
Analysis of Block Cipher Constructions
against Biclique and Multiset Attacks

By

Mohona Ghosh

Indraprastha Institute of Information Technology, Delhi

(IIIT-Delhi)

Supervisors: Dr. Somitra Sanadhya

Dr. Donghoon Chang

January, 2016

c©Indraprastha Institute of Information Technology (IIIT-D), New Delhi, 2016

Analysis of Block Cipher Constructions
against Biclique and Multiset Attacks

By

Mohona Ghosh

Submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science & Engineering

to the

Indraprastha Institute of Information Technology, Delhi

January, 2016

Certificate

This is to certify that the thesis titled - “Analysis of Block Cipher Constructions
against Biclique and Multiset Attacks” being submitted by Mohona Ghosh to
Indraprastha Institute of Information Technology, Delhi, for the award of the degree of
Doctor of Philosophy, is an original research work carried out by her under our super-
vision. In our opinion, the thesis has reached the standards fulfilling the requirements
of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any
other university or institute for the award of any degree/diploma.

Dr. Somitra Sanadhya Dr. Donghoon Chang

January, 2016
Department of Computer Science
Indraprastha Institute of Information Technology, Delhi
New Delhi, 110020

IV

Acknowledgments

“It takes a big heart to help shape little minds” - Unknown

First and foremost, I express my heartfelt gratitude to my esteemed teacher and guide,
Dr. Somitra Sanadhya, my inspiration, for his invaluable guidance, constant support
and for the intellectual stimulation given, which I will cherish in my heart always.
His constant oasis of ideas exceptionally enrich the learner’s thought process. I am
extremely fortunate to have him as my advisor.

I also express my sincere gratitude to my esteemed co-advisor, Dr. Donghoon
Chang, who has helped me immensely throughout my PhD. life. All of the research I
have conducted in completing my thesis wouldn’t have been possible without his vision,
encouragement and support.

I would like to thank my PhD examiners, Dr. Vincent Rijmen, Dr. Sourav
Mukhopadhyay and Dr. Jiageng Chen for their valuable comments and suggestions
which helped me improve my dissertation.

I am grateful to Dr. Andrey Bogdanov for the inspiring and fruitful collaboration
I had with him. His passion for cryptanalysis and the perseverance of always pushing
the results to a higher standard will always inspire me in my future research pursuits.

I take this opportunity to thank all the members of my Crypto Lab. The resources
and environment provided by them really helped me in my research. They have made
my research life at IIIT-Delhi less tensed.

I would like to thank all my friends from IIIT-Delhi, especially Sweta, Monalisa,
Monika, Megha, Madhvi, Madhur, Jyoti and Tarun for their help and cooperation that
always kept my spirits high. Their company made my graduate life a memorable one.

I had a great opportunity to closely work with some brilliant undergraduate stu-
dents: Akshima and Aarushi Goel.

I would also like to forward my gratitude to Tata Consultancy Services (TCS),
India for awarding me the prestigious TCS fellowship for my full PhD period.

On a personal front , I owe my heartfelt thanks to my parents, my uncle and my sis-
ter for their unconditional support, understanding and encouragement without which
this dissertation would not have got completed.

Above all, I am grateful to the Almighty, who showered the opportunity, blessings
and moral courage on me to complete this dissertation.

V

List of Publications

The author names are in the alphabetical order.

1. Andrey Bogdanov, Donghoon Chang, Mohona Ghosh, and Somitra Kumar
Sanadhya. Bicliques with Minimal Data and Time Complexity for AES. In Jooy-
oung Lee and Jongsung Kim, editors, Information Security and Cryptology -
ICISC 2014 - 17th International Conference, Seoul, Korea, December 3-5, 2014,
Revised Selected Papers, volume 8949 of Lecture Notes in Computer Science,
pages 160-174. Springer, 2014.

2. Megha Agrawal, Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanad-
hya. Collision attack on 4-branch, type-2 GFN based hash functions using Sliced
Biclique Cryptanalysis Technique. In Dongdai Lin, Moti Yung, and Jianying
Zhou, editors, Information Security and Cryptology - 10th International Confer-
ence, Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected
Papers, volume 8957 of Lecture Notes in Computer Science, pages 343-360.
Springer, 2014.

3. Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanadhya. Biclique
Cryptanalysis of full round AES-128 based hashing modes. In Dongdai Lin, Moti
Yung, and Xiaofeng Wang, editors, Information Security and Cryptology - 11th
International Conference, Inscrypt 2015, Beijing, China, November 1-3, 2015,
Revised Selected Papers, volume 9589 of Lecture Notes in Computer Science.
Springer, 2015.

4. Akshima, Donghoon Chang, Mohona Ghosh, Aarushi Goel, and Somitra Ku-
mar Sanadhya. Single Key Recovery Attacks on 9-round Kalyna-128/256 and
Kalyna-256/512. In Soonhak Kwon and Aaram Yun, editors, Information Secu-
rity and Cryptology - ICISC 2015 - 18th International Conference, Seoul, Korea,
November 25-27, 2015, Revised Selected Papers, volume 9558 of Lecture Notes
in Computer Science. Springer, 2015.

5. Akshima, Donghoon Chang, Mohona Ghosh, Aarushi Goel, and Somitra Ku-
mar Sanadhya. Improved Meet-in-the-Middle Attacks on 7 and 8-Round ARIA-
192 and ARIA-256. In Alex Biryukov and Vipul Goyal, editors, Progress in
Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology
in India, Bangalore, India, December 6-9, 2015, Proceedings, volume 9462 of
Lecture Notes in Computer Science, pages 198-217. Springer, 2015.

VI

Abstract

Cryptographic protocols have been a cornerstone of secure communications
among armed forces and diplomatic missions since time immemorial. With easy
availability and low cost of computing facilities and Internet, the domain of
cryptology has not only expanded to non-government uses but also in fulfilling
the common needs of individuals. Block ciphers are the basic building blocks
of most of today’s deployed cryptography and are one of the most widely used
cryptographic primitives. They play a crucial role in providing confidentiality of
data transmitted over insecure communication channels - one of the fundamental
goals of cryptography. Apart from it, block ciphers are also used to build other
cryptographic mechanisms such as - Hash functions and Message Authentication
Codes. Hence, it is crucial to ensure construction of a secure and robust block
cipher design. To achieve so, it is imperative to analyze and evaluate the resis-
tance of block ciphers against a variety of cryptanalytic attacks.

This thesis is devoted to the security analysis of block ciphers and block cipher
based hash functions against some of the current state-of-the-art cryptanalytic
techniques. We specifically focus on Biclique Cryptanalysis and Multiset Attacks
in this work. We propose a new extension of biclique technique - termed as Star
based Bicliques and use them to solve the problem of high data complexity usually
associated with this technique. Further, we also employ the above cryptanalytic
methods to provide the best attacks on few standardized block ciphers. Our
cryptanalytic results are as follows:

1. We study biclique based key recovery attacks and find improvements that
lower the attack costs compared to the original attack in [39]. These attacks
are applied to full round AES-128 (10-rounds), AES-192 (12-rounds) and
AES-256 (14-rounds) with interesting observations and results. As part of
the results, we propose star-based bicliques which allow us to launch attacks
with the minimal data complexity in accordance with the unicity distance.
Each attack requires just 2-3 known plaintexts with success probability 1.

2. We utilize the biclique based key recovery attacks to find second-preimages
on AES based hashing modes. In our attacks, the initialization vector (IV)
is a public constant that cannot be changed by the attacker. Under this
setting, with message padding restrictions, the biclique trails constructed
for key recovery attack in [39] cannot be utilized here. We construct new
biclique trails that satisfy the above restrictions and launch second preimage
attacks on all 12 PGV hashing modes based on full round AES-128.

3. We investigate the security of Generalized Feistel Networks (GFNs) in
known-key scenario. We apply a variant of biclique technique - termed
as sliced biclique cryptanalysis on 4-branch, Type-2 Generalized Feistel
Networks (GFNs) based hash functions to generate actual collisions. We
further demonstrate the best 8-round collision attack on 4-branch, Type-2
based GFNs when the round function F is instantiated with double SP
layers.

VII

4. We analyze the security of Korean Encryption Standard ARIA against
meet-in-the-middle attack model. We conduct multiset based key recovery
attacks on 7 and 8-round ARIA-192 and ARIA-256 with improved time,
memory and data complexities compared to [168]. While the previous at-
tacks on ARIA could only recover some round keys, our attacks show the
first recovery of the complete master secret key.

5. We analyze the security of recently announced Ukrainian Encryption Stan-
dard Kalyna against meet-in-the-middle attack model. We apply multiset
attacks supplemented with further related advancements in this attack tech-
nique to recover the secret key from 9-round Kalyna-128/256 and Kalyna-
256/512. This improves upon the previous best attack reported in [13] in
terms of number of rounds attacked by 2.

In terms of either the attack complexity or the number of attacked rounds,
the attacks presented in the thesis are better than any previously published
cryptanalytic results for the block ciphers concerned.

VIII

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis Organization . 5
1.3 Contributions . 6

2 Symmetric cryptosystems 9
2.1 What is a block cipher ? . 9
2.2 Anatomy of a block cipher . 10
2.3 Construction of iterated block ciphers 11
2.4 Block Cipher Cryptanalysis . 15

2.4.1 Fundamental Generic Cryptanalysis Techniques 16
2.4.2 Shortcut Attacks . 17
2.4.3 Differential Cryptanalysis . 18
2.4.4 Truncated Differential Cryptanalysis 19
2.4.5 Boomerang Attack . 20
2.4.6 Meet-in-the-Middle Attack . 22
2.4.7 Square Attack . 24

2.5 Block Cipher Based Hash Functions . 26
2.5.1 Rebound Attack . 29

3 Improved Biclique Cryptanalysis of AES 32
3.1 Framework of Biclique Key Recovery Attack 33

3.1.1 What is a biclique structure on block ciphers ? 33
3.1.2 Construction of biclique . 34

3.2 Steps of the Biclique Attack . 38
3.3 Biclique Attacks on AES . 39

3.3.1 Description of AES . 39
3.3.2 Precomputation Technique . 41

3.4 Biclique attack on other block ciphers 46
3.5 Improved biclique based key recovery attacks on AES 48

3.5.1 Our Contribution . 49
3.6 Stars . 51

3.6.1 Stars from independent differentials 53

IX

3.7 Minimum data complexity key recovery for AES 54
3.7.1 AES-128 . 54
3.7.2 AES-192 . 56
3.7.3 AES-256 . 56

3.8 A search technique for biclique attacks on AES 57
3.8.1 Enumerating bicliques . 58
3.8.2 Searching for key recoveries . 60
3.8.3 Attacks with minimal data and time complexities 60

3.9 Fastest biclique attack with less than full codebook of data 61
3.9.1 AES-128 . 61
3.9.2 AES-192 . 63
3.9.3 AES-256 . 63

3.10 Fastest biclique attack with no restriction on data complexity 65
3.10.1 AES-128 . 65
3.10.2 AES-192 . 68
3.10.3 AES-256 . 68

3.11 Time-Data Comparison . 71
3.12 Summary . 71

4 Biclique Cryptanalysis of AES-128 based Hashing Modes 73
4.1 Origin of Biclique Cryptanalysis . 74

4.1.1 Short Description of MD5 . 74
4.1.2 Initial Structure . 77

4.2 Biclique attack for finding preimages 79
4.2.1 Biclique based Preimage Attack on SHA-2 80

4.3 Preimage Attack on AES-128 based Hashing Modes 82
4.3.1 Our Contributions . 84

4.4 Notations . 86
4.5 Preimage Attack on AES-128 instantiated Compression Function 86
4.6 Second Preimage Attack on Hash Functions 88

4.6.1 PGV Construction 1 - MMO mode 88
4.6.2 PGV Construction 2 - MP mode 91
4.6.3 PGV Construction 3 - DM mode 91

4.7 Second Preimage attack on long messages 93
4.8 Summary . 94

5 Sliced Biclique Cryptanalysis of Type-2 GFNs 96
5.1 Sliced Biclique Cryptanalysis . 97

5.1.1 What is a sliced biclique ? . 97
5.1.2 Construction of biclique structure in a sliced biclique 98
5.1.3 Preimage attack using sliced biclique 99

5.2 Type-2 Generalized Feistel Network . 101
5.2.1 Our Contributions . 103

X

5.3 Notation . 103
5.4 Preliminaries . 104

5.4.1 Type-2 GFN instantiated with double SP layer 104
5.4.2 t-bit Partial Target Preimage Attack 104

5.5 Distinguishing Attack on 4-branch, Type-2 GFN based Permutation . . 105
5.6 Collision Attack on 4-branch, Type-2 GFN based compression function 109
5.7 Collision Attack on Hash Functions . 111
5.8 8-Round Collision Attack on CLEFIA based Compression Function . . 111
5.9 Conclusions . 113

6 Multiset based MITM Attack on ARIA-192 and ARIA-256 115
6.1 Block Cipher ARIA . 117

6.1.1 Our Contribution. 120
6.2 Preliminaries . 122

6.2.1 Notations and Definitions . 122
6.3 Distinguishing Property of 4-round ARIA 124
6.4 Key Recovery Attack on 7-round ARIA-192/256 128

6.4.1 Recovering the master key for 7-round ARIA-192 130
6.4.2 Recovering the master key for 7-round ARIA-256 131

6.5 Key Recovery Attack on 8-round ARIA-256 132
6.5.1 Construction of 4.5-round distinguisher 132
6.5.2 Key Recovery Attack . 133
6.5.3 Recovering the actual master key 134

6.6 Conclusions . 135

7 Multiset based MITM Attack on Kalyna-128/256 and Kalyna-256/512136
7.1 Description of Kalyna . 137

7.1.1 Our Contribution. 141
7.2 Definitions and Notations . 142
7.3 Construction of distinguisher for 6-round Kalyna-128/256 145

7.3.1 Distinguishing Property for Kalyna-128/256 145
7.4 Key Recovery Attack on 9 Round Kalyna-128/ 256 151

7.4.1 Precomputation Phase . 151
7.4.2 Online Phase . 153
7.4.3 Recovering the remaining Subkey bytes 154

7.5 Construction of distinguisher for 6-Round Kalyna-256/512 155
7.5.1 Construction of 6-round distinguisher for Kalyna-256/512 156

7.6 Key Recovery Attack on 9-Round Kalyna-256 /512 161
7.6.1 Precomputation Phase . 161
7.6.2 Online Phase . 163
7.6.3 Recovering the remaining Subkey bytes 164

7.7 Conclusions . 165

XI

8 Conclusion 166
8.1 Summary . 166

8.1.1 Future Work . 168

Appendix A Proofs 191
A.1 Biclique Structure when IV acts as the message input 191

Appendix B Derivation of Eq. 7.3 defined in Section 7.3 195

Appendix C Derivation of Eq. 7.13 defined in Section 7.5 196

XII

List of Figures

2.1 Feistel Cipher . 12
2.2 Generalized Feistel Networks . 13
2.3 Substitution-Permutation (SP) Network 14
2.4 The Boomerang Distinguisher . 21
2.5 MITM Attack with partial matching 23
2.6 Splice-and-Cut Framework . 23
2.7 Square Attack on AES . 24
2.8 Finding preimage through MITM approach 28
2.9 PGV hash modes . 29
2.10 Rebound Attack . 30
2.11 Rebound Attack on 4-round AES . 30

3.1 d-dimensional biclique. 34
3.2 A boomerang distinguisher. 35
3.3 Boomerang Quartet. 35
3.4 Boomerang Rectangle in a biclique . 36
3.5 Boomerang Rectangle at every step . 37
3.6 Boomerang Rectangle at S-box Step . 38
3.7 Biclique Attack . 39
3.8 AES-128 Key Expansion . 41
3.9 Biclique Attack on AES-128 . 43
3.10 Backward Recomputations in AES-128 45
3.11 Super S-box. 45
3.12 Biclique Attack on IDEA . 48
3.13 Balanced Biclique . 53
3.14 Star Biclique . 53
3.15 Biclique Attack on AES-128 with lowest data complexity 55
3.16 Biclique Attack on AES-192 with lowest data complexity 57
3.17 Biclique Attack on AES-256 with lowest data complexity 58
3.18 Optimal Biclique Attack on AES-128 62
3.19 Optimal Biclique Attack on AES-192 64
3.20 Corrected AES-256 forward computation. 65
3.21 Optimal Biclique Attack on AES-256 66
3.22 Fastest Biclique Attack on AES-128 . 67

XIII

3.23 Fastest Biclique Attack on AES-192 . 69
3.24 Fastest Biclique Attack on AES-256 . 70

4.1 MD5 compression function . 75
4.2 Overview of 29-steps attack on MD5 76
4.3 Overview of 59-steps attack on MD5 76
4.4 Initial Structure in MD5 . 78
4.5 Compression Function of SHA-2. 80
4.6 Compression Function in MMO and DM mode 83
4.7 Trail used for preimage attack on AES-128 83
4.8 Desired biclique trail for MMO mode 84
4.9 Desired biclique trail for DM mode . 84
4.10 AES-128 instantiated compression function in DM mode. 87
4.11 Generation of groups in the original biclique attack 87
4.12 Steps of the original biclique attack . 87
4.13 Second Preimage attack on MMO based hash function 88
4.14 Biclique structure for MMO mode . 89
4.15 Base Message . 90
4.16 ∆i and ∇j differences . 90
4.17 Algorithm for the biclique attack on MMO mode 91
4.18 Second Preimage attack on DM based hash function 91
4.19 Biclique structure for DM mode . 92
4.20 Base Message . 93
4.21 ∆i and ∇j differences . 93
4.22 Algorithm for the biclique attack on DM mode 94
4.23 MMO base hash function with | m |=3 94

5.1 Sliced biclique for a permutation E [99]. 98
5.2 Boomerang quartet representation of biclique construction 99
5.3 Biclique Attack. 100
5.4 Type-2 GFN with right cyclic shift . 102
5.5 Double SP Function. 102
5.6 Type-2 GFN with left cyclic shift . 104
5.7 Injection of ∆i difference . 106
5.8 Injection of ∇j difference . 106
5.9 2-round biclique placed in Round 4 - 5. 106
5.10 MITM phase . 108
5.11 Collision Attack. 111
5.12 Injection of ∆i difference . 112
5.13 Injection of ∇j difference . 112
5.14 1-round biclique . 112
5.15 Matching in 8 rounds of CLEFIA . 114

XIV

6.1 Byte numbering in a state of ARIA . 117
6.2 ith round of ARIA. 117
6.3 Key Schedule of ARIA . 119
6.4 Differential property of diffusion layer 123
6.5 4-Round distinguisher in ARIA . 125
6.6 4-Round truncated differential in ARIA 126
6.7 7-round attack on ARIA-192/256 . 128
6.8 4.5-Round distinguisher in ARIA . 132
6.9 8-round attack on ARIA-256. 135

7.1 Byte numbering in Kalyna states . 138
7.2 One full encryption in Kalyna-128/256 138
7.3 Illustration of ShiftRows operation in Kalyna variants 139
7.4 Key Schedule Algorithm of Kalyna . 140
7.5 Normal one round of Kalyna-128/128. 144
7.6 One round of Kalyna-128/128 with swapped MC and ARK operation . 144
7.7 6-Round distinguisher for Kalyna-128/256 147
7.8 6-Round Truncated Differential in Kalyna-128/256 149
7.9 9-round attack on Kalyna-128/256 . 152
7.10 6-Round distinguisher in Kalyna-256/512 158
7.11 9-round attack on Kalyna-256/512 . 162

A.1 ∆i and ∇j differences in base message 192
A.2 Relation between ∇j,∇j1,∇j2,∇j3,∇j4 192
A.3 Relation between #B and #C states 192
A.4 Relation between base states B and C 193
A.5 Modification of state #B . 193
A.6 Relation between states #B[i, j], #C[i, j] and #B′[i, j], #C ′[i, j] . . . 193

XV

List of Tables

3.1 Biclique Attacks on full AES . 46
3.2 Biclique attack on other block ciphers. 47
3.3 Improved biclique attacks on AES . 51
3.4 Non-biclique attacks on AES . 52
3.5 Attacks with other data complexities 72

4.1 Message Schedule of MD5 . 75
4.2 Message Schedule of 31-step MD5. 77
4.3 Biclique trails in Steps 17− 22 for SHA-2 81
4.4 Biclique based Preimage Attacks on SHA-2 and Skein-512 family . . . 82
4.5 Second preimage attack results on AES-128 85

5.1 Our distinguishing attack results . 107
5.2 Our collision attack results . 110
5.3 Comparison . 110

6.1 Comparison of MITM based attacks on AES 116
6.2 Comparison of attacks on ARIA version 1.0 121

7.1 Multiset attacks on AES-192 and AES-256 137
7.2 Comparison of attacks on Kalyna variants 141

XVI

Glossary

AES : Advanced Encryption Standard
DES : Data Encryption Standard
IV : Initialization Vector
CV : Chaining Value
MAC : Message Authentication Code
NIST : National Institute of Standards and Technology
PGV modes : Block cipher based hash modes named after Preneel, Govaerts, and Vandewalle
MMO : Matyas-Meyer-Oseas mode
MP : Miyaguchi Preneel mode
DM : Davies Meyer mode
SP : Substitution Permutation
FN : Feistel Network
GFN : Generalized Feistel Network
◦ : Superposition
⊕ : XOR operation
� : Addition modulo 2n

� (�) : Left (right) shift of a bit string
≪ (≫) : Left (right) rotation of a bit string
|| : String Concatenation
ISO : International Organization for Standardization
GSM : Global System for Mobile Communications
NSA : National Security Agency
LFSR : Linear Feedback Shift Register
SBL : Single Block Length
DBL : Double Block Length
GF : Galois Field
MDS : Maximum Distance Separable
CC : Chosen Ciphertext
CP : Chosen Plaintext
MITM : Meet-in-the-Middle
SSB : Super S-box

XVII

Chapter 1

Introduction

The word cryptography and the associated word cryptology have very similar etymo-
logical origins. They are derived from the Greek words kriptos, which means “hidden”;
graphos, which translates to “writing”; and logos, which is “word” or “speech”. Cryp-
tology is the science and art of secret communications. Since the time of Julius Caesar
and even before, people have protected the confidentiality of their communications
by cryptography. Historically, cryptology has been used by diplomatic missions and
armed forces [161]. However, in the modern era, with easy availability and low cost of
computing facilities and Internet, the domain of cryptology has not only expanded to
non-government uses but also in fulfilling the common needs of the individuals. Today,
cryptology plays a fundamental role - in securing access to Internet banking, secure
login to websites, secure e-commerce, protecting the integrity of data online, secure
computations on clouds etc. People continue to use cryptography though far more
sophisticated than Caesar’s, to protect their vital information as it passes through
possibly hostile environments. Cryptology typically forms a small but important com-
ponent under the wide umbrella of security solutions with main focus on the following
functionalities [110]:

• Confidentiality - Ensures protection of data and resources from leaking to unau-
thorized listeners over an insecure communication channel.

• Data Integrity - Ensures that an adversary who has access to the communication
channel cannot modify the contents of transmitted data by improper or unau-
thorized means.

• Authenticity - Ensures that the data received over an insecure channel has been
sent by the authorized sender and not by an undesired source.

With advancements in technology in which cryptographic solutions are being de-
ployed, increasing by leaps and bounds, it is of utmost importance to understand and
analyze the cryptographic designs and protocols with rigor so that security in terms
of confidentiality, data authenticity, access control and privacy is maintained. These

1

advancements have also led to a renewed interest in the study of cryptographic appli-
cations in other fields such as biometrics, ubiquitous computing, mobile networks etc.
and forged global cooperation and collaboration between research communities and IT
industries world over.

Cryptology broadly comprises of two types of studies - cryptography and crypt-
analysis. While cryptography deals with the design of mechanisms providing certain
security goals, cryptanalysis focuses on analyzing these designs with the aim of finding
some flaw/weakness in them and violate the security goals. The most common cryp-
tographic techniques fall under two categories - secret-key (symmetric) cryptography
and public-key (asymmetric) cryptography. In secret-key cryptography, each pair of
communicating parties requires the knowledge of one common key which is kept se-
cret from other unauthorized parties. The sender uses the secret key to encrypt the
message (plaintext) whereas the receiver uses the same secret key to decrypt the mes-
sage (ciphertext). In public-key cryptography, introduced by Diffie and Hellman [65]
in 1976, each participating party has a pair of keys, termed as public and private key
respectively that are used for secure communication. The sender uses the public key of
the receiver to encrypt the message while the receiver uses her private key to decrypt
the message. In either case, only the authorized members can recover the valid data
from the ciphertext, for the rest, this data appears illegible. Examples of public key
cryptosystems are RSA [146], elliptic curve cryptosystems [112] etc. The security of
public key cryptography is established on the computational hardness assumption that
deducing the private key from public key is extremely difficult. On the other hand,
symmetric key cryptography rests its security on the size of the secret key used. The
larger the size, the higher is the security.

The basic building blocks of symmetric key cryptography are - block ciphers, stream
ciphers and message authentication codes (MACs). Block ciphers and stream ciphers
provide data confidentiality by encrypting plaintext into ciphertext with the help of
the secret key. MACs provide data integrity and authentication. The sender computes
an authentication tag for some message (as a function of message and the secret key)
and sends it to the receiver together with the message. The receiver then checks the
validity of the message by computing the authentication tag (as a function of the
received message and same secret key). If the authentication tag calculated by the
receiver coincides with the one obtained from the communication channel, the message
is accepted else discarded. Cryptographic hash functions are another set of primitives
which provide functionality akin to MACs. They take a string of arbitrary length as
input and produce a fixed length output called hash. Strictly speaking, they do not
belong to symmetric key algorithms since they do not accept a key. However, many
hash function designs are inspired from block ciphers. As such, many cryptographic
techniques which were initially developed for analyzing block ciphers are applicable to
hash functions as well and vice versa. Hence, we include hash functions under the belt
of symmetric cryptographic primitives. In this report, we concentrate on cryptanalysis

2

of block ciphers and constructions based on them.

1.1 Motivation

The area of block cipher cryptanalysis, as discussed above, focuses on finding flaws in
a block cipher design with the ultimate aim of breaking it and disclaiming the security
assurances of its designer. Breaking a cipher doesn’t always mean finding a practical
way for an attacker to recover the secret key or a plaintext from its given ciphertext.
In academic cryptography, breaking a cipher simply means finding a weakness in the
cipher that can be exploited with a complexity less than exhaustive search. Sometimes
these breaks may require an unrealistic amount of time, data and memory. However,
as Bruce Schneier has said - “a break can just be a certificational weakness : evidence
that the cipher does not perform as advertised” [154].

To achieve these goals, a number of cryptanalytic techniques have been developed
and research in cryptanalysis field is growing fast. Spearheaded by differential at-
tacks [28] and linear cryptanalysis [131], many attack techniques such as square at-
tack [57, 79], boomerang attack [173], impossible differential attack [23, 126, 140], re-
lated key attack [25,26,31], meet-in-the-middle attack [66,72] etc. have been proposed
and presented in literature. These attacks in turn have led to the development and
evolution of security criteria for the evaluation of block ciphers, e.g., size of the key
required, size of the data block processed, number of rounds in a construction, inclu-
sion of non-linear functions in the design etc. In fact, a block cipher is not considered
secure until it has withstood certain threshold cryptanalysis. The trust in its security
increases when it shows continued resistance over a stretch of time (usually in years),
even against advances in cryptanalysis that were not previously conceived. It is thus
of great importance to investigate the security of a block cipher algorithm against a
variety of cryptanalytic attacks. Two cryptanalysis techniques - Biclique Cryptanalysis
and Multiset Attacks till present have been known to yield the best cryptanalytic re-
sults on Advanced Encryption Standard (AES) and form the specific focus of this thesis.

AES, standardized by the US NIST in October 2000, has been accepted and adopted
worldwide thereafter. It remains the most favored cryptographic scheme in both soft-
ware and hardware applications. Despite the design having been subjected to tremen-
dous scrutiny in the past 15 years, until 2011, it has remained remarkably immune to all
cryptanalytic attacks. In Asiacrypt, 2011, biclique cryptanalysis for AES was proposed
and it was the first technique in single key model that challenged the 128-bit security of
full 10-round AES-128 block cipher. The application of this technique showed that for
full AES (all 3 AES variants), the key can be recovered with a complexity lesser than
brute-force by a factor of 3-5 [39]. Since then, biclique cryptanalysis technique has
been adopted to attack many other block ciphers such as ARIA [52], SQUARE [129],
TWINE [53], HIGHT [86], PRESENT [4, 92] etc. The advantage of this technique

3

is that it is generic, i.e., it can be applied to most of the block ciphers as long as a
few conditions are met. However, the attack technique has some inherent limitations
- high time and data complexity. Soon after the initial excitement, crypto purists
started comparing it with brute force as the standard brute force is very likely to be
both cheaper and faster in reality. Hence, the question of possibilities in reduction of
attack complexities started surfacing. Moreover, although the biclique technique has
been used to analyze many block ciphers, no formal work except [99] was available in
the literature which analyzed the security of block cipher based hash functions against
the biclique attack. In [39], Bogdanov et al. showed the conversion of biclique based
key recovery attack on AES to preimage attack on AES based compression function.
However, translation of this preimage attack on compression function to hash function
is not trivial. This is because biclique attacks consist of finding some biclique trails
which are then used to recover the secret key. In all of the existing biclique attacks,
the biclique trails allow modifications to the key as well as the message input to the
block cipher. However, in the hash function settings, we are usually interested in the
known-key scenario, where the key input to the block cipher is known publically. Typi-
cal examples include Miyaguchi-Preneel mode and Matyas-Meyer-Oseas mode [34,141].
In these modes, a fixed value (i.e., the IV) that is not under the attacker’s control and
cannot be changed by her is fed as the key input to the block cipher. Moreover, in
the subsequent iterations of these modes, 1 it is difficult for an attacker to control the
value of the chaining variable (produced as the output of each iteration) as well. Hence,
such settings warrant construction of new biclique trails that satisfy the fixed IV (and
known CV) restriction. These are some of the problems which we attempt to solve in
this thesis.

Leaving aside the biclique attacks, the next best class of attack on AES in the secret
key model is the Multiset Attack. With the recent advancements in this technique in
the past 2-3 years [61,71,122,147], the underlying attacks can be considered the most
efficient attacks on AES so far (in terms of lowest computational complexity). Though
this line of attacks has been extensively studied for AES research [57,60,61,71,79,122,
147], their application to other block ciphers has not been investigated much yet. One
of the possible reasons could be that many of these attacks exploit some specific design
properties such as - weak key schedule of AES. In AES, recovery of a subkey allows
recovery of all the other subkeys as well as the master key. However, this property
does not hold true for other block ciphers. A case in point is the Korean Encryption
Standard ARIA [114] and the Ukrainian Encryption Standard Kalyna [138]. The
designs of both of these block ciphers are inspired from AES, however they both have
stronger key schedule algorithms. After 2010, no formal security analysis of ARIA
exists in literature. Moreover, none of the existing attacks on ARIA have been able
to recover the actual secret key. Kalyna has recently been announced as Ukrainian
Encryption Standard in June, 2015. It supports 3 block and key sizes: 128-bit, 256-

1in iterated hash functions

4

bit and 512-bit. According to the notations followed in [138], Kalyna-128 includes
all 3 variants of Kalyna with block size of 128-bits and key size of 128, 256 and 512-
bits. Similarly, Kalyna variants with block size of 256-bit and all 3 key sizes are
commonly termed as Kalyna-256. The designers of Kalyna claim Kalyna-128 to be
resistant against all types of cryptanalysis techniques when the number of rounds is ≥
6 [1]. For Kalyna-256, the minimum number of rounds for which it is resistant to all
types of cryptanalysis techniques is claimed to be 7. However, no justification of these
claims has been provided. Coupled with the fact, that Kalyna has not yet received
significant attention from the cryptanalysis community, motivated us to analyze its
security against multiset attacks. In our works, we investigate the effectiveness of
multiset attacks against both ARIA and Kalyna and improve the current best known
cryptanalytic results on both of them.

1.2 Thesis Organization

In this thesis, we present improvements in some cryptanalytic attack algorithms and
results on cryptanalysis of a few block ciphers and cryptographic hash functions con-
structed from block ciphers. Our main results are presented in Chapters 3, 4, 5, 6
and 7. Each chapter provides literature review, followed by cryptanalysis results and
conclusions. The thesis outline is as follows:

• In Chapter 2, we introduce block ciphers and hash functions. We review a number
of currently known cryptanalytic methods for block ciphers that will facilitate the
understanding of the work discussed in subsequent chapters.

• In Chapter 3, we re-evaluate the security bound of full round AES against biclique
attack. We try to solve some of the inherent limitations of biclique attacks such as
high data complexity. Through a computer-assisted search we try to find optimal
attacks that produce the lowest computational and data complexities for biclique
key recovery attack on all 3 variants of AES.

• In Chapter 4, we deal with AES-based hash functions and investigate their resis-
tance against biclique attacks. First, we give algorithms to search best biclique
trails that do not modify the IV input to the hash function. Then, using these
biclique trails we launch second preimage attacks on all 12 PGV modes.

• In Chapter 5, we analyze Type-2 Generalized Feistel Networks (GFNs) in known
key scenario and derive actual collisions for hash functions constructed from
4-branch, type-2 GFNs. We further demonstrate the best 8-round collision at-
tack on this construction when the round function F is instantiated with double
substitution-permutation (double SP) layers.

• In Chapter 6, we present multiset attack, a variant of meet-in-the-middle attack
and give key recovery attacks on reduced round ARIA-192 and ARIA-256. We

5

present new 4-round distinguishers and use them to launch attacks on 7 and
8-round ARIA-192 and ARIA-256 with improved attack complexities. Further,
in our attacks, we are able to recover the actual secret key unlike the previous
cryptanalytic attacks existing on them.

• In Chapter 7, we investigate the security of recently standardized Ukrainian en-
cryption algorithm: Kalyna-128/256 and Kalyna-256/512. We present new 6-
round distinguishers and use them to launch multiset based key recovery attacks
on 9-round Kalyna-128/256 and Kalyna-256/512.

• Finally in Chapter 8, we conclude the thesis by discussing the results and giving
some future directions of research.

In terms of either the attack complexity or the number of rounds broken, the attacks
presented in this thesis are better than any previously published cryptanalytic results
for the block ciphers concerned.

1.3 Contributions

Among the list of publications presented on page 4, all the results reported in [8, 10,
11, 37, 49] form the basis of this thesis. In the joint works, the author of the thesis
has played a leading role in obtaining the results reported in this thesis. The main
cryptanalytic results are as follows:

• Chapter 3 re-evaluates the security bound of full round AES against biclique
based key recovery attacks. The results include:

1. All the biclique attacks before this work were limited to balanced bicliques
only, i.e., complete bipartite graphs in which the two set of vertices have
exactly the same cardinality. In this work, we propose maximally unbal-
anced bicliques called stars where one set of vertices only contains a single
element.

2. We search for attacks with the minimal data complexity in accordance with
the unicity distance. We find attacks which just require 2 (for AES-128 and
AES-192) or 3 (for AES-256) known plaintexts with success probability 1.
We utilize star based bicliques to achieve these results.

3. We search for attacks with data complexity strictly less than the full code-
book. Among this class, we find attacks that have lower data complexity
for AES-128 and AES-192 (as compared to the original attacks in [39]) and
lower computational complexity for AES-256. This shows that the attacks
reported in [39] were not optimal.

6

4. We search for the fastest biclique key recovery attacks in the entire class
when there is no restriction on the amount of data required. These attacks
provide an important insight into the limits of the independent-biclique
approach developed so far.

5. An interesting outcome of the above class of constructions is that they utilize
the longest biclique covered in the full AES attack so far. For AES-128, the
longest biclique has length of 3 rounds whereas for AES-192 and AES-256
the longest bicliques cover 5 rounds each.

• Chapter 4 investigates the security of AES based hash functions against biclique
attacks in known-key scenario, where the IV is fixed and cannot be changed by the
attacker. Though our results do not significantly decrease the attack complexity
factor as compared to brute force but, they highlight the actual security margin
provided by these constructions against second preimage attack. Our results
include:

1. We re-evaluate the offered security of full 10 rounds AES-128 based hash
functions against second preimage attack. The previous best result reported
in [149] could only work on 7 rounds.

2. Our analysis works on all 12 PGV modes of the hash function constructions.

3. We propose new biclique trails to achieve the above results.

4. All the trails have been obtained by implementing C programs with suitable
restrictions imposed on the search space to yield the best attack complexi-
ties.

• Chapter 5 investigates GFN based hash functions in known-key scenario against
sliced biclique cryptanalysis. Our results include:

1. We apply sliced biclique technique to construct an 8-round distinguisher on
4-branch, Type-2 Generalized Feistel Network.

2. We use the distinguisher so constructed to demonstrate an 8-round colli-
sion attack on 4-branch, Type-2 GFN based compression functions under
known key settings. The attack can be directly translated to collision at-
tacks on Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) mode
based hash functions and pseudo-collision attacks on Davies-Meyer (DM)
mode based hash functions.

3. When the round function F is instantiated with double SP layer, we demon-
strate the first 8-round collision attack on 4-branch, Type-2 GFN with dou-
ble SP layer. This improves upon the previous best 6-round attack reported
in [148].

4. We also further show that presence of multiple SP layers in the round func-
tion F does not always provide better resistance against some attacks.

7

5. We investigate CLEFIA which is a real world-implementation of 4-branch,
Type-2 GFN and demonstrate an 8-round collision attack on it.

• Chapter 6 investigates the effectiveness of mutiset attacks on the block cipher
ARIA. The results include:

1. We show the best 7-round key recovery attacks on ARIA-192/256 and 8-
round attack on ARIA-256.

2. We construct a new 4-round distinguisher for ARIA-192 and ARIA-256.

3. Our attack complexities on ARIA-192 have better time, data and memory
complexities than the previous best reported in [168].

4. Our attack complexities on ARIA-256 have better time and memory com-
plexities than the previous best reported in [168].

5. We present the first actual recovery of the master key on our attacks on
ARIA-192 and ARIA-256.

• Chapter 7 investigates the effectiveness of mutiset attacks on the block cipher
Kalyna. The results include:

1. We present the first 9-round key recovery attack on Kalyna-128/256 and
Kalyna-256/512. This improves upon the previous best 7-round attacks on
the same.

2. We construct new 6-round distinguishers on each of the above mentioned
Kalyna variants.

3. Our 9-round attack on Kalyna-256/512 has better time and data complexity
than the previous best reported in [13].

4. Our attacks show that Kalyna variants which have equal block and key sizes
appear to be more secure and robust as compared to Kalyna variants where
the key size is double the block size.

8

Chapter 2

Symmetric cryptosystems

A cryptosystem [97,133,164] is a general term referring to a set of cryptographic prim-
itives used to provide information security services. Symmetric cryptology studies the
design and analysis of symmetric cryptosystems which include block ciphers, stream ci-
phers, message authentication codes (MACs) and cryptographic hash functions. While
block ciphers and stream ciphers are encryption primitives, MACs and hash functions
provide data and data origin authentication. This thesis primarily focuses on block
ciphers and block cipher based hash functions. In this chapter, we provide a brief
overview of the necessary background required to understand the results included in
this thesis.

2.1 What is a block cipher ?

A block cipher is a transformation E: {0, 1}k×{0, 1}n → {0, 1}n. The first input to E
is a k-bit secret key and second input is the n-bit plaintext while the output is the n-bit
ciphertext. 1 The key size k and the block size n are the parameters associated with
a block cipher. A block cipher is a bijection for a fixed key, i.e., E(K, ·) is a bijective
function on (0, 1)n. For a fixed key K ∈ {0, 1}k, we sometimes denote E(K, ·) by EK(·)
and its inverse permutation by E−1

K (·). Currently, the widely used block lengths are 64
and 128-bits and the key lengths are typically 128 or 256-bits.

The need for formalizing security notions in communication systems was recognized
quite early. Shannon, in his seminal work [157] first defined the concept of perfect se-
crecy for encryption ciphers. A cipher is called perfectly secure if the ciphertext does
not give the adversary any additional information about the plaintext. Shannon showed
that the ciphers must have a key space that is atleast as large as the message space for
them to achieve perfect secrecy. This makes ciphers with perfect secrecy impractical
in most settings where large amounts of data need to be encrypted. Block ciphers

1Often the term ciphertext is slightly abused to mean the output of encrypting a plaintext block
using a reduced version of the block cipher concerned.

9

present more efficient ways to construct encryption algorithms under a weaker notion
of security termed as computational security [97].

A standard assumption associated with block ciphers is that they are pseudorandom
permutations. This means that an n-bit block cipher under a randomly-chosen secret
key K is computationally indistinguishable from a randomly chosen n-bit permutation.
By definition, in the ideal-cipher model [34, 54, 63, 67, 91], a block cipher E with k-bit
key and n-bit block size is uniformly chosen from the set of all possible block ciphers
of this form. For each key, there are 2n! permutations, and since any permutation may
be assigned to a given key, there are (2n!)2k possible block ciphers, e.g., AES with a
128-bit key is one choice from nearly 22263 total block ciphers possible. However, an
ideal block cipher for a large block size is not practical from an implementation and
performance point of view. This is because, for most practically relevant block ciphers,
the amount of storage required to store all the possible permutations for a given key
is way beyond the computational resources conveniently available [33]. In practice,
an approximation of ideal block cipher system for large n is constructed, where the
block cipher is built out of components that are easily realizable [88]. To build a
block cipher, a set of permutation generators is taken and parameterized by the secret
key [35] where the key space is much smaller than the message space. This reduces the
possible block cipher choices significantly and the implementations are far from being
random. In such cases, the security of a block cipher depends on its block size and
the secret key size. The length of these parameters is so chosen that they are large
enough to maintain pseudorandomness in presence of modern adversary. In terms of
computational security, a block cipher E is called secure if no attacks on E exist that
have time complexities 2 lower than brute force.

2.2 Anatomy of a block cipher

In practice, most block ciphers are iterated block ciphers. They are constructed by
repeating a simple function called the round function multiple times. Parameters
include the number of rounds r, the block bitsize n and the bitsize k of the input
secret key from which r subkeys Ki (called the round keys) are derived through a key
schedule algorithm. The basic idea is to make a strong encryption function out of a
weaker round function (that is easy to implement) by repeatedly using it. For an
r-round block cipher with ith round function Fi and ith subkey Ki, an iterated block
cipher EK(·) is defined as:

EK(·) = Fi(Ki, ·) ◦ Fi−1(Ki−1, ·) ◦ . . . ◦ F2(K2, ·) ◦ F1(K1, ·)
where, ◦ denotes superposition of permutations. For every subkey, the round func-

tion must be invertible; if not, decryption is impossible. The number of rounds in an

2Attack and attack complexities are formally discussed in Section 2.4

10

iterated cipher depends on the desired security level and the consequent trade-off with
performance. In most cases, an increased number of rounds will improve the security
offered by a block cipher, but for some ciphers the number of rounds required to achieve
adequate security will be too large for the cipher to be practical or desirable. Often in
an iterated block cipher the first and/or the last round are not identical with the other
ones.

A key-alternating block cipher [56,57] is an iterative block cipher with special-type
of round function Fi :

Fi(Ki, x) = F ′i (Ki ⊕ x)

where, F ′i (·) is a round function not dependent on the round key. The round func-
tions are interleaved with simple xoring of round keys to the current state. Advanced
Encryption Standard (AES) is a key-alternating block cipher.

Round Function F . It is necessary to build the round function F as nonlinear.
This eliminates the possibility of representing F as a system of linear equations with
plaintext, ciphertext and key bits acting as variables and solving them with standard
algebraic methods to recover the secret key. It is generally desired that the round
function F should provide good diffusion and confusion properties. Good diffusion
means spreading the influence of each input bit to preferably all output bits in a random
way, whereas good confusion means making the relationship between ciphertext and
subkey bits as complex as possible such that it is difficult to deduce the secret key [163].
If the round function achieves good diffusion and confusion properties, after sufficiently
many rounds, each instantiation of the block cipher is expected to behave like a random
permutation and resist various cryptanalytic attacks.

2.3 Construction of iterated block ciphers

Iterated block ciphers can be built in many different ways. The two most common ap-
proaches are Feistel Networks (FNs) and Substitution Permutation Networks (SPNs).

Feistel Network. Feistel network, more commonly known as Feistel cipher has been
named after Horst Feistel, one of the IBM researchers who designed LUCIFER [162]–
the precursor to Data Encryption Standard (DES) [62]. In a Feistel cipher, the plaintext
is split into two equal halves. The round function is applied to one half and the output
of the round function is bitwise xor’ed with the other half; finally, the two halves are
swapped and they become the two halves of the next rounds. This process is iterated
until the final ciphertext is produced. Typically, in a Feistel cipher, number of rounds
r ≥ 3 and is often even. Decryption is achieved using the same r-round process but
with subkeys used in reverse order. As a result, the round function F need not be a

11

⊕

L1 R1

F

K1

input

L0 R0

⊕

Lr Rr

F

K2

output

Figure 2.1: An example of Feistel construction. The input is split into two halves:
L0 || R0 and iterated r times to produce the final output.

bijection for Feistel constructions. An illustration of Feistel cipher is given in Fig. 2.1.
Concrete examples of Feistel cipher include - TEA [175], XTEA [135], ISO standard
Camellia [16], GSM standard KASUMI [3], NSA released SIMON [22] etc.

Generalized Feistel Network (GFN). Beside the classical Feistel networks as dis-
cussed above, several other generalizations of Feistel networks exists. All of them are
encompassed under the broader category of Generalized Feistel Networks (GFNs). In
Unbalanced Feistel networks [155], unlike the classical ones, each state is divided into
two unequal parts, e.g., Skipjack [2] whereas in alternating Feistel networks, the right
and left parts are alternately used as input to the round function F , e.g., LION [14].
In type-1, type-2, and type-3 Feistel networks [180] that are variants of Feistel net-
works with more than two branches, the input message is partitioned into k sub-blocks
with k > 2, e.g., RC6 [145], CLEFIA [160], TWINE [167], MARS [45] etc. Fig. 2.2,
illustrates the various GFNs. For a detailed security analysis of generalized feistel net-
works, one can refer to [42, 85]. In [166], Suzaki et. al. specifically investigated the
diffusion properties of k-branch, Type-2 GFN, where k > 2 and showed that the clas-
sical k-block left or right cyclic shift had poor diffusion abilities. They then suggested
improved k-block shuffling that led to better resistance against various cryptanalytic
attacks. Block cipher TWINE [167], which is a 16-branch, Type-2 GFN adopts one of
these improved k-block shuffling in its design.

Substitution Permutation Network (SPN). Another approach to construct a
block cipher consists of building a round function by combining layers of simple in-

12

L0

⊕

R0

F

R0 L′
0

m n

n m

(a) Unbalanced Feistel Net-
work. Here, |L0| < |R0|.

⊕

L1 R1

F

L0 R0

⊕F

L2 R2

(b) Alternating Feis-
tel Network.

⊕F

B1 B2 B3 B4

B′
2 B3 B4 B1

(c) 4-branch, Type-1 GFN

⊕F ⊕F

B1 B2 B3 B4

B1 B′
2 B3B′

4

(d) 4-branch, Type-2
GFN

⊕F ⊕F

B1 B2 B3 B4

F ⊕

B1B′
2 B′

3 B′
4

(e) 4-branch, Type-3 GFN

Figure 2.2: Illustration of Generalized Feistel Networks

vertible functions: substitutions and permutations. In the first layer, the subkey Ki

is xor’ed with the intermediate state which provides key dependency. In the second
layer, i.e., the substitution layer, nonlinear functions (S-boxes) acting on parts of the
state are applied in parallel. If each S-box operates on b out of n bits, then there are
m = n

b
b-bit S-boxes working in parallel. In the third layer, i.e., the permutation layer,

these m parts are diffused using a linear mapping. The substitution layers acting on
small units of data (rarely more than eight consecutive bits) introduce local confusion
into the cipher. The permutation layers, on the other hand, operate on the complete
block and thus diffuse the effect of the substitutions. In practice, S-boxes are often
implemented as look-up tables as table implementation gives better performance in
software. Linear permutations range from simple transpositions such as bit-wise per-
mutations to complex mathematical functions, such as MDS matrix [144, 170]. While
bit level permutations are easy to achieve in hardware with zero cost (simple realign-
ing of wires), they have serious performance implications at software level. This is
because, in software, manipulating individual bits is not natural and this slows down
the performance of the cipher. Hence, permutation functions such as the MDS matrix

13

which works at byte level or 32-bit word level provide more flexibility in software. In
SP networks, the round function has to be necessarily bijective for decryption to be
possible. Prominent SPN block ciphers include: AES [57], PRESENT [40], ARIA [114]
etc. Often the F -functions of many Feistel ciphers also consist of a small SP network.
An example of SP network is given in Fig. 2.3.

S S S S

P

S S S S

P

Figure 2.3: Substitution-Permutation (SP) Network

Besides these popular design approaches, there exists other block ciphers with
other round structures as well, e.g., block cipher IDEA [116] that follows Lai-Massey
scheme [171], NSA standardized SPECK [22] that follows ARX (addition, rotation,
XOR)-based structure [172] and KATAN/KTANTAN family of lightweight block ci-
phers which base their round function on LFSRs [47].

Key Schedule Algorithm (KSA). KSA plays an important role in iterated block
cipher design construction. Reusing the user supplied key bits as much as possible
while generating the round keys is usually considered a good design principle. Two
main approaches of designing a key schedule algorithm are - 1) Affine key schedule,
where, the subkeys are derived as an affine transformation of the user supplied key,
e.g., DES and 2) Non linear key schedule, where, the subkeys are generated as non-
linear transformations of the user supplied key, e.g., AES, PRESENT etc. It is usually
desired that a key schedule algorithm should avoid weak keys, equivalent keys, related
keys etc. and satisfy Strict Avalanche Criterion and Bit Independence Criterion [7].

In resource constrained environments, where efficiency and security are competing
goals, designers often opt for a simple key schedule to ensure compact implementation.
For example, key schedules of block ciphers such as PICCOLO [158] and TEA [175] do
simple permutation or linear operation on the master key whereas some block ciphers
such as LED [81] and PRINT [108] have no key schedule at all and just use the mas-
ter key directly in each round. Security in these block ciphers is ensured by utilizing
specialized design tricks during the state update such as - a serially computable MDS

14

matrix used in block cipher LED, double permutation layer (bit-wise shuffling followed
by a 3-bit keyed permutation) in block cipher PRINT etc. which provide good diffusion
but require small gate count in hardware implementations. Most of these block ciphers
are well analyzed against the classical attacks and resistant against KSA targeting
attacks such as related key and slide attacks. However, in some cases, the simplicity
of these key schedule algorithms (i.e., slow diffusion between the subkeys) has been
exploited to launch attacks on reduced rounds, e.g., MITM attacks [90,156], invariant
subspace attack [120] etc.

Due to a lack of systematic guidelines, no formal principles on designing a key
schedule algorithm have yet been promulgated and this is a pressing research issue.

2.4 Block Cipher Cryptanalysis

Block cipher cryptanalysis is multifaceted. An attack may show a weakness that the
designer overlooked, disprove an assumed security level or show an assumed property
to be untrue. Broadly speaking, the attack goals can be classified into the following
categories [106]:

• Total Break - Here, an adversary recovers the full secret key.

• Global Deduction - The adversary finds an algorithm that is functionally equiv-
alent to either encryption or decryption algorithm.

• Local Deduction - The adversary can obtain the plaintext (or ciphertext) corre-
sponding to a ciphertext (or plaintext) that has not been previously queried.

• Distinguishing Algorithm - The adversary can effectively differentiate between
two black boxes; one containing the target block cipher with a randomly chosen
secret key and the other containing a randomly chosen permutation.

It is generally agreed that any cryptosystem should meet Kerckhoffs’ principle [95].
According to Kerckhoff’s principle, a cryptosystem should be secure even if an at-
tacker knows everything about the cryptographic algorithm except the user-supplied
secret key. Following the Kerckhoff’s principle, there are four widely discussed attack
scenarios that an attacker may launch. In the order of severity these are:

1. Ciphertext-only Attack. This is the most basic type of attack. Here, the ad-
versary just observes one or more ciphertexts and attempts to determine the
corresponding plaintexts that were encrypted. She is assumed to have some in-
formation about the plaintexts, e.g., the particular natural language in which the
plaintexts are written.

15

2. Known Plaintext Attack. Here, the adversary learns one or more pairs of plaintexts-
ciphertexts encrypted under the same key. Her aim is then to determine the plain-
text for some other ciphertext for which she does not know the corresponding
plaintext.

3. Chosen Plaintext (or Ciphertext) Attack. In this attack, the adversary has the
ability to obtain the encryption (or decryption) of any plaintext(s)(or ciphertexts)
of her choice. She then attempts to determine the plaintext (or ciphertext) for
some other ciphertext (or plaintext) that has not been previously queried.

4. Adaptively Chosen Plaintext (or Ciphertext) Attack. It is the same attack sce-
nario as above except that in this case an adversary can adaptively ask for en-
cryptions and/or decryptions of her choice based on the knowledge obtained from
the previous queries.

The strength of an attack is usually evaluated using the following metrics:

• Time Complexity. This measures the amount of computations required for ex-
ecution of an attack. It is usually measured in terms of how many encryp-
tion/decryption calls to the target block cipher are made.

• Data Complexity. This calculates the number of plaintexts/ciphertexts required
to execute the attack. In an exhaustive search attack, unicity distance is a
parameter of a block cipher that is generally used to determine the minimum
number of ciphertexts required such that only one correct value of the secret key
is obtained (other spurious keys are eliminated) [142]. E.g., for a 128-bit block
cipher with a 256-bit secret key, unicity distance is 3.

• Memory Complexity. This calculates the amount of memory storage required to
carry out an attack. Often, it is measured in units of n-bit blocks (where, n
denotes block size) of data required to be stored.

2.4.1 Fundamental Generic Cryptanalysis Techniques

There are three fundamental cryptanalytic techniques that can be applied to any block
cipher. These attacks do not depend on the internal structure of the cipher and can
only be avoided or rendered impractical by choosing appropriate external parameters.
We assume an n-bit block cipher with a k-bit secret key.

• Dictionary Attack. Here, the attacker builds a table containing all 2k possible
ciphertexts corresponding to a particular plaintext with various key choices acting
as the indices. When a ciphertext corresponding to that particular plaintext is
intercepted, she can simply look up the precomputed table and deduce the key
with high probability (given, k ≤ n, otherwise there are 2k−n expected keys). This
attack has a data complexity of 2k ciphertexts, a 2k n-bit memory complexity
and negligible time complexity.

16

• Codebook Attack. This attack is related to the block length of the cipher. If the
attacker is able to capture the ciphertexts of all possible 2n plaintexts, she can
construct a table (sorted by the plaintext) and use it to decrypt any future mes-
sage encrypted with the same secret key. Such an attack has a data complexity
of 2n plaintext/ciphertext pairs, a 2n n-bit memory complexity and a negligible
time complexity. Generally, due to birthday paradox, if more than 2n/2 randomly
generated n-bit ciphertexts are captured, then an attacker can expect a repeti-
tion to occur with high probability. This may in turn leak information about
the plaintexts. This is a potentially relevant setting as in many cryptographic
constructions, a source of randomization is fed into the input of the block cipher,
e.g., CBC mode with random IV. Hence, it is advisable not to encrypt more than
2n/2 plaintexts under the same key. In case n is relatively small, codebook attack
becomes practically feasible.

• Exhaustive Search. This attack depends upon the key length of the secret key
used. In an exhaustive key search (also known as brute force attack), given a
valid plaintext-ciphertext pair, an attacker tries all possible 2k key choices to
deduce the correct key. It is assumed that only the correct key will yield the
correct correspondence. If more than one candidate key is produced, then the
wrong key choices can be eliminated by using another valid plaintext-ciphertext
pair. Such an attack has a 2k time complexity and negligible data and memory
complexities. An attack is generally considered effective if its time complexity is
faster than exhaustive key search.

While exhaustive search requires essentially no memory and 2k work, dictionary
attack requires 2k memory and negligible time. Hence, these attacks represent the two
extremes for an adversary and bring into picture the concept of time-memory tradeoff.
The classic time-memory tradeoff was given by Martin E. Hellman and for further
details, one can refer [83].

2.4.2 Shortcut Attacks

Shortcut Attacks exploit specific internal structure properties of a block cipher to re-
cover the secret key with a complexity better than brute-force. Most of the attacks
that are discussed in the subsequent subsections follow the following 2-step strategy:

1. Distinguisher Construction. In this phase, given a set of plaintext-ciphertext
pairs, the aim of the attacker is to construct a distinguisher D that is able to
differentiate between a random permutation and the target block cipher (that
looks like a random permutation to the attacker) in polynomial time 3 and with
a non-marginal success probability. For further details on various statistical dis-
tinguishers, one can refer [94].

3polynomial in the block size n

17

2. Round Key Recovery. Let us suppose that an attacker is able to successfully
construct a distinguisher D on a (r − 1) reduced round block cipher (out of full
r-rounds). Given plaintext-ciphertext pairs for full cipher, the attacker guesses
(parts of) the last round key, (partly) decrypts the last round, and uses her
distinguisher on the first (r − 1) rounds to check whether the guess could have
been correct. Once, she has recovered the (parts of) last round subkey, she can:
a) Deduce some parts of the secret key K if the key schedule is invertible or, b)
Peel off the last round and continue searching in a similar manner or, c) Conduct
an exhaustive search for the rest of the key bits to recover the secret key K.
Sometimes, depending on the block cipher structure, an adversary may cover
more than one round in the key recovery phase, both from the top as well as
bottom.

In the subsequent subsections, we briefly review a range of shortcut attacks that
are relevant for this thesis.

2.4.3 Differential Cryptanalysis

Differential cryptanalysis was first presented by Biham and Shamir at CRYPTO’90 to
attack DES [28] and eventually the details of the attack were published as a book [29].
The wide applicability of this technique along with linear cryptanalysis [131] to nu-
merous block ciphers have solidified the position of these techniques as the threshold
evaluation metric for the security analysis of any block cipher. One of the major aims
of all block cipher designers is to develop constructions that can thwart differential and
linear cryptanalysis.

Differential Cryptanalysis takes advantage of how a fixed plaintext difference prop-
agates through the rest of the cipher in a non-random way to recover the secret key.
The notion of difference can be defined in several ways but the most widely discussed
is with respect to the XOR operation. For any value X during the encryption of P ,
and the corresponding value X ′ during the encryption of P ′ (where, size of P , P ′, X,
X ′ is n-bits), let us denote the difference by ∆X = X ⊕X ′. The differences are linear
in linear operations, and it is easy to predict the output difference of linear operations
given the input difference. However, in case of non-linear operations, say S-box (S),
this is not true. Specifically, S(X)⊕ S(X ′) 6= S(X ⊕X ′). Let, S(X)⊕ S(X ′) = ∆Y .
Given, a (∆X, ∆Y) pair, in an ideal randomizing cipher, the probability that a partic-
ular output difference ∆Y occurs for a given ∆X is 1/2n. However, since block ciphers
in practice are not truly random, differential cryptanalysis seeks to exploit cases where
the probability of ∆X → ∆Y is much greater than 1/2n. The pair (∆X, ∆Y) is called
a differential characteristic across the operation S(·).

Given a m × n S-box (S), the probability of the differential characteristic over S
(∆X, ∆Y) is defined as:

18

Pr(∆X → ∆Y) =
| {x ∈ {0, 1}m : S(x)⊕ S(x⊕∆X) = ∆Y } |

2m

The aim of the attacker is to search for differential characteristics which have good
probabilities. To achieve so, generally a Difference Distribution Table (DDT) is built
by her. The Difference Distribution Table for an (m × n) S-box (S) is a table storing
all possible pairs of input and output differences (∆X, ∆Y) and the numbers of m-bit
blocks x (∈ {0, 1}m) such that S(x)⊕ S(x⊕∆X) = ∆Y .

In a differential attack, the attacker first starts by searching a differential character-
istic such that only a small part of the nonlinear components are activated (have non
zero difference) and at the same time maximum rounds of the target cipher are covered.
To estimate the probability of a characteristic, it is assumed that its evolution over
successive rounds is independent. Thus, the cumulative probability of a (r − 1)-round
differential characteristic (over (r − 1)-rounds of the cipher) can be computed as the
product of probabilities of one-round characteristics. Once the attacker finds a good
differential characteristic that covers the desired rounds of the cipher, she can then
use it to distinguish the block cipher from a random permutation and carry out a key
recovery attack as described at the start of the Section 2.4.2. It can be seen that in
general, in differential attacks, the attacker is usually concerned with the difference in
the partially encrypted inputs after (r−1) rounds only rather than input differences at
each intermediate round. There may be various sequences of intermediate differences
that give rise to the same output difference. Thus, instead of working with a particular
differential characteristic, differential attacks often employ differentials. A differential
over (r − 1) rounds is a set of all differential characteristics with the same input and
output difference.

Various enhancements and variants of differential attack have been introduced
and studied extensively in literature. Few among them are higher order differential
cryptanalysis [105, 181], truncated differential cryptanalysis [107], impossible differen-
tial cryptanalysis [23, 126, 140], differential-linear cryptanalysis [119], boomerang at-
tacks [173] etc. In the next subsections, we discuss two of these attacks - truncated
differential cryptanalysis and boomerang attacks.

2.4.4 Truncated Differential Cryptanalysis

Truncated Differential Cryptanalysis is a generalized version of differential cryptanal-
ysis technique. This technique was developed by Lars Knudsen in 1994 [107]. It works
exactly the same way as differential cryptanalysis except the fact that in this technique,
instead of analyzing the full difference between the two texts, only partial differences
are determined after each round. For example, consider a particular 4-bit S-box, say
S. Let

19

0010
S−→ 0010 have a probability of 2/16

0010
S−→ 1000 have a probability of 6/16

0010
S−→ 0110 have a probability of 4/16

0010
S−→ 0100 have a probability of 4/16

In case of truncated differential,

0010
S−→ ∗ ∗ ∗ 0 has a probability 1

At byte level, truncated differentials usually work with a set of differences. A byte
is usually termed as active or non-active just indicating whether a non-zero difference
exists in the byte or not, without focusing on the actual value of that difference. S-
boxes do not mix active and non-active bytes. Thus, it is easier to study and exploit the
properties of the diffusion layer in case of truncated differentials. However, truncated
differentials quickly spread to the whole internal state due to diffusion and this happens
faster than for fixed differentials. This makes the probabilistic trail short and the attack
less powerful. If the diffusion at byte/word is relatively slow, truncated differentials
may cover larger number of rounds. E.g., in case of block cipher Crypton, due to
weaker diffusion, as many as 8 rounds were attacked with truncated differentials [64].

2.4.5 Boomerang Attack

Boomerang attack was proposed by David Wagner at FSE’99 [173]. It differs from
the classical differential attack approach in that it allows differentials covering only a
part of the cipher to be used in the attack. The block cipher is treated as a cascade
of two sub-ciphers, each having a high probability short differential of its own. These
differentials are then combined in a chosen plaintext and ciphertext attack setting to
first construct a boomerang distinguisher and then use the distinguisher to recover the
secret key.

Let us suppose, the block cipher EK(·) is split into two halves - E1
K ◦ E0

K , where
E0
K covers the first s rounds of encryption while E1

K covers the rest (r − s) rounds of
encryption. Let us further suppose, that there exists a differential α→ β through E0

K

with a high probability p. Similarly, there exists a differential γ → φ through (E1
K)−1

which has a high probability q. The boomerang attack (as shown in Fig. 2.4) then
proceeds as follows:

1. Consider two plaintexts P , P ′ such that P ′ = P ⊕α. Obtain their corresponding
ciphertexts C, C ′ respectively.

20

P

C

E0
K

E1
K

E0
K

E1
K

E0
K

E0
K

E1
K

E1
K

P’

Q Q’

C’

D D’

α

α

β

β

γ γ

φ φ

Figure 2.4: The Boomerang Distinguisher

2. The probability that E0
K(P)⊕ E0

K(P ′) = β is p.

3. Obtain, D = C ⊕ γ and D′ = C ′ ⊕ γ. If we apply (E1
K)−1 to each of the pairs

(C, D) and (C ′, D′), then with probability q2, (E1
K)−1(C)⊕ (E1

K)−1(D) = φ and
(E1

K)−1(C ′)⊕ (E1
K)−1(D′) = φ.

4. Then, the following statement holds true: With probability pq2, (E1
K)−1(D) ⊕

(E1
K)−1(D′) = β. This is because,

(E1
K)−1(D)⊕ (E1

K)−1(D′) = (E1
K)−1(C)⊕ (E1

K)−1(D)⊕ (E1
K)−1(C)⊕ (E1

K)−1(C ′)

⊕ (E1
K)−1(C ′)⊕ (E1

K)−1(D′)

= φ⊕ β ⊕ φ
= β

5. Thus, with probability p2q2, E−1
K (D)⊕ E−1

K (D′) = Q⊕Q′ = α.

6. Now if, (pq) > 2−n/2, then a valid distinguisher is constructed. This is because,
for a random permutation, the expected probability that Q⊕Q′ = α is 2−n.

Therefore, if p2q2 is sufficiently large, then the boomerang distinguisher can effec-
tively distinguish between EK(·) and a randomly chosen permutation, given a sufficient
number of adaptively chosen plaintexts and ciphertexts. Once the distinguisher is built,
the attacker can use it to carry out a key recovery attack as described at the start of
the Section 2.4.2. The plaintext tuple (P , P ′, Q, Q′) is termed as a quartet and satisfies
the following property:

21

P ⊕ P ′ ⊕Q⊕Q′ = 0.

Following the advent of boomerang attack, many other extensions of this attack
were proposed. E.g., amplified boomerang attack [98] which is a full chosen plaintext
attack variant, rectangle attack [24] which allows any value of β and φ to occur as long
as β 6= φ and impossible boomerang attack [125] which defines a right quartet to be one
that satisfies β ⊕ β′ ⊕ φ⊕ φ′ 6= 0 in the middle.

2.4.6 Meet-in-the-Middle Attack

Meet-in-the-Middle Attack (MITM) technique, first proposed by Diffie and Hellman
in [66] is a divide-and-conquer approach which splits an invertible transformation into
two parts and finds parameters that are involved in the computation of only one. These
parameters are then calculated independently and checked for a match in the middle
to obtain the right combination. The advantage of this technique is that it reduces the
time complexity significantly as compared to brute force search over these parameters.
For example, let us have a look at MITM attack on Double DES [66]. For Double DES,
the following equation holds true:

DESK1(DESK2(P)) = C (2.1)

where, P = plaintext, C = ciphertext, (K1, K2) = keys used for encryption/decryption
and | K1 | = | K2 | = 56 bits. From Eq. (2.1), it can be seen that :

DESK2(P) = DES−1
K1

(C) (2.2)

i.e., given a plaintext-ciphertext pair, an attacker can compute K1 and K2 inde-
pendently and look for a match in the intermediate ciphertext. Finding the right
combination (K1, K2) will take the attacker 2K1 + 2K2 time instead of 2K1 × 2K2 time
(needed by brute force search). Hence, instead of providing 112-bit security, MITM
attack showed that Double DES only provides 57-bit security.

The same methodology can be exploited at round level as well. The aim is to find an
internal state inside the cipher such that rounds involved in the forward computation
from the plaintext and in the backward direction from the ciphertext do not depend
on particular key bits. These particular key bits are called neutral key bits. In general,
let an n-bit block cipher EK(·) with k-bit key K is divided into two functions F1 and
F2. Let us further suppose that K is grouped into three sets K1, K2 which are used
only in F1, F2 independently (neutral key bits) and K3 which denotes the other key
bits of K. Then for each value of K1, we compute F1(P) in the forward direction and
for each value of K2, we compute F−1

2 (C) in the backward direction. If the guessed
key is the correct one, the equation F1(P) = F−1

2 (C) holds true. After MITM stage,

2k−n (= 2|K1|+|K2|

2n
× 2|K3|) keys will survive. The attacker then exhaustively searches a

22

correct key from the surviving key candidates by using additional plaintext-ciphertext
pairs. The required complexity Ccomp is estimated as:

Ccomp = 2|K3|(2|K1| + 2|K2|) + (2k−n + 2k−2n + . . .) (2.3)

The number of required plaintext/ciphertext pairs is dk/ne.

P

match ?

K1 K2

C
F1 F2

v′

K3
K3

Figure 2.5: MITM Attack with partial
matching. Here, v′ is the b-bit partial in-
termediate matching state.

P

match ?

K1 K2

CF1 F2

v

K3
K3

Decryption Oracle

Figure 2.6: Splice-and-Cut Framework.
Here, v is the n-bit intermediate matching
state.

Sometimes, instead of full n-bit state matching, attacker performs matching on
some part of the intermediate state only. Such an attack is termed as MITM with
partial matching [17]. For a match on b-bit (b < n) partial intermediate state (as
shown in Fig. 2.5), the required complexity Ccomp is now estimated as:

Ccomp = 2|K3|(2|K1| + 2|K2|) + (2k−b + 2k−2b + . . .) (2.4)

with the data complexity of the attack increasing to dk/be. Another property which an
attacker sometimes exploits in MITM attacks is the Splice-and-cut Technique [17]. This
technique considers the first and last step of a block cipher as consecutive steps. This
is achieved by joining the two steps through an encryption/decryption oracle query (as
shown in Fig. 2.6). Both these properties provide an attacker additional flexibility to
start at any step she wishes and cover maximum rounds possible to recover the secret
key.

Meet-in-the-middle attacks on block ciphers received less attention compared to
differential and linear cryptanalysis. The limited use of these attacks can be attributed
to the fact that these attacks require large parts of the cipher to be independent of
certain key bits whereas, the design paradigm of block ciphers requires usage of all the
key bits in the first few rounds only. As such, finding an internal state which depends
on only few key bits in either direction is difficult. As a result, the number of rounds
broken with this technique is rather small. MITM attacks could break significant
rounds only in some block ciphers, e.g., full cipher KTANTAN [41] and maximum
steps in XTEA, LED and Piccolo [90].

23

2.4.7 Square Attack

Square Attack was first proposed by Daemen et al. in [55] as a dedicated attack on
block cipher SQUARE, a forerunner of AES. It was shown to be applicable to AES
as well. This attack consists of choosing a special set of plaintexts and studying its
propagation through the block cipher. The attack on AES [110] is illustrated as follows:

Consider a set of 28 plaintexts in which the first byte takes all possible 256 values
and the remaining bytes take any constant value that remains same throughout the
set. We call such a set of plaintexts as λ-set. The byte which takes all possible 256
values is termed as the active byte. Rest of the bytes are termed as passive bytes. The
transformation of this λ-set after one round of AES encryption is as shown in Fig. 2.7.

SRSB
*

MC

*
*

*
* ARK

SRSB MC
*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

SRSB MC

*
*
*
*

*
*

*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

B
B

B
B

B
B

B
B

B
B

B
BB

BB
B

ARK

Round 1

Round 2

Round 3

* *

Figure 2.7: 3-round AES. Here, ∗ denotes the byte is active and B denotes the byte is
balanced.

Since, S-box is a bijective mapping, hence intermediate state after S-Box (SB)
operation in round 1 remains a λ-set. Further, as branch factor of AES MixColumns
(MC) operation is 5, all the four bytes of the first column of the intermediate state after
MC become active. Similar explanation holds true for second round transformations
as well as transformation till before MixColumns (MC) operation in the third round.
Let us consider the intermediate state after MixColumns operation in the third round.
Let the bytes of the first column after third round MC be denoted as yi0, yi1, yi2 and yi3
where, i represents the ith text. Let xi0, xi1, xi2 and xi3 represent the corresponding first
column bytes before third round MC operation. Then, as per MixColumns operation
definition [57]:

yi0 = 02x · xi0 ⊕ 03x · xi1 ⊕ xi2 ⊕ xi3
If we xor all the values in the first byte position after the MixColumns operation,

then it can be shown that the xor’ed sum is always zero as follows:

24

y0
0 ⊕ y1

0 ⊕ . . . y255
0 = 02x · x0

0 ⊕ 03x · x0
1 ⊕ x0

2 ⊕ x0
3 ⊕

02x · x1
0 ⊕ 03x · x1

1 ⊕ x1
2 ⊕ x1

3 ⊕
...

02x · x255
0 ⊕ 03x · x255

1 ⊕ x255
2 ⊕ x255

3

This can be re-written as:

y0
0 ⊕ y1

0 ⊕ . . . y255
0 = 02x ·

255⊕
i=0

xi0 ⊕ 03x ·
255⊕
i=0

xi1 ⊕ 01x ·
255⊕
i=0

xi2 ⊕ 01x ·
255⊕
i=0

xi3

= 02x · 00x ⊕ 03x · 00x ⊕ 00x ⊕ 00x

= 00x

This shows that the set of values in the first byte position after third round MC
operation forms a balanced set (set where XOR of all values becomes zero) and that
too with probability 1. This property is preserved after key addition as well and holds
true for all the other bytes as well. Thus, this property can be exploited by an attacker
to distinguish 3-round AES from a random permutation, since in the case of random
permutation, the probability that the xor’ed sum in all the bytes becomes zero is 2−128.

Apart from AES, square attack was used to attack other ciphers as well, e.g.,
CRYPTON [64], IDEA [93] etc. Stefan Lucks extended the attack to non-SQUARE-
like ciphers by attacking the block cipher Twofish [128] and named his generalized
attack as saturation attack. Later, Knudsen and Wagner assembled the various square
attack variants together into a single framework and termed it as integral cryptanaly-
sis [111].

The Square attack can be considered as a specialized version of a broader class of
attacks called the multiset attacks. A multiset is a list of values, each of which can
appear multiple times, but the order in which they appear is irrelevant, e.g., {1, 2, 2,
3, 3, 4}. Apart from balanced multisets, these attacks can utilize other multisets as
well [32]. Some other types of multisets are:

• Constant Multiset : A multiset M of m-bit values is a constant multiset if it
consists of a single value repeated an arbitrary number of times.

• Permutation Multiset : A multiset M of m-bit values is a permutation multiset
if it contains each of the 2m possible values exactly once.

25

• Even Multiset : A multiset M of m-bit values is an even multiset if each value
occurs an even number of times (including no occurrences as well).

The advantage of multiset attacks is the fact that the transformations of these
multisets over a limited number of rounds is non-probabilistic as compared to differ-
ential and linear trails. Further, most of the components commonly found in a block
cipher either preserve the multiset properties or convert them into some other mul-
tiset properties. E.g., a constant multiset remains so after passing through an S-box
or a balanced multiset is preserved by any linear operation. These benefits allow an
attacker to launch efficient key recovery attacks on a block cipher. Several variants of
multiset attacks have been proposed in literature [60,61,71,79,111,127]. Currently, the
second best attacks on Advanced Encryption Standard (in terms of number of rounds
attacked) belong to a subclass of this line of attacks.

2.5 Block Cipher Based Hash Functions

Cryptographic hash functions, one of the widely used primitives in numerous stan-
dards and applications, are one-way functions that take a message of arbitrary length
as input and produce a fixed length output called message digest or hash. The term
one-way implies that such a function is easy to compute but computationally hard to
invert, i.e., for a given output it is hard to find an input that maps to that output. The
message digests produced by hash functions are typically used to verify the integrity
of the data and detect unauthorized changes in it. In general, for a given message m,
the sender computes its hash value and appends it with the message. The integrity of
the hash value is protected in some manner. She then transmits the message and its
appended hash over an insecure channel. At the receiver’s side, the receiver recomputes
the hash of the received message and checks if the computed hash matches with the
received hash. If yes, then the receiver is ensured that the message has not been altered.

For a given hash function H which takes a message input m and produces a hash
output h, i.e., h = H(m), its security depends on the output length of the hash value
h. A n-bit hash function H is said to be cryptographically secure, if it satisfies the
following three properties:

• Preimage Resistance - For a given H and one of its hash output h, it is compu-
tationally infeasible to find a message m such that H(m) = h.

• Second Preimage Resistance - For a given H and a message m, it is computa-
tionally infeasible to find another message m′ (where m′ 6= m), such that H(m)
= H(m′).

• Collision Resistance - For a given H, it is computationally infeasible to find two
messages m and m′ (where m′ 6= m), such that H(m) = H(m′).

26

By computationally infeasible we mean, that it should be intractable for an adver-
sary to find a preimage or a second preimage in less than 2n hash computations and a
collision in less than 2n/2 hash computations.

In practice, most of the hash functions are designed as iterated hash functions
which divide the whole input into some fixed size blocks and then process the blocks in
an iterative way. The most common approach followed to construct an iterative hash
function is the Merkle-Damg̊ard (MD) construction [59,134]. In Merkle-Damg̊ard algo-
rithm, a hash input M of arbitrary length is first divided into fixed-length blocks Mi.
This step often involves padding operation to ensure that the overall message length is
a multiple of block length size. Each block Mi then serves as an input to an internal
fixed-size n-bit function f called the compression function. The compression function
then computes a new intermediate result as a function of the previous intermediate
result and the message block mi. This process is repeated until the entire message has
been processed. For a hash function H, compression function f and message input M
split into t message blocks, the MD-construction can be modeled as follows:

h0 = IV

hi = f(hi−1,Mi), i ≤ i ≤ t

H(M) = h(Mt)

Here, hi−1 is called the chaining variable between round (i − 1) and round i and h0

is called the initializing vector (IV) which is pre-defined and fixed. Since it has been
proved that a MD based hash function is collision resistant if the underlying compres-
sion function is collision resistant, the majority of currently used hash functions like
MD5 [143], SHA-1 [74], SHA-2 [73] etc. are based on Merkle-Damg̊ard construction.

In addition to the classical security attacks on hash functions, there are few other
slightly modified versions of these attacks that are also often considered. In these
modified attacks, the IV value is assumed to be freely chosen by the attacker. Some
of these attacks are listed below as follows:

1. Pseudo-Preimage Attack : Given a hash function H and one of the hash outputs
h, the attacker finds a (IV ′,m) pair such that, H(IV ′,m) = h and IV ′ 6= IV .

2. Semi-Free Start Collision Attack : Given a hash function H, the attacker finds
two pairs (IV ′,m) and (IV ′,m′) such that, H(IV ′,m) = H(IV ′,m′), m 6= m′

and IV ′ 6= IV . In this attack, the initialization vector chosen by the attacker,
i.e., IV ′ is same for both the messages.

3. Free Start Collision Attack : Given a hash function H, the attacker finds two
pairs (IV ′,m) and (IV ′′,m′) such that, H(IV ′,m) = H(IV ′′,m′), m 6= m′ and

27

IV ′ 6= IV ′′ 6= IV . In this attack, the initialization vector chosen by the attacker
is different for both the messages. Such an attack is also called a pseudo-collision
attack.

All the six attacks discussed on hash functions above work on compression function
as well, with IV , H and h being replaced by hi−1, f and hi respectively. Though these
attacks do not reflect any direct weakness in the hash function design, they nonetheless
show certificational weaknesses in them giving useful insights on the actual security
provided by these hash functions [12]. E.g., if the compression function f of an n-bit it-
erated hash function H does not have brute-force security (2n) against pseudo-preimage
attacks, then preimages for H can be found in fewer than 2n operations by adopting a
meet-in-the-middle approach [133] as shown in Fig. 2.8.

h
Match

IV f f f

m0 m1 m2

h1

Figure 2.8: Finding preimage through MITM approach

Let us suppose that a pseudo-preimage (h0, (m1,m2)) can be found with a com-
plexity of 2x (where, x < n). The attacker computes 2(n−x)/2 such pseudo-preimages
and stores them in a table. He then computes 2(n+x)/2 f(IV,m0) for random m0.
With high probability, he’ll get a value of m0 for which f(IV,m0) matches with one
of the entries stored in the table. That value of m0 || m1 || m2 forms the preimage for
hash function H. The complexity of this attack is 2(n−x)/2×2x + 2(n+x)/2 = 2 · 2(n+x)/2.

Hash function construction using a block cipher as the underlying compression
function is one of the most classical approach of designing iterated hash functions. The
motivation behind constructing hash functions from block ciphers is that if an efficient
implementation of a block cipher is already available then, a hash function can be
easily built using that block cipher with little additional costs. This proves beneficial
in settings like resource constrained environments. In the classical single block length
(SBL) hash function, the hash output size is equal to the underlying block size. In [141],
Preneel et al. studied 64 basic ways to construct a n-bit compression function from a
n-bit block cipher (under a n-bit key) and mentioned 12 of them to be secure. These
modes are commonly termed as PGV hash modes. Black et al. in [34] formally proved
the security of these 12 constructions. The proofs are based on the assumption that the
underlying block cipher is ideal. The three most popularly used PGV constructions
are Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP)
modes (as shown in Fig. 2.9).

28

mi

E hihi−1

(a) Davies-Meyer Mode

hi−1

E himi

(b) Matyas-Meyer-Oseas Mode

hi−1

E himi

(c) Miyaguchi-Preneel Mode

Figure 2.9: The three popular PGV modes

• Davies-Meyer Mode: DM mode is defined as: hi = Emi
(hi−1) ⊕ hi−1. In this

mode, the message input to the compression function acts as the key input of the
underlying block cipher whereas the chaining variable acts as the plaintext input
of the underlying block cipher.

• Matyas-Meyer-Oseas Mode: MMO mode is defined as: hi = Ehi−1
(mi)⊕mi. In

this mode, the chaining variable acts as the key input of the underlying block
cipher whereas message input acts as the plaintext input of the underlying block
cipher.

• Miyaguchi-Preneel Mode: MP mode is defined as: hi = Ehi−1
(mi) ⊕mi ⊕ hi−1.

The construction is same as MMO mode except that in this mode, the chain-
ing variable is also xor’ed with message and the ciphertext to produce the next
chaining variable.

Apart from single block length hash functions, another research direction in case
of block cipher based hash functions is the design and analysis of double block length
(DBL) hash functions. In a double block length hash function, a block cipher with an
n-bit block is used to compute a hash value of length l = 2n. Some of the popular DBL
hash functions known are: MDC-2 [44], ABREAST-DM [117], TANDEM-DM [117],
Hirose’s construction [84] etc. For further details on double block length hash functions
one can refer to [139]. In this thesis, we focus on single block length (SBL) based hash
functions only.

2.5.1 Rebound Attack

Rebound Attack is one of the most efficient attack for generating collisions on hash
functions constructed from AES-based primitives. The attack was first proposed by
Mendel et al. [118] for the analysis of the AES-based hash functions Whirlpool [21] and
Grøstl [78]. This attack consists of two main phases, called the inbound phase and the
outbound phase as shown in Fig. 2.10.

29

inbound outboundoutbound

Ein EfwEbw

Figure 2.10: A schematic view of rebound attack.

The block cipher E (or, the compression function) is first divided into three parts -
Efw ◦Ein ◦Ebw.The part of the inbound phase is placed in the middle of the cipher and
the two parts of the outbound phase are placed next to the inbound part. The main
idea is to use high-differential sub-trails and connect these trails in the middle using
the available degrees of freedom by choosing the values of the state. The key input to
the block cipher is either fixed to a constant and known to the attacker or chosen by
her. The rebound attack consists of the following 3 main parts [118]:

SBSB, SR
MC, AK

SB, SR
MC, AK

SR
MC, AK

SB, SR
MC, AK

Round 1 Round 2 Round 3 Round 3 Round 4

⊕

STEP 1 STEP 1STEP 2STEP 3 STEP 3

Figure 2.11: Rebound Attack on 4-round AES

1. Constructing a truncated differential trail. The attacker first chooses a truncated
differential trail which preferably has a small number of active S-boxes and prop-
agates it through the inbound phase. E.g., in case of 4-round AES as shown
in Fig. 2.11, the attacker starts with 4-byte truncated differences at the end of
round 1 and round 3 and propagates it forward and backward to the S-box layer
of round 3.

2. Inbound Phase. She then tries to construct solutions (right pairs) for the middle
part of the truncated differential trail. For a good trail, she should be able to
construct many solutions for the inbound phase with a low average complexity.
E.g., in Fig. 2.11, she tries to find solutions for the input-output difference of
each of the 16 bytes of the S-box layer in round 3.

3. Outbound Phase. In this phase, the truncated differential trail is extended both
in the forward and backward directions in a probabilistic way. The solutions
obtained in the inbound phase are propagated outwards in both the directions
and the attacker tries to link the beginning and the end of the trail using the
feed-forward operation of the hash function. To ensure that atleast one solution is

30

obtained, the differential trails in the outbound phase are so chosen such that they
have high probability of propagation. E.g., in Fig. 2.11, the inbound truncated
differential trail (from round 2 till round 4) 4 → 16 → 4 (which has probability
1) 4 is extended to the outbound phase as 1← 4→ 16→ 4→ 1 (with probability
2−(24+24) = 2−48).

Apart from the AES-like primitives, the rebound attacks have been applied to other
structures as well. For example, it has been applied to the ARX based hash function
Skein [102] and to the 4-bit S-box based design Luffa [101]. Differential Enumeration
Technique proposed by Dunkelman et al. in [71] also uses concepts similar to the
inbound phase of the rebound attack for launching key recovery attacks on AES.

44→ 16→ 4 depicts the active S-boxes in Round 2, 3 and 4 respectively.

31

Chapter 3

Improved Biclique Cryptanalysis of
AES

In this chapter, we discuss a new variant of meet-in-the-middle attack termed as Bi-
clique Cryptanalysis. Biclique cryptanalysis was first introduced by Khovratovich et
al. in [103] for preimage attack on hash functions Skein [136] and SHA-2 [73]. The
concept was then carried over by Bogdanov et al. for launching key recovery attacks on
AES [39]. Its application to AES garnered considerable interest amongst the crypto-
graphic community, since it was the first attack that challenged the theoretical security
of full AES in the single key model. Biclique key recovery is based on the meet-in-the-
middle approach at its core but borrows an important twist - initial structures1 - from
the domain of hash function cryptanalysis. Namely, biclique cryptanalysis uses the fact
that, for some ciphers such as AES, the adversary can efficiently prepare structures of
internal states that cover many keys. The work [39] scrutinized the notion of initial
structures for block ciphers, formalized it to bicliques (complete bipartite graphs) which
are efficient to construct and proposed key recovery attacks with computational com-
plexities below brute force for all three variants of the full AES. This attack may be con-
sidered as an advancement in the field of symmetric-key cryptography but it has been
prepared by a considerable number of works in the area of meet-in-the-middle (MITM)
attacks on block ciphers [41, 43, 51, 70, 89] and hash function cryptanalysis [17, 18, 80].
Since the introduction of bicliques, an entire line of research emerged aiming to apply
the technique to various block ciphers [4,5,52,53,86,90,100,129,174]. In this chapter,
we discuss biclique attack on block ciphers in detail and present new improved results
on AES.

This chapter is organized as follows: In Section 3.1, we introduce biclique attack
on block ciphers giving an high level overview of how bicliques are constructed. In
Section 3.2, we describe how this attack works in general. Section 3.3, describes AES
in detail and discusses the existing biclique attacks on it in literature. This is fol-

1The concept of initial structures will be discussed briefly in the next chapter

32

lowed by Section 3.4, where we present the biclique key recovery attacks existing on
other block ciphers. We then move on to Section 3.5, where we discuss the problems
existing with the current biclique attack on AES. In Section 3.6, we introduce the con-
cept of stars followed by Section 3.7, where we utilize star based bicliques to launch
key recovery attacks with lowest possible data complexity on all three AES variants.
We, next discuss the automated search technique deployed by us to find star based
bicliques as well as other promising class of biclique attacks in Section 3.8. Section 3.9
demonstrates biclique attacks that have optimal time complexities for all the three
AES variants whereas Section 3.10 demonstrates biclique attacks that have the fastest
time complexities for all the three AES variants. In the concluding section, we sum-
marize the whole chapter. The original contribution of this thesis is from Section 3.5
to Section 3.10.

3.1 Framework of Biclique Key Recovery Attack

In biclique attack, the aim of the attacker is to construct a biclique structure (a com-
plete bipartite graph) over some rounds. Meet-in-the-middle procedure is performed
on the rest of the rounds. A biclique connects 2d pairs of intermediate states with
22d keys for some value d. The main source of computational advantage in the key
recovery attack comes from the fact that by constructing a biclique on 2d vertices, one
can cover 22d keys in time 2d rather than 22d. Here, d is called the dimension of the
biclique. This dimension is related to the cardinality of the biclique elements, a higher
cardinality implies a higher advantage over brute force. A biclique is characterized by
its length (number of rounds covered) and dimension d.

3.1.1 What is a biclique structure on block ciphers ?

Let f be a subcipher that maps an internal state S to a ciphertext C under the key K,
i.e., fK(S) = C. Suppose f connects 2d intermediate states {Sj} (for, 0 ≤ j ≤ 2d − 1)
to 2d ciphertexts {Ci} (for, 0 ≤ i ≤ 2d − 1) with 22d keys {K[i, j]} where,

{K[i, j]} =

 K[0, 0] · · · K[0, 2d − 1]
...

...
...

K[2d − 1, 0] · · · K[2d − 1, 2d − 1]

.

The 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique (as
shown in Fig. 3.1), if,

∀i, j ∈ {0, . . . , 2d − 1} : Ci = fK[i,j](Sj).

33

b b b

b b bb b b

b b b

S0 S1
S
2d−1

K[0,0] K[2d − 1, 2d − 1]

C0 C1
C
2d−1

Figure 3.1: d-dimensional biclique.

i.e., in a biclique, the key K[i, j] maps the internal state Sj to the ciphertext Ci and
vice versa.

3.1.2 Construction of biclique

To construct a biclique, firstly, the whole key space is partitioned into 2k−2d groups
of 22d keys each, where size of secret key K is k bits. Each key in a group can be
represented relative to the base key of the group i.e., K[0, 0] and two key differences
∆k
i and ∇k

j such that:

K[i, j] = K[0, 0]⊕∆k
i ⊕∇k

j

For each group, let the intermediate state S0 be transformed to the ciphertext C0 under
the key K[0, 0]:

S0
K[0,0]−−−→
f

C0 (3.1)

This computation is called the base computation. Then, 2d ∆i differentials in the
forward direction are constructed from S0 as follows:

S0

K[0,0]⊕∆k
i−−−−−−→

f
Ci or, 0

∆k
i−→
f

∆i (3.2)

Similarly, 2d backward differentials ∇j from C0 are constructed as follows:

Sj
K[0,0]⊕∇k

j←−−−−−−
f−1

C0 or, ∇j

∇k
j←−−

f−1
0 (3.3)

If the above two differentials are independent, i.e., they do not share any active non-
linear components for all i and j, then the following relation is satisfied:

S0 ⊕∇j

K[0,0]⊕∆k
i⊕∇k

j−−−−−−−−−→
f

C0 ⊕∆i or, ∇j

∆k
i⊕∇k

j−−−−→
f

∆i ∀i, j ∈ {0, . . . , 2d − 1} (3.4)

Finally, Eq. 3.4 can be written as:

34

Sj
K[i,j]−−−→
f

Ci (3.5)

where,

Sj = S0 ⊕∇j

Ci = C0 ⊕∆i

K[i, j] = K[0, 0]⊕∆k
i ⊕∇k

j

3.1.2.1 Relation between Biclique Construction and Boomerang Attack

The proof for Eq. 3.4 comes from the theory of boomerang attacks as follows: Consider
the boomerang distinguisher constructed in Fig. 3.2. Here, the quartet states (u, v, x,
w) can be represented as (u, u⊕ φ, u⊕ β, u⊕ φ⊕ β) respectively as shown in Fig. 3.3

P

C

E0
K

E1
K

E0
K

E1
K

E0
K

E0
K

E1
K

E1
K

P’

Q Q’

C’

D D’

α

α

β

β

γ γ

φ φ

u

v w

x

Figure 3.2: A boomerang distinguisher.

u

u ⊕φ

u ⊕β

u ⊕β ⊕ φ

φ
φ

β

β

Boomerang
Quartet

Figure 3.3: Boomerang Quartet.

The steps of biclique construction (from eqs. (3.1) to (3.5)) can be illustrated as
shown in Fig. 3.4.

35

S0 S0

C0 Ci

C0 Ci

Sj Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∇k
j

∇j ∇j

0

If trails are independent, then boomerang quatret is formed at every step with prob.1

(a) Base Computation

S0 S0

C0 Ci

C0 Ci

Sj Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∇k
j

∇j ∇j

0

If trails are independent, then boomerang quatret is formed at every step with prob.1

(b) Adding ∆k
i difference to the key

S0 S0

C0 Ci

C0 Ci

Sj Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∇k
j

∇j ∇j

0

If trails are independent, then boomerang quatret is formed at every step with prob.1

0

(c) Adding ∇k
j difference to the key

S0 S0

C0 Ci

C0 Ci

Sj X =

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∆k
i ⊕∇k

j

∇j ∇j

0

If trails are independent, then boomerang quatret is formed at every step with prob.1

0 0

Sj ?

(d) Biclique Structure

Figure 3.4: Formation of boomerang rectangle while constructing a biclique

The probability that X = Sj is 1 (in Fig. 3.4(d)), only if both the ∆i trail (0→ ∆i)
and ∇j trail (0→ ∇j) do not share any active non-linear component. This is because,
if both the trails are independent, then a boomerang quartet (similar to Fig. 3.3) is
formed at every step (as shown in Fig. 3.5) with probability 1.

Otherwise, if both the trails share some non-linear component (say S-box), then a
boomerang quartet may or may not form. For example, as shown in Fig. 3.6, for a
given S-box, say SB:

SB(s)⊕ SB(s⊕ c7)⊕ SB(s⊕ 02) = SB(s⊕ s⊕ c7⊕ s⊕ 02)

the above equation will be satisfied only for some value of s. Depending upon, whether
this value of s is obtained during the attack determines whether the boomerang quar-
tet is formed at S-box operation step. Therefore, probability of boomerang quartet

36

formation at this step is not 1. Hence, independence of ∆i and ∇j trails is needed to
ensure that a boomerang based on these trails always returns from the ciphertext with
probability 1.

S0 S0

C0 Ci

C0 Ci

Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∆k
i ⊕∇k

j

∇j

0 0

X

∆i
0 0

∆′
i

∆′
i

(a)

S0 S0

C0 Ci

C0 Ci

Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∆k
i ⊕∇k

j

∇j

0 0

X

∆i

0
0

∆′′
i

∆′′
i

(b)

S0 S0

C0 Ci

C0 Ci

Sj

0

∆i

K[0, 0]

K[0, 0]⊕∆k
i

K[0, 0]⊕∇k
j

K[0, 0]⊕∆k
i ⊕∇k

j

∇j

0 0

X

∆i

0

∇j

= Sj

(c)

Figure 3.5: Formation of boomerang rectangle at every step of the construction of a
biclique

The constraint on the two trails being independent limits the length of the biclique.
The longer the trails, the higher are their chances of being dependent.

Complexity of biclique construction. Let the total rounds in block cipher EK(·)
be r. Let the number of rounds covered in the biclique phase be x. For each key
group in the biclique phase, since ∆i 6= ∇j and ∆i trails are independent of ∇j trails,
the construction of biclique is simply reduced to computation of ∆i and ∇j trails
independently which requires no more than 2.2d computations of f , i.e.,

Complexity of biclique phase = 2d × x

r
+ 2d × x

r
= 2d+1(

x

r
)� 22d(

x

r
).

37

s

SB

s ⊕
c7

P’

SB

S S ⊕∆i S ⊕∇j S ⊕∆i ⊕ ∇j

T’

SB

s ⊕
02

Q’

SB

s ⊕
c5

R’

Figure 3.6: Boomerang rectangle may not form at the S-box (non-linear) operation
with probability 1

3.2 Steps of the Biclique Attack

Let the block cipher EK(·) be defined as a composition of two subciphers: EK(·) =
f ◦ g.

1. For each group of keys, the attacker first builds a biclique structure of 2d cipher-
texts Ci which map to 2d intermediate states Sj with respect to the 22d keys over
the subcipher f .

2. She then obtains plaintexts Pi from ciphertexts Ci through the decryption oracle.

3. She then chooses an intermediate state v in the subcipher g such that computation
of v in one direction is independent of ∆i trail and is independent of ∇j trail in
the other direction.

4. She then checks if a key in a group satisfies the following relation (as illustrated
in Fig. 3.7):

Pi
K[i,·]−−−→
r

−→v =←−v K[·,j]←−−−
t−1

Sj (3.6)

where, g = r ◦ t

5. If a key in a group satisfies Eq. (3.6), then the attacker proposes the key as a
candidate key. If a right key is not found in the current group, then another
group is chosen and the whole process is repeated.

We now move on to discussing the existing biclique based key recovery attacks on
AES and other block ciphers.

38

Ci

Sj

Pi

K[i, j]

K[i, ·]

Decryption Oracle

v

f

r

t K[·, j]

Biclique Phase

MITM Phase

Figure 3.7: Biclique attack in a nutshell

3.3 Biclique Attacks on AES

We first start with a brief description of AES to help understand the subsequent sec-
tions. For full information on AES, one can refer to [57]

3.3.1 Description of AES

The block cipher Rijndael was designed by Joan Daemen and Vincent Rijmen and
standardized by NIST in 2000 as the Advanced Encryption Standard (AES) [137].
AES adopts the classical substitution-permutation network structure and defines 3 key
sizes: 128-bit, 192-bit and 256-bit with the block size limited to a fixed 128-bit size for
all the three alternatives. By design, AES is byte-oriented and follows operations in
GF(28). Each AES variant has different number of rounds per full encryption, i.e., 10,
12 and 14 rounds for AES-128, AES-192 and AES-256 respectively. AES operates on
a state array of 4× 4 byte matrix and a key array of 4× 4, 4× 6 and 4× 8 byte size
respectively. Each round consists of 4 steps: SubBytes, ShiftRows, MixColumns and
AddRoundKey. In SubBytes (SB), which is the only non linear layer, each byte in a
state is replaced by another byte from an invertible AES S-box. In ShiftRows (SR),
the bytes of row m are rotated to the left by m positions with m ∈ { 0, 1, 2, 3}. In
MixColumns (MC), which is a linear diffusion layer and works columnwise, the state
array obtained after ShiftRows is multiplied (in GF(28)) to a fixed and invertible 4 x
4 MDS matrix as shown below. 

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


The most important property of the MixColumns transformation is its branch num-

39

ber. Branch number of any linear transformation is defined as the minimum number
of non-zero active bytes (in any differential trail) at the input and output differences
of the transformation. For AES MixColumns operation, the branch number is 5. This
implies that if a state is applied to MixColumns operation with a single active byte,
then the output state will have atleast 4 active bytes. At last, the final state transfor-
mation is xor’ed with the 16 byte subkey (AK). Each round follows the same steps as
listed above except the last round where MixColumns operation is not performed. A
pre-whitening key is also added prior to the first round.

The round subkeys in each round are generated through a key schedule algorithm.
The key schedule of AES recursively generates a new 128-bit round key Ki from the
previous round key. In case of AES-128, the pre-whitening key K0 is the 128-bit master
key of AES-128. The key schedule algorithm of AES-128 takes as input a 4-word 2

master key and expands it to a linear array of 44 words. It works as follows:

1. The secret key is first copied into the first four words of the expanded key. The
rest of the expanded key is filled four words at a time.

2. Each word w[i] (where, 4 ≤ i ≤ 43) depends on the immediately preceding word,
w[i− 1] and the word four positions back, w[i− 4].

3. For a word whose position in the array is a multiple of 4, a complex function t (as
shown in Fig. 7.4) is used. The function t consists of the following sub-functions:

• A one-byte circular left shift on a word.

• This is followed by byte substitution on each byte of the input word using
the AES S-box.

• The result of above two steps is then xor’ed with a round constant.

4. In rest of the words, a simple XOR is used.

Fig. 7.4 shows the generation of first eight words of the expanded key. The key
schedule algorithm of AES-192 and AES-256 also works similarly. For further infor-
mation on AES, one can refer [57].

For describing the biclique attack on AES, we follow the following notations as
adopted in [39]. Briefly, in a differential trail, the state in the rth round is denoted by Sr.
SSBr , SSRr , SMC

r and SAKr represent the state Sr after SB, SR, MC and AK operations
respectively. In a differential trail, # 1, #2 represent the state before SubBytes and
after MixColumns for Round 1, #3, #4 represent the state before SubBytes and after
MixColumns for Round 2 and so on. The 128-bit subkeys are denoted as $0, $1, $2
and so on. Bytes are addressed column-wise (0-3#first column), (4-7#second column),
(8-11#third column) and (12-15#fourth column). The ith byte in state S is represented
as Si. The ith byte in subkey $K is represented as $Ki.

2One word = 32-bits

40

k0 k4 k8 k12

K

k1

k2

k3

k5

k6

k7

k9

k10

k11

k13

k14

k15

w0 w1 w2 w3

w4 w5 w6 w7

⊕ ⊕ ⊕ ⊕

t

Figure 3.8: AES-128 Key Expansion

3.3.2 Precomputation Technique for the Matching Part of
Meet-in-the-Middle Attack

In Section 3.2, it was mentioned that the attacker would try to find an intermediate
state which involves independent computation of chunks in either direction. However,
non-linear key schedule of AES prevents finding such intermediate states with the
desired property. Therefore, the attacker is forced to do brute-force search over rest of
the rounds (not covered by biclique) for finding the correct key, i.e.,

Pi
K[i,j]−−−→
r

−→v =←−v K[i,j]←−−−
t−1

Sj,

However, Bogdanov et al. in [39] suggested matching with precomputations to
reduce the brute-force complexity in MITM stage. In this approach, the attacker first
precomputes and stores in memory 2d+1 full computations upto the matching state v:

∀i, Pi
K[i,0]−−−→ −→v and ∀j,←−v K[0,j]←−−− Sj.

Since in a group K[i, 0] and K[i, j] values only change at parts affected by ∆k
i (similar

property is true for K[0, j] and K[i, j]), for any particular i and j, the adversary checks
the matching at v by recomputing only those parts of the cipher which differ from the
stored ones. The amount of recomputation depends on the diffusion properties of
both the internal rounds and the key schedule of the cipher. The recomputations are
estimated in terms of S-box calculations. The complexity of biclique attack in case of
AES is estimated as:

Cfull = 2k−2d(Cbiclique + Cprecomp + Crecomp + Cfalsepos︸ ︷︷ ︸
T ime−Complexity

)

where,

41

• 2k−2d denote total key groups.

• Cbiclique is the complexity of constructing a biclique.

• Cprecomp is the complexity of calculating v for 2d+1 times.

• Crecomp is the complexity of recomputing v for 22d times.

• Cfalsepos is the complexity to eliminate false positives.

As mentioned in [39], the full key recovery complexity is dominated by 2k−2d×Crecomp.

Previous Biclique Attacks on AES-128. Equipped with this technique, the bi-
clique key recovery attack on AES-128 in [39] succeeded with a time complexity of
2126.1. An example of biclique constructed on AES-128 in [39] along with recomputa-
tions is shown in Fig. 3.9. Round 8 subkey (denoted as $8) is taken as the base key
here with ∆k

i = (0 0 0 0 | 0 0 0 0 | i 0 0 0 | i 0 0 0), ∇k
j = (0 j 0 0 | 0 0 0 0 | 0 j 0 0 | 0

0 0 0) and (0 ≤ i, j ≤ 28) 3. Thus, a biclique of dimension, d = 8 is constructed with
2128−16 = 2112 key groups where, total keys in one key group = 216.

As can be seen in Fig. 3.9(a), ∆i and ∇j trails are independent and do not share
any active non-linear component (i.e., S-boxes with non-zero difference) between them.
Thus, a biclique over last 2.5 rounds is formed. Figs. 3.9(b) and 3.9(c) show the
recomputations performed in the backward and forward direction respectively. The
12th byte of #5 intermediate state is taken as the matching variable v here. Let us look

at how the forward computation Pi
K[i,j]−−−→ −→v differs from the stored one Pi

K[i,0]−−−→ −→v . It
can be seen that the difference between the above two computations is determined by
the influence of the difference between the keys K[i, j] and K[i, 0], when applied to the
plaintext Pi. Due to difference inducted in the base key $8, the pre-whitening subkeys
of K[i, j] and K[i, 0] differ only in 9 bytes. Due to this difference, a total of 9 + 4 =
13 S-boxes need to be recomputed in the forward direction. For similar reasons, the
number of S-box recomputations in the backward direction involve 4 + 16 + 16 + 4 +
1 = 41 S-Boxes computations. Thus, a total of 54 S-box recomputations are required.
One full AES-128 requires 200 S-boxes computations 4. As each group has 216 keys,
therefore, for each group, Crecomp = 216 × 54

200
= 214.14. Since we match on 1 byte, i.e.,

8-bits in v, we have 28 false positives on an average. The cost of biclique construction
is calculated as Cbiclique = 29 × 2.5

10
= 27 and Cprecomp = 29 × 7.5

10
= 28.58. Hence, total

time complexity of this attack is:

Cfull = 2112 × (27 + 28.58 + 214.14 + 28) ≈ 2126.1.

3The 16 byte subkey K for any round can be represented bytewise in the following form: K =
(K0K1K2K3 | K4K5K6K7 | K8K9K10K11 | K12K13K14K15)

4160 S-boxes in state update + 40 S-boxes in key schedule

42

∆i - differential

SB
SR

MC

SB
SR

MC

SB
SR

$10

$9

$8

SB
SR

MC

SB
SR

MC

SB
SR

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

SB
SR

K
ey

Sc
he

du
le

SB
SR
MC

MC

SB
SR

#16

#17

#18

#19

#20

Base Computation ∇j - differential

#21, C0

$8 $8

$9 $9

$10
$10

C0 Ci

∆K
i

∇K
j

Step 2. ∆i modification

Step1. Start with C0

Step 3. ∇j modification

S0 S0
#15, Sj

(a) Biclique over last 2.5 rounds

M
C

SR SB

#11 #10 #9

A
K

SRM
C

SB

recomputed

A
K

SRM
C

SB

#8
A

K
#7

SRM
C

SB

#5
matching byte

A
K

#15

A
K

$7

bi
cl

iq
ue

$6

#14 #13 #12 #6

M
C

SR SB

∆K
j

(b) Recomputations in backward direction

M
C

SRSB

#2

recomputed

SR M
C

SB A
K

#3 #5
matching byte

Pi

A
K

$0

D
ec

ry
pt

io
n

O
ra

cl
e

#4#1

A
K

∇K
i

(c) Recomputations in forward direction

Figure 3.9: Biclique attack on AES-128 with time 2126.16 [39].

In all 2112 groups, as shown in Fig. 3.9(a), Ci’s differ only in 12 bytes. Out of
these 12 bytes, 2 bytes - C10 and C14 are always equal. Hence effectively Ci’s differ

43

only in 11 bytes. As a result, the data complexity of the attack does not exceed 288

ciphertexts. The memory complexity of the attack is estimated by the storage of 28

full computations of g which in this case is 28 × 7× 16 bytes ≈ 215 bytes.

The biclique attack demonstrated in [39] on AES-128 had a data complexity of 288

which is very high. Bogdanov et al. in [38] constructed a new biclique on AES-128
which had a significantly lower data complexity of 24. However, in this case the dimen-
sion of the biclique was reduced to d = 2 (as compared to d = 8 in [39]) leading to an
increase in the time complexity of 2126.89. In [5], Abed et al. presented an automated
framework Janus which searched bicliques programmatically. Their tool accepted user-
chosen set of parameters, e.g., number of rounds covered by biclique, dimension of the
biclique, strategy to generate key differences etc. and provided the best biclique struc-
ture with minimum time complexity to the user along with a pictorial rendering of the
same. They applied their tool to find bicliques for block ciphers such as AES, ARIA
and BKSQ. Their work also highlighted an error in computational complexity reported
for AES-192 in [39](2189.74) which was then corrected to 2190.16. They also showed bi-
clique attacks on AES-128 and AES-192 with reduced data complexity as compared to
original attack in [39]. These values are reported in Table 3.1.

In [48], a new technique known as Sieve-in-the-middle(SIM) was proposed by Can-
teau et al. This technique differs from the traditional meet-in-the-middle process in
the sense that it searches for the existence of valid transitions through some middle
S-box instead of matching at some intermediate state. Canteaut et al. [48] presented
analysis of sieve-in-the-middle process on many block ciphers including AES-128 and
showed that for AES-128 there is a decrease in the total time complexity from 2126.1 to
2125.69 when applied with biclique attack. The application of this technique essentially
involves choosing a set of intermediate states which will form a super S-box. A super
S-box is a term used to represent two rounds of AES that have only one non-linear
layer in between them. Formally, a two round AES can be written as:

SB → SR→MC → AK → SB → SR→MC → AK

or,
SR→ SB →MC → AK → SB︸ ︷︷ ︸

SuperS−box

→ SR→MC → AK 5

where Super S-box = SB →MC → AK → SB. A look-up table for that super S-box
(say SS), is then constructed where all its possible input-output transitions (i.e., x, y
where y = SS(x)) are precomputed and stored. For each (K[i, 0],K[0, j]) pair, where
K[i, 0] forms the key for the chunk in the forward direction and K[0, j] forms the key
for the chunk in the backward direction, the input state x is calculated by the forward
computation and the output state y is computed by the backward computation. It

5Note that Sub Bytes and Shift Row operations in the first round have been interchanged as these
functions commute with each other

44

is then checked through table lookup if a valid transition from x 7→ y exists. If not,
then the corresponding key pair is discarded and another (K[i, 0],K[0, j]) pair is picked
up for testing. The process iterates until a valid key pair is obtained. This saves the
recomputation of S-boxes involved in the super S-box each time leading to a slight
decrease in the overall cost complexity. 6

We illustrate the application of this process on AES-128. Let us consider the
backward recomputations of AES-128 (as shown in Fig. 3.10) discussed in [39].

M
C

SR SB

#11 #10 #9

A
K

SRM
C

SB

recomputed

A
K

SRM
C

SB

#8

A
K

#7

SRM
C

SB

#5
matching byte

A
K

#15

A
K

$7

bi
cl

iq
ue

$6

#14 #13 #12 #6

M
C

SR SB

∆K
j

Super S-box

Figure 3.10: Backward Recomputations in AES-128 in [39]

In this case, let us further consider states #11 to #14 (as shown in Fig. 3.11). The
states enclosed in the rectangle form the super S-box (of size 32 x 32). It can be seen
in Fig. 3.11 that the super S-box is key dependent i.e., each 32-bit output of the super
S-box depends on 32-bit input and 32-bit key. Hence for each guess of the 232 values of
key bits, a lookup table having 232 entries is constructed where all 32-bit input-output
transitions: x 7→ y are precomputed and stored.

M
C

SRSB

#8

SR M
C

#6

SB

#5

A
K

#5

SB SR M
C

#6

A
K

SB SR M
C

#8#7

or
#5

SR SB M
C

A
K

SB SR M
C

#8#6 #7

x y

#7

Figure 3.11: Super S-box.

In the recomputation stage of biclique attack, S-boxes till the state just before #5
are recomputed in the forward computation. In the backward computation, S-boxes till

6Many a times, during forward and backward computations, instead of calculating full (x, y),
partial intermediate states (u,v) where u is a m-bit (m ≤ |x|) part of x and v is a p-bit (p ≤ |y|) part
of y respectively are computed. It is then checked if the given (u,v) pair forms a valid part of some
(x, y) by table lookup [48].

45

state #8 are recomputed. Then, for each biclique group we will choose the table cor-
responding to the 32-bits of the base key involved in the Super S-box for that biclique.
Through lookup table it is then checked if a valid transition from #512 7→ #712,13,14,15

exists. If such a transition exists, the corresponding (K[i, 0], K[0, j]) key pair forms a
valid candidate. Through this process, 5 S-boxes, (i.e., #512, #712, #713, #714, #715)
need not be recomputed each time. Hence, instead of 54 S-boxes (calculated in [39]),
only 49 S-boxes need to be recomputed in all. This translates to a computational
complexity of 2125.98 instead of 2126.1. 7The same procedure can be applied to all other
bicliques of AES-128, AES-192 and AES-256 but in [48], it was only shown on AES-
128. It was also pointed out in [48] that this attack is faster only in those platforms
where lookup in a table of size 232 is faster than five S-box evaluations.

Table 3.1 summarizes all the existing biclique attacks on AES-128 and its other
variants.

Table 3.1: Key recovery with bicliques for full AES. The terms CC and CP denote
chosen ciphertext and chosen plaintext respectively.

Algorithm Rounds Data Time Biclique length Ref.

Complexity Complexity (rounds)

AES-128

10 288 CC 2125.69† 2.5 [48]

10 288 CC 2126.16 2.5 [39]

10 272 CC 2126.72 2.5 [5]

10 24 CP 2126.89 2.5 [38]

AES-192
12 280 CC 2190.16 3.5 [39] [5]

12 248 CC 2190.28 3.5 [5]

AES-256
14 240 CC 2254.42 3.5 [39]

14 264 CC 2254.53 3.5 [5]
† Our analysis estimates the cost as 2125.98.

3.4 Biclique attack on other block ciphers

Soon after the introduction of bicliques on AES, an entire line of research emerged
aiming to apply the technique to various other block ciphers for recovering the key. In
Table 3.2, we summarize all the biclique attack results existing on these other block

7In [48], the attack complexity for AES-128 is mentioned as 2125.69, however we could not validate
it. Our analysis estimates this complexity to be 2125.98

46

ciphers as well as on AES-192 and AES-256.

Algorithm Rounds Data Time Biclique length Ref.

(full) Complexity Complexity (rounds)

PRESENT-80
31 225 279.49 3 [4]

31 223 279.76 3 [92]

PRESENT-128
31 223 2127.32 4 [4]

31 219 2127.81 4 [92]

LED-64 32 28 263.58 4 [4]

LED-128
48 28 2127.42 8 [4]

48 264 2127.37 8 [92]

KLEIN-64 12 239 262.81 3 [9]

KLEIN-80 16 248 279 3 [4]

KLEIN-96 20 232 295.18 3 [4]

PICCOLO-80 25 224 279.1 6 [92]

PICCOLO-128 31 224 2127.35 7 [92]

ARIA-256 16 280 2255.2 2 [52]

BKSQ-96 10 280 294.47 3 [5]

BKSQ-144 14 296 2142.63 4 [5]

BKSQ-192 18 296 2190.78 5 [5]

TWINE-80 36 260 279.1 8 [53]

TWINE-128 36 260 2126.82 11 [53]

IDEA 8 252 2126.2 1.5 [100]

HIGHT 32 248 2126.4 8 [86]

Square 8 248 2126 3 [129]

Prince 10 240 262.72 1 [6]

Table 3.2: Biclique attack on other block ciphers.

Bogdanov et al. in [39] reasoned that biclique attack on AES works because
AES was not designed to be strongly resistant against attacks which work on smaller
number of rounds - a fact which is true for other ciphers as well and this limitation
was exploited by them to construct bicliques. It was also supported by the fact that
difference diffusion in the key schedule was slow and diffusion rate decreased as key size
increased, e.g., a 5-round biclique could be constructed in case of AES-256 as compared
to a 3-round biclique in AES-128. These factors allowed biclique technique to recover
the key with a complexity lesser than brute force.

47

Narrow Bicliques. In all the block ciphers mentioned in 3.2, biclique key recovery
attack was applied exactly as discussed for AES except in the case of IDEA block
cipher. For IDEA, Khovratovich et al. in [100] proposed a variation of biclique attack
technique and termed it as narrow biclique cryptanalysis. They argued that IDEA was
designed to achieve full diffusion in a single round. This posed a challenge as only one
round biclique could be constructed and it led to data complexity being full codebook.
The authors in [100] suggested constructing bicliques with independent differential (∆i

and ∇j) trails that occur with probability less than 1 to mitigate full diffusion.

With these probabilistic differentials, an attacker can enforce certain plaintext/
ciphertext bits to be always zero thus reducing the data complexity (as shown in
Figs. 3.12(a), 3.12(b)). The attacker is thus restricting the diffusion of differential trail
as per her requirements and hence the term - narrow biclique. She is successful in
recovering the key by utilizing available degree of freedom in other parts of the cipher
that balance out the probabilistic nature of the biclique so constructed.

⊗ ⊗

⊗⊗

MA function

X1
1

X1
2

X1
3

X1
4

X2
1

X2
2

X2
3

X2
4

k0−15
k16−31

k32−47

k48−63

k96−111

k112−127

k25−40

k41−56

(a) Full diffusion in 1-Round IDEA.

⊗ ⊗

⊗⊗

MA function

X1
1

X1
2

X1
3

X1
4

X2
1

X2
2

X2
3

X2
4

k0−15
k16−31

k32−47

k48−63

k96−111

k112−127

k25−40

k41−56

0 0

(b) Limited diffusion in 1-Round IDEA.

Figure 3.12: Biclique Attack on block cipher IDEA. Due to difference injected in key
bits 96-111, all the plaintext bits are affected as shown in (a). In (b), the attacker
is interested only in those differentials for which plaintext bits marked as ‘0’ are not
affected.

3.5 Improved biclique based key recovery attacks

on AES

In the earlier sections, we saw successful application of biclique attacks to AES and
many other prominent block ciphers. However, the original work on AES in [39] in-
troducing biclique key recovery leaves several questions unanswered though, which are
crucial to judge the real-world security of AES and implications of the biclique crypt-
analysis in general:

48

• Is there much potential in minimizing the data complexity of the biclique attacks?
In fact, it is low data complexity attacks that are most relevant in practice, espe-
cially in the context of efficient implementation of the attacks – the point clearly
made in [38]. Actually, the data complexity of the original biclique attack makes
any practical implementation of them highly unreasonable since the standard
brute force is very likely to be both cheaper and faster in reality (mainly due to
the high requirements in terms of storage or oracle access).

• Though the new technique has been coined after bicliques, the initial structures
are explicitly limited to balanced bicliques only, i.e., complete bipartite graphs in
which the two set of vertices have exactly the same cardinality. So the question
remains: Can one take any advantage of using other types of bicliques as initial
structures in AES?

• Finally, no comprehensive investigation of attack optimality in terms of compu-
tational complexity, data complexity or both has been performed. So it is still
not clear if there are faster biclique attacks, even in the same class of the attacks
as proposed in [39].

We aim to bridge these gaps and answer all the three questions in positive for all
the variants of AES namely: AES-128, AES-192 and AES-256.

3.5.1 Our Contribution

1. As regards to more general initial structures, we drop the balancedness require-
ment for bicliques. We propose to use stars, which are the most unbalanced
bicliques, having only one vertex in one of the two disjoint sets of biclique ver-
tices. This allows us to come up with a star-based biclique key recovery technique
for block ciphers that inherently has the minimal theoretically attainable data
complexity - the one due to the unicity distance.

2. In terms of the attack space exploration for biclique cryptanalysis, we limit our-
selves to the most promising class of attacks as applied to AES: Namely, we
enumerate all truncated independent balanced bicliques and stars whose key
modification trails have upto three active bytes in some state of the expanded
key. For the sake of conciseness, we will refer to this class of attacks as based on
tight truncated independent bicliques and stars (see Section 3.8). Clearly, this ex-
ploration does not cover many advanced and inherently harder-to-analyze attack
vectors such as long-bicliques (bicliques of a lower dimension whose key modifica-
tion differentials share active S-boxes) or narrow bicliques [116]. That is why, one
cannot claim any formal bounds on the complexity of biclique attack complexity
in general.

Nonetheless, it is the tight truncated independent-biclique approach to key re-
covery that has resulted in the fastest attack on the full AES-128, AES-192 and

49

AES-256 so far and we believe that this investigation does provide important
new insight into the limits of the current techniques of biclique cryptanalysis
especially when applied to AES.

3. Using stars as initial structures, we propose the first key recovery attack faster
than brute force on AES-128, AES-192 and AES-256 with the minimal theoreti-
cally possible data complexity. AES-128 requires 1 or 2 known plaintexts and has
computational complexity 2126.67. Similar results are found for AES-192 (2190.9)
and AES-256 (2255).

4. Next, we exhaustively enumerate all attacks based on tight truncated indepen-
dent bicliques and stars for all AES variants which have a data complexity lower
than the full codebook. It turns out that for AES-128, the ones of computational
complexity 2126.16 are fastest. Interestingly, this exactly corresponds to the orig-
inal key recovery on AES-128 [39].We further investigate the data complexity of
these attacks for the bicliques of dimension d = 8 and show that the minimum
data complexity is 264 (cf. 288 in the original attack). This implies that the
original attack did not have the optimal data complexity. We find similar results
for AES-192. The fastest attacks have a computational complexity of 2190.16.
However, amongst these, the one having 248 (cf. 280 in the original attack) data
complexity has the lowest data requirements.

5. Interestingly, for AES-256 we find that the fastest attacks having a data com-
plexity lower than full codebook have a computational complexity of 2254.31. This
turns out to be lower than 2254.42 reported in the original attack in [39], implying
again that the original attack did not mention the minimal values. We also find
some discrepancies in the complexity estimate of AES-256 in [39]. We show that
the time complexity of the attack should be 2254.52 as against 2254.42 stated in [39].

6. To investigate the limits of this class of biclique cryptanalysis, we abandon all re-
strictions on the data complexity and search for the fastest attacks on AES in this
class. We find that the ones with computational complexity of 2125.56, 2189.51 and
2253.87 for AES-128, AES-192 and AES-256 respectively are the fastest (though
requiring the full code book). An interesting outcome of these constructions is
that they utilize the longest biclique covered in the full AES attack so far. For
AES-128, the longest biclique has length of 3 rounds whereas for AES-192 and
AES-256 the longest bicliques cover 5 rounds each.

Using sieve-in-the-middle technique (discussed in Section 3.3.2), the above compu-
tational complexities can be reduced further. The cryptanalytic results of our work
combined with and without sieve-in-the-middle (SIM) technique are summarized in
Table 3.3.

50

Table 3.3: Key recovery with bicliques for full AES

Algorithm data computations memory computations memory success biclique length property reference

without SIM with SIM prob (rounds) shown

AES-128

288 CC 2126.16 28 - - 1 2.5 - [39]

24 CP 2126.89 28 - - 1 2 - [38]

288 CC - - 2125.69† 264 1 2.5 - [48]

AES-128

Unic. dist: 2126.67 28 2126.59 264 1 1 fastest with § 3.7.1

2 KP minimum data

264 CC 2126.16 28 2125.98 264 1 2.5 fastest with § 3.9.1

< 2128 data

2128 2125.56 28 2125.35 264 1 3 fastest § 3.10.1

AES-192
280 CC 2190.16 28 - - 1 3.5 - [39] [5]

248 CC 2190.28 28 - - 1 3.5 - [5]

AES-192

Unic. dist: 2190.9 28 2190.83 264 1 1.5 fastest with § 3.7.2

2 KP minimum data

248 CC 2190.16 28 2190.05 264 1 3.5 fastest with § 3.9.2

< 2128 data

2128 2189.51 28 2189.31 264 1 5 fastest § 3.10.2

AES-256
240 CC 2254.42‡ 28 - - 1 3.5 - [39]

264 CC 2254.53 28 - - 1 3.5 - [5]

AES-256

Unic. dist: 2255 28 2254.94 264 1 1.5 fastest with § 3.7.3

3 KP minimum data

264 CC 2254.31 28 2254.24 264 1 3.5 fastest with § 3.9.3

< 2128 data

2128 2253.87 28 2253.82 264 1 5 fastest § 3.10.3
† Our analysis shown in the Section 3.3.2 estimates the cost as 2125.98.
‡ Our analysis shown in the Section 3.9.3 estimates the cost as 2254.52.

In Table 3.4, a summary of some of the other existing cryptanalytic results on AES
in single key model (other than the biclique attacks that have already been listed in
Table 3.1) is provided to ease the comparison with our results.

3.6 Stars

We now introduce stars - unbalanced bicliques which are trees with one node and many
leaves - for the analysis of AES. We start with the observation that the biclique does
not have to be balanced, i.e., contain 2d states in each of its two vertex sets - to cover
22d keys. Indeed, there is a biclique with just one state in one vertex set and 22d states
in the other one: Sx = {x}, Sy = {yi,j}, i, j ∈ {0, 2d − 1}, where each yi,j is obtained

51

Table 3.4: Summary of non-biclique cryptanalytic attacks on AES in the single key
model.

Attack Type Rounds Data Time Memory Reference

AES-128

Square 6 232 272 232 [55]

Square 6 6× 232 244 232 [75]

Square 7 2127.997 2120 264 [75]

Impossible Differential 7 2115.5 2119 2109 [20]

Impossible Differential 7 2112.2 2117.2 2112.2 [126]

Impossible Differential 7 2106.2 2110.2 290.2 [130]

Meet-in-the-Middle 7 299 299 296 [61]

AES-192

Square 7 232 2182 232 [127]

Square-collision 7 232 2140 284 [79]

Square 7 2128 − 2119 2120 264 [75]

Impossible Differential 7 2115.5 2119 245 [179]

Impossible Differential 7 2113.8 2118.8 289.2 [126]

Meet-in-the-Middle 7 299 299 296 [61]

Meet-in-the-middle 8 2113 2172 2129 [71]

Meet-in-the-middle 8 2107 2172 296 [61]

Meet-in-the-middle 9 2117 2186.5 2177.5 [122]

AES-256

Square-collision 7 232 2184 2140 [79]

Square 7 236 2172 232 [75]

Impossible Differential 7 2113.8 2118.8 289.2 [126]

Meet-in-the-Middle 7 299 298 296 [61]

Meet-in-the-middle 8 2113 2196 2129 [71]

Meet-in-the-middle 8 2107 2196 296 [61]

Meet-in-the-middle 9 2120 2203 2203 [61]

Meet-in-the-middle 9 2121 2203.5 2169.9 [122]

Meet-in-the-middle 10 2111 2253 2211.2 [147]

52

by encrypting x with key K[i, j], covering 22d keys. This biclique is called a star of
dimension d (as shown in Fig. 3.14).

b b b

b b bb b b

b b b

S0 S1
S
2d−1

K[0,0] K[2d − 1, 2d − 1]

C0 C1
C
2d−1

Figure 3.13: Balanced biclique of dimension
d

b

b b bb b b

x

y1 y2 y
22d

k1 k
22d

Figure 3.14: Star: maximally unbalanced
biclique of dimension d for the minimum
data complexity

If we place the star at the beginning of the cipher, and let x be the plaintext (or
ciphertext) - the data complexity of the MITM part of the key recovery will be exactly
1. Note that x can be any value and, thus, we deal with a known-plaintext key recovery
here. The overall data complexity is solely defined by the unicity distance of the cipher
and, therefore, minimal theoretically attainable.

3.6.1 Stars from independent differentials

Similar to balanced bicliques, stars can be constructed efficiently from independent sets
of differentials. Unlike balanced bicliques, however, the necessary form of differentials
is different. Suppose we have a set of 2d− 1 distinct related-key ∆-differentials from x
to yi,j:

(0,∆K
i) 7−→ ∆i

and a set of 2d − 1 distinct related-key ∇-differentials from over the same part of
the cipher:

(0,∇K
j) 7−→ ∇j.

We assume that the ∆-differentials and ∇-differentials do not share any active
nonlinear components. If input x, output y0,0 and key K[0, 0] conform to both ∆- and
∇ differentials, then the values:

x,

yi,j = y0,0 ⊕∆i ⊕∇j, and

K[i, j] = K[0, 0]⊕∆K
i ⊕∇K

j

form a star of dimension d, with ∆0 = ∇0 = ∆K
0 = ∇K

0 = 0.

53

3.7 Minimum data complexity key recovery for AES

In this section, we demonstrate star-based independent-biclique key recoveries for full
AES-128, AES-192 and AES-256. The star-based biclique can be placed either at the
initial rounds of AES or at the last few rounds of the same. We tested the attack
complexity for both locations through our C-program and only report the best values
for all the three AES variants in the subsequent writeup.

3.7.1 AES-128

In AES-128, it is possible to construct a star of dimension 8 over the first round. The
master key $0, i.e., the first subkey is taken as the base key. The index i is placed
in byte 0 whereas index j is placed in byte 1. The base keys are all 16-byte values
with two bytes (i.e., bytes 0 and 1) fixed to 0 whereas the remaining 14-bytes take all
possible values. Thus, the 128-bit key space is divided into 2112 groups with 216 keys in
each group. ∆-trail activates byte 0 of key $0 and ∇-trail activates byte 1 of key $0 (as
shown in Fig. 3.15(a)). Difference propagation in these differentials over one round is
non-overlapping till the end of round 1. In state #3, there is a linear overlap between
those and, already in round 2, one has to recompute 2 S-boxes for each key (shown in
Fig. 3.15(a)). Rather surprisingly, even if the length of the star is just one round, the
form of its trails is such that this short biclique still allows the adversary to obtain a
reasonable computational advantage over brute force.

In the forward direction of matching, starting in round 2, a part of the state has
to be recomputed for each key. In round 2, only 2 S-boxes have to be recomputed.
Starting in round 3 and forwards, the propagation affects the whole state (shown in
Fig. 3.15(b)). In the backward direction of matching, one starts with the ciphertext
obtained using the encryption oracle under the right key for plaintext x. The ∆- and
∇-propagations in the key schedule are such that only 5 bytes of the $10 depend on
both ∆ and ∇. This means that only 5 S-boxes have to be recomputed in round 10.
Starting in round 9 and backwards, the propagation affects the full state (as shown in
Fig. 3.15(c)). We match on byte 12 in state #11 of round 5, in which only one S-box
needs to be recomputed. In round 4 and round 6, only 4 S-boxes, respectively, are
recomputed. The S-boxes in the four remaining rounds need to be recomputed com-
pletely (another 64 S-boxes). No S-box recomputations are needed in the key schedule.

The whole process yields a recomputation of 80 out of 200 S-boxes. Thus, Crecomp ≈
214.67 in one key group. About 28 keys will be suggested in each key group after
the meet-in-the-middle filtering, thus Cfalsepos = 28. The complexity of precomputa-
tions and star generation is upper-bounded by Cprecomput ≈ 28.5 full AES computa-
tions. Thus, Cfull ≈ 2126.67. The data complexity exactly corresponds to the unicity
distance of AES-128 – the minimal data complexity theoretically attainable. One
known plaintext-ciphertext pair can sometimes be enough (with success probability

54

MC

SB
SR

$1

$0

MC

SB
SR

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

MC

SB
SR

K
ey

Sc
he

du
le

#0, x0

#1

#2

#3, yj

$0 $0

$1$1

Start

∆i modification

∇j modification

x0 x0

y0 yi

Base Computation ∆ - differentials ∇ - differentials

∆K
i

∇K
j

(a) Star over first round

M
C

SRSB

#5 #6 #7

A
K

#3 #4

recomputed

A
K

SR M
C

SB

#8

A
K

#9

SR M
C

SB

#10

A
K

#11
matching byte

St
ar M

C
SRSB

(b) Forward Recomputations

M
C

SR SB

#17 #16 #15#19

A
K

SRM
C

SB

#18

recomputed

A
K

SRM
C

SB
#14

A
K

#13

SRM
C

SB

#12 #11
matching byte

A
K

SR SB

#20#21

A
K

$10 $9

En
cr

yp
tio

n
O

ra
cl

e

(c) Backward Recomputations

Figure 3.15: Fastest biclique attack on AES-128 with minimum data: time 2126.67 and
data 1 or 2 ciphertexts.

of 1/e ≈ 0.3679). Two known plaintext-ciphertext pairs yield a success probability
of practically 1. The memory complexity is upper bounded by 28 computations of
sub-cipher involved in the precomputation stage, i.e., ≈ 216 bytes.

Comparison with brute force attack. In star biclique attack, the cost of one
round computations is saved by constructing a star biclique over that round. Since, we
apply the precomputations and recomputations strategy in the MITM phase (as dis-
cussed in Section 3.3.2), the computational complexity in the 9 rounds is bit lower than
the exhaustive key search complexity over these rounds. Hence, overall the complexity
of a star attack will always be lower than exhaustive key search attack.

55

3.7.2 AES-192

In AES-192, we construct a star of dimension 8 over the last 1.5 rounds (shown in
Fig. 3.16(a)). ∆-trail activates byte 0 of sub-key $12 and ∇-trail activates byte 2 of
$10 sub key. Non-overlapping trails cover rounds 11 and 12. We define the key groups
with respect to the expanded key block K7 which consists of two right columns of $10
(further denoted by 10R) and $11 subkeys. The index i is placed in bytes 0 and 4
whereas index j is put in bytes 2 and 6. The base key in each group is chosen such that
the key coverage is complete and there are no intersections between the key groups.
The base keys are all 24 -byte values with two bytes (i.e., bytes 0 and 2) fixed to 0
whereas the remaining 22-bytes taking all possible values. This yields a partition of
AES-192 key space into 2176 groups with 216 keys in each.

In the matching phase we match on byte 12 in state #11. During the forward
recomputations (in Fig. 3.16(b)), we start with plaintext obtained from ciphertext y
using the decryption oracle under the right key. The ∆ and ∇ propagations in the
key schedule are such that there are no overlapping bytes in $0 which depend on both
∆ and ∇ trails. Hence, no recomputations are required in round 1, i.e., state #1.
Starting from round 2, 16 + 16 + 16 + 4 = 52 S-boxes are required to be recomputed.
Backward recomputations starting from round 10 require 16 + 16 + 16 + 4 + 1 =
53 S-boxes to be recomputed in Fig. 3.16(c). No recomputations in key schedule are
required. Hence, a total of 105 out of 224 S-boxes are required for recomputation.
Thus Crecomp ≈ 214.82. The precomputations and star generation (based on S-box
calculations) are upper bounded by Cprecomp ≈ 28.5 full AES computations. Thus
Cfull ≈ 2190.9. Two ciphertexts are required to carry out the attack with a success
probability of 1.

3.7.3 AES-256

In AES-256, a star of dimension 8 over the last 1.5 rounds (shown in Fig. 3.17(a)) is
constructed. ∆-trail activates byte 0 of sub-key $13 and ∇-trail activates byte 5 of
$13 sub key. Non-overlapping trails cover rounds 13 and 14. We define the key groups
with respect to the expanded key block K6 which consists of $13 and $14 subkeys. The
index i is placed in byte 16 and index j is put in byte 21. The base keys are all 32
-byte values with two bytes (i.e., bytes 16 and 21) fixed to 0 whereas the remaining
30-bytes taking all possible values. This yields a partition of AES-256 key space into
2240 groups with 216 keys in each.

In the matching phase, we match on byte 1 of state #11. 52 S-boxes (16 + 16
+ 14 + 4) in the forward direction (shown in Fig. 3.17(b)) and 85 S-boxes (1 + 4 +
16 + 16 + 16 + 16 + 16) in the backward direction (Fig. 3.17(c)) are recomputed.
Together with 1 S-box recomputation in key schedule, a total of 138 out of 276 S-
boxes are recomputed. Thus, Cfull ≈ 2255. Two known plaintext-ciphertext pair can

56

∆ - differentials ∇ - differentials

xi

y0

#24

#23

#22

∆K
i ∇K

j

SB
SR

#25,y0

SB
SR

SB
SR
MC

SB
SR
MC

$10 $10

$11

$12

#21

#20, xj

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

$12

Base Computation

x0

y0

SB
SR

SB
SR
MC

$10

$12

K
ey

Sc
he

du
le

$11$11

∆i modification

∇j modification

Start

(a) Star over last 1.5 rounds in AES-192

M
C

SB SRM
C

SB SRM
C

SRM
C

SB SRM
C

SB SR

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

D
ec

ry
pt

io
n

or
ac

le

A
K

A
K

A
K

PT

A
K

A
K

SB A
K

#11

Recomputed

(b) Forward Recomputations

SR

#20

SB A
K

#19

SB

St
ar SRM

C

#18

SB A
K

#17

SRM
C

#16

SB A
K

#15

SRM
C

#14 #13

A
K

#12

SBSRM
C

#11

Recomputed

M
C

(c) Backward Recomputations

Figure 3.16: Fastest biclique attack on AES-192 with minimum data: time 2190.9 and
data 2 ciphertexts.

sometimes be enough (with success probability of 1/e ≈ 0.3679) whereas three known
plaintext-ciphertext pairs yield a success probability of practically 1 with memory not
more than 216 bytes required.

3.8 A search technique for biclique attacks on AES

In this section, we describe how we enumerate all biclique key recoveries in a large
promising class of biclique attacks.

57

∆ - differentials ∇ - differentials

xi xj

y0

#28

#27

#26

∆K
i ∇K

j

SB
SR

#29,y0

SB
SR

SB
SR
MC

SB
SR
MC

$12 $12

$13

$14

#25

#24

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

$14

Base Computation

x0

y0

SB
SR

SB
SR
MC

$12

$14

K
ey

Sc
he

du
le

$13$13

(a) Star over last 1.5 rounds in AES-256

M
C

SB SRM
C

SB SRM
C

SRM
C

SB SRM
C

SB SR

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

D
ec

ry
pt

io
n

or
ac

le A
K

A
K

A
K

PT

$0

A
K

A
K

SB A
K

#11

matching byte

Recomputed

(b) Forward Recomputations

SRM
C

SB

#22

SRM
C

#20

SB A
K

#19

SB

#23

A
K

St
ar

#21

A
K

SRM
C

#18

SB A
K

#17

SRM
C

#16

SB A
K

#15

SRM
C

#14 #13
A

K
#12

SBSRM
C

#11#24

SRM
C

SB

Recomputed

(c) Backward Recomputations

Figure 3.17: Fastest biclique attack on AES-256 with minimum data: time 2255 and
data 2 or 3 ciphertexts.

3.8.1 Enumerating bicliques

Clearly, going over all possible initial structures, even without enumerating possibilities
for the actual key recovery, would be infeasible for the AES. So we have to confine the
search space of attacks by imposing some limitations. We now describe our search
strategy along with some justifications for our choices.

• First, we consider bicliques (complete bipartite graphs) as initial structures. We
stress that we include both balanced bicliques and stars in our search.

58

• Second, we restrict the search to independent-bicliques only. This constraint ex-
cludes such bicliques such as narrow-bicliques [116], which are especially challeng-
ing to enumerate. However, despite not being optimal in the number of rounds
covered, it is the independent-bicliques that attain the highest advantages over
brute force for full AES-128 and its variants so far.

• Third, we confine the search to independent related key-differentials that have a
key state in their trails with exactly one or two 8 or three active bytes 9. Note
that these bytes do not have to be the bytes where the key difference is injected
and the key difference can still be injected in multiple bytes. We also consider
the special rules defined in [39] for AES-192 as mentioned below and apply it to
other AES variants also.

– We test differential trails in which double byte differences (i1,i2) are injected
in ∆ trail and single/double/triple byte differences are injected in ∇ trail.
These (i1,i2) are all possible columns that have one zero byte after applying
MixColumns−1, e.g.,

0
i1
i2
0

 = MixColumns−1


∗
i
∗
0

 or


i1
i2
0
0

 = MixColumns−1


i
∗
0
∗

 .

– Similarly, we also test differential trails in which triple byte differences
(i1,i2,,i3) are injected in ∆ trail such that all possible (i1,i2,i3) have two
zero bytes after applying MixColumns−1, i.e.,

i1
i2
i3
0

 = MixColumns−1


0
i
∗
0

 or


0
i1
i2
i3

 = MixColumns−1


0
0
i
∗

 .

• Finally, to keep the search space from exploding, we consider the trails of the
bicliques in a truncated manner: We do not differentiate between the active
values of the key modification trails in our bicliques (values of differences in the
related-key differentials). In particular, it means that once activated, a difference
in a byte of a trail cannot be canceled out. This is a significant but necessary
limitation since we believe it is infeasible to run the exhaustive search otherwise
for excessively high computational complexities.

We implemented these restrictions in a C program and were able to successfully
enumerate all the tight truncated independent balanced bicliques and stars of AES-128,
AES-192 and AES-256.

8Such trails do not collapse into a single active byte in any of the key states.
9Such trails do not collapse into a single active byte or two active bytes in any of the key states.

59

3.8.2 Searching for key recoveries

Having enumerated all the bicliques as described above exhaustively, we apply meet-
in-the-middle (MITM) technique to each of the initial structures obtained to evaluate
their time and data complexities. This is done as follows. First of all, we set the opti-
mization goal as minimizing the time complexity for a given data complexity restriction.
That is, in each search for a key recovery, we fix an upper bound on the data com-
plexity. Then we perform the exhaustive search over all possibilities for matching. In
terms of key enumeration, we impose the restriction that the forward and backward key
modifications should have at least one state of linear intersection. This enables full key
space coverage and success probability of 1. The MITM technique used includes par-
tial matching (the matching is performed on a byte of the state to save computations)
and the cut-and-splice technique (so that trails can go over the encryption/decryption
oracles to win degrees of freedom).

To evaluate the time complexity of a key recovery attack efficiently on-the-fly, the
computational model proposed in [39] is used: All linear operations (AddRoundKey,
ShiftRows, and MixColumns) are ignored and one counts only the number of required
S-box computations. As an example, one full AES-128 evaluation requires 200 S-box
computations – a metric that proved to be meaningful in practice [38]. Similarly, one
complete evaluation of AES-192 and AES-256 corresponds to 224 and 276 S-boxes re-
spectively. The time complexity is measured as the number of S-box computations
that have to be performed per key tested. Again, this is the parameter that has lead to
the fastest attacks so far since it makes the key group larger and minimizes the impact
of biclique construction on the total complexity. Depending on the data complexity
restriction, the program can find the optimal attack, i.e., the attack with the lowest
measured time complexity under the data complexity restriction.

As a second optimization goal, we focus on minimizing the data complexity for a
given time complexity. This second optimization is applied once the lowest computa-
tional complexity for recovering the key has been found in the previous step. At this
point, we already know that there are no faster key recoveries in our search space. So
we check if the data complexity of the fastest attack identified can be reduced. For
this task, we fix the computational complexity to the value that we obtained in the
previous step, and then among all the bicliques having that computational complexity,
we search for the one that has the lowest data complexity. This task typically requires
much less computations.

3.8.3 Applications to find attacks with minimal data and time
complexities

We implemented our program to search for three data complexity restrictions:

• Minimum data complexity: The minimum data complexity attacks for AES-

60

128/192/256 were discovered using this program by setting the upper bounds
of the data complexity to its theoretical minimum of the unicity distance. So
we can claim that this is the fastest biclique key recovery with the minimal data
complexity of exactly the unicity distance in the class of bicliques covered by our
program.

• Data complexity strictly lower than the full codebook: This restriction is a stan-
dard line that is informally drawn between interesting attacks – that require less
than the full codebook of texts - and less interesting attacks – that can only work
with the full codebook. It is found that the fastest biclique key recoveries in the
covered class with these restrictions have lower computational complexities (for
AES-256) and lower data complexities (for AES-128 and AES-192) as compared
to the original attack.

• No data complexity constraint: The program finds the fastest biclique key recov-
ery in the entire class of biclique attacks covered when there is no restriction on
the amount of data required. This attack provides an important insight into the
limits of the independent-biclique approach developed so far.

The fastest key recoveries corresponding to minimum data complexity for AES-128,
AES-192 and AES-256 are already discussed in Section 3.7. Rest of the above men-
tioned categories are analyzed for all AES variants and their details are covered in the
subsequent sections.

3.9 Fastest biclique key recovery with less than the

full codebook of data

In this section, we demonstrate the biclique key recoveries with optimal time complexity
for the full AES-128, AES-192 and AES-256.

3.9.1 AES-128

This attack is based on a balanced biclique of dimension 8 over the last 2.5 rounds
of AES-128 (shown in Fig. 3.18(a)). The forward and backwards trails in the biclique
have an intersection in byte 0 of $8. However, this intersection is in a linear operation
(xor) of the key schedule and does not affect the biclique property. The key is enu-
merated in $9 which is the only key state that is linear in the key modification, both
in forward and backward trails. The bytes of key enumeration with i and j differences
are non-intersecting. The index i is placed in bytes 0,4,8, and 12 while index j is put
in bytes 5 and 9. The 2112 base keys are all 16-byte values with two bytes (i.e., bytes 0
and 5) set to 0 whereas the remaining 14-bytes taking all possible values. This yields
216 keys in each group.

61

∆i - differential

SB
SR

MC

SB
SR

MC

SB
SR

$10

$9

$8

SB
SR

MC

SB
SR

MC

SB
SR

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

SB
SR

K
ey

Sc
he

du
le

SB
SR
MC

MC

SB
SR

#16

#17

#18

#19

#20

Base Computation ∇j - differential

#21, C0

$8 $8

$9 $9

$10
$10

C0 Ci

∆K
i

∇K
j

Step 2. ∆i modification

Step1. Start with C0

Step 3. ∇j modification

S0 S0
#15, Sj

(a) Biclique over last 2.5 rounds

M
C

SB

Pi

A
K

D
ec

ry
pt

io
n

O
ra

cl
e

#1

SR

$0

#2

recomputed

SR M
C

SB A
K

#3

∇K
i

A
K

#4 #5
matching byte

A
K

SRSB M
C

#6 #7

(b) Forward Recomputations

#11 #9

recomputed

SRM
C

SB

#8

A
K

#7

SRM
C

SB

matching byte

A
K

#14

bi
cl

iq
ue

#12

M
C

SR SB SR SBM
C

A
K

#13#15

A
K

$7 $6

#10

(c) Backward Recomputations

Figure 3.18: Fastest biclique attack on AES-128 with less than full codebook: time
2126.16 and data 264.

For key recovery, in the MITM stage, partial matching is done in byte 12 of data
state #7 of round 4, where only one S-box needs recomputation. In round 3 and round
5, only 4 S-boxes, respectively and in round 7, only 8 S-boxes are recomputed. In

62

round 1, 5 S-boxes are recomputed as the plaintext is influenced by 5 active bytes of
the backward key modification through the key schedule. The S-boxes of rounds 2
and 6 have to be recomputed completely (as shown in Figs. 3.18(b) and 3.18(c)). In
total, also counting the necessary recomputations in the key schedule, we arrive at 55
S-boxes that have to be recomputed for each key, resulting in Crecomp ≈ 214.14. As in
the previous attacks, Cfalsepos ≈ 28 and Cprecomp ≈ 28.5. This yields Cfull ≈ 2126.16.
Furthermore, since ∆K

i ($103) = ∆K
i ($1011) = ∆K

i ($1015), the ciphertext bytes C3, C11

and C15 are always equal. Hence, the data complexity is 264 chosen ciphertexts. This is
lower than (288) obtained in the original attack [39]. As in all our attacks, the success
probability is 1 and memory complexity is 28 × 16× 7 = 215 bytes.

3.9.2 AES-192

This attack is based on a balanced biclique of dimension 8 over the last 3.5 rounds of
AES-192 (Fig. 3.19(a)). ∆-trail activates byte 1 of sub-key $10 and ∇-trail activates
byte 8 of $12 sub-key. Non-overlapping trails cover rounds 9 to round 12. We define
the key groups with respect to the expanded key block K7 which consists of two right
columns of $10 (further denoted by 10R) and $11 subkeys. The index i is placed in
bytes 17 and 21 whereas index j is put in bytes 8 and 12. The base keys are all 24-
byte values with two bytes (i.e., bytes 8 and 17) fixed to 0 whereas the remaining
22-bytes taking all possible values. This allows a partition of AES-192 key space
into 2176 groups with 216 keys in each. In the matching phase, 33 S-boxes in the
forward direction (Fig. 3.19(b)) and 29 S-boxes in the backward direction (shown in
Fig. 3.19(c)) are recomputed yielding a total of 62 out of 224 S-box recomputations.
Thus, Cfull ≈ 2190.16. The success probability of the attack is 1. Since ∆K

i ($120) =
∆K
i ($124) = ∆K

i ($128), the ciphertext bytes C0, C4 and C8 are always equal. Hence,
the data complexity is 248 chosen ciphertexts. The data complexity of this attack is
lower than 280 obtained in the original attack [39].

3.9.3 AES-256

Through our automated program we detected certain discrepancies in the cost calcula-
tion in [39]. According to our calculations of the same, the computational complexity
should be 2254.52 (c.f. 2254.42 in the original attack). The details of the same are as
follows. Firstly, in Fig. 12 in [39], $0 and $1 subkeys have been marked as $1 and $2 sub-
keys respectively. Secondly, the required S-box calculation is given as 5.4375 Sub-Bytes
operations which is 87 S-boxes operations in [39] whereas it should be 6.3125 Sub-Bytes
operation (101 S-boxes) i.e., 214.5 runs of full AES-256 (as shown in Fig. 3.20). As a
result, the full computational complexity should be 2240 × 214.52 = 2254.52. The data
complexity does not exceed 240 queries.

63

K
ey

Sc
he

du
le

Base Computation ∆ - differentials ∇ - differentials

#18

$11

$12

CiC0

#24

#23

#22

∆K
i

K
ey

Sc
he

du
le

SB
SR

SB
SR

SB
SR
MC

SB
SR
MC

SB
SR
MC

$10

SB
SR
MC

SB
SR
MC

SB
SR
MC

$10 $10

$11

$12 $12

SB
SR

#21

#20

#19

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

S0

$11

$9

SB
SR
MC

SB
SR
MC

$9

K
ey

Sc
he

du
le

SB
SR
MC

$9

K
ey

Sc
he

du
le

∇K
j

Step2.∆i modification

S0 Sj , #17

C0

Step1.Start with C0

Step3.∇j modification

(a) Biclique over last 3.5 rounds

M
C

SB SRM
C

SRM
C

SB SRM
C

SB SR

#1 #2 #3 #4 #5 #6 #7 #8

D
ec

ry
pt

io
n

O
ra

cl
e

A
K

A
K

A
K

Pi

A
K

SB A
K

#9

Recomputed

$0 $1

∇K
i

matching byte

(b) Forward Recomputations

#17

A
K

#16

B
ic

liq
ue

SRM
C

#15

SB A
K

#14

SRM
C

#13

SB A
K

#12

A
K

#11

SBSRM
C

#9

Recomputed

#10

SBSRM
C

$8 $7

∆K
j

matching byte

(c) Backward Recomputations

Figure 3.19: Fastest biclique attack on AES-192 with less than full codebook: time
2190.16 and data 248.

64

M
C

SB SRM
C

SB SRM
C

SR

Pi #1 #5 #6

de
cr

yp
tio

n
or

ac
le

A
K

A
K

A
K

SB A
K

#7

Recomputed

matching byte

$0

∇K
i

#2

$1

#3

Figure 3.20: Corrected AES-256 forward computation.

For the fastest biclique key recovery requiring less than full codebook of data, we
could construct a balanced biclique of dimension 8 over the last 3.5 rounds (shown
in Fig. 3.21(a)) with lesser number of S-boxes that need to be recomputed. ∆-trail
activates byte 13 of sub-key $10 and ∇-trail activates bytes 0 and 4 of $13 sub key.
Non-overlapping trails cover rounds 11 to 14. Key groups are defined with respect to
the expanded key block K6 which consists of subkeys $10 and $11. The index i is placed
in byte 13 whereas index j is put in bytes 16 and 24.The base keys are all 32-byte values
with two bytes (i.e., bytes 13 and 24) fixed to 0 whereas the remaining 30-bytes taking
all possible values. This allows a partition of AES-256 key space into 2240 groups with
216 keys in each. In the matching phase, forward recomputations require 13 S-boxes
(shown in Fig. 3.21(b)) and backward recomputations require 73 S-boxes (shown in
Fig. 3.21(c)). No recomputations in key schedule are required. Hence, matching yields
a recomputation of total 86 out of 276 S-boxes. Thus Cfull is ≈ 2254.31. The data
complexity as defined by the form of the biclique is 264 with memory complexity being
upper bounded by 28 × 10× 16 bytes ≈ 216 bytes.

3.10 Fastest biclique key recovery in AES with no

restriction on data complexity

In this section, we demonstrate the fastest biclique key recovery attacks on the full
AES-128, AES-192 and AES-256.

3.10.1 AES-128

When we drop the constraint of data complexity being below the full codebook, we
can construct a balanced biclique of dimension 8 over 3 full AES-128 rounds and with
the minimal recomputation of just one S-box in the fourth round, immediately after
the biclique. The biclique is placed in rounds 2-4 which implies the data complexity
of 2128 for the backward trail (as shown in Fig. 3.22(a)). In the forward recomputa-
tion, 12 S-boxes are recomputed (as shown in Fig 3.22(b)) whereas in the backward
direction, 25 S-boxes are recomputed (shown in Fig. 3.22(c)) yielding a total of 37
S-box recomputations. Thus, Cfull ≈ 2125.56. The data complexity in this attack is the

65

full codebook. The success probability is again 1 since key coverage is complete. The
memory complexity stands at 28 memory blocks for precomputation stage.

SB
SR
MC

K
ey

Sc
he

du
le

S0

$12

$13

C0C0

#26

#25

#24

∇K
j

$14K
ey

Sc
he

du
le

SB
SR
MC

SB
SR
MC

#29,C0

SB
SR
MC

#27

#28

SB
SR
MC

SB
SR
MC

SB
SR
MC

$11

SB
SR

SB
SR

SB
SR

#23

#22

#21, Sj

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

S0

$13

$14 $14

$13

$12 $12

SB
SR
MC

$11

SB
SR
MC

$11

∆K
i

Base Computation

Step2.∆i modification

∆ differential ∇ differential

Step 3.∇ modification

Step1. Start

$10 $10 $10

(a) Biclique over last 3.5 rounds

M
C

SB SRM
C

SB SRM
C

SR

Pi #1 #5 #6

de
cr

yp
tio

n
or

ac
le

A
K

A
K

A
K

SB A
K

#7

Recomputed

matching byte

$0

∇K
i

#2

$1

#3

(b) Forward Recomputations

SRM
C

SB SRM
C

#16

SB A
K

#15

SB

#19

A
K

bi
cl

iq
ue

#17

A
K

SRM
C

#14

SB A
K

#13

SRM
C

#12

SB A
K

#11

SRM
C

#10 #9

A
K

#8

SBSRM
C

#7

SR SB

#20

A
K

#21

$10 $9

∆K
j

recomputed

matching byte
#18

M
C

(c) Backward Recomputations

Figure 3.21: Fastest biclique attack on AES-256 with less than full codebook: time
2254.31 and data 264.

66

MC

SB
SR

MC

SB
SR

MC

SB
SR

$4

$3

$2

$1

MC

SB
SR

MC

SB
SR

MC

SB
SR

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

#3, xj

#4

#5

#6

#7

#8

#9, yj

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

yi

MC

SB
SR

MC

SB
SR

MC

SB
SR

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

x0

y0

$1 $1

$2$2

$3$3

$4$4

Base Computation

Step2.∆i modification

∆i differential ∇j differential

x0

Step1. Start with y0

Step3. ∇j modification

∆K
i

∇K
j

(a) Biclique over 3 rounds in the middle

M
C

#11 #12 #13

bi
cl

iq
ue

#9

A
K

SR M
C

SB

#10

SRSB

recomputed

A
K

SR M
C

SB

#14

A
K

#15
matching byte

∇K
i

$5

(b) Forward Recomputations

j #20 #19

SR SB

recomputed

A
K

SRM
C

SB

#18

A
K

#17

SRM
C

SB

#15
matching byte

A
K

#16#2

bi
cl

iq
ue

#1

M
C

SR SB

En
cr

yp
tio

n
O

ra
cl

e

(c) Backward Recomputations

Figure 3.22: Fastest biclique attack on AES-128: time 2125.56 and data 2128. Here v
represents the matching byte.

67

Preimage Attack on compression function. This key recovery can be converted
into a preimage search for the compression function constituted by AES-128 in Davies-
Meyer mode. Here, the attack works offline and does not have to make any online
queries. This preimage attack requires 2125.56 AES-128 operations and finds a preimage
with probability about 0.632. The generic preimage search would require 2128 time to
succeed with probability 0.632.

3.10.2 AES-192

For AES-192, we could construct a balanced biclique of dimension 8 over 5 full rounds.
The biclique is placed in rounds 2-6 shown in Fig. 3.23(a). ∆-trail activates byte 0
of subkey $3 and ∇-trail activates byte 1 of $6 subkey. In the matching phase, 10
S-boxes in the forward direction (Fig. 3.23(c)), 29 S-boxes in the backward direction
(Fig. 3.23(b)) and 1 S-box in the key schedule are recomputed leading to a total of 40
out of 224 S-box recomputations. Hence Cfull ≈ 2189.51 with data complexity being
2128 and memory complexity of 28. This key recovery when converted into a preimage
search for the compression function constituted by AES-192 in Davies-Meyer mode
requires 2125.51 AES-192 operations and finds a preimage with probability about 0.632.

3.10.3 AES-256

For AES-256, we could construct a balanced biclique of dimension 8 over 5 full rounds.
The biclique is placed in rounds 2-6 (shown in Fig. 3.24(a)). ∆-trail activates byte
8 of sub-key $1 and ∇-trail activates byte 0 of $6 sub key. In the matching phase,
25 S-boxes in the forward direction (shown in Fig. 3.24(c)) and 41 S-boxes in the
backward direction (shown in Fig. 3.24(b)) are recomputed leading to a total of 66 out
of 276 S-box recomputations. Hence Cfull ≈ 2253.87 with data complexity being 2128.
This key recovery when converted into a preimage search for the compression function
constituted by AES-256 in Davies-Meyer mode requires 2125.93 AES-256 operations and
finds a preimage with probability about 0.632.

68

K
ey

Sc
he

du
le

Base Computation ∆ - differentials ∇ - differentials

xi xj

$3

$4

yiy0

#8

#7

#6

∆K
i ∇K

j

$5K
ey

Sc
he

du
le

SB
SR
MC

SB
SR
MC

#12,y0

SB
SR
MC

#9

#10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

$2

SB
SR
MC

SB
SR
MC

SB
SR
MC

$2 $2

$3

$4 $4

$5 $5

SB
SR
MC

SB
SR
MC

SB
SR
MC

#5

#4

#3

#11

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

x0

$3

(a) 5 round Biclique for AES-192

M
C

#16 #18

bi
cl

iq
ue

#13

SRSB

matching byte

$7

recomputed
∇K

i

#14

A
K

#15

M
C

SRSB A
K M
C

SRSB

#17

A
K

#19

(b) Forward Recomputations

SRM
C

SB

CT#1

en
cr

yp
tio

n
or

ac
le

SR

#24

SB

#21

A
K

#20

SBSRM
C

#19

bi
cl

iq
ue

#2

matching byte

recomputed

SRM
C

SB

#22#23

A
K

(c) Backward Recomputations

Figure 3.23: Fastest biclique attack on AES-192: time 2189.51 and full codebook.

69

K
ey

Sc
he

du
le

Base Computation ∆ - differentials ∇ - differentials

xi xj

$3

$4

yiy0

#8

#7

#6

∆K
i ∇K

j

$5K
ey

Sc
he

du
le

SB
SR
MC

SB
SR
MC

#12,y0

SB
SR
MC

#9

#10

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

SB
SR
MC

$2

SB
SR
MC

SB
SR
MC

SB
SR
MC

$2 $2

$3

$4 $4

$5 $5

SB
SR
MC

SB
SR
MC

SB
SR
MC

#5

#4

#3

#11

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

x0

$3

(a) Biclique over 5 rounds in the middle

SRM
C

SB

CT

SB

#1

en
cr

yp
tio

n
or

ac
le

SR

#28

SB A
K

#27

SRM
C

#26

SB A
K

#25

SRM
C

#24 #23

A
K

#22

SBSRM
C

#21

bi
cl

iq
ue

#2
matching byte

recomputed

#20

A
K

(b) Backwards recomputation

M
C

#16#15

SR M
C

#17

SB

#18

A
K

#19

SB SR M
C

#20

bi
cl

iq
ue

#13

A
K

SR M
C

SB

#14

SRSB A
K matching byte

$6

recomputed
∇K

i

(c) Forwards recomputation

Figure 3.24: Fastest biclique attack on AES-256: time 2253.87 and full codebook.

70

3.11 Biclique based key recovery attacks on AES-

128 with various data complexities

In the previous sections, we analyzed the biclique attacks for all the three AES variants
under the following three categories:

1. Attack which has the lowest data complexity (in Section 3.7)

2. Attack which is optimum with respect to time as well as data complexity (in
Section 3.9)

3. Attack which has the lowest time complexity with no restriction on the data
complexity (in Section 3.10)

From the results obtained in the previous categories, it appears that for biclique
based key recovery attacks, 10 data complexity is inversely proportional to the time
complexity, i.e., as data complexity decreases, computational complexity increases. To
verify this observation, we tried to analyze other biclique attacks for AES-128 where
the data complexity lies between category 1 and category 3. The results of this analy-
sis are shown in Table 3.5. We obtained these results by setting the optimization goal
as: minimizing the time complexity for a given data complexity restriction in our C
program.

As can be seen in table 3.5, in some cases, the attacks with a higher data complexity
have higher time complexity as well, e.g., attack mentioned at row 5. This happened
because in our tool, for each attack having a data complexity of 2p, our program found
an attack in which the ∆i and ∇j trails produced exactly p active bytes in the cipher-
text.

However, in real-world, an attacker can always opt for the attack just preceding it
which has a lower time as well as data requirements. For example, an attacker who has
the ability to query up to 232 ciphertexts (in row 5) may generate only 224 queries and
launch the attack having a time complexity of 2126.48. Thus, overall it can be said that
the time complexity indeed decreases as data complexity increases. Moreover, these
results can also prove useful in the attack scenarios where an attacker does not aim for
the best attack but is limited by the environment she is in and the resources she can
possess. Similar analysis can be done for AES-192 and AES-256 as well.

3.12 Summary

In this chapter, we first discuss the biclique cryptanalysis technique in general and then
its application to AES and other block ciphers for recovering the secret key. We then

10involving bicliques of dimension 8

71

Table 3.5: Summary of biclique key recovery attacks on AES-128 with different data
complexities obtained from our tool.

S. No. Biclique Length Time Data S-box

(rounds) Complexity Complexity recomputations

1. 1 2126.67 2 80

2. 1.5 2126.56 28 74

3. 1.5 2126.56 216 74

4. 1.5 2126.48 224 70

5. 2.5 2126.54 232 73

6. 2.5 2126.31 240 62

7. 2.5 2126.21 248 58

8. 2.5 2126.37 256 65

9. 2.5 2126.16 264 54

10. 2.5 2126.72 272 82

11. 2.5 2126.28 280 61

12. 2.5 2126.16 288 54

13. 2.5 2126.28 296 61

14. 2.5 2126.26 2104 60

15. 3 2125.56 2128 37

discuss some problems existing with the current biclique based key recovery attacks on
AES. We then explore the space of independent bicliques as applied to key recovery
for the full AES-128, AES-192 and AES-256. We put some reasonable restrictions on
the bicliques to make the search feasible. The class of bicliques analyzed by a tool
developed by us looks most promising in terms of cryptanalysis so far. In fact, the best
key recoveries known so far for the full AES-128, AES- 192 and AES-256 belong to this
class. Moreover, we utilize star structure (maximally unbalanced bicliques) to reduce
the data complexity to the theoretically attainable minimum. We further note that the
structure of the biclique is more important for the data complexity of the attack whereas
the length of the biclique appears to be correlated with the computational complexity.
We also propose biclique attacks which are fastest when there is no restriction on data
complexity. We demonstrate that these attacks are the fastest among all independent-
biclique attacks we study and might be considered as an indication of the limits beyond
the current approaches to AES key recovery using bicliques.

72

Chapter 4

Biclique Cryptanalysis of AES-128
based Hashing Modes

Biclique Cryptanalysis, as discussed in the previous chapter, was first proposed by
Khovratovich et al. in [103] for finding preimages for hash functions Skein [136] and
SHA-2 [73]. This attack technique has not only led to the current best cryptanalytic
results for AES [37,39] but also for SHA-2 [103] in terms of number of rounds attacked.
In this chapter, we analyze the hash function settings and review the application of
biclique cryptanalysis for finding preimages. In Chapter 2, we studied meet-in-the-
middle attacks and discussed their limited applicability on block ciphers to recover the
secret key. Contrary to block ciphers, MITM attacks have found more favor in the hash
function domain. This is due to the fact that unlike block cipher cryptanalysis, the
attacker can fully control the inner behaviour of the underlying compression function in
hash function settings. Existing hash function designs usually involve step updations
and message injections at round level. This gives an attacker an opportunity to effi-
ciently utilize the available degrees of freedom on the input and find rounds which are
independent of some message bits to apply MITM attack. Sasaki and Aoki [17, 152]
exploited this fact to show some pioneering work in preimage attacks against MD4,
MD5, SHA-0/1/2 etc. They proposed several new concepts such as splice-and-cut
framework, partial matching, partial fixing etc. in the MITM framework that could
be applied to hash functions as well as block ciphers [41, 90]. One such idea - the
initial structure [152] forms the basis of biclique attack. In this chapter, we discuss
this concept and its applicability in biclique cryptanalysis for finding preimages. We
then present some second preimage attack results on AES-128 based hash functions.

The roadmap for this chapter is as follows: We first review some historical back-
ground pertaining to the origin of biclique cryptanalysis for hash functions in Sec-
tion 4.1. We specifically discuss the concept of initial structure in this section. We
then describe the generic technique for finding preimages in hash functions using bi-
clique attack in Section 4.2. As an example, we also give a high level overview of
the preimage attack on SHA-2 using biclique attack here. In Section 4.3, we discuss

73

the biclique attack on AES-128 based compression function for finding preimages and
highlight some of the challenges involved in converting these attacks to preimage attack
on AES-128 based hash functions. In Section 4.4, we describe the notations necessary
to understand our work followed by Section 4.5, where we present the preimage at-
tack on AES-128 based compression function using biclique cryptanalysis. We then
demonstrate our biclique based second preimage attacks on AES-128 instantiated hash
functions in Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel
(MP) modes respectively. These attacks are presented in Section 4.6 and work with a
fixed IV which is not in the control of the attacker, mimicking the real life use case of
these modes. The attacks in this section are demonstrated on 2-block message. Sec-
tion 4.7 extends our attack to hash functions with message length ≥ 3 message blocks
with same attack complexity as earlier. In the concluding section, we summarize our
chapter. The original contribution of this thesis is from Section 4.3 to Section 4.7.

4.1 Origin of Biclique Cryptanalysis

Biclique cryptanalysis as stated in [39] originates from the splice-and-cut framework
in hash function cryptanalysis and, more specifically from its element called the initial
structure. The construction of initial structure is very design specific and hard to
generalize. To facilitate understanding of this concept, we describe the construction of
initial structure on MD5 hash function [143].

4.1.1 Short Description of MD5

The MD5 compression function (as shown in Fig. 4.1) follows Merkle-Damgard con-
struction principle and takes 512-bit message block and 128-bit chain value as inputs
and produces 128-bit output value. It consists of 4 rounds; each round consisting of 16
steps, i.e., 64 steps in total. The intermediate state consists of four registers (Ai, Bi,
Ci, Di) where, size of each register is 32-bits. Considering, IV (initial chaining value)
= (IV0, IV1, IV2, IV3) and h (final hash output) = (h0, h1, h2, h3), the state update
at each step (as shown in Fig. 4.1) is as follows:

(A0, B0, C0, D0) = (IV0, IV1, IV2, IV3)

Ai+1 = Di

Bi+1 = (Ai +Bi + Fi(Bi, Ci, Di) +Ki +Mπ(i))≪ si

Ci+1 = Bi

Di+1 = Ci (1 ≤ i ≤ 64)

(h0, h1, h2, h3) = (A64 ⊕ A0, B64 ⊕B0, C64 ⊕ C0, D64 ⊕D0)

74

Here, + denotes addition modulo 232, Fi and Ki are pre-defined step dependent
function and constant respectively, Mπ(i) is the 32-bit message block to be injected
at step i and ≪ si denotes the left rotation by sj bits. For further details on MD5
construction, one can refer to [143]. As seen in Fig. 4.1, message word is injected for
updating register B at each of the 64 steps. In this figure, the intermediate state at
step i is denoted by pi = (Ai, Bi, Ci, Di).

Fi

≪ si

Ai Bi Ci Di

Di+1Ci+1Bi+1Ai+1

Ki

Mπ(i)

pi

p(i+1)

Figure 4.1: MD5 compression function.

Consider step-reduced MD5 comprising of first 29 steps. In Table 4.1, we show the
message words used in each step of MD5.

Step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
M(π)i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Step i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
M(π)i 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
Step i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
M(π)i 5 8 11 14 1 4 7 10 13 0 3 6 9 12 5 2
Step i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
M(π)i 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Table 4.1: Message Schedule of MD5. Message block M = m0 || m1 || m2 . . .m15 where
each | mi | = 32-bits.

Now let us split the 29-step reduced MD5 into two chunks.

1st Chunk : Step 1 - Step 13
2nd Chunk : Step 14 - Step 29

It can be seen that 1st Chunk is independent of message word m13. Hence, if bits of
m13 are flipped, it will not affect the functioning of 1st Chunk. Similar property holds

75

true for message word m2 in 2nd Chunk . Such words are called neutral words [17] i.e.,
m13 is a neutral word for the 1st Chunk and m2 is a neutral word for the 2nd Chunk .

For preimage attack, let the intermediate state p14 be the matching state. We first
choose random values for mi (i /∈ 2,13). Then, for all values of m2, we calculate p14

in the forward direction and store the values in a table as (m2, −→p14). After that for
each value of m13, we calculate p14 in the backward direction and check whether the
computed ←−p14 exists in the stored table or not (shown in Fig. 4.2). If we get a match,
the corresponding message becomes the preimage.

1 13 29

IV h

−−→p14 ←−−p14

match ?

m2 m13

Figure 4.2: Overview of 29-steps attack on MD5

Let us have a look at another example. Consider MD5 from step 3 to step 61 (59
steps). Let,

1st Chunk : Step 22 - Step 3 and Step 61 - Step 48, Neutral Word: m15

Step 3 and Step 61 are considered consecutive steps as p61 = h - p3 (Splice-and-Cut).

2nd Chunk : Step 23 - Step 44, Neutral Word: m2

3 22 61

h

m2m15

44 48

?

m15

m15 m2
−−→p45 ←−−p48

←−−p48

Figure 4.3: Overview of 59-steps attack on MD5

It can be seen in Fig. 4.3 that m15 comes before m2 in steps 45-47 and hence in-
volves computation of both the neutral words. Therefore, there does not exist any
intermediate state in steps 45-47 that can be used as a matching state.

Sasaki et al. then suggested partial matching [17] instead of full 128-bit matching.
They showed that if only one word (32-bit) is matched, computation of some steps
can be skipped allowing more rounds to be covered. For example, in the above case,

76

through 1st chunk we calculate ←−p48 in the backward direction and in the forward direc-
tion through 2nd Chunk, we compute −→p45. Now,

←−p48 = (A48, B48, C48, D48) = (B45, B48, B47, B46) and,
−→p45 = (A45, B45, C45, D45) = (B42, B45, B44, B43).

It can be seen that both −→p45 and←−p48 have B45 in common and thus B45 can become
the matching variable. Hence, steps 45-47 need not be computed and can be skipped
altogether enabling the attacker to cover 59 steps of MD5.

Similarly, several other techniques such as local collision [19, 150, 151], partial fix-
ing [15, 17] etc. were proposed which allowed additional steps to be skipped, though
the number of matching bits get reduced. With these techniques, preimages for 63-
step MD5 [150], full MD4 (only one block) [150], 3-pass, 4-pass and 151-step 5-pass
HAVAL [19,151] were found.

4.1.2 Initial Structure

As mentioned in the above section, techniques mentioned above enable skipping of those
steps which involved computation of neutral words. However, all these techniques have
some limitations. For example, for partial matching approach to work, neutral words
can be at most (L-1) steps away where L denotes the number of chaining variables,
e.g., L = 4 for MD5. Similarly, local collision technique also requires neutral words
to be some specific steps away from each other. Cases where independent chunks
overlap each other in some part, i.e., (1st chunk, (2nd chunk, 1st chunk), 2nd chunk)
and conditions required to apply the above discussed techniques are not satisfied create
difficulties for the attacker because now she has no way to carry out the forward and
backward computations independently.

Step i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M(π)i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Step i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
M(π)i 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Table 4.2: Message Schedule of 31-step MD5.

For example, in Table 4.2, let,

1st Chunk : Step 0 - Step 13, Neutral Word: m6

2nd Chunk : Step 18 - Step 31, Neutral Word: m14

77

Now, in between the first and the second chunk, i.e., Step 14 - Step 17, m14 is used
before m6 and their positions are such that techniques like partial matching, partial fix-
ing technique and local collision won’t work (only 2 steps away from each other). The
initial structure technique was proposed to solve such problems. The initial structure
can be informally defined as an overlapping of chunks, where neutral bits, although
formally belonging to both chunks, are involved in computation of the proper chunk
only. To understand this concept let us have a look at a simple example shown in
Fig. 4.4

m2nd

m1st

Qj−3 Qj Qj−1 Q1st
j−2

Qj−1 Qj+2 Qj

1st - chunk

2nd - chunk

Qj+1

Fj

F ′
j

(a) 2-step MD5.

m2nd

m1st

Qj−3 Qj Qj−1 Q1st
j−2

Qj−1 Qj+2 Qj

1st - chunk

2nd - chunk

Qj+1

match ?
(2−32)

Fj

F ′
j

(b) 2-step initial structure(IS) in
MD5.

Figure 4.4: Blue denotes state influenced by m2nd, Red denotes states updated by m1st

and Green denotes state updated by both m1st and m2nd.

Suppose the words (m1st, Qj−2) (highlighted in red) are neutral for the 1st chunk
and the words (m2nd, Qj+2) (highlighted in blue) are neutral for the 2nd chunk. It
can be seen in Fig. 4.4(a) that Qj+1 in the 2nd-chunk is influenced by Q1st

j−2 (shown in
green). This is undesirable since computation of subsequent steps in 2nd-chunk will
now depend on Q1st

j−2. To carry out MITM attack, we need that Qj+1 depends only on
Qj+2 and m2nd (neutral words of the second chunk) and not on Q1st (neutral word of
the first chunk). Initial Structure technique helps us alleviate this problem. To make
the 2nd chunk independent of Q1st

j−2, we choose Qj−3 such that it cancels the change of
Q1st
j−2 (as shown in Fig. 4.4(b)) i.e.,

Qj−3 = −Fj(Qj, Qj−1, Qj−2)−Kj −m2nd + ((−Qj)≫ sj).

By choosing Qj−3 according to the equation above makes Qj+1 independent of the
influence of Q1st

j−2. In the second chunk, we can now compute Qj+1 according to the

78

values of m2nd and Qj+2 and carry out the computations without using Q1st
j−2. Thus,

a 2-step initial structure is formed which provides 264 free bits for both the first and
second chunks. This initial structure guarantees that the first and second chunks are
independent of each other’s neutral words and matching in the MITM phase succeeds
with a probability of 2−32 for randomly given m1st, Qj−2, m2nd, Qj+2. Thus, initial
structure is a group of few consecutive steps which includes neutral words in overlapping
order. However, it allows computing of steps before and after the initial structure
independent of neutral words of the second and the first chunk, respectively. With this
technique, preimages could be found for full round of MD5 [152], 43-step SHA-256 [15]
and 46-step SHA-512 [15] with a complexity of 2123.4, 2254.9 and 2511.5 respectively.

4.2 Biclique attack for finding preimages

The problem with the “initial structure” idea was that unlike other attacks, this ap-
proach was not generalizable and very construction specific. Khovratovich in [103]
introduced the concept of biclique attack which is a more generic version of initial
structure. Let us consider the Davies-Meyer mode: h = EM(CV)⊕ CV , where CV is
the chaining variable and E is the block cipher keyed with the message M . Let f be a
sub-cipher of E, and M = {M [i, j]} be a group of messages which are parameters for
f . Let the differences in a message group M be defined as:

∆M
i,j = ∆M

i ⊕∇M
j

Consider a single mapping,

Q0
M [0,0]−−−→
f

P0 (4.1)

which is called the base computation. Q is the input state of f and P is the output
state of f . For each group, 2d ∆j forward differentials are constructed from Q0 as
follows:

Q0
M [0,j]−−−→
f

Pj or, 0
∆M

j−−→
f

∆j (4.2)

Similarly, 2d backward differentials ∇i from P0 are constructed as follows:

Qi
M [i,0]←−−−
f

P0 or, ∇i

∇M
i−−→
f

0 (4.3)

If the above two differentials do not share any active nonlinear components for all i
and j, then a biclique of dimension d over f for M is formed as follows:

Qi
M [i,j]−−−→
f

Pj (4.4)

79

where,

Qi = Q0 ⊕∇i

Pj = P0 ⊕∆j

M [i, j] = M [0, 0]⊕∆M
i,j

The biclique attack works exactly the same way as described in the earlier chapter
for block ciphers. For each group, once a biclique is formed, the attacker then selects
a variable v outside of f and checks if:

Pj
M [·,j]−−−→ −→v ?

=←−v M [i,·]←−−− Qi (4.5)

A positive answer yields a preimage candidate and should satisfy the following
relation,

CV
M [i,j]−−−→ Qi

M [i,j]−−−→
f

Pj
M [i,j]−−−→ H (4.6)

otherwise the whole process is repeated for other message groups. To compute v
from Qi, the adversary first computes CV and then derives the output of E as CV ⊕H.

4.2.1 Biclique based Preimage Attack on SHA-2

In this section, we give a high level description of preimage attack on SHA-256 presented
in [103]. The compression function of SHA-256 is based on Davies-Meyer mode of
iteration and consists of 64-steps. It accepts a message input of 512-bits and produces
an output of 256-bits. The intermediate state is divided into 8 registers (Ai, Bi, . . . , Hi),
each of size 32-bits and at each step two registers, i.e., Ai and Ei are updated. A
schematic view of SHA-2 compression function is shown in Fig. 4.5.

Ci+1Bi+1Ai+1p(i+1)

Ai Bi Ci Di

Di+1

Ki

Mπ(i)

pi Ei Fi Gi Hi

Ei+1 Fi+1 Gi+1 Hi+1

Σ0

MAJ

Σ1

IF

Figure 4.5: Compression Function of SHA-2.

80

State Registers

Steps A B C D E F G H

17 6, 11, 12, 16

17, 20, 23, 24

29, 30

18 ∗ 25, 26, 27 6, 11, 12, 16

17, 20, 23, 24

29, 30

19 ∗ ∗ 0, 1, 2, 14, 15, 25, 26, 27 6, 11, 12, 16

16, 19, 20, 21, 17, 20, 23, 24

22, 23, 31 29, 30

20 ∗ ∗ ∗ ∗ 0, 1, 2, 14, 15, 25, 26, 27

16, 19, 20, 21,

22, 23, 31

21 ∗ ∗ ∗ ∗ ∗ ∗ 0, 1, 2, 14, 15, 25, 26, 27

16, 19, 20, 21,

22, 23, 31

22 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0, 1, 2, 14, 15,

16, 19, 20, 21,

22, 23, 31

Table 4.3: Biclique trails in Steps 17 − 22. ∗ stands for arbitrary difference. ∆i-trail
is shown in red and ∇j-trail is shown in blue. The numbers mentioned in each cell
denote the bits of the register (mentioned in the column header) affected by ∆i and
∇j trails. For example, the ∇ difference injected in the neutral message word m22 at
bits 22, 23 and 31 is propagated to the bits 22, 23 and 31 of register H at step 22, i.e.,
H22

22,23,31 from the backward direction.

For the preimage attack on SHA-256, a biclique is constructed over 6 steps (as
shown in Table. 4.3). In this attack, message words m12 to m27 used in steps 12-27 are
in the control of the attacker. Bits 25, 26, 27 of m17 are chosen as neutral bits for ∆i

trail in the forward direction whereas bits 22, 23, 31 of m22 are selected as neutral bits
for∇j trail in the backward direction. As can be seen from the table, the bits influenced
by ∆i-trail and ∇j-trail in the steps covered by the biclique are non-overlapping, thus
making both the trails independent of each other. To ensure that ∆i and ∇j-trails
affect non-overlapping bits in steps 17-22, certain conditions have been imposed on the
initial chaining value and message words in the attack (42 conditions [103]). For the
MITM stage, steps 2-16 form the 1st chunk (independent of m17) whereas steps 23-36
form the 2nd chunk (independent of m22). A38

0,1,2,3, i.e., bits 0, 1, 2, 3 of register A in
step 38 form the matching variable v. Some of the steps in each chunk are dependent on
neutral words belonging to the other chunk due to message scheduling of SHA-2 [15].

81

To mitigate their effect, message compensation technique [15] is used. For example, at
step 3 in the 1st chunk, message word m3 is used to update the intermediate states.
Now, according to message schedule algorithm,

m3 = m19 − σ1(m17)−m12 − σ0(m4) (4.7)

where, σ0(·) and σ1(·) are pre-defined functions in SHA-2 algorithm. Now, since m3 is
influenced by m17, which should not be the case, the attacker chooses m19 such that,
m19 = σ1(m17). 1 This way, the effect of m17 is canceled and message word m3 is made
independent of m17 which in turn leads to Step-3 in 1st chunk being independent of
m17. With this attack, preimages for 45 steps of SHA-256 and 50 steps of SHA-512
were found. Similarly, 22-steps of Skein-512 were also targeted. Table 4.4 summarizes
the biclique based preimage attacks on Skein-512 and SHA-2 based hash functions.

Target Steps Complexity Memory Reference

Skein-512 22 2511 26 [103]

SHA-256 45 2255.5 26 [103]

SHA-512 50 2511.5 24 [103]

Table 4.4: Biclique based Preimage Attacks on SHA-2 and Skein-512 family

4.3 Preimage Attack on AES-128 based Hashing

Modes

After the introduction of biclique attack for generating preimages on Skein and SHA- 2
based hash functions, the concept was utilized by Bogdanov et al. [39] to successfully
recover the secret key for full rounds of all AES variants. A natural extension was
to try generating preimages for AES based hash functions. Bogdanov et al. in [39]
showed translation of biclique key recovery attack on AES to the corresponding preim-
age attack on AES instantiated compression function. The current best complexity of
this attack as reported in [37] is 2125.35, 2125.51 and 2125.93 for AES-128, AES-192 and
AES-256 instantiated compression functions respectively with a probability of 0.632.

The above biclique based preimage attack on AES-128 instantiated compression
function cannot be converted to preimage attack on the corresponding hash function
(and hence second preimage attack as discussed in Section 4.6 later). This is due to
the fact that in the preimage attack on compression function shown in [37,39], the at-
tacker needs to modify the value of the chaining variable (CV) and the message input
to obtain the desired preimage. However, in hash function settings, the initialization

1Recall, we had said m12 - m27 are in the control of the attacker.

82

vector (IV) is a publically known constant which cannot be altered by the attacker.
Hence, the biclique trails used in the preimage attack on AES-128 based compression
function in [37,39] cannot be adopted to find preimage for the corresponding AES-128
based hash function. This is explained in more details next.

CV/key

E hmessage/plaintext

(a) MMO mode

message/key

E hCV/plaintext

(b) DM mode

Figure 4.6: Compression
Function in MMO and DM
mode respectively.

MC

SB
SR

MC

SB
SR

$3

$2

$1

K
ey

Sc
he

du
le

K
ey

Sc
he

du
le

∆K
i

Plaintext

Master Key

Figure 4.7: An example of the trail
used in [39] for preimage attack
on AES-128 instantiated compression
function.

Let us consider Matyas-Meyer-Oseas (MMO) mode and Davies-Meyer (DM) mode
based compression functions as shown in Fig. 4.6(a) and 4.6(b) respectively. In the
case of MMO mode, the chaining variable acts as the key input to the underlying block
cipher AES (as shown in Fig. 4.6(a)). If the chaining variable is used as the IV (in hash
function settings) then it is fixed and cannot be modified. This means that the value
of the key input to the block cipher should not change. However, the type of biclique
trails used in [39] (as shown in Fig. 4.7) for compression function introduce a change
both in the key input as well as all the intermediate states including the plaintext input
ensuring that the final chaining variable so obtained after the attack will not be the
desired IV . Hence, the kind of biclique trails we are interested in should only affect
the intermediate states (an example of which is given in Fig. 4.8) and not the key input.

Similarly, in the DM mode, the chaining variable acts as the plaintext input to the

83

underlying block cipher (as shown in Fig. 4.6(b)). Therefore, if the chaining variable
under consideration is the IV , then the chosen biclique trails should not inject any
difference in the plaintext input of the block cipher (an example of the same is shown
in Fig. 4.9). Again, the biclique trails adopted for preimage attack on AES-128 instan-
tiated compression function do not satisfy this condition (as seen in Fig. 4.7).

MC

SB
SR

$2

$1

K
ey

Sc
he

du
le

#2

#3

#4

#5

∆ - differential

Figure 4.8: An example of the de-
sired trails that will work for attack-
ing MMO based hash function. It is to
be noted only the plaintext input and
subsequent intermediate states are af-
fected in the trail considered whereas
the key input is a fixed constant.

MC

SB
SR

$1

$0

K
ey

Sc
he

du
le

#1

#2

#3

∆ - differential

∆K
i

Plaintext

Master Key

Figure 4.9: An example of the desired
trail that will work for attacking DM
based hash function. It is to be noted
here that the plaintext input is not af-
fected by the differential trail so chosen
and is a fixed constant.

The examples discussed above warrant searching of new biclique trails which can be
used to launch second preimage attack on AES-128 based hash functions. Moreover,
searching these trails manually may not give the best results as demonstrated in [5,37].
Hence, automated search process is required. Coupled with the fact that no prior
work on the analysis of block cipher based hash functions based on biclique technique
exists, motivated us to apply biclique attack to evaluate the security of AES-128 based
hash functions against second preimage attack. In this work, we implemented our
restrictions in C programs to enumerate the best biclique trails which guarantee the
lowest possible attack complexities.

4.3.1 Our Contributions

• We re-evaluate the offered security of full 10 rounds AES-128 based hash functions
against second preimage attack. This improves upon the previous best result on

84

AES-128 based hash functions by Sasaki at FSE’11 [149] where, the maximum
number of rounds attacked is 7.

• Our analysis is applicable to all the 12 PGV modes of the hash function con-
structions.

• The complexities of the biclique based analysis differ depending upon the PGV
construction chosen. For MP and MMO mode it is 2126.3 whereas for DM mode
it is 2126.67.

• We propose new biclique trails to achieve the above results.

• All the trails have been obtained by implementing C programs which ensure that
they yield the best attacks (lowest possible time complexity).

The results of our security evaluation against second preimage attack on all 12 PGV
based modes are given in Table 4.5. Though our results do not significantly decrease
the attack complexity in comparison to brute force attack but they highlight the actual
security margin provided by these constructions against second preimage attack.

Table 4.5: Summary of the second preimage attack results obtained. In this table, we
assume the hash function to be instantiated with the block cipher E, h is the chaining
variable, m is the message input and h⊕m = w . The brute-force complexity of these
attacks is 2128.

S.No. Hash Function Modes Second Preimage
Complexity

1 Eh(m)⊕m - MMO 2126.3

2 Eh(m)⊕ w - MP 2126.3

3 Em(h)⊕ h - DM 2126.6

4 Eh(w)⊕ w - similar to MMO 2126.3

5 Eh(w)⊕m - similar to MMO 2126.3

6 Em(h)⊕ w - similar to DM 2126.6

7 Em(w)⊕ h - similar to DM 2126.6

8 Em(w)⊕ w - similar to DM 2126.6

9 Ew(h)⊕ h - similar to DM 2126.6

10 Ew(h)⊕m - similar to DM 2126.6

11 Ew(m)⊕ h - similar to MP 2126.3

12 Ew(m)⊕m - similar to MMO 2126.3

85

4.4 Notations

To facilitate better understanding, we use the following notations in the rest of the
chapter.

CV : Chaining Variable
IV : Initialization Vector
(CV,message) : Input tuple to hash function/ compression function
(key,plaintext) : Input tuple to underlying block cipher
n : Input message/key size (in bits)
Ab : Base State
mb : Base Plaintext
Kb : Base Key
K[i, j] : Keys generated by ∆i and ∇j modifications
M[i, j] : Messages generated by ∆i and ∇j modifications
Nbr : Number of AES rounds called
Eenc/dec : One Round of AES encryption/decryption
E(x,y) : Full AES encryption under y-bit key and x-bit message
E−1(x,y) : Full AES decryption under y-bit key and x-bit message

For the sake of clarity, we will follow the same notation used for description of
AES-128 in Section 3.3.1. We address two internal states in each round as follows: #1
is the state before SubBytes in round 1, #2 is the state after MixColumns in round 1,
#3 is the state before SubBytes in round 2, . . . , #19 is the state before SubBytes in
round 10, #20 is the state after ShiftRows in round 10. The key K is expanded to a
sequence of keys K0, K1, K2, . . . , K10, which form a 4×44 byte array. Then the 128-bit
subkeys $0, $1, $2, . . . , $10 come out of the sliding window with a 4-column step. We
refer the reader to [57] for a detailed description of AES.

4.5 Biclique based Preimage Attack on AES-128 in-

stantiated Compression Function

In this section, we examine how biclique key recovery attack discussed in Section 3.2
can be applied to find preimage for block cipher based compression function. This
preimage attack on compression function will then be used to evaluate second preim-
age resistance of AES-128 based hash functions under different PGV modes as discussed
in Section 4.6.

Let us consider an AES-128 based compression function (as shown in Fig. 4.10). To
find the preimage for h, the attacker needs to find a valid (CV , message) pair which
generates h. In terms of the underlying block cipher E which is instantiated with AES-
128, this problem translates to finding a valid (plaintext, key) pair where both the key
and the plaintext are of 128-bits size. To guarantee the existence of a preimage for

86

h (with probability 0.632), the attacker needs to test 2128 distinct (key, plaintext) pairs.

message (m)/ key

E hCV/plaintext

Figure 4.10: AES-128 instantiated compression function in DM mode.

When biclique methodology is applied on AES-128 to recover the secret key [39], full
key space, i.e., 2128 keys are divided into 2112 groups of 216 size each and tested. 2 These
2112 groups are generated from 2112 base key values where each base value defines one
group. However, the same biclique approach when extended to hash functions warrants
the need of testing 2128 (key, plaintext) pairs. These 2128 (key, plaintext) pairs will be
generated from 2112 (key, plaintext) base states. Hence, under hash function settings,
along with the base key we introduce the term “base message”. We denote the base
key value as Kb and the base message value as Ab. If we apply the original biclique
approach [39] on compression function, then 2128 (key, plaintext) pairs are generated
from a combination of 2112(Kb, Ab) as shown in (Fig. 4.11).

(K
(1)

b
, Ab) −→ 216 (key, message) pairs

(K
(2)

b
, Ab) −→ 216 (key, message) pairs

.

.

.
(K

(2112)

b
, Ab) −→ 216 (key, message) pairs

(K
(3)

b
, Ab) −→ 216 (key, message) pairs

Figure 4.11: Generation of groups
in the original biclique attack [39]

Algorithm 1 :

Fix a base state Ab

for each 2112 base keys (K′bs) and the fixed chosen Ab

do
Generate 216 (∆k

i , ∇k
j) combinations

Generate corresponding 216K[i, j]
Construct a biclique structure using these
216K[i, j]

for each 216K[i, j] do

1. Generate M [i, j] (where M [i, j] = Nbr
Eenc/dec(K[i, j], Ab))

2. Perform meet-in-the-middle attack in the rest
of the rounds

Figure 4.12: Steps of the original biclique
attack in [39] using the base key Kb and
the base message Ab.

2In this work, bicliques of dimension d = 8 are constructed. In our attacks, we also construct
bicliques of dimension 8.

87

In this case, a single Ab is chosen and repeated across all the groups whereas 2112

different K ′bs are used. The biclique algorithm for the attack is shown in Fig.4.12. In
Algorithm 1, the specific (i,j) tuple for which a match is found gives us the correspond-
ing K[i, j] and M [i, j] as the desired inputs for compression function. The complexity
of this attack when applied for searching preimages in AES-128 instantiated compres-
sion function is 2125.35 [37].

In the procedure described above, it can be seen that the attacker generates a
chaining value (M [i, j]) of her own along with the preimage (K[i, j]). However, as
already discussed, the IV value is a public constant in the hash function setting and
cannot be altered by the attacker. In the subsequent section, we show how to utilize
variants of the above framework for launching second preimage attack on AES-128
based hash functions in different PGV modes with IV being fixed.

4.6 Second Preimage Attack on Hash Functions

In this section, we examine the feasibility of extending the biclique cryptanalysis tech-
nique for second preimage attack on AES-128 instantiated hash functions for all 12
PGV modes.

4.6.1 PGV Construction 1 - Matyas-Meyer-Oseas (MMO) Mode:
Eh(m)⊕ m

Consider MMO based hash function (as shown in Fig. 4.13), where the (chaining vari-
able, message block) tuple acts as the (key, plaintext) inputs respectively to block
cipher E. In this case, the attacker is given m = (m0 || m1 || pad) and its correspond-
ing hash value h2. Her aim is to find another different message, m′ that will produce
the same h2. To achieve so, the attacker can consider m′ as (m′0 || m1 || pad) where
the second half of m′ is same as message m while for the first half, the attacker has to
carry a biclique attack. For the first half, i.e., h1 := EIV (m′0), the attacker knows h1

and IV . Her aim is now to find a preimage m′0 which produces h1 under the given IV .
The attack steps are as follows:

E

m0 m1 ||pad

E h2

h1
IV

E

m′
0 m1 ||pad

E h2

h1
IV

Figure 4.13: Second Preimage attack on MMO based hash function

88

1. The attacker fixes IV as the key input to the block cipher E & chooses a 128-bit
base message Ab.

2. Choice of biclique structure . In this case, the key input to the block cipher
(i.e., IV) is fixed. The attacker has to choose a biclique structure such that the
∆i and ∇j trails only modify the message states and not the key states (since
IV cannot change) plus the biclique attack should have lowest search complexity.
All the existing biclique trails in literature allow modification in the keys states
as well, therefore, we construct new biclique trails to suit our needs.

3. We represent the ∆ and ∇ trails as ∆m
i and ∇m

j respectively. The biclique
structure satisfying the above requirements is as shown in Fig. 4.14(a).

MC

SB
SR

$2

$1

K
ey

Sc
he

du
le

#2

#3

#4

#5

MC

SB
SR

K
ey

Sc
he

du
le

#2

#3

#4

#5

MC

SB
SR

$2

$1

K
ey

Sc
he

du
le

#2

#3

#4

#5

Base Computation ∆ - differential ∇ - differential

$1

$2

Ab

(a) Biclique over 1.5 rounds

M
C

SRSB

#9

A
K

#6 #7

recomputed

A
K

#10

A
K

#11

SR M
C

SB

#12

A
K

#13
matching byte

B
ic

liq
ue

M
C

SRSB

#8

(b) Forward Recomputations

SR SB

#19 #18 #17

A
K

SRM
C

SB

#20

recomputed

A
K

SRM
C

SB

#16

A
K

#15

SRM
C

SB

#14
matching byte

#21

Fe
ed

Fo
rw

ar
d

Super S - box

#13

H
⊕

pl
ai

nt
ex

t

A
K

#1

bi
cl

iq
ue

(c) Backward Recomputations

Figure 4.14: Biclique structure for MMO mode when key/IV is known

4. For the above biclique, she divides the 128-bit message space into 2112 groups
each having 216 messages with respect to intermediate state #3 as shown in
Fig. 4.14(a). The base messages are all 16-byte values with two bytes (i.e., bytes
0 and 4) fixed to 0 whereas the remaining 14-bytes taking all possible values

89

(shown in Fig. 4.15). The messages in each group (M [i, j]) are enumerated with
respect to the base message by applying difference as shown in Fig. 4.16. The
proof for the claim that this base message (with the corresponding ∆i and ∇j

differences) uniquely divides the message space into non-overlapping groups is
given in Appendix A.1.

0 0

Figure 4.15: Base Message

i j1

j2

j3

j4

Figure 4.16: ∆i and ∇j differences

5. The biclique covers 1.5 rounds (round 2 and round 3 upto Shift Rows operation).
∆m
i trail activates byte 0 whereas ∇m

j trail activates bytes 3,4,9 and 14 of #3
state.

6. Meet-in-the-middle attack is performed on the rest 8.5 rounds. In the MITM
phase, partial matching is done in byte 12 of state #13. In the backward di-
rection, ∆m

i trail activates 4 bytes in the plaintext i.e., byte 0, 5, 10 and 15
whereas ∇m

j activates all bytes. As such, during the recomputation phase, the
4 bytes of plaintext affected by both ∆m

i and ∇m
j trails need to be recomputed.

Similar explanation can be provided for other bytes shown to be recomputed in
Figs. 4.14(b) and 4.14(c). In the forward propagation (starting from round 4),
4+16+4 = 24 S-boxes and in the backward propagation (starting from round 1),
4+16+16+4+1= 41 S-boxes are recomputed. Thus, a total of 65 S-boxes are
involved in the recomputation process. One full AES encryption requires 200
S-box computations. As each group has 216 messages, Crecomp = 216× 65

200
= 214.3.

Hence, Cfull = 2112 × 214.3 = 2126.3.

7. For the specific (i, j) value which produces a match in the middle, the corre-
sponding M [i, j] i.e., xoring of #3 states in base computation, ∆i and ∇j trails
(in Fig. 4.14(a)) yields the plaintext m′0 for the block cipher E. The biclique
algorithm, i.e., Algorithm 2 is as shown in Fig. 4.17.

Thus, with a time complexity of 2126.3, the attacker is able to find a (IV , m′0)
pair which produces hash value h1 and m′ = (m′0 || m1 || pad) forms a valid second
preimage.

90

Algorithm 2:

Fix a base state Ab
for each 2112 base messages (A′bs) and a single base key i.e., IV
do

Generate 216 (∆m
i , ∇m

j) combinations
Generate corresponding 216M [i, j]
Construct a biclique structure using these 216M [i, j]
for each 216M [i, j] do

1. Perform meet-in-the-middle attack in the rest of the rounds

Figure 4.17: Steps of the new biclique attack when key input to the
underlying block cipher is fixed and cannot be modified by the at-
tacker for MMO mode.

4.6.2 PGV Construction 2 - Miyaguchi-Preneel Mode (MP)
Mode: Eh(m)⊕m⊕ h

The MP mode is an extended version of MMO mode. The only difference between
the two constructions is the fact that output of block cipher is xor’ed both with the
plaintext input as well the chaining variable input. However, this does not demand
any extra attack requirements and the second preimage attack on MP mode is exactly
the same as that described on MMO mode.

4.6.3 PGV Construction 3 - Davies-Meyer (DM) Mode: Em(h)⊕
h

In the DM based hash function (as shown in Fig. 4.18), the (chaining variable, message
block) tuple acts as the (plaintext, key) inputs respectively to block cipher E.

m0 m1 || pad

E E h2

h1
IV

m′
0

m1 || pad

E E h2

h1
IV

Figure 4.18: Second Preimage attack on DM based hash function

91

We again inspect a similar scenario as described in 4.6.1, i.e., for a message m =
(m0 || m1 || pad), the attacker is given its corresponding hash value h2. Her aim is to
find another different message m′ that will produce the same h2. Consider the hash
function as concatenation of two compression functions - Em0(IV) and Em1|| pad (h1).
To get a valid second preimage, the attacker chooses m′ as - (m′0 || m1 || pad) i.e., she
focuses on the first compression function and her aim is to find m′0 such that Em′0(IV)
= h1 when IV and h1 are known to the attacker. The attack steps are as follows:

1. The attacker fixes the IV as the plaintext input to the block cipher.

2. Choice of biclique structure. Under the given attack scenario, since the
message input, i.e., IV is fixed, the attacker has to choose a biclique structure
such that the ∆i and ∇j trails do not modify the plaintext state and the biclique
attack has the lowest search complexity. The biclique structure satisfying the
above requirements is given in Fig. 4.19(a). 3

MC

SB
SR

$1

$0

K
ey

Sc
he

du
le

#1

#2

#3

MC

SB
SR

K
ey

Sc
he

du
le

#1

#2

#3

MC

SB
SR

$1

$0

K
ey

Sc
he

du
le

#1

#2

#3

$0

$1

mb mi mj

Base Computation ∆i Computation ∇j Computation

∆K
i

∇K
j

(a) Biclique over first round

M
C

SRSB

#5 #6 #7

A
K

#3 #4

recomputed

A
K

SR M
C

SB

#8

A
K

#9

SR M
C

SB

#10

A
K

#11
matching byte

St
ar M

C
SRSB

(b) Forward Recomputations

M
C

SR SB

#17 #16 #15#19

A
K

SRM
C

SB

#18

recomputed

A
K

SRM
C

SB

#14

A
K

#13

SRM
C

SB

#12 #11
matching byte

A
K

SR SB

#20#21

A
K

$10 $9

Fe
ed

Fo
rw

ar
d

H
⊕

pl
ai

nt
ex

t

(c) Backward Recomputations

Figure 4.19: Biclique structure for DM mode when IV /message input is known to the
attacker

3We utilize star based bicliques here as discussed in Section 3.6

92

3. For the above biclique, she divides the 128-bit key space into 2112 groups, each
having 216 keys with respect to subkey $0 i.e., the master key as the base key
as shown in Fig. 4.19(a). The base keys are all 16-byte values with two bytes
(i.e., bytes 0 and 1) fixed to 0 whereas the remaining 14-bytes taking all possible
values (shown in Fig. 4.20). The keys in each group (K[i, j]) are enumerated
with respect to the base key by applying difference as shown in Fig. 4.21. It
can be easily verified that this base key uniquely divides the key space into non-
overlapping groups.

0

0

Figure 4.20: Base Message

j

i

Figure 4.21: ∆i and ∇j differences

4. The biclique covers the first round. ∆i trail activates byte 0 of $0 subkey whereas
∇j trail activates byte 1 of $ 0 subkey.

5. The attacker then performs meet-in-the-middle attack on the rest of the 9 rounds.
In the MITM phase, partial matching is done in byte 12 of state #11. In the
forward propagation (starting from round 2), 2+16+16+4 = 38 S-boxes and
in the backward propagation (starting from round 10), 5+16+16+4+1 = 42 S-
boxes need to be recomputed (as shown in Figs. 4.19(b) and 4.19(c)). 2 S-box
recomputations in the key schedule are also required. Thus a total of 82 S-boxes
are involved in recomputation process. One full AES encryption requires 200
S-box computations. As each group has 216 keys, Crecomp = 216 × 82

200
= 214.6.

Hence, Cfull = 2112 × 214.6 = 2126.6.

6. For the specific (i, j) value which produces a match in the middle, the correspond-
ing K[i, j] forms the key (m0) for the block cipher E. The biclique algorithm,
i.e., Algorithm 3 is given in Fig. 4.22.

Thus with a time complexity of 2126.6, the attacker is able to find a (IV , m′0) pair
which produces hash value h1 andm′ = (m′0 || m1 || pad) forms a valid second preimage.

The attack procedure on two block message for other constructions is similar to
those discussed in Section 4.6.1-Section 4.6.3. Their results are given in Table 4.5.

4.7 Second Preimage attack on hash functions ex-

tended to messages with message length ≥ 3.

The second preimage attack discussed in the previous sections can be extended to
messages of any length > 2 with same complexity as obtained for 2-block messages. To

93

Algorithm 3 :

for each 2112 base keys (K ′bs) and the fixed chosen IV do
Generate 216 (∆k

i , ∇k
j) combinations

Generate the corresponding 216K[i, j]
Construct a biclique structure using these 216K[i, j]
for each 216K[i, j] do

1. Perform meet-in-the-middle attack in the rest of the rounds

Figure 4.22: Steps of the new biclique attack when message input is
fixed and known to the attacker under DM mode

demonstrate this, consider a MMO-based hash function with 3-block message as shown
in Fig. 4.23. In this case, the attacker is given a message m = (m0 || m1 || m2 || pad)
and its corresponding hash value h3. Her aim is to find another message m′ such that
H(m′) = H(m). The attacker knows IV and the compression function E. She will
choose any m0 of her own choice, e.g., let m0 = 0, and then calculate h1 = EIV (0). Once
she knows h1, the setting is reduced to the case discussed in Section 4.6.1, i.e., h1 and h2

are known to the attacker and her aim is to find m′1 such that m′ = (0 || m′1 || m2 || pad)
forms a valid second preimage. This can be found with a complexity of 2126.3 which
is same as that shown for a 2-block message . Similarly, the attack can be applied on
other long messages for all other PGV modes.

E

0 m′
1

E
h2h1

IV E

m2 || pad

h3

E

m1

E
h2h1

IV E

m2 || pad

h3

m0

Figure 4.23: MMO base hash function with | m |=3

4.8 Summary

In this chapter, we discussed the application of biclique attack in hash function settings
to find preimages. We reviewed a couple of existing biclique based preimage attacks on
some dedicated hash functions and then evaluated the security of AES-128 based hash
modes against second preimage attack. Specifically, we examined the applicability of
biclique attack on all 12 PGV modes when instantiated with AES-128 and showed

94

that best biclique attack for finding preimages in AES-128 instantiated compression
function did not translate to best attack for second preimage search under AES-128
based hash function settings. Similar attacks would work for AES-192 and AES-256
instantiated hash functions as well. A natural research extension to this work would be
to apply the ideas discussed in this chapter to hash functions instantiated with other
block ciphers. Another research direction can be to extend the methodology to carry
out collision attacks on hash functions.

95

Chapter 5

Sliced Biclique Cryptanalysis of
Type-2 Generalized Feistel
Networks

In this chapter, we discuss another variant of biclique cryptanalysis termed as sliced
biclique cryptanalysis. We revisit hash function settings and study the application of
biclique cryptanalysis to generate collisions. All the biclique related attacks on block
ciphers are carried out under the “unknown key settings” where the key used is un-
known to the attacker and the main motive is to recover the secret key. However,
this may not always be the case. Particularly, in the case of block cipher based hash
modes such as Matyas-Meyer-Oseas (MMO) and Miyuguchi-Preneel (MP), initial vec-
tor IV (which acts as the key to the underlying block cipher) is a fixed public constant
assumed to be known apriori to the attacker. Such scenarios are called “known key
settings” in the attack model. Under such conditions, the aim of the attacker is to find
a property which distinguishes known key instantiations of target block cipher from
random permutations [109,132]. These settings are considered much stronger from the
attacker’s point of view since she unwillingly loses some degree of freedom (as in MMO
mode: ECV (M) ⊕M , if the CV is fixed, then the attacker can only choose the input
and cannot manipulate the round injections) reducing chances of carrying out generic
attacks such as finding full collisions. Until recently, most of the collision attacks on
hash functions under MMO and MP modes were restricted to variants of generic attack
such as pseudo-collisions [121] and near collisions [165]. In [99], Khovratovich used bi-
clique technique to mount collisions and preimage attacks on Grøstl and Skein under
known key settings. He proposed a variant of classical biclique technique used in [39]
to carry out his attack. He termed this variant as sliced biclique cryptanalysis. Sliced
biclique technique is a translation of the regular biclique technique applied to permuta-
tions, i.e., block ciphers with non-modifiable fixed key input. Though the results of this
work are quite interesting, yet they have not been studied further. In this chapter, we
discuss sliced biclique cryptanalysis and apply it to study Type-2 Generalized Feistel
Network (GFN) based constructions under known key settings. Although the security

96

of GFNs have been studied earlier under known key settings [50, 68, 96, 148, 153], all
these previous studies have utilized rebound attack technique [118] for their cryptanal-
ysis. Hence, one of our aims was to investigate how other cryptanalytic techniques
could be used to exploit non-ideal properties of generalized Feistel structures.

This chapter is organized as follows: We first discuss sliced biclique and sliced bi-
clique based preimage attack in Section 5.1. We then describe Type-2 Generalized
Feistel Network in Section 5.2 along with the current cryptanalytic results existing
on it. In Section 5.3 we describe the notations used in this chapter followed by Sec-
tion 5.4 which explains the important preliminaries. In Section 5.5, we present our
distinguishing attack on 8 rounds of 4 branch, Type-2 GFN under fixed key settings.
We use this distinguishing attack to show collision attack on 4-branch, Type-2 GFN
based compression function in Section 5.6 followed by the extension of this attack to
hash functions in Section 5.7. The collision attack on CLEFIA based hash function is
discussed in Section 5.8. Finally in Section 5.9, a summary of this chapter is presented.
The original contribution of this thesis is from Section 5.2 to Section 5.8.

5.1 Sliced Biclique Cryptanalysis

Sliced biclique cryptanalysis is a variant of biclique attack that works under the known
key settings. At the core of this attack technique is the construction of sliced biclique.
As against regular biclique, the term sliced biclique not only defines construction of a
different biclique structure but also a different matching variable v that will be used
in the MITM phase of the sliced biclique attack. In the subsequent subsections, we
first define a sliced biclique. This is followed by a description of the biclique structure
constructed in the sliced biclique. We then discuss sliced biclique cryptanalysis by
showing a preimage attack on block cipher based compression function using sliced
biclique.

5.1.1 What is a sliced biclique ?

Let us consider the MMO mode, H = EIV (M) ⊕M , where IV is the initial chaining
value acting as the key for the block cipher E, M is the message and H is the hash
value produced. Since, we assume IV to be public and hence known to the attacker,
the cipher E becomes a simple permutation, i.e., H = E(M)⊕M .

LetQ be an internal intermediate state within E whose full state space is partitioned
into sets of size 22d represented as Qi,j where, variables i and j take all d-bit values for
some constant d, i.e., (0 ≤ i, j ≤ 2d − 1). Let f be a sub-permutation within E which
maps Qi,j to another set of intermediate states Pi,j, i.e.,

∀i, j Qi,j −→
f
Pi,j

97

b
b

b
b b

b

b
b

Input/output relation

Q1,1

Q1,0

Q0,1

Q0,0 P0,0

P1,0

P0,1

P1,1

v

f

input output

−−→vi,0
←−−v0,j

E

Figure 5.1: Sliced biclique for a permutation E [99].

Let, v be an intermediate state within E that lies outside f , i.e., v ∈ {E \ f}.
Further, let the computation of value of v in the forward direction as a function of P
and in the backward direction as a function of Q be denoted as −→vi,j and←−vi,j respectively
(as shown in Fig. 5.1). A sliced biclique can then be defined as follows:

Definition 1 Sliced Biclique [99].
Given a permutation E and intermediate states Qi,j, Pi,j and v within E as defined

above, the states Qi,j and Pi,j form a sliced biclique if, there exists a v such that:

∀i, j : −→vi,j = −→v0,j,

∀i, j : ←−vi,j = ←−vi,0
i.e., the value of intermediate state v is only influenced by j in the forward direction

and by i in the backward direction.

The choice of sub-permutation f and partitioning of Q into Qi,j is described in the
next subsection.

5.1.2 Construction of biclique structure in a sliced biclique

The mapping Qi,j −→
f
Pi,j in Fig. 5.1 represents the biclique structure in a sliced biclique.

The attacker first selects an internal intermediate state Q and partitions the full state
space into sets of size 22d represented as Qi,j where, 0 ≤ i, j ≤ 2d− 1 for some d. Each
set is defined by its base state Q0,0 which is randomly selected by the attacker. She
then choose two sets of differences – ∆i and ∇j, and construct a biclique where:

Qi,j = Qi,0 ⊕∇j (5.1)

Pi,j = P0,j ⊕∆i (5.2)

These Qi,j and Pi,j are obtained using 2d ∆i and ∇j differentials as follows:

98

Q0,0

Q0,j
∇j

P0,0

f P0,j

f

Pi,0

Pi,j

∆i

∆i

Qi,0

Qi,j

f

f
= ∇j ?

Figure 5.2: Boomerang quartet representation of biclique construction

1. The attacker computes, Q0,0 −→
f
P0,0 (base computation).

2. She then sets Q0,j = Q0,0 ⊕∇j

3. She computes Q0,j −→
f
P0,j

4. She then sets Pi,j = P0,j ⊕∆i (=⇒ Pi,0 = P0,0 ⊕∆i)

5. She computes Qi,j ←−
f
Pi,j

Now, here it can be seen that Eq. 5.2 has already been satisfied by definition.
For Eq. 5.1 to satisfy, it is necessary that the states Q0,0, Q0,j, Qi,0 and Qi,j form a
boomerang quartet (as shown in Fig. 5.2).

To achieve so, the attacker will choose ∆i and ∇j trails such that their propagation
through f do not share any active non-linear component between them. Then, the
states Q0,0, Q0,j, Qi,0 and Qi,j are guaranteed to form a boomerang. The proof of this
property has already been discussed in Section 3.1.2.1. Thus, both Eqs. 5.1, 5.2 will be
satisfied and a biclique will be constructed. 1 Each Q0,0 defines one biclique structure
consisting of 22d intermediate states where, the parameter d is called the dimension of
the biclique.

5.1.3 Preimage attack using sliced biclique

In this section, we describe a preimage attack using sliced biclique technique. The
attacker is given hash output H = E(x)⊕ x. Her aim is to find the preimage x.

To do so, the attacker considers the block cipher E as a composition of two sub-
permutations: E = f ◦ g and splits the state space of intermediate state Q into 22d

groups. For each group of 22d states:

1It is not necessary for independent biclique/sliced biclique attack to have ∆ and ∇ differentials
start from distinct ends of the subcipher. The only requirement that is essential is that both trails
should be non-interleaving.

99

1. The attacker first constructs a biclique structure:

∀i, j Qi,j −→
f
Pi,j

as described in Section 5.1.2.

2. Once a biclique is constructed, the attacker the chooses an internal state v ∈ g and
computes its value both in the forward direction as a function of P (denoted as
−→vi,j) and in the backward direction as a function of Q (denoted as←−vi,j) respectively
for every (i, j) pair.

Qi,j Pi,j v−→vi,j ←−vi,j

IV E(M)

←−vi,j
f

Figure 5.3: Biclique Attack.

To compute←−v in the backward direction, the value of E(M) is required (as shown
in Fig. 5.3) which can be easily calculated by E(M) = H ⊕M . As discussed
in Section 5.1.1, the attacker tries to choose a state v such that in the forward
direction it only depends on j and in the backward direction it only depends on
i, i.e.,: 2

∀i, j : −→vi,j = −→v0,j,

∀i, j : ←−vi,j = ←−vi,0.

3. Let −→v0,j = −→vj and ←−vi,0 =←−vi . Finally, the attacker checks if:

∃i, j : −→vj =←−vi .

If such an (i, j) pair exists, the corresponding Qi,j becomes the preimage candi-
date. If not, then the attacker picks up another group of states and repeats the
whole procedure.

Thus, there are two main differences between sliced biclique cryptanalysis and the
regular biclique cryptanalysis:

1. The internal difference in the sliced biclique attack is caused from the state itself
instead of the key schedule algorithm in the regular biclique cryptanalysis.

2In the traditional biclique key recovery attack in [39], this special restriction on v is not required.

100

2. The biclique is limited to be sliced in the sliced-biclique cryptanalysis which
results in a different partial matching process.

The flip side of this variant is that as compared to regular bicliques, the number
of rounds attacked through sliced bicliques is smaller since the diffusion of ∆ and ∇ -
differences in the intermediate states is much quicker.

Complexity of the attack. The sliced biclique preimage attack comprises of 2
phases - biclique construction phase and MITM phase. Let the block cipher E consist
of y rounds and the number of rounds covered in the biclique phase be x. This implies
the number of rounds covered in the MITM phase is y − x = z. For each set of
messages, in the biclique phase, since all ∆i 6= ∇j and ∆i trails are independent of
∇j trails, the construction of biclique is simply reduced to computation of ∆i and ∇j

trails independently which requires no more than 2.2d computations of f , i.e.,

Complexity of biclique phase = 2d × x

y
+ 2d × x

y
= 2d+1 × x

y
.

Similarly, in the MITM phase, the attacker needs to call each of −→vj and ←−vi for 2d

times, i.e., a total of 2d+1 times. Let the number of rounds covered in the forward and
backward direction be a and b respectively. Hence,

Complexity of MITM phase = 2d × a

y
+ 2d × b

y
= 2d × a+ b(= z)

y
= 2d × y − x

y
.

It is now easy to check that the overall complexity of sliced biclique preimage attack
for one set of messages does not require more than 2d full computations of E, i.e.,

Total Complexity = 2d+1 × x

y
+ 2d × y − x

y
= 2d × (1 +

x

y
) ≈ 2d since, x� y.

If m bicliques are constructed, then the total cost is m× 2d.

Khovratovich used sliced biclique based preimage attack to produce collisions and
applied it to round-reduced Skein hash function. He showed a 6-round collision attack
on Skein-512 with a complexity of 2224 and 11-round collision attack with a complexity
of 2251. Similar attacks were also demonstrated on various rounds of Skein-256 with
the highest number of rounds attacked being 9 with a complexity of 2124. For further
reading on sliced bicliques, one can refer to [99].

5.2 Type-2 Generalized Feistel Network

Feistel structure is one of the basic building blocks of block ciphers and block ciphers
based constructions. A Feistel network divides the input message into two sub-blocks

101

(or two branches). Generalized Feistel Networks (GFN) are variants of Feistel networks
with more than two branches, i.e., a k-branch GFN partitions the input message into
k sub-blocks. They are sometimes favored over traditional Feistel scheme due to their
high parallelism, simple design and suitability for low cost implementations. Many
types of generalized Feistel schemes have been proposed and studied by researchers,
as discussed in Section 2.3. Type-2 GFN in particular has seen wide adoption in well
known block ciphers such as RC6 [145], SHAvite3 [27], CLEFIA [160], HIGHT [87] etc.
Security analysis of generalized Feistel network [36,85,159,177] has been an active area
of research for past many years. In fact, a comprehensive study done by Bogdanov
et al. in [42] suggests that Type-2 GFN and its variants are more robust and secure
against differential and linear cryptanalysis as compared to Type-1 GFN. Hence, we
choose Type-2 GFN (shown in Fig. 5.4) as the basis for our study.

⊕F ⊕F

B1 B2 B3 B4

Figure 5.4: 4 branch, Type-2 Generalized
Feistel Structure with right cyclic shift.

S1

S2

Sn

S1

S2

Sn

PP

K1 K2

Figure 5.5: Double SP Function.

Type-2 GFN with double SP layer. It is generally desired that the round function
F inside a generalized Feistel network should provide good diffusion and confusion
properties. This is often realized by implementing F as a substitution-permutation
network (nonlinear S-box transformation followed by linear permutation) as part of the
round function design. There is a general belief that increasing the number of active
S-boxes provides higher security margin against certain attacks. In [42], Bogdanov and
Shibutani stressed on the importance of double SP (substitution-permutation) layers
in the round function of Feistel networks as opposed to the single SP layer in the
traditional design. They analyzed several designs such as single SP, double SP, SPS
(substitution-permutation-substitution) and multiple SP layers and showed that double
SP (shown in Fig. 5.5) layer achieves maximum security with respect to the proportion
of active S-boxes in all S-boxes involved against differential and linear cryptanalysis.
They especially compared double SP structure with single SP and showed that for
Type-1 and Type-2 GFNs, proportion of linearly and differentially active S-boxes in
double SP instantiations is 50% and 33% higher respectively as compared to the single
SP instantiation. Their research advocated a possibility of designing more efficient
and secure block cipher based constructions using double SP layer. In [148], Sasaki
presented a 7-round distinguisher attack on 4-branch, type-2 GFN with double SP
layer and a 6-round near collision attack on the compression function based on the

102

same structure. Kumar et al. [50] further improved the distinguishing attack on 4-
branch, type-2 GFN with double SP layer by showing an 8-round distinguisher for the
same. However, the form of truncated differential trails followed in [50, 148] cannot
be used to launch collision attack when the above GFN structure is instantiated in
compression function modes under known key settings. In our work, we construct an
8-round distinguisher which can be then used to generate collisions in 4-branch, type-2
GFN with double SP instantiated compression function with a complexity lesser than
brute force (264) on 128-bit block input. We achieve so with the help of sliced biclique
cryptanalysis technique.

5.2.1 Our Contributions

The main contributions of this chapter are as follows:

1. We apply sliced biclique technique to construct an 8-round distinguisher on 4-
branch, Type-2 Generalized Feistel Network.

2. We use the distinguisher so constructed to demonstrate an 8-round collision
attack on 4-branch, Type-2 GFN based compression functions (in MMO and
MP mode) under known key settings with a complexity of 256 (on 128-bit hash
output). The attack can be directly translated to collision attacks on Matyas-
Meyer-Oseas (MMO) and (Miyaguchi-Preneel) MP mode based hash functions
and pseudo-collision attacks on Davies-Meyer (DM) mode based hash functions.

3. When the round function F is instantiated with double SP layer, we demonstrate
the first 8-round collision attack on 4-branch, Type-2 GFN with double SP layer.
This improves upon the 6 round near collision attack on the same structure by
Sasaki in [148].

4. We investigate CLEFIA which is a real world-implementation of 4-branch, Type-
2 GFN and demonstrate an 8-round collision attack on CLEFIA based hash
function with a complexity of 256.

5.3 Notation

We consider 4-branch, type-2 generalized Feistel network for our attack. Following
notation is followed in the rest of the sections.

N : Input message size (in bits)
n : Message word size (in bits) which is input to each branch,

i.e., n = N/4
$R : Round R
$Rp : pth word in round R. Each round has 4 words correspond-

ing to 4 partitions of 4-branch GFN, i.e., 1 ≤ p ≤ 4
$Rl

p : lth block of word p in round R

103

5.4 Preliminaries

In this section, we give a brief overview of the key concepts used in our cryptanalysis
technique to facilitate better understanding.

5.4.1 Type-2 Generalized Feistel Network (GFN) instantiated
with double SP layer

One round of Type-2 GFN is shown in Fig. 5.6. A GFN with 4 branches divides
the input B into four equal parts [B1, B2, B3, B4]. A round of Type-2 GFN with left
cyclic shift outputs [F (B1)⊕B2, B3, F (B3)⊕B4, B1] for some keyed nonlinear function
F [42]. On the other hand, a round of Type-2 GFN with right cyclic shift outputs
[F (B3)⊕B4, B1, F (B1)⊕B2, B3] (as shown in Fig. 5.4) for round function F .

⊕F ⊕F

B1 B2 B3 B4

Figure 5.6: 4-branch, Type-2 Generalized Feistel Network with left cyclic shift.

The round transformation function F when defined by non-linear S-box layer fol-
lowed by a permutation layer P exhibits substitution permutation structure. The
permutation P is generally implemented using standard MDS matrix. If this SP struc-
ture is applied twice one after another then it is called double SP, as shown in Fig. 5.5.
Few reasons favoring double SP over single SP function are as follows [42]:

• The second S-box in double SP provides larger number of active S boxes when
differential and linear attacks are applied.

• The second permutation layer in double SP structure limits the differential ef-
fect, i.e., number of differential trails resulting in same differential is smaller as
compared to round function having single permutation layer.

5.4.2 t-bit Partial Target Preimage Attack

Let the output of a hash function H with initial chaining value IV and message M be
denoted by h, i.e., h = H(IV , M). In this attack, when the attacker is given t-bits of
h, his aim is to find a message M ′ such that the hash output h′ = H(IV , M ′) matches
these t-bits of h and at the same positions. The other bits of hash output H(IV , M ′)
are generated randomly.

104

5.5 Distinguishing Attack on 4-branch, Type-2 GFN

based Permutation

In this section, we present an 8-round distinguisher on permutation Ek (where k is the
key) which is an 8-round, 4-branch, Type-2 Generalized Feistel Network using sliced
biclique cryptanalysis. We assume that the S-box layer has good differential property
and the P-layer implements standard MDS matrix. 3 We also assume that the key
k (that is IV in the overlying hash function construction) is a fixed constant. The
distinguishing property used by the distinguisher is as follows:

Distinguishing Property. Let Ek be a block cipher with message size N = 128-
bits. The aim of the adversary is to collect 216 (plaintext, ciphertext) pairs such that
the XOR of the lower 16 bits of the third word in the plaintext and the lower 16 bits of
the third word in the ciphertext (where each word is of size 32-bits) is always a 16-bit
constant value chosen by the attacker, i.e.,

(plaintext)2
3 ⊕ (ciphertext)2

3 = constant (5.3)

where, |constant| = 16-bits. 4

In case of random permutation. When Ek is a random permutation, the proba-
bility that any (plaintext, ciphertext) pair satisfies the desired property (as mentioned
in Equation 5.3) is 2−16. This means that the expected time complexity to generate one
such (plaintext, ciphertext) pair is 216. Hence, expected time complexity to generate
216 such (plaintext, ciphertext) pairs is 232.

In case of E instantiated with 4-branch, Type-2 GFN. For the illustration of
our attack, we consider N =128-bit and n = 32-bit each. The attacker first chooses a
random base value Q0,0 (as discussed in Section 5.1). Let ∆i = (0̄0̄ | i0̄ | 0̄0̄ | 0̄0̄) and
∇j = (0̄0̄ | 0̄j | 0̄0̄ | 0̄0̄) where (0 ≤ i, j ≤ 216 − 1) be the ∆ and ∇ differences injected
in Round 4. Here, each 0̄ represents 016. The propagation of ∆i trail (marked as ‘|’ in
green) and ∇j trail (marked as ‘-’ in red) is shown in Fig. 5.7 and Fig. 5.8 respectively.
In these figures, the four words shown in each round are the corresponding inputs to
four branches at each round. In ∇j trail, the attacker first injects the given j difference
in $42

2 word only. As the ∇j trail propagates as shown in Fig. 5.8, $41 and $44 words
are subsequently affected. The dimension of this biclique is d=16.

It is easy to check that ∆i and ∇j trails are independent and do not share any
non-linear components (shown in Fig. 5.9) between them in rounds 4 and 5. Thus, a

3In this line of work, implementation of P-layer as a standard MDS matrix having optimal branch
number is believed to be a good design choice [42,96,148,153]

4Here (plaintext)23 denotes second block of third word of plaintext as described in Section 5.3. The
term (ciphertext)23 can be understood similarly.

105

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

i

Figure 5.7: ∆i difference injection in Round 4 and its propagation.

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

j

Figure 5.8: ∇j difference injection in Round 4 and its propagation.

⊕ ⊕F F

⊕ ⊕F F

R4

R5

⊕ ⊕F F

R6

j
i

Figure 5.9: 2-round biclique placed in Round 4 - 5.

2-round biclique (consisting of 22d = 232 messages) is formed where the biclique covers
rounds $4 and $5. Now the aim of the attacker is to find a matching variable v which
only depends on ∆i trail in one direction and ∇j trail in the other direction (as dis-
cussed in Section 5.1). Hence, from round 6 only ∇j trail is propagated in the forward

106

direction and from round 3 only ∆i trail is propagated in the backward direction (as
shown in Fig. 5.10). At the end of 8th round it can be seen that $12

3 (marked in yellow
in Fig. 5.10) in the backward direction is not affected by the ∆i trail (i.e., will be af-
fected by ∇j trail only) and $82

3 (marked in yellow in Fig. 5.10) in the forward direction
remains unaffected by the ∇j trail (i.e., will be affected by ∆i trail only). Through feed
forward operation, 16 bits of $12

3 can then be matched with 16 bits of $82
3. Hence, in this

attack we choose $82
3 to be our matching variable v and | v | = 16 which is denoted by t.

Once the matching variable v is obtained, as mentioned above, through our biclique
attack, 22d = 232 (plaintext, ciphertext) pairs are generated in a set. Out of these 22d

(plaintext, ciphertext) pairs, there exists 22d−t = 216 (plaintext, ciphertext) pairs which
match on matching variable v. In other words, if we XOR the lower 16 bits of the third
word in the plaintext and the lower 16 bits of the third word in the ciphertext (i.e.,
at positions $12

3 and $82
3 respectively), Equation 1 will always be satisfied. These 216

(plaintext, ciphertext) pairs will be generated with a computational complexity of 2d

= 216 (as discussed in Section 5.1) which is lower than the computational complexity
of 232 in case of random permutation. Hence, a valid distinguisher for E when instan-
tiated with 4-branch, Type-2 GFN is constructed.

Similarly, our attack can be applied to messages of other sizes as well. In Table 5.1,
we report the complexity values for our distinguisher attack on message inputs of
different size.

Table 5.1: Complexity of our distinguishing attack on message inputs of different size.
N represents the input message size in bits and #(P-C) pairs represent the number of
plaintext-ciphertext pairs needed for our attack. The number of plaintext-ciphertext
pairs depends on the size of matching variable v.

N n #(P-C) Complexity of Complexity of

pairs our attack random permutation

64 16 28 28 216

256 64 232 232 264

512 128 264 264 2128

107

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕
H

Depends on Depends on
i trail j trail

v

∆
i

trail
∇

j
trail

$1

$2

$3

$4

$5

$6

$7

$8

Figure 5.10: Matching in 8 rounds of 4-branch Type-2 GFN with right cyclic shift.

108

5.6 Collision Attack on 4-branch, Type-2 GFN based

compression function

The distinguisher constructed in the previous section can be used to launch collision
attack on 4-branch, Type-2 GFN based compression function as described below. We
assume the compression function to be in MMO mode and the output is assumed to
be of N = 128-bits.

• The attacker first chooses a t-bit constant of his choice.

• In the above attack, the attacker then finds a matching variable v, where | v | ≤ t.
In our attack, | v | = t = 16 bits.

• There are 22d = 232 messages in a biclique set. Out of these 22d messages, only
22d−t messages will match on v. This means that out of 232 messages only 216

messages will survive the MITM phase.

• In other words, it can be said that the attacker has generated 216 t-bit partial
target preimages with these t-bits equal to an arbitrarily chosen constant selected
in first step.

• These 216 t-bit partial target preimages collide on t = 16 bits. Hence, if the
attacker generates 2(N−t)/2 such preimages which collide on t-bits, there exists a
colliding pair with high probability which collide on the remaining N − t bits as
well. Thus, the attacker will generate 2(128−16)/2 = 256 such t-bit partial target
preimages to obtain a collision on complete hash output H with high probability.

• Now, one sliced biclique generates 216 t-bit partial target preimages. Hence, to
generate 256 such preimages, the attacker needs to construct 256−16 = 240 sliced
bicliques (or, 2(N−t)/2−(2d−t) bicliques where, 2(N−t)/2 = 256 and 2(2d−t) = 216).

Complexity of the collision attack. Since the computational complexity of per-
forming sliced biclique attack once is 2d = 216 (as discussed in Section 5.1), hence
computational complexity of running sliced biclique attack 240 times is 240 × 216 =
256. Therefore, given IV , the complexity to find a pair of messages (M , M ′) such that
CF(IV , M) = CF(IV, M ′), when CF (i.e., compression function) is instantiated with
8-rounds of 4-branch type-2 GFN is 256 (< 264 brute-force attack). The compression
function output is of 128-bits size. In general, the complexity of the attack is given by
the following formula:

Complexity = 2
(N−t)

2
−(2d−t) × 2d.

For the purpose of illustration, we show the cost of our attack for various other
message sizes in Table 5.2.

109

Table 5.2: Complexity of our 8-round collision attack on message inputs of different
size. N represents the input message size in bits, n represents the branch word size in
bits and t represents the size of matching variable v in bits. In our attack d = t always.

N n t Complexity of Brute force

our attack complexity

64 16 8 228 232

128 32 16 256 264

256 64 32 2112 2128

512 128 64 2224 2256

Since we need to store all the partial preimages to find a colliding pair, memory
required is of the order of 256 (for 128-bit output). However, it is mentioned in [99]
that memoryless equivalents of these attacks do exist.

Collision Attack on 4-branch Type-2 GFN with Double SP layer. The above
attack technique is generic and independent of the internal F-function structure. Hence,
if we instantiate the round function F with double SP-layer, the above attack can be di-
rectly translated to 8-round collision attack on 4-branch, Type-2 GFN with double SP
layer based compression function with a complexity of 256. This improves the 6-round
near collision attack on the same structure shown by Sasaki in [148]. In Table 5.3 we
compare our result with the previous cryptanalysis results on 4-branch, Type-2 GFN
with double SP layer.

Table 5.3: Comparison of our results with previous cryptanalytic results on 4-branch,
Type-2 GFN with double SP layer.

Rounds Attack Type Reference

6 Near Collisions [148]

7 Distinguishing [148]

8 Distinguishing [50]

8 Distinguishing Section 5.5

8 Full Collisions Section 5.6

As discussed above, since the attack technique is generic, presence of multiple SP
layers in the round function F does not provide any extra resistance against sliced
biclique attack as compared to double SP layer. In fact, in our collision attack neither

110

the attack complexity nor the the number of rounds attacked change if double SP
layer is replaced by multiple SP layers. This is in contrast to attacks such as rebound
attacks [118], where the number of SP layers inside the round function F influence the
number of rounds attacked [50,68,96,148,153] in Generalized Feistel Networks.

5.7 Collision Attack on Hash Functions

In this attack, given the IV, the aim of the attacker is to find a pair of messages (M ,
M ′) such that H(M) =H(M ′). To do so, the attacker first finds two messages M1 and
M ′

1 which collide to same hash value h1 using collision attack technique described in
Section 5.6 with a complexity of 256. Now he concatenates any message M2 with M1

and M ′
1 (as shown in Fig. 5.11) such that H(M1‖M2) =H(M ′

1‖M2). Message M2 can
also be chosen such that it satisfies padding restrictions (where length of input message
is appended at the end) if required. In this way, collision attack can be carried out on
4-branch, Type-2 GFN with double SP layer based hash function with a complexity of
256. Since we assume known key settings (i.e., key part to the underlying block cipher
is known to the attacker), hence this attack can be used to generate collisions in MP
and MMO based hash functions but pseudo collisions in DM based hash functions.

M1 M2

H(M)IV E E
h1

M ′
1

M2

H(M’)IV E E
h1

Figure 5.11: Collision Attack.

5.8 8-Round Collision Attack on CLEFIA based

Compression Function

In this section, we investigate CLEFIA which is a real world-implementation of 4-
branch, Type-2 GFN. In the attacks discussed in Section 5.5 and Section 5.6, we
considered 4-branch, Type-2 GFN with double SP layer where right cyclic shift is
applied on the message sub-blocks at the end of each round. This was done to facili-
tate direct comparison with previous results [50, 148] on the same structure. However
in [180], Type-2 GFN’s have been defined with left cyclic shift and is followed in all the
practical implementations of Type-2 GFN structure - e.g., RC6 [145], CLEFIA [160],

111

HIGHT [87] etc. Since, left and right cyclic shifts are equivalent hence, similar attack
procedure (as discussed in Section 5.6) can be applied on CLEFIA as well but with
different ∆i and ∇j trails. CLEFIA is a 128-bit block cipher and supports three key
lengths - 128-bit, 192-bit and 256-bit. The number of rounds correspondingly are 18,
22 and 26. In this section, we examine CLEFIA with 128-bit key size. 5 WK0 and
WK1 represent the whitening keys at the start of the cipher. Each round has two
32-bit round keys RK2i−2 and RK2i−1 (where, 1 ≤ i ≤ 18).

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

i

Figure 5.12: ∆i differ-
ence injection in Round 4
and its propagation

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

j

Figure 5.13: ∇j differ-
ence injection in Round 5
and its propagation

⊕ ⊕F F

⊕ ⊕F F

R4

R5

RK7RK6

RK8 RK9

i

j

Figure 5.14: 1-round bi-
clique placed in Round 4

In this attack, let ∆i = (i0̄ | 0̄0̄ | 0̄0̄ | 0̄0̄) be the ∆ difference injected in Round
4 and ∇j = (0̄0̄ | j0̄ | 0̄0̄ | 0̄0̄) be the ∇ difference injected in Round 5, where the
variables i and j can take all 16-bit values, i.e., 0 ≤ i, j ≤ 216 − 1. Here, each 0̄ repre-
sents 016. The attacker first chooses a random base value Q0,0 and then injects the ∆i

and ∇j differences accordingly. The propagation of ∆i trail (marked as ‘|’ in green)
and ∇j trail (marked as ‘-’ in red) is shown in Fig. 5.12 and Fig. 5.13 respectively.
The dimension of this biclique is d=16. It is easy to check that ∆i and ∇j trails are
independent and do not share any non-linear components (shown in Fig. 5.14) between
them in round 4. Thus a 1-round biclique (consisting of 22d = 232 messages) is formed
in $4 round.

From round 5, only∇j trail is propagated in the forward direction and from round 3
only ∆i trail is propagated in the backward direction (as shown in Fig. 5.15). At the end
of 8th round it can be seen that $12

3 (marked in yellow in Fig. 5.15) in the backward
direction is not affected by ∆i trail and $82

3 (marked in yellow in Fig. 5.15) in the
forward direction remains unaffected by ∇j trail. Through feed forward operation, 16
bits of $12

3 can then be matched with 16 bits of $82
3. Hence, in this attack we choose $82

3

to be our matching variable v. The steps of collision attack for CLEFIA are exactly the
same as discussed in Section 5.6 and Section 5.7. Therefore, we can generate collisions
in 8-rounds of CLEFIA based hash function with a complexity of 256.

5The attack works on other key sizes as well since key is constant under known key settings.

112

5.9 Conclusions

In this chapter, we discussed another variant of biclique cryptanalysis termed as sliced
biclique cryptanalysis technique We applied the sliced biclique technique to show colli-
sion attack on 8-rounds of 4-branch, type-2 GFN. When it is instantiated with double
SP layer, we presented the first 8-round collision on 4-branch, type-2 GFN with double
SP layer. It would be interesting to apply sliced biclique technique to attack other
potential targets. One possible extension can be to apply this attack technique on
2-branch, Type-2 GFN such as Shavite-3 etc.

113

⊕

R1

⊕F F

⊕

R2

⊕F F

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

R3

R4

R5

⊕ ⊕F F

⊕ ⊕F F

⊕ ⊕F F

R6

R7

R8

⊕ ⊕WK0 WK1
RK0 RK1

RK2 RK3

RK4 RK5

RK7RK6

RK8 RK9

RK11RK10

RK12 RK13

RK14 RK15

Depends on i trail Depends on j trailv

∆
i

trail
∇

j
trail

⊕

B
iclique

H

Figure 5.15: Matching in 8 rounds of CLEFIA

114

Chapter 6

Multiset based Meet-in-the-Middle
Attack on ARIA-192 and ARIA-256

In this chapter, we again switch back to block cipher cryptanalysis and discuss yet
another variant of meet-in-the-middle attacks termed as multiset attacks. For the at-
tacks under single key model, the best attack for AES in terms of highest number of
rounds cryptanalyzed, is attributed to biclique based key recovery attacks proposed by
Bogdanov et al. [39]. However, the flip side of this attack is its very high time complex-
ity and just marginal gain over brute-force. After the biclique attacks, the next best
attack on AES in the single key model (in terms of number of rounds cryptanalyzed)
is the meet-in-the middle based multiset attack first proposed by Dunkelman et al. in
[71].

For AES block cipher, the meet-in-the-middle attack model was first introduced by
Demirci et al. in FSE’08 [60], where they improved the collision attack proposed by
Gilbert and Minier [79]. Their attack involved constructing a set of functions which
mapped one active byte in the first round to another active byte after 4-rounds of AES.
This set of functions were dependent on 25 parameters only and could be described
using a table of 225 ordered 256-byte sequence of entries. This table was precomputed
and stored, thus allowing building a 4-round distinguisher and attacking upto 8 rounds
of AES. Combined with data/time/memory tradeoff, this attack was applied to analyze
7-round AES-192 and 8-round AES-256. Demirci et al.’s attack on AES was improved
by Dunkelman et al. in [71] who proposed multiset attack which replaced the idea of
storing 256 ordered byte sequences with 256 unordered byte sequences (with multi-
plicity). This reduced both memory and time complexity of MITM attack on AES by
reducing the number of parameters to 23. They also introduced the novel idea of differ-
ential enumeration technique which employed a truncated differential characteristic to
significantly lower the number of parameters required to construct the multiset from 23
to just 16, thus further decreasing the attack complexities on AES. Their cryptanalysis
resulted in a 7-round attack on AES-128 and 8-round attack on AES-192 and AES-256.
Derbez at al. in [61] improved Dunkelman et al.’s attack by refining the differential

115

Table 6.1: Comparison of meet-in-the-middle based cryptanalytic attacks on AES.1

Target Rounds Time Data Memory Reference

AES-128
7 2116 2116 2116 [71]

7 299 299 296 [61]

AES-192

8 2208 232 2206 [60]

8 2172 2113 2129 [71]

8 2172 2107 296 [61]

AES-256

8 2208 232 2206 [60]

8 2196 2113 2129 [71]

8 2196 2107 296 [61]

9 2203 2120 2203 [61]

enumeration technique. By using rebound-like techniques [118], they showed that the
number of reachable multisets are much lower than those counted in Dunkelman et
al.’s attack. The number of possible mutisets now depended on just 10 parameters
giving the best attack on AES-128. This improvement allowed mounting of compara-
tively more efficient attacks on AES and also enabled extension of number of rounds
attacked for AES-256. Table 6.1, summarizes the cryptanalytic results of these attacks.

Though the results of this line of work are quite interesting, yet they have not
been explored further. In this chapter, we investigate the Korean encryption standard
ARIA and study the effectiveness of multiset attacks on it. The rest of the chapter
is organized as follows: In Section 6.1, we describe ARIA and present the current
cryptanalytic results existing on it. We also discuss some of the challenges existing in
these results. This is followed by Section 6.2 where we mention the notation followed
throughout the chapter. In Section 6.3, we give details of our distinguisher on 4-rounds
of ARIA. In Section 6.4, we present our 7-round attack followed by Section 6.5, where
we demonstrate our 8-round attack on ARIA and show the recovery of the secret
key. Finally in Section 6.6, we summarize and conclude our chapter. The original
contribution of this thesis is from Section 6.2 to Section 6.5.

1The results mentioned here for AES-192 and AES-256 are not the best. The best attack results
on these AES variants will be reported in the next chapter.

116

6.1 Block Cipher ARIA

The block cipher ARIA, proposed by Kwon et al. [114], is a 128-bit block cipher that
adopts substitution-permutation network (SPN) structure similar to AES [57] and sup-
ports three key sizes: 128-bit, 192-bit and 256-bit. The first version of ARIA (version
0.8) had 10/12/14 rounds for key sizes of 128/192/256 respectively and only two kinds
of S-boxes were employed in its substitution layer [46, 178]. Later ARIA version 0.9
was announced at ICISC 2003 [114] in which four kinds of S-boxes were used. This was
later upgraded to ARIA version 1.0 [77], the current version, which was standardized
by Korean Agency for Technology and Standards (KATS) - the government standards
organization of South Korea as the 128-bit block encryption algorithm (KS X 1213)
in December, 2004. In this version, the number of rounds were increased to 12/14/16
and some modifications in the key scheduling algorithm were made. ARIA has also
been adopted by several standard protocols such as IETF (RFC 5794 [113]), SSL/TLS
(RFC 6209 [104]) and PKCS #11 [115] thereafter.

For block cipher ARIA, the 128-bit internal state and the key state are treated as a
byte matrix of 4 × 4 size, where the bytes are numbered from 0 to 15 column wise (as
shown in Fig. 6.1). Each round consists of 3 basic operations (as shown in Fig. 6.2):

1

2

3

4

5

6

7

0

9

10

11

12

13

14

8

15

Figure 6.1: Byte numbering in a state of
ARIA

DL⊕

ki

SL

Xi ZiYi

Z(i−1)

Figure 6.2: ith round of ARIA.

1. Add Round Key (ARK) - This step involves an exclusive-or operation with the
round subkey. The key schedule of ARIA consists of two phases:

• A nonlinear expansion phase, in which the 128-bit, 192-bit or 256-bit master
key is expanded into four 128-bit words W0, W1, W2, W3 by using a 3-round
256-bit Feistel cipher.

• A linear key schedule phase in which the subkeys are generated via simple
XORs and rotation of W0, W1, W2, W3 each.

2. Substitution Layer (SL) - It uses four types of 8-bit S-boxes S1, S2 and their
inverses S−1

1 and S−1
2 . Each S-Box is defined to be an affine transformation of

the inversion function over GF(28). The S1 S-box is the same as that used in AES.
ARIA has two types of substitution layers for even and odd rounds respectively.

117

In each odd round, the substitution layer is (LS, LS, LS, LS) where LS = (S1,
S2, S−1

1 , S−1
2) operates one column and in each even round, the substitution layer

is (LS−1, LS−1, LS−1, LS−1) where LS−1 = (S−1
1 , S−1

2 , S1, S2) operates on one
column as well.

3. Diffusion Layer (DL) - This layer consists of a 16 × 16 involutional binary matrix
with branch number 8. Given an input state y and output state z, the diffusion
layer is defined as:

z[0] = y[3]⊕ y[4]⊕ y[6]⊕ y[8]⊕ y[9]⊕ y[13]⊕ y[14]

z[1] = y[2]⊕ y[5]⊕ y[7]⊕ y[8]⊕ y[9]⊕ y[12]⊕ y[15]

z[2] = y[1]⊕ y[4]⊕ y[6]⊕ y[10]⊕ y[11]⊕ y[12]⊕ y[15]

z[3] = y[0]⊕ y[5]⊕ y[7]⊕ y[10]⊕ y[11]⊕ y[13]⊕ y[14]

z[4] = y[0]⊕ y[2]⊕ y[5]⊕ y[8]⊕ y[11]⊕ y[14]⊕ y[15]

z[5] = y[1]⊕ y[3]⊕ y[4]⊕ y[9]⊕ y[10]⊕ y[14]⊕ y[15]

z[6] = y[0]⊕ y[2]⊕ y[7]⊕ y[9]⊕ y[10]⊕ y[12]⊕ y[13]

z[7] = y[1]⊕ y[3]⊕ y[6]⊕ y[8]⊕ y[11]⊕ y[12]⊕ y[13]

z[8] = y[0]⊕ y[1]⊕ y[4]⊕ y[7]⊕ y[10]⊕ y[13]⊕ y[15]

z[9] = y[0]⊕ y[1]⊕ y[5]⊕ y[6]⊕ y[11]⊕ y[12]⊕ y[14]

z[10] = y[2]⊕ y[3]⊕ y[5]⊕ y[6]⊕ y[8]⊕ y[13]⊕ y[15]

z[11] = y[2]⊕ y[3]⊕ y[4]⊕ y[7]⊕ y[9]⊕ y[12]⊕ y[14]

z[12] = y[1]⊕ y[2]⊕ y[6]⊕ y[7]⊕ y[9]⊕ y[11]⊕ y[12]

z[13] = y[0]⊕ y[3]⊕ y[6]⊕ y[7]⊕ y[8]⊕ y[10]⊕ y[13]

z[14] = y[0]⊕ y[3]⊕ y[4]⊕ y[5]⊕ y[9]⊕ y[11]⊕ y[14]

z[15] = y[1]⊕ y[2]⊕ y[4]⊕ y[5]⊕ y[8]⊕ y[10]⊕ y[15]

In the last round, diffusion layer is replaced by key xoring to generate the ciphertext.

Key Schedule Algorithm of ARIA. The key schedule algorithm of ARIA [113] is
divided into two phases - Initialization phase and Round Key Generation phase. In the
initialization phase, first the master key K is expanded into a 256-bit value as follows:

KL || KR = K || 0...0
where, | KL | = | KR | = 128-bits and number of zeroes padded to K equals 128, 64
and 0 for | K | equal to 128, 192 and 256-bits respectively.

118

KL KR

b ⊕

b ⊕

b ⊕

W0

W1

W2

W3

CK1

CK2

CK3

Fo

Fo

Fe

Figure 6.3: Generation of four 128-bit words, W0, W1, W2 and W3 through a 3-round
Feistel.

Then, four 128-bit values W0, W1, W2 and W3 are set as (shown in Fig. 6.3):

W0 = KL (6.1)

W1 = Fo(W0, CK1)⊕KR (6.2)

W2 = Fe(W1, CK2)⊕W0 (6.3)

W3 = Fo(W2, CK3)⊕W1 (6.4)

where, Fo and Fe are ARIA odd and even round functions and CK1, CK2 and CK3

are pre-defined constants. In the round key generation phase, the following round
subkeys are generated as follows:

K1 = W0 ⊕ (W1 >>> 19) (6.5)

K2 = W1 ⊕ (W2 >>> 19) (6.6)

K3 = W2 ⊕ (W3 >>> 31) (6.7)

K4 = (W0 >>> 19)⊕W3 (6.8)

K5 = W0 ⊕ (W1 >>> 31) (6.9)

K6 = W1 ⊕ (W2 >>> 31) (6.10)

K7 = W2 ⊕ (W3 >>> 31) (6.11)

K8 = (W0 >>> 31)⊕W3 (6.12)

K9 = W0 ⊕ (W1 <<< 61) (6.13)

The key schedule algorithm of ARIA has been designed such that it does not allow
the recovery of the actual secret key given any full round key. For further details, one
can refer [113].

119

Previous cryptanalytic results on ARIA. ARIA block cipher has been subjected
to reasonable cryptanalysis in the past 12 years since its advent. In [30], Biryukov et al.
analyzed the first version (version 0.8) of ARIA and presented several attacks such as
truncated differential cryptanalysis, dedicated linear attack, square attack etc. against
reduced round variants of ARIA. In the official specification document of ARIA [114],
the ARIA developers analyzed the security of ARIA against many classical cryptanaly-
ses such as differential and linear cryptanalysis, impossible and higher order differential
cryptanalysis, slide attack, interpolation attack etc. and claimed that ARIA has better
resistance against these attacks as compared to AES. In [176], Wu et al. presented a
6-round impossible differential attack against ARIA which was improved in terms of
attack complexities by Li et al. in [123]. In [124], Li et al. presented a 6-round integral
attack on ARIA followed by Fleischmann et al. [76] who demonstrated boomerang at-
tacks on 5 and 6 rounds of ARIA. Du et al. in [69], extended the number of rounds by
one and demonstrated a 7-round impossible differential attack on ARIA-256. In [168],
Tang et al., applied meet-in-the-middle (MITM) attack to break 7 and 8-rounds of
ARIA-192/256 and is the best attack on ARIA so far. In Table 6.2, we summarize all
the existing attacks on ARIA version 1.0.

The security of ARIA has not been analyzed after Fleischmann et al.’s attack in
Indocrypt 2010 [76]. This motivated us to investigate the effectiveness of multiset at-
tack on ARIA. In this work, we improve the attack complexities of the 7 and 8-rounds
of ARIA-192/256. We construct a new 4-round distinguisher for ARIA. Using this
distinguisher, our subkey recovery attacks significantly reduce the data/time/memory
complexities of 7-round attack on ARIA-192/256 and time and memory complexities
of 8-round attack on ARIA-256 as compared to the previous best attack complexities
reported in [168]. The key schedule algorithm of ARIA does not allow recovery of
master key from a subkey unlike AES [57]. This is likely the reason why none of the
previous attacks have shown the secret key retrieval on any ARIA variant. However,
depending upon the key expansion of ARIA, recovery of specific subkeys allows ex-
tracting the secret key. In our 7 and 8-round attack on ARIA-192/256, we exploit this
key scheduling property to demonstrate the secret key recovery in ARIA. To the best
of our knowledge, we are the first to demonstrate the actual secret key recovery attack
on ARIA.

6.1.1 Our Contribution.

The main contributions of this chapter are as follows:

• We present the best 7-round key recovery attack on ARIA 192/256 and 8-round
attack on ARIA-256.

• We apply multiset attack to construct a new 4-round distinguisher on ARIA-192
and ARIA-256.

120

Table 6.2: Comparison of cryptanalytic attacks on ARIA version 1.0. The entries are
arranged in terms of decreasing time complexities for each category of attacked rounds.

Rounds Attack Time Data Memory Reference

attacked type complexity complexity complexity

5

Boomerang Attack 2110 2109 257 [76]

Integral Attack 276.7 227.5 227.5 [124]

Impossible Differential 271.6 271.3 272 [123]

Meet-in-the-middle 265.4 225 2122.5 [168]

6

Integral Attack 2172.4 2124.4 2124.4 [124]

Meet-in-the-middle 2121.5 256 2122.5 [168]

Impossible Differential 2112 2121 2121 [176]

Boomerang Attack 2108 2128 256 [76]

Impossible Differential 2104.5 2120.5 2121 [123]

7

Impossible Differential 2238 2125 2125 [69]

Boomerang Attack 2236 2128 2184 [76]

Meet-in-the-middle 2185.3 2120 2187 [168]

Meet-in-the-middle (ARIA-192) 2135.1 2113 2130 Sec. 6.4

Meet-in-the-middle (ARIA-256) 2136.1 2115 2130 Sec. 6.4

8
Meet-in-the-middle (ARIA-256) 2251.6 256 2252 [168]

Meet-in-the-middle (ARIA-256) 2245.9 2113 2138 Sec. 6.5

• Our 7-round attack on ARIA-192 has data/time/memory complexity of 2113,
2135.1 and 2130 respectively.

• Our 7-round attack on ARIA-256 has data/time/memory complexity of 2115, 2136

and 2130 respectively.

• Our 8-round attack on ARIA-192/256 has data/time/memory complexity of 2113,
2245.6 and 2138 respectively.

• We demonstrate the first master key recovery on our attacks on ARIA-192/256.

Our results are summarized in Table 6.2.

121

6.2 Preliminaries

In this section, we mention the key notations and definitions used in our cryptanalysis
technique to facilitate better understanding.

6.2.1 Notations and Definitions

The following notations are followed in this chapter.

P : Plaintext
C : Ciphertext
ki : Subkey of round i
k∗i : DL−1(ki), where, DL−1 is the inverse diffusion layer
Xi : State obtained after ARK in round i
Yi : State obtained after SL in round i
Zi : State obtained after DL in round i
∆x : Difference in a state s
si[m] : mth byte of a state s in round i, where 0 ≤ m ≤ 15
si[p, . . . , r] : pth byte, . . . , rth byte of state s in round i, where 0 ≤

p, r ≤ 15

In our attacks, rounds are numbered from 1 to R, where R = 7 or 8. A full round
consists of all the three round operations, i.e., ARK, SL and DL whereas a half round
denotes a round in which the DL operation is omitted.

We utilize the following definitions for our attacks.

Definition 1 (δ-list). We define the δ-list as an ordered list of 256 16-byte distinct
elements that are equal in 15 bytes. Each of the 15 equal bytes is called as passive byte
whereas the one byte that takes all possible 256 values is called the active byte [57].
We denote the δ-list as (x0, x1, x2, . . . , x255) where xj indicates the jth 128-bit member
of the δ-list. As mentioned in the notations section, xji [m] represents the mth byte of
xj in round i.

Definition 2 (Multiset). A multiset is a set of elements in which multiple in-
stances of the same element can appear. A multiset of 256 bytes, where each byte can
take any one of the 256 possible values, can have

(
28+28−1

28

)
≈ 2506.17 different values.

Two crucial properties that will be used in our attacks are as follows:

Property 1. For a given input-output difference (denoted as (∆Y, ∆Z)) state over
a diffusion layer operation (as shown in Fig. 6.4), if the 7-bytes of ∆Y [3, 4, 6, 8, 9, 13,
14] have equal differences, say y, then it will lead to non-zero difference only at byte 0
of ∆Z (instead of full state diffusion) after the diffusion layer operation. Rest all bytes

122

of ∆Z will be passive. Thus, under the given constraints, probability of the differential
trail ∆Y → ∆ Z is 1.

y y

yy

y y

y

z

DL

∆Y ∆Z

Figure 6.4: Differential property of diffusion layer

Proof. As per the diffusion layer specification of ARIA, each output byte of state
Z is a xored sum of 7 input bytes of state Y. The same property is preserved in case of
differences as well, i.e., each output byte difference of Z is a xor’ed sum of 7 input byte
difference of Y. In lieu of this, for each output byte, if even number of corresponding
input bytes (i.e., 2, 4 or 6) have equal differences, then they cancel out each other.
In the above trail, 7 bytes of Y, i.e., Y [3, 4, 6, 8, 9, 13, 14] have equal differences
‘y’, whereas the rest of the bytes have zero differences. Hence, all output bytes except
∆Z [0] have zero differences since their xored sum have either 2 or 4 equal input byte
difference. E.g.,

∆Z[0] = ∆Y [3]⊕∆Y [4]⊕∆Y [6]⊕∆Y [8]⊕∆Y [9]⊕∆Y [13]⊕∆Y [14]

= �y ⊕ �y ⊕ �y ⊕ �y ⊕ �y ⊕ �y ⊕ y = y

∆Z[1] = ∆Y [2]⊕∆Y [5]⊕∆Y [7]⊕∆Y [8]⊕∆Y [9]⊕∆Y [12]⊕∆Y [15]

= 0⊕ 0⊕ 0⊕ �y ⊕ �y ⊕ 0⊕ 0 = 0

∆Z[11] = ∆Y [2]⊕∆Y [3]⊕∆Y [4]⊕∆Y [7]⊕∆Y [9]⊕∆Y [12]⊕∆Y [14]

= 0⊕ �y ⊕ �y ⊕ 0⊕ �y ⊕ 0⊕ �y = 0

Similar equations can be constructed for other output bytes of Z as well. Thus,
property 1 holds true.

Property 2. For a given ARIA S-box, say S1 and any non-zero input - output
difference pair, say (∆i - ∆o) in F256, there exists one solution in average, say y, for
which the equation, S1(y)⊕ S1(y⊕∆i) = ∆o, holds true (since ARIA uses AES S-box
as S1 [61]) This property is also applicable to other ARIA S-boxes, i.e., S2, S−1

1 and S−2
2 .

The time complexity of the attack is measured in terms of number of full round
(7 or 8) ARIA encryptions required. The memory complexity is measured in units of
128-bit ARIA blocks required.

123

6.3 Distinguishing Property of 4-round ARIA

Given a list of 256 distinct bytes (M0, M1, . . ., M255), a function f : {0, 1}128 7→
{0, 1}128 and a 120-bit constant U , we define a multiset v as follows:

Ci = f(M i || U),where (0 ≤ i ≤ 255)

v = {C0[0]⊕ C0[0], C1[0]⊕ C0[0], . . . , C255[0]⊕ C0[0]}

Note that, (M0 || U , M1 || U , . . . , M255 || U) forms a δ-list and atleast one element
of the multiset is always zero.

Distinguishing Property. Let us consider F to be a family of permutations on 128-
bit. Then, given any list of 256 distinct bytes (M0, M1, . . ., M255), the aim is to find

how many multisets v are possible when, f
$←− F and U

$←− {0, 1}120.

In case, when F = family of all permutations on 128-bit and f
$←− F . Under

such setting, since in the multiset v, we have 255 values that are chosen uniformly and
independently from the set {0, 1, . . . , 255} (as one element, say C0[0]⊕C0[0], is always

0), the total possible multisets v are
(

28−1+28−1
28−1

)
≈ 2505.17.

In case, when F = 4-full rounds of ARIA and f
$←− F . Here, f

$←− F ⇔ K
$←− {0, 1}k and f = EK , where, k = 128 (for ARIA-128), 192 (for ARIA-192) or 256

(for ARIA-256). Let us consider, 4-full rounds of ARIA as shown in Fig. 6.5 where,
multiset v is defined as v = {Z0

4 [0]⊕Z0
4 [0], Z1

4 [0]⊕Z0
4 [0], . . . , Z255

4 [0]⊕Z0
4 [0]}. Then,

we state the following Observation 1.

Observation 1. The multiset v is determined by the following 30 single byte param-
eters only :

• X0
2 [3, 4, 6, 8, 9, 13, 14] (7-bytes)

• X0
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] (full 16-byte state)

• X0
4 [3, 4, 6, 8, 9, 13, 14] (7-bytes)

Thus, the total number of multisets possible is 230×8 = 2240 since, each 30-bytes defines
one multiset.

124

Xi
1

Zi
1

Y i
1

⊕

K2 Xi
2

Zi
2

Y i
2

SL DL

SL DL

⊕

K3 Xi
3

Zi
3

Y i
3

SL DL

K4

⊕

Xi
4

Zi
4

Y i
4

SL DL

Round 1

Round 2

Round 3

Round 4

⊕

K1

Pi

Figure 6.5: 4-Round distinguisher in ARIA . P i denotes (M i || U) and X i
j, Y

i
j , Zi

j

denote intermediate states corresponding to P i in round j. The round subkeys Ki,
where, 1 ≤ i ≤ 4 are generated from the master key K.

Proof. In round 1, the set of differences {X0
1 [0] ⊕ X0

1 [0], X1
1 [0] ⊕ X0

1 [0] , ,
X255

1 [0] ⊕ X0
1 [0]} (or, equivalently, set of differences at X1[0]) are known as there are

exactly 256 differences possible. Since S-box S1 is injective, exactly 256 values exist
in the set {Y 0

1 [0] ⊕ Y 0
1 [0], Y 1

1 [0] ⊕ Y 0
1 [0], , Y 255

1 [0] ⊕ Y 0
1 [0]} as well. Due to DL

and ARK operations being linear, the set of differences at X2 [3, 4, 6, 8, 9, 13, 14] are
known (according to diffusion layer (DL) definition discussed in Section 6.2).

Owing to the non-linearity of the substitution layer, the set of differences at Y2[3,
4, 6, 8, 9, 13, 14] cannot be known and one cannot move forward. To alleviate this
problem, it is sufficient to know X0

2 [3, 4, 6, 8, 9, 13, 14], i.e., values of the active bytes
of the first state (out of 256 states) at X2 as it enables calculating the active bytes of
the other X i

2 states (where, 1 ≤ i ≤ 255) and cross SL in round 2. Again, since DL and
ARK operations are linear, the set of differences {X0

3 ⊕X0
3 , X1

3 ⊕X0
3 , . . . , X255

3 ⊕X0
3}

is known. In order to know the set of values {X0
3 , X1

3 , . . . , X255
3 } for crossing the SL

in round 3, it is sufficient to know the value of the full state X0
3 which is given as a

parameter.

By similar logic, as explained above, the set of differences {X0
4 ⊕X0

4 , X1
4 ⊕X0

4 , . . .
, X255

4 ⊕X0
4} are known. Now, at this stage, if only X0

4 [3, 4, 6, 8, 9, 13, 14] bytes are
known, the SL layer in round 4 can be crossed and the set of 256 values {Z0

4 [0], Z1
4 [0],

. . ., Z255
4 [0]} at Z4 can be computed. Then the value of multiset v = { Z0

4 [0] ⊕ Z0
4 [0],

Z1
4 [0]⊕ Z0

4 [0], . . . , Z255
4 [0]⊕ Z0

4 [0]} can be determined easily as well. This shows that
the multiset v depends on 30 parameters and can take 2240 possible values. �

125

Since, there are 2240 possible multisets at Z4[0], if we precompute and store these
values in a hash table, then the precomputation complexity goes higher than brute force
for ARIA-192. In order to reduce the number of multisets, we apply the Differential
Enumeration technique suggested by Dunkelman et al. in [71] and improved by Derbez
et al. in [61]. We call the improved version proposed in [61] as Refined Differential
Enumeration.

Refined Differential Enumeration. The basic idea behind this technique is to
choose a list of 256 distinct bytes (M0, M1, . . ., M255) such that several of the param-
eters that are required to construct the multiset equal some pre-determined constants.

To achieve so, we construct a truncated differential for four full rounds of ARIA,
in which the input and output differences are non-zero at byte 0 only (as shown in
Fig. 6.6.)

∆P ∆X2

ARK, SL
DL, ARK

SL, DL
ARK

∆X3 ∆Y3

SL

∆Y4

DL, ARK DL

∆Z4

SL

Figure 6.6: 4-Round truncated differential in ARIA

The probability of this trail is 2−120 as follows: the one byte difference at ∆P[0]
propagates to 7-byte difference in ∆X2 and 16-byte difference in ∆Y3 with probability 1.
Next, the probability that full state difference in ∆Y3 leads to 7-byte difference in ∆Y4

is 2−72 (since 9 bytes of ∆Y4, i.e., ∆Y4[0, 1, 2, 5, 7, 10, 11, 12, 15]) have zero difference).
Further, the probability that random differences in ∆Y3 yield equal differences in the
active bytes of ∆Y4 i.e., ∆Y4[3, 4, 6, 8, 9, 12, 13] is 2−48. 2 Therefore, the total proba-
bility of ∆Y3 → ∆Y4 is 2−(72+48) = 2−120. Then, by the virtue of Property 1 (mentioned
in Section 6.2), 7-byte difference in ∆Y4 yields a single byte difference in ∆Z4[0] with
probability 1. Thus, the overall probability of the differential from ∆P → ∆Z4 is 2−120.

In other words, we require 2120 plaintext pairs to get a right pair. Once, we get a
right pair, say (P 0, P 1), we state the following Observation 2 :

Observation 2. Given a right pair (P 0, P 1) that follows the truncated differential
trail shown in Fig. 6.6, then the 30 parameters corresponding to P 0 mentioned in
Observation 1 can take one of atmost 2128 fixed 30-byte values (out of the total 2240

2The differences in 16-bytes of ∆Y3 yield differences in the 7 active bytes of ∆X4 which in turn
lead to 7-bytes difference in ∆Y4. The probability that these differences in the 7-bytes of ∆Y4 are
equal is 2−48.

126

possible values) where, each of these 2128 30-byte values are defined by each of the 2128

values of the 16 following parameters:

• ∆Y1[0]

• X0
2 [3, 4, 6, 8, 9, 13, 14]

• Y 0
4 [3, 4, 6, 8, 9, 13, 14]

• ∆Z4[0]

Proof. Given a right pair (P 0, P 1), the knowledge of these 16 new parameters allows
us to compute all the differences shown in Fig. 6.5. This is so because, knowledge
of ∆Y1[0] allows computation of ∆Z1[3, 4, 6, 8, 9, 13, 14] and ∆X2[3, 4, 6, 8, 9, 13,
14]. Then, if the values of X0

2 [3, 4, 6, 8, 9, 13, 14] are known, one can compute the
corresponding X1

2 [3, 4, 6, 8, 9, 13, 14], cross the SL layer in round 2 and calculate the
full state difference ∆X3. Similarly, from the bottom side, knowledge of ∆Z4[0] allows
computation of ∆Y4[3, 4, 6, 8, 9, 13, 14]. Then, if the values of Y 0

4 [3, 4, 6, 8, 9, 13, 14]
are known, one can easily determine Y 1

4 [3, 4, 6, 8, 9, 13, 14], compute the corresponding
X0

4 [3, 4, 6, 8, 9, 13, 14] and X1
4 [3, 4, 6, 8, 9, 13, 14] respectively and subsequently full state

∆Y3. Then, using the differential property of ARIA S-boxes (property 2 mentioned in
Section 6.2), the possible values of X0

3 and X1
3 can be computed. �

Thus, the knowledge of these 16 bytes given in Observation 2 allows computation
of the corresponding 30 parameters described in Observation 1. Hence, total possible
values of these 30 single byte parameters are atmost 216×8 = 2128. Moreover, since
these computations do not require the knowledge of key bytes, they can be easily pre-
computed.

Using Observation 1 and Observation 2, we state the following third Observation
3 :

Observation 3. Given (M0, M1, . . ., M255) and f
$←− F and U

$←− {0, 1}120, such
that M0 || U and M j || U , (where, j ∈ { 0, 1, . . . , 255 }) is a right pair that follows
differential trail shown in Fig. 7.8, then atmost 2128 multisets v are possible at Z4[0].

Proof. From Observation 1, we know that each 30-byte parameter defines one multi-
set and Observation 2 restricts the possible values of these 30-byte parameters to 2128.
Thus, atmost 2128 multisets are only possible for ARIA. �

As the number of multisets in case of 128-bit random permutation (= 2505.17) is much
higher than 4-round ARIA (= 2128), a valid distinguisher is constructed.

127

Pi

DL
* *

**
**

*
⊕

K1

SL

Xi
1

Zi
1

Y i
1

⊕

K2 Xi
2

Zi
2

Y i
2

K∗
2

K∗
1

⊕

K3 Xi
3

Zi
3

Y i
3

SL DL

SL DL

⊕

K4 Xi
4

Zi
4

Y i
4

SL DL

K5

⊕

Xi
5

Zi
5

Y i
5

SL DL

⊕

K6 Xi
6

Zi
6

Y i
6

SL DL

⊕

K7
K∗

7 Xi
7

Ci

Y i
7

SL

⊕

K8
K∗

8

* *
**
**

*

*

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

DL

DL

K∗
3

DL

K∗
4

DL

K∗
5

DL

K∗
6

DL

DL

DL

D
IS

T
IN

G
U

IS
H

E
R

Figure 6.7: 7-round attack on ARIA-192/256. The subkey bytes derived are star
marked.

6.4 Key Recovery Attack on 7-round ARIA-192/256

In this section, we use our Observation 3 to launch a meet-in-the-middle attack on
7-round ARIA-192/256 to recover the key. The distinguisher is placed from round 2
to round 5, i.e., δ-list is constructed in state X2 with byte 0 being the active byte and
multiset is checked in Z5[0] (as shown in Fig. 6.7). One round at the top and two
rounds at the bottom are added to the 4-round distinguisher. The attack consists of
the following two phases:

Precomputation Phase. In this phase, we compute and store the 2128 possible mul-
tisets at ∆Z5[0] in a hash table based on Observation 2.

128

Online Phase. If we extend the differential trail (shown in Fig. 6.6) by one round
backwards, such that 7-bytes (3, 4, 6, 8, 9, 13 and 14) are active in the plaintext, then
with a probability of 2−48, these 7 active bytes will induce a non-zero difference of one
byte in X2[0]. Thus, we require 2120+48 = 2168 plaintext pairs to start our online phase.
For each of these pairs, we will guess the subkey candidates for which the pair becomes
a right pair and construct the corresponding δ-list. The steps of the online phase are:

1. We encrypt 257 structures of 256 plaintexts each, where bytes 3, 4, 6, 8, 9, 13 and
14 take all possible values and rest of the bytes are constants. 3.

2. For each structure, we store the ciphertexts in a hash table and look for pairs in
which the difference in bytes 0, 1, 2, 5, 7, 10, 11, 12, 15 of the ciphertext is zero.
Out of the total 2168 pairs, only 296 pairs are expected to remain.

3. For each of the remaining 296 plaintext pairs, we do the following:

(a) We guess 7 bytes of K8[3, 4, 6, 8, 9, 13, 14] and check whether ∆Y6 has non
zero difference only in byte 0 or not. Out of the 256 possible values for K8,
only 28 key guesses are expected to remain (since with probability 2−48, each
will yield equal differences in the active bytes of ∆Z6). Since we are only
interested in checking the difference at ∆Y6[0], K7[0] is not required to be
guessed at this stage.

(b) We then guess 7 bytes of K1[3, 4, 6, 8, 9, 13, 14] and check whether ∆Z1 has
non zero difference only in byte 0 or not. Out of the 256 possible values for
K1, only 28 key guesses are expected to remain.

(c) For each of the 28× 28 = 216 remaining guesses of 14 active bytes of K1 and
K8:

• We take one of the members of the pair and find its δ-list at Z1[0] using
the knowledge of 7 active bytes of K1. 4

• We obtain the corresponding ciphertexts of the resulting plaintext set
of the δ-list from the hash table. We guess byte K∗7 [0] = DL−1(K7[0])
= K7[3] ⊕ K7[4] ⊕ K7[6] ⊕ K7[8] ⊕ K7[9] ⊕ K7[13] ⊕ K7[14] and using
the knowledge of K8[3, 4, 6, 8, 9, 13, 14], partially decrypt the ciphertexts
of the δ-list to obtain the multiset at ∆Z5[0] (which is same as that
constructed in ∆X6[0]).

• We then check whether this multiset exists in the precomputed table or
not. If not, we discard the corresponding key guess.

3One structure has 256 × 255 = 2111 plaintext pairs. Therefore, 257 structures have 257+111 = 2168

plaintext pairs.
4Encrypt the chosen right pair message to one full round using k1[3, 4, 6, 8, 9, 13, 14] and compute

Z1[0]. Xor other Z1[0] byte with 255 other values and decrypt them back to obtain the other plaintexts.

129

The probability for a wrong guess to pass the test is 2128 × 2−467.6 = 2−339.6. 5 Since
we try only 296+16+8 = 2120 multisets, only the right subkey should verify the test with
a probability close to 1.

Complexities. The time complexity of the precomputation phase is 2128 × 28 × 2−1.9

= 2134.1 ARIA encryptions. 6 The time complexity of the online phase is dominated
by step 3(c) which is 296 × 216 × 28 × 28 × 2−2.9 = 2125.1 ARIA encryptions. Clearly
the time complexity of this attack is dominated by the precomputation phase. It was
shown in [61] that each 256-byte multiset requires 512-bit space. Hence, the memory
complexity of the attack is 2128×22 = 2130 128-bit ARIA Blocks. The data complexity
of the attack is 2113 plaintexts.

6.4.1 Recovering the master key for 7-round ARIA-192

In the above attack, 7-bytes of subkeys K1 and 7-bytes of K8 as well as 1 byte of K∗7
were recovered. In order to recover the master key, we do the following:

1. Guess 16-bytes of W0.

(a) Using the guessed value of W0 and 7-bytes of K1 recovered in the attack,
we can deduce 56-bit of W1 from Eq. 6.5. It is observed that 16-bit of this
56-bit of W1 deduced, are part of 11th, 12th and 13th bytes and rest 40-bits
are part of first 8 bytes.

(b) We then calculate Fo(W0, CK1). We already know that for ARIA-192,
KR[8, 9, . . . , 15] = 0. Thus, W1[8, 9, . . . , 15] equals the corresponding bytes
of Fo(W0, CK1) following Eq. 6.2.

(c) Next, we discard the guesses of W0 for which the common 16-bit of W1

computed in (a) and (b) do not match. 2112 guesses of W0 are expected to
remain.

2. For each of the remaining guesses of W0, we guess 24-bits of W1[0, 1, . . . 7] other
than the 40-bits deduced in 1(a) to know the 224 possible values of W1 corre-
sponding to each of W0.

3. For each remaining guesses of W0 and corresponding guesses of W1, we deduce
W2 and W3 from Eqs. 6.3 and 6.4.

5Note that the probability of randomly having a match is 2−467.6 and not 2−505.17 since the number
of ordered sequences associated with a multiset is not constant [71].

6The normalization factor of 2−1.9 is calculated by calculating the ratio of number of S-Box op-
erations required in the precomputation phase to the total number of S-Box operations performed in
7-Round ARIA encryption. Similarly all other normalization factors have been calculated.

130

(a) Following Eq. 6.12, we deduce K8 and compare its bytes 3, 4, 6, 8, 9, 13
and 14 with the values of the same 7-bytes of K8 recovered from the attack.
We discard the guesses of W0 and W1 in case of mismatch of these 7-bytes
of K8. The same process is repeated for 1-byte of K∗7 . This is an 8-byte
and 64-bit filtering. Out of 2136, 272 guesses of W0 and W1 are expected to
remain which can be tested by brute force to obtain the correct master key.

The time complexity of the recovering process of step 3 is maximum. It is equal to
2136× (2/7) = 2134.2 7-round ARIA encryptions as we need to compute 2 rounds of
ARIA to deduce W2 and W3 and all other operations have negligible complexity as
they are simple linear operations.

Therefore, the final time complexity of the attack is 2134.2 + 2134 = 2135.1. Other
complexities remain the same.

6.4.2 Recovering the master key for 7-round ARIA-256

In the above attack, 7-byte of subkey K1 and 7-byte of subkey K8 as well as 1 byte of
K∗7 were recovered. As shown in Fig. 6.7, we have obtained a trail such that 1st byte
is active at X2. In order to recover all 16-bytes of subkey K1, we can repeat the attack
4 times by modifying the trail such that we get a different byte active at X2:

• bytes 3,4,6,8,9,13,14 to obtain byte 0 active at X2

• bytes 2,5,7,8,9,12,15 to obtain byte 1 active at X2

• bytes 1,4,6,10,11,12,15 to obtain byte 2 active at X2

• bytes 0,5,7,10,11,13,14 to obtain byte 3 active at X2

The time and data complexity of the attack will become 4 times larger than time and
data complexities mentioned in the 7-round attack in Section 6.4 respectively. Then,
we do the following to recover the master key:

1. We guess 16-bytes of W0

2. For each guess of W0, using the value of K1 recovered from the attack, we obtain
W1 from Eq. 6.2. Then we follow Step 3 as mentioned in Section 6.4.1

The time complexity of recovering the master key is 2128× (2/7) = 2126.2 7-round ARIA
encryptions.

Therefore, the final time complexity of the attack is (4 × 2134) + 2126.2 = 2136.
The data complexity of the attack becomes 2115 while the memory complexity remains
same.

131

6.5 Key Recovery Attack on 8-round ARIA-256

In this section, we describe our meet-in-the-middle attack on 8-round ARIA-256.

6.5.1 Construction of 4.5-round distinguisher

For the 8-round attack, the distinguisher constructed in Fig. 6.5 is extended by half
round forwards upto Y5 (DL operation is omitted). The 4.5 round distinguisher for
8-round attack is shown in Fig. 6.8. Similar to Observation 1, we state the following
Observation 4 :

Xi
1

Zi
1

Y i
1

⊕

K2 Xi
2

Zi
2

Y i
2

SL DL

SL DL

⊕

K3 Xi
3

Zi
3

Y i
3

SL DL

K4

⊕

Xi
4

Zi
4

Y i
4

SL DL

Round 1

Round 2

Round 3

Round 4

⊕

K1

Pi

⊕

K5

SL

Xi
5

Y i
5

Figure 6.8: 4.5-Round distinguisher in ARIA

Observation 4. Given (M0, M1, . . ., M255) and f
$←− F and U

$←− {0, 1}120, where,
f represents 4.5 rounds of ARIA, the multiset v ={Y 0

5 [0] ⊕ Y 0
5 [0], Y 0

5 [0] ⊕ Y 1
5 [0],.....,

Y 0
5 [0] ⊕ Y 255

5 [0]} is determined by the following 31 1-byte parameters:

• X0
2 [3, 4, 6, 8, 9, 13, 14]

• X0
3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] (full 16-byte state)

• X0
4 [3, 4, 6, 8, 9, 13, 14]

132

• X0
5 [0]

The number of possible multisets is 231×8 = 2248. The proof for this is similar to
that described for Observation 1 in Section 6.3.

Number of admissible multisets. The differential trail shown in Fig. 7.8 can be
extended 0.5 round forwards to ∆Y5 in which only byte 0 is active with probability 1,
i.e., the probability of differential trail: ∆P → ∆Y5 remains 2−120. Then, similar to
Observation 2, we state the following Observation 5.

Observation 5. Given a right pair (P 0, P 1) that follows the truncated differential
trail (∆P → ∆Y5), then the 31 parameters corresponding to P 0 mentioned in Obser-
vation 4 can take one of at most 2136 fixed 31-byte values (out of the total 2248 possible
values) where, each of these 2136 31-byte values are defined by each of the 2136 values
of the 17 following parameters:

• ∆Y1[0]

• X0
2 [3, 4, 6, 8, 9, 13, 14]

• Y 0
4 [3, 4, 6, 8, 9, 13, 14]

• ∆Z4[0]

• X0
5 [0]

The proof of this Observation is similar to the proof of Observation 2 described in
Section 6.3. From, Observation 4 and Observation 5, we can say that the total number
of admissible multisets is 217×8 = 2136.

6.5.2 Key Recovery Attack

In this section, we discuss our 8-round attack. The distinguisher is placed from round
2 to round 5.5, i.e, δ-list is constructed in state X2 with byte 0 being the active byte
and multiset is checked in Y6[0] (as shown in Fig. 6.9). One round at the top and three
rounds at the bottom are added to the 4.5-round distinguisher. The attack consists of
the following two phases:

Precomputation Phase. Compute and store the 2136 possible multisets at ∆Y6[0] in
a hash table based on Observation 5.

Online Phase. The steps of the online phase are:

1. Encrypt 257 structures of 256 plaintexts each, where bytes 3, 4, 6, 8, 9, 13 and 14
take all possible values and rest of the bytes are constants. Store the ciphertexts
in a hash table.

133

2. For each of the 2168 plaintext pairs do the following:

(a) For each 28 guesses of ∆Z1 [0], resolve input-output differences at SL layer
of round 1 (using Property 2) and deduce the corresponding value of K1[3,
4, 6, 8, 9, 13, 14].

(b) For each 28×256 = 264 guesses of ∆Y6[0] and ∆Y7 [3, 4, 6, 8, 9, 13, 14], resolve
input-output differences at SL layers in round 7 and round 8 respectively
and deduce corresponding K∗8 [3, 4, 6, 8, 9, 13, 14] and full subkey K9.

(c) For each of the 264+8 = 272 guesses of 30 bytes of K1, K∗8 and K9:

• Take one of the members of the pair and find its δ-list using the knowl-
edge of 7 active bytes of K1.

• Get the corresponding ciphertexts of the resulting plaintext set of the
δ-list from the hash table. Using the knowledge of K9 and K∗8 [3, 4, 6,
8, 9, 13, 14], partially decrypt the ciphertexts of the δ-list to compute
the multiset at ∆Y6[0].

• Check whether this multiset exists in the precomputed table or not. If
not, then discard the corresponding key guess.

The probability for a wrong guess to pass the test is 2136× 2−467.6 = 2−331.6. Since, we
try only 2168+72 = 2240 multisets, only the right subkey should verify the test with a
probability close to 1.

Complexities. The time complexity of the precomputation phase is 2136 × 28 × 2−2

= 2142 ARIA encryptions. The time complexity of the online phase is dominated by
step 2(c) which is 2168 × 272 × 28 × 2−2.1 = 2245.9 ARIA encryptions. Clearly the time
complexity of this attack is dominated by the online phase. The memory complexity of
the attack is 2136× 22 = 2138 128-bit ARIA Blocks. The data complexity of the attack
is 2113 plaintexts.

6.5.3 Recovering the actual master key

In the above attack, 7-bytes of subkeys k1 and k8 as well as full subkey k9 were re-
covered. Once these bytes are known, the remaining bytes in k1 and k8 can be found
by exhaustive search without affecting the overall complexity of the 8-round attack.
When full subkeys k1 and k9 are known, then the master key K can be recovered as
follows. Since, Eq. 6.5 and Eq. 6.6 are two equations in two variables, they can be
solved through standard matrix method by constructing a (256 × 256) binary matrix.
We found the rank of this matrix to be 240 suggesting 216 solutions for the tuple (W0

and W1). Once the values of W0 and W1 are known, KL and KR can be obtained
through Eq. 6.1 & Eq. 6.2 respectively. Thus, we get 216 solutions for the master key
K. The master key can then be easily recovered through brute force.

134

Pi

DL
* *

**
**

*
⊕

K1

SL

Xi
1

Zi
1

Y i
1

⊕

K2 Xi
2

Zi
2

Y i
2

K∗
2

K∗
1

⊕

K3 Xi
3

Zi
3

Y i
3

SL DL

SL DL

⊕

K4 Xi
4

Zi
4

Y i
4

SL DL

K5

⊕

Xi
5

Zi
5

Y i
5

SL DL

⊕

K6 Xi
6

Zi
6

Y i
6

SL DL

⊕

K7
K∗

7 Xi
7

Y i
7

SL

K8
K∗

8

DL ⊕

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

DL

DL

K∗
3

DL

K∗
4

DL

K∗
5

DL

K∗
6

DL

DL

Zi
7

DL

Xi
8

SL

Y i
8

K9
K∗

9

* *
**
*

*

*

DL ⊕
*

*

*
* *

*
*

*

*

Ci

* *
**
**

*

Round 8

D
IS

T
IN

G
U

IS
H

E
R

Figure 6.9: 8-round attack on ARIA-256. The subkey bytes derived are star marked.

6.6 Conclusions

In this chapter, we discuss multiset attacks and its results on AES. We then explore the
space of multiset attacks as applied to key recovery attack on ARIA-192 and ARIA-
256. We improve the previous 7-round and 8-round attacks on these structures and
show the best attacks on them. We achieve these results by constructing a new 4-
round distinguisher on ARIA and applying MITM attacks on the rest of the rounds.
We also show recovery of the actual master key through our 7 and 8-round attacks on
ARIA-192 and ARIA-256. To the best of our knowledge, this is the first attempt in
this direction. Currently, the number of attacked rounds remains 8 and it would be an
interesting problem to try applying multiset attacks to break more rounds of ARIA.

135

Chapter 7

Multiset based Meet-in-the-Middle
Attack on Kalyna-128/256 and
Kalyna-256/512

In this chapter, we continue with multiset attacks and discuss further advancements
in this technique. In the previous chapter, we had reviewed the multiset attacks on
AES variants that had delivered the best results on AES-128 till now. 1 However, for
AES-192 and AES-256, further improvements were reported in literature. The multiset
attack on AES-192/256 was improved by Li et al. in [122]. They extended the number
of rounds attacked to 9 by introducing the concept of key sieving, where dependencies
between the AES round keys were exploited to filter out the wrong states and reduce
the number of possible admissible multisets. Recently, in [147], Li et al. demonstrated
the most efficient multiset attack on AES-256. By exploiting some more key sieving
properties and clever MixColumns properties, they extended the number of rounds
attacked to 10. Table 7.1 summarizes the best multiset attacks currently existing on
AES-192 and AES-256.

The Kalyna block cipher has recently been established as the Ukranian encryption
standard in June, 2015 [138]. It was selected in a Ukrainian National Public Crypto-
graphic Competition running from 2007 to 2010. Kalyna supports block sizes and key
lengths of 128, 256 and 512 bits. Denoting the variants of Kalyna as Kalyna-b/k, where
b denotes the block size and k denotes the keylength, the design specifies k ∈ {b, 2b} and
defines 5 variants of Kalyna: Kalyna - 128/128, Kalyna - 128/256, Kalyna - 256/256,
Kalyna - 256/512 and Kalyna - 512/512. The number of rounds of these variants are
- 10, 14, 14, 18 and 18 respectively. Structurally, Kalyna is quite similar to AES [57]
but has an increased MDS matrix size, a new set of four different S-boxes, pre-and
post-whitening modular 264 key addition and a new key scheduling algorithm. Since,
this block cipher has been introduced very recently, therefore, it has not yet received

1Apart from biclique based key recovery attacks

136

Table 7.1: Summary of multiset attacks existing on AES-192 and AES-256

Target Rounds Time Data Memory Reference

AES-192

8 2208 232 2206 [60]

8 2172 2113 2129 [71]

8 2172 2107 296 [61]

9 2186.5 2117 2177.5 [122]

AES-256

8 2208 232 2206 [60]

8 2196 2113 2129 [71]

8 2196 2107 296 [61]

9 2203 2120 2203 [61]

9 2203.5 2121 2169.9 [122]

10 2253 2111 2211.2 [147]

significant attention of the cryptanalysis community. As multiset class of attacks has
produced the best results on AES, hence, we investigate the effectiveness of improved
multiset attack on Kalyna in this chapter.

The roadmap for this chapter is as follows: In Section 7.1, we describe Kalyna and
present the current cryptanalytic results existing on it. This is followed by Section 7.2
where we mention some definitions and notations used in this chapter. In Section 7.3,
we give details of our 6-round distinguisher for Kalyna 128/256 followed by Section 7.4
where we present our 9-round attack on the same. In Section 7.5, we describe our
6-round distinguisher for Kalyna-256/512 and in Section 7.6 we discuss our 9-round
attack on the same. Finally in Section 7.7, we summarize and conclude this chapter.
The original contribution of this work is from Section 7.2 to Section 7.6.

7.1 Description of Kalyna

The block cipher Kalyna proposed by Oliynykov et al. [138] has been recently selected
as the Ukranian encryption standard in 2015. The aim of standardizing a new block
cipher was to replace the previous standard – block cipher GOST owing to its slower
speed in software implementations as compared to AES and presence of some effective
theoretical attacks on it. In the first stage, 5 submissions were accepted namely –

137

Kalyna, Mukhomor, Labirynth, ADE and RSB. Out of this 3 block ciphers - Kalyna,
Mukhomor and Labirynth went on to the second stage from which Kalyna was finally
declared as the winner.

As discussed earlier, the block cipher Kalyna-b/k has five variants namely: Kalyna-
128/128, Kalyna-128/256, Kalyna-256/256, Kalyna-256/512 and Kalyna-512/512 where,
b is the block size and k is the key size. The 128-bit, 256-bit and 512-bit internal states
are treated as a byte matrix of 8 × 2 size, 8 × 4 size and 8 × 8 size respectively
where, the bytes are numbered column-wise (as shown in Fig. 7.1). Each internal
round consists of 4 basic operations (as shown in Fig. 7.2):

Figure 7.1: (a)Byte numbering in
a state of Kalyna-128. (b) Byte
numbering in a state of Kalyna-
256. (c) Byte numbering in a state
of Kalyna-512

SRSB MC ⊕

K0 Xi ZiYi

P

Wi

SRSB MC

C

K(i+1)

W13Z13Y13X13 K14

13 times iteration

Figure 7.2: One full encryption in Kalyna-128/256. (Refer
to Section 7.2 for notations)

1. SubBytes (SB) - The nonlinear substitution layer uses four types of 8-bit S-boxes:
S0, S1, S2 and S3. Each S-Box is defined to be an affine transformation of the
inversion function over GF(28). Each byte x of row j (where 0 ≤ j ≤ 7) in an
intermediate state s is substituted by Sj mod 4 (x).

2. Shift Rows (SR) - The linear shift rows operation performs circular right shift on
each row of an internal state (as shown in Fig. 7.3). The number of shifts (δj) in
each row j (where 0 ≤ j ≤ 7) is calculated by δj = b j·b

512
c, where b denotes the

block size. E.g., for row j = 6 and block size b = 128, the number of shifts (δj)
= 1. The inverse shift rows operation circularly left shifts the elements by δj in
each row.

3. MixColumns (MC) - This linear transformation pre-multiplies each column of
the state matrix by a 8× 8 MDS matrix over GF(28). The vector (0x01, 0x01,

0x05, 0x01, 0x08, 0x06, 0x07, 0x04) forms the circulant MDS matrix for
the MixColumns operation (shown below) whereas the vector (0xAD, 0x95,

0x76, 0xA8, 0x2F, 0x49, 0xD7, 0xCA) forms the circulant MDS matrix for
the inverse MixColumns operation. The branch factor of this MDS matrix is 9.

138

SR

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

(a) Shift
Rows op-
eration in
Kalyna-128

SR

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

(b) ShiftRows opera-
tion in Kalyna-256

SR

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

(c) ShiftRows operation in Kalyna-
512

Figure 7.3: Illustration of ShiftRows operation in Kalyna variants

The polynomial x8 + x4 + x3 + x2 + 1 (represented as 0x11D in short) is used as
the irreducible polynomial for Galois field multiplication. It is to be noted that
unlike AES, in the last round of Kalyna, MixColumns operation is not omitted.

1 1 5 1 8 6 7 4
4 1 1 5 1 8 6 7
7 4 1 1 5 1 8 6
6 7 4 1 1 5 1 8
8 6 7 4 1 1 5 1
1 8 6 7 4 1 1 5
5 1 8 6 7 4 1 1
1 5 1 8 6 7 4 1


4. Add Round Key (ARK) - This step involves an exclusive-or operation with the

round subkey. However, for the pre-whitening and post-whitening keys, key
addition operation involves addition modulo 264. This was done to increase the
resistance of Kalyna against differential and linear attacks. The round subkeys
are of the same size as the intermediate state size.

Key Scheduling Algorithm. The key scheduling algorithm of Kalyna first involves
splitting of the master key K into two parts - Kα and Kω. If the block size and key
size are equal, i.e., (k = b), then Kα = Kω = K, otherwise if (k = 2b), then Kω || Kα

= K, i.e., Kα is set as b/2 least significant bits of K and Kω is set as b/2 most sig-
nificant bits of K. Using these two parameters, an intermediate key Kt is generated
which is then used to independently generate even indexed round keys (as shown in
Fig. 7.4). Complete details of the key schedule algorithm are not relevant to the attacks
described in this work and hence are omitted here. One may refer to [138] for the same.

Two properties which are important for us are as follows:

139

SB
SR
MC

⊕

C

SB
SR
MC

⊕
SB
SR
MC

Kt

Kα

Kω

Kα

SB
SR
MC

⊕

C

SB
SR
MC

K2i

Kt + tmvi

Kt + tmvi

Kt + tmvi

Figure 7.4: Key Schedule Algorithm of Kalyna. K denotes the master key, C is a
predefined constant and tmvi = K≫ 32.i where i denotes the round index.

1. Recovery of a subkey does not allow recovery of master key better than brute
force.

2. The keys for round i where i is an odd number can be linearly computed from
the key used in round (i− 1) and vice- versa as follows:

Ki+1 = Ki≫ (b/4 + 24) (7.1)

where, ≫ denotes circular right shift operation.

Previous cryptanalytic results on Kalyna. The official version of Kalyna spec-
ification (in English) available publicly does not include any security analysis of the
design. A preliminary study in [1], before this cipher was standardized, reports attack
complexities for Kalyna -128/128 against various attacks such as differential, linear,
integral, impossible differential, boomerang etc. and shows that upto 5 rounds of this
variant can be broken. Similar results are claimed for other Kalyna variants as well.
The designers of Kalyna thus claim brute force security against Kalyna for rounds
≥ 6. In [13], AlTawy et al. presented the first detailed key recovery attack against
standardized Kalyna-128/256 and Kalyna-256/512. They applied meet-in-the-middle
(MITM) attack [61, 71] to break 7-rounds of both Kalyna variants and demonstrated
the best attack on Kalyna so far. These results are summarized in Table 7.2.

140

Since, no justification of the cryptanalytic results obtained in [1] is given and the
very fact that the claim of the Kalyna designers has been nullified by Altawy et al.
motivated us to investigate the effectiveness of improved multiset attacks on Kalyna.
In our attacks, we examine Kalyna-128/256 and Kalyna-256/512. We construct new
6-round distinguishers for both the variants and use it to extend our attacks up to 9
rounds. For Kalyna-256/512, we significantly reduce the data and time complexities
of the previous best 7-round attack on the same [13]. The key schedule algorithm of
Kalyna does not allow recovery of all subkeys or the master key from one subkey only
unlike AES [57]. However, it allows recovery of odd-round keys from even-round keys
and vice-versa. This property will be used by us in our attacks to reduce the attack
complexities. To the best of our knowledge, our attacks are the first attacks on 9-round
Kalyna-128/256 and Kalyna-256/512 respectively.

Table 7.2: Comparison of cryptanalytic attacks on round reduced variants of Kalyna.
The blank entries were not reported in [1]. (The memory complexity header represents
the number of 128-bit blocks for Kalyna-128 and 256-bit blocks for Kalyna-256 required
to be stored in memory.)

Algorithm Rounds Attack Type Time Data Memory Reference

attacked

Kalyna-128/128

2 Interpolation − - - [1]

3 Linear Attack 252.8 - - [1]

4 Differential 255 - - [1]

4 Boomerang 2120 - - [1]

5 Impossible Differential 262 - 266 [1]

5 Integral 297 - 233+4 [1]

Kalyna-128/256
7 Meet-in-the-Middle 2230.2 289 2202.64 [13]

9 Meet-in-the-Middle 2245.83 2105 2226.86 Sec. 7.4

Kalyna-256/512
7 Meet-in-the-Middle 2502.2 2233 2170 [13]

9 Meet-in-the-middle 2477.83 2217 2443.45 Sec. 7.5

7.1.1 Our Contribution.

The main contributions of this chapter are as follows:

• We present the first 9-round key recovery attack on Kalyna-128/256 and Kalyna-
256/512.

141

• We apply multiset attack to construct new 6-round distinguishers on each of the
above mentioned Kalyna variants.

• Our 9-round attack on Kalyna-128/256 has data/time/memory complexity of
2105, 2245.83 and 2226.86 respectively.

• Our 9-round attack on Kalyna-256/512 has data/time/memory complexity of
2217, 2477.83 and 2443.45 respectively. This improves upon the previous best at-
tack [13] in terms of time and data complexity as well.

Our results are summarized in Table 7.2.

7.2 Definitions and Notations

We utilize the following definitions for our attacks.

Definition 1 (δ-list). We define the δ-list as an ordered list of 256 16-byte (or
32-byte) distinct elements that are equal in 15 (or 31) bytes for Kalyna-128 (or Kalyna-
256). Each of the equal bytes are called as passive bytes whereas the one byte that
takes all possible 256 values is called the active byte. We denote the δ-list as (x0, x1,
x2, . . . , x255) where xj indicates the jth 128-bit (or 256-bit) member of the δ-list for
Kalyna-128 (or Kalyna-256). As mentioned in the notations, xji [m] represents the mth

byte of xj in round i.

Definition 2 (Multiset). A multiset is a set of elements in which multiple in-
stances of the same element can appear. A multiset of 256 bytes, where each byte can
take any one of the 256 possible values, can have

(
28+28−1

28

)
≈ 2506.17 different values. 2

Definition 3 (Super S-Box). The Kalyna Super S-box (denoted as SSB) can be
defined similar to AES Super S-box [58]. For each 8-byte key, it produces a mapping
between an 8-byte input array to an 8-byte output array. Formally, a two round Kalyna
can be written as:

SB → SR→MC → ARK → SB → SR→MC → ARK

or,
SR→ SB →MC → ARK → SB︸ ︷︷ ︸→ SR→MC → ARK 3 (7.2)

Since, MixColumns operation operates on a column of the state, the above map
(SB → MC → AK → SB) in Eq. 7.2 can be described as d parallel instances of

2Count of multisets of cardinality r with elements from a set with cardinality n =
(
n+r−1

r

)
3Note that Sub Bytes and Shift Row operations in the first round have been interchanged as these

functions commute with each other

142

SSB, where d = 2, 4 and 8 for Kalyna-128, Kalyna-256 and Kalyna-512 respectively.

Two important properties that will be used in our attacks are as follows:

Property 1a. (Kalyna S-box) For any given Kalyna S-box, say Si (where, i
= 0, 1, 2 or 3) and any non-zero input - output difference pair, say (∆in, ∆out) in
F256 × F256, there exists one solution in average, say y, for which the equation, Si(y)⊕
Si(y ⊕∆in) = ∆out, holds true.

Property 1b. (Kalyna Super S-box) For any given Kalyna Super S-box, say
SSB and any non-zero input - output difference pair, say (∆in, ∆out) in F264 × F264 ,
the equation, SSB(z)⊕ SSB(z ⊕∆in) = ∆out has one solution in average.

Property 2. (Kalyna MixColumns) If the values (or the differences) in any
eight out of its sixteen input/output bytes of the Kalyna MixColumns operation are
known, then the values (or the differences) in the other eight bytes are uniquely deter-
mined and can be computed efficiently. This is similar to AES MixColumns property
stated in [147].

Proof. The Kalyna MixColumns works on a column of 8 bytes. Thus, the inputs
and outputs of Kalyna MixColumns operation can be related through 8 equations.
Therefore, out of 16 variables (8 input and 8 output), if 8 variables are known then the
other 8 variables can be uniquely determined through the 8 equations. This is because
as mentioned in [82], any sub-matrix of a MDS matrix is invertible which guarantees
existence of an unique solution.

The time complexity of the attack is measured in terms of 9-round Kalyna encryp-
tions required. The memory complexity is measured in units of b-bit Kalyna (where, b
= 128 or 256) blocks required.

The following notations are followed in this chapter:

143

P : Plaintext
C : Ciphertext
i : Round number i, where, 0 ≤ i ≤ 8
Kalyna-b : Kalyna with state size of b-bits
Kalyna-b/k : Kalyna with state size of b-bits and key size of k-bits
Ki : Subkey of round i
Ui : MC−1(Ki), where, MC−1 is the inverse MixColumns op-

eration
Xi : State before SB in round i
Yi : State before SR in round i
Zi : State before MC in round i
Wi : State after MC in round i
∆s : Difference in a state s
si[m] : mth byte of state s in round i, where, 0 ≤ m ≤ l and l =

15 for Kalyna-128/256 and l = 31 for Kalyna-256/512
si[p− r] : pth byte to rth byte (both inclusive) of state s in round i,

where, 0 ≤ p < r ≤ l and l = 15 for Kalyna-128/256 and
l = 31 for Kalyna-256/512

In some cases we are interested in interchanging the order of the MixColumns and
Add Round Key operations. As these operations are linear, they can be swapped,
by first xoring the intermediate state with an equivalent key and then applying the
MixColummn operation (as shown in Figs. 7.5, 7.6). This is exactly similar to what
one can do in AES [61]. As mentioned above, we denote the equivalent round key by
Ui = MC−1(Ki).

SRSB MC ⊕

Xi ZiYi Wi

K(i+1)

Xi+1

Figure 7.5: Normal one round of Kalyna-
128/128.

SRSB MC⊕

Xi ZiYi W ′
i

U(i+1)

Xi+1

Figure 7.6: One round of Kalyna-128/128
with swapped MC and ARK operation.
Here, W ′

i = Zi ⊕ Ui+1.

144

7.3 Construction of distinguisher for 6-round Kalyna-

128/256

In this section, we construct a distinguisher on the 6-inner rounds of Kalyna-128/256.
Before, we proceed further, we first establish the following relation for Kalyna-128/256.
According to Property 2, we can form an equation using any 11 out of 16 input-output
bytes in the Kalyna MixColumns operation. For any round j, where, 0 ≤ j ≤ 8:

0xCA · Zj[12]⊕ 0xAD · Zj[13] = 0x94 ·Wj[8]⊕ 0xB4 ·Wj[9]⊕
⊕ 0x49 · Zj[14]⊕ 0xD7 · Zj[15] 0x4E ·Wj[10]⊕ 0x7E ·Wj[11]⊕

0xC0 ·Wj[13]⊕ 0xDA ·Wj[14]⊕
0xC5 ·Wj[15] (7.3)

or,

0xCA · Zj[12]⊕ 0xAD · Zj[13] = 0x94 · (Kj[8]⊕Xj+1[8])⊕
⊕ 0x49 · Zj[14]⊕ 0xD7 · Zj[15] 0xB4 · (Kj[9]⊕Xj+1[9])⊕

0x4E · (Kj[10]⊕Xj+1[10])⊕
0x7E · (Kj[11]⊕Xj+1[11])⊕
0xC0 · (Kj[13]⊕Xj+1[13])⊕
0xDA · (Kj[14]⊕Xj+1[14])⊕
0xC5 · (Kj[15]⊕Xj+1[15]) (7.4)

where, Wj = Kj ⊕Xj+1. Derivation of Eq. 7.3 is shown in Appendix B. Let,

Pj = 0xCA · Zj[12]⊕ 0xAD · Zj[13]⊕ 0x49 · Zj[14]⊕ 0xD7 · Zj[15] (7.5)

Qj = 0x94 ·Xj+1[8]⊕ 0xB4 ·Xj+1[9]⊕ 0x4E ·Xj+1[10]⊕ 0x7E ·Xj+1[11]

⊕ 0xC0 ·Xj+1[13]⊕ 0xDA ·Xj+1[14]⊕ 0xC5 ·Xj+1[15] (7.6)

Const = 0x94 ·Kj[8]⊕ 0xB4 ·Kj[9]⊕ 0x4E ·Kj[10]⊕ 0x7E ·Kj[11]⊕
0xC0 ·Kj[13]⊕ 0xDA ·Kj[14]⊕ 0xC5 ·Kj[15] (7.7)

then, Eq. 7.4 can be rewritten as,

Pj = Qj ⊕ Const (7.8)

Eq. 7.8 will be used to establish the distinguishing property as shown next.

7.3.1 Distinguishing Property for Kalyna-128/256

Given, a list of 256 distinct bytes (M0, M1, . . . , M255), a function f : {0, 1}128 7→
{0, 1}128 and a 120-bit constant T , we define a multiset v as follows :

145

Ci = f(T ||M i),where (0 ≤ i ≤ 255) (7.9)

ui = 0x94 · Ci[8]⊕ 0xB4 · Ci[9]⊕ 0x4E · Ci[10]⊕ 0x7E · Ci[11]⊕
0xC0 · Ci[13]⊕ 0xDA · Ci[14]⊕ 0xC5 · Ci[15] (7.10)

v = {u0 ⊕ u0, u1 ⊕ u0, . . . , u255 ⊕ u0} (7.11)

Note that, (T || M0, T || M1, . . . , T || M255) forms a δ-list and atleast one
element of v (i.e., u0 ⊕ u0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations on 128-
bit. Then, given any list of 256 distinct bytes (M0, M1, . . . , M255), the aim is to find

how many multisets v (as defined above) are possible when, f
$←− F and T

$←− {0, 1}120.

In case, when F = family of all permutations on 128-bit and f
$←− F . Under

such setting, since in the multiset v, we have 255 values (one element is always 0) that
are chosen uniformly and independently from the set {0, 1, . . ., 255 }, the total number

of possible multisets v are atmost
(

28−1+28−1
28−1

)
≈ 2505.17.

In case, when F = 6-full rounds of Kalyna-128/256 and f
$←− F . Here, f

$←− F
⇔ K

$←− {0, 1}256 and f = EK . Let us consider the 6 inner rounds of Kalyna-128/256
as shown in Fig. 7.7. Here, C in Eq. 7.9 is represented by X6 and Eq. 7.10 is defined
as :

ui = 0x94 ·X i
6[8]⊕ 0xB4 ·X i

6[9]⊕ 0x4E ·X i
6[10]⊕ 0x7E ·X i

6[11]⊕
0xC0 ·X i

6[13]⊕ 0xDA ·X i
6[14]⊕ 0xC5 ·X i

6[15] (7.12)

It is to be noted that under this setting, for each i where (0 ≤ i ≤ 255), Eq. 7.12
is same as Eq. 7.6 computed at round 5, i.e., ui = Qi

5. Now, we state the following
Observation 1.

Observation 1. The multiset v is determined by the following 52 single byte param-
eters only :

• X0
1 [0 - 7] (8-bytes)

• X0
2 [0 - 15] (16-bytes)

• X0
3 [0 - 15] (16-bytes)

• X0
4 [0 - 3, 12 - 15] (8-bytes)

146

• X0
5 [4 - 7] (4-bytes)

Pi

SRSB

Xi
0

Zi
0

Y i
0

MC

Wi
0

K0U0

MC
Round 0

⊕

K1U1

MC SRSB

Xi
1

Zi
1

Y i
1

MC

Wi
1

Round 1

SRSB

Xi
2

Zi
2

Y i
2

MC

Wi
2K2U2

MC
Round 2

⊕

K3U3

MC SRSB

Xi
3

Zi
3Y i

3

MC

Wi
3

Round 3

SRSB

Xi
4

Zi
4

Y i
4

MC

Wi
4K4U4

MC
Round 4

⊕

K5U5

MC SRSB

Xi
5

Zi
5

Y i
5

MC

Wi
5

Round 5

Xi
6K6U6

MC
Round 6

⊕

⊕

⊕

Figure 7.7: 6-Round distinguisher for Kalyna-128/256. P i denotes (T || M i) and
X i
j, Y

i
j , Zi

j, W
i
j denote intermediate states corresponding to P i in round j. The round

subkeys Kj, where, 0 ≤ j ≤ 6 are generated from the master key K.

Thus, the total number of possible multisets is 252×8 = 2416 since each 52-byte value
defines one sequence.

147

Proof. In round 0 (in Fig. 7.7), the set of differences {X0
0 [15]⊕X0

0 [15], X1
0 [15]⊕X0

0 [15],
. . . , X255

0 [15] ⊕X0
0 [15]} (or, equivalently the set of differences at X0[15]) is known to

the attacker as there are exactly 256 differences possible. This is so, because in the
plaintext we make the most significant byte as the active byte. Hence, when the pre-
whitening key is added (columnwise), the carry-bit in the most significant bit is ignored
limiting the possible values (and the differences) at X0[15] to 256 only. Since S-box
is injective, exactly 256 values exist in the set {Y 0

0 [15]⊕ Y 0
0 [15], Y 1

0 [15]⊕ Y 0
0 [15], . . . ,

Y 255
0 [15]⊕Y 0

0 [15]}. As Shift Row (SR), MixColumns (MC) and Add Round Key (ARK)
are linear operations, the set of differences at X1[0− 7] will be known to the attacker.

Owing to the non-linearity of the S-box operation, the set of differences at Y1 [0-7]
cannot be computed to move forward. To alleviate this problem, it is sufficient to
guess X0

1 [0-7], i.e., values of the active bytes of the first state (out of 256 states) at
X1 as it allows calculating the other X i

1[0-7] states (where, 1 ≤ i ≤ 255) and cross SB
layer in round 1. Since, SR, MC and ARK operations are linear, the set of differences
at X2[0 − 15] is known. Continuing in a similar manner as discussed above, if the
attacker guesses full states X0

2 [0-15] and X0
3 [0-15], then the set of differences at Z3,

i.e., {Z0
3 ⊕ Z0

3 , Z1
3 ⊕ Z0

3 , . . ., Z255
3 ⊕ Z0

3} can be easily computed. Now at this stage,
she can easily calculate the set of differences at W3 [0, 1, 2, 3, 12, 13, 14, 15] which is
equal to the set of differences at X4 [0, 1, 2, 3, 12, 13, 14, 15]. 4. By guessing X0

4 [0, 1,
2, 3, 12, 13, 14, 15], the attacker can cross the SB layer in round 4 and calculate the
set of differences at W4 [4, 5, 6, 7]. By guessing X0

5 [4, 5, 6, 7], the attacker can obtain
the set of values {Z0

5 [12 − 15], Z1
5 [12 − 15], . . . , Z255

5 [12 − 15]}. Using these, she can
compute P i

5 at Zi
5 as P i

5 = CAx · Zi
5[12] ⊕ ADx · Zi

5[13] ⊕ 49x · Zi
5[14] ⊕ D7x · Zi

5[15]
(according to Eq. 7.5) and thus the set {P 0

5 ⊕ P 0
5 , P 0

5 ⊕ P 1
5 , . . . , P 255

5 ⊕ P 0
5 }. Since,

according to Eq. 7.8, P i
j ⊕ P 0

j = (Qi
j⊕ Const) ⊕ (Q0

j⊕ Const) = Qi
j ⊕ Q0

j and ui =
Qi

5 (mentioned above), the attacker can easily calculate the multiset v = {Q0
5 ⊕ Q0

5,
Q1

5 ⊕ Q0
5, . . ., Q255

5 ⊕ Q0
5}. This shows that the multiset v depends on 52 parameters

and can take 2416 possible values. �

Since, there are 2416 possible multisets, if we precompute and store these values
in a hash table then the precomputation complexity goes higher than brute force for
Kalyna-128/256. In order to reduce the number of multisets, we apply the Differential
Enumeration technique suggested by Dunkelman et al. in [71] and improved by Derbez
et al. in [61]. We call the improved version proposed in [61] as Refined Differential
Enumeration.

Refined Differential Enumeration. The basic idea behind this technique is to
choose a δ-set such that several of the parameters mentioned in Observation 1 equal

4In Fig. 7.7, byte 3 in states W3, X4, Y4 and Z4 have not been colored grey for a purpose which
will be cleared when we reach Observation 2

148

some pre-determined constants. To achieve so, we first construct a 6-round truncated
differential trail in round 0 - round 5 (as shown in Fig. 7.8) where, the input difference
is non-zero at one byte and output difference is non zero in 7 bytes.

∆X1∆P ∆X6∆X2 ∆X3 ∆Y4

MC Rd 2 Rd 3

∆Y5

ARK
SB, SR

∆Z0

ARK
SB

∆Y3

SR, MC
ARK, SB

SR, MC
ARK, SB

SR, MC
ARK

Figure 7.8: 6-Round Truncated Differential in Kalyna-128/256

The probability of such a trail is 2−112 as follows: the one byte difference at ∆P [15]
and correspondingly at ∆X0[15] propagates to 8-byte difference in ∆X1[0 − 7] and
16-byte difference in ∆X2[0−15] and further till ∆Z3[0−15] with probability 1. Next,
the probability that 16-byte difference in ∆Z3[0 − 15] propagates to 7-byte difference
in ∆W3[0 − 2, 12 − 15] (= ∆X4[0 − 2, 12 − 15]) is 2−72. This 7-byte difference in
∆X4 propagates to 4-byte difference in ∆W4[4 − 7] followed by 7-byte difference in
∆W5[8− 11, 13− 15] with a probability of 2−32 and 2−8 respectively. Thus, the overall
probability of the differential from ∆P to ∆Z5 is 2−(72+32+8) = 2−112.

In other words, we require 2112 plaintext pairs to get a right pair. Once we get a
right pair, say (P 0, P 1), we state the following Observation 2 using this right pair.

Observation 2. Given a right pair (P 0, P 1) that follows the truncated differential
trail shown in Fig. 7.8, the 52 parameters corresponding to P 0, mentioned in Observa-
tion 1 can take one of atmost 2224 fixed 52-byte values (out of the total 2416 possible
values), where each of these 2224 52-byte values are defined by each of the 2224 values
of the following 39 parameters:

• ∆Z0[7] (1-byte)

• X0
1 [0− 7] (8-bytes)

• Y 0
3 [0− 15] (16-bytes)

• Y 0
4 [0− 3, 12− 15] (8-bytes)

• Y 0
5 [5− 7] (3-bytes)

• ∆Z5[12− 14] (3-bytes)

149

Proof. Given a right pair (P 0, P 1), the knowledge of these 39 new parameters allows
us to compute all the differences shown in Fig. 7.8. This is so because the knowledge
of ∆Z0[7] allows us to compute ∆X1[0−7]. Then, if the values of X0

1 [0−7] are known,
one can compute the corresponding X1

1 [0− 7] and cross the S-box layer in round 1 to
get ∆X2.

From the bottom side, it can be seen that ∆W5[12] = ∆Z5[8] = ∆Z5[9] = ∆Z5[10]
= ∆Z5[11] = 0. Thus, if ∆Z5[12, 13, 14] are known, then using Property 2 (as 8 bytes
are known), we can deduce ∆Z5[15] (and ∆W5 [8-11, 13-15]). Knowledge of ∆Z5[8−15]
allows us to to compute ∆Y5[4 − 7]. Then, by guessing Y 0

5 [5 − 7], we can determine
the corresponding Y 1

5 [5 − 7] and compute ∆X5[5 − 7] (and ∆W4[5 − 7]). Now again,
we know that ∆W4[0] = ∆W4[1] = ∆W4[2] = ∆W4[3] = ∆Z4[3] = 0. Using Property
2 (as 8 bytes are known), we can deduce ∆W4[4] (and ∆Z4[0− 2, 4− 7]). This allows
us to compute ∆X5[4] as well. Since we already know ∆Y5[4] (from ∆Z5[12] guessed
previously), using Property 1a., the possible values of X5[4] and Y5[4] can be computed.

Now, knowledge of ∆Z4[0−7] allows us to compute ∆Y4[0−3, 12−15]. By guessing
Y 0

4 [0 − 3, 12 − 15], we can obtain ∆Y3[0 − 15]. Using the value of Y 0
3 [0 − 15], we can

compute ∆Y2. Then using Property 1a., the possible values of X0
2 and Y 0

2 can be
computed. At this stage, the total possible values of these 39 parameters are 239×8 =
2312.

Key Sieving. However, for each value of this 39-byte parameter, the following key
bytes - U2[0−3, 12−15], K3, K4[0−3, 12−15] and K5[4−7] can be deduced as follows:

1. Knowledge of X0
1 [0−7] allows us to compute the corresponding Z0

1 [0−3, 12−15].
Xoring these values with X0

2 [0−3, 12−15] helps us in deducing U2[0−3, 12−15].

2. Knowledge of X0
2 allows us to compute the corresponding W 0

2 . Xoring W 0
2 with

X0
3 helps us in deducing K3.

3. Knowledge of X0
3 and X0

4 [0− 3, 12− 15] (from Y 0
4 [0− 3, 12− 15]) can be used to

deduce K4[0− 3, 12− 15].

4. Knowledge of X0
4 [0−3, 12−15] and X0

5 [4−7] (from Y 0
5 [4−7]) helps us in deducing

K5[4− 7].

Now, according to the key schedule algorithm of Kalyna-128/256, from K3, we can
compute K2 (according to Eq. 7.1) which allows us to compute the corresponding U2.
Thus, by comparing the computed U2[0−3, 12−15] with the deduced U2[0−3, 12−15],
a sieve of 8-bytes (since matching probability is 2−64) can be applied to eliminate the
wrong guesses. Similarly, again from Eq. 7.1, knowledge of K5[4− 7] allows us to com-
pute K4 [12], K4 [13] and K4 [14] as K4[12] = K5[5], K4[13] = K5[6] and K4[14] = K5[7].
This allows us a filtering of further 3-bytes. Thus by key sieving, the total possible

150

guesses of 39-byte parameter reduces from 239×8 to 2(39−(8+3))×8 = 228×8 = 2224. �

Using Observation 1 and Observation 2, we state the following third Observation
3 :

Observation 3. Given (M0, M1, . . . , M255) and f
$←− F and T

$←− {0, 1}120, such
that T || M0 and T || M j, (where, j ∈ { 1, . . . , 255 }) is a right pair that follows the
differential trail shown in Fig. 7.8, atmost 2224 multisets v are possible.

Proof. From Observation 1, we know that each 52-byte parameter defines one multi-
set and Observation 2 restricts the possible values of these 52-byte parameters to 2224.
Thus, atmost 2224 multisets are only possible for Kalyna-128/256. �

As the number of multisets in case of 128-bit random permutation (= 2505.17) is much
higher than 6-round Kalyna-128/256 (= 2224), a valid distinguisher is constructed.

7.4 Key Recovery Attack on 9 Round Kalyna-128/

256

In this section, we use our Observation 3 to launch meet-in-the-middle attack on 9-
round Kalyna-128/256 to recover the key. The distinguisher is placed in round 0
to round 5, i.e, the set of plaintexts is considered as the δ-list with byte 15 being the
active byte and the multiset sequence being checked at X6 (as shown in Fig. 7.9). Three
rounds are added at the bottom of the 6-round distinguisher. The attack consists of
the following three phases:

7.4.1 Precomputation Phase

In this phase, we build a lookup table T to store 2224 sequences to be used for compar-
ison in the online phase. The construction of this table requires us to create two more
hash tables (T0 and T1) in the intermediate steps. The entire procedure is as follows:

1. For each K3

• We guess ∆Z1[0− 3, 12− 15]||∆X4[0− 2, 12− 15] to compute the difference
∆X2 and ∆Y3 respectively. We resolve (∆X2 - ∆Y3) using Property 1b
to compute the corresponding X2||X3. We then deduce K2 from K3 and
compute the corresponding value of Z1[0−3, 12−15]. Using the guessed value
of ∆Z1[0−3, 12−15] and the computed value of Z1[0−3, 12−15], we compute
∆Z0[0 − 7]. If ∆Z0[0 − 6] = 0 (which happens with a probability of 2−56),
we store the corresponding X1[0− 7]||∆Z1[0− 3, 12− 15]||X2||X3||W3[12−

151

14]||∆X4[0− 2, 12− 15] at index K3 in table T0. There are about 264 entries
for each index.

Pi

SRSB

Xi
0

Zi
0

Y i
0

MC

Wi
0

K0U0

MC
Round 0

⊕

K1U1

MC SRSB

Xi
1

Zi
1

Y i
1

MC

Wi
1

Round 1

SRSB

Xi
2

Zi
2

Y i
2

MC

Wi
2

K2U2

MC
Round 2

⊕

K3U3

MC SRSB

Xi
3

Zi
3

Y i
3

MC

Wi
3

Round 3

SRSB

Xi
4

Zi
4Y i

4

MC

Wi
4

K4U4

MC
Round 4

⊕

K5U5

MC SRSB

Xi
5

Zi
5

Y i
5

MC

Wi
5

Round 5

SRSB

Xi
6

Zi
6

Y i
6

MC

Wi
6

K6U6

MC
Round 6

⊕

K7U7

MC SRSB

Xi
7

Zi
7

Y i
7

MC

Wi
7

Round 7

SRSB

Xi
8

Zi
8

Y i
8

MC

Wi
8

K8U8

MC
Round 8

⊕

K9U9

MC

b b
b

b b
b b
b b
b b
b b
b b

b

Ci

⊕

⊕

⊕

b b
b

b b
b b
b b
b b
b b
b b

b

b

b
b
b
b

b

b

Figure 7.9: 9-round attack on Kalyna-128/256. The subkey bytes guessed are shown
dotted.

152

2. For each guess of ∆Z5[12− 14]

• We compute ∆Z5[15] using Property 2.

• We guess Y5[5−7], compute X5[5−7] and ∆X5[0−3, 5−7] where, ∆X5[0−3]
= 0. Since, ∆X5[0−3, 5−7] = ∆W4[0−3, 5−7] and we know that ∆Z4[3] = 0,
thus we can compute ∆X5[4] (= ∆W4[4]) and ∆Z4[0− 2, 4− 7] again using
Property 2. Since ∆Y5[4] is known from ∆Z5[12], we can resolve (∆X5[4]-
∆Y5[4]) to get X5[4].

• We guess Y4[0− 3, 12− 15] and compute corresponding X4[0− 3, 12− 15] in
the backward direction and W4[4− 7] in the forward direction. This allows
us to calculate K5[4− 7] and deduce the corresponding K4[12− 14]. We use
this to compute W3[12− 14].

• We store X4[0− 3, 12− 15]||X5[4− 7] at index value W3[12− 14]||∆X4[0−
2, 12− 15] in table T1. There are about 232 entries for each index.

3. For each of the 2128 index of K3 in table T0, we have 264 entries of W3[12 −
14]||∆X4[0 − 2, 12 − 15] and corresponding to each of these we have 232 entries
of X4[0 − 3, 12 − 15]||X5[4 − 7] in table T1. So in all, after merging T0 and T1,
we get 2128+64+32 = 2224 unique set of 39-byte parameters, that are required to
construct the multiset v.

4. For each of these 2224 39-byte parameters, we calculate the corresponding 52-
byte parameters for all the elements of the δ-list and compute the multiset v =
{u0 ⊕ u0, u1 ⊕ u0, . . . , u255 ⊕ u0}. We store the multiset along with the 52-byte
parameters in the table T .

The time complexity to construct 5 T0 = 2(16+8+7)×8 × 2−2.17 = 2245.83. The time
complexity to construct T1 = 2(3+3+8)×8 × 2−2.17 = 2109.83. The time complexity to
merge T0 and T1 = 2128+64+32 = 2224. Finally, the time complexity to construct T =
2224 × 28 × 2−0.58 = 2231.41.

7.4.2 Online Phase

In this phase, we extend the distinguisher described in Section 7.3, by adding 3 more
rounds at the bottom (as shown in Fig. 7.9). The steps of the online phase are as
follows:

1. We encrypt 297 structures of 28 plaintexts each where byte 15 takes all possible
values and rest of the bytes are constants. We store the corresponding ciphertexts
in the hash table.

5The normalization factor 2−2.17 is calculated by finding the ratio number of rounds en-
crypted/decrypted to 9 (i.e., the number of rounds of Kalyna considered in this work). Similarly
all other normalization factors have been calculated.

153

2. For each of the 2112 (P0, P ′0) plaintext pairs, do the following:

• We guess 2128 values of K9 and deduce the corresponding values of K8 from
K9. We decrypt each of the ciphertext pairs through 2 rounds, to get X7

and ∆X7. Then, we deduce the corresponding ∆W6 and ∆Z6.

• We filter out the keys, which do not give zero difference at ∆Z6[0−4, 12−15].
256 key guesses are expected to remain.

• We pick one member of the pair, say P0, create the δ-list by constructing
the rest of the 255 plaintexts as Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get
their corresponding ciphertexts.

• For each remaining 256 key guesses of K8 and K9, we guess U7[5 − 11],
compute the corresponding Z6[5 − 11] and Y6[8 − 11, 13 − 15] and then
obtain the multiset { u0 ⊕ u0, u1 ⊕ u0, . . ., u255 ⊕ u0}.
• We check whether this multiset exists in the precomputation table T or not.

If not, then we discard the corresponding guesses.

The probability for a wrong guess to pass the test is 2224×2−467.6 = 2−243.6. 6 Since
we try only 2112+56 = 2168 multisets, only the right subkey should verify the test.

7.4.3 Recovering the remaining Subkey bytes

The key schedule algorithm of Kalyna does not allow recovery of master key from any
subkey better than brute-force [138]. However, knowledge of all round keys enables
encryption/decryption. We follow a similar approach as described in [13] to recover all
the round subkeys. When a match with a multiset is found using a given plaintext-
ciphertext pair, we choose one of the ciphertexts and perform the following steps:

1. We already know the corresponding K8 and K9 and U7[5-11].

2. We guess the remaining 9 bytes of U7, and deduce the corresponding 272 values
of K7 and K6.

3. For each 272 guesses of (K7, K6), from X7 we compute X5. We discard the key
guesses for which X5[4− 7] does not match with the values of X5[4− 7] obtained
from the corresponding matched multiset in the pre-computation table.

4. For the remaining 272−32 = 240 guesses of (K9, K8, K7, K6), we guess 2128 values of
K5. We deduce X4 and discard the key guesses for which X4[0-2, 12-15] does not
match with the values obtained corresponding to the correct multiset sequence
from the precomputation table. From a total of 2128+40 = 2168 key guesses, 2112

key guesses are expected to remain.

6Note that the probability of randomly having a match is 2−467.6 and not 2−505.17 since the number
of ordered sequences associated to a multiset is not constant [71].

154

5. We deduce K4 from K5 for the remaining key guesses and compute X3. We
compare this to the value obtained from the precomputation table corresponding
to the correct multiset sequence and discard those that do not match. Only one
value of (K9, K8, K7, K6, K5, K4) is expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already known
from the pre-computation table. We deduce X1 for the remaining one value of
(K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2128 values of K1, deduce K0 and compute the plaintext. We compare
this to the plaintext corresponding to ciphertext being decrypted. We are left
with only one value of (K9, K8, K7, K6, K5, K4, K3, K2, K1, K0).

Complexities. The time complexity of the precomputation phase is dominated by
step 1 and is 2248 × 2−2.17 = 2245.83 Kalyna-128/256 encryptions. The time complexity
of the online phase is dominated by step 2 (part 1) and is 2112× 2128 × 2−2.17 = 2233.83.
The time complexity of the Subkey recovery phase is dominated by step 4 which is
2168 × 2−3.17 = 2164.83. Clearly the time complexity of the whole attack is dominated
by the time complexity of the precomputation phase, i.e., 2245.83. It was shown in [61]
that each 256-byte multiset requires 512-bits space. Hence, to store each entry in table
T, we require 512-bits to store the multiset and 52× 8 = 416-bits to store the 52-byte
parameters, i.e., a total of 928-bits (= 29.86). Therefore, the memory complexity of this
attack is 2224 × 29.86−7 = 2226.86 Kalyna 128-bit blocks. The data complexity of this
attack is 2105 plaintexts.

7.5 Construction of distinguisher for 6-Round Kalyna-

256/512

In this section, we construct a distinguisher for the 6-inner rounds of Kalyna-256/512.
The distinguisher construction details are similar to Kalyna-128/256 (discussed in
Sec. 7.3) except the fact that here instead of counting multisets, we count 256-byte
ordered sequences. The reason for opting ordered sequences would be discussed in
Sec. 7.6.

We first establish the following relation for Kalyna-256/512. According to Property
2, it is possible to construct an equation using any 12 out of 16 input-output bytes in
the Kalyna MixColumns operation. For any round j, where, 0 ≤ j ≤ 8 :

Zj[8]⊕ Zj[9]⊕ Zj[12]⊕ Zj[13] = EAx ·Wj[8]⊕ 54x ·Wj[9]⊕ 7Dx ·Wj[10]⊕
C3x ·Wj[11]⊕ E0x ·Wj[12]⊕ 5Ex ·Wj[13]⊕
7Dx ·Wj[14]⊕ C3x ·Wj[15] (7.13)

155

Derivation of Eq. 7.13 is shown in Appendix C. Similar to as shown in Section 7.3,
since, Wj = Kj ⊕Xj+1, if

Pj = Zj[8]⊕ Zj[9]⊕ Zj[12]⊕ Zj[13] (7.14)

Qj = EAx ·Xj+1[8]⊕ 54x ·Xj+1[9]⊕ 7Dx ·Xj+1[10]⊕
C3x ·Xj+1[11]⊕ E0x ·Xj+1[12]⊕ 5Ex ·Xj+1[13]⊕
7Dx ·Xj+1[14]⊕ C3x ·Xj+1[15] (7.15)

Const = EAx ·Kj[8]⊕ 54x ·Kj[9]⊕ 7Dx ·Kj[10]⊕ C3x ·Kj[11]⊕
E0x ·Kj[12]⊕ 5Ex ·Kj[13]⊕ 7Dx ·Kj[14]⊕ C3x ·Kj[15] (7.16)

then, Eq. 7.13 can be rewritten as,

Pj = Qj ⊕ Const (7.17)

7.5.1 Construction of 6-round distinguisher for Kalyna-256/512

Given a list of 256 distinct bytes (M0, M1, . . . , M255), a function f : {0, 1}256 7→
{0, 1}256 and a 248-bit constant T, we define an ordered sequence ov as follows:

Ci = f(T ||M i),where (0 ≤ i ≤ 255) (7.18)

oui = EAx · Ci[8]⊕ 54x · Ci[9]⊕ 7Dx · Ci[10]⊕ C3x · Ci[11]⊕
E0x · Ci[12]⊕ 5Ex · Ci[13]⊕ 7Dx · Ci[14]⊕ C3x · Ci[15] (7.19)

ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0} (7.20)

Note that, (T || M0, T || M1, . . . , T || M255) forms a δ-list and the first element
of ov (i.e., ou0 ⊕ ou0) is always zero.

Distinguishing Property. Let us consider F to be a family of permutations on 256-
bit. Then, given any list of 256 distinct bytes (M0, M1, . . . , M255), the aim is to find

how many ordered sequences ov (as defined above) are possible when, f
$←− F and T

$←− {0, 1}248.

In case, when F = family of all permutations on 256-bit and f
$←− F . Under

such setting, since, ov is a 256-byte ordered sequence in which the first byte is always
zero and the rest 255 bytes are chosen uniformly and independently from the set {0,
1, . . . , 255}, the total possible values of ov are (256)255 = 22040.

In case, when F = 6-full rounds of Kalyna-256/512 and f
$←− F . Here, f

$←−
F ⇔ K

$←− {0, 1}512 and f = EK . Let us consider the first 6 inner rounds of Kalyna-
256/512 as shown in Fig. 7.10. Here, C in Eq. 7.18 is represented by X6 and Eq. 7.19
is defined as :

156

oui = EAx ·X i
6[8]⊕ 54x ·X i

6[9]⊕ 7Dx ·X i
6[10]⊕ C3x ·X i

6[11]⊕ E0x ·X i
6[12]⊕ 5Ex ·X i

6[13]

⊕7Dx ·X i
6[14]⊕ C3x ·X i

6[15] (7.21)

It is to be noted that here, for each i where, (0 ≤ i ≤ 255), Eq. 7.21 is same as
Eq. 7.15 computed at round 5, i.e., oui =Qi

5. Now, we state the following Observation 4.

Observation 4. The ordered sequence ov is determined by the following 93 single
byte parameters only :

• X0
0 [31] (1-byte)

• X0
1 [16− 23] (8-bytes)

• X0
2 [0− 31] (32-bytes)

• X0
3 [0− 31] (32-bytes)

• X0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] (16-bytes)

• X0
5 [8, 9, 28, 29] (4-bytes)

Thus, the total number of ordered sequences is 293×8 = 2744 since each 93-byte value
defines one sequence.

Proof. In round 0 (in Fig. 7.10), the ordered list of differences at {X0
0 [31] ⊕ X0

0 [31],
X1

0 [31] ⊕ X0
0 [31], . . . , X255

0 [31] ⊕ X0
0 [31]} (or, equivalently the list of differences at

X0[31]) is known to the attacker as the list 7 of differences at X0[31] = list of differ-
ences at P [31], i.e., P i[31] ⊕ P 0[31] = X i

0[31] ⊕ X0
0 [31] for (1 ≤ i ≤ 255). This is so,

because in the plaintext, we make the most significant byte as the active byte. Hence,
when the pre-whitening key is added (columnwise), the carry-bit in the most significant
bit is ignored, thus converting the addition operation to xor operation. Since the value
of X0

0 [31] is known, the attacker can compute the other X i
0[31]. This allows her to

cross the SB and SR layer in round 0. Since, MixColumns (MC) and Add Round Key
(ARK) are linear operations, the list of differences at X1[16− 23] can be computed by
the attacker.

Owing to the non-linearity of the S-box operation, the list of differences at Y1[16−23]
cannot be computed to move forward. To allievate this problem, it is sufficient to guess
X0

1 [16−23] as it allows calculating other X i
1[16−23] states and cross SB layer in round

1. Since, SR, MC and ARK operations are linear, the list of differences at X2[0− 31]
is known. Continuing in a similar manner as discussed above, if the attacker guesses

7From now onwards, list denotes an ordered list

157

Pi

SRSB

Xi
0

Zi
0

Y i
0

K0

MC

Wi
0

U0

MC

SRSB

Xi
1

Zi
1

Y i
1

K1

MC

Wi
1

U1

MC ⊕

Round 0

SRSB

Xi
2

Zi
2

Y i
2

K2

MC

Wi
2

U2

MC

SRSB

Xi
3

Zi
3

Y i
3

K3

MC

Wi
3

U3

MC ⊕

SRSB

Xi
4

Zi
4

Y i
4

K4

MC

Wi
4

U4

MC

SRSB

Xi
5

Zi
5

Y i
5

K5

MC

Wi
5

U5

MC ⊕

Xi
6

K6U6

MC

Round 1

Round 2

⊕

Round 3

⊕
Round 4

Round 5

Figure 7.10: 6-Round distinguisher in Kalyna-256/512 . P i denotes (T || M i) and
X i
j, Y

i
j , Zi

j, W
i
j denote intermediate states corresponding to P i in round j. The round

subkeys Kj, where, 0 ≤ j ≤ 6 are generated from the master key K.

full states X0
2 [0− 31] and X0

3 [0− 31], then the list of differences at Z3, i.e., {Z0
3 ⊕ Z0

3 ,
Z1

3 ⊕ Z0
3 , . . ., Z255

3 ⊕ Z0
3} can be easily computed.

This also allows her to calculate the list of differences at X4 [2, 3, 6, 7, 8, 9, 12, 13,
18, 19, 22, 23, 24, 25, 28, 29]. By guessing X0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23,
24, 25, 28, 29], the attacker can cross the SB layer in round 4 and calculate the list
of differences at X5[8, 9, 28, 29]. By guessing X0

5 [8, 9, 28, 29], the attacker can obtain

158

the list of values {Z0
5 [8, 9, 12, 13], Z1

5 [8, 9, 12, 13], . . . , Z255
5 [8, 9, 12, 13]}. Using these,

she can compute P i
5 at Zi

5 using Eq. 7.14 and thus the list {P 0
5 ⊕ P 0

5 , P 0
5 ⊕ P 1

5 , . . . ,
P 255

5 ⊕ P 0
5 }. Since, according to Eq. 7.17, P i

5 ⊕ P 0
5 = Qi

5 ⊕ Q0
5 and oui = Qi

5 (men-
tioned above), the attacker can easily calculate the ordered sequence ov = {Q0

5 ⊕ Q0
5,

Q1
5 ⊕Q0

5, . . ., Q255
5 ⊕Q0

5}. This shows that ov depends on 93 parameters and can take
2744 possible values. �

Since, there are 2744 possible ordered sequences, if we precompute and store these
values in a hash table, then the precomputation complexity goes higher than brute
force for Kalyna-256/512. In order to reduce the number of ordered sequences, we
apply the Refined Differential Enumeration technique as follows:

Number of admissible ordered sequences. Consider the 6-round truncated dif-
ferential trail in round 0 - round 5 (as shown in Fig. 7.10) where, the input dif-
ference is non-zero at one byte and output difference is non zero in 8 bytes. The
probability of such a trail is 2−224 as follows: the one byte difference at ∆P [31]
propagates to 32-byte difference in ∆Z3[0 − 31] with probability 1. Next, the prob-
ability that 32-byte difference in ∆Z3[0 − 31] propagates to 16-byte difference in
∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] is 2−128. This 16-byte difference
in ∆X4 propagates to 4-byte difference in ∆W4[8, 9, 28, 29] followed by 8-byte differ-
ence in ∆W5[8 − 15] with a probability of 2−96. Thus, the overall probability of the
differential trail from ∆P to ∆W5 is 2−(128+96) = 2−224.

In other words, we require 2224 plaintext pairs to get a right pair. Once, we get a
right pair, say (P 0, P 1), we state the following Observation 5 using this right pair.

Observation 5. Given a right pair (P 0, P 1) that follows the truncated differential
trail (∆P → ∆W5), the 93 parameters corresponding to P 0, mentioned in Observation
4 can take one of atmost 2440 fixed 93-byte values (out of the total 2744 possible values),
where each of these 2440 93-byte values are defined by each of the 2440 values of the
following 66 parameters:

• Y 0
0 [31] (1-byte)

• ∆Z0[23] (1-byte)

• X0
1 [16− 23] (8-bytes)

• Y 0
3 [0− 31] (32-bytes)

• Y 0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] (16-bytes)

• Y 0
5 [8, 9, 28, 29] (4-bytes)

• ∆Z5[8, 9, 12, 13] (4-bytes)

159

Proof. Given a right pair (P 0, P 1), the knowledge of these 66 new parameters allows
us to compute all the differences shown in Fig. 7.10 as follows. Knowledge of Y 0

0 [31]
allows us to compute X0

0 [31]. Knowing ∆Z0[23] allows one to compute the difference
∆X1[16 − 23]. Then, if the values of X0

1 [16 − 23] are known, one can compute the
corresponding X1

1 [16− 23] and compute ∆X2.

From the bottom side, knowing ∆Z5[8, 9, 12, 13] allows one to compute ∆Y5[8, 9, 28, 29].
Knowledge of Y 0

5 [8, 9, 28, 29] allows one to compute Y 1
5 [8, 9, 28, 29], cross the SB layer

in round 5 and obtain ∆Y 0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]. Pro-

ceeding in a similar manner, knowing Y 0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25,

28, 29] and Y 0
3 [0− 31] allows one to compute ∆Y 0

2 [0− 31]. Then, using Property 1a.,
the possible values of X0

2 and Y 0
2 can be computed. At this stage, the total possible

values of these 65 parameters are 266×8 = 2528.

Key Sieving. However, for each value of this 66-byte parameter, the following key
bytes - U2[4, 5, 14, 15, 16, 17, 26, 27], K3, K4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24,
25, 28, 29] and K5[8, 9, 28, 29] can be deduced as follows:

1. Knowledge of X0
1 [16 − 23] allows us to compute the corresponding Z0

1 [4, 5, 14,
15, 16, 17, 26, 27]. Xoring these values with X0

2 [4, 5, 14, 15, 16, 17, 26, 27] helps us
in deducing U2[4, 5, 14, 15, 16, 17, 26, 27].

2. Knowledge of X0
2 and Y 0

3 helps us in deducing K3.

3. Knowledge of Y 0
3 and Y 0

4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] can be
used to deduce K4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29].

4. Knowledge of Y 0
4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and Y 0

5 [8, 9, 28,
29] helps us in deducing K5[8, 9, 28, 29].

Now, according to the key schedule algorithm of Kalyna-128/256 from K3, we can
compute K2 (according to Eq. 7.1) which allows us to compute the corresponding U2.
Thus, by comparing the computed U2[4, 5, 14, 15, 16, 17, 26, 27] with the deduced
U2[4, 5, 14, 15, 16, 17, 26, 27], a sieve of 8-bytes (since matching probability is 2−64) can
be applied. Similarly, knowledge of K4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]
allows us to compute K5 [8, 28, 29] which can then be matched with the deduced
K5[8, 28, 29]. This allows us a filtering of further 3-bytes. Thus, by key sieving, a
total of 11-byte filtering can be applied and the possible guesses of 66-byte parameter
reduces from 266×8 to 2(66−11)×8 = 255×8 = 2440. �

Using Observation 4 and Observation 5, we state the following third Observation
6 :

160

Observation 6. Given (M0, M1, . . . , M255) and f
$←− F and T

$←− {0, 1}248, such
that T || M0 and T || M j, (where, j ∈ { 1, . . . , 255 }) is a right pair that follows the
differential trail shown in Fig. 7.10, atmost 2440 multisets v are possible.

Proof. From Observation 4, we know that each 93-byte parameter defines one ordered
sequence and Observation 5 restricts the possible values of these 93-byte parameters
to 2440. Thus, atmost 2440 ordered sequences are only possible for Kalyna-256/512. �

As the number of ordered sequences in case of 256-bit random permutation (= 22040) is
much higher than 6-round Kalyna-256/512 (= 2440), a valid distinguisher is therefore
constructed.

7.6 Key Recovery Attack on 9-Round Kalyna-256

/512

In this section, we use our Observation 6 to launch meet-in-the-middle attack on 9-
round Kalyna-256/512 to recover the key. The distinguisher is placed in round 0 to
round 5 (as shown in Fig. 7.11) and three rounds are added at the bottom of the
6-round distinguisher. The attack consists of the following three phases:

7.6.1 Precomputation Phase

In this phase, we build a lookup table T to store 2440 sequences to be used for compar-
ison in the online phase. The construction of this table requires us to create two more
hash tables (T0 and T1) in the intermediate steps. The entire procedure is as follows:

1. For each K3

• We guess ∆Z1[4, 5, 14, 15, 16, 17, 26, 27] || ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19,
22, 23, 24, 25, 28, 29] to compute ∆X2 and ∆Y3 respectively. We resolve
(∆X2 - ∆Y3) using Property 1b to compute the corresponding X2||Y3. We
then deduce K2 from K3 and compute the corresponding value of Z1[4, 5, 14,
15, 16, 17, 26, 27]. Using the guessed value of ∆Z1[4, 5, 14, 15, 16, 17, 26, 27]
and the computed value of Z1[0 − 3, 12 − 15], we compute ∆Z0[16 − 23].
If ∆Z0[16 − 22] = 0 (which happens with a probability of 2−56), we store
the corresponding X1[16 − 23] || ∆Z1[4, 5, 14, 15, 16, 17, 26, 27] || X2 || X3 ||
W3[7, 8, 19] || ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] at
index K3 in table T0. There are about 2136 entries for each index.

161

Pi

SRSB

Xi
0

Zi
0

Y i
0

K0

MC

Wi
0

U0

MC

SRSB

Xi
1

Zi
1

Y i
1

K1

MC

Wi
1

U1

MC ⊕

Round 0

SRSB

Xi
2

Zi
2

Y i
2

K2

MC

Wi
2

U2

MC

SRSB

Xi
3

Zi
3

Y i
3

K3

MC

Wi
3

U3

MC ⊕

SRSB

Xi
4

Zi
4

Y i
4

K4

MC

Wi
4

U4

MC

SRSB

Xi
5

Zi
5

Y i
5

K5

MC

Wi
5

U5

MC ⊕

SRSB

Xi
6

Zi
6

Y i
6

K6

MC

Wi
6

U6

MC

SRSB

Xi
7

Zi
7

Y i
7

K7

MC

Wi
7

U7

MC ⊕

SRSB

Xi
8

Zi
8

Y i
8

K8

MC

Wi
8

U8

MC

b b b b
b b b b

b
b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
b

CiK9U9

MC

Round 1

Round 2

⊕

Round 3

⊕
Round 4

Round 5

Round 6

Round 7

Round 8

⊕

b b b b
b b b b

b
b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
b

b
b

b
b

b
b

b
b

Figure 7.11: 9-round attack on Kalyna-256/512. The subkey bytes guessed are shown
dotted.

2. For each guess of ∆Z5[8, 9, 12, 13] || Y5[8, 9, 28, 29], computeX5[8, 9, 28, 29], ∆W4[8,
9, 28, 29] and ∆Y4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]. Guess
Y4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] to compute X4[2, 3, 6, 7, 8,
9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and ∆X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22,
23, 24, 25, 28, 29] in the backward direction and W4[8, 9, 28, 29] in the forward
direction. From, W4[8, 9, 28, 29] and X5[8, 9, 28, 29] compute K5[8, 9, 28, 29]. De-

162

duce K4[7, 8, 19] (where, K5[8] = K4[19], K5[28] = K4[7] and K5[29] = K4[8]).
Using, X4[7, 8, 19] and K4[7, 8, 19], compute W3[7, 8, 19].

3. For each entry of W3[7, 8, 19] || ∆X4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24,
25, 28, 29], we store X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29]
|| X5[8, 9, 28, 29] in a table T1. There are 240 entries per index.

4. For each of the 2256 index of K3 in table T0, we have 2136 entries of W3[7, 8, 19] ||
∆X4 [2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] and corresponding to
each of these we have 240 entries of X4[2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24,
25, 28, 29] || X5[8, 9, 28, 29] in table T1. So in all, after merging T0 and T1, we get
2256+136+40 = 2432 unique set of 65-byte parameters mentioned in Observation 5.

5. For each guess of X0[31], combine the above merged entries with X0[31] to com-
plete the set of 66-parameters mentioned in Observation 5. Now, there are a total
of 2432+8 = 2440 entries.

6. For each of these 2440 66-byte parameters, we calculate the corresponding 93-byte
parameters for all the elements of the δ-list and compute the ordered sequence
ov = {ou0 ⊕ ou0, ou1 ⊕ ou0, . . . , ou255 ⊕ ou0}. We store the ordered sequence
along with the 93-byte parameters in the table T .

The time complexity to construct T0 = 2(32+8+16)×8 × 2−2.17 = 2445.83. The time
complexity to construct T1 = 2(4+4+16)×8 × 2−2.17 = 2189.83. The time complexity to
merge T0 and T1 along with each guess of X0[31] = 2256+136+40+8 = 2440. Finally, the
time complexity to construct T = 2440 × 28 × 2−0.58 = 2447.42. Hence, overall time
complexity is 2445.83 + 2447.42 ≈ 2447.83.

7.6.2 Online Phase

In this phase we extend the distinguisher in Section 7.10, by adding 3 more rounds at
the bottom (as shown in Fig. 7.11). The steps of the online phase are as follows:

1. We encrypt 2209 structures of 28 plaintexts each where byte 31 takes all possible
values and rest of the bytes are constants. We store the corresponding ciphertexts
in the hash table.

2. For each of the 2224 (P0, P ′0) plaintext pairs, do the following:

• We guess 2256 values of K9 and deduce the corresponding values of K8 from
K9. We decrypt each of the ciphertext pairs through 2 rounds, to get X7

and ∆X7. Then, we deduce the corresponding ∆W6 and ∆Z6.

• We filter out the keys, which do not give zero difference at ∆Z6[0− 5, 10−
17, 20 − 27, 30, 31]. This creates a filtering of 2−192 and hence only 264 key
guesses are expected to remain.

163

• We pick one member of the pair, say P0, create the δ-list by constructing
the rest of the 255 plaintexts as Pi = P0 ⊕ i, where, 1 ≤ i ≤ 255 and get
their corresponding ciphertexts.

• For each of the remaining 264 key guesses of K8 and K9, we guess U7[6, 7, 8,
9, 18, 19, 28, 29], compute the corresponding Z6[6, 7, 8, 9, 18, 19, 28, 29] and
Y6[8− 15] and then obtain the ordered sequence { ou0 ⊕ ou0, ou1 ⊕ ou0, . . .
, ou255 ⊕ ou0}.
• We check whether this sequence exists in the precomputation table T or

not. If not, then we discard the corresponding guesses.

Reason for counting ordered sequences instead of multisets. The probability
for a wrong guess to pass the test is 2440 × 2−2040 = 2−1600. Since we try only 2224+64

= 2288 ordered sequences, only the right subkey should verify the test.

If we had opted for mutliset attack on Kalyna-256/512, the total possible admissible
multisets would have been 2432 (as the parameter X0[31] would not have been required).
Therefore, the probability for a wrong guess to pass the test would have been 2432 ×
2−467.6 = 2−35.6 (similar to that described in Section 7.4). As mentioned above, since
we try 2288 multisets, we would have got mutliple candidates for the right subkey and
unable to recover the secret key.

7.6.3 Recovering the remaining Subkey bytes

The remaining subkeys recovery process is similar to that discussed in Section 7.4.3.
When a match with an ordered sequence is found using a given plaintext-ciphertext
pair, we choose one of the ciphertexts and perform the following steps:

1. We already know the corresponding K8 and K9 and U7[6, 7, 8, 9, 18, 19, 28, 29].

2. We guess the remaining 24 bytes of U7, and deduce the corresponding 2192 values
of K7 and K6.

3. For each 2192 guesses of (K7, K6), from X7 we compute X5. We discard the key
guesses for which X5[8, 9, 28, 29] does not match with the values of X5[8, 9, 28, 29]
obtained from the corresponding matched ordered sequence in the pre-computation
table.

4. For the remaining 2192−32 = 2160 guesses of (K9, K8, K7, K6), we guess 2256

values of K5. We deduce X4 and discard the key guesses for which X4 [2, 3,
6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29] does not match with the values
obtained corresponding to the correct ordered sequence from the precomputation
table. From a total of 2160+256 = 2416 key guesses, 2288 key guesses are expected
to remain.

164

5. We deduce K4 from K5 for the remaining key guesses and compute X3. We
compare this to the value obtained from the precomputation table corresponding
to the correct ordered sequence and discard those that do not match. 232 values
of (K9, K8, K7, K6, K5, K4) are expected to remain.

6. One value of K3 and K2 corresponding to the matching sequence is already known
from the pre-computation table. We deduce X1 for the remaining 232 values of
(K9, K8, K7, K6, K5, K4, K3, K2).

7. We guess 2256 values of K1, deduce K0 and compute X0[23] and plaintext. We
compare this to X0[23] obtained from the precomputation table and to the plain-
text corresponding to ciphertext being decrypted respectively. We are left with
only 224 values of (K9, K8, K7, K6, K5, K4, K3, K2, K1, K0). We search these
exhaustively to find the correct set of subkeys.

Complexities. The time complexity of the precomputation phase is 2447.83 Kalyna-
128/256 encryptions. The time complexity of the online phase is dominated by step
2 (part 1) and is 2224 × 2256 × 2−2.17 = 2477.83. The time complexity of the subkey
recovery phase is dominated by step 4 which is 2160×2256×2−3.17 = 2412.83. Clearly the
time complexity of the whole attack is dominated by the time complexity of the online
phase, i.e., 2477.83. It was shown in [61] that each 256-byte multiset requires 512-bits
space. Hence, to store each entry in table T, we require 2048-bits to store the ordered
sequence and 93× 8 = 744-bits to store the 52-byte parameters, i.e., a total of 928-bits
(= 211.45). Therefore, the memory complexity of this attack is 2440 × 211.45−8 = 2443.45

Kalyna 256-bit blocks. The data complexity of this attack is 2217 plaintexts.

7.7 Conclusions

In this chapter, we review the recent advancements in multiset attacks on AES and
utilize them to launch key recovery attack on Kalyna-128/256 and Kalyna-256/512.
We improve the previous best 7-round attack on both the variants to demonstrate
the first 9-round attacks on the same. Our attacks on Kalyna-256/512 even improve
upon the previous 7-round attack on it in terms of time and data complexities. We
obtain these results by constructing new 6-round distinguishers on Kalyna and applying
MITM attack on the rest of the rounds. Currently, this line of attack only works
on Kalyna-b/2b variants and Kalyna variants in which block size and key size are
equal appear to be safe. It would be an interesting problem to try applying multiset
attacks on Kalyna-b/b. Presently, all five variants of Kalyna have been included in
the Ukranian standard. However, our results as well as the previous 7-round attack
show that compared to Kalyna-b/2b variants, Kalyna-b/b variants appear to be more
robust.

165

Chapter 8

Conclusion

In this chapter, we summarize the cryptanalytic results presented in this thesis and
give some possible directions for future research.

8.1 Summary

In this thesis, we focused on the security analysis of block ciphers and block cipher based
hash functions. We studied two state-of-the-art cryptanalytic techniques namely –
Biclique Cryptanalysis and Multiset Attacks and used them to provide the best attacks
on three standardized block ciphers, i.e., AES, ARIA and Kalyna and Generalized
Feistel Networks.

1. We studied biclique based key recovery attacks on AES and through a computer
assisted search found improvements that lowered the attack costs compared to
the original attack in [39] in Chapter 3. These attacks were applied to full round
AES-128 (10-rounds), AES-192 (12-rounds) and AES-256 (14-rounds) with in-
teresting observations and results. As part of the results, we proposed star-based
bicliques which allowed us to launch attacks with the minimal data complexity
in accordance with the unicity distance. Each attack required just 2-3 known
plaintexts with success probability 1. This result can be used as a direct com-
parison with bruteforce attacks and shows that compared to brute force, biclique
attack on AES will always have an advantage of atleast a factor of 2. We also
found biclique attacks that are fastest when there is no restriction on data com-
plexity. Through our automated results, we can safely say that as long as key
recovery attacks are concerned, biclique attack in isolation does not pose any
practical threat to AES security owing to its high time complexity. This can be
assumed to hold true for other block ciphers as well whose designs are inspired
from AES. However, it helps to better understand the security margin provided
by the key used in these algorithms. Therefore, modern block ciphers have now
started evaluating their security against this technique as a measure of their de-

166

sign assessment [6].

2. We next reviewed the application of biclique attacks in hash function settings.
In Chapter 4, we utilized the biclique based key recovery attacks to find second-
preimages on AES based hashing modes. In our attacks, we considered the
initialization vector (IV) to be a public constant that cannot be changed by
an attacker and showed that under this scenario, the biclique trails constructed
for key recovery attack on AES-128 cannot be trivially used to launch second
preimage attack on AES-128 based hash functions. We then constructed new
biclique trails that satisfied the above restrictions and enabled an attacker to
launch second preimage attacks on all 12 PGV hashing modes based on full round
AES-128. In Chapter 5, we discussed a variant of biclique cryptanalysis termed as
sliced biclique cryptanalysis which has been specially designed to find preimages
and collisions in hash functions in known-key settings, i.e., when the key input
to the block cipher is known to the attacker. We investigated the security of
4-branch, Type-2 based Generalized Feistel Networks (GFNs) and demonstrated
the best 8-round collision attack on hash function based on this structure when
the inner round function F was instantiated with double SP layers. Although
sliced biclique cryptanalysis technique gives much higher advantage to an attacker
in terms of time complexity as compared to regular bicliques, however its working
demands special conditions to be imposed on the intermediate matching variable
which is not always possible to find in some designs such as AES based hash
functions. Moreover, the definition of sliced biclique attack will always lead
to pseudo-collisions and pseudo-preimage attacks on Davies-Meyer based hash
modes. Due to these challenges, we adopted a different approach to find preimage
on AES based compression functions as discussed in Chapter 4.

3. We then again switched back to block cipher cryptanalysis and discussed multiset
attacks in Chapters 6 and 7 which have been known to yield the most efficient key
recovery attacks results (in terms of lowest time complexity) on AES. In Chap-
ter 6, we analyzed the security of Korean Encryption Standard ARIA against
this attack. We conducted multiset based key recovery attacks on 7 and 8-round
ARIA-192 and ARIA-256 with improved time, memory and data complexities as
compared to the previous best attack in [168]. Our attacks also demonstrated the
first recovery of the secret master key unlike the previous attacks on ARIA which
could only recover some intermediate round keys. In Chapter 7, we analyzed the
security of recently announced Ukranian Encryption Standard Kalyna against
multiset attack. We applied multiset attacks supplemented with further related
advancements in this attack technique to recover the secret key from 9-round
Kalyna-128/256 and Kalyna-256/512. This improved upon the previous best at-
tack reported in [13] in terms of number of rounds attacked by 2. Although, the
key schedule algorithm of Kalyna is stronger in comparison to AES as it does

167

not allow recovery of the master key from one subkey, still it allows recovery
of odd-round keys from even-round keys and vice-versa. This was one of the
crucial properties exploited by us to launch 9-round attacks on Kalyna variants.
Comparatively, ARIA key schedule is much stronger as it does not have any such
limitations. In fact, because of this property, we could not extend the number of
rounds attacked in it. Hence, for any new block cipher design, adoption of key
schedule algorithms similar to ARIA looks promising.

8.1.1 Future Work

In this section, we attempt to identify future research directions in which we can try
applying the topics discussed in this thesis.

1. Presently, biclique technique for key recovery attacks suffer from very high time
complexity as well as data complexity. Low data complexity attacks such as star-
based bicliques and narrow bicliques look promising and needs to be investigated
more. Further, lowering the time complexity of biclique attack to reasonable
bounds looks a challenging direction to work on.

2. Biclique technique has been applied to block cipher and hash functions. However,
their application on MAC functions has yet not been studied. An interesting case
would be CBC-MAC based on AES.

3. Application of biclique technique to find preimages and collisions in double block
length hash function such as MDC-2, MDC-4, Abreast DM, Tandem DM etc. is
another area which has not yet been covered.

4. Generalized Feistel Network (GFN) based primitives have received lesser atten-
tion from biclique cryptanalysis as compared to Substitution - Permutation Net-
work based primitives. Ciphers like CLEFIA, CAMELLIA and hash function
like SHAvite-3 have yet not been tested against biclique cryptanalysis and can
be one possible direction of research.

5. Another research direction would be to analyse other types of GFN structures,
e.g., type-1, type-3 GFN etc. Their permutation properties are different from
Type-2 GFN. Therefore, it would be interesting to study the relationship between
the structure of GFN and its strength against biclique attack.

6. The current multiset attacks have been primarily focused on dedicated SP based
block ciphers only. Their application to Feistel-SP functions have not been inves-
tigated yet. It would be interesting to study the propagation of multisets through
Feistel structure and utilize them to recover the secret key if possible.

7. Recently in FSE’15, integral cryptanalysis was applied to break 6 rounds of AES-
128 with secret S-box [169]. It would be interesting to investigate the application

168

of multiset attacks discussed in this thesis to AES and other block ciphers in
secret key setting.

169

Bibliography

[1] http://www.slideshare.net/oliynykov/kalyna-english.

[2] SKIPJACK and KEA Algorithm Specifications Version 2.0. Technical report,
National Institute of Standards and Technology (NIST), May 1998. Available
from NIST:http://csrc.nist.gov/encryption/skipjack/skipjack.pdf.

[3] 3rd Generation Partnership Project. Specification of the 3GPP Confidentiality
and Integrity Algorithms - Document 2: KASUMI Specification (Release 6).
Technical Report 3GPP TS 35.202 V6.1.0 (2005-09), 2005.

[4] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel.
Biclique cryptanalysis of the PRESENT and LED lightweight ciphers. IACR
Cryptology ePrint Archive, 2012:591, 2012. http://eprint.iacr.org/2012/

591.

[5] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. A
Framework for Automated Independent-Biclique Cryptanalysis. In Shiho Mo-
riai, editor, Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture
Notes in Computer Science, pages 561–581. Springer, 2013.

[6] Farzaneh Abed, Eik List, and Stefan Lucks. On the Security of the Core
of PRINCE Against Biclique and Differential Cryptanalysis. IACRCryptology
ePrint Archive, 2012:712, 2012. https://eprint.iacr.org/2012/712.pdf.

[7] Charles M. Adams. Simple and Effective Key Scheduling for Symmetric Ciphers.
Workshop on Selected Areas of Cryptography, Queen’s University, Kingston, On-
tario, Canada, Proceedings, pages 129–133, May 1994.

[8] Megha Agrawal, Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanad-
hya. Collision Attack on 4-Branch, Type-2 GFN Based Hash Functions Us-
ing Sliced Biclique Cryptanalysis Technique. In Dongdai Lin, Moti Yung, and
Jianying Zhou, editors, Information Security and Cryptology - 10th International
Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Se-
lected Papers, volume 8957 of Lecture Notes in Computer Science, pages 343–360.
Springer, 2014.

170

http://www.slideshare.net/oliynykov/kalyna-english
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf.
http://eprint.iacr.org/2012/591
http://eprint.iacr.org/2012/591
https://eprint.iacr.org/2012/712.pdf

[9] Zahra Ahmadian, Mahmoud Salmasizadeh, and Mohammad Reza Aref. Biclique
Cryptanalysis of the Full-Round KLEIN Block Cipher. IACR Cryptology ePrint
Archive, 2013:97, 2013. https://eprint.iacr.org/2013/097.pdf.

[10] Akshima, Donghoon Chang, Mohona Ghosh, Aarushi Goel, and Somitra Kumar
Sanadhya. Improved Meet-in-the-Middle Attacks on 7 and 8-Round ARIA-192
and ARIA-256. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptol-
ogy - INDOCRYPT 2015 - 16th International Conference on Cryptology in India,
Bangalore, India, December 6-9, 2015, Proceedings, volume 9462 of Lecture Notes
in Computer Science, pages 198–217. Springer, 2015.

[11] Akshima, Donghoon Chang, Mohona Ghosh, Aarushi Goel, and Somitra Ku-
mar Sanadhya. Single Key Recovery Attacks on 9-round Kalyna-128/256 and
Kalyna-256/512. In Soonhak Kwon and Aaram Yun, editors, Information Secu-
rity and Cryptology - ICISC 2015 - 18th International Conference, Seoul, Korea,
November 25-27, 2015, Revised Selected Papers, volume 9558 of Lecture Notes
in Computer Science. Springer, 2015. Available at:https://eprint.iacr.org/
2015/1227.pdf.

[12] Ange Albertini, Jean-Philippe Aumasson, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Malicious Hashing: Eve’s Variant of SHA-1. In Antoine Joux
and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014 - 21st
International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2014.

[13] Riham AlTawy, Ahmed Abdelkhalek, and Amr M. Youssef. A Meet-in-the-Middle
Attack on Reduced-Round Kalyna-b/2b. IACR Cryptology ePrint Archive,
2015:762, 2015. http://eprint.iacr.org/2015/762.

[14] Ross J. Anderson and Eli Biham. Two Practical and Provably Secure Block
Ciphers: BEARS and LION. In Dieter Gollmann, editor, FSE’96, volume 1039
of Lecture Notes in Computer Science, pages 113–120. Springer, 1996.

[15] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang.
Preimages for Step-Reduced SHA-2. In Mitsuru Matsui, editor, Advances in
Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science,
pages 578–597. Springer, 2009.

[16] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho
Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-Bit Block Cipher
Suitable for Multiple Platforms - Design and Analysis. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography, 7th Annual

171

https://eprint.iacr.org/2013/097.pdf
https://eprint.iacr.org/2015/1227.pdf
https://eprint.iacr.org/2015/1227.pdf
http://eprint.iacr.org/2015/762

International Workshop, SAC 2000, Waterloo, Ontario, Canada, August 14-15,
2000, Proceedings, volume 2012 of Lecture Notes in Computer Science, pages
39–56. Springer, 2000.

[17] Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, ed-
itors, Selected Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, vol-
ume 5381 of Lecture Notes in Computer Science, pages 103–119. Springer, 2008.

[18] Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks Against
Reduced SHA-0 and SHA-1. In Shai Halevi, editor, Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes
in Computer Science, pages 70–89. Springer, 2009.

[19] Jean-Philippe Aumasson, Willi Meier, and Florian Mendel. Preimage Attacks on
3-Pass HAVAL and Step-Reduced MD5. In Roberto Maria Avanzi, Liam Keliher,
and Francesco Sica, editors, Selected Areas in Cryptography, 15th International
Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised
Selected Papers, volume 5381 of Lecture Notes in Computer Science, pages 120–
135. Springer, 2008.

[20] Behran Bahrak and Mohammad Reza Aref. Impossible Differential Attack on
seven-round AES-128. IET Information Security, 2(2):28–32, June 2008.

[21] Paulo S. L. M. Barreto, Vincent Rijmen, Scopus Tecnologia S. A, and Cryp-
tomathic Nv. The Whirlpool Hashing Function. In First open NESSIE Work-
shop, 2000. http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html.

[22] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In
Proceedings of the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015, pages 175:1–175:6. ACM, 2015.

[23] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced
to 31 Rounds Using Impossible Differentials. J. Cryptology, 18(4):291–311, 2005.

[24] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, Advances in Cryptology - EU-
ROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, vol-
ume 2045 of Lecture Notes in Computer Science, pages 340–357. Springer, 2001.

172

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

[25] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and
Rectangle Attacks. In Ronald Cramer, editor, Advances in Cryptology - EURO-
CRYPT 2005, 24th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-
ceedings, volume 3494 of Lecture Notes in Computer Science, pages 507–525.
Springer, 2005.

[26] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Impossible Dif-
ferential Attacks on 8-Round AES-192. In David Pointcheval, editor, Topics in
Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA Conference
2006, San Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860 of
Lecture Notes in Computer Science, pages 21–33. Springer, 2006.

[27] Eli Biham and Orr Dunkeman. The SHAvite-3 Hash Function. Submission to
NIST SHA-3 competition. www.cs.technion.ac.il/~orrd/SHAvite-3/.

[28] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology
- CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 2–21. Springer, 1990.

[29] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[30] Alex Biryukov, Christophe De Cannière, Joseph Lano, Siddika Berna Ors, and
Bart Preneel. Security and Performance Analysis of ARIA, version 1.2. Techni-
cal report, Katholieke Universiteit Leuven, Belgium, 2004. http://www.cosic.

esat.kuleuven.be/publications/article-500.pdf.

[31] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Asiacrypt 2009, volume 5912 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2009.

[32] Alex Biryukov and Adi Shamir. Structural Cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Inns-
bruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in
Computer Science, pages 394–405. Springer, 2001.

[33] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-
Based Hash Function. In Matthew J. B. Robshaw, editor, Fast Software En-
cryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17,
2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Sci-
ence, pages 328–340. Springer, 2006.

173

www.cs.technion.ac.il/~orrd/SHAvite-3/
http://www.cosic.esat.kuleuven.be/publications/article-500.pdf
http://www.cosic.esat.kuleuven.be/publications/article-500.pdf

[34] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from PGV. In Moti Yung,
editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 320–335.
Springer, 2002.

[35] Andrey Bogdanov. Analysis and design of block cipher constructions. PhD thesis,
Ruhr University Bochum, 2010.

[36] Andrey Bogdanov. On the differential and linear efficiency of balanced Feistel
networks. Inf. Process. Lett., 110(20):861–866, 2010.

[37] Andrey Bogdanov, Donghoon Chang, Mohona Ghosh, and Somitra Kumar
Sanadhya. Bicliques with Minimal Data and Time Complexity for AES. In
Jooyoung Lee and Jongsung Kim, editors, Information Security and Cryptology -
ICISC 2014 - 17th International Conference, Seoul, Korea, December 3-5, 2014,
Revised Selected Papers, volume 8949 of Lecture Notes in Computer Science,
pages 160–174. Springer, 2014.

[38] Andrey Bogdanov, Elif Bilge Kavun, Christof Paar, Christian Rechberger, and
Tolga Yalcin. Better than Brute-Force Optimized Hardware Architecture for Ef-
fcient Biclique Attacks on AES-128. In SHARCS’12 - Special-Purpose Hardware
for Attacking Cryptographic Systems, March 2012, Washington D.C., USA, 2012.

[39] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
Cryptanalysis of the Full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in
Computer Science, pages 344–371. Springer, 2011.

[40] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Pro-
ceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[41] Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle
Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Selected
Areas in Cryptography - 17th International Workshop, SAC 2010, Waterloo, On-
tario, Canada, August 12-13, 2010, Revised Selected Papers, pages 229–240, 2010.

174

[42] Andrey Bogdanov and Kyoji Shibutani. Generalized Feistel Networks Revisited.
Des. Codes Cryptography, 66(1-3):75–97, 2013.

[43] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search
of Attacks on Round-Reduced AES and Applications. In Phillip Rogaway, editor,
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lec-
ture Notes in Computer Science, pages 169–187. Springer, 2011.

[44] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H.W. Meyer, J. Os-
eas, S. Pilpel, and M. Schilling. Data Authentication using Modification Detec-
tion Codes based on a Public One Way Encryption Function, 1990. US Patent
4,908,861, http://www.google.co.in/patents/US4908861.

[45] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanjit Jutla, Stephen M. Matyas, Luke O’Connor, Moham-
mad Peyravian, David Safford, and Nevenko Zunic. The MARS Encryption
Algorithm, 1999. PDF available at:http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.35.5887&rep=rep1&type=pdf.

[46] Christophe De Cannière. Analysis and Design of Symmetric Encryption Algo-
rithms. PhD thesis, Katholieke Universiteit Leuven, Belgium, May 2007.

[47] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science, pages 272–288. Springer, 2009.

[48] Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-
Middle: Improved MITM Attacks. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 222–240. Springer, 2013.

[49] Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanadhya. Biclique
Cryptanalysis of full round AES-128 based hashing modes. In Dongdai Lin,
Moti Yung, and Xiaofeng Wang, editors, Information Security and Cryptology
- 11th International Conference, Inscrypt 2015, Beijing, China, November 1-3,
2015, Revised Selected Papers, volume To Be Announced of Lecture Notes in
Computer Science. Springer, 2015.

[50] Donghoon Chang, Abhishek Kumar, and Somitra Kumar Sanadhya. Security
Analysis of GFN: 8-Round Distinguisher for 4-Branch Type-2 GFN. In Goutam

175

http://www.google.co.in/patents/US4908861
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.5887&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.5887&rep=rep1&type=pdf

Paul and Serge Vaudenay, editors, INDOCRYPT’13, volume 8250 of Lecture
Notes in Computer Science, pages 136–148. Springer, 2013.

[51] David Chaum and Jan-Hendrik Evertse. Cryptanalysis of DES with a Re-
duced Number of Rounds. In Hugh C. Williams, editor, Advances in Cryptology
CRYPTO 85 Proceedings, volume 218 of Lecture Notes in Computer Science,
pages 192–211. Springer Berlin Heidelberg, 1986.

[52] Shao-zhen Chen and Tian-min Xu. Biclique key recovery for ARIA-256. IET
Information Security, 8(5):259–264, 2014.

[53] Mustafa Çoban, Ferhat Karakoç, and Özkan Boztas. Biclique Cryptanalysis of
TWINE. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors,
Cryptology and Network Security, 11th International Conference, CANS 2012,
Darmstadt, Germany, December 12-14, 2012. Proceedings, volume 7712, pages
43–55. Springer, 2012.

[54] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The Random Oracle
Model and the Ideal Cipher Model Are Equivalent. In David Wagner, editor,
Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume
5157 of Lecture Notes in Computer Science, pages 1–20. Springer, 2008.

[55] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher
SQUARE. In Eli Biham, editor, Fast Software Encryption, 4th International
Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings, volume
1267 of Lecture Notes in Computer Science, pages 149–165. Springer, 1997.

[56] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram
Honary, editor, Cryptography and Coding, 8th IMA International Conference,
Cirencester, UK, December 17-19, 2001, Proceedings, volume 2260 of Lecture
Notes in Computer Science, pages 222–238. Springer, 2001.

[57] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[58] Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in
AES. In Roberto De Prisco and Moti Yung, editors, Security and Cryptography
for Networks, 5th International Conference, SCN 2006, Maiori, Italy, September
6-8, 2006, Proceedings, volume 4116 of Lecture Notes in Computer Science, pages
78–94. Springer, 2006.

[59] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

176

[60] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round
AES. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised
Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages 116–
126. Springer, 2008.

[61] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery
Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881
of Lecture Notes in Computer Science, pages 371–387. Springer, 2013.

[62] DES. Data Encryption Standard. In FIPS PUB 46, Federal Information Pro-
cessing Standards Publication, pages 2–46, 1977.

[63] Anand Desai. The Security of All-or-Nothing Encryption: Protecting against Ex-
haustive Key Search. In Mihir Bellare, editor, Advances in Cryptology - CRYPTO
2000, 20th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture Notes in
Computer Science, pages 359–375. Springer, 2000.

[64] Carl D’Halluin, Gert Bijnens, Vincent Rijmen, and Bart Preneel. Attack on Six
Rounds of Crypton. In Lars R. Knudsen, editor, Fast Software Encryption, 6th
International Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings,
volume 1636 of Lecture Notes in Computer Science, pages 46–59. Springer, 1999.

[65] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[66] Whitfield Diffie and Martin E. Hellman. Special Feature Exhaustive Cryptanal-
ysis of the NBS Data Encryption Standard. Computer, 10(6):74–84, June 1977.

[67] Yevgeniy Dodis and Prashant Puniya. On the Relation Between the Ideal Cipher
and the Random Oracle Models. In Shai Halevi and Tal Rabin, editors, Theory
of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science, pages 184–206. Springer, 2006.

[68] Le Dong, Wenling Wu, Shuang Wu, and Jian Zou. Known-key distinguishers on
type-1 Feistel scheme and near-collision attacks on its hashing modes. Frontiers
of Computer Science, 8(3):513–525, 2014.

[69] Chenghang Du and Jiazhe Chen. Impossible Differential Cryptanalysis of ARIA
Reduced to 7 Rounds. In Swee-Huay Heng, Rebecca N. Wright, and Bok-Min Goi,
editors, Cryptology and Network Security - 9th International Conference, CANS

177

2010, Kuala Lumpur, Malaysia, December 12-14, 2010. Proceedings, volume 6467
of Lecture Notes in Computer Science, pages 20–30. Springer, 2010.

[70] Orr Dunkelman and Nathan Keller. The effects of the omission of last round’s
mixcolumns on AES. Inf. Process. Lett., 110(8-9):304–308, 2010.

[71] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks
on 8-Round AES-192 and AES-256. J. Cryptology, 28(3):397–422, 2015.

[72] Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved Meet-in-the-
Middle Attacks on Reduced-Round DES. In K. Srinathan, C. Pandu Rangan,
and Moti Yung, editors, Progress in Cryptology - INDOCRYPT 2007, 8th In-
ternational Conference on Cryptology in India, Chennai, India, December 9-13,
2007, Proceedings, volume 4859 of Lecture Notes in Computer Science, pages
86–100. Springer, 2007.

[73] D. Eastlake and T. Hansen. US Secure Hash Algorithm (SHA and HMAC-SHA).
RFC 4634, July 2006. https://tools.ietf.org/html/rfc4634.

[74] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174,
September 2001. https://tools.ietf.org/html/rfc3174.

[75] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In Bruce
Schneier, editor, Fast Software Encryption, 7th International Workshop, FSE
2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of
Lecture Notes in Computer Science, pages 213–230. Springer, 2000.

[76] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. New
Boomerang Attacks on ARIA. In Guang Gong and Kishan Chand Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010 - 11th International Conference
on Cryptology in India, Hyderabad, India, December 12-15, 2010. Proceedings,
volume 6498 of Lecture Notes in Computer Science, pages 163–175. Springer,
2010.

[77] Korean Agency for Technology and Standards. 128 bit block encryption algorithm
ARIA - Part 1: General (in Korean). KS X 1213-1:2009, December 2009.

[78] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3
candidate. Submission to NIST (Round 3), 2011. http://www.groestl.info/

Groestl.pdf.

[79] Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael.
In AES Candidate Conference, pages 230–241, 2000.

178

https://tools.ietf.org/html/rfc4634
https://tools.ietf.org/html/rfc3174
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf

[80] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-
in-the-Middle Preimage Attacks: First Results on Full Tiger, and Improved Re-
sults on MD4 and SHA-2. In Masayuki Abe, editor, Advances in Cryptology -
ASIACRYPT 2010 - 16th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 56–75.
Springer, 2010.

[81] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of Lec-
ture Notes in Computer Science, pages 326–341. Springer, 2011.

[82] Kishan Chand Gupta and Indranil Ghosh Ray. On Constructions of MDS Ma-
trices from Companion Matrices for Lightweight Cryptography. In Alfredo Cuz-
zocrea, Christian Kittl, Dimitris E. Simos, Edgar R. Weippl, and Lida Xu, edi-
tors, Security Engineering and Intelligence Informatics - CD-ARES 2013 Work-
shops: MoCrySEn and SeCIHD, Regensburg, Germany, September 2-6, 2013.
Proceedings, volume 8128 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2013.

[83] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401–406, 1980.

[84] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th
International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised
Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages 210–
225. Springer, 2006.

[85] Viet Tung Hoang and Phillip Rogaway. On generalized feistel networks. In Tal
Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume
6223 of Lecture Notes in Computer Science, pages 613–630. Springer, 2010.

[86] Deukjo Hong, Bonwook Koo, and Daesung Kwon. Biclique Attack on the Full
HIGHT. In Howon Kim, editor, Information Security and Cryptology - ICISC
2011 - 14th International Conference, Seoul, Korea, November 30 - December
2, 2011. Revised Selected Papers, volume 7259 of Lecture Notes in Computer
Science, pages 365–374. Springer, 2011.

[87] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for

179

Low-Resource Device. In Louis Goubin and Mitsuru Matsui, editors, CHES’06,
volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer, 2006.

[88] Horst Feistel and William A. Notz and J. Lynn Smith. Some Cryptographic Tech-
niques for Machine-to-Machine Data Communications. Proc. IEEE, 63(11):1545–
1554, November 1975.

[89] Takanori Isobe. A Single-Key Attack on the Full GOST Block Cipher. In Antoine
Joux, editor, Fast Software Encryption - 18th International Workshop, FSE 2011,
Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733
of Lecture Notes in Computer Science, pages 290–305. Springer, 2011.

[90] Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block
Ciphers XTEA, LED and Piccolo. In Willy Susilo, Yi Mu, and Jennifer Se-
berry, editors, Information Security and Privacy - 17th Australasian Conference,
ACISP 2012, Wollongong, NSW, Australia, July 9-11, 2012. Proceedings, volume
7372 of Lecture Notes in Computer Science, pages 71–86. Springer, 2012.

[91] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the Security of Ran-
domized CBC-MAC Beyond the Birthday Paradox Limit: A New Construction.
In Joan Daemen and Vincent Rijmen, editors, Fast Software Encryption, 9th
International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Re-
vised Papers, volume 2365 of Lecture Notes in Computer Science, pages 237–251.
Springer, 2002.

[92] Kitae Jeong, Hyungchul Kang, Changhoon Lee, Jaechul Sung, and Seokhie Hong.
Biclique Cryptanalysis of Lightweight Block Ciphers PRESENT, Piccolo and
LED. IACR Cryptology ePrint Archive, 2012:621, 2012. http://eprint.iacr.

org/2012/621.

[93] Jorge Nakahara Jr., Paulo S. L. M. Barreto, Bart Preneel, Joos Vandewalle, and
H. Y. Kim. SQUARE attacks on reduced-round PES and IDEA block ciphers.
IACR Cryptology ePrint Archive, 2001:68, 2001. http://eprint.iacr.org/

2001/068.

[94] Pascal Junod. Statistical Cryptanalysis of Block Ciphers. PhD thesis, Ecole
Polytechnique Federale de Lausanne, Switzerland, 2004.

[95] David Kahn. The Codebreakers: The Comprehensive History of Secret Commu-
nication from Ancient Times to the Internet. Scribner, New York, December
1996.

[96] Hyungchul Kang, Deukjo Hong, Dukjae Moon, Daesung Kwon, Jaechul Sung,
and Seokhie Hong. Known-Key Attacks on Generalized Feistel Schemes with SP
Round Function. IEICE Transactions, 95-A(9):1550–1560, 2012.

180

http://eprint.iacr.org/2012/621
http://eprint.iacr.org/2012/621
http://eprint.iacr.org/2001/068
http://eprint.iacr.org/2001/068

[97] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

[98] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang At-
tacks Against Reduced-Round MARS and Serpent. In Bruce Schneier, editor,
Fast Software Encryption, 7th International Workshop, FSE 2000, New York,
NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture Notes in Com-
puter Science, pages 75–93. Springer, 2000.

[99] Dmitry Khovratovich. Bicliques for Permutations: Collision and Preimage At-
tacks in Stronger Settings. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, Decem-
ber 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 544–561. Springer, 2012.

[100] Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger. Narrow-
Bicliques: Cryptanalysis of Full IDEA. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 392–410. Springer, 2012.

[101] Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin Schläffer.
Cryptanalysis of Luffa v2 Components. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, Selected Areas in Cryptography - 17th International
Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised
Selected Papers, volume 6544 of Lecture Notes in Computer Science, pages 388–
409. Springer, 2010.

[102] Dmitry Khovratovich, Ivica Nikolic, and Christian Rechberger. Rotational Re-
bound Attacks on Reduced Skein. J. Cryptology, 27(3):452–479, 2014.

[103] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family. In Anne Can-
teaut, editor, Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, vol-
ume 7549 of Lecture Notes in Computer Science, pages 244–263. Springer, 2012.

[104] Woo-Hwan Kim, Jungkeun Lee, Je-Hong Park, and Daesung Kwon. Addition of
the ARIA Cipher Suites to Transport Layer Security (TLS). RFC 6209, April
2011. https://tools.ietf.org/html/rfc6209.

[105] Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang
Zheng, editors, Advances in Cryptology - AUSCRYPT ’92, Workshop on the

181

https://tools.ietf.org/html/rfc6209

Theory and Application of Cryptographic Techniques, Gold Coast, Queensland,
Australia, December 13-16, 1992, Proceedings, volume 718 of Lecture Notes in
Computer Science, pages 196–208. Springer, 1992.

[106] Lars R. Knudsen. Block Ciphers - Analysis, Design and Applications. PhD thesis,
Aarhus University, Denmark, 1994.

[107] Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel, edi-
tor, Fast Software Encryption: Second International Workshop. Leuven, Belgium,
14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer
Science, pages 196–211. Springer, 1994.

[108] Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Rob-
shaw. PRINTcipher: A Block Cipher for IC-Printing. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Sys-
tems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, Au-
gust 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 16–32. Springer, 2010.

[109] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block
Ciphers. In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT
2007, 13th International Conference on the Theory and Application of Cryptology
and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings,
volume 4833 of Lecture Notes in Computer Science, pages 315–324. Springer,
2007.

[110] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

[111] Lars R. Knudsen and David Wagner. Integral Cryptanalysis. In Joan Daemen and
Vincent Rijmen, editors, Fast Software Encryption, 9th International Workshop,
FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised Papers, volume 2365
of Lecture Notes in Computer Science, pages 112–127. Springer, 2002.

[112] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

[113] Daesung Kwon, Jaesung Kim, Jungkeun Lee, Jooyoung Lee, and Choonsoo Kim.
A Description of the ARIA Encryption Algorithm. RFC 5794, March 2010.
https://tools.ietf.org/html/rfc5794.

[114] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn,
Jung Hwan Song, Yongjin Yeom, E-Joong Yoon, Sangjin Lee, Jaewon Lee, Seong-
taek Chee andrebound Daewan Han, and Jin Hong. New Block Cipher: ARIA.
In Jong In Lim and Dong Hoon Lee, editors, Information Security and Cryptol-
ogy - ICISC 2003, 6th International Conference, Seoul, Korea, November 27-28,

182

https://tools.ietf.org/html/rfc5794

2003, Revised Papers, volume 2971 of Lecture Notes in Computer Science, pages
432–445. Springer, 2003.

[115] RSA Laboratories. Additional PKCS #11 Mechanisms. PKCS #11 v2.20 Amend-
ment 3 Revision 1, January 2007.

[116] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption
Standard. In Ivan Damg̊ard, editor, Advances in Cryptology - EUROCRYPT
’90, Workshop on the Theory and Application of of Cryptographic Techniques,
Aarhus, Denmark, May 21-24, 1990, Proceedings, volume 473 of Lecture Notes
in Computer Science, pages 389–404. Springer, 1990.

[117] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers.
In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92,
Workshop on the Theory and Application of of Cryptographic Techniques, Bala-
tonfüred, Hungary, May 24-28, 1992, Proceedings, volume 658 of Lecture Notes
in Computer Science, pages 55–70. Springer, 1992.

[118] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. The Rebound Attack and Subspace Distinguishers: Application
to Whirlpool. IACR Cryptology ePrint Archive, 2010:198, 2010.

[119] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis.
In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer Science,
pages 17–25. Springer, 1994.

[120] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceed-
ings, volume 6841 of Lecture Notes in Computer Science, pages 206–221. Springer,
2011.

[121] Ji Li, Takanori Isobe, and Kyoji Shibutani. Converting Meet-In-The-Middle
Preimage Attack into Pseudo Collision Attack: Application to SHA-2. In Anne
Canteaut, editor, Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, vol-
ume 7549 of Lecture Notes in Computer Science, pages 264–286. Springer, 2012.

[122] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved Single-Key Attacks on 9-
Round AES-192/256. In Carlos Cid and Christian Rechberger, editors, Fast Soft-
ware Encryption - 21st International Workshop, FSE 2014, London, UK, March
3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes in Computer
Science, pages 127–146. Springer, 2014.

183

[123] Ruilin Li, Bing Sun, Peng Zhang, and Chao Li. New Impossible Differential
Cryptanalysis of ARIA. IACR Cryptology ePrint Archive, 2008:227, 2008. http:
//eprint.iacr.org/2008/227.

[124] Yanjun Li, Wenling Wu, and Lei Zhang. Integral Attacks on Reduced-Round
ARIA Block Cipher. In Jin Kwak, Robert H. Deng, Yoojae Won, and Guilin
Wang, editors, Information Security, Practice and Experience, 6th International
Conference, ISPEC 2010, Seoul, Korea, May 12-13, 2010. Proceedings, volume
6047 of Lecture Notes in Computer Science, pages 19–29. Springer, 2010.

[125] Jiqiang Lu. The (related-key) impossible boomerang attack and its application
to the AES block cipher. Des. Codes Cryptography, 60(2):123–143, 2011.

[126] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossi-
ble Differential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rijmen,
and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT 2008, 9th Inter-
national Conference on Cryptology in India, Kharagpur, India, December 14-17,
2008. Proceedings, volume 5365 of Lecture Notes in Computer Science, pages
279–293. Springer, 2008.

[127] Stefan Lucks. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit
Keys. In AES Candidate Conference, pages 215–229, 2000.

[128] Stefan Lucks. The Saturation Attack - A Bait for Twofish. In Mitsuru Matsui,
editor, Fast Software Encryption, 8th International Workshop, FSE 2001 Yoko-
hama, Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2001.

[129] Hamid Mala. Biclique Cryptanalysis of the Block Cipher SQUARE. IACR
Cryptology ePrint Archive, 2011:500, 2011. http://eprint.iacr.org/2011/

500.

[130] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved Impossible Differential Cryptanalysis of 7-Round
AES-128. In Guang Gong and Kishan Chand Gupta, editors, Progress in Cryp-
tology - INDOCRYPT 2010 - 11th International Conference on Cryptology in
India, Hyderabad, India, December 12-15, 2010. Proceedings, volume 6498 of
Lecture Notes in Computer Science, pages 282–291. Springer, 2010.

[131] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and
Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993,
Proceedings, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer, 1993.

184

http://eprint.iacr.org/2008/227
http://eprint.iacr.org/2008/227
http://eprint.iacr.org/2011/500
http://eprint.iacr.org/2011/500

[132] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO
Permutation and AES Block Cipher. In Michael J. Jacobson Jr., Vincent Rij-
men, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, 16th
Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August
13-14, 2009, Revised Selected Papers, volume 5867 of Lecture Notes in Computer
Science, pages 16–35. Springer, 2009.

[133] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[134] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

[135] Roger M. Needham and David J. Wheeler. TEA Extensions. Technical report,
University of Cambridge, October 1997. Archive available at:http://www.cl.
cam.ac.uk/ftp/users/djw3/xtea.ps.

[136] Ferguson Niels, Lucks Stefan, Schneier Bruce, Whiting Doug, Bellare Mihir,
Kohno Tadayoshi, Callas Jon, and Walker Jesse. The Skein Hash Function
Family. Submission to NIST (Round 3), October 2010. Version 1.3, https:

//www.schneier.com/cryptography/paperfiles/skein1.3.pdf.

[137] National Institute of Standards and Technology. Advanced Encryption Standard.
NIST FIPS PUB 197, November 2001. http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

[138] Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev,
Oleksandr Kuznetsov, Yurii Gorbenko, Oleksandr Dyrda, Viktor Dolgov, Andrii
Pushkaryov, Ruslan Mordvinov, and Dmytro Kaidalov. A New Encryption Stan-
dard of Ukraine: The Kalyna Block Cipher. IACR Cryptology ePrint Archive,
2015:650, 2015. http://eprint.iacr.org/2015/650.

[139] Thomas Peyrin, Henri Gilbert, Frédéric Muller, and Matthew J. B. Robshaw.
Combining Compression Functions and Block Cipher-Based Hash Functions. In
Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
12th International Conference on the Theory and Application of Cryptology and
Information Security, Shanghai, China, December 3-7, 2006, Proceedings, volume
4284 of Lecture Notes in Computer Science, pages 315–331. Springer, 2006.

[140] Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES). Information Processing Letters, 91(1):33–38,
2004.

185

http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps
http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps
https://www.schneier.com/cryptography/paperfiles/skein1.3.pdf
https://www.schneier.com/cryptography/paperfiles/skein1.3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/2015/650

[141] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor, Advances
in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773
of Lecture Notes in Computer Science, pages 368–378. Springer, 1993.

[142] Bart Preneel and Vincent Rijmen, editors. State of the Art in Applied Cryp-
tography, Course on Computer Security and Industrial Cryptography, Leuven,
Belgium, June 3-6, 1997. Revised Lectures, volume 1528 of Lecture Notes in
Computer Science. Springer, 1998.

[143] Rivest R. The MD5 Message-Digest Algorithm. RFC 1321, April 1992. https:

//www.ietf.org/rfc/rfc1321.txt.

[144] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and Erik De
Win. The Cipher SHARK. In Dieter Gollmann, editor, Fast Software Encryption,
Third International Workshop, Cambridge, UK, February 21-23, 1996, Proceed-
ings, volume 1039 of Lecture Notes in Computer Science, pages 99–111. Springer,
1996.

[145] Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. RC6 as the
AES. In AES Candidate Conference, pages 337–342, 2000.

[146] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems (Reprint). Commun.
ACM, 26(1):96–99, 1983.

[147] Li Rongjia and Jin Chenhui. Meet-in-the-middle attacks on 10-round AES-256.
Designs, Codes and Cryptography, pages 1–13, 2015.

[148] Yu Sasaki. Double-SP Is Weaker Than Single-SP: Rebound Attacks on Feistel
Ciphers with Several Rounds. In Steven D. Galbraith and Mridul Nandi, editors,
Progress in Cryptology - INDOCRYPT 2012, 13th International Conference on
Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, volume
7668 of Lecture Notes in Computer Science, pages 265–282. Springer, 2012.

[149] Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and
an Application to Whirlpool. IEICE Transactions, 96-A(1):121–130, 2013.

[150] Yu Sasaki and Kazumaro Aoki. Preimage Attacks on 3, 4, and 5-Pass HAVAL. In
Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, Melbourne, Australia, December 7-11, 2008. Proceedings, volume
5350 of Lecture Notes in Computer Science, pages 253–271. Springer, 2008.

186

https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc1321.txt

[151] Yu Sasaki and Kazumaro Aoki. Preimage Attacks on Step-Reduced MD5. In
Yi Mu, Willy Susilo, and Jennifer Seberry, editors, Information Security and Pri-
vacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia, July
7-9, 2008, Proceedings, volume 5107 of Lecture Notes in Computer Science, pages
282–296. Springer, 2008.

[152] Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than
Exhaustive Search. In Antoine Joux, editor, Advances in Cryptology - EURO-
CRYPT 2009, 28th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 134–152.
Springer, 2009.

[153] Yu Sasaki and Kan Yasuda. Known-Key Distinguishers on 11-Round Feistel and
Collision Attacks on Its Hashing Modes. In Antoine Joux, editor, FSE’11, volume
6733 of Lecture Notes in Computer Science, pages 397–415. Springer, 2011.

[154] Bruce Schneier. A Self-Study Course in Block-Cipher Cryptanalysis. Cryptologia,
24(1):18–33, 2000.

[155] Bruce Schneier and John Kelsey. Unbalanced Feistel Networks and Block Cipher
Design. In Dieter Gollmann, editor, FSE’96, volume 1039 of Lecture Notes in
Computer Science, pages 121–144. Springer, 1996.

[156] Gautham Sekar, Nicky Mouha, Vesselin Velichkov, and Bart Preneel. Meet-
in-the-Middle Attacks on Reduced-Round XTEA. In Aggelos Kiayias, editor,
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA
Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings,
volume 6558 of Lecture Notes in Computer Science, pages 250–267. Springer,
2011.

[157] Claude Elwood Shannon. Communication Theory of Secrecy Systems. Bell Sys-
tem Technical Journal, Vol 28, pp. 656715, October 1949.

[158] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In Bart
Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September
28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 342–357. Springer, 2011.

[159] Taizo Shirai and Kyoji Shibutani. Improving Immunity of Feistel Ciphers against
Differential Cryptanalysis by Using Multiple MDS Matrices. In Bimal K. Roy
and Willi Meier, editors, FSE’04, volume 3017 of Lecture Notes in Computer
Science, pages 260–278. Springer, 2004.

187

[160] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-Bit Blockcipher CLEFIA (Extended Abstract). In Alex Biryukov, editor,
FSE’07, volume 4593 of Lecture Notes in Computer Science, pages 181–195.
Springer, 2007.

[161] Simon Singh. The Code Book. Fourth Estate, 1999.

[162] Arthur Sorkin. Lucifer, a Cryptographic Algorithm. Cryptologia, 8(1):22–42,
1984.

[163] William Stallings. Cryptography and Network Security - Principles and Practice
(3. ed.). Prentice Hall, 2003.

[164] Douglas R. Stinson. Cryptography - theory and practice. Discrete mathematics
and its applications series. CRC Press, 1995.

[165] Bozhan Su, Wenling Wu, Shuang Wu, and Le Dong. Near-Collisions on the
Reduced-Round Compression Functions of Skein and BLAKE. In Swee-Huay
Heng, Rebecca N. Wright, and Bok-Min Goi, editors, Cryptology and Network
Security - 9th International Conference, CANS 2010, Kuala Lumpur, Malaysia,
December 12-14, 2010. Proceedings, volume 6467 of Lecture Notes in Computer
Science, pages 124–139. Springer, 2010.

[166] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the Generalized Feis-
tel. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption, 17th
International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised
Selected Papers, volume 6147 of Lecture Notes in Computer Science, pages 19–39.
Springer, 2010.

[167] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In Lars R. Knudsen
and Huapeng Wu, editors, Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised
Selected Papers, volume 7707 of Lecture Notes in Computer Science, pages 339–
354. Springer, 2012.

[168] Xuehai Tang, Bing Sun, Ruilin Li, Chao Li, and Juhua Yin. A Meet-in-
the-Middle attack on reduced-round ARIA. Journal of Systems and Software,
84(10):1685–1692, 2011.

[169] Tyge Tiessen, Lars R. Knudsen, Stefan Kölbl, and Martin M. Lauridsen. Secu-
rity of the AES with a Secret S-Box. In Gregor Leander, editor, Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March
8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer
Science, pages 175–189. Springer, 2015.

188

[170] Serge Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In Bart Preneel, editor, Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of
Lecture Notes in Computer Science, pages 286–297. Springer, 1994.

[171] Serge Vaudenay. On the Lai-Massey Scheme. In Kwok-Yan Lam, Eiji Okamoto,
and Chaoping Xing, editors, Advances in Cryptology - ASIACRYPT ’99, Interna-
tional Conference on the Theory and Applications of Cryptology and Information
Security, Singapore, November 14-18, 1999, Proceedings, volume 1716 of Lecture
Notes in Computer Science, pages 8–19. Springer, 1999.

[172] Vesselin Velichkov, Nicky Mouha, Christophe De Cannière, and Bart Preneel.
The Additive Differential Probability of ARX. In Antoine Joux, editor, Fast
Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Den-
mark, February 13-16, 2011, Revised Selected Papers, volume 6733 of Lecture
Notes in Computer Science, pages 342–358. Springer, 2011.

[173] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, Fast Soft-
ware Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-
26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer Science, pages
156–170. Springer, 1999.

[174] Yanfeng Wang, Wenling Wu, and Xiaoli Yu. Biclique Cryptanalysis of Reduced-
Round Piccolo Block Cipher. In Mark Dermot Ryan, Ben Smyth, and Guilin
Wang, editors, Information Security Practice and Experience - 8th International
Conference, ISPEC 2012, Hangzhou, China, April 9-12, 2012. Proceedings, vol-
ume 7232 of Lecture Notes in Computer Science, pages 337–352. Springer, 2012.

[175] David J. Wheeler and Roger M. Needham. TEA, A Tiny Encryption Algo-
rithm. In Bart Preneel, editor, Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of
Lecture Notes in Computer Science, pages 363–366. Springer, 1994.

[176] Wenling Wu, Wentao Zhang, and Dengguo Feng. Impossible Differential Crypt-
analysis of Reduced-Round ARIA and Camellia. J. Comput. Sci. Technol.,
22(3):449–456, 2007.

[177] Wenling Wu, Wentao Zhang, and Dongdai Lin. Security on Generalized Feistel
Scheme with SP Round Function. I. J. Network Security, 3(3):215–224, 2006.

[178] Muhammad Reza Z’aba. Analysis of Linear Relationships in Block Ciphers.
Master’s thesis, Queensland University of Technology, May 2010.

[179] Wentao Zhang, Wenling Wu, and Dengguo Feng. New Results on Impossible Dif-
ferential Cryptanalysis of Reduced AES. In Kil-Hyun Nam and Gwangsoo Rhee,
editors, Information Security and Cryptology - ICISC 2007, 10th International

189

Conference, Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of
Lecture Notes in Computer Science, pages 239–250. Springer, 2007.

[180] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the Construction of
Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 461–480. Springer, 1989.

[181] Bo Zhu, Kefei Chen, and Xuejia Lai. Bitwise Higher Order Differential Cryptanal-
ysis. In Liqun Chen and Moti Yung, editors, Trusted Systems, First International
Conference, INTRUST 2009, Beijing, China, December 17-19, 2009. Revised Se-
lected Papers, volume 6163 of Lecture Notes in Computer Science, pages 250–262.
Springer, 2009.

190

Appendix A

Proofs

In this section, we will prove how the base structure which we chose for bicliques
in Section 4.6.1 produces non-overlapping keys/messages within a same group and
between groups.

A.1 Biclique Structure when IV is known and acts

as the message input to block cipher E

For the base message (shown in Fig. 4.15) that is used for the biclique structure in
Fig. 4.14(a), our aim is to prove that when ∆i and ∇j differences are injected in this
base message (as shown in Fig. A.1), we are able to partition the message space into
2112 groups with 216 messages in each and the inter and intra group messages generated
are non-overlapping. The ∇j1, ∇j2, ∇j3 and ∇j4 are differences produced from ∇j as
shown in Fig. A.2.

191

i j1

j2

j3

j4

Figure A.1: ∆i and ∇j differences in base
message


b01 ⊕ j1

b12 ⊕ j2

b23 ⊕ j3

b30 ⊕ j4

 = ISB, ISR, IMC


c01 ⊕ j
c12

c23

c30


Figure A.2: Relation between
∇j,∇j1,∇j2,∇j3,∇j4

b00 b01B02b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

SB, SR, MC

B # C

Figure A.3: Relation between #B and #C states

Here, bi,j and ci,j (0 ≤ i, j ≤ 3) represent the base values of corresponding bytes in the
intermediate states #B and #C respectively as shown in Fig. A.3. #B and #C are
#3 and #4 states in Fig. 4.14(a).

Aim: Given any two base messages B, B′, any two ∆i differences i, i′, any two ∇j

differences j, j′ (0 ≤ i,j ≤ 28), we want to prove that B[i,j] 6= B[i′, j′] i.e., messages
generated are non-overlapping. We will prove this statement case-by-case. Cases (1-4)
cover inter group messages whereas Cases (5-7) cover within group messages. For all
the proofs discussed below, we will refer to Fig. A.4, A.5, A.6 for better understanding.
Case 1. Given B 6= B′, i = i′, j = j′, b00=b10=b′00=b′10=0, to show: B[i, j] 6= B′[i′, j′]
Proof : We will prove this setting by ‘proof by contraposition’, i.e., if B[i, j] = B′[i′, j′],
i = i′, j = j′, b00=b10=b′00=b′10=0, =⇒ B = B′

In Fig. A.6, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,2 = c′0,2, c0,3 = c′0,3,
c1,1 = c′1,1, c1,2 = c′1,2, c1,3 = c′1,3, c2,1 = c′2,1, c2,2 = c′2,2,c2,3 = c′2,3, c3,1 = c′3,1, c3,2 =
c′3,2 and c3,3 = c′3,3. Since C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′0,1 ⊕ j′. As j = j′ =⇒
c0,1 = c′0,1. Hence, 12 bytes in state C and corresponding bytes in state C ′ share
equal values. This relation automatically transcends to related byte positions in B and
B′ after application of InvMixColumns, InvShiftRows and InvSubBytes (as shown in
Fig. A.4), i.e., b0,1 = b′0,1, b0,2 = b′0,2, b0,3 = b′0,3, b1,0 = b′1,0, b1,2 = b′1,2, b1,3 = b′1,3, b2,0 =
b′2,0, b2,1 = b′2,1, b2,3 = b′2,3, b3,0 = b′3,0, b3,1 = b′3,1 and b3,2 = b′3,2, 12 bytes in B and B′

respectively also have same base values). As we have assumed B[i, j] = B′[i′, j′] =⇒
b1,1 = b′1,1, b2,2 = b′2,2 and b3,3 = b′3,3 as these base values are not affected by ∆i and ∇j

differences (as seen in Fig. A.6). Since in states B and B′, b0,0 = b′0,0 = 0, hence all

192

0

b10

b20

b30

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

#B

0

SB
SR
MC

c10

c20

c30

c11

c21

c31

c02

c12

c22

c32

c03

c13

c23

c33

c′
10

c′
20

c′
30

c′
11

c′
21

c′
31

c′
02

c′
12

c′
22

c′
32

c′
03

c′
13

c′
23

c′
33

SB
SR
MC

0

b′
10

b′
20

b′
30

b′
11

b′
21

b′
31

b′
02

b′
12

b′
22

b′
32

b′
03

b′
13

b′
23

b′
33

#B’

0

0 0 0 0

#C’#C

Figure A.4: Relation between base states B
and C. The labels inside each box denote
the base values of the corresponding byte
positions

0

b10

b20

b30

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

0 i

b10

b20

b30

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

j1

⊕j2

⊕j3

⊕j4

∆i , ∇j

#B #B[i,j]

Figure A.5: Modification of state #B af-
ter applying ∆i and ∇j differences. Same
relation exists between #B′ and #B′[i, j]

SB
SR∆i

ISB
ISR∇j

i′

b′
10

b′
20

b′
30

b′
11

b′
21

b′
31

b′
02

b′
12

b′
22

b′
32

b′
03

b′
13

b′
23

b′
33

j′
1

⊕j′
2

⊕j′
3

⊕j′
4

#B’[i,j]

⊕i4

⊕i1

c00

⊕i2

c10

⊕i3

c20

c30

c01

⊕j

c11

c21

c31

c02

c12

c22

c32

c03

c13

c23

c33

⊕i′
1

c′
00

⊕i′
2

c′
10

⊕i′
3

c′
20

⊕i′
4

c′
30

c′
01

⊕j′

c′
11

c′
21

c′
31

c′
02

c′
12

c′
22

c′
32

c′
03

c′
13

c′
23

c′
33

i

b10

b20

b30

b11

b21

b31

b02

b12

b22

b32

b03

b13

b23

b33

j1

⊕j2

⊕j3

⊕j4

#B[i,j]

MC

#C[i,j]

IMC

SB
SR∆i

ISB
ISR∇j

#C’[i,j]

IMCMC

Figure A.6: Relation between states #B[i, j], #C[i, j] and #B′[i, j], #C ′[i, j]

16 byte positions in B and corresponding byte positions in B′ share same base values.
Hence B = B′. This proves that our initial proposition is correct.
Case 2. Given B 6= B′, i = i′, j 6= j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : We will prove this setting by ‘proof by contradiction’, i.e., let us assume if
B 6= B′, i = i′, j = j′, b00=b10=b′00=b′10=0, =⇒ B[i, j] = B′[i′, j′]

In Fig. A.6, if B[i, j] = B′[i′, j′] =⇒ C[i, j] = C ′[i′, j′] =⇒ c0,1 ⊕ j = c′0,1 ⊕ j′. Since
j 6= j’ =⇒ c0,1 6= c′0,1. As a result after applying InvMixColumns and InvSubBytes on
them the bytes generated i.e., b0,1 and b′0,1 should also satisfy the relation - b0,1 6= b′0,1.
But b0,1 = b′0,1 = 0 (as seen in Fig. A.3). Hence, a contradiction arises implying our
assumed proposition is wrong. Therefore, our initial proposition is correct.

193

Case 3. Given B 6= B′, i 6= i′, j = j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : In this setting since i 6= i′, hence B[i, j] 6= B′[i′, j′] always as they will always
differ at zeroth byte position (Fig. A.6).
Case 4. Given B 6= B′, i 6= i′, j 6= j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 5. Given B = B′, i 6= i′, j 6= j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 6. Given B = B′, i 6= i′, j = j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : Proof similar to as discussed in Case 3.

Case 7. Given B = B′, i = i′, j 6= j′, b00=b01=b′00=b′01=0, to show: B[i, j] 6= B′[i′, j′]
Proof : Since B = B′ =⇒ C = C ′ =⇒ c0,1 = c′0,1. As j 6= j′ =⇒ c0,1 ⊕ j 6= c′0,1 ⊕ j′
=⇒ C[i, j] 6= C ′[i′, j′] always as they will everytime differ at fourth byte position
(Fig. A.6). As a result B[i, j] 6= B′[i′, j′] always due to bijection relation between
states B and C.

Hence we proved that in all cases M [i, j]’s so generated are non-overlapping.

194

Appendix B

Derivation of Eq. 7.3 defined in
Section 7.3



ADx 95x 76x A8x 2Fx 49x D7x CAx
CAx ADx 95x 76x A8x 2Fx 49x D7x
D7x CAx ADx 95X 76x A8x 2Fx 49x
49x D7x CAx ADx 95x 76x A8x 2Fx
2Fx 49x D7x CAx ADx 95x 76x A8x
A8x 2Fx 49x D7x CAx ADx 95x 76x
76x A8x 2Fx 49x D7x CAx ADx 95x
95x 76x A8x 2Fx 49x D7x CAx ADx


×



Wj[8]
Wj[9]
Wj[10]
Wj[11]
Uk1

Wj[13]
Wj[14]
Wj[15]


=



Uk2

Uk3

Uk4

Uk5

Zj[12]
Zj[13]
Zj[14]
Zj[15]


Using Inverse Mix Column operation, Zj[12], Zj[13], Zj[14] and Zj[15] can be written
as:

2Fx·Wj[8]⊕49x·Wj[9]⊕D7x·Wj[10]⊕CAx·Wj[11]⊕ADx·Uk1⊕95x·Wj[13]⊕76x·Wj[14]⊕A8x·Wj[15] = Zj[12]
(B.1)

A8x·Wj[8]⊕2Fx·Wj[9]⊕49x·Wj[10]⊕D7x·Wj[11]⊕CAx·Uk1⊕ADx·Wj[13]⊕95x·Wj[14]⊕76x·Wj[15] = Zj[13]
(B.2)

76x·Wj[8]⊕A8x·Wj[9]⊕2Fx·Wj[10]⊕49x·Wj[11]⊕D7x·Uk1⊕CAx·Wj[13]⊕ADx·Wj[14]⊕95x·Wj[15] = Zj[14]
(B.3)

95x·Wj[8]⊕76x·Wj[9]⊕A8x·Wj[10]⊕2Fx·Wj[11]⊕49x·Uk1⊕D7x·Wj[13]⊕CAx·Wj[14]⊕ADx·Wj[15] = Zj[15]
(B.4)

If we combine the above equations in the following way:

CAx · (Eq B.1)⊕ ADx · (Eq B.2)⊕ 49x · (Eq B.3)⊕D7x · (Eq B.4) (B.5)

We can eliminate the unknown variable Uk1 and obtain:

94x ·Wj[8]⊕B4x ·Wj[9]⊕ 4Ex ·Wj[10]⊕ 7Ex ·Wj[11] = CAx · Zj[12]⊕ ADx · Zj[13]

⊕ C0x ·Wj[13]⊕DAx ·Wj[14]⊕ C5x ·Wj[15] ⊕ 49x · Zj[14]⊕D7x · Zj[15](B.6)

195

Appendix C

Derivation of Eq. 7.13 defined in
Section 7.5



ADx 95x 76x A8x 2Fx 49x D7x CAx
CAx ADx 95x 76x A8x 2Fx 49x D7x
D7x CAx ADx 95X 76x A8x 2Fx 49x
49x D7x CAx ADx 95x 76x A8x 2Fx
2Fx 49x D7x CAx ADx 95x 76x A8x
A8x 2Fx 49x D7x CAx ADx 95x 76x
76x A8x 2Fx 49x D7x CAx ADx 95x
95x 76x A8x 2Fx 49x D7x CAx ADx


×



Wj[8]
Wj[9]
Wj[10]
Wj[11]
Wj[12]
Wj[13]
Wj[14]
Wj[15]


=



Zj[8]
Zj[9]
Uk1

Uk2

Zj[12]
Zj[13]
Uk3

Uk4


Using Inverse Mix Column operation, Zj[8], Zj[9], Zj[12] and Zj[13] can be written as:

ADx·Wj[8]⊕95x·Wj[9]⊕76x·Wj[10]⊕A8x·Wj[11]⊕2Fx·Wj[12]⊕49x·Wj[13]⊕D7x·Wj[14]⊕CAx·Wj[15] = Zj[8]

CAx·Wj[8]⊕ADx·Wj[9]⊕95x·Wj[10]⊕76x·Wj[11]⊕A8x·Wj[12]⊕2Fx·Wj[13]⊕49x·Wj[14]⊕D7x·Wj[15] = Zj[9]

25x·Wj[8]⊕49x·Wj[9]⊕D7x·Wj[10]⊕CAx·Wj[11]⊕ADx·Wj[12]⊕95x·Wj[13]⊕76x·Wj[14]⊕A8x·Wj[15] = Zj[12]

A8x·Wj[8]⊕25x·Wj[9]⊕49x·Wj[10]⊕D7x·Wj[11]⊕CAx·Wj[12]⊕ADx·Wj[13]⊕95x·Wj[14]⊕76x·Wj[15] = Zj[13]

If we xor together the above four equations, then we get

Zj[8]⊕ Zj[9]⊕ Zj[12]⊕ Zj[13] = EAx ·Wj[8]⊕ 54x ·Wj[9]⊕ 7Dx ·Wj[10]⊕ C3x ·Wj[11]⊕ E0x ·Wj[12]⊕
5Ex ·Wj[13]⊕ 7Dx ·Wj[14]⊕ C3x ·Wj[15]

196

	Introduction
	Motivation
	Thesis Organization
	Contributions

	Symmetric cryptosystems
	What is a block cipher ?
	Anatomy of a block cipher
	Construction of iterated block ciphers
	Block Cipher Cryptanalysis
	Fundamental Generic Cryptanalysis Techniques
	Shortcut Attacks
	Differential Cryptanalysis
	Truncated Differential Cryptanalysis
	Boomerang Attack
	Meet-in-the-Middle Attack
	Square Attack

	Block Cipher Based Hash Functions
	Rebound Attack

	Improved Biclique Cryptanalysis of AES
	Framework of Biclique Key Recovery Attack
	What is a biclique structure on block ciphers ?
	Construction of biclique

	Steps of the Biclique Attack
	Biclique Attacks on AES
	Description of AES
	Precomputation Technique

	Biclique attack on other block ciphers
	Improved biclique based key recovery attacks on AES
	Our Contribution

	Stars
	Stars from independent differentials

	Minimum data complexity key recovery for AES
	AES-128
	AES-192
	AES-256

	A search technique for biclique attacks on AES
	Enumerating bicliques
	Searching for key recoveries
	Attacks with minimal data and time complexities

	Fastest biclique attack with less than full codebook of data
	AES-128
	AES-192
	AES-256

	Fastest biclique attack with no restriction on data complexity
	AES-128
	AES-192
	AES-256

	Time-Data Comparison
	Summary

	Biclique Cryptanalysis of AES-128 based Hashing Modes
	Origin of Biclique Cryptanalysis
	Short Description of MD5
	Initial Structure

	Biclique attack for finding preimages
	Biclique based Preimage Attack on SHA-2

	Preimage Attack on AES-128 based Hashing Modes
	Our Contributions

	Notations
	Preimage Attack on AES-128 instantiated Compression Function
	 Second Preimage Attack on Hash Functions
	PGV Construction 1 - MMO mode
	PGV Construction 2 - MP mode
	PGV Construction 3 - DM mode

	Second Preimage attack on long messages
	Summary

	Sliced Biclique Cryptanalysis of Type-2 GFNs
	Sliced Biclique Cryptanalysis
	What is a sliced biclique ?
	Construction of biclique structure in a sliced biclique
	Preimage attack using sliced biclique

	Type-2 Generalized Feistel Network
	Our Contributions

	Notation
	Preliminaries
	Type-2 GFN instantiated with double SP layer
	t-bit Partial Target Preimage Attack

	Distinguishing Attack on 4-branch, Type-2 GFN based Permutation
	Collision Attack on 4-branch, Type-2 GFN based compression function
	Collision Attack on Hash Functions
	8-Round Collision Attack on CLEFIA based Compression Function
	Conclusions

	Multiset based MITM Attack on ARIA-192 and ARIA-256
	Block Cipher ARIA
	Our Contribution.

	Preliminaries
	Notations and Definitions

	Distinguishing Property of 4-round ARIA
	Key Recovery Attack on 7-round ARIA-192/256
	Recovering the master key for 7-round ARIA-192
	Recovering the master key for 7-round ARIA-256

	Key Recovery Attack on 8-round ARIA-256
	Construction of 4.5-round distinguisher
	Key Recovery Attack
	Recovering the actual master key

	Conclusions

	Multiset based MITM Attack on Kalyna-128/256 and Kalyna-256/512
	Description of Kalyna
	Our Contribution.

	 Definitions and Notations
	Construction of distinguisher for 6-round Kalyna-128/256
	Distinguishing Property for Kalyna-128/256

	Key Recovery Attack on 9 Round Kalyna-128/ 256
	Precomputation Phase
	Online Phase
	Recovering the remaining Subkey bytes

	Construction of distinguisher for 6-Round Kalyna-256/512
	Construction of 6-round distinguisher for Kalyna-256/512

	Key Recovery Attack on 9-Round Kalyna-256 /512
	Precomputation Phase
	Online Phase
	Recovering the remaining Subkey bytes

	Conclusions

	Conclusion
	Summary
	Future Work

	Appendix Proofs
	Biclique Structure when IV acts as the message input

	Appendix Derivation of Eq. 7.3 defined in Section 7.3
	Appendix Derivation of Eq. 7.13 defined in Section 7.5

