussed earlier, for each right pair, we analyzed each of the 5

active F-functions in #1. After examining each active F-function, 4 equivalent keys were

obtained for each of the five active F-function in #1.

2.4.1 Recovering the actual key from the set of equivalent keys.

To recover the actual key for each of the active F-function, we have to choose another differential

characteristic over 8 rounds as discussed in § 2.3.1. We choose second differential characteristic
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with ∆in =B D 0 0 C A 0 D B D 1 C 0 E 4 Bx. This characteristic will give ∆out =0 0 0 0 C 0 4

0 0 0 0 0 0 E 0 0x output difference after 8-masked rounds with a probability of 2−29 as shown in

Fig. 2.8. We collect such 231 plaintext pairs satisfying ∆in. We then repeat the attack steps as

discussed in § 2.4. We found another set of 4 equivalent keys for each active F-function in #1.

Finally, we have got two sets of 4 equivalent keys for each active F-function and now our aim

is to find correct subkey among 8 keys for each active F-function. We find the correct subkey

for all the active F-functions i.e., F 1, F 3, F 5, F 6 and F 8 using the Lemma 1. Thus 20-bit key

information is recovered.

Recovering key bits in the second round . Once subkey bits in the first round are

obtained, we can use that key information to extract some key bits in the second round. From

the subkey information obtained for F 3, we know the exact intermediate values for #213 and

from #19 we know #214. This is true for both the differential characteristics. Therefore, by

applying the same procedure as discussed above, we can also find the subkey corresponding to F 7

in the second round. Finally, in our attack, we have recovered total 20(from first round)+4(from

second round)=24-bits key information.

Attack Complexity. In the attack using the first and second differential trails, we need 231

and 232 chosen plaintexts respectively. Therefore the total data complexity is - 231+ 232= 232.58

chosen plaintexts. In the online stage, we trace 231+ 232= 232.58 power curves (measurements)

and do 230+ 231= 231.58 curve comparisons. Thus, the total time complexity is approximately

232.58.

As mentioned in § 2.2, since TWINE-80 encryption and decryption functions are similar [25], the

same attack procedure can be launched in chosen ciphertext model when the last 8 rounds are

masked. This shows that an attacker can attack both top 8 and bottom 8 rounds of TWINE-80

and hence atleast 18 rounds (top 9 + last 9) of TWINE-80 should be masked.

2.5 Detailed attack on TWINE-80 with r = 9

In this section, we show the attack on TWINE-80 with 9-masked rounds. First let us discuss

some key points.

• We choose initial plaintext difference ∆in =0 E 4 A 4 B 0 E C E 4 B 4 0 D Fx as shown

in Fig. 2.9. We get an output difference of ∆out =0 0 0 0 1 0 E 0 0 0 0 0 0 C 0 0x with

the probability of 2−40.3

• From Fig. 2.9, we can see that with this differential trail actual 0-collisions happen at

#101, #102, #103, #104, #106, #108, #109, #1011, #1012, #1013, #1015, #1016, #111,

3The reader can verify the computation of probability by the difference distribution table of TWINE sbox
given in the § .1.
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Figure 2.8: Second 8-round differential characteristic
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Figure 2.9: First 9-round differential characteristic for TWINE-80
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#112, #113, #115, #116, #117, #1110, #1112, #1114, #1115, #1116, #121, #122, #124,

#126, #128, #1212, #1213, #1215, #131, #136, #137, #1312, #1316.

• To detect these collisions, we again use the hamming weight model as discussed in § 2.4.

Based on the same assumption made in § 2.4, we check HW-collision at #101, #103, #109,

#1011, #1013, #1015, #111, #113, #115, #117, #1115, #121, #1213, #1215, #131, #137.

Then, the probability of HW-collision at all these 16 positions is 252.32 which is calculated

in a similar way as discussed § .2.

• From Fig. 2.9, we see that the active F-functions in the first round are F 2,F 3,F 5,F 6,F 7

and F 8(i.e., F-functions with ∆f
in 6= 0).

• By applying the same procedure as discussed in 8-round attack, we found that for all

active F-function in the first round, 4 key candidates will be suggested. Now, using this

information we have, the attack steps are as follows :

1. We choose 242 plaintext pairs having ∆in =0 E 4 A 4 B 0 E C E 4 B 4 0 D Fx, and encrypt

them with TWINE-80 with first nine masked rounds.

2. For each pair, we collect its power traces during encryption process and check for HW

collision at #101, #103, #109, #1011, #1013, #1015, #111, #113, #115, #117, #1115,

#121, #1213, #1215, #131, #137 positions (shown in Fig. 2.9 in squared boxes).

• Since this differential characteristic holds with probability 2−40, 4 right pairs(242 ×
2−40) exist. This means that 4 right pairs yield 0-collisions and give HW-collision

with probability 1.

• Since, for any random pair, collision are detected with a probability of 2−52.32.Thus,

out of 242 pairs, the number of pairs generating HW-collision are:

= (number of right pair)× (probability of HW-collision) +

+ (number of wrong pairs)× (probability of HW-collision)

= (4× 1) + (242 − 4)× 2−52.32

= 4

Thus, the pairs actually detected in our attack through HW-collision are pairs which

correspond to 0-collisions as well.

3. Once we got 4 right pairs, we move to the offline stage.

4. In the offline stage as discussed in § 2.3, for each right pair, we analyzed all active F-

functions and we obtained 4 equivalent keys for each active F-function in the first round

and we cannot determine which amongst them is actual key.
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2.5.1 Recovering the actual key from the set of equivalent keys.

The procedure of recovering the key is same as discussed earlier. The another differential char-

acteristic that we choose is shown in Fig. 2.10 with ∆in =A C D D D 1 0 B E 4 D 1 D C C Ax

and ∆out =0 0 0 0 C 0 4 0 0 0 0 0 0 E 0 0x and it holds with probability 2−43. We collect 245

plaintext pairs satisfying ∆in. We then repeat the whole attack procedure discussed above and

find the another set of equivalent keys for each active F-function in the first round. We can see

that F 1 is active in this trail but it was not active in the first trail, so by using the Lemma 1,

we can obtain the correct key for F 2,F 3,F 5,F 6,F 7 and F 8 active F-functions except F 1, but we

can extract 2-bits of information from 4 equivalent keys obtained from the attack through the

second trail. Thus, we have recovered total 24+2 = 26-bits of information.

Recovering key bits in the second round . Once subkey bits at first round are obtained,

we can use the key information to extract key bits in the second round. From the subkey

information obtained in first round, we know the exact intermediate values for #25, #26, #211,

#212,#215 and #216. This is true for both the differential characteristics. Therefore, by using

the Lemma 1, we can also find the subkey corresponding to F 3, F 6 and F 8 in the second round.

We also found that we know the exact values of #21 and #22 in second differential trail but we

do not know these values in first trail, so we can find 4 equivalent keys for F 1 in #2 from attack

using second trail from which we can get 2-bits of information. Finally, in our attack, we have

recovered total 26(from first round)+14(from second round)=40-bits key information.

Attack Complexity. In the attack using the first and second differential trails, we need 243

and 246 chosen plaintexts respectively. Therefore the total data complexity is - 243+ 246= 246.17

chosen plaintexts. In the online stage, we trace 243+ 246= 246.17 power curves (measurements)

and do 242+ 245= 245.17 curve comparisons. Thus, the total time complexity is approximately

246.17.

As mentioned in § 2.2, since TWINE-80 encryption and decryption functions are similar [25],

the same attack procedure can be launched in chosen ciphertext model when the last 9 rounds

are masked (as shown in Table 2.4). This shows that an attacker can attack both top 9 and

bottom 9 rounds of TWINE-80 and hence atleast 20 rounds (top 10 + last 10) of TWINE-80

should be masked.
Table 2.4: Details of our 9-round chosen ciphertext attack. Here, in columns ∆in and ∆out, the first row
denotes the left half and second row denotes the right half of ciphertext/ intermediate state difference
respectively.

Keybits Rounds Trail ∆in ∆out Trail HW-collision Data/Time

Recovered Probability Probability Complexity

36 9

First
0 E 4 0 4 B 0 E 0 0 0 0 0 0 0 0

2−40 2−52.32

244.58
D F 4 B 4 A C E 1 0 0 0 E 0 0 C

Second
0 4 B 0 B D 0 4 0 0 0 0 0 0 0 0

2−41 2−52.32

1 8 B D B 1 E 4 C 0 0 0 B 0 0 4
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Figure 2.10: Second 9-round differential characteristic for TWINE 80
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Table 2.5: Details of our other attacks. Here, in columns ∆in and ∆out, the first row denotes the left
half and second row denotes the right half of plaintext/ intermediate state difference respectively.

S.No. Rounds Trail ∆in ∆out Trail HW-collision Data

Probability Probability Complexity

2 8

First
0 0 0 0 0 E 0 1 0 0 0 E 0 0 0 1

2−22 2−32.7

226.58
4 B C E C E 0 0 4 0 C 0 C 0 0 0

Second
0 0 0 0 0 B 0 C 0 0 0 4 0 0 0 C

2−23 2−32.7

D 1 E 4 4 B 0 0 B 0 E 0 E 0 0 0

4 9

First
0 0 0 0 0 E 0 1 0 0 E 0 E 0 B 0

2−28 2−39.4

232.58
4 B C E C E 0 0 1 C E 0 0 4 0 C

Second
0 0 0 0 0 B 0 C 0 0 4 0 4 0 D 0

2−29 2−39.4

D 1 E 4 4 B 0 0 C E 4 0 0 B 0 E

2.6 Attacks with lower data and time complexities

Our above discussed 8 and 9-round attack requires large number of online measurements. Hence,

in Table 2.5, we report another set of two 8 and 9-round differential characteristics with which

our attack has lower time and data complexity. However, the number of key bits recovered are

comparatively lower, i.e., only 12 key bits (as reported in Table 2.1) could be recovered. In

Table 2.5, we also report the important details of our 8 and 9-round masked attack with lower

data complexity. All the differential characteristics mentioned in Table 2.5 are new and hitherto

not been reported before. Since, in our attacks, the time and data complexities are exactly

the same, hence we report only the data complexity of these attacks. All these attacks can be

launched similar to above attack discussed in this chapter.
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Chapter 3

Side channel collision attack on DES

The Data Encryption standard(DES) designed by a team at IBM, is a 16-round Feistel network

with 64-bit blocks and 56-bit keys. Each round key is of 48-bit computed from the master key

through key schedule. In this chapter, we improved the Jongsung et al.’s work [14]. In that

work, in case of 7-masked round attack they were able to get 15-bit key information only in the

first round, but in our work we improved it using one more charachteristic mentioned in [15]

and now we are recovering full 48-bit key information in the first round. The data complexity of

our attack is 236.99. The time complexity is 236.99 measurements and 235.99curve comparisons.

3.1 Basic layout of the attack

The basic layout of the attack is same as discussed in § 2.2 except the following in the offline

stage,

1. In place of active F-functions, we analyze active sboxes here in the similar way as explained

for active F-functions in§ 2.2.

2. Once we got key candidates for each active sbox, then we have to find the correct key

among the suggested key candidates for each active sbox.

3. In [14], a concept of hit is given to distinguish the correct key and wrong key.

As we find the key candidates by analysing each active sbox for each right pair found in

the online phase, so the correct key will be suggested for each right pair corresponding

to each active sbox and therefore we say that correct key will give 2t−p hits(equal to the

number of right pairs§ 2.2). The key which gives less than 2t−p hits will be wrong key.

If all sboxes are not active in the first round. We choose another differential characteristic

having active sboxes which are not active in the first diffrential trail so that we can find subkey

information corresponding to these sboxes as well and finally we can find the full round subkey

by finding the rest of the key bits through exhaustive search.
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3.2 Detailed attack on DES with 7 masked rounds

We take two 2-round iterative characteristics, first is mentioned in [2] with probability ≈ 2−7.87

and other in [15] with probability ≈ 2−8.09. We construct 7-round differential characteristic

from each 2-round iterative charcteristic with probability 2−31.5 and 2−32.37 respectively using

each characteristic three and half times. The first characteristic having input output difference

both 00 00 00 00 19 60 00 00 is shown in Fig. 3.1 and second characteristic having input output

difference both 00 00 00 00 00 00 03 d4 is shown in Fig. 3.2.

In case of both differential characteristics, for each right pair we get 32-bit collision after F

function in 8th round shown in Fig. 3.3 which means wrong pairs can be fitered out [14] with

probability 2−32. To increase the wrong pair filtering rate, we can filter out in 9th round also

after F function. Since the difference for the first and second differential characteristic is 19

60 00 00 and 00 00 03 d4 respectively in 9th round, so we can get collision at 22 bits after E

expansion box with probability 2−22, therefore we can filter out all wrong pairs at filtering rate

2−54.

The attack procedure using above given information is as follows:

1. Choose 235.37 plaintext pairs satisfying input difference 00 00 00 00 00 00 03 d4 and encrypt

them with DES first 7 and last 7 masked rounds.

2. For each plaintext pair, collect it’s power traces and check for collision at input positions

of s1, s2, s3, s4, s5, s6, s7 and s8 s-boxes in 8th round and if collision doesn’t occur discard

that pair.

3. For remaining pairs check for collision at input positions of s1, s2, s3, s4 and s5 s-boxes in

9th round and if collision doesn’t occur discard that pair.

4. Now using those pairs which satisfy above test, analyse s6, s7 and s8 s-boxes in the first

round using difference distribution table which suggest key candidates because s6, s7 and

s8 are active in the first round, active means s-box having nonzero input difference.

5. output key which give maximum hits.

Right key will give 8 hits(explained in § 3.1) always as 8 plaintext pairs expected to be right

pairs, since the differential characteristic holds with probability 232.37 and we choose 235.37

plaintext pairs . since the filtering rate is 2−54, so there will be no wrong pair out of 235.37

chosen plaintexts. Now, we have to calculate that wrong key will give how many hits.

In case of each active s-boxes s6, s7 and s8 respectively, there will be 2, 2 and 2 equivalent keys.

Suppose, for s6 we have a set S of 6 plaintext pairs in Fig. 3.4, then equivalent means {a·b|b ∈ S},
thus S = 07x · S. So k, k ⊕ 07x are equivalent where k is any key candidate suggested through

difference distribution table of s6. For, any right pair following the differential characteristic,

56 keys will never be suggested, so 56 wrong keys will give 0 hits and since we are remaining

with 8 keys out of which one is correct and 2 will be equivalent to it, so 6 will be wrong keys.
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Figure 3.1: first differential characteristic
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Figure 3.2: second differential characteristic
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Figure 3.3: Filtering in 8th and 9th round for second characteristic

Figure 3.4: possible input pairs for s6, s7 and s8
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Therefore wrong key hits for these 6 wrong keys = (6t − 2t)/6 hits, where t is number of right

pairs i.e 8. So, wrong key will give 5.33 hits.

In case of s7, 46 keys will be suggested only and out of which 44 will be wrong keys as two are

equivalent keys i.e k, k ⊕ 58x and 16 plaintext pairs satisfies the input output difference of s7

shown in Fig. 3.4, therefore wrong key will give = (16t− 2t)/44 i.e 2.545 hits.

In case of s8, 22 keys will be suggested only and out of which 20 will be wrong keys as two are

equivalent keys i.e k, k ⊕ 40x and 10 plaintext pairs satisfies the input output difference of s8

shown in Fig. 3.4, therefore wrong key will give = (10t− 2t)/20 i.e 3.2 hits.

So, finally through this differential characteristic, we are able to recover 15(5+5+5) bit key

information using s6, s7 and s8.

Therfore the data complexity of attack through this characteristic is 236.37.

Similarly, we apply the same attack procedure on first differential characteristic shown in Fig. 3.1

with input difference in first round 00 00 00 00 19 60 00 00x. In first differential characteristic

[14] the probability of following the characteristic is 2−31.5, so we choose 234.5 chosen plaintexts

and therefore 8 plaintext pairs are expected to be right pairs. So right key is expected to be

suggested 8 times.

The filtering rate is same as for above characteristic i.e 2−54, so no wrong pair will occur in this

case also.

In this differential characteristic [14], s1, s2 and s3 are active means have nonzero difference.

Similarly to the above analysis 14, 8 and 10 key candidates will be suggested through the dis-

tribution table of s1, s2 and s3 respectively and each have 2, 2 and 2 equivalent keys. In case of

s1, wrong key will give = (14t− 2t)/42 hits, as 44 keys will be suggested in case of s1 and 2 are

equivalent keys, so 42 will be wrong keys and t is number of right pairs, so wrong key hits=2.29

hits . Similarly in case of s2 and s3, wrong will give 4 and 0.52 hits respectively.

Through this differential characteristic also, we are able to recover 15(5+5+5) bit key informa-

tion using s1, s2 and s3.

The data complexity of the attack through this characteristic is 235.5.

So, we can get two equivalent keys through both differential characteristic corresponding to

each active s-boxes i.e s1, s2, s3, s6, s7 and s8 and now, we have to find correct subkey among

these 2 equivalent keys and we can find correct subkey corresponding to s4 and s5 by exhaustive

search. Therefore, in our attack we can find full round key i.e 48-bit information in the first

round. The data complexity in this phase is = (2× 2× 2× 26 × 26 × 2× 2× 2) = 218.

Therefore the total data complexity of our attack is 236.37 + 235.5 + 218 = 236.99. The time

complexity is 236.99 measurements and 235.99curve comparisons.

33



Chapter 4

Conclusion and Future work

In our work, we present the first differential based side channel collision attack on TWINE-80

with the first and last 7, 8 and 9-rounds masked with the data complexity of 222.58, 232.58 and

246.17 respectively. Similar attack would also work for TWINE-128. This is the first side channel

attack demonstrated on TWINE-80 and shows that more than 20 rounds needs to be masked

to guarantee security against side channel attack.

In our work, we also improved the Jongsung et al.’s work [14]. In that work, in 7-masked round

attack they were able to get 15-bit key information only in the first round, but in our work we

improved it using one more charachteristic mentioned in [15] and we recover full 48-bit subkey.

The data complexity of our attack is 236.99. The time complexity is 236.99 measurements and

235.99curve comparisons.

In future work, one may try to perform the above described attacks on some other block ciphers

or lightweight block ciphers.
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APPENDIX

.1 Difference Distribution Table (DDT) of TWINE-80 SBox

In Fig. 1, rows denote the input differences and columns denote the output differences.

Figure 1: DDT of TWINE-80 Sbox.

.2 Calculation of Hamming Weight Probability

Here, our aim is to calculate the probability of any random pair (satisfying a given ∆in) giving

HW-collision at the input of any one chosen F-function F . We use the following notations to

calculate the probability.

outcoll : collision occurs at output position of
F-function.

incoll : collision occurs at input position of F-
function.

k : key value, where 0 ≤ k ≤ 15
P [outcoll|incoll ∧HW = i] : probability of getting HW-collision at

the output of the F-function given
HW-collision occurs at input of F-
function and HW of both inputs in the
input pair = i, where 0 ≤ i ≤ 4.

P [incoll ∧HW = i] : probability of getting HW-collision at
the input of the F-function when HW
of both inputs in the input pair = i,
where 0 ≤ i ≤ 4.

The probability of getting HW-collision at both the input and output position of F 1 can be

calculated as:
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P [outcoll ∧ incoll)] = P [outcoll|incoll)]× P [incoll] =
15∑
k=0

(P [outcoll|incoll ∧HW = 0]× P [incoll ∧HW = 0])

+
15∑
k=0

(P [outcoll|incoll ∧HW = 1]× P [incoll ∧HW = 1])

+

15∑
k=0

(P [outcoll|incoll ∧HW = 2]× P [incoll ∧HW = 2])

+
15∑
k=0

(P [outcoll|incoll ∧HW = 3]× P [incoll ∧HW = 3])

+
15∑
k=0

P [outcoll|incoll ∧HW = 4]× P [incoll ∧HW = 4])

∑15
k=0 P [outcoll|incoll ∧ HW = 0] × P [incoll ∧ HW = 0] = 16

16 × 1
256 (since, there is only one

single input pair for which HW =0, i.e., (0000, 0000) and this pair gives HW-collision at the

output of F-function for all 16 possible key values).

Programmatically we found that,

∑15
k=0 P [outcoll|incoll ∧HW = 1]× P [incoll ∧HW = 1]= 100

16×256

∑15
k=0 P [outcoll|incoll ∧HW = 2]× P [incoll ∧HW = 2]= 192

16×256

∑15
k=0 P [outcoll|incoll ∧HW = 3]× P [incoll ∧HW = 3]= 100

16×256

∑15
k=0 P [outcoll|incoll ∧HW = 4]× P [incoll ∧HW = 4]= 16

16×256

Thus,

P [outcoll ∧ incoll)] = 16
16×256 + 100

16×256 + 192
16×256 + 100

16×256 + 16
16×256 = 424

4096 ≈ 2−3.27

Since, in § 2.3, HW-collisions happen at 16 positions, total HW-collision probability is 2−52.32.

.3 Proof of Lemma 1

We state the lemma again.
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Lemma 1. Let A and B be two sets of subkey candidates obtained from differential charac-

teristics 1 and 2 respectively. Let P be a set as defined below,

P = {x|y ⊕ z = x,where, y ∈ A and z ∈ B}
Here |P | = 16, i.e., P will have 16 elements. If all the 16 elements in P are unique, then only

one single key will be common in both the sets - A and B.

We prove our lemma by contradiction. Let us consider the two sets of subkeys as follows:

Set A Set B

k k′

k ⊕ p k′ ⊕ u

k ⊕ q k′ ⊕ v

k ⊕ r k′ ⊕ w

The elements of set P are (k⊕k′, k⊕k′⊕u, k⊕k′⊕v, k⊕k′⊕w, k⊕k′⊕p, k⊕k′⊕q, k⊕k′⊕r,
k ⊕ k′ ⊕ p ⊕ u, k⊕ k′ ⊕ p⊕ v, k ⊕ k′ ⊕ p ⊕ w, k ⊕ k′ ⊕ q ⊕ u, k ⊕ k′ ⊕ q ⊕ v, k ⊕ k′ ⊕ q ⊕ w,

k⊕ k′ ⊕ r⊕ u, k ⊕ k′ ⊕ r ⊕ v, k ⊕ k′ ⊕ r ⊕ w).

Let us assume, k ⊕ k′ ⊕ p⊕ v = k ⊕ k′ ⊕ r ⊕ u (shown in bold in set P), or, p⊕ v = r ⊕ u, or,

p ⊕ v ⊕ u = r. This shows that all the elements in P are not unique. Now, further suppose,

subkey (k ⊕ p) in Set A and subkey (k′ ⊕ v) in Set B correspond to the actual subkey for F 2.

=⇒ k ⊕ p = k′ ⊕ v
=⇒ k ⊕ k′ = p⊕ v
=⇒ k′ = k ⊕ p⊕ v
Rewriting elements of Set B in terms of k we get Table 1 which reduces to Table 2 as shown

below:

Here, we can see that two keys are common in both the sets, i.e., subkeys (k ⊕ p) and (k ⊕ r).
This happened because, as k ⊕ k′ ⊕ p⊕ v = k ⊕ k′ ⊕ r ⊕ u, (p⊕ v ⊕ u) got substituted by r in

Set B and hence the overlap.

Thus, for the second differential characteristics in our attack, if the set P has repeated elements,

then we cannot ensure that a distinct single subkey candidate will be obtained.

Table 1

Set A Set B

k k ⊕ p⊕ v
k⊕ p k⊕ p⊕ v⊕ u

k ⊕ q k⊕ p⊕ v⊕ v

k⊕ r k ⊕ p⊕ v ⊕ w

Table 2

Set A Set B

k k ⊕ p⊕ v
k⊕ p k⊕ r

k ⊕ q k⊕ p

k⊕ r k ⊕ p⊕ v ⊕ w
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