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Abstract

We look at the problem of using accelerometer in smartphones to detect whether
the user is at a metro train station or in a metro train. Currently, we have
solutions to detect simple activities, such as sitting or walking. Our work for
this thesis investigates the more complex problem of discerning “in-train” from
“in-metro-station” activities which internally are composed of several simple ac-
tivities. We perform the task of distinguishing the “in-train” from “in-metro-
station” patterns using classic classification techniques with two different data
representations namely, statistical features and ECDF-based features. Another
major contribution through this thesis is to solve the challenge of the considerable
class imbalance with majority of samples belonging to the “in-train” patterns by
improvising existing classification algorithms to counter the effect of class imbal-
ance. Our findings are useful for any other problem of using sensor data to classify
activities. We evaluated our solution using about 23 hours of data collected us-
ing six different models of smartphones from over seven different metro/subway
stations situated in New Delhi, India. Our detection accuracy is over 98%.
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Introduction

In recent years, mobile sensing has been used in myriad of interesting problems
that rely on collection of real-time data from various sources. The field of crowd-
sourcing or participatory sensing is extensively being used for data collection to
find solutions to day-to-day problems. One such problem of growing importance
is analytic for smart cities. As per Wikipedia, a smart city is defined as an
urban development vision to integrate multiple information and communication
technology (ICT) solutions in a secure fashion to manage a city’s assets and
notable research is being conducted in this direction. One of the important assets
is transportation. With the growing number of people and shrinking land space,
it is important to come up with solutions to ease commuting between any two
locations within the city. The most efficient mode of transportation in a city
is metro train or metro or subway or tube, as it is called in different parts of
the world. Cities, in developed countries, such as New York, London [1], etc,
have millions of bytes of data being logged on a diurnal basis using RFID sensors
installed at metro stations. This data can be leveraged to carry out an extensive
analysis to understand usage of metro across the city’s layout and aid in the
process of better and uniform city planning. However, a common challenge faced
in developing countries is the paucity of such detailed data due to lack of sensors
in the infrastructure.

In the absence of these statistics, the most credible solution is to collect data
via participatory sensing using low-cost sensors like accelerometer, gyroscope,
magnetometer, GPS, and WiFi that come packaged with modern day smart-
phones. These sensors can be used to collect data on behalf of users, which
upon analysis can be leveraged in the same way as data made available through
infrastructure-based techniques. Through this work, we wish to predict the metro
station activity in the city of New Delhi, India using accelerometer logs collected
from a smartphone app. However, the problem is not limited to only smart cities
in developing countries, e.g., our work is applicable for personal health. Smart
bands and watches are used these days to detect users’ activities, such as sitting,
walking, and running. The learning models presented in this thesis can detect
travel by train. The lessons learned in this work can further be applied to detect
travel by other modes of transportation, such trams, buses, etc. that follow a
designated pattern which can be detected easily using sensors by adjusting a few
parameters.

Our approach is to detect commuter’s entry into metro station and thereon
measure time spent by the commuter till he/she boards the train. Similarly, we
measure the time spent after disembarking the train till exiting the metro station.
These two time duration are indicatives of the rush at metro stations, i.e., more
the rush, more the time spent. A common technique used is leveraging geofencing
APIs on the smartphones to detect entry into and exit from the metro stations.
These APIs efficiently use GPS to detect whether the user has crossed a bound-
ary, in our case perimeter around the metro station. For detecting boarding and
disembarking, we use accelerometers on the smartphones to detect whether the
commuter is in a train or not. Unlike geofencing, the latter is an unsolved prob-
lem. We treat this problem as a two class classification, where the goal is to detect

3



whether a person is traveling in a train or is at the metro station. Furthermore,
the “in-metro-station” activity is a collection of many micro-activities including
walking, climbing stairs, queuing, etc and therefore, needs to be combined into
one single category for the classification. We map this problem to machine learn-
ing and explore an array of classification algorithms to solve it. We attempt to
use discriminating, both probabilistic and non-probabilistic, classification meth-
ods to effectively distinguish such patterns into “in-train” and “in-metro-station”
classes.
Main contributions through this work

• We show that ECDF-based representation, on an average, performs better
than a feature set based on order statistics, for detecting movement in train.
The Ensemble Improvement for SVM yields a TPR of 0.98 for ECDF against
0.72 for order statistical features.

• We compare among popular classification techniques of SVM, RDF, and
Regularized Logistic Regression and find that RDF gives the best perfor-
mance with about 94% predictive accuracy.

• We encounter class imbalance problem. We handle it by using ensemble
learning techniques, namely, (SVM + Ensemble). It gives the best perfor-
mance, among available option, with an accuracy of 98.65% with ECDF
representation and 91.08% with Statistical Features.

Though the main focus of this thesis is on accelerometer data for inferring
episodes of travel in a metro, it is important to note that the conclusions drawn
in this thesis can be generalized to other mobility-related application scenarios
as well. For instance, one of the main challenges our classification problem was
addressing the diversity of activities (e.g., sprinting, waiting in queue, climbing
stairs, motion in train, etc.) recorded in the data. This diversity makes it non-
trivial to discern a pattern of interest (e.g., motion in train) from others, because
decision boundaries can no longer be expected to be linear in any realistic scenar-
ios. Such cases can also arise in application scenarios, such as estimating traffic
congestion pattern in an urban transportation network from accelerometer data,
predicting queuing delay at metro stations, and favorite modes of transportation
in an urban city. Basically any application, which needs to deal with diversity in
classes could benefit from this study. Furthermore, given the diversity in classes
it is quite likely to also have a class imbalance problem, where some data points
from some classes be disproportionately high in number, thus making the model
biased towards one class. Our findings in this regard (SVM + Ensemble) are also
of general value to other studies on mobile sensor data facing similar issue.



1. Problem Definition

This section formally defines our problem statement. The input for our problem
is raw sensor data from the accelerometer sensor embedded in smartphones. The
objective is to build a classification model so as to distinguish between metro
train activity and metro station activity. In other words, given raw data from
the accelerometer sensor, over a time-window as explanatory variable(s), a target
variable is used to determine whether user of the smartphone is currently “in-
train” or “in-metro-station.”

1.1 Challenges posed by the Problem

It is important to note that building a classification model on accelerometer
data is a challenging task for two reasons. First, stream data coming from an
accelerometer would intrinsically contain readings from a wide variety of motion
activities. For instance, even if the accelerometer sensor is read only when the
phone is in metro train journey (in-metro-station + in-train), it would capture
data from a myriad of activities like, motion of the train, walking, climbing,
queuing at a metro station, standing-up, sitting-down in the train, dropping or
using the phone. This makes it non-trivial to build a classification model as it
would have to discern the train-activity from mixture of several other motion
activities each having its own signature accelerometer values. Secondly, many
times, depending on data collection strategies, one could have a class imbalance
problem. This means that the learning data set would have disproportionately
high number of samples from one of the classes, thereby making the model biased
towards the majority class.

Our study considers the following four facets of this problem:

1. What is the ideal quantization of the raw sensor data which comes as a
stream? In other words, what is the ideal window size from which features
need to be extracted?

2. Given a time-window, what features best discern between “in-a-train” and
“in-a-metro-station” classes?

3. Given a time-window and its feature representation, which classification
model addresses the challenge of diversity in the motion activities captured
by the accelerometer and gives best accuracy for our two-class problem?

4. If there is a class imbalance in the data samples, then what is the best way
to resolve it during learning of models?

1.2 Defining the Scope of the Problem

The classes “in-train” and “in-metro-station” are interpreted as typical mobility
patterns observed during the course of data collection. We understand that there
can be non-typical motion patterns in either of these classes, for instance, rare
events like dropping or using the phone while in the train, walking towards the
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platform, waiting for the train at platform, using the escalator/elevator, but
those would not be the main focus of the models learned. Instead, our model
would implicitly consider them as outlier data points, i.e., they would not try to
accommodate them towards improving prediction accuracy.

1.3 Understanding with a Sample Trace

Figure 1.1: Sample accelerometer data annotated with the two mobility
patterns,“in-train” and “in-station”

Sample data: Figure 1.1 illustrates “in-train” and “in-metro-station” classes on
sample accelerometer trace that we collected. One may observe a stark difference
in accelerometer values across the two classes. The values for the “in-train” class
have less variance, whereas for the “in-metro-station” class, we observe heavy
fluctuations (and thus much greater variance). This was expected since a train
typically moves at a uniform speed, whereas in a station we would witness several
small activities such as walking, waiting, climbing, sprinting etc. This diversity
affects the classification algorithms in unique ways resulting in dominance of some
techniques over others. We need to handle this diversity.



2. Related Work

Participatory sensing using smartphone sensors is gaining a lot of importance due
to their ubiquity. For the problem of tracking mode of transportation, smart-
phone based sensors such as accelerometer, GPS, and WiFi are used extensively
for mode detection, start/stop detection, and arrival time predictions. In this
work, we focus on how to efficiently process the accelerometer data and draw
inferences about travel by metro trains from the processed data.

2.1 Data Mining Techniques

A majority of research in the sensor data analysis revolves around finding sig-
nature patterns in time-series data using data mining techniques such as SAX
(Symbolic Aggregate Approximation), etc. This area of research comes under
motif analysis [2], which aims at finding recurrent patterns within the time-series
data. It may be used to encode various activities using motifs for a feature-space
description. However, we use the time-series accelerometer readings as an in-
put to a classification method. This entails describing the feature-space using
statistical and distribution based measures. Once, we obtain a feature set, an
appropriate classifier model is built to facilitate the prediction of “in-train” and
“in-metro-station” patterns with appreciable accuracy.

2.2 Feature Representation for Accelerometer

Data

Apart from using data mining techniques, there is a body of work done based on
extraction of characteristic or statistical features from the sensor measurements.
Sensor data is typically a multi-dimensional function of time. There are two
types of features that can be extracted from sensors,that is, in the time domain
and frequency domain. A study based on feature extraction was conducted by
Hemminki et al. [3], which delved into the gravity estimation of the acceleration
and the derivation of features from the horizontal components of acceleration in
order to effectively model the different transportation modes. The researchers
used statistical features in addition to frequency, time, peak, and segment-based
features to decompose the task into a hierarchical model consisting of a separate
classifier for walking, stationary, and kinematic motion.

Xia et al. [4] employed frequency-domain based feature set including DFFT
components from specific time windows, sample entropy features that are then
fed to a suitable classifier to detect outdoor transportation modes.

Prentow et al. [5] have used kinetic, position, and signal-strength based fea-
tures for detecting mode of transportation in indoor environment. They also
explored the use of ECDF-based representation which is essentially a data trans-
formation technique and have shown that ECDF has better generalization ca-
pability than traditional feature sets. Signal-strength based sensors like GPS
and WiFi perform well for indoor settings and the paper claims to achieve an
appreciable accuracy with a feature set based on kinetic attributes.
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Hammerla’s paper [6] on the use of ECDF for accelerometer data shows that
this representation effectively captures the spatial distribution of the data and
adapts to the available training data better than other approaches. ECDF is
known to perform very well in sensor data analysis and has been extensively used
in activity recognition. Through our work, we analyze the use of ECDF represen-
tation for metro travel patterns and compare it against the feature representation
based on order statistics.

2.3 Other Sensors for Transportation Mode De-

tection

The use of location sensors in transit tracking is common as in Thiagarajan’s [7]
work, where a combination of kinetic and location sensors is used to detect if a
person is traveling by a bus or not. The walking/stationary activities are mea-
sured using an accelerometer. These accelerometer readings are used as a trigger
to start GPS sensing. Apart from accelerometer and location sensors, there has
been use of other sensors as well. Higuchi et al. [8] have used magnetometer to
detect stopping and starting of train using passengers’ smartphones. While their
work dealt with the precise detection of the intermittent stops during a metro
train journey, our work in the area of metro railways is different in the scope
of classification as we deal with accurately detecting whether a person is at the
metro station or traveling in the train. Moreover, the use of magnetometers may
not be feasible for “in-metro-station” detection. Using accelerometers gives us a
sense of different activities like walking, sprinting, train motion, etc. by measur-
ing the magnitude of acceleration that can be combined into one broad class of
activities governing “in-metro-station” behavior. Further, while accelerometer is
found on all smartphones, magnetometer is available only on high-end ones.



3. Approach & Methodology

This section details the methodology used in this thesis work. We first present
a description of the features used for classification. Following this, we briefly
explain the primary classification techniques used in this study. At the end, we
detail the techniques used to address the class imbalance challenge of the data
set.

Table 3.1 illustrates the “space” of classification algorithms × features used in
this study. For finding out features, we studied order statistics and empirical cu-
mulative distribution function. For classification algorithms, we studied variants
of SVM, Random Decision Forest (RDF), and Regularized Logistic Regression.
For accommodating class imbalance, we explored ensemble and differential error
cost (DEC) techniques (see Table 3.1).

SVM RDF (SVM + DEC) (SVM + Ensemble) Reg. LR Reg.LR+Ensemble
Order Statistics Algo1.1 Algo1.2 Algo1.3 Algo1.4 Algo1.5 Algo1.6

ECDF Algo2.1 Algo2.2 Algo2.3 Algo2.4 Algo2.5 Algo2.6

Table 3.1: Classification Algorithms across the Feature-space

3.1 Feature Representation

Our approach involves using following two feature sets to represent the accelerom-
eter data:

• Order Statistics Features - Given a window (as quantized from a time se-
ries), this method consists of computing typical statistical metrics. These
statistical metrics become our features representing a particular window.
In this study, we used mean, median, standard deviation, and mode to cre-
ate the feature set. Mode of the acceleration is selected because certain
activities for “in-metro-station” patterns, such as running and climbing es-
calators, have different peaks for different activities like, walking, climbing,
and waiting.

• ECDF Based Features - In contrast to order statistics, these features are
extracted as different quantiles from an empirically cumulative distribution
function (ECDF) for values in a given window. Features based on ECDF
can be considered to be more robust, in the sense that, they are able to cap-
ture the different modes in the underlying data by determining a complete
distribution function of values over the given window. This technique is
particularly useful when the probability density function over a given win-
dow has more than one mode. Forcibly summarizing more than one mode
using a single statistic (as done by the previously described order statistics
based technique), such as mean, median, etc., destroys the rich structure
representing the data.

Given a time window (represented as a time series of accelerometer data)
ECDF is computed as given in 3.1. Assume that X denotes the random
variable representing the accelerometer values in the given window. We first
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Figure 3.1: Sample Empirical Cumulative Distribution function shown in blue
stepped line

empirically determine a cumulative distribution function for the random
variable X over the given window.

F (n) =
n(X ≤ d)

n
=

1

n

n∑
i=1

1xi≤d (3.1)

Here, n(X ≤ d) denotes the number of points in the sample (the given
time-window) less than or equal to d and n is the total number of points in
the given window.

Note that since our given window is only a discrete sample of a continuous
random variable (accelerometer can have infinitely many values). There-
fore, we can only estimate the cumulative distribution function (CDF). In
other words, we cannot compute the CDF using the traditional way, where
CDF =

∫ b
a
f(x)dx, where f(x) is the probability density function (PDF).

Using the previous equation, we compute the value of F for all the data
points in the given window. A plot of these values of F against the values
of X (sample points) comes out as a step function that increases from from
0 to 1. Figure 3.1 illustrates this plot for a hypothetical window.

After computing the cumulative distribution function over a window, we
perform a cubic interpolation using Kaplan-Meier Estimate [6]. This cu-
bic interpolation fits a smooth curve (Figure 3.1) over a stepped function
(shown in blue in Figure 3.1). We then choose θ equally spaced points (our
quantiles) on the y-axis of Figure 3.1 and find the corresponding points
of the x-axis using the inverse of the cubic function interpolated over the
ECDF. These points on the x-axis denote our features. θ is a hyperparam-
eter that needs to be tuned through experimental analysis. We found that
θ ∈ [20 30] is a range that gives acceptable accuracy across the learning al-
gorithms. This number is also in keeping with the curse of dimensionality,
which relates the size of the training data with the number of features in
the data. In general, it is customary [9] to have θ (# features in each data
point) such that (#windows− in− training − data/θ) > 10.



3.2 Classification Techniques

This subsection provides details on the classification algorithms used to learn
models on the window level data represented using the feature representations
discussed in the previous subsection. Following are the classification methods.

• Support Vector Machines (SVM) - SVM is a popular classification method
for a two-class problem. SVM attempts to find a decision boundary that
maximizes the margin of separation between two classes. The character-
istic data points that define the maximum margin separator are known as
support vectors. This allows SVM to be more robust on unseen data, and
thus has fewer misclassifications in the testing phase. Following equation
shows the objective function of SVM. Here, W is the weight vector, C is the
cost of misclassification, and ξ’s are the slack variables. The term W TW
ensures that the margin (2/||W ||) is maximized.

f(w, b, C) = min
w,C

(
1

2
W TW + C

n∑
i

ξi)

subject to

Yi(W
TXi + b) ≥ 1− ξ∀i and ξ ≥ 0

(3.2)

Depending on the separability of the classes in the underlying data, we
can choose whether to train using a Linear SVM or Kernel-based/non-
linear SVM. Figure 3.2 and Figure 3.3 show visualization of the two types
of features against the two categories. Figure 3.2 illustrates the separa-
tion between “in-metro-station” and “in-train” patterns based on the mode
computed for each window. Figure 3.3 shows the separation based on one
of the θ features in the ECDF representation. Both Figure 3.2 and Fig-
ure 3.3 show that the classes don’t have a linear boundary. The potential
linear decision boundary by a linear SVM as shown in 3.2 will incur lot
of misclassifications and may not be beneficial for our classification task.
Thus, we may need to explore a complex non-linear decision surface that
clearly shows the separation between the classes. To this end, we used
Kernel-based SVM that projects the data in a higher-dimensional space. It
is typical that classes, which are not linearly separable in lower dimensions,
become separable in higher dimensions.

• Random Decision Forest (RDF) - RDF [10] is a bagging ensemble learning
technique that uses several sub-samples of the data set (usually, with re-
placement) for training weak decision tree learners. Given a collection of
windows (the training + test data set), RDF algorithm first samples this
data set to get about 66% of the data points (each data point is a window
represented using either order statistics or ECDF based features). It then
goes about to learn a decision tree on this data. Following this, the remain-
ing 33% data is passed through this decision tree to get a predicted class
label for each of these 33% of data points and store it separately. Note that
this is still not the “testing part,” i.e., we would not compare the predicted



Figure 3.2: Distribution of Quantized Data (40-seconds) across “in-train” and
“in-metro-station” classes based on Mode of Acceleration

Figure 3.3: Distribution of Quantized Data (40-seconds) across “in-train” and
“in-metro-station” classes based on an ECDF feature dimension

class label of these data points with the true class. The algorithm repeats
this process of picking 66% of data, learning a decision tree and predicting
classes for 33% of left out data and storing them for about 20 rounds. At
the end of about 20 rounds we would have following two things: (a) 20
decision trees, each learnt on a small sub-sample of the data, (b) predicted
class values of several of the data points. Now, for each of the data points
for which some (or all) of the individual trees have predicted a class value,
we set the final predicted class according to majority voting and compute
the misclassification errors by comparing with their true class labels. This
becomes the final test error of the model. The set of 20 decision trees, each
of which was learnt during a round, become the final classification model
where final class is always decided through majority voting.



• Regularized Logistic Regression - Here, we model the problem as predicting
the probability of being in the train (i.e. Y = 1) as a function of a few
independent/explanatory variable(s), i.e. X, which is order statistical or
ECDF-based features. We try to model the relationship between Y (de-
pendent variable) and X by fitting a logistic curve that is also capable of
learning a non-linear relationship.The equation governing the relationship
between X and Y is given as follows:

ln

(
p

1− p

)
= β0 + β1X (3.3)

p =
expβ0+β1X

1 + expβ0+β1X
(3.4)

where β0, β1 = coefficients of the regression equation
X = independent/explanatory variable
p = probability that Y = 1
(1-p) = probability that Y = 0

We use the maximum likelihood estimate (MLE) to find optimal values of
β0 and β1, such that the function closely estimates the observed data. We
take the log-likelihood of the objective function as it is easier to deal with
it mathematically. The formulation of the problem is given below:

L =
n∏
i=1

p(y|x)Yi(1− p(y|x))(1−Yi) (3.5)

l = log(L) =
n∑
i=1

Yilog[p(y|x)] +

(
n−

n∑
i=1

Yi

)
log[1 − p(y|x)] (3.6)

The above equation is solved using the first derivative test through iterative
computing to find the maximum possible value of the likelihood function.
The initial values of the coefficients are chosen to be zero or any random
real number.

For this study, we have taken a regularized estimate of regression to un-
derstand the relative importance of each feature thereby preventing the
problem of over-fitting. Though the number of features being considered
for the problem is limited, we need to provide a check for the parameters
not contributing to over learning. The regularization parameter, α is added
to the objective function and it acts as a penalty for those features that
do not add value to the model estimation. The revised formulation is as
follows:

l =
n∑
i=1

Yilog[p(y|x)] +

(
n−

n∑
i=1

Yi

)
log[1 − p(y|x)] + α

n∑
i=1

βi (3.7)



3.3 Mitigating the Effect of Class Imbalance

As we observe that our accelerometer data is highly biased towards the “in-
train”(positive) category, a biased learning will lead to very large amount of
samples being incorrectly classified into the majority class label. Skewness of any
learning algorithm is likely to degrade its performance towards the minority class.
To counteract the effect of class imbalance, we use two well-known methods and
study the effect on the overall performance of SVM and Logistic Regression. Note
the problem of class imbalance did not plague the RDF technique in our study.

• Different Error Cost (DEC) - This is an internal algorithmic modification to
the existing SVM formulation to take into account the class imbalance [11].
It ensures that while learning the objective function for the given data,
the effect of inherent bias in the model is mitigated. The premise of this
modification is to assign a higher misclassification rate (error cost) to the
samples from the minority class as compared to those from majority class.
The improved formulation is given as follows:

f(w,C+, C−) =
1

2
wT .w + C+

n∑
i|yi=+1

ξi + C−
n∑

i|yi=−1

ξi

subject to yi(w.φ(x) + b) ≥ (1− ξi) and ξi ≥ 0

(3.8)

• Ensemble Learning - This is an external data preprocessing technique, sim-
ilar in working to the traditional ensemble learning techniques such as Bag-
ging (as in RDF) [12] and Boosting. The minor difference lies in the way
the data set is partitioned, commonly referred to as downsampling. For this
technique [11] to counteract class imbalance, we compute the proportion of
minority class data and divide our majority class data set in such a way
that each sub-sample created from the data set has the same number of
samples as the minority class samples. The sub-sampling of the majority
class data is done randomly without replacement. These sub-sampled data
sets are combined with the minority class samples to form a uniform data
set. Therefore, models are trained taking all possible combinations of the
majority class with the minority class to remove any unaccounted bias. n
such models are trained using a Kernel-SVM and while testing, the final
predicted label for the data samples is decided by majority voting.



4. Experimental Evaluation

This section elucidates the experiment conducted, providing details about how
data is collected from the metro stations and processed for further analysis.
Through the remainder of the section, we discuss in detail the findings of the
extensive study carried out with regard to the classification methods used and
the evaluation metrics inferred from them. We also endeavor to understand why
one classification model performs better or worse than the others.

4.1 Collection of Data

For the purpose of detecting train activity at the Metro stations all across New
Delhi, India, we built an Android app to log accelerometer data when users enter
a metro station. For the purpose of training, the app requires the volunteers
to manually record the entry/exit times from/into the station and train. This
information is used as “ground truth” or “true” class labels for evaluation. The
app lets users record their entry/exit stations. This information helps to rule out
the effect of a station’s infrastructural layout on the accelerometer readings.

Figure 4.1: Schematic Map of Delhi Metro annotated with the stations, in which
we collected data

Seven volunteers logged data using the app at different metro stations. The
data logging was performed with the following devices- Sony Xperia, One Plus
Two, Samsung GT Series, and Motorola. The purpose of this exercise is to elim-
inate the effect of accelerometer sensors across different phone models on the
detection accuracy. Majority of the accelerometer data was collected from the
metro stations as illustrated in Figure 4.1. Among the nine junction metro sta-
tions in New Delhi, we procured data from three metro stations, namely, Rajiv
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Chowk, Central Secretariat, and Kashmere Gate. Among all the metro stations,
these three stations witness the highest annual footfall. The remaining stations
witness relatively low rush but they were selected to cover all the major metro
railway lines across the city. After a trace is collected, it is uploaded to a central-
ized Django server through the app and stored as raw dump files consisting of the
accelerometer readings and the timestamps for entry and exit into the stations.
Through this experiment, we collected about 23 hours of accelerometer data.

4.2 Preparation & Preprocessing of Data

A preliminary analysis of the data reveals that on an average, 25-30% data col-
lected falls in the “in-metro-station” category. This suggests that the task of
metro station activity recognition encounters a class imbalance problem identi-
fied in Chapter 3.

The raw data was logged from the accelerometer at a maximum sampling
frequency of 50Hz notwithstanding small variations across different accelerometer
models. It is measured along each of the three axes using a gravity sensor.
However, in order to calculate the real acceleration of the device, we isolate the
gravity component from the logged values assuming that the force of gravity is
acting only along the y-axis (g = 9.81m/s2) and is removed from all other two
axes.

This was done considering the most generic position of the phone, i.e., the
downward vertical direction while the phone is placed in a shirt/pant pocket. We
calculate the linear acceleration by subtracting the gravity components weighted
by a parameter called α, which is decided by the type of low-pass filter being used
for computation. The linear acceleration along the three axes and magnitude of
the acceleration are formulated as elucidated by the following equations.

acc(x) = α ∗ acc(x)− (1− α) ∗ gravity(x)

acc(y) = α ∗ acc(y)− (1− α) ∗ gravity(y)

acc(z) = α ∗ acc(z)− (1− α) ∗ gravity(z)

mag(acc) =
√

(acc(x)2 + acc(y)2 + acc(z)2)

Once the magnitude of linear acceleration is computed for the entire time-
series data, we need to quantize data into windows of suitable length. We first
compress the readings of each second by taking a mean of all the values. There-
after, we take non-overlapping windows of 20, 30, and 40 seconds each. These
windows constitute individual data points for the time-series data set. The de-
cision to use non-overlapping windows is to counteract the effect of scrambling
of data that may occur by sharing of time-segments across adjacent frames. It
is shown that “in-metro-station” patterns are an amalgamation of several micro
activities, which are beyond the scope of our classification task.

In spectral analysis (frequency domain), the purpose of using overlapping win-
dows is to account for the loss of information across the edges of windows. For the
purpose of our study which focuses on distinguishing metro station activity from
train activity, overlapping time-segments from a previous window in the current
window can have a disparaging effect on the prediction behavior of classifiers as
we may have several windows with fractions of both train and station mobility



Figure 4.2: Consideration of Non-overlapping vs.Overlapping Windows for a given
Accelerometer Trace

patterns. Due to this, it will be hard for the classification model to effectively
separate the two classes. Whereas, the non-overlapping windows attempt to dis-
ambiguate better, especially for patterns that are marked by transition from train
to station and vice-versa. This effect is illustrated through a sample of accelerom-
eter trace 4.2. Hence, we expect that the non-overlap, which is a courser level of
granularity, is well-suited to our problem and is likely to give a better separation
between the two classes.

Feature Representation WS=20s WS=30s WS=40s
Order Statistics 4327x4 2891x4 2174x4

ECDF 4327x21 2891x21 2174x21

Table 4.1: #windows × #feature set dimensions for different window sizes

4.3 Evaluation Metrics

We have tested our models using n fold-cross validation on the entire data set.
Here, n refers to the number of folds or partitions of data created from the entire
data set. In n-fold validation we train the model on (n− 1) folds and test on the
remaining fold. This process is repeated n times and errors are averaged. For our
analysis, we have set n = 10. This type of validation helps in ensuring that the
learned model does not suffer from any bias or does not over-fit the data. The
evaluation of our initial experiment and results reported are done using the entire
data set. Basically, through this exercise, we aim to estimate the performance of
classification models by calculating the true error rate (or equivalently prediction
accuracy) i.e. the classifier’s accuracy over the entire population.

We have used confusion matrices to report our results. Each of the confusion
matrices reported in this section is essentially the sum of confusion matrices



obtained across the individual folds of n-fold cross validation. We also report the
True Positive Rate (TPR) and True Negative Rate (TNR) on these summed up
confusion matrices. Evaluation on the basis of confusion matrix is useful for the
prediction of metro train activity from the perspective of addressing the challenge
of class imbalance towards “in-train” patterns present within the data and how
it can be diminished by using the improvised versions of the classic learning
algorithms. On careful analysis of the results illustrated in Tables 4 through 12
for all learning models described in Table 3.1, the following observations can be
made.

1. Impact of Window Size - Across the three levels of quantization, we note
that a 40 second-long window/frame provides the best generalized bound
on accuracy. A plausible explanation for this could be that a 40-second
window is long enough to capture the transition of getting into the train
and the train picking its uniform speed (and its reverse while getting off the
train). In smaller windows, we would get accelerometer values for several
mini-activities such as initial acceleration (and deceleration before stop) of
the train creating a lot of variance inside a class, thus making it difficult
for classifiers to distinguish effectively.

2. Data Representation - With regard to the data representation most suited
to this problem, we observe that ECDF gives much more generalized accu-
racy bound than the model based on statistical features. This was expected
as single statistical measures (e.g, mean, median, mode etc.) are either vul-
nerable to outliers or assume only one mode to be present in the underlying
distribution. On the contrary, ECDF-based representation aims at cap-
turing the actual shape of the data distribution and makes it robust to
outliers. Although, the improvement in accuracy of models seems modest,
the analysis of TPR and TNR will justify the prominence of ECDF over
the traditional statistics based model.

3. Classification Model - The ensemble learning methods, such as RDF and
SVM+Ensemble, perform considerably better than the other classification
methods. The simple/base models show a degraded performance because of
the class imbalance problem that introduces a bias in prediction towards the
majority class, which in this case, is the “in-train” class. On the contrary,
ensemble methods work by sub-sampling the data, such that each bootstrap
sample represents a uniform distribution across the two categories. Further-
more ensemble based techniques turned out to be robust against variance
(i.e., one class having several mini-activities) in the data.

We observed that classification models that implicitly use random sub-
sampling like RDF do not suffer from the class imbalance challenge. The
type of random sub-sampling (downsampling) used for our study is where
we randomly subset samples from the majority class so that its frequency
of occurrence is the same as that of the minority class. This gives us a
balanced data set to train on and attain a better model fit. We attain an
accuracy of 94.25% with the RDF classifier and over 98% accuracy with
the SVM+Ensemble approach. This also shows that the class imbalance



problem confronting our detection activity can effectively be solved by em-
ploying these improvements.

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 266 254

In-Train 78 1576

30 In-Metro-Station 340 341
In-Train 110 2100

20 In-Metro-Station 490 530
In-Train 142 3165

Table 4.2: Confusion matrix showing a 40-second window performing better
than other quantized windows for Algo1.1 (Kernel-SVM + Order statistics with
TPR=0.51, TNR=0.95

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 282 238

In-Train 94 1560

30 In-Metro-Station 357 322
In-Train 132 2078

20 In-Metro-Station 532 488
In-Train 194 3113

Table 4.3: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo2.1 (Kernel-SVM + ECDF) with TPR=0.54,
TNR=0.94

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 384 136

In-Train 0 1654

30 In-Metro-Station 500 181
In-Train 0 2210

20 In-Metro-Station 723 297
In-Train 0 3307

Table 4.4: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo1.2 (RDF + Order Statistics) with TPR = 0.74
and TNR = 1

4.4 Performance of Regularized Logistic Regres-

sion

Upon analyzing the confusion matrices for all algorithms, we observe that the
performance of Logistic Regression shows an awry trend, indicating that it may



Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 392 125

In-Train 0 1654

30 In-Metro-Station 504 176
In-Train 0 2210

20 In-Metro-Station 741 279
In-Train 0 3307

Table 4.5: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo2.2 (RDF + ECDF) with TPR = 0.75 and TNR
= 1

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 305 215

In-Train 114 1540

30 In-Metro-Station 368 313
In-Train 128 2082

20 In-Metro-Station 549 471
In-Train 186 3121

Table 4.6: Confusion matrix showing a 40-second window performing better
than other quantized windows for Algo1.3 (SVM-DEC + Order Statistics) with
TPR=0.58 and TNR=0.93

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 303 217

In-Train 114 1540

30 In-Metro-Station 387 294
In-Train 153 2057

20 In-Metro-Station 563 457
In-Train 226 3081

Table 4.7: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo2.3 (SVM-DEC + ECDF) with TPR=0.58 and
TNR=0.93

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 375 145

In-Train 33 1621

30 In-Metro-Station 470 211
In-Train 38 2172

20 In-Metro-Station 683 337
In-Train 93 3214

Table 4.8: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo1.4 (SVM-Ensemble + Order Statistics) with
TPR=0.72 and TNR=0.98



Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 507 11

In-Train 8 1646

30 In-Metro-Station 660 21
In-Train 15 2195

20 In-Metro-Station 968 52
In-Train 30 3277

Table 4.9: Confusion matrix showing a 40-second window performing better than
other quantized windows for Algo2.4 (SVM-Ensemble + ECDF) with TPR =
0.97 and TNR = 0.99

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 236 284

In-Train 66 1588

30 In-Metro-Station 293 388
In-Train 88 2122

20 In-Metro-Station 437 583
In-Train 129 3178

Table 4.10: Confusion matrix for Algo1.5 (Reg. Logistic Regression + Order
Statistics) across all window sizes with TPR=0.45 and TNR=0.96 for 40-sec

Window Size(sec) Class In-Metro-Station In-Train
40 In-Metro-Station 234 286

In-Train 64 1590

30 In-Metro-Station 292 389
In-Train 79 2131

20 In-Metro-Station 435 585
In-Train 121 3186

Table 4.11: Confusion matrix for Algo1.5 (Reg. Logistic Regression + ECDF)
across all window sizes with TPR=0.45 and TNR=0.96 for 40-sec

Window Size(sec) Class In-Metro-Station In-In-Train
40 In-Metro-Station 344 176

In-Train 193 1461

30 In-Metro-Station 447 234
In-Train 262 1948

20 In-Metro-Station 650 370
In-Train 377 2930

Table 4.12: Confusion matrix for Algo1.6 (Reg. Logistic Regression-Ensemble +
Order Statistics) with TPR=0.66 and TNR=0.88 for 40-sec

not be a suitable learning model for our problem. Logistic regression aims to
estimate the probability of a sample belonging to a particular class by fitting a
sigmoid (logistic) curve to the basic regression equation given a set of explanatory
variables. Samples yielding a logistic value above a certain threshold are said to



Window Size(sec) Class In-Metro-Station In-In-Train
40 In-Metro-Station 364 156

In-Train 236 1418

30 In-Metro-Station 474 207
In-Train 343 1867

20 In-Metro-Station 694 326
In-Train 473 2834

Table 4.13: Confusion matrix for Algo2.6 (Reg. Logistic Regression-Ensemble +
ECDF) across all Window Sizes with TPR=0.7 and TNR=0.85 for 40-sec

Data Representation SVM RDF SVM+DEC SVM+Ensemble Reg. LR Reg.LR+Ensemble
Statistics 84.10 93.13 84.84 90.06 83.53 82.73

ECDF 84.22 93.55 84.11 98.10 83.67 81.53

Table 4.14: Predictive Accuracies with Window Size = 20s

Data Representation SVM RDF SVM(DEC) SVM(ENS) Reg. LR Reg.LR+Ensemble
Statistics 84.27 93.74 84.78 91.38 83.50 82.84

ECDF 83.74 96.22 84.51 98.75 83.78 80.97

Table 4.15: Predictive Accuracies with Window Size = 30s

Data Representation SVM RDF SVM(DEC) SVM(ENS) Reg. LR Reg.LR+Ensemble
Statistics 84.32 93.75 84.83 91.81 83.53 83.03

ECDF 84.70 94.25 84.73 99.12 83.67 81.96

Table 4.16: Predictive Accuracies with Window Size = 40s

belong to the positive class and those below it belong to the negative class.
However, when we use MLE (maximum likelihood estimate) to find an optimal

fit for our data, we observe that values of the logistic function for several samples
from the “in-metro-station” class overlap with those of the “in-train” class, which
makes it difficult to come up with a definite threshold. Due to this reason,
there is a higher likelihood of “in-metro-station” samples (minority class) being
misclassified in to “in-train” class.

The high degree of overlap for both the feature representations is shown
through Figures 4.3 and 4.4 which consequently leads to performance degradation
in case of Logistic Regression. We further observe through the accuracy analysis
that the overall performance of Logistic Regression for ECDF representation is
reduced as compared to the model based on order statistics. The model based on
ECDF representation attempts to balance out the misclassifications in the two
classes (by approximating the real shape of the data distribution), but in the
absence of a clear-cut threshold for distinguishing the samples, the model suffers.
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Figure 4.3: Histogram illustrating Overlap among hypothesis values across the
two classes for order statistics data
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5. Temporal Auto-correlation

We conducted a small experiment to study the effects of temporal auto-correlation
on the time-series data. Formally, temporal auto-correlation refers to the corre-
lation of a time signal with itself. It studies the similarity or relation between
observations as a function of time lag between them. The equation ?? gives the
mathematical formulation of temporal auto-correlation where k is the lag value
at which to study the temporal auto-correlation.

rk =

∑n−k
i=1 (xi − µ)(xi+k − µ)∑n

i=1(xi − µ)2
(5.1)

The motive behind the experiment was to justify the usage of a windowed
approach for analyzing the time-series accelerometer data. Through this exercise,
we attempt to claim that there is little or no information loss by considering time-
series data as a set of windows or frames.

5.1 Experimental Observations

Lag(sec) Mean r (trace) Mean r (in-metro-station) Mean r (in-Train)
3 0.3932 0.4892 0.5352

4 0.343 0.4455 0.4891

5 0.3338 0.3891 0.4467

Table 5.1: Behavior of Temporal Auto-correlation with the Lag value

Studying the table 5.1, we make some interesting observations about the ac-
celerometer data at hand which are listed as follows:

1. The value of temporal auto-correlation decreases with increase in the lag
value which typically is the behavior we expect.

2. “In-train” samples show a higher auto-correlation on an average which can
be attributed to the uniform motion of the metro train.

3. “In-metro-station” samples have comparatively lesser auto-correlation which
can be attributed to the atypical motion patterns like walking, sprinting,
dropping/using the phone, etc.

From this experiment, however, we may not be able to draw a relationship
between the optimal window size and effect of temporal auto-correlation.
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Conclusion

This study explored the potential of accelerometer data for delineating the ac-
tivity of traveling in a metro train from other typical non-train related motion
patterns, such as waiting in a queue, climbing stairs, etc in the station. This
problem was modeled as a two-class classification. Our thesis work investigated
the challenges of class imbalance and composite nature of the classes, i.e., each
class could be made of multiple motion patterns, present in the accelerometer
data. Our results indicate that ensemble based techniques, such as Random De-
cision Forests and Kernel-SVM with Ensemble perform the best, especially if the
data is represented using ECDF features. The lessons learned can be applied
in detecting other activities and transportation modes using smartphone-based
accelerometer. Our work has applications in smart transportation and smart
healthcare.
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