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Abstract

Sound sources are a very common everyday occurrence. But a single audio source is
seldom heard alone. There is a sea of applications, like speech recognition, where an
isolated sound source is desirable. This makes audio source separation a very important
problem. In this thesis, we focus on the single channel source separation (SCSS) problem,
which implies separation of individual sources from a single observation. The problem of
finding many unknowns from one equation makes this problem ill-posed forcing the use
of some prior information for better separation.

Model-based methods for single channel source separation use prior information in the
form of learned bases. In case of similar signals like speech, models will be highly overlap-
ping, thus making separation difficult. Thus, the sources should be modeled using proper
bases/structure for an effective separation. Along with the model, the parameters of the
model also play a vital role in quantifying the quality of separation. In any model, a
higher dimension (number of columns) makes it a good fit for the source. But for similar
sources, it also makes a good fit for the other source. Thus, dimension of the models
are an important factor in deciding the discrimination provided by the models and hence
the quality of separation. Also, separating one source at a time from the mixture extri-
cates the problem from balancing the reconstruction of all the sources thus, improving
the separation performance.

In this thesis, we propose a novel discriminative learning framework for source separation
of audio signals when observed from a single mixture. The framework is generic where
we separate one source at a time and embed our dimension search algorithm in the
training of discriminative source models. We apply our framework on the NMF based
SCSS algorithm. We also propose an alternative structure using dictionary and subspace
together for learning source models. We demonstrate a performance improvement in
separation for both speech-speech and speech-music mixture.
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Chapter 1

Introduction

Audio signals are an integral part of day-to-day human life. Various audio signals like

speech and music are encountered innumerable times in the course of a day. There are

many instances where one comes across a mix of signals like different instruments playing

together in an orchestra or people speaking simultaneously etc. Human listeners have

little difficulty in concentrating on one person or a particular instrument even when there

are several active sources. But recognition of a particular audio signal from a mixture

containing multiple sources is rather difficult for computer audition. A common example

is the cocktail party problem, when a number of speakers are talking simultaneously in the

presence of background noises like in a cocktail party and one tries to follow one particular

speaker.

The separation of one source from a mixture of sources can have potential applications

in many analysis algorithms. Separation of speech signals can help in automatic speech

recognition (ASR) [1] and speech coding; separation of musical instruments may be re-

quired for music retrieval or music transcription [2]. These are a few examples where

source separation is required as a pre-processing step as the ASR or music transcription

systems essentially require single source signals to operate on. Other important applica-

tion areas of source separation include communication systems where separation of two

signals can help in mitigation of interference, image processing where separation of an

image into texture and cartoon (piece-wise smooth) parts is required for image synthesis

and analysis [3] etc.

Source separation is the class of algorithms that deals with this problem. In the past

decade, many approaches to solve this problem have been developed. But still, the ca-

pacity of machines lie far behind human capability for separation making the source

separation problem an open field of research.

1



1.1 Source Separation

The problem of source separation can be thought of as recovering L sources, sl(t), l =

1, 2...L, from M observations of their mixtures, ym(t),m = 1, 2...M . Figure depicts the

general source separation scenario. In a simple case, the source signals can be assumed

to arrive at the microphones simultaneously without being filtered i.e., each source con-

tributes to each observed mixture (channel) with a multiplicative gain. Such mixtures are

called instantaneous mixtures 1.

Figure 1.1: General source separation problem

The source mixing system for instantaneous mixtures can be put in vector form as follows:
y1

y2

..

yM

 =


a11 .. .. .. a1L

a21 a22 .. .. a2L

.. .. .. .. ..

aM1 .. .. .. aML



s1

s2

..

sL

 ⇒ y = As (1.1)

An important issue to be considered here is the relationship between the number of

observations M available of a particular mixture and the number of sources L lying in

it. When the number of observations is greater than or equal to the number of sources

i.e., M ≥ L, it is equivalent to say that the number of equations is greater than or

equal to the number of unknowns, thus making the system overdetermined or critically

determined. It is often possible to recover the original sources from the overdetermined

system without making any strong prior assumption about the sources. For these noiseless

determined (or, overdetermined) cases, there exist a demixing system W = A−1 (or,

W = A†) which when estimated, the sources can be simply recovered as s = Wy [4].

1Another type of mixture is convolutive, where the mixtures are addition of filtered sources. This
leads to a more difficult problem.
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The problem becomes more difficult when the number of observation M is less than

number of sources L in which case the system becomes underdetermined. Some strong

assumptions and prior information about the sources are required to recover the sources

from underdetermined mixtures. Single channel source separation (SCSS) is an extreme

case of this underdetermined mixture case wherein only one observation of the mixture

of signals is available.

The work in this thesis deals with single channel source separation in the instantaneous

mixing case.

1.2 Prior work

Many approaches for solving the SCSS problem have been proposed over the years. As

mentioned before, SCSS aims at recovering the underlying sources in a mixture from a

single observation. At this point, two cases are possible : first when one has no prior

knowledge of the sources and second when some prior information is available. The

former scenario is called Blind Source Separation (BSS). Some algorithms have been pro-

posed which operate in a blind manner without making any strong assumptions about the

sources except for statistical independence or sparsity. Casey and Westner [5] proposed

independent subspace analysis (ISA), an extension of independent component analysis

(ICA), for the SCSS problem where basis vectors are learned from the mixed signal spec-

trogram and are grouped together into subsets, one for each source. ISA does not work

well when the underlying sources have overlapping bases. Another widely used method

for unsupervised single channel source separation is based on non-negative matrix fac-

torisation (NMF). Many algorithms using NMF in an unsupervised manner have been

proposed using sparsity and temporal constraints [6] [7]. It is possible to do the clustering

of the bases learned from ISA or NMF based methods in a completely unsupervised man-

ner. But this type of clustering becomes rather difficult when the sources are similar and

the bases are overlapping. Computational Auditory Scene Analysis (CASA) is another

approach used for such SCSS problems. These methods [8] [9] rely on pitch and harmonic

structure of the sources. Similar to above mentioned approaches, CASA methods are

not able to segment the mixed signal into the individual sources well enough in all cases,

especially in case of similar sources like speech signals.

The second class of algorithms operate with some prior knowledge about the specific

sources. Being an underdetermined problem, the SCSS system will have infinite number

of solutions. Thus, prior information about the sources can help in finding the actual
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solution i.e. in the recovery of the actual sources. The available information regard-

ing the underlying sources are used to learn source models which are representations of

the corresponding sources. Separation methods based on source models have been quite

successful in the single channel source separation problem. The model-based source sepa-

ration methods can again be of two types: linear and non-linear. Linear methods are those

in which the mixture is expresed as a linear combination of basis vectors representing the

sources. Non-linear methods rely on designing more complex structures for separating

mixture into the constituents sources.

Linear methods aim at discovering such bases of the sources such that they help in sep-

aration. For instance, if two sources lie in Rn and if the basis from which these sources

derive their data points are known and are orthogonal, then one can easily recover these

two sources from their mixture by simply projecting the mixture vector on the two or-

thogonal basis. Jang and Lee [10] propose such a model-based method which separates

sources using predefined, source-specific ICA bases learned from training data. Supervised

NMF [11] [12] [13] and CMF (Complex Matrix Factorisation) [14] [15] are other widely

used approaches in model-based SCSS methods. The work proposed in [11] learns NMF

models with a sparsity constraint to help in separation.

Along with being a good representation of the source, the source separation problem de-

mands that the models are able to discriminate between various sources i.e. the learned

models are ’discriminative’. Recently, many discriminative learning methods have been

shown to produce more effective separation. The method in [12] attempts to learn discrim-

inative models by minimizing the cross-coherence between the basis vectors pertaining to

different sources while [13] formulated a training-time optimization of the reconstruction

bases using the test-time inference method applied to mixed signals. Another discrimina-

tive learning method with NMF is proposed in [16] which optimizes all basis vectors jointly

to reconstruct both clean signals and mixed signals well. The work in [17] and [18] also

propose discriminative model based methods where the models for the underlying sources

are learnt in the form of overcomplete dictionaries. The proposed work in [17] attempts

to learn the dictionaries for all the sources simultaneously rather than as independent

units and [18] learns a sequence of dictionaries and performs separation in a number of

stages. Some non-linear methods based on deep neural networks (DNN) and recurrent

neural networks (RNN) have also been proposed recently. The work in [19] propose a joint

optimisation of deep learning models with an extra layer of masking. Another method

combining NMF and deep network architecture have been proposed in [20] which unfolds

the NMF iterations into the layers of the network.
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In this thesis, we focus on linear model-based methods for single channel source separation.

The work proposed is another step towards discriminative learning of source models.

1.3 Motivation and Contribution

As mentioned above, the SCSS problem requires learning of source models such that they

are a good representations of their own sources while being inefficient representations

of the other sources lying in the mixture. This is required so that they aid a good

separation. In the ideal scenario, mutually orthogonal models for the sources would lead

to best separation. But, such models may not exist for sources which are too similar to

each other. In such situations, efficient models should be as orthogonal or discriminative

as possible to each other. Such models are learned from the training data available for

the underlying sources.

Almost all the SCSS methods aim at recovering all the underlying sources simultaneously.

A single optimisation problem is solved with the goal of separating and hence reconstruct-

ing all the sources at the same time. Thus, a good reconstruction and separation becomes

equally important for all the sources. If we can focus on the quality of separation of

just one source out of all, a better recovery can be made for it by sacrificing the quality

of other sources. To encapsulate this idea, we suggest a solve a separate optimisation

problem for each source treating all the other sources as ’interferers’. In effect, we solve

as many optimisation problems as the number of components in the mixture. Since every

source is separated by solving its own optimisation problem, the reconstruction quality

of the corresponding interferers is not relevant. The suggested to-each-its-own framework

performs better than a joint separation framework as the later is burdened with the task

of balancing the reconstruction of all the components, unlike our proposed framework.

The source models can have different structures like NMF bases, overcomplete dictionaries,

subspace etc. Given any source model, the source separation performance also depends

on choosing the right parameters like the number of basis vectors of the NMF matrix and

dictionary or the sparsity of the dictionary. In a model, a higher number of columns of the

model implies a better representation of the given source. But this may also result in the

model becoming a better fit for the interferer as well, especially in case of similar sources.

Determining an appropriate dimension for the models thus provides another lever for the

discriminative source separation. In fact, the similarity between the constituent sources

can be different for different mixtures and thus, dimensions should also be chosen specific

to the sources in the concerned mixture. We propose to introduce dimension search as
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a part of the optimisation problem for discriminative training. To aid the search for

dimensions, we introduce certain ratio based parameters that give an idea about the

extent of discrimination a given set of models can offer, thus reassuring the quality of

separation.

The primary contribution of this thesis is the development of a framework which embodies

the following features:

• Solving the separation problem as many times as the number of sources in the

mixture so as to recover only one source at a time. We term it as ’to-each its own’

framework.

• Introducing dimension search along with the to-each-its-own framework for a better

discriminative training.

The framework is generic and can be applied over and above any type of model and

can improve its separation performance. We have worked with NMF dictionaries and

demonstrated an improvement in performance on using the framework. We also another

structure for modeling the sources based on the combined use of dictionary and subspace.

The results show an improvement in performance in speech separation and speech-music

separation cases.

1.4 Outline

The rest of the thesis is organised as follows: Chapter 2 describes the single channel

source separation problem. It also describes the idea for the ratios that can help in the

dimension search for the discriminative training of the models. The structures used for

modeling the sources i.e. NMF dictionaries and Dictionary-Subspace are explained in

Chapter 3. The proposed framework for separation of two sources is also explained here

and the extension of the framework for separating more than two sources is presented.

Chapter 4 discusses the results for separation of two sources in case of speech-speech and

speech-music mixtures. The results for separation of thrre sources in speech-speech case

is also presented.
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Chapter 2

Single Channel Source Separation

In this chapter, the basic overview of the model-based approach in the single channel

source separation case is explained. Along with that, the basic ideas behind the develop-

ment of the proposed method are presented.

2.1 Overview

The simplest SCSS model is of the form:

y(t) =
L∑
l=1

sl(t) (2.1)

Given y(t), the aim of source separation is to obtain estimates of the L sources, ŝl(t), l =

1....L. The model-based approaches for SCSS work in three stages :

1. Feature extraction: The available training data for each source is used to extract

features such as Short Time Fourier Transform (STFT) or Mel-features etc.

2. Training stage: The extracted features are used to learn models for each source

such that they can aid in separation along with reconstruction of the sources.

3. Separation stage: Sources are separated by projecting the mixed signal on the

learned models with some added constraints to retrieve the individual sources.

In this thesis, we work with STFT features. A discrete-time signal y(n) is multiplied

by an analysis window w(n) of length wlen. This windowed signal is transformed into
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frequency domain by discrete fourier transform (DFT). The resulting spectrum forms one

column of the STFT matrix Y . For the next column, the window is shifted by a certain

hop size h. We have used Hamming window as the windowing signal i.e.,

w(n) = 0.54− 0.46 cos(
2πn

N
), 0 ≤ n ≤ N (2.2)

The length of this window wlen is N + 1. For real-valued signals, the DFT results in a

complex conjugate symmetric matrix []. Thus, half of the spectrum is dropped for further

processing which reduces the lengh of one column to N = wlen

2
+ 1. The real-valued time

domain addition of eq. 2.1 results in a complex-valued addition in the STFT domain.

Y =
L∑
l=1

Sl (2.3)

The features used to train models are the magnitude spectrogram of the signal obtained

as Y (ω) = |Y (ω)|. If all the source signals have equal phase, the magnitude spectrogram

of the mixed signal becomes

Y =
L∑
l=1

Sl (2.4)

Since, it is unrealistic for all the source signals to have same phase, eq. 2.4 is written as

an approximation:

Y ≈
L∑
l=1

Sl (2.5)

The magnitude spectrogram of the source signals are used to train models. Most com-

monly used models in case of single channel separation are NMF bases [12] [13] [11],

overcomplete dictionaries [17] [18]. Let the models of the sources s1(t), s2(t).. be denoted

by D1,D2.. respectively. The sources are retrieved in the separation stage by solving the

following optimisation problem:

argmin
C1,C2...CL

Dβ(Y ‖
L∑
l=1

DlC l) subject to some constraint on C1,C2...CL (2.6)

The equation 2.6 is solved by minmising the β-divergence [21] between Y and
∑L

l=1 DlC l.

The β-divergence represents different distance measures for different values of β. It is
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defined as

dβ(x‖y) =


1

β(β−1)(x
β + (β − 1)yβ − βxyβ−1) β ∈ R \ {0, 1}

x log x
y
− x+ y β = 1

x
y
− log x

y
− 1 β = 0

(2.7)

For β = 0, the metric is equivalent to Itakura-Saito divergence, β = 1 implies Kullback-

Leiber (KL) divergence and β = 2 represents the squared Euclidean distance. The spec-

trograms of the underlying sources are then estimated using the model of the individual

source and the corresponding co-efficients estimated from 2.6.

Ŝl = DlC l ∀l = 1, 2..L (2.8)

The final estimates of the source STFT’s can be made using either spectral masking or

using the phase of mixed signal STFT. The latter is the simplest way of estimating the

final STFT using the phase information ∠Y of the mixed signal directly.

∠Y =
Y (ω)

Y (ω)
Ŝl = Ŝl∠Y (2.9)

In the masking method, a spectral mask Ml for each source is built using the estimated

spectrograms.

M l =
Ŝl∑L

m=1 Ŝm

(2.10)

Here, the divisions are done element-wise. The final estimate of the source STFT is made

using the masks and the mixed signal STFT. This type of signal estimation implies that

the separated sources sum up to the mixture.

Ŝl = M l ⊗ Y (2.11)

The operator ⊗ denotes element-wise multiplication. The estimated source spectrogram is

converted back to time domain by applying inverse STFT operation to get a final estimate

of the sources ŝl(t), l = 1, 2..L.

ŝl(t) = ISTFT(Ŝl) (2.12)

The process of estimation clearly shows that the quality of separation of any source

depends on all the models Dl, ∀l = 1, 2..L.
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2.2 Fitting versus Separation

The interpretation of eq. 2.6 is straightforward. Irrespective of the value of β, this sepa-

ration equation will aim at fitting Y onto D = [D1,D2...DL]. Fitting implies any part

of the mixed signal spectrogram Y can be represented by any of the models D1,D2...DL

so long as the total error in reconstruction is minimised. But, separation is a different

and more difficult task. A good separation demands each source to be represented dom-

inantly by its own model only. The accuracy of the estimated source ŝl(t) is related to

the efficiency of the model Dl as well the inadequacy of other models in representing Sl.

This criteria will keep a check on the imperfections in the recovered source. Along with

it, the accuracy of estimation is also dependent on the inefficiency of Dl in representing

all other sources, which is necessary to restrict interference in ŝl(t). Thus, the essence of

model-based methods lies in an effective training such that the models can differentiate

between their own source and other sources during separation.

The level of discrimination that a particular set of models can offer comes from their

training. Since every source can have a different degree of similarity with every other

source, the level of discrimination required is also different. As described in the previous

chapter, number of columns/dimension of the model plays a key role in making the models

discriminative. So, the dimension of the models should be adapted according to the

sources in the mixture in a way that they provide a good separation. A natural question

to ask at this point is: how do we parametrically quantify discrimination? To this end,

we define a few ratio based parameters in the next section that naturally quantify the

separation that can be achieved using the models obtained from training.

2.3 Parameters for quantifying discrimination

Since we are interested in recovering only one source at a time from a mixture, rest of

the constituents are treated as “interferers”. To understand the concept of the ratios, let

us assume a mixture of two sources. We denote the source to be recovered as ss(t) and

the other source i.e., the interferer as sn(t). The source and interferer models are denoted

by Ds and Dn. We denote the spectrograms of training data as Ss and Sn. Assuming

that the number of frames of the source and interferer available for training are Js ans Jn

respectively, the sizes of Ss and Sn are N ×Js and N ×Jn where N depends on the FFT

size as explained in section 2.1.

When the mixture is composed of only specific source, it should be represented dominantly
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by its own model even when offered a concatenated structure D = [Ds Dn]. In other

words, on projection of a source over D, the ratio of the energy over its own model to its

energy over other source (or interferer) model should be high. Mathematically:

1. Say Y consists of only the source signal Ss. On solving (2.6) in this case, the

co-efficients obtained are

Css,Csn = argmin
Css,Csn

Dβ(Ss‖DsCss + DnCsn) (2.13)

Here, Css and Csn represent the ks×Js and kn×Js co-efficient matrices correspond-

ing to represention of Ss by Ds and Dn respectively. The desired distribution of

energy is Ess =‖ DsCss ‖F� Esn =‖ DnCsn ‖F where F denotes the Frobenius

norm. Thus, we define a source energy ratio rs as

rs =
Ess
Esn

(2.14)

2. Similarly, when Y is composed of Sn only, on solving (2.6) the co-efficients are

Cns,Cnn = argmin
Cns,Cnn

Dβ(Sn‖DsCns + DnCnn) (2.15)

Cns and Cnn represent the ks × Jn and kn × Jn co-efficient matrices corresponding

to represention of Sn by Ds and Dn respectively. The desired distribution of energy

in this case is Enn =‖ DnCnn ‖F� Ens =‖ DsCns ‖F . The interferer energy ratio

is defined as rn given by

rn =
Enn
Ens

(2.16)

Clearly, a high value of the source energy ratio rs would ensure better reconstruction

of the source and similarly, a high rn is required to promote reduced interference in the

recovered source.

Additionally, the source model Ds must also be a poor representation of the interferer.

This is required to prevent the interferer from getting reconstructed by the source model

and hence, to reduce interference in the recovered source. To quantify this, we define an

error ratio re

re =
1
Jn

∑Jn
j=1 ‖sjn −Dsc

j
ns‖2

1
Js

∑Js
j=1 ‖s

j
s −Dsc

j
ss‖2

(2.17)

where, sjs, s
j
n denote the jth frame (column) of the spectrogram of source and interferer

respectively and cjss, c
j
ns are the corresponding co-efficient vectors obtained when using
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Ds to reconstruct the frames. Although, a high value of rn already ensures a good

representation of the interferer by Dn, having a high value of re ensures further reduction

of the interference in the source. As we shall see later, we will use re to train the source

model Ds.

The three ratios rs, rn and re so defined are the parameters that can quantify discrimi-

nation. Hence, we use these ratios for performing a dimension search and hence discrim-

inatively training the source and interferer models.
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Chapter 3

Discriminative Framework for SCSS

As outlined earlier, the proposed discriminative framework can be applied to any type of

models. The framework mainly of two aspects :

• Separating one source at a time treating other as interferes.

• Searching for appropriate dimension of the source and interferer models for proper

recovery of the source.

Having described the ratios in the previous chapter, we will utilise them in our framework

to train better discriminative models. Specifically, we use the ratio parameters to obtain

the source and interferer models such that a certain level of reconstruction accuracy is

provided while ensuring that the interference is restricted. Moreover making choice of

dimensions as tuneable parameters provides more freedom in training both source and

interferer models. It should also be noted that an exhaustive search for all possible

values of dimension is computationally infeasible. A search for proper dimensions in

joint training i.e., training both the models through a single formulation, would require

exploration of a large number of possible combinations. If N is the dimension of the signal

space, common values for which are 257 or 513, then each model can have N possible

dimensions. This leads to NL possible combination of dimensions in case of joint training.

However, a more efficient way of dimension search can be established when the models are

trained separately with the help of the ratios. The proposed algorithm trains the model

individually while potentially requiring only a few iterations of the training.

13



3.1 Structures

The proposed discriminative framework is applied on the NMF dictionaries. Another

structure based on the combined use of an overcomplete dictionary and a subspace is also

proposed.

3.1.1 Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) have been used successfully for source separa-

tion problems. NMF decomposes a non-negative matrix S ∈ RN×J
+ into a product of two

non-negative matrices D ∈ RN×k
+ and C ∈ Rk×J

+ , where k ≤ N, J as follows:

S = DC (3.1)

The matrices D and C are obtained by solving the following optimisation problem:

D,C = argmin
D,C

Dβ(S‖DC) subject to (D)ij, (C)ij ≥ 0 ∀i, j (3.2)

Choosing KL-divergence (β = 1) as the error metric to be minimized, the solution to 3.2

is obtained by alternating mutiplicative updates as described below:

D ←D ⊗
S

DC
CT

1CT
, C ← C ⊗

DT S
DC

DT1
(3.3)

Here, all the multiplication and division operations are done element-wise. The columns

of D are normalised after each iteration. 1 is a matrix of ones with size N × J .

3.1.2 Dictionary-Subspace Structure

A dictionary is an overcomplete representation of a class of signals that is used to express

any signal pertaining to that class. Due to the overcompleteness, for any given signal, there

are many ways to represent it, but normally the sparsest representation is preferred for

simplicity and easy interpretability [22]. Specifically, given the training data s1, s2....sJ ∈
RN , learning a dictionary is equivalent to finding a matrix D ∈ N × k such that k > N
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and sparse vectors cj, which can be learned by solving the following optimisation problem:

argmin
D,c1...cJ

J∑
j=1

‖sj −Dcj‖22 + α‖cj‖0 (3.4)

Due to the non-convexity of the `0-norm, it is often replaced by the `1-norm which is its

closet convex norm, thus making the optimisation problem of the following form:

argmin
D,c1...cJ

J∑
j=1

‖sj −Dcj‖22 + α‖cj‖1 (3.5)

On the other hand, a subspace implies a matrix with basis vectors that span the space of

a signal. Subspace is, thus, a compact representation of a source with no overcomplete

structure. Training a subspace with the training data s1, s2....sJ ∈ RN is equivalent to

finding a N × k basis matrix such that k < N . This problem can be formulated as

argmin
D,c1...cJ

J∑
j=1

‖sj −Dcj‖22 (3.6)

We make an attempt to use this difference in representation to our advantage in source

separation. Training one of the models as a dictionary and the other as a subspace implies

giving one of the sources more freedom to represent itself while restricting the other to a

small space.

3.2 Proposed Algorithm

3.2.1 NMF dictionaries

We use NMF dictionaries as in [12] as models for source and interferer. This work trains

the two dictionaries jointly adding a regularisation term penalising the cross-coherence

between the two dictionaries. Re-writing the optimisation problem of [12] in terms of

source and interferer models, we obtain the following

Ds,Dn = argmin
Ds,Dn

DKL(Ss‖DsCss) +DKL(Sn‖DnCnn) + λ
∑
i,j

(DT
sDn)ij (3.7)

Unlike [12], we do not train these models jointly. Instead, we break the optimisation

problem into two parts. We first train the source NMF dictionary Ds which once trained,
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we then follow up with training the interferer dictionary Dn.

Optimisation problem for finding the source NMF dictionary Ds, for a fixed source di-

mension ks is

Ds = argmin
Ds,Css

DKL(Ss‖DsCss) (3.8)

This equation is solved using the multiplicative updates as in 3.3. With the given source

NMF dictionary Ds, the interferer dictionary is determined Dn. For a given value of the

dimension kn of Dn, it is obtained by

Dn = argmin
Dn,Cnn

DKL(Sn‖DnCnn) + λ
∑
i,j

(DT
sDn)ij (3.9)

Here, λ is the regularisation parameter. (3.9) is solved using multiplicative updates as

described below:

Dn ←Dn ⊗
Sn

DnCnn
CT
nn

1nC
T
nn + λDs1̄n

(3.10)

The columns of Dn are also normalised after each iteration. 1n and 1̄n are matrices of

ones with size of 1n being N × Jn and size of 1̄n being ks × kn. The update of Cnn is

similar to the update of C as in 3.3. The following problem is then solved for separation

using the models Ds and Dn.

Cs,Cn = argmin
Cs,Cn

DKL(Y ‖DsCs + DnCn) subject to(Cs)ij, (Cn)ij ≥ 0 (3.11)

The source ŝs(t) is then recovered using masking function as described in section 2.1.

3.2.2 Dictionary-Subspace Structure

Our framework aims at recovering only one source at a time. Since we choose to ignore

the quality of reconstruction of the interferer in our framework, we model it as a subspace.

Similar to NMF dictionaries above, the source model is trained first as an overcomplete

dictionary with ks > N .

Ds = argmin
Ds,Css

‖Ss −DsCss‖2F + α‖Css‖1 (3.12)

Here, α is the regularisation parameter. This dictionary is learnt using the K-SVD algo-

rithm [23]. Given the source dictionary, the interferer model Dn is trained as a subspace

with an incoherence condition similar to the regularisation term used for NMF dictio-
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naries. The limited memory BFGS algorithm (L-BFGS) is used to solve the following

equation.

Dn = argmin
Dn,Cnn

‖Sn −DnCnn‖2F + µ‖DT
nDs‖2F (3.13)

Having trained both the models Ds and Dn, the following separation problem is solved.

Cs,Cn = argmin
Cs,Cs

‖Y −DsCs −DnCn‖2F + α‖Cs‖1 (3.14)

The source signal ŝs(t) is then recovered using the phase of mixed signal.

3.2.3 Discriminative Training: The Framework

We propose to add the optimisation of dimension parameters ks and kn for the models

of the source and interferer Ds and Dn respectively within our discriminative training

framework. The parameters ks and kn are searched such that the prefixed ratio parame-

ters re, rs and rn are satisfied. The search for the dimension ks of the source dictionary

is described in Algorithm 1 . We abbreviate this algorithm for (D)imension (S)earch for

(S)ource model as DSS. Searching for an appropriate ks is essentially finding that value

of ks such that the error ratio re in (2.17) gets as close as possible to a predetermined

threshold rth. Through experiments we have observed that the ratio re is generally mono-

tonically non-decreasing with the dimension variable ks. Hence a binary search over ks

can be performed. An extremely small value of ks will quite naturally be inadequate for

reconstruction of the source. Also, a high dimension for Ds will tend to make it a good fit

for the interferer as well. In such a case, the recovered source will have a high interference

even if the error ratio threshold rth is reached. So, the binary search is carried within

some bounds ks,min and ks,max for the value of ks. The value of µ is kept fixed in case of

modelling source as a dictionary. For each value of ks during the search, we solve (3.2) and

then calculate re. If the threshold is never reached during the binary search, we repeat

the search over ks by lowering the value of the threshold rth. On obtaining an appropriate

dimension ks, the source model Ds is trained using (3.8) in case of NMF structures or

(3.12) in case of dictionary-subspace structure.

When the source model Ds is trained, a search for an appropriate dimension of the

interferer model Dn is then carried out using the ratios rs and rn and we need to ensure

both are high. A high value of rs implies a good reconstruction of the source, while a high

value of rn implies lesser interference. But clearly, there would be a trade-off between

these two ratios. To reduce the interference in the source, rn should be increased but that
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would also tend to decrease rs thereby leading to a poorer reconstruction of the source.

So, dimension of the model of interferer Dn is set so that the value of rn falls within a good

range so long as rs does not fall below a certain minimum value. Algorithm 2 describes the

dimension search for the model of the interferer. This algorithm for (D)imension (S)earch

for I(N)terferer model is termed as DSN.

Algorithm 1 DSS: Dimension search for source model Ds

1: Input: Ss, Sn, rth
2: ks = NULL;
3: while ks == NULL do
4: Binary search for re = rth in ks,min ≤ dimension ≤ ks,max
5: if required ratio found then
6: ks = dimension obtained from binary search;
7: else
8: rth = rth − 0.2;
9: end if

10: end while
11: Output: ks, rth

Algorithm 2 DSN: Dimension search for interferer model Dn

1: Input: Ss, Sn, Ds

2: kn = kn,min; in = 1; {Indicator for search}
3: while in == 1 do
4: Find Dn with kn columns
5: Find the ratios rs and rn
6: if rs ≥ rs,min and rn ≤ rn,max then
7: kn = kn + 5;
8: else
9: in = 0;

10: end if
11: end while
12: Output: kn

The overall algorithm for training the source and interferer models is presented in Algo-

rithm 3 . Once the models are trained, the co-efficient matrices are recovered by solving eq.

(3.11) in case of NMF dictionaries or eq. (3.14) in case of dictionary-subspace structure.

3.3 Framework for multiple sources

Due to the advantage of separating one source at a time, our framework can be easily

extended for multiple sources. In case of L sources, all models are trained individually
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Algorithm 3 Training Algorithm for two sources

1: Input: Training data Ss, Sn

2: ks = DSS(Ss, Sn, rth).
3: Solve (3.8) or (3.12) to train Ds with ks columns
4: kn = DSN(Ss, Sn Ds)
5: Solve (3.9) or (3.13) to train Dn with kn columns.
6: Output: Ds, Dn

while performing dimension search for each model as in previous case. We denote the

source model as Ds and the (L− 1) interferer models as Dn1 ,Dn2 ...Dn(L−1)
.

3.3.1 Finding source model

Since the degree of similarity is different for every pair of signals, the source signal will

have a different error ratio re corresponding to each interferer. The interferer which gives

the minimum error ratio when represented with the source model has the most similarity

with the source. This interferer will tend to create the maximum interference in the

source. So, the dimension ks of the source model Ds is chosen according to the interferer

with minimum re using the DSS Algorithm 1 . Having found an appropriate dimension

for Ds, it is then trained using the equation (3.8) for NMF dictionaries or (3.12) in case

the source is to be modeled as dictionary.

3.3.2 Finding interferer models

Given the source model Ds, the dimension search for the interferer models are carried

out using the energy ratios rs and rn as in the previous case. As mentioned before,

the interferer models are trained individually rather than jointly to ease the dimension

search. A question that arises at this point is: Which interferer model to train first? The

interferer which gives the maximum re is justifiably the one most incoherent with the

source. A dimension search for this interferer is carried out with the help of the DSN

Algorithm 2. Having found a dimension, the interferer model is then trained according to

(3.9) or (3.13). Now, since the quality of separation of the interferers is immaterial, the

incoherence between the interferer models can be overlooked. The other interferer models

are trained successively according to decreasing order of the error ratio. Discrimination is

further promoted in the separation of multiple sources by pushing the interferer models

to be close to each other. The formulation for training of the successive interferer models

is explained in below.
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• NMF:

Dnl
= argmin

Dnl
,Cnnl

DKL(Snl
‖Dnl

Cnnl
) + λ1

∑
i,j

(DT
sDnl

)ij+

λ2

l−1∑
q=1

∑
i,j

(Dnl
− P qDnl

)ij ∀l = 2, 3...(L− 1)

(3.15)

P q is the projection operator of the space of qth interferer model.

• Dictionary-Subspace:

Dnl
= argmin

Dnl
,Cnnl

‖Snl
−Dnl

Cnnl
‖2F +µ1‖DT

nl
Ds‖2F +µ2

l−1∑
q=1

‖Dnl
−P qDnl

‖2F (3.16)

The formal description for training the source and interferer models in case of separation

of multiple sources is described in Algorithm 4 .

Algorithm 4 Training Algorithm for multiple sources

1: Input: Ss, Sn1 ,... Sn(L−1)

2: for l = 1 to (L− 1) do
3: [re(l), d(l)] = DSS(Ss,Snl

, rth)
4: end for
5: [rsort, ind] = sort(re); {sort in descending order}
6: ks = d(ind(L− 1));
7: Train Ds with ks columns according to (3.8) or (3.12)
8: c = ind(1);
9: knc = DSN(Ss,Snc ,Ds)

10: Train Dnc with knc columns by solving (3.9) or (3.13)
11: for l = 2 to (L− 1) do
12: c = ind(l);
13: knc = DSN(Ss,Snc ,Ds)
14: Train Dnc with knc columns using (3.15) or (3.16).
15: end for
16: Output: Ds, Dn1 ,...,Dn(L−1)

On obtaining all the individual interferer models, the accumulated interferer model is

obtained as Dn = [Dn1Dn2 ...Dn(L−1)
]. The co-efficient matrices are then recovered as in

case of two sources, from which the final source signal ŝs(t) is estimated.
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Chapter 4

Results and Discussion

4.1 Dataset

The algorithm was tested for separation of two speech signals and speech-music signals.

For the speech case, the algorithm was evaluated on a total of 20 speakers (10 male and

10 female) taken from the TIMIT 16k database [24] which has 10 sentences per speaker.

9 sentences were used for training and one was for testing. The music data was taken

from the piano society website [25]. Around 1.5 minutes of data is used for training and

another clip from the same artist was used for testing. The mixed signal was formed by

adding two signals at a signal to signal ratio of 0 dB. Framing of the signals was done

using a Hamming window of length 512 with 75% overlap and a 512 point FFT was taken.

4.2 Evaluation Metrics

The efficacy of separation is measured using the Signal to Distortion Ratio (SDR), Signal

to Interference Ratio (SIR) and Signal to Artifacts Ratio (SAR). Let ŝj(t) be the jth esti-

mated source. Let Π{y1,y2...yk} denote the orthogonal projector onto the space spanned

by the vectors y1,y2...yk. The projector is a T × T matrix, where T is the length of these

vectors [4]. Two orthogonal projectors are considered as:

Psj = Π{sj} (4.1)

Ps = Π{(sj′)1≤j′≤L} (4.2)
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Then starget, einterf and eartif are defined by:

starget = Psj ŝj (4.3)

einterf = Psŝj − Psj ŝj (4.4)

eartif = ŝj − Psŝj (4.5)

SDR, SIR and SAR are thus defined as follows:

SDR = 10 log10

‖starget‖2

‖einterf + eartif‖2
(4.6)

SIR = 10 log10

‖starget‖2

‖einterf‖2
(4.7)

SAR = 10 log10

‖starget + einterf‖2

‖eartif‖2
(4.8)

The BSS evaluation toolbox [26] was used for calculation of the evaluation metrics.

4.3 Results for separation of two sources

A small dimension for either of the models Ds and Dn will hamper the recovery of the

source signal. ks when kept too small will lead to a poor reconstruction of the source and

a small value for kn will lead to more interference in the source and so, small values for

both the models are avoided.

4.3.1 Parameters used for NMF structure

The values of ks,min and kn,min are fixed to be 15 while ks,max is taken to be 60. Exper-

iments have shown that rth u 3 is a good value while separating speech files. Also, re

attains higher values while separation of speech and music files and so the threshold was

fixed at 6 in speech-music case. The value of rs,min is fixed at 4 and the value of rn,max is

30 respectively. The value of λ is chosen to be 100.

4.3.2 Parameters used for Dictionary-Subspace Structure

The values of ks,min and kn,min are fixed to be 300 while ks,max is taken to be 750 for the

dictionary structure. The value of rth is kept same as the NMF case. The value of rs,min
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is fixed at 6 and the value of rn,max is 30 respectively. The value of α and µ is chosen to

be 0.1 and 1 respectively.

4.3.3 Performance Evaluation

Our experiments show that incorporation of dimension search in the training process and

separation of individual sources significantly improves the separation for both the sources.

To demonsrate the effect of dimension search, we present the spectrographic analysis of

a test case. Figure 4.1 shows the analysis for the separation of two speech signals. The

original spectrograms are shown in Figures 4.1a and 4.1b. We applied our framework on

NMF dictionaries as in [12], referred to as RNMF which solves (3.7). The spectrograms

in figure 4.1c and 4.1d show the separation achieved using the RNMF. Application of

our discriminative framework over the RNMF, which we here call DF-NMF, gives the

separation as depicted in figures 4.1e and 4.1f. Figure 4.2 shows the spectrograms

for separation of a speech and piano signal. It is visibly clear that a simple search for

dimension and separating one source at a time gives a better separation.

Along with RNMF, we also compare our results with the dictionary learning based ap-

proach in [18], called SDDL, which extracts the sources in a number of levels to achieve

better separation and with the joint training formulation proposed in [17]. For speech-

speech case, a total of 18 trials were performed, 6 for each case: F+M, F+F and M+M

where F refers to female and M refers to male speaker. In case of speech-music, 10 speak-

ers including male and female were used. Table 4.1 compare the average performance

of the algorithms in case of separation of speech signals from two sources. The results

show that our approach is able to achieve better SDR and SIR compared to RNMF and

SDDL while the SAR is lower indicating that our framework introduces a little more

artifacts at the cost of lesser interference and distortion. The comparsion of our method

with DDL shows that the separation quality of both the approaches is similar. But the

time complexity of DDL is much higher than DF-NMF. Table 4.2 depicts the average

performance of the algorithms for the separation of speech and music signals. The use

of framework lowers the SIR of speech signals as compared to RNMF. But the low SAR

for speech sources and low SIR for music sources indicate that reconstructed music signal

is composed of high proportion of music as well as high proportion of the speech signal

defeating the cause of separation. Overall SDR is better.

The framework on the alternative structure of dictionary-subspace is referred to as DF-

DS in this work. It was observed that separation obtained from DF-DS was not upto

the mark as compared to other methods. Although the interference introduced in the
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(a) Source 1: Original Spectrogram (b) Source 2: Original Spectrogram

(c) Source 1: After separation using RNMF (d) Source 2: After separation using RNMF

(e) Source 1: After separation using DF-NMF (f) Source 2: After separation using DF-NMF

Figure 4.1: Spectrogram analyis for speech separation: (a)-(b) Original spectrograms (c)-(d)
Spectrograms after separation using RNMF (e)-(f)Spectrograms after separation using DF-NMF
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(a) Speech: Original Spectrogram (b) Music: Original Spectrogram

(c) Speech: After separation using RNMF (d) Music: After separation using RNMF

(e) Speech: After separation using DF-NMF (f) Music: After separation using DF-NMF

Figure 4.2: Spectrogram analyis for speech-music separation: (a)-(b) Original spectrograms
(c)-(d) Spectrograms after separation using RNMF (e)-(f)Spectrograms after separation using
DF-NMF
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recovered source was less, the SAR was significantly low making the overall distortion

high. Five single channel speech mixtures were separated using the dictionary subspace

structure and a fall in SAR was seen in every case. Table 4.3 shows the comparison.

DF-NMF RNMF [12] SDDL [18] DDL [17]

F+M
SDR 6.46 5.6 5.82 6.3
SIR 8.57 7.01 8.49 8.62
SAR 11.43 12.32 10.01 10.99

F+F
SDR 4.52 3.78 2.38 3.53
SIR 6.45 4.95 5.31 5.43
SAR 10.29 12.29 7.1 9.75

M+M
SDR 3.95 3.56 2.17 2.21
SIR 5.82 4.65 4.68 5.15
SAR 10.87 12.35 7.46 7.13

Table 4.1: Average performance for speech-speech separation

DF-NMF RNMF [12] SDDL [18] DDL [17]

Speech
SDR 7.32 6.2 3.06 4.7
SIR 10.23 13.88 6.05 7.09
SAR 11.14 7.34 7.64 10.27

Music
SDR 5.04 2.78 2.85 4.05
SIR 6.66 3.2 5.53 7.08
SAR 11.33 14.95 7.5 8.32

Table 4.2: Average performance for speech-music separation

DF-DS DF-NMF RNMF [12] SDDL [18] DDL [17]

SDR 4.15 6.18 5.5 5.52 6.06
SIR 10.42 8.27 6.69 8.42 8.37
SAR 6.02 11.52 13.05 9.61 10.87

Table 4.3: Performance comparison of Dictionary subspace structure

4.4 Results for separation of three sources

For the multiple source scenario, mixtures consisting of three speech sources were tested.
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4.4.1 Parameters used for NMF

The threshold rth is kept same as the two source case i.e rth = 3. The value of ks,min and

kn,min was fixed at 15 and kn,max was taken to be 45. The values of λ1 and λ2 are 100 and

10 respectively.

4.4.2 Parameters for Dictionary-Subspace

The threshold rth is kept same as the two source case i.e rth = 3. The value of ks,min and

kn,min was fixed at 300 and kn,max was taken to be 600. The values of µ1 and µ2 are 1

and 10 respectively.

4.4.3 Performance Evaluation

The incorporation of dimension search and separation of one source at a time gives a

significant improvement in the three source separation as compared to other methods.

Figure ‘4.3 shows the spectrogram analysis fr separation of three sources. We extend the

formulation of RNMF presented in [12] for separation of three sources. We compare our

proposed method with the RNMF method extended for three sources.

The method of DDL proposed in [17] is applicable for the general case of more than 2

sources. So, a comparison with DDL is also presented. A total of 32 trials were performed:

8 for each case of 1M + 2F, 1F + 2M, 3F and 3M. Table 4.4 shows a comparison of the

average performance of the algorithms. The table clearly shows that the proposed

method outperforms the other approaches in multiple source scenario. Similar to the

case of two sources, the separation using dictionary subspace shows a decrease in SAR.

The averag performance comparison of DF-DS with other methods for separation of five

mixtures is shown in Table. Another method for separation of multiple sources is proposed

in [27] which combines source separation with source coding. This method is referred to

as NMF-ISS. This is a semi-blind approach which uses NMF bases learned from source

spectrograms in a coded form to initialise the bases and gain matrices for decomposing

the mixed signal feature matrix. This method used Mel-features and requires equal length

of test and training data. For making a comparison with NMF-ISS, we used half of the

available data i.e., 5 sentences per speaker for training and generated a single test file

with the remaining 5 sentences. 12 single channel mixtures of three speech sources were

separated in this setting. The comparison of DF-NMF and NMF-ISS is shown in Table

4.6
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(a) Source 1: Original Spec-
trogram

(b) Source 2: Original Spec-
trogram

(c) Source 3: Original Spec-
trogram

(d) Source 1: After separa-
tion using RNMF

(e) Source 2: After separa-
tion using RNMF

(f) Source 3: After separa-
tion using RNMF

(g) Source 1: After separa-
tion using DF-NMF

(h) Source 2: After separa-
tion using DF-NMF

(i) Source 3: After separa-
tion using DF-NMF

Figure 4.3: Spectrogram analyis for speech separation: (a)-(c) Original spectrograms (d)-(f)
Spectrograms after separation using RNMF (g)-(i)Spectrograms after separation using DF-NMF
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DF-NMF RNMF [12] DDL [17]

1M+2F

SDR 2.28 0.45 -2.39

SIR 4.57 2.5 1.32
SAR 7.98 8.03 3.51

1F+2M

SDR 1.74 0.88 -1.09

SIR 3.6 2.84 2.17
SAR 8.54 8.02 4.47

3F

SDR 0.78 -0.39 -10.12

SIR 2.29 0.98 -0.87
SAR 9.11 8.5 -4.69

3M

SDR 0.34 -0.018 -4.32

SIR 1.71 1.87 -0.038
SAR 8.74 7.65 2.31

Table 4.4: Average performance for separation of three sources

DF-DS DF-NMF RNMF [12] DDL [17]

SDR -1.51 2.51 0.62 -1.19
SIR 3.02 4.62 2.75 2.09
SAR 2.49 8.81 8.47 4.61

Table 4.5: Performance comparison of Dictionary subspace in multiple source scenario

DF-NMF NMF-ISS [27]

SDR -0.137 -4.35
SIR 2.61 -1.61
SAR 5.45 3.55

Table 4.6: Performance comparsion with NMF-ISS
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Chapter 5

Conclusion and Future Work

5.1 Thesis conclusion

In this thesis, we present a novel framework for discriminative training of models for sin-

gle channel source separation problem. The proposed framework embodies the concept of

searching for an appropriate dimension of the models while solving an individual optimi-

sation problem for every source in the mixture treating other sources as interferers. The

framework uses the concept of certain ratios that quanitfy discrimination and thus help

in training source and interferer models better suited for separation of the source.

Our proposed method is generic and can be applied over any model. We have used the

framework on NMF dictionaries and showed that simply using the framework on existing

model improves the separation performance. W also applied on framework on a new

structure of dictionary-subspace and demonstrated its performance via simulations.

5.2 Future Scope

Our approach also opens up the possibility of finding theoretical guarantees in source

separation. The notion of ratios can also be applied on non-linear separation methods

like neural networks. Thus, using the framework for better training of the networks

remains as a work for future.
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