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“God does not play dice with the universe.”

-Albert Einstein



Abstract

With the advent of many-core era, scalable hardware support for cache coherence has

become vital to system performance. Cache coherence protocols are provided in order

to ensure that multiple cached copies of a single memory block are kept up-to-date.

As the number of cores being integrated on a single chip is growing rapidly, scalability

of cache coherency presents a promising research opportunity. Cache coherency mod-

els are broadly based on either snoopy coherence protocol or directory-based coherence

protocol. While snoopy coherence is unscalable because of its dependence on ordered

networks that are inherently difficult to scale, directory-based coherence is weighed down

by its requirement of excessive directory area overhead and inaccurate tracking because

of compressed sharer bits. In this work, we propose a scalable cache coherency model

for multicore and many-core processors through a hardware and software co-design.

We begin with modeling the performance metrics of current cache coherence protocols

for high-performance multicore systems interconnected through regular packet-switched

network-on-chip architectures and identify the possible bottlenecks imposed by them on

system performance. We, then, design and develop network-on-chip architecture aug-

mented with wireless interconnects for efficient handling of broadcast traffic. We propose

a segmented design applicable for every level of cache memory according to the sharing

pattern of the memory blocks among the cores. Finally, we design and implement an

efficient and scalable cache coherence algorithm/protocol that can exploit the proposed

wireless interconnects based network-on-chip architecture and the share-pattern aware

cache segmentation. We demonstrate that our proposed architecture improves upon the

results produced by some well-known multicore architectures employing conventional

protocols for cache. Also, owing to the modularity of the proposed design, it can be ex-

tended to be used in the future many-core systems by increasing the levels of hierarchy

of interconnects, memory and cache coherency.
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Chapter 1

Introduction

1.1 Motivation

After hitting the power wall, the memory wall and the ILP wall, designers shifted their

focus to developing multicore designs (Figure 1.1) instead of relying on a standalone

processor for high performance computing applications [1, 2]. As multicore systems

have multiple processors working towards a unified end task, designs have become

more communication-bound and less computation-bound (Figure 1.2). Multiple cre-

Figure 1.1: Evolution of Multicore Systems

ators, modifiers and readers of memory contents coexist on a single chip. Such complex

systems are implemented by giving access of memory blocks to the multiple processors

through creation of their multiple copies and storing them in the local caches (owned

jointly or uniquely by the cores). This approach makes the maintenance of coherency

among the numerous copies of the same memory block vital for correctness and accuracy

1



Introduction 2

in overall processing. That is where cache coherency protocols come into picture. How-

ever, implementation of cache coherency protocols in a multicore system poses certain

design challenges [3]. Coherence messages, that is, both requests as well as responses,

contribute to a large percentage of the chip traffic and hence, eat up significant part

of the bandwidth of the on-chip networks. Intimation of coherence messages to desti-

nation processors adds significant overhead to overall runtime of the system. Storing

the details of the sharer cores imposes storage overheads on the system which increases

with increasing number of cores being integrated on a chip. And, above all, usage of the

on-chip resources for implementation of the coherence protocols results in a lot of energy

consumption over and above the general energy requirements of the chip. In order to

resolve these issues, coherence protocol designs should be such that they add minimal

traffic to the actual on-chip traffic by removing unnecessary requests and responses from

the network. Latency overheads projected by the protocols should be trivial when com-

pared to the overall system performance. Also, the protocol design should not demand

large storage spaces. Taking care of traffic, latency and storage automatically check the

amount of energy that is burned by the implementation of the cache coherence protocol

on the chip. The proposed protocol involves a hierarchical approach towards coherence

maintenance with a specially designed cache system and hybrid network-on-chip im-

plementation promising better performance and bandwidth projections as compared to

that of multicore systems with same number of processors but employing conventional

protocols, cache hierarchies and interconnects. In a nutshell, this thesis is about pat-

tern aware integration at many levels of a multicore system: communications models,

memory models and coherency models.

1.2 About multicore systems

1.2.1 The multicore revolution

It was around the year 2005 that a huge revolution took place in the field of computing

called the advent of multicore systems. Intel announced its product lines named Core

and Xeon [4, 5], AMD came in with Opteron [6], Sun Microsystems with Niagra [7], IBM

with Power4 [8] and so on. All these architectures had one major thing in common. All

of them modeled multiple processors as a single processor in order to enhance system

performance on the whole. Such systems came to be known as multicore systems and

the number of cores being integrated in a system has been increasing ever since. But

why is there a need of multiple cores in order to achieve high system performance?

Instead, why can the industry not count on the operating frequency of a single core? It

is because of the concept of power wall into which the researchers fumbled and realized
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Figure 1.2: Shift of focus from Computation to Communication

that it is impossible to go beyond the current speed of a standalone processor without

incurring gigantic and hence, unaffordable on-chip power consumption levels. And that

is how the large avenue of intensive research in multicores opened up. Thus, in order

to achieve high system performance, multiple cores are integrated on a single chip and

one can think of mainstream chips with multiple thousands of cores being available in

market in the near future [9].

1.2.2 Memory and interconnects in multicore and many-core systems

Any multicore system can be broadly divided into three parts, the processors, the on-

chip memory and the interconnects, as seen in Figure 1.3. Further, on-chip memory

or cache has levels (Figure 1.4) where each level has a distinct size, sharing property

and distance from the processor. As one moves away from the processor, the access

latencies of the cache levels worsen, however, the storage capacities increase and hence,

a key system trade-off exists between the two parameters of the cache levels [10]. The

interconnects, on the other hand, are interwoven links of communication between the
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multiple processors. Bus-based systems were used as interconnects for a long time until

recently when problems of scalability started to appear with more number of cores being

integrated into a single system. Then, the packet-switched networks-on-chip (Figure 1.4)

were introduced which projected guaranteed throughput, low latencies and hence, high

scalability owing to their point-to-point network layout [11, 12]. With further increase

in number and hence, distance between processors in a chip, these conventional NoCs

suffered from high latency, power consumption and routing problems. This led to the

introduction of high-bandwidth single-hop long-range wireless links, especially, in place

of multi-hop wired paths [13].

Figure 1.3: Blocks of a Multicore System

Figure 1.4: On-chip Resources of a Multicore Chip
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1.2.3 Cache coherency in multicore systems

Cache hierarchies are used in the multicore systems to conceal the latency and traffic

overheads incurred by off-chip memory accesses. Implementation of cache memory is

more convoluted in multicore systems as compared to that in uniprocessor systems [14].

The cores need to communicate with each other for which shared memory model is em-

ployed. However, in order to take care of latency, there are private memory for each

core too (Figure 1.5). Thus, with shared as well as private memory in place, multiple

copies of memory block are being generated which lead to the possibility of incoherence

among all the existent copies of the same memory block.

A cache coherence protocol is the set of conventions that ensure that changes in the

values of shared memory entries are communicated throughout the chip in a timely

manner to maintain the overall order of execution. The existing cache coherence proto-

cols are built on either snoopy protocols for small systems or directory-based protocols

for large-scale shared memory systems (Figure 1.6). These protocols, as has been con-

firmed, are not scalable beyond a certain threshold number of cores [15].

Figure 1.5: Private and Shared Memory Levels in a Multicore System
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Figure 1.6: Overview of Snoopy protocol and Directory-based protocol

1.3 Problem Statement

This thesis proposes a hardware software co-design for a scalable cache coherence pro-

tocol tailored for the growing multicore systems. The problem statement can be broken

down into the following parts:

• Modelling the existing cache coherency protocols used in high performance com-

puting multicores namely directory based and snoopy in order to understand the

extent to which they affect the scalability of multicores,

• Identifying the particular bottlenecks posed by these protocols on the traffic of the

scaling multicore systems systems,

• Using these statistics, designing a clustered multicore architecture employing hy-

brid network on chip which has both wired as well as wireless links. The wired

links take care of point-to-point communication for closely located cores and the

wireless links carry out the long range broadcast communication efficiently,

• To decrease the traffic and hence, network energy consumption being projected

because of coherency protocols, designing a cache system with intra-level seg-

mentation with each segment mapped to memory block in a share-pattern aware

manner leading to a significant decrease in traffic of coherence messages and

• Ultimately, designing a scalable cache coherency protocol which exploits the mem-

ory as well as interconnect structures in a way that it is scalable for a large number

of cores.
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With results, it is demonstrated that the proposed model for coherency in multicores and

many-cores improves upon the results produced by multicore architectures employing

conventional cache coherence, topology, memory and on-chip interconnects.

1.4 Outline

This dissertation is organized into seven chapters. In the next chapter (chapter 2), a

concise literature review of various multicore cache coherence designs and their hardware

implementations is presented with a gist of multicore evolution and coherence traffic.

Chapter 3 presents a background of modular topology for multicore system that em-

ploy shared memory and hybrid network-on-chip as mode of inter-core communication

promising reduction in latency and power usage. Then, a share-pattern aware design

for cache memories has been proposed and discussed that significantly reduces coher-

ence traffic and overall runtime by intelligently mapping memory blocks to appropriate

segments of cache. Chapter 4 proposes a hierarchical coherence protocol that exploits

the clustered architecture as well as the cache design presented in the previous chapter

which is not only scalable but also is suitable for todays communication-centric mul-

ticore systems. In chapter 5, the simulators and the experimental set-up have been

explained to give an insight into the evaluation methods being used in the next chapter.

A comparison of the proposed cache coherence for many-core system with conventional

cache coherence protocols on the grounds of on-chip traffic, overall latency and energy

consumption has been presented in chapter 6. In chapter 7, a conclusion has been dis-

cussed about the advantages of using the proposed design on the system level backed

up with the presented results. Also, possible extensions of the proposed work have been

suggested and discussed concisely.



Chapter 2

Literature survey

This chapter presents an overview of the existing work related to cache coherence prob-

lem in multicore and many-core systems. The scope and the amount of related work

is large, so this chapter focuses on the aspects most fundamental and related to the

research in this dissertation. The papers relevant to the work done in this thesis have

been studied and divided into six groups: ones dealing with multicore architecture on th

whole, ones that dealt with the architecture of the cache particularly in multicores, ones

that studied the coherence traffic related statistics in multicore chips, ones concentrating

on cache coherence designing, ones that presented a study of on-chip networks in mul-

ticores and finally, the ones that proposed designs based on usage of on-chip networks

for cache coherence.

2.1 Multicore architecture

In order to understand cache coherence in multicore systems and its predicament, it

is vital to understand the architecture of the multicore systems. Borkar [30] analyses

the integration of hundreds to thousands of small cores, to deliver outstanding sys-

tem performance considering the constraints of power, memory bandwidth and on-chip

interconnects and so on. Experimental analysis and observations of the emerging ho-

mogeneous multicore systems has been provided by Kayi, El-Ghazawi and Newby in

their paper [26] where they use micro-benchmarks and full system simulation on x86

and SPARC architectures. The paper discusses the effect of multicore architectures in

cluster performance and also, the overheads posed by cache coherence.

Butchy et al. use numerical simulation and applications in [27] to provide an overview

of existing and emerging multicore and many core technologies as well as accelerator

8
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concepts. The paper stresses on hardware-aware computing by discussing interfaces

needed to bring the hardware architecture and the implementation of efficient numerical

algorithms closer.

2.2 Cache architectures in multicores

Many researchers around the world have presented a thorough study on various cache

architectures and their nuances. Hackenburg et al. [17] demonstrate a comparison of

different ccNUMA multiprocessor systems with integrated memory controllers and co-

herent point-to-point interconnects. They use advanced benchmarks for latency and

bandwidth measurements in the memory subsystem and draw a close relation between

micro-architectural differences and the performance of the memory subsystem.

In [16], Kim et al. propose several designs that treat the cache as a network of banks

and facilitate nonuniform accesses to different physical regions. Their work suggests

that NUCA designs reduce access latency, increase performance stability and are scal-

able forms of cache architectures. Molka et al. [18] present fundamental details of Intel

Nehalem micro-architecture with its integrated memory controller, quickpath intercon-

nect, and ccNUMA architecture. The paper provides a good insight of latency and

bandwidth trends among different locations in the memory subsystem.

2.3 Cache coherence traffic in multicores

Besides cache architecture, a set of researchers have studied and presented their eval-

uations related to the coherence traffic and its generation mechanisms. Understanding

of the traffic patterns and the related protocols/policies is important in order to be

able to comprehend the system bottlenecks caused by coherence protocols. Ros and

Kaxiras [19] say that directory, state bits, invalidation messages and all such overheads

of a coherence implementation are generated in an effort to abstract coherency from

memory consistency model. While they modify the cache write policies in order to

implement their coherence protocol, Williams, Fensch and Moore [20] implement a new

set of links to forward L1 misses optimistically to reduce load on actual on-chip network.

In [21], Kayi et al. investigate multicore specific performance metrics for cache coherency

and memory bandwidth/latency/contention for a better understanding of the emerging

multicore architectures. Qian, in his paper [24] about inclusive caches, elaborates on the

Nehalem architecture and analyzes advantage of the MESIF cache coherence protocol
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by comparing with the standard MESI protocol. Ramos and Hoefler model communi-

cation in cache-coherent SMP systems [29] and develop an intuitive performance model

for cache-coherent architectures testing it on Xeon Phi. They present several algorithms

for complex parallel data exchanges and compare them with Intel OpenMP and MPI

libraries.

2.4 Cache coherence in multicores

As has been discussed in the last chapter, implementation of cache coherence in the

emerging multicore systems is a huge challenge because of the latency, storage, traffic

and power overheads. Some papers base their research on these bottlenecks and try to

minimize them through their modified versions of existing coherence protocols.

Zhang and Jesshope describe an on-chip COMA cache coherency protocol [25] to support

the microthread model of concurrent program composition employing dynamic mapping

and scheduling. With DiCo-CMP [22, 23], Ros, Manuel and Jos propose a cache co-

herence protocol for tiled CMP architectures. Their protocol makes the cache store

up-to-date sharing information and ensures totally ordered accesses for every memory

block on a miss.

Using an arbitration-free passive optical crossbar [28], Zhou et al. propose a design

that supports multicasting and many-to-one communication for implementing cache

coherency protocols and on-chip interconnect in many-core processors. This paper de-

scribes the design, fabrication and evaluation of an arbitration-free passive crossbar

based on a microring resonator matrix that can be used to route WDM signals across

the chip.

Vladimir et al. [31] in their work on cache coherency use two modified states, the first

modified state indicates the most recent copy of a modified cache line and the second

modified state indicates a stale copy of the modified cache line. Merchant presents an

efficient method for handling multiple conflicting snoop requests with minimal stalling

on the external bus. They do so by using blocking conditions to maintain and update

a snoop queue for maintaining cache coherence in a computer system with caching unit

[32]. In another coherency design [33], Agarwal, Bratt and Mattina configure the cache

memories to have a portion in which each line is dynamically managed as either local to

the associated processor core or shared among multiple processor cores.
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2.5 Study of on-chip network for multicores

Apart from working on the architectural and algorithmic detailing of the cache memory,

it is very important to understand the relation of coherence traffic and the perfor-

mance parameters of on-chip interconnects. Packet dataflows that are transported on

the network have a huge impact on the system performance and power consumption

of multicores and many-cores. Ye, Benini and Micheli in their paper [38] discuss these

impacts quantitatively by introducing a packetized on-chip communication power model

and evaluate the relationship between different design options (cache, memory, packeti-

zation scheme etc.) at the architectural level. A concise study of possible innovations

needed to reduce NoC power consumption has been provided by Buckler, Burleson and

Sadowski in their paper [42].

A study [36] done by Massas, Guironnet and Ptrot on memory write policies in shared

memory multicore systems takes into account the difficulties related to on-chip commu-

nication using network-like interconnects. The paper provides a comparison of write-

through and write-back policies based on cycle approximate bit accurate simulations.

Kumar and Huggahalli assess the impact of cache coherence protocols on the processing

of network traffic in their paper [40]. They observe and provide a detailed study of the

performance parameters of I/O specific coherence protocols in the chosen platform.

2.6 On-chip network designs for multicore cache coherence

Researchers have also exploited the emerging technologies in the area of on-chip inter-

connects in order to provide a scalable coherency model. SCORPIO by Daya et al.

[34] uses a separate fixed-latency, bufferless network for distributed global ordering of

broadcast messages. In this paper, message delivery is said to have been decoupled

from the ordering, allowing messages to arrive in any order and at any time and still, be

correctly ordered. Li et al. a hybrid nanophotonic-electric on-chip network called SPEC-

TRUM that optimizes throughput and latency [35]. They use a planar nanophotonic

subnetwork that broadcasts latency-critical messages through a wavelength-division mul-

tiplexed (WDM) two-dimensional waveguide. Chou et al. [37] use a combination of 3D

chip architecture and a ring-based interconnection projecting cost, latency, and power

reductions.

ATAC by Kurian et al. [39] uses nanophotonic technology to implement a global broad-

cast network which is used by a directory-based cache coherence protocol to provide

high performance and scalability. The design of PERCS by Armili et al. [43] for a
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high-productivity high-performance computing system is built using Hub chips that are

integrated into the compute nodes. Another paper on interconnect based cache coher-

ence study by Abadal et al. uses graphene-enabled wireless communication on the chip.

They have wireless communication capabilities at the core level.

With CCNoC [41], Volvos et al. present a design that trains the NoC to work in

accordance with server workloads via a pair of heterogeneous networks adaptive of the

type of traffic moving through them. Data path width, router micro architecture, flow

control strategy and delay are made to vary in accordance with dynamic traffic.

A thorough study of multicores and many cores, their cache architectures, their cache

policies, their interconnect designs and finally, their cache coherence designs helped in

building a strong background for developing a scalable cache coherency solution for

multicore and many-core systems as presented in the following chapters.



Chapter 3

Share pattern aware cache

segmentation

3.1 Motivation and Background

Research shows that three-fourth of the total number of memory accesses target the

private data of an application, thus, establishing the dominance of private memory

accesses over shared memory accesses in current server applications through industry

standard benchmarks [45]. Cache coherence protocol, in general, is oblivious to the

sharing pattern of the memory blocks in a multicore system [50]. Irrespective of a

memory block being accessed by a single core or by a group of cores, the coherence

protocols force every block to go through its predefined order of states which not only

delays communication but also adds unnecessary coherence messages to the overall chip

traffic [46]. This reduces system efficiency and consumes a huge amount of power which

is even higher if the system works with broadcast oriented snoopy protocol [47–49]. On

the other hand, if the implemented protocol is directory-based, then the status of every

block being accessed has to be entered in the look-up directory. And chances are that

many of these blocks do not require resolution of cache conflict because of their sharing

pattern incurring unnecessary storage overhead. Hence, an optimised share-pattern

aware cache design is highly desirable in order to save on system runtime, storage space

and network traffic.

13
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3.2 Building Larger Multicore Systems with Smaller Mul-

ticore Building Blocks

From combining uniprocessors to form a multiprocessor to combining multiprocessors to

form a huger multiprocessor, the system building block of multicores (and now, many-

cores) has come a long way in terms of both memory models as well as interconnect

designs. For instance, Intel’s Knights Landing, the second-generation Intel Xeon Phi

product, is built of multiple tiles which act as building blocks for the architecture [74].

Each tile consists of two cores, two vector processing units (VPUs) per core and a

specially designed memory architecture. Cores in a tile share L2 cache. Thus, multiple

cores in the building block of multicore and many-core systems act as peers sharing a

node exercising optimised shared as well as distributed rights on the available on-chip

resources as suited for computing [52]. Such grouping of cores make the system modular,

scalable and easy to debug. However, they also demand intricate hierarchical designing

of the cache memory, the interconnects and the coherence protocols so as to avoid any

compromise on the overall system performance [53–56].

From the point of view of on-chip memory designers, modular multicore architecture

facilitates employing shared levels of cache memory for cores in a building block. Thus,

instead of looking for a block in the entire cache level, a core can look for it only in its

respective share of the cache level reducing latency and cache miss ratio [57].

As for interconnects, treating each module or group of nodes as a node in the archi-

tecture, communication between them can be modelled using a combination of single

hop hardware implementation (say, wireless) and multi-hop wired NoC so as to reduce

number of hops as compared to that in systems with only wired network-on-chip [58].

3.2.1 Shared memory vs MPI

Inter-core communication in multicore chips can take place via shared memory or MPI.

[59]. Where the former requires a robust hardware implementation of on-chip memory,

the latter requires extensive implementation of synchronisation based protocols to avoid

interface speed mismatches [60–62]. The major advantages of shared memory over MPIs

are [63]:

• Workload distribution: Shared memory model ensures that each core is given the

address of the data it needs. In the MPI model, the actual data is sent to the

cores.
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• Data access: In shared memory model, the cores access the needed data directly

as if the data is local. However, cores in MPI program are supplied with the actual

data via messages.

• Data distribution awareness: In the shared model implementation, the program-

mer does not need to know about the data distribution, while in the MPI version,

the programmer must explicitly specify where the data should be sent.

Further, in order to benefit from the cluster based multicore and many-core arrangement,

each cluster can be treated as a node in itself and these nodes communicate with each

other via a level of cache which is shared among them. Such hierarchical sharing of

memory not only helps in controlling on-chip traffic but also, abstracts communication

on the different levels from each other, which can be exploited in implementation of

efficient cache coherency protocols.

3.2.2 Inter-core communication vs Intra-core communication

Once the cores of the multicore system have been demarcated into building blocks called

clusters, on-chip communication can be classified into two categories: inter-cluster and

intra-cluster. There is a huge gap in hop-count of communication in the two categories.

Especially, for systems containing hundreds or thousands of cores, the inter-core dis-

tances for a pair of cores inside a cluster is much less when compared to that of cores

located in different clusters, barring few border pairs. More hop count results in in-

creased latencies, decreased throughput and greater power consumption [64]. After a lot

of research, it had been proposed that number of hop-counts can be reduced by using

long-range links that convert multiple hops into a single hop [65]. Of all implementa-

tion propositions made for such distant on-chip communication [66–69], wireless on-chip

interconnects have emerged as the most promising solution to the limited scalability of

conventional network-on-chip [70]. Wireless interconnects have their own design con-

straints though, especially, related to area and channel bandwidth and hence, judicial

usage of wireless links is a must in a multicore architecture [71]. In terms of the cluster

formation [72], the inter-cluster communication being comparatively short-range, wired

network on chip is employed inside a cluster while the intra-cluster communication being

long-range, wireless links are used to connect different clusters. Apart from management

of hop-count, as we will see in the next chapter, wireless networks have other pluses like

being broadcast-friendly which can can be exploited in the implementation of snoopy

protocols.
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3.3 Proposed design

3.3.1 Clustered architecture for on-chip memory and interconnects

The proposed architecture is a highly modular topology employing appropriately shared

memory and efficient network-on-chip augmented with wireless links, as seen in Figure

3.1. Considering clusters of NXN cores, without loss of generality, four such clusters are

combined to form 2NX2N cores system. The on-chip shared resources are of two types:

• Inter-cluster: L3 cache and wireless network-on-chip

• Intra-cluster: L2 cache and wired network-on-chip

L1I and L1D cache units are not shared and are private to a core, considering L1 to be

separated into two parts, one for Instruction and one for Data. Thus, the system can

be broken down into clusters which can further be broken down into nodes (Figure 3.2).

A cluster consists of wired network-on-chip, a wireless hub and shared L2 cache. A node

consists of the processor, private L1 I-cache and private L1 D-cache.

Figure 3.1: Representational image of a 8X8 multicore system demonstrating the
topology of proposed design
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Figure 3.2: Block diagrams of a Node and a Cluster

3.3.2 Memory block categorisation based on sharing pattern

The memory blocks being used for processing by the cores of the system can be segre-

gated into the following mutually exclusive sets:

• A = {x : x is a memory block accessed by a single core}

• B = {x : x is a memory block accessed by more than one core, all necessarily in a

single cluster}

• C = {x : x is a memory block accessed by more than one core, at least one of

which is part of a different cluster}

A refers to all data that will be used by a core only. B refers to all data that will be

used by more than one cores but all the user cores are part of the one cluster only. C

refers to all data that will be used by more than one cores but all the user cores are not

necessarily part of the same cluster, at least one user core is part of a different cluster.

3.3.3 Sharing-pattern aware segmentation of cache levels

On the basis of the memory block categorisation, the cache levels are further divided

internally to create a sharing-pattern aware memory hierarchy based on the clustering

of the cores, Figure 3.3. As discussed in section 3.3.2, L1 cache is private to a core, L2

cache is shared by all cores in a cluster and L3 is shared by all the clusters. Based on

the mentioned sharing trends, following are the segments into which caches are divided:

• L1 cache has three segments, L1A, L1B and L1C.



Share pattern aware cache segmentation 18

• L2 cache has two segments, L2B and L2C.

• L3 cache has one segment only, L3C.

As memory blocks of category ‘A’ do not require any sharing at all, L2 and L3 cache

levels do not have segment ‘A’. Similarly, as memory blocks of category ‘B’ do not require

any sharing beyond a cluster, L3 cache level does not have segment ‘B’ as well and so

on (Figure 3.3).

Figure 3.3: Sharing Pattern Aware Cache Architecture

3.3.4 Cache Write Policy and Cache Replacement Policy

Cache write policy decides what action is taken after a load operation occurs at one of the

nodes. Choosing write-back over write-through in order to save network energy through

minimised traffic [73], the entire process of writing back to main memory through all the

levels of cache can be broken down to three steps considering a system implementation

with three levels of cache. In order to make space for a new memory block in a cache

level, an existing memory block is chosen in accordance with the cache replacement

policy and is evicted from that particular cache level. However, before its elimination,

the memory block is written back to the next cache level. After segmentation of the

cache levels into A, B and C, it is evident that A type of data in L1 cache is not needed

by other clusters and hence, is not written back to L2 cache. Instead, it is written back

to main memory directly. Similarly, we find that B type of data in L2 cache can be
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written into main memory directly by bypassing the L3 cache. Such controlled write-

back further reduces network traffic and system runtime. Figure 3.4 and Figure 3.5

depicts the flow of actions that take place in accordance with cache write policy and

cache replacement policy when read and write operations occurs in segmented cache

system respectively.
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Figure 3.4: Read operation in segmented cache
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Figure 3.5: Write operation in segmented cache



Chapter 4

Hardware aware cache coherence

protocol

4.1 Motivation and Background

Cache-coherent shared memory is provided by almost all the market giants, Intel, AMD,

IBM, Oracle (Sun) and ARM in mobile handsets, personal computers (desktops and lap-

tops), server based applications and so on. It will not be wrong to say that ubiquity of

hardware-based cache coherence protocols is not going to diminish as long as they can

scale with the increase in number of cores being integrated on a single chip. Hardware so-

lutions to incoherence of multiple copies of memory blocks always provide an abstraction

to programmers when compared to the working of software oriented coherency systems,

message passing in distributed memory systems or programming in scratchpad mem-

ories [75]. However, as research shows, usage of the on-chip resources by the existing

coherency cache protocol designs project enormous traffic, storage, latency and energy

overheads in the growing multicore systems [76].

This dissertation seeks to debunk the notion of unscalable cache coherence by presenting

a scalable on-chip cache coherence protocol for multicore and many-core systems which

owing to its hierarchical arrangement and hardware awareness will not be limited to

performing well for only small multicore systems but can be easily extended to huge

many-core systems as well. The proposed protocol is synergistically combined with the

cluster-based on-chip resources and the share pattern aware cache segmentation from

the previous chapter to provide a low latency, low energy consuming and reduced traffic

projections.

22
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4.2 Proposed hardware-aware cache coherence protocol

4.2.1 Hybrid interconnect awareness in cache coherency protocol

The two cache coherence protocol, directory-based and snoopy, limit the scalability

of the multicore systems in different ways [77]. The directory-based cache coherence

protocol stores the details of the sharer cores and current state of every memory block

in a look-up table and hence, is able to communicate the changes/invalidation messages

to the sharers only. Snoopy protocol, instead, broadcasts changes/invalidation messages

made by a single core to all cores. While directory-based protocols use two-hop transfers

(cache-to-directory-to-cache), snoopy protocols employ one hop transfers (direct cache-

to-cache). It is to be noted that one protocol hop is not equal to one interconnect

hop necessarily. Directory based protocols do not scale after a point as the size of

directory incurs unmanageable memory overheads when the number cores goes beyond

40. Similarly, for snoopy protocols, beyond 15 cores, the multicast traffic is colossal. In

Figure 4.1: Intra-cluster Wired Interconnects

directory-based protocols, instead of broadcasting the coherence message to all cores,

the destination of the coherence message is looked up from the sharer directory being

maintained. As shown in Figure 4.1, packet-switched mesh networks inside the clusters

of cores as presented in section 3.2.2 are used for directory-based coherence message.

However, the mesh networks are natively unordered. For broadcasting a message from

one node to all nodes, the hop-count is different in mesh networks as even though there

is a source node is the same, there are multiple destination nodes. Hence, waiting

time before the execution of the next queued task has to be implemented so as to

abstract multiple unicast communication as a single broadcast communication. Wireless

networks, however, provide a channel similar to the old bus-based systems that are apt

for broadcasting a message from a single node to several nodes. As shown in Figure

4.2, each cluster in the proposed architecture acts as a node in the wireless network



Hardware aware cache coherence protocol 24

(through its wireless hub). Network or cores inside a cluster are abstracted at the inter-

cluster level and do not interfere with the structuring of snoopy coherence. Thus, snoopy

coherence protocol is employed at the inter-cluster level to:

• control coherence traffic,

• cut down directory storage area and

• reduce latency overheads in long range coherence communication.

Figure 4.2: Intra-cluster Wireless Interconnects

4.2.2 Inner circle and outer circle of the cache segments

In order to capitalize on the sharing-pattern awareness in the cache architecture, the

design of the proposed cache coherence protocol can be abstracted into two circles, the

inner circle and the outer circle. As described in section 3.3.3, all L1A cache units are

mutually exclusive to each other. Similarly, all L2B cache units are mutually exclusive

to each other. None of the memory blocks belonging to either L1A or L2B will be copied

into the cache of the same level. The inner circle is made of the L1B and L1C cache units

and the number of inner circles is equal to the number of clusters on the multicore chip.

The outer circle is made of the L2C cache units and there is only one outer circle in the

current system. The inner circle and outer circle, thus, model only that part of intra-

cluster on-chip memory and inter-cluster on-chip memory that require cache coherency.

The inner circle employs directory-based protocol while the outer circle employs snoopy

protocol.

4.2.3 Relation of the circles with coherence protocol type

A relation can be established between the type of circle (either inner or outer) and the

cache coherence protocol being implemented in it based on the type of interconnect
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Figure 4.3: Inner and Outer Circles

implementation in that circle (Figure 4.3). As is evident, the inner circle consists of

cache units inside a cluster that are owned by cores privately. These cores are connected

via ordered mesh networks. Thus, as discussed in section 4.2.1, the coherence protocol

implemented inside the inner circle is directory-based protocol. The outer circle, on the

other hand, comprises of cache units that are not owned privately by cores, but, by

clusters. The clusters are connected through a wireless network and thus, as presented

in section 4.2.1, the cache coherence protocol implemented in the outer circle is snoopy

protocol.

4.2.4 Cache segment awareness in cache coherency protocol

The inner circle and outer circle have been used to model only that part of intra-

cluster on-chip memory and inter-cluster on-chip memory that require cache coherency.

Requirement of coherence implementation in each segment of all the three cache level

can be understood in the following manner:

• L1A: As L1A cache unit contains memory blocks being used by its owner core only

and it does not share its contents with any other core inside its cluster or in any

other cluster, it does not require implementation of cache coherence protocol to

maintain coherency with other L1A cache units (Figure 4.4).

• L2B: As L2A contains memory blocks being used by cores in its owner cluster

only and it does not share its contents with cores in any other cluster, it does not

require implementation of cache coherence protocol to maintain coherency with

other L2B cache units (Figure 4.5).
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• L1B: As L1B cache unit contains memory blocks being used by more than one

core in a cluster, it requires maintenance of coherency with other L1B cache units.

This is done through directory-based protocol as already explained (Figure 4.5).

• L2C: As L2C cache unit contains memory blocks being used by cores in more than

one cluster, it requires maintenance of coherency with other L2C cache units. This

is done through snoopy protocol as already explained (Figure 4.6).

• L1C: As L1C cache unit contains memory blocks being used by cores in more than

one cluster, it requires maintenance of coherency with other L1C cache units. This

is done through directory-based protocol inside the respective cluster. In order to

communicate the changes to L1C of cores in other clusters, snoopy protocol is used

at the L2C level. Once, the change has been communicated to all the clusters’ L2C,

again directory-based protocol is used inside the clusters (Figure 4.6).

Figure 4.4: Hardware Aware Cache Coherence: Segment A

Figure 4.5: Hardware Aware Cache Coherence: Segment B
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Figure 4.6: Hardware Aware Cache Coherence: Segment C



Chapter 5

Evaluation Methodology

In order to obtain results related to cache performance, simulation has been done on

GEM5 full system simulator [78]. The system is simulated using timing-simple type of

CPU which is non-pipelined and emphasizes on the modelling of the timing of memory

accesses. The ISA used is x86 which enables the full system simulator to allow Linux

booting and workload execution. Full system mode has been used along with RUBY

memory system for a detailed implementation and hence, evaluation of the memory sys-

tem. SLICC, a domain specific language, has been used to implement the new cache

coherence protocol in GEM5. On compilation, the SLICC codes generate the necessary

C++ codes required for the implementation of the cache coherence protocol. To eval-

uate the traffic based improvements, traces have been obtained from GEM5 simulator

and have been injected into the NOXIM [79] network simulator. NOXIM simulator has

been used to simulate the clustered architecture of the cores through implementation of

wired links inside the cluster and modeling wireless links to connect the clusters to each

other.

Evaluation of all configurations has been carried out with PARSEC [80] benchmarks.

Different PARSEC programs that have been used to simulate traffic traces of various

applications of high performance computing (Blackscholes, Bodytrack, Canneal, Dedup,

Facesim, Ferret, Fluidanimate, Freqmine, Streamcluster, Swaptions, Vips and X264).

Multithreaded loads of the mentioned high performance programs with medium as well

as large input sets have been used for the purpose of evaluation of the proposed system.

Figure 5.1 shows the the order in which the simulators have been used along with their

required input and obtained output. Table 5.1 summarizes the experimental setup used

to obtain the results discussed in the next chapter.

28
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Figure 5.1: Implementation methodology

Table 5.1: Simulation Setup

Core TimingSimple (non-pipelined, emphasizes on the modelling of the timing of memory accesses)

ISA x86 (Linux booting and workload execution allowed by full system simulator)

L1 cache Private to a core, split 4-way set associative write-back 16 KB I/D

L2 cache Shared (private to a cluster), inclusive 4-way set associative 128 KB

Line Size 32 bits

FSM type for cache controllers MSI (with suitable transient states)

NoC Topology nXn Modified mesh (cluster formation)

Routing strategy Intra-cluster XY routing, Intercluster Point to point routing

To test the effectiveness of sharing a level of cache among cores for inter-core commu-

nication, parameter being considered is the hit ratio of the cache level that is shared in

one system and is distributed in the other. Efficacy of using long-range wireless links for

inter-cluster communication, rather than using simple wired network has been evaluated

by observing the system runtime. Impact of segmenting the levels of cache based on

the pattern of sharing of memory blocks among the cores for inter-core communication

has been assessed by obtaining the percentage of total traffic contributed by coherence

messages, number of total memory references made and number of overall replacements

made in L1 cache and L2 cache. Finally, the proposed cache coherence protocol utiliz-

ing the modular architecture and the segmented cache levels has been compared with

conventional cache coherence protocols for system runtime and overall energy.
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Results and Discussion

6.1 Shared memory vs. MPI

To evaluate the advantages of shared resources in clustered architectures, performance

of both shared memory as well as hybrid network-on-chip has been assessed. As is

seen in Figure 6.1, the average hit ratio of the cache level (L2), which is shared in the

shared memory model and is distributed in the MPI model, is better by 5.6% in the

former system. Say, a system can afford to have x kB of L2 cache in total. Then, a

Figure 6.1: Average Hit Ratio Of L2 Cache using Shared Memory system

N-core system with 4 clusters will have 4 L2 cache units of x/4 size for shared memory

model and N L2 cache units of x/N size for MPI model. Thus, the improvement in

the number of cache hits can be attributed to the larger sized L2 caches in the shared

memory model than that in the MPI systems. Also, even if there is an increase in L2

access time because of its larger storage space in shared memory systems, the number of

main memory accesses made in the distributed memory system is much higher because

30
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of the higher cache miss ratio. Thus, the overall system runtime is worse for distributed

systems when compared to that of shared memory systems and worsens with increase

in number of cores.

6.2 Wired NoC vs. Hybrid NoC

In Figure 6.2, the system runtime shows a reduction of 17.43% for a clustered system

with hybrid network-on-chip as compared to that of system without clusters and wired

network-on-chip. This speedup can be accredited to the decrease in number of overall

Figure 6.2: System Speed-up Using Hybrid NoC

hop counts because of addition of long-range single hop wireless links between clusters.

6.3 Share pattern aware cache design vs. conventional

cache design

As is evident from Figure 6.3, system with share pattern aware cache hierarchy shows

a reduction of 23.75% in the number of memory references made on an average by the

cores as compared to that of system with conventional non-segmented cache architecture

because the segmentation of cache levels results in mapping of specific cache areas in

successive levels, thus, increasing the chances of hit over that of miss. Figure 6.4

shows that the coherence traffic across the cores drops by almost 30% in segmented

cache implementation. The primary reason behind the lessened traffic is the elimination

of INV/ACK messages between mutually exclusive cache units of the same level (A in L1

and B in L2). As the segments delegate the transfer of memory blocks according to their
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Figure 6.3: Reduction in number of Memory References made using Segmented Cache
Hierarchy

Figure 6.4: Reduction in Coherence Traffic using Segmented Cache Hierarchy

Figure 6.5: Reduction in average number of Replacements in L1 Cache using Seg-
mented Cache Hierarchy



Results and Discussion 33

Figure 6.6: Reduction in average number of Replacements in L2 Cache using Seg-
mented Cache Hierarchy

access areas (inter-core or intra-core), the cache replacements also show an improvement

of 37.23% (Figure 6.5) and 19.75% (Figure 6.6) in L1 and L2 levels respectively.

6.4 Proposed cache coherence protocol vs. conventional

cache coherence protocols

After simulations, it is observed that the proposed cache coherency protocol shows a

speedup of 23.75% and 26.21% over directory-based (Figure 6.7) and snoopy protocol

(Figure 6.8) respectively. The speedup in the system employing the proposed cache

Figure 6.7: Reduction in Runtime compared to Directory-based protocol using Pro-
posed Cache Coherence protocol

coherence protocol can be attributed to the judicial usage of wired network in the direc-

tory based protocol at the inter-cluster level and wireless channel for snoopy protocol



Results and Discussion 34

Figure 6.8: Reduction in Runtime Compared to Snoopy protocol using Proposed
Cache Coherence protocol

at the intra-cluster level. The cache coherency when employed along with the proposed

segmented cache projects a further reduction of 2.25% (Figure 6.7) and 2.19% (Figure

6.8) in the overall system runtime. The further reduction in system runtime in the share

pattern aware cache system can be attributed to lesser number of cache replacements and

hence, reduced main memory accesses accesses and lesser coherence messages. Also, the

Figure 6.9: Reduction in Runtime compared to Directory-based protocol using Pro-
posed Cache Coherence protocol with Segmented Cache Hierarchy

proposed cache coherence protocol projects energy savings of up to 21.08% and 23.5%

over directory-based (Figure 6.9) and snoopy protocols (Figure 6.10) respectively which

increases to 24.25% and 27.08% when used with proposed segmented caches. The rea-

son behind better energy projections in the proposed system is the check that has been

imposed on the usage of the on-chip interconnects because of reduces traffic.

Thus, it is demonstrated that the proposed cache architecture segmentation teamed
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Figure 6.10: Reduction in Runtime compared to Snoopy protocol using Proposed
Cache Coherence protocol with Segmented Cache Hierarchy

with the hierarchical cache coherence protocol improves upon the results produced by

multicore architectures employing conventional architecture and coherence protocols for

cache and on-chip interconnects.



Chapter 7

Conclusion and Future Work

7.1 Summary of work done

The thesis work was set out to design a scalable cache coherence protocol for multicore

and many-core systems. In doing so, first, the existing cache coherency protocols used

in high performance computing multicores, namely directory-based and snoopy, were

explored in order to understand the extent to which they affect the scalability of mul-

ticores and many-cores. Then, the system bottlenecks imposed by these protocols on

the traffic of the existent systems were identified that act as the reasons and motivation

behind the need of developing a scalable coherence design.

Based on these findings, a modular architecture for both on-chip interconnects and

cache memory was introduced that would enhance system performance of clustered

multicore and many-core topologies. The on-chip interconnect architecture employed

packet-switched interconnects for smaller distances as well as wireless links for long-

distance communication in order to take care of unnecessary latency as well as energy

overheads. The cache hierarchy was further segmented at each level according to the

sharing pattern of the memory blocks among the cores and clusters. The segments were

implemented in order to reduce coherence traffic, cache miss ratio and main memory

access. Finally, a hierarchical solution of cache coherence protocol was proposed which

exploited the mentioned interconnect and cache architectures to reduce the overall sys-

tem runtime and energy consumption.
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7.2 Conclusion supported by results

The average cache hit ratio improves by 5.6% in systems communicating through shared

memory instead of message passing interface. An average speedup of 17.43% is seen in

clustered systems with hybrid network-on-chip as compared to that of system without

clusters and wired network-on-chip. Systems with cache hierarchy segmented according

to sharing pattern show a drop of 23.75% in the number of memory references and of

almost 30% on coherence traffic made on an average by the cores as compared to that

of system with conventional non-segmented cache architecture. Also, the cache replace-

ments show an improvement of 37.23% and 19.75% in L1 and L2 levels respectively.

The proposed cache coherency protocol shows a speedup of 23.75% and 26.21% over

directory-based and snoopy protocol respectively. The cache coherency when employed

along with the proposed segmented cache projects a further reduction of 2.25% and

2.19% in the overall system runtime. The proposed cache coherency protocol projects

energy savings of 21.08% and 23.5% over directory-based and snoopy protocol respec-

tively which increases to 24.25% and 27.08% when used with proposed segmented caches.

7.3 Possible Extensions of the Proposed Design

The scale of study of coherence in multicore and many-core systems is extensive and

multifaceted. To generate achievable improvement in terms of coherence traffic, imple-

mentation of efficient cache architecture can be explored further. Share patterns can

be further modelled to find more correlations between data used by cores in the same

cluster and in different clusters. These findings can be used to propose better cache

replacement policies and hybrid cache write policies which aid in reducing coherence

traffic. Also, tapping the access directions from each core based on the ISAs and the ap-

plications being used, a more dynamic as well as coherence friendly hardware framework

can be developed for the on-chip resources.

7.4 Scalability

The proposed hardware aware cache coherence protocol along with the clustering of

on-chip resources, on-chip network augmented with wireless links and segmented cache

can be extended to the future many-core systems by increasing the levels of hierarchy

of interconnects, memory and cache coherency.
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