
A fail-fast mechanism for authenticated

encryption schemes

Student Name: Naina Gupta

IIIT-D-MTech-CS-IS
December, 2015

Indraprastha Institute of Information Technology
New Delhi

Thesis Committee
Dr. Donghoon Chang, IIIT Delhi (Chair)
Dr. Gaurav Gupta (Deity, Govt of India)

Dr. Goutam Paul (ISI Kolkata)

Submitted in partial fulfilment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

©2015 Naina Gupta
All rights reserved

Certificate

This is to certify that the thesis titled ”A fail-fast mechanism for au-
thenticated encryption schemes” submitted by Naina Gupta for the
partial fulfillment of the requirements for the degree of Master of Technol-
ogy in Computer Science & Engineering is a record of the bonafide work
carried out by her under our guidance and supervision in the Security and
Privacy group at Indraprastha Institute of Information Technology, Delhi.
This work has not been submitted anywhere else for the reward of any other
degree.

Dr. Donghoon Chang
Indraprastha Institute of Information Technology, New Delhi

2

Abstract

In the modern world, almost every computing device uses some crypto-
graphic technique or the other. Over the years several schemes have been
proposed implemented and standardized. For any kind of data transfer the
primary goals are encryption and authentication. Historically, these two
goals are achieved separately, via two different techniques. Any symmet-
ric cipher scheme can be used for encryption, whereas, for authentication,
usage of a keyed MAC is prevalent. There is another approach known as
Authenticated Encryption (AE), which fulfills both the goals at the same
time.

From an implementation perspective, it is important that, if the packet
is malformed, it is rejected as soon as possible. Common techniques like
AES-CBC, allow for such a fail-fast paradigm using padding oracle. But,
the same technique cannot be applied for other common AE techniques like
AES-GCM. In this work, we provide a technique using which any AE scheme
can be used directly (without any change), whilst providing the good fail-fast
features at the same time.

Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr.Donghoon
Chang for his guidance and support. The quality of this work would not
have been nearly as high without his well-appreciated advice. I would like
to extend my gratitude to Arpan Jati for devoting his time in discussing the
ideas, helping me in learning the various device working and running the
code, and giving his invaluable feedback. I am grateful to him for providing
me the guidance whenever needed for this research. I appreciate the sup-
port Megha Agrawal and Amit Kr. Chauhan has provided me in writing
the security analysis of my work. I would like to dedicate this thesis to my
loving and supportive parents who have always been with me, no matter
where I am.

I thank Dr. Gaurav Gupta and Dr. Goutam Paul for accepting to be a
part of my thesis committee as the internal examiner and as the external
examiner, and for enriching this thesis with their valuable suggestions and
feedback.

i

Contents

1 Introduction 1
1.1 Approaches for securing data in transit 1
1.2 Motivation . 2
1.3 Contribution . 3

2 Background 5
2.1 History and Relevance . 5
2.2 Notations used . 5
2.3 Cryptographic Basics . 6

2.3.1 Padding . 7
2.3.2 Cipher Block Chaining 7

2.4 Padding Oracle Attacks . 8
2.4.1 The setting. 10
2.4.2 Malleability of CBC encryption 11
2.4.3 Learning the last byte of a block. 12
2.4.4 Learning other bytes of the block. 14
2.4.5 Putting it all together. 15

2.5 Limitations of AES-CBC . 16

3 Literature Review 17
3.1 Notations used . 17
3.2 AES-GCM Specifications . 17

3.2.1 Parameters and Components 17
3.3 High level structure . 21

3.3.1 Authenticated Encryption 22
3.3.2 Authenticated Decryption 24

4 Proposed Scheme 26
4.1 Methodology . 26

ii

4.1.1 Notations used . 27
4.1.2 Design specifications 27

4.2 Security Analysis . 31
4.2.1 Privacy of FFAE . 31
4.2.2 Authenticity of FFAE 32

5 Results and Performance Analysis 35
5.1 Target Devices . 35
5.2 Results Analysis . 35

6 Conclusion and Future Work 43

iii

List of Figures

1.1 Using two seperate algorithms for encrypt and authenticate . 2
1.2 Using AE scheme . 2

2.1 CBC mode encryption and decryption 9
2.2 Scenario for attack working 13

3.1 GHASHH(X 1‖X 2‖ . . .Xm-1‖Xm) = Ym 20
3.2 GCTRK(ICB,X 1‖X 2‖ . . .Xm-1‖Xm) = Y1‖Y2‖ . . .Ym-1‖Ym 21
3.3 AES-GCM-AEK(IV,M,A) = (C, T) 23
3.4 AES-GCM-ADK(IV, C,A, T) = P or FAIL 25

4.1 Proposed Scheme . 30
4.2 Proposed Scheme for verification 31

5.1 Intel Core i3-380M@2.53 GHz 36
5.2 Raspberry Pi 2, BCM2836@1 GHz 36
5.3 AVR32, AVR32UC3A0512@12 MHz 37
5.4 ATXMEGA128A1@32 MHz 37
5.5 ATMEGA328P@16 MHz . 38
5.6 Performance Overhead of our approach with fail-fast mecha-

nism v/s existing AE scheme 41
5.7 Execution Time of our approach with fail-fast mechanism v/s

existing AE scheme . 42

iv

List of Tables

2.1 Notations used in background 6

3.1 Notations used in literaure review 18

4.1 Notations used in proposed scheme 27

5.1 Comparison of Execution Time in milliseconds 39
5.2 Comparison of Execution Time in milliseconds 40

v

Chapter 1

Introduction

In this chapter, we outline the primary motivation of this research work and
describe the contributions.

1.1 Approaches for securing data in transit

In the growing world of technology, the amount of information we share
across the network is constantly growing day by day. There is a need to
conceal confidential information. Confidentiality and Integrity are two main
factors which are considered in order to protect a message. There are two
main approaches to achieve the said goals:

1. The first approach is to treat encryption and authentication separately.
A block cipher or stream cipher is used to encrypt the message and a
hash function is used to generate the MAC of the message as shown in
1.1. For example, we can use Advanced Encryption Standard (AES)
[4] for encrypting the message and Hash Message Authentication Code
(HMAC) [10] to generate the hash of the message (MAC tag). In this
approach, the sender encrypts the message using a K1 and authenti-
cates it using K2 and sends the encrypted message appended with the
MAC to the receiver. At the receiver side, message if first decrypted
using K1 and then generates the hash using K2. It then verifies the
generated MAC with the MAC received from the sender, if it matches
then the packet is accepted otherwise it is rejected straightforward.

2. Another approach is use an integrated Authenticated Encryption (AE)
algorithm like AES-GCM for both message encryption and authenti-
cation. It is also more efficient than the first approach as it can share

1

P

K1Sender

Insecure
Channel

C

T

K1

T = T
′ Y/N

T ′

P

Receiver

C

T

EK

HK

K2

DK

HK K2

Figure 1.1: Using two seperate algorithms for encrypt and authenticate

P

K1
Sender

Insecure
Channel

AEK

C

T
AEK

K1

T = T
′ Y/N

T ′

P

Receiver

C

T

Figure 1.2: Using AE scheme

a part of the computation. Such kind of algorithms use only one key
as shown in 1.2. Therefore, key exchange and storage issues are better
as compared to using two different algorithms.

There are now two NIST recommended modes of operation for au-
thenticated encryption, namely, Counter with Cipher Block Chaining
Mode (CCM) [9] and Galois Counter Mode (GCM) [11].

1.2 Motivation

With the advent of ubiquitous secure protocols such as Secure Shell (SSH)
[14] and Secure Sockets Layer / Transport Layer Security (SSL/TLS) [5],
applications like WinZip, Disk Encryption, Password encryption and vari-
ous devices like IoT’s, embedded systems etc, sensitive data is increasingly
transmitted through or stored on the systems using these applications. Users
concerned about security typically employ protective methods to secure their
data.

2

Algorithms which use MtE (MAC then Encrypt), have a fail-fast mecha-
nism or padding oracle which discards the packet immediately based on the
correctness of the padding. But, due to well known padding oracle attacks
on this technique, new approaches like AE schemes were developed. AE
schemes are being widely used by many servers and has a great scope of use
in various applications and embedded devices in near future as well, but this
scheme lacks a fail-fast mechanism.

A lot of processing power is spent for performing cryptographic opera-
tions in a typical server workload. Special instructions for many popular AE
schemes are available in modern CPUs. These instructions offer tremendous
speed-up but it still costs cycles to encrypt, decrypt and verify the integrity
of a message; it takes more clock cycles as the message size is increased
because existing AE schemes process the MAC tag at the end of the packet.
Environments where available resources are restricted, these scheme will
have a weakness of taking up a considerable amount of time to check the
integrity of message.

For example, in WinZip if a wrong password is provided to the applica-
tion during decryption, it will give warning only after processing the whole
file. Thus, there arises a need for a new approach which can overcome
this problem. In this thesis we explore the idea to use the current secure
AE algorithms to lower the CPU load and possibly speed-up the message
integrity verification by proposing a fail-fast mechanism. So, using the pro-
posed approach, even if a wrong password is provided or a garbage packet is
transmitted over the network, it is possible to detect and discard the packet
at an early stage rather than processing the whole packet first and then
discarding it.

1.3 Contribution

This thesis deals with the design and implementation of a generic algorithm
which enriches the existing AE schemes by adding a fail-fast mechanism. We
provide the description and implementation of both the existing AE scheme
and the new design approach using an additional block to expedite the MAC
verification process in the existing AE algorithms.

This work is an attempt to devise a new model which is both secure
and fast. Our approach requires an extra block to be generated which is
appended to the original ciphertext. The block generated is composed of
parameters related to the packet so it can only be created by a legitimate
person in possession of the key. Thus, ensuring an intruder cannot generate a

3

packet which has a valid initial block appended with invalid ciphertext/MAC
tag. Server will immediately discard the packet if such a case is found.

4

Chapter 2

Background

In this chapter, we provide detailed explanation of how AES-CBC algorithm
works, discuss about historical background of padding oracle attacks, and
point out why they are still relevant. Subsequently, we will introduce the
reader to the most basic cryptographic primitives and concepts required
to understand padding oracle attacks. Then we continue with explaining
padding oracle attacks in detail. Finally, we conclude with the limitations
of AES-CBC algorithm for encryption/decryption.

2.1 History and Relevance

A practical padding oracle attack for symmetric cryptography has first been
proposed by Vaudenay in 2002 [13]. Similar attacks, however, had already
been shown theoretically feasible as early as 1998 for RSA [2], though not
entirely as efficient. Thus, padding oracle attacks are known for more than
a decade.
Still, there are standard and implementation errors which results in the
emergence of such attacks. The main reason for such attacks is the MAC-
then-Pad-then-Encrypt paradigm which they follow and is used by many,
and thus cannot easily be fixed. As a consequence, still today, relevance is
given to such attacks.

2.2 Notations used

Table 2.1 summarizes the notation used in this chapter.

5

Table 2.1: Notations used in background

Symbol Meaning

{0,1}8n Bitstring consisting of 0,1 of length 8n

⊕ Bitwise XOR operation

IV Unique initialization vector

K Distinct Key of length k bits

b block size, depending on the algorithm

len(x) returns length of message x in bytes

M Plaintext message of length {0,1}8n

M’ Plaintext message obtained after decryption

C Ciphertext message, length is same as of Plaintext

C’ Received ciphertext

EK A symmetric key encryption function

DK A symmetric key decryption function

Encipher/Encrypt interchangeable terms for encryption

Decipher/Decrypt interchangeable terms for decryption

2.3 Cryptographic Basics

In the following section, we give an overview of the basics of cryptographic
algorithms and concepts related to AES-CBC which are further required to
understand the padding oracle attacks. Also, we will explain how the basic
encryption and decryption algorithm works.
Basic encryption and decryption functions can be represented by following
equations :

EK(M) = C //Encryption Function

and

DK(C′) =M′ //Decryption Function

If C = C′ ⇒M =M′, else ciphertext has been tampered in transit.

6

Symmetric cipher types : Cryptographic algorithms are generally re-
ferred to as ciphers. There are two basic types of symmetric algorithms:
block ciphers and stream ciphers. Block ciphers operate on blocks of plain-
text and ciphertext at a time whereas Stream ciphers operate on streams of
plaintext and ciphertext one bit or byte at a time.
A cryptographic mode usually combines the basic cipher, some sort of feed-
back, and some simple operations.

2.3.1 Padding

Most messages dont divide neatly into the block size as specified by the
cryptographic algorithm being used as the input may come in varying sizes,
there is usually a short block as the end. Padding is the way to deal with
this problem. Padding allows to append the last block with some regular
pattern in order to make the block aligned in size. This has to be done in
such a way that it becomes distinguishable from the true payload so that
it can be easily removed at decryption time. There are various standards
which describe different methods of how padding can be performed. For
example, the Public Key Cryptography Standard (PKCS)#7 [8] defines that
each added byte should be the value of the number of bytes to be added
in padding, i.e., if there need to be 5 bytes added, each of these bytes will
have the value 0x05. Even messages being a multiple of the block size need
to be padded. In this case, one full block of padding with bytes of value b
are appended, with b being the block size. Thus, at least the last byte of a
message needs to be padding and padding must always be present.

2.3.2 Cipher Block Chaining

Block ciphers can operate in different modes. These modes of operation
have been devised to encipher/decipher text of any size by breaking into
chunks of data (known as blocks). Further, they offer different services like
confidentiality, integrity and authenticity.
Cipher Block Chaining (CBC) is the most common mode of block cipher
being used these days because of its chaining mechanism. Chaining adds a
feedback mechanism to the block cipher. The results of encryption of pre-
vious blocks are fed into the encryption of the current block, thus making
each ciphertext block to be dependent on the plaintext that generated it as
well as on all the previous plaintext blocks.
Below algorithms 1 and 2 describes how encryption and decryption works
in AES-CBC. Also refer Figure 2.1 for more details.

7

Algorithm 1: CBC Encryption

1 AES-CBC-EK(IV,M)
Input : Key K;

Initialization Vector IV(denoted as C0);
Plaintext message M

Output: Ciphertext C
2 Add padding to the plaintext message M so that it becomes a

mutiple of block size i.e. 16 bytes in AES.
3 Let n (no of blocks) = len(M‖Padding)

16
4 for i← 1 to n do
5 temp = Mi ⊕ Ci-1;
6 Ci = EK(temp);

7 end
8 return ciphertext C;

Algorithm 2: CBC Decryption

1 AES-CBC-DK(IV, C)
Input : Key K;

Initialization Vector IV(denoted as C0);
Ciphertext C

Output: Plaintext message M
2 Let n (no of blocks) = len(C)

16
3 for i← 1 to n do
4 temp = DK(Ci);
5 Mi = temp⊕ Ci-1;
6 end
7 remove padding from the decrypted message to get the actual

payload;
8 return plaintext M;

2.4 Padding Oracle Attacks

As discussed in section 1.2.2 block cipher modes requires a padding method
to be used in order to make the block aligned to the block size b before
encryption.
Standard-conforming padding, in addition to the design principles behind

8

Ek

M0

C0

IV ⊕

Ek

Mi-1

Ci-1

⊕

Ek

Mi

Ci

⊕

. . .

Dk Dk Dk

Mi

.

C0

M0

IV ⊕

Ci-1

Mi-1

⊕ ⊕

Ci

CBC
Encryption

CBC
Decryption

Figure 2.1: CBC mode encryption and decryption

most implementations of cryptographic standards, make portions of the
plaintext easily guessable. One correctly guessed byte at the end of a mes-
sage tells an adversary the value of a number of other bytes, with the number
of bytes determined by the guessed bytes value. This is an important factor
in the feasibility of padding oracle attacks.
In this section we will describe how padding oracle attacks works based
on the properties of standard padding method PKCS #7(as shown below).
This attack is not specifically on this padding method but applies to any
padding scheme.
The functions PadLen(l), PadStr(l) and ValidPad(x) shown below describes
how padding length is determined, how the padding string which needs to
be appended is calculated conforming to (PKCS)#7 standard and then how
it is verified whether a message x has valid padding or not.

9

Algorithm 3: Calculate the
padding length

1 PadLen(l)
Input : length l of message

in bytes
Output: padding length

2 return 16 − (l % l6)

Algorithm 4: Calculate the
padding bytes string

1 PadStr(l)
Input : padding length

denoted by l
Output: padding string of

length l to be
appended at end of
message

2 return l , . . . , l , l

Algorithm 5: Check for
valid/invalid padding

1 ValidPad(x)
Input : message x
Output: returns true/false

depending on
whether x has
valid/invalid
padding

2 if | x | %16 6= 0 then
3 return false;
4 else
5 l := last byte of x ;
6 if l /∈ {1, . . . , 16} then
7 return false;
8 else
9 if PadStr(l) = last l

bytes of x then
10 return true;
11 else
12 return false;
13 end

14 end

15 end

2.4.1 The setting.

When a server receives the ciphertext , it first decrypts the ciphertext and
checks whether the plaintext has valid padding or not depending on the
padding method agreed by both sides.
The server behaviour changes depending on whether the padding is valid
and it can be observed easily as server gives a special error message in the
case of invalid padding (add reference for different error messages padding
oracle attack). Also, the difference in response time when processing a ci-
phertext with invalid padding is enough to allow the attack to work. (add

10

reference for timing padding oracle attack). For this attack to work we will
assume, that there exists a padding oracle which provides the information
whether a ciphertext has a valid padding or not to the attacker. It does
not matter how does attacker gains this information but he has access to
this padding oracle, which gives the same information as following function :

Algorithm 6: Padding oracle responds whether input has valid
padding or not

1 PaddingOracle(C)
Input : ciphertext C
Output: returns true/false depending on valid/invalid padding

2 M = DK(C) ;
3 return ValidPad(M);

In the later section we will describe, even if the server does not provide
any information about the ciphertext to the attacker, still the attacker will
be able to decrypt any ciphertext of its choice using the padding oracle.

2.4.2 Malleability of CBC encryption

As described in section 2.3.2 about CBC decryption, if the ciphertext is
C = C0, . . . , Cn, then the ith plaintext block is computed as :

Mi = DK(Ci)⊕ Ci-1
From this we can deduce two important facts :

1. If we remove any two consecutive ciphertext blocks (Ci-1, Ci),then they
are by themselves a valid encryption of Mi from the definition of
CBC mode encryption. Thus, providing the attacker an opportunity
to focus on decrypting a single block at a time.

2. If we XOR Ci-1 with a known value x, the result (Ci-1 ⊕ x, Ci) is a
ciphertext that decrypts to Mi ⊕ x

DK(Ci-1⊕x, Ci) = DK(Ci)⊕ (Ci-1 ⊕ x) = (DK(Ci)⊕ Ci-1)⊕ x = Mi ⊕ x

If we send such a ciphertext (Ci-1⊕x, Ci) to the padding oracle, we would
be able to get to know whetherMi⊕x is a (single block) with valid padding
or not. By iterating over different values x and asking questions of this form

11

to the padding oracle, we can eventually learn all of Mi.
The following function can be used to ask such questions from the padding
oracle:

Algorithm 7: Checks whether the modified input Mi ⊕ x has
valid/invalid padding

1 CheckModInput(C, i, x)
Input : ciphertext M, block number i, guessed byte value x
Output: returns true/false depending on valid/invalid padding

2 M = DK(C) ;
3 return PaddingOracle(Ci-1 ⊕ x, Ci);

2.4.3 Learning the last byte of a block.

We now show how to use the CheckModInput function to determine the last
byte of a plaintext block M.
This is the easy case, as shown below. We can try every possible value for
byte x and ask to the padding oracle whether M⊕ x has valid padding or
not. Since the last byte of M (and hence M⊕ x) should be 01 for it to be
a valid padding, only one of the possible value of x will give valid padding.
Thus, there will be a unique candidate for x which results in M⊕ x with
valid padding.

. a0 42 m m = unknown plaintext byte

⊕ x x = candidate byte

. a0 42 01 valid padding ⇔ x⊕m = 01

2.4.3.1 How it works.

Consider the function GuessLastByte and the scenario shown in Figure 2.2
where x is the byte we want to guess by making modifications in byte denoted
by c.

Following function LearnLastByte summarizes the overall approach for

12

⊕

Decrypt

. c

Ek(IV) = C0 C1

t

m

M1

Intermediate State

Guess every
possible byte
{denoted by x}
for this position

Figure 2.2: Scenario for attack working

Algorithm 8: Detailed explanation of guessing the last byte

1 GuessLastByte (Ci-1, Ci)
Known : m = c⊕ t
Description: Make guesses for x such that last byte of M becomes

01 for padding oracle to return ”Valid Padding”
Input : Any two consecutive ciphertext block for example we

considered C0,C1 in this case
Output : value of t (intermediate state last byte)

2 do
3 modify C0 to C0′ such that last byte of C0′ becomes = c⊕ x⊕ 01
4 Now m′ becomes = t ⊕ (changed value of c)

= t ⊕ c ⊕ x ⊕ 01
= m ⊕ x ⊕ 01 () (because m = c⊕ t)

5 Now if the guess is correct then
6 m = x⇒

m′ = m⊕m⊕ 01 = 01 = Valid padding
7 else
8 m 6= x⇒

m′ = m⊕ x⊕ 01 = some value ⇒ Invalid padding
9 end

10 while (guess for x returns Valid Padding);

13

guessing the last byte of the plaintext

Algorithm 9: learn the last byte of ith plaintext block

1 LearnLastByte(C, i)
Input : ciphertext C, block number i
Output: returns the last byte of plaintext block

2 for x← 0 to 255 do
3 if CheckModInput(C, i, x) then
4 return x⊕ 01 ;
5 else
6 continue ;
7 end

8 end

2.4.4 Learning other bytes of the block.

It is easy to learn other bytes of the block once we have learned the last byte
of the block. Suppose we know the last 3 bytes of the plaintext block as
shown in below example and now we want to figure out the 4th-to-last byte.
Since we know the last 3 bytes of M, we can calculate a string s such that
M⊕ s ends in 04 04 04 as for the block to have a valid padding, it should
end with 04 04 04 04. So for the 4th- to-last byte we can do the same thing
as we did for the last byte, guessing the value for byte x such that M⊕ s
results in a valid padding. Valid padding only occurs when the result has
04 in its 4th-to-last byte.

. . . m a0 42 3c m = unknown plaintext byte

⊕ 04 04 04 04 p = PadStr(4)

⊕ a0 42 3c s = known bytes ofM

⊕ x 00 00 00
y = candidate byte x shifted
into place

. . . 04 04 04 04 valid padding ⇔ x = m

Below algorithm explains the procedure to get the rightmost unknown byte

14

of Mi.

Algorithm 10: learn rightmost unknown byte ofMi, if we know that
Mi ends in bytes s

1 LearnPrevByte(C, i, s)
Input : ciphertext C, block number i, Mi ends in bytes s
Output: returns the rightmost unknown byte of plaintext block

2 p := PadStr(| s | + 1)
3 for x← 0 to 255 do
4 y := x 00 . . . 00 (where length of y = | s | + 1 s.t. first byte is x

followed by 0
′
s)

5 if CheckModInput(C, i, p⊕ s⊕ y) then
6 return x ;
7 else
8 continue;
9 end

10 end

2.4.5 Putting it all together.

The overall process of padding oracle attack to decrypt any ciphertext can
be summarized as below:

Algorithm 11: learn the en-
tire plaintext block Mi

1 LearnBlock(C, i)
Input : ciphertext C, block

number i
Output: returns the entire

plaintext block
2 s := LearnLastByte(C, i) ;
3 for x← 0 to 15 do
4 b := LearnPrevByte(C,i,s)

;
5 s := b‖s;
6 end
7 return s;

Algorithm 12: learn the en-
tire plaintext M1 . . . Mn

1 LearnDec(C)
Input : ciphertext C
Output: returns the complete

plaintext message
2 M :=∈;
3 l := number of blocks in C,

excluding IV;
4 for i← 1 to l do
5 M :=M‖LearnBlock(C,i);
6 end
7 return M;

15

2.5 Limitations of AES-CBC

1. IV used in CBC mode must be unpredictable as mentioned by the
NIST recommendation[[7],Section 5.3 and Appendix C], otherwise it
may lead to various attacks. For example, BEAST([6]) attack demon-
strated that if the attacker is able to predict the next IV to be used,
then the attacker would be able shape the next chunk of plaintext.

2. Phil Rogaway in 1995 showed that if the IV chosen in not random
for each plaintext message then there exists a statistical correlations
between IV and plaintext such that it will leak some information to
the attacker.

3. AES in CBC mode is a malleable cipher. Informally, an encryption
scheme is malleable if an adversary can modify a ciphertext C in such
a way to create a ciphertext C’ whose plaintext P’ is meaningfully
related to original plaintext P. Because of this property of CBC mode,
padding oracle attacks were possible as discussed in section 2.4.2.

4. Padding oracle attack on CBC is well known and was first introduced
by Vaudenay [13]. He showed anyone in possession of ”Valid padding
oracle” can decrypt arbitrary ciphertext which were encrypted using
Pad-then-CBC paradigm. This attack model was further enhanced by
Paterson and Watson [12] who enriches the capablities of an adversary
by providing an encryption oracle as well as ValidPadding oracle. So
this will return the CBC-encryption of a properly padded plaintext if
the plaintext has valid padding, otherwise it will return invalid cipher-
text.
Vaudenay focussed only on a single type of padding scheme. So Black
and Urtubia [1] carried forward his idea and demonstrated that same
idea of padding oracle attack can be applied to five more padding
schemes. Canvel, Hiltgen, Vaudenay and Vuagnoux [3] further recov-
ered SSL/TLS passwords using POA attack.

16

Chapter 3

Literature Review

In this chapter we focused on explaining the elements of GCM [11] and its
associated notation. Firstly, the components (GHASH function and GCTR
function) of GCM are discussed, followed by the high level structure of
Authenticated Encryption and Decryption algorithm. Finally, the chapter
is concluded with the discussion of limitations of GCM.

3.1 Notations used

Table 3.1 summarizes the notations used in this chapter.

3.2 AES-GCM Specifications

This section gives a detailed explanation of the AES-GCM algorithm.

3.2.1 Parameters and Components

GCM consists of mainly two functions authenticated encryption and authen-
ticated decryption. Requirements and notations for input and output data
of these two functions are discussed in following subsection. Also, GHASH
and GCTR functions used for intermediate stages in GCM are discussed in
detail in this section.

3.2.1.1 Authenticated Encryption

Following three inputs are required for authenticated encryption scheme:

� a key K

17

Table 3.1: Notations used in literaure review

Symbol Meaning

IV Initialization vector of length n = 1 to 264 bits

K Distinct Key of length k bits

A Additional authenticated data of length between 0 to 264

M Plaintext message, can have any number of bits between 0 and 239 − 256

0s string consisting of s
′
0
′

bits

len(X) length of bit string X
X i‖X i+1 concatenation of bit strings X i and X i+1

MSBs(X) bit string consisting of s left-most bits of the bit string X
inc(X) output of GCM incrementing function applied to the block X
T An authentication tag of length t which varies from 64 to 128 bits

T ′ Authentication tag obtained on receiver side after applying AEK
AEK Authenticated Encryption function

C Ciphertext, length is same as of Plaintext

� an initialization vector IV

� a datagram(A, M) where

– A is an additional authenticated data

– M is the plaintext message

Following bit strings are the output of authenticated encryption function:

� C is the ciphertext(or encrypted payload)

� T is an authentication tag

In summary, it can be represented by following equations:

AE : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t
with

AE(K, IV,A,M) = (C, T)

18

3.2.1.2 Authenticated Decryption

Following parameters are taken as input :

� a key K

� an initialization vector IV

� a datagram(A, C, T) where

– A is an additional authenticated data

– C is the ciphertext(or encrypted payload)

– T is an authentication tag

The output is one of the following:

� M, decrypted plaintext message, if tag verification is successful

� ⊥, failure if tag verification is failed

In summary, this can be represented by following equations:

AE : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t
with

AE(K, IV,A, C) =

{
M, if T ′ is correct

⊥, otherwise

3.2.1.3 GHASH Function

GHASH function is used to provide the authentication mechanism in GCM.
Input hash subkey H, is obtained by applying the block cipher to the 128-bit
string of all ”0”. The hash subkey H obtained is then multiplied to the input
block X , over a binary Galois field GF(2128). Refer figure 3.1 and algorithm

19

X 1

Y1

H

X 2

Y2

H

⊕

Xm

Ym

H

⊕
. . .

Figure 3.1: GHASHH(X 1‖X 2‖ . . .Xm-1‖Xm) = Ym

13 for detailed explanation of how this function works.

Algorithm 13: GHASH in AES-GCM

1 GHASHH(X)
Input : Bit string X of length s.t. it is a multiple of 128 bits;

Hash subkey H
Output: Block Ym

2 Let m (no of blocks) = len(X)
128

3 X = X 1‖X 2‖ . . .Xm-1‖Xm representing the unique sequence of
blocks

4 Y0 (a.k.a ”zero block”) = a bit string comprised by 128 binary 0
5 for i← 1 to m do
6 temp = Y i-1 ⊕X i;
7 Y i = temp • H;

8 end
9 return block Ym;

3.2.1.4 GCTR Function

Confidentiality mechanism of GCM is provided by GCTR function. The
incrementing function, inc is used for generating the necessary sequence of
counter blocks. First counter block is generated by incrementing the block
derived from IV. Refer figure 3.2 and algorithm 14 for detailed working of

20

X 1

Y1

⊕

ICB

CIPHK

inc

⊕

ICB

CIPHK

X 2

Y2

. . .

. . .

⊕

ICB

CIPHK

inc

⊕

ICB

CIPHK

X n

Yn

X n-1

Yn-1

Figure 3.2: GCTRK(ICB,X 1‖X 2‖ . . .Xm-1‖Xm) = Y1‖Y2‖ . . .Ym-1‖Ym

this function.

Algorithm 14: GCTR in AES-GCM

1 GCTRK(ICB,X)
Input : Bit string X of arbitrary length;

Initial counter block ICB;
block cipher CIPH(such as AES);
Key K

Output: Bit string Y of length same as X
2 Let m =

⌈
len(X)
128

⌉
3 X = X 1‖X 2‖ . . .Xm-1‖Xm representing the unique sequence of bit

strings
4 Let CB1 = ICB
5 for i← 2 to m do
6 CBi = inc(CBi-1)
7 end
8 for i← 1 to m− 1 do
9 Y i = X i ⊕ CIPHK(CBi)

10 end
11 Ym = Xm ⊕MSBlen(Xm)(CIPHK(CBm))

12 Let Y = Y1‖Y2‖ . . .Ym-1‖Ym

13 return Y;

3.3 High level structure

This section discuss about how a message in encrypted and then decrypted
using GCM algorithm. Block cipher used is AES.

21

3.3.1 Authenticated Encryption

Refer below algorithm 15 and figure 3.3 for step-by-step explanation of au-
thenticated encryption function.

Algorithm 15: Authenticated Encryption function

1 AES-GCM-AEK(IV,M,A)
Input : Key K;

block cipher CIPH(such as AES);
Tag length t;
Initialization vector IV;
Plaintext message M;
Additional authenticated data A.

Output: Ciphertext message C;
Authentication tag T .

2 Let H = CIPHK(0128)
3 Define a block, J 0 = IV‖0311 where IV is of length = 96 bits.
4 C = GCT RK(inc(J 0),M)

5 Let u = 128·
⌈
len(C)
128

⌉
− len(C) and let v = 128·

⌈
len(A)
128

⌉
− len(A)

6 Define block S = GHASHH(A‖0v‖C‖0u‖[len(A)]64‖[len(C)]64)
7 T =MSBt(GCT RK(J 0,S))
8 return (C, T);

22

IV P

J 0 inc GCT RK

GCT RK

GHASHK

MSBt

CIPHK

A C

T

H

0n 0n

0128

[len(A)]64 [len(C)]64

Figure 3.3: AES-GCM-AEK(IV,M,A) = (C, T)

23

3.3.2 Authenticated Decryption

Algorithm 16 and figure 3.4 explains the working of authenticated decryption
function on GCM.

Algorithm 16: Authenticated Decryption function

1 AES-GCM-ADK(IV, C,A, T)
Input : Key K;

block cipher CIPH(such as AES);
Tag length t;
Initialization vector IV;
Ciphertext message C;
Additional authenticated data A;
Authentication tag T .

Output: Plaintext message M or a failure message.

2 Let H = CIPHK(0128)
3 Define a block, J 0 = IV‖0311 where IV is of length = 96 bits.
4 M = GCT RK(inc(J 0), C)
5 Let u = 128·

⌈
len(C)
128

⌉
− len(C) and let v = 128·

⌈
len(A)
128

⌉
− len(A)

6 Define block S = GHASHH(A‖0v‖C‖0u‖[len(A)]64‖[len(C)]64)
7 Let T ′ =MSBt(GCT RK(J 0,S))
8 if T = T ′ then
9 return M;

10 else
11 return FAIL;
12 end

24

IV P

J 0 inc GCT RK

GCT RK

GHASHK

MSBt

CIPHK

A C

T ′

H

0n 0n

0128

[len(A)]64 [len(C)]64

if 6=T

FAIL

Figure 3.4: AES-GCM-ADK(IV, C,A, T) = P or FAIL

25

Chapter 4

Proposed Scheme

As mentioned before, the AES Galois Counter Mode (GCM) is one of the
first AE scheme which has received a great attention in the literature nowa-
days. Although the approach is a good scheme in terms of combining the
decryption and integrity verification in a single step but it has some draw-
backs.This approach is based on checking the integrity of the packet at the
end after processing the whole packet. For example, If the packet size is n
(n being very large) bytes then it will first process whole n bytes calculating
the MAC tag on cipher-text and then check for the integrity of the packet.
To counteract this drawback, one may use the proposed generic scheme a.k.a
fail-fail authenticated encryption(FFAE) scheme which provides a fail-fast
mechanism to discard the packet at an early stage if packet is malformed.
The approach is based on generating two Tags (T1) and (T2) for MAC veri-
fication. If (T1) is correct, then only the whole packet is processed to verify
the integrity of the packet.Thus, speeding-up the MAC verification process
in AES-GCM algorithm. Using the proposed scheme in this chapter, one
can easily discard the packet at an early stage rather than processing the
whole packet and then making a decision on whether to accept/reject the
packet based on the MAC tag.

4.1 Methodology

We used two extra operations to be performed along with the current AES-
GCM algorithm as shown in Figure 4.1.

26

4.1.1 Notations used

Table 4.1 summarizes the notation used in this thesis document.

Table 4.1: Notations used in proposed scheme

Symbol Meaning

N or IV Unique nonce/initialization vector of length n=128 bits

K Distinct Key of length k bits

A Additional authenticated data of length between 0 to 264

M Plaintext message, can have any number of bits between 0 and 239 − 256

HK A keyed hash function

N ′
Result obtained after performing HK(N or IV) of length n

′

N ′′
Result obtained after performing DK(T1) of length n

′′
for verification

EK A symmetric key encryption function

DK A symmetric key decryption function

T 1 An authentication tag of length t1=128 bits, obtained after EK(N
′
)

AEK Authenticated Encryption function

C Ciphertext, length is same as of Plaintext

T 2 An authentication tag of length t2 which varies from 64 to 128 bits

4.1.2 Design specifications

This section gives a detailed explanation of the scheme proposed and its
layout overview.

4.1.2.1 Parameters and Components

A particular instance of this scheme consists of deciding following algo-
rithms:

� A keyed hash function (HK)

� An encryption function(EK)

� An authenticated encryption algorithm (AEK)

Sender Side ciphertext and tag generation

Scheme demands following parameters to be taken as input on sender side :

27

� a key K

� a nonce N of 128 bits

� a datagram(A, M) where

– A is an additional authenticated data

– M is the plaintext message

Produces following output:

� intermediate output N ′

� final output(T 1, C, T 2) where

– T 1 is initial authentication tag calculated on N
– C is the ciphertext(or encrypted payload)

– T 2 is an authentication tag

In summary, it can be represented by following equations:

H : {0, 1}k × {0, 1}n → {0, 1}n′

with
H(K,N) = (N ′)

E : {0, 1}k × {0, 1}n′ → {0, 1}t1
with

E(K,N ′) = (T 1)

AE : {0, 1}k × {0, 1}n′ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t2
with

AE(K,N ′,A,M) = (C, T 2)

Receiver Side tag verification and plaintext generation

Following parameters are taken as input :

� a key K

� a nonce N of 128 bits

� a datagram(A, C, T 1, T 2) where

– A is an additional authenticated data

28

– C is the ciphertext(or encrypted payload)

– T 1 is initial verification authentication tag

– T 2 is an authentication tag

Produces following output:

� intermediate output N ′

� intermediate output N ′′

� final output(M ‖ ⊥) where

– M is the decrypted plaintext message, tag verification is success-
ful

– ⊥, failure if tag verification is failed

In summary, this can be represented by following equations:

H : {0, 1}k × {0, 1}n → {0, 1}n′

with
H(K,N) = (N ′)

D : {0, 1}k × {0, 1}t1 → {0, 1}n′′

with
D(K, T 1) = (N ”)

if N ′ = N ′′

AE : {0, 1}k × {0, 1}n′ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t2
with

AE(K,N ′,A, C) =

{
M, if T 2 is correct

⊥, otherwise

⊥, otherwise

4.1.2.2 Design overview

Refer Figure 4.1 for a brief description of transformations done on the mes-
sage and IV at sender side as explained below :
Firstly, hash function Hk is applied on N or IV in order to generate N ’,
which is further used as initialization vector for AE . Then, N ’ generated is
encrypted using symmetric key encryption algorithm Ek chosen to generate

29

EKHK

N ′

N ′

T 1

AEK

A P

C T 2

N or IV

Figure 4.1: Proposed Scheme

the first tag T 1, used to discard garbage packet at an early stage. After
the initial tag is generated, encrypt the plaintext message M to get the
ciphertext C and its associated authentication tag T 2.

After performing all the transformations, T 1 ‖ C‖ T 2 is send to the re-
ceiver.

At receiver side, following transformations are applied on the packet
T 1 ‖ C‖ T 2 in order to verify the integrity of the message and decrypt ci-
phertext to generate plaintext. Refer Figure 4.2.
Firstly, hash function Hk is applied on N or IV in order to generate N ’,
which is further used for verification purpose before applying AE . Next,
T 1 received in the packet is decrypted using decryption algorithm Dk to
generate N ”. Then, N ’ generated earlier is compared with N ”.If the two
exactly matches, then only AE is applied, otherwise the packet is discarded
right away. N ’ generation and T 1 decryption can be done in parallel. In
case of AE , N

′′
generated earlier is used as the initialization vector for the

decryption of ciphertext C to produce plaintext message M. Also AE veri-
fies the correctness of authentication tag T 2. If it is correct, then message
is returned otherwise failure is returned.

4.1.2.3 High level structure of proposed design

Step-by-step procedure followed for ciphertext and tag generation at server
side is specified in function CiphTagGen. Also, for tag verification and

30

DKHK

N ′

N ′′

T 1

AEK

A M

C T 2

N or IV

Figure 4.2: Proposed Scheme for verification

plaintext generation at receiver side is depicted in CiphDecTagVerify func-
tion shown as below:

4.2 Security Analysis

In this section, we have provided an intuitive proof of the proposed scheme.

4.2.1 Privacy of FFAE

Theorem 4.2.1 Let FFAE be an authenticated encryption scheme, which
consists of cryptographically secure primitives keyed hash function H, au-
thenticated encryption scheme AE and a symmetric encryption scheme E.
Let A be a probabilistic polynomial time adversary which tries to break the
privacy of FFAE. The advantage of adversary A in defeating FFAE is
given by :

AdvprivFFAE(A) ≤ AdvprivAE (A) + AdvprfHK
(A) +

q2

2n′ (4.1)

where AdvprivAE (A) be the privacy advantage A against AE, AdvprfHK
(A) be the

advantage of A in distinguishing HK from PRF, and q is the total number
of queries made to FFAE and n′ is the size of the output of keyed hash
function.

Proof (sketch). Let FFAE be an authenticated encryption scheme. The
privacy advantage of A against FFAE depends on following two cases:

31

Algorithm 17: Ciphertext and Tag generation algorithm

1 CiphTagGen (N ,M,A);
Prerequisites: approved keyed hash function H;

approved symmetric encryption function E ;
approved authenticated encryption algorithm AE ;
key K

Input : nonce N ;
plaintext message M;
additional authenticated data A

Output : ciphertext C;
initial authentication tag T 1;
authentication tag on C T 2

2 N ′ ← Hk(N)
3 T 1 ← Ek(N ′)
4 C, T 2 ← AEk(N ′,A,M)
5 return T 1, C, T 2

� FFAE is not nonce-respecting : In this case, if nonce is non-
respecting, i.e., nonce N is never repeated. Therefore, the security
bound for privacy of FFAE depends only on the privacy bound of
authenticated encryption scheme AE. Formally, the advantage of the
adversary A is given by

AdvprivFFAE(A) ≤ AdvprivAE (A) (4.2)

� FFAE is nonce-respecting : In this the privacy bound will depend
on PRF advantage and the collision bound on the tag generated of
keyed hash function. Formally, the advantage of the adversary A is
given by the

AdvprivFFAE(A) ≤ AdvprfHK
(A) +

q2

2n′ (4.3)

4.2.2 Authenticity of FFAE

Theorem 4.2.2 Let FFAE be an authenticated encryption scheme, which
consists of cryptographically secure primitives keyed hash function H, au-
thenticated encryption scheme AE and a symmetric encryption scheme E.

32

Algorithm 18: Ciphertext decryption and Tag verification

1 CiphDecTagVerify (N , C, T 1,A, T 2);
Prerequisites: approved keyed hash function H;

approved symmetric encryption function E ;
approved authenticated encryption algorithm AE ;
key K

Input : nonce N ;
ciphertext C;
initial authenticated tag T 1;
additional authenticated data A;
authentication tag T 2

Output : plaintext message M or a Failure message
2 N ′ ← Hk(N)
3 N ′′ ← Dk(T 1)
4 if N ′ = N ′′ then
5 M, T ′2 ← AEk(N ′′,A, C)
6 if T 2 = T ′2 then
7 return M
8 else
9 return FAILURE;

10 end

11 else
12 return FAILURE;
13 end

33

Let A be a probabilistic polynomial time adversary which tries to break the
authenticity of FFAE. The advantage of adversary A in defeating FFAE
is given by :

AdvauthFFAE(A) ≤ AdvauthAE (A) + AdvprfHK
(A) +

qv
2n′ (4.4)

where AdvprfHK
(A) be the advantage of A in distinguishing HK from PRF,

AdvauthAE (A) be the authenticity advantage A against AE, and qv denote the
number of verification queries made to FFAE out of total number of queries
q made by A, and n′ is the size of the output of keyed hash function.

Proof (sketch). Let FFAE be an authenticated encryption scheme. The
authenticity advantage of FFAE depends on following two cases:

� FFAE is not nonce-respecting : Without the loss of generality, if
N is repeated, then N ′

will also be repeated. Thus, the security bound
for authenticity of FFAE depends upon the collision bound on the tag
generated from authenticated encryption function AE. Formally, the
advantage of the adversary A is given by the

AdvauthFFAE(A) ≤ AdvauthAE (A) (4.5)

� FFAE is nonce-respecting : In this case, we have another two
cases, (i) N ’ is repeated, and (ii) N ’ is not repeated. In any case,
the authenticity for FFAE will depend only on the PRF advantage
and the collision bound on the tag generated of keyed hash function.
Let qv denote the number of verification queries made to the system.
Formally, the advantage of the adversary A is given by the

AdvauthFFAE(A) ≤ AdvprfHK
(A) +

qv
2n′ (4.6)

34

Chapter 5

Results and Performance
Analysis

In this section we describe the results of our approach and also discuss about
the performance analysis of our work.

5.1 Target Devices

The scheme was implemented in the following devices:

1. Intel Core i3-380M: 2.53 GHz, 4 GB RAM, MSVC Compiler

2. Raspberry Pi 2, BCM2836: 1 GHz, 1 GB RAM, gcc (ARM)

3. AVR32, AVR32UC3A0512: 12 MHz, 64 Kb RAM avr32-gcc

4. ATXMEGA128A1: 32 MHz, 4 Kb RAM, avr-gcc

5. ATMEGA328P: 16 MHz, 2 Kb RAM avr-gcc

5.2 Results Analysis

We calculated the performance factor of a particular instance of cipher in
our proposed scheme i.e. we used HMAC-SHA256 as hash function, AES as
encryption algorithm and AES-GCM as authenticated encryption function.
The reference implementation used OpenSSL and AVRCryptoLib (used to
get the optimized and high performance code for well known cryptographic
algorithms like AES and AES-GCM). We used /O2 optimization flags for
compilation on all platforms.

35

Figure 5.1: Intel Core i3-380M@2.53 GHz

Figure 5.2: Raspberry Pi 2, BCM2836@1 GHz

36

Figure 5.3: AVR32, AVR32UC3A0512@12 MHz

Figure 5.4: ATXMEGA128A1@32 MHz

37

Figure 5.5: ATMEGA328P@16 MHz

Table 5.1 and 5.2 shows the comparison of Execution Time (in millisec-
onds) between our approach with fail-fast mechanism and currently used
approach on various platforms for messages with varying length. We mo-
tivate using the proposed fail-fast mechanism to avoid the time consumed
decryption and MAC verification process in case the packet is malformed.

Figure 5.6 and 5.7 presents the comparison between our approach of us-
ing AES-GCM with fail-fast mechanism and the way AES-GCM is currently
used. From figure 5.7 it can be clearly seen that even if we introduce a lit-
tle overhead in the packet size, then also the time taken for ciphertext and
MAC tag generation is almost same for both the schemes for packet with
larger size. Also, it can be seen from 5.6 that there is a significant devia-
tion in execution time. Thus, depicting even with a small overhead we can
achieve a huge performance improvement in case the packet is malformed
and has a very large size. Therefore, proposed technique can be used to
achieve fail-fast mechanism in any AE scheme being used these days.

38

D
at

a
L

en
g
th

[b
y
te

s]
1
6

32
64

12
8

51
2

10
24

15
36

4
K

iB
8

K
iB

16
K

iB

X
M

E
G

A
(A

T
X

M
E

G
A

12
8A

1)
-

8b
it

@
32

M
H

z

C
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

7.
42

4
9.

95
2

15
.0

1
25

.3
1

86
.9

8
16

9.
1

25
1.

3
-

-
-

T
h

is
w

or
k

15
.0

7
17

.6
6

22
.8

2
33

.0
2

94
.9

8
17

6.
9

25
8.

9
-

-
-

In
c
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

7.
36

9.
92

15
.1

0
25

.3
8

86
.6

6
16

9.
6

25
0.

7
-

-
-

T
h

is
w

or
k

7.
74

4
7.

71
2

7.
71

2
7.

74
4

7.
71

2
7.

71
2

7.
71

2
-

-
-

A
T

M
E

G
A

32
8P

-
8b

it
@

16
M

H
z

C
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

15
.5

5
20

.9
3

31
.6

2
53

.3
8

-
-

-
-

-
-

T
h

is
w

or
k

29
.9

5
35

.3
9

46
.3

4
67

.7
8

-
-

-
-

-
-

In
c
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

15
.4

2
20

.8
31

.8
7

53
.5

7
-

-
-

-
-

-
T

h
is

w
or

k
14

.4
6

14
.4

6
14

.4
6

14
.4

6
-

-
-

-
-

-

A
V

R
32

(A
V

R
32

U
C

3A
05

12
)

-
32

b
it

@
12

M
H

z

C
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

1.
97

8
2.

25
3

2.
80

1
3.

89
9

10
.4

9
19

.2
0

-
71

.7
1

1
41

.7
1
67

.5
T

h
is

w
or

k
4.

98
4

5.
29

5
5.

91
7

7.
15

9
14

.6
2

21
.9

4
-

72
.9

1
1
40

.9
1
62

.6
In

c
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

1.
94

9
2.

22
4

2.
77

2
3.

86
9

10
.4

6
19

.1
7

-
71

.6
8

1
41

.7
1
67

.5
T

h
is

w
or

k
3.

31
9

3.
31

9
3.

31
9

3.
31

9
3.

32
0

3.
70

1
-

3.
7
01

3
.7

0
1

3
.7

0
2

T
a
b

le
5.

1:
C

om
p

ar
is

on
of

E
x
ec

u
ti

on
T

im
e

in
m

il
li

se
co

n
d

s

39

D
a
ta

L
en

gt
h

[b
y
te

s]
1
6

32
64

12
8

51
2

10
24

15
36

4
K

iB
8

K
iB

16
K

iB
3
2

K
iB

5
12

K
iB

1
M

iB

R
as

p
b

er
ry

P
i

2
-

B
C

M
28

36
-

@
1G

H
z

C
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

0.
44

5
-

0.
43

6
0.

43
8

0.
56

0.
65

5
0.

76
3

1.
37

9
-

-
7
.9

6
9

12
0.

3
05

23
9.

3
41

T
h

is
w

or
k

0.
47

6
-

0.
51

7
0.

50
6

0.
61

1
0.

70
1

0.
83

4
1.

39
4

-
-

7
.8

8
11

9.
5
97

23
8.

2
55

In
c
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

0.
41

4
-

0.
42

8
0.

43
6

0.
58

5
0.

65
2

0.
76

3
1.

38
2

-
-

7
.8

5
12

0.
2
6

23
9.

3
37

T
h

is
w

or
k

0.
32

3
-

0.
34

9
0.

32
5

0.
33

8
0.

34
5

0.
35

6
0.

33
8

-
-

0
.3

7
2

0.
4
76

0.
4
83

In
te

l
C

or
e

i3
-

M
38

0
-

@
2.

53
G

H
z

C
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

0.
38

4
-

0.
38

2
0.

39
8

0.
43

5
0.

43
5

0.
45

1
0.

48
9

-
-

2
.0

3
9

35
.6

2
67

.2
8

T
h

is
w

or
k

0.
37

1
-

0.
37

4
0.

37
8

0.
37

9
0.

40
9

0.
40

8
0.

56
8

-
-

1
.8

8
6

27
.7

1
55

.5
1

In
c
o
rr

e
c
t

M
A

C

A
E

S
-G

C
M

0.
22

7
-

0.
24

4
0.

27
3

0.
33

4
0.

32
7

0.
34

9
0.

48
-

-
2.

0
71

3
6.

6
4

6
4.

2
3

T
h

is
w

or
k

0.
31

9
-

0.
31

5
0.

31
5

0.
33

2
0.

33
1

0.
32

6
0.

33
4

-
-

0
.3

7
5

0.
3
93

0.
3
85

T
ab

le
5.

2:
C

om
p

ar
is

on
of

E
x
ec

u
ti

on
T

im
e

in
m

il
li

se
co

n
d

s

40

101 102 103 104 105

100

101

102

103

104

105

106

Data Length (in bytes)

S
p

ee
d

(i
n

K
B

/s
)

XMEGA@32MHz, This Work XMEGA@32MHz, AES-GCM

ATMEGA@16MHz, This Work ATMEGA@16MHz, AES-GCM

Raspberry Pi 2@1GHz, This Work Raspberry Pi 2@1GHz, AES-GCM

AVR32@12MHz, This Work AVR32@12MHz, AES-GCM

Intel Core i3-M380@2.53GHz, This Work Intel Core i3-M380@2.53GHz, AES-GCM

Figure 5.6: Performance Overhead of our approach with fail-fast mechanism
v/s existing AE scheme

41

101 102 103 104 105
10−1

100

101

102

103

104

Data Length (in bytes)

T
im

e
ta

k
en

(i
n

m
s)

XMEGA@32MHz, This Work XMEGA@32MHz, AES-GCM

ATMEGA@16MHz, This Work ATMEGA@16MHz, AES-GCM

Raspberry Pi 2@1GHz, This Work Raspberry Pi 2@1GHz, AES-GCM

AVR32@12MHz, This Work AVR32@12MHz, AES-GCM

Intel Core i3-M380@2.53GHz, This Work Intel Core i3-M380@2.53GHz, AES-GCM

Figure 5.7: Execution Time of our approach with fail-fast mechanism v/s
existing AE scheme

42

Chapter 6

Conclusion and Future Work

A new design approach for fail-fast mechanism in AE schemes has been
introduced. It was shown in performance analysis that our approach out-
performs the way AE schemes are used currently. Thus, if an attacker sends
some garbage packet or if it is malformed, then using our approach it will
be discarded at an early stage, thereby providing fail-fast mechanism to ex-
isting AE schemes. The results has been measured with a great accuracy.

In future, we will provide a formal proof of the security bounds introduced
in section 4.2. Also, as an extension to this work, there can be multiple vari-
ants of the scheme, so we would analyse the variants and see which variant
gives much better efficiency.

43

Bibliography

[1] John Black and Hector Urtubia. Side-channel attacks on symmetric
encryption schemes: The case for authenticated encryption. In USENIX
Security Symposium, pages 327–338, 2002.

[2] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the rsa encryption standard pkcs# 1. In Advances in Cryp-
tologyCRYPTO’98, pages 1–12. Springer, 1998.

[3] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux.
Password interception in a ssl/tls channel. In Advances in Cryptology-
Crypto 2003, pages 583–599. Springer, 2003.

[4] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the ad-
vanced encryption standard. Springer Science & Business Media, 2013.

[5] Tim Dierks. The transport layer security (tls) protocol version 1.2.
2008.

[6] Thai Duong and Juliano Rizzo. Here come the ninjas. Unpublished
manuscript, page 4, 2011.

[7] Morris Dworkin. Recommendation for block cipher modes of operation.
methods and techniques. Technical report, DTIC Document, 2001.

[8] Burt Kaliski. Pkcs# 7: Cryptographic message syntax version 1.5.
1998.

[9] Tadayoshi Kohno, John Viega, and Doug Whiting. Cwc: A high-
performance conventional authenticated encryption mode. In Fast Soft-
ware Encryption, pages 408–426. Springer, 2004.

[10] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. Hmac: Keyed-hashing
for message authentication. 1997.

44

[11] David McGrew and John Viega. The galois/counter mode
of operation (gcm). Submission to NIST. http://csrc. nist.
gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf, 2004.

[12] Kenneth G Paterson and Gaven J Watson. Immunising cbc mode
against padding oracle attacks: A formal security treatment. In Se-
curity and Cryptography for Networks, pages 340–357. Springer, 2008.

[13] Serge Vaudenay. Security flaws induced by cbc paddingapplications to
ssl, ipsec, wtls... In Advances in CryptologyEUROCRYPT 2002, pages
534–545. Springer, 2002.

[14] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) transport layer
protocol. 2006.

45

	Introduction
	Approaches for securing data in transit
	Motivation
	Contribution

	Background
	History and Relevance
	Notations used
	Cryptographic Basics
	Padding
	Cipher Block Chaining

	Padding Oracle Attacks
	The setting.
	Malleability of CBC encryption
	Learning the last byte of a block.
	Learning other bytes of the block.
	Putting it all together.

	Limitations of AES-CBC

	Literature Review
	Notations used
	AES-GCM Specifications
	Parameters and Components

	High level structure
	Authenticated Encryption
	Authenticated Decryption

	Proposed Scheme
	Methodology
	Notations used
	Design specifications

	Security Analysis
	Privacy of FFAE
	Authenticity of FFAE

	Results and Performance Analysis
	Target Devices
	Results Analysis

	Conclusion and Future Work

