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Abstract

Data classification is the at the core of leading technologies today. With the explosion of

data through mobility and growth of the Internet, analysis and classification of data is the

immediate process after acquisition. Most of the information is hidden within the acquired

data and needs to be extracted for further processing. Thus, feature extraction is an an im-

portant pre-processing task to classification. Till recently features were hand crafted which

though accurate, were time consuming to generate and required human intervention. With

the explosion of deep learning (since 2006), automatic feature generation has become the

norm for most applications. Algorithms learn from the data and generate the required fea-

tures adapted to various tasks, such as classification, reconstruction, denoising, sentiment

analysis, data mining and the like. The most popular algorithms for automatic feature gen-

eration are Deep Belief Networks, Autoencoders and Convolutional Neural Networks(CNN)

which also provide classification capabilities. All these algorithms and architectures derive

motivation from the fact that human visual and audio cortex are compositional in nature and

activate at various level of abstraction. Similarly, the aforementioned machines learn from

raw data at multiple levels of abstraction with growing complexity. Such algorithms have

proven to be very efficient and have also provided various benchmark tools and applications

in the industry like Google Photos and Facebook’s deepFace.

However, the major limitation to such tools are their enormous training times and hu-

mongous amount of data that is required to train them. In this thesis, a computationally

simpler model for generating features through an Analysis Dictionary Learning approach

is presented. In contrast with the synthesis dictionary learning approaches where the fea-

tures are generated by solving an inverse problem via an iterative procedure, the analysis

approach has the advantage of generating features from the data with minimal preprocessing

by directly operating the data with the dictionary. The dictionary operates on the data and

generates features, hence the framework is named as the analysis framework. Significant
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improvement in test time feature generation is obtained as compared to other dictionary

learning methods. Also, the learning procedure is computationally inexpensive and is flex-

ible as any prior knowledge can easily be incorporated into the framework depending on

the task the learnt features will be put to. To prove the versatility of the framework, the

proposed approach is applied to various real world scenarios like digit recognition, speech

recognition and Non Intrusive Load Monitoring (NILM). We have been able to establish

state of the art results under varied conditions comparable to more complex deep learning

techniques.
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Chapter 1

State of The Art

In the past few years, dictionary learning has been extensively used for classification tasks.

This can easily be seen from the expansive literature that is available. Most of the dictionary

learning approaches to classification are data driven, i.e., the learning procedure is adapted

to the available data. The dictionary is learnt in a way that is adapted for a particular task

such as data classification, signal denoising and the like. Literature provides wide variety of

supervised and unsupervised learning procedures. However, most of these techniques follow

the synthesis framework. In this chapter, a discussion on the concept of dictionary learning is

presented along with the popular algorithms used for classification. The analysis dictionary

learning framework is introduced and discussed. State of the art for both synthesis and

analysis framework is reviewed.

1.1 Dictionary Learning

Dictionary learning is a paradigm in which operators are designed according to the data and

task at hand. In essence, the operator learning methodology is driven by the characteristics

of the data instead of the characteristics of the operator itself. Sure enough operators can

be constrained to have particular characteristics, but dictionary learning is focussed more on

learning the peculiarities of the operator from the data and more often than not it is found
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that the learnt operator does have nice properties. From a mathematical point of view, the

dictionary learning problem can be cast as follows:

x = Dz (1.1.1)

Where,

x is the data vector

D is the dictionary

z are the coefficients

The expression in (1.1.1) is referred to as the synthesis dictionary learning framework. This

framework expresses the signal as a linear combination of dictionary atoms, which are rep-

resented by the columns of the dictionary D. The coefficients of the linear combination are

given by the vector z. Therefore, the aim here is to find a dictionary, D and coefficient vector

z, such that the signal x is nearly equal to the product Dz. There are many flavours of such

a framework. The unconstrained version of (1.1.1) can be written as

minD,z ‖x−Dz‖2
2 (1.1.2)

Here ||.||2 denotes the l2 norm of a vector, which for a vector y of n dimensions is defined as√∑n
i=1 y

2
i . The matrix version of equation (1.1.2) can be written as,

minD,Z ‖X −DZ‖2
F (1.1.3)

‖.‖F denotes the Frobenius norm of a matrix. The Frobenius norm of a matrix A can be

defined as Tr
√
AAT , where Tr denotes the trace of a matrix. Here X is a matrix of the

data stacked as columns and Z is a column sparse matrix. There are no constraints on the

dictionary and on the coefficients in equations (1.1.2) and (1.1.3). The most popular way of

solving such a problem is through the method of optimal directions [1], which uses a strategy
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of updating the two variables D and Z alternately through least square updates. In [1], the

dictionary is called a frame and the number of frames required to represent the data is a free

parameter. Problem (1.1.3) is also widely known as matrix factorization.

The unconstrained problem does not use any prior knowledge about the signal or datum

x. With the advent of compressive sensing [2], sparsity became an important property of the

signal which was exploited for faster reconstruction and denoising with a smaller number of

signal observations. This framework is be represented as

y = Ax (1.1.4)

Where,

y is the observations or measurements of the signal x

A is a m× n transformation matrix with m < n

x is the signal to be estimated or recovered

As m < n, the system of equations given by (1.1.4) in general would have an infinity of

solutions. However, if A satisfies the Restricted Isometry Property (RIP) and x is s sparse,

then with measurements, m ≥ Cs ln
(n
s

)
, x can be recovered with a high probability [3].

The optimization problem for such a scenario can be written as,

minx ‖y − Ax‖2
2 s.t. ‖x‖0 < s (1.1.5)

‖.‖0 is the l0 norm of a vector which counts the no. of non zero elements in a vector. Solving

a l0 problem is combinatorial in nature and as such is NP hard [4]. Greedy techniques

are available for solving (1.1.5). Popular among them are Orthogonal Matching Pursuit

(OMP) and its variants [5–9]. However, relaxing the l0 norm to the l1 norm, which for a n

dimensional vector x maybe defined as
∑n

i=1 |xi| , the problem becomes convex and can be
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cast in the following form,

minx ‖y − Ax‖2
2 s.t. ‖x‖1 < t (1.1.6)

where t is a parameter which in general is inversely proportional to the noise variance. The

most common method of solving of (1.1.6) is by relaxing the constraint via the Lagrangian

method and thus can be re-written as

minx‖y − Ax‖2
2 + λ‖x‖1 (1.1.7)

In equation (1.1.7), λ is the Lagrangian multiplier. Equations (1.1.6) and (1.1.7) are equiv-

alent with proper choices of λ and t. The literature has a plethora of l1 minimization tech-

niques [10–14]. In the field of statistics (1.1.7) is known as LASSO (Least Angle Shrinkage

and Selection Operator) [15]. The transformation matrix generally considered in previous

works are sub Gaussian or Bernoulli matrices. There are two ways to decide on the sparsi-

fying basis, i.e., the A matrix. One way is to exploit the mathematical model of the signal

and accordingly choose off the shelf dictionaries like wavelets, contour-lets and the like or

the other way is to learn a dictionary that does best on the training data for the given task

at hand [16]. This thesis is concerned with the latter.

In the synthesis framework, the most popular algorithm for learning data adaptive dic-

tionaries is the K-SVD algorithm [17]. The K-SVD solves (1.1.8) which is similar to (1.1.5)

but now the dictionary is also learnt along with the features X.

minD,X ‖Y −DX‖2
F s.t. ‖xi‖0 < t ∀ i (1.1.8)

Here the matrix X is column sparse and represents the coefficients and i denotes the

sample number. Y is the matrix of training data and D is the learnt dictionary. If n is the

number of training samples, then the dictionary has a dimension of m × p, with m << p,
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where m is the number of measurements of the each of the signal in Y and X has a dimension

of p × n and thus, Y has a dimension of m × n. Equation (1.1.8) is solved in two steps.

The sparse code update step, where the dictionary D is kept fixed and the sparse codes X is

updated through an OMP like algorithm which can produce coefficients with predetermined

number of zeros. The second step is the codebook update stage, where the dictionary D is

learnt keeping the coefficient matrix X constant. The K-SVD algorithm updates each column

of the dictionary one at a time along with new values of the contributing coefficients with

an aim to minimize the Mean Squared Error (MSE) of the Frobenius term in (1.1.8). The

update is a rank 1 SVD update with sparsity constraints provided by the value of t. Such

dictionary learning methods have achieved state of the art performances in signal denoising,

image inpainting, image restoration and the like [18–21].

1.2 Dictionary Learning for classification

The aforementioned applications are not the only domains where dictionary learning has

made an impact. Over the past decade dictionary learning procedures have been extensively

used for classification tasks [22]. These learning methods have been applied to various sce-

narios ranging from face recognition to anomaly detection. All flavours of learning have been

used. Supervised, unsupervised and semi supervised techniques have been explored. Few

of the most prevalent tools in classification using dictionary learning are the SRC classifier

(Sparse Reconstruction Classifier), DKSVD (Discriminative KSVD) and the label consis-

tent version of it, LC-KSVD(Label Consistent KSVD). All the mentioned algorithms are

supervised dictionary learning procedures. In SRC [23] procedure, the dictionary is taken

as the training samples and iteratively the sparse features over each of the test samples are

calculated in the following two stage process:
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1. minz ‖x−Dz‖2
2 + λ‖z‖1 (1.2.1)

2. c = argmini‖x−Diδi(z)‖ (1.2.2)

The first step is the sparse coding step over the dictionary D, which is given by (1.2.1).

The dictionary is initialized with the entire training data as columns of the dictionary. This

step is performed for each test sample. In the second step, the test vector x is assigned to the

cth class according to the rule in (1.2.2). Here δ(.) is an indicator function which extracts

the elements from the ith class in the representation z learnt in the first stage. The first

stage is the LASSO problem and can be solved efficiently. SRC has established state of the

art results in the domain of Face Recognition.

Another very popular dictionary learning procedure for classification is DKSVD [24].

It adds a representation term to the classical reconstruction term in equation(1.1.3). The

resulting optimization problem can be written as

minD,A,Z ‖X −DZ‖2
F + λ‖H −WZ‖2

F + λ2‖W‖2
F s.t. ∀i, ‖zi‖0 ≤ T (1.2.3)

Z,D and W are solved together as a KSVD problem. H is a binary matrix and each column

of H has a one at the ith position if the sample Xi belongs to class i. If a discriminative term

is added to the framework of equation (1.2.3), Label Consistent KSVD or LC-KSVD [25] is

obtained. In LC-KSVD, along with a classification error term a sparse code discrimination

term is added. Hence at each iteration, the algorithm tries to find the most discriminative

sparse code with a small classification error, also reducing the reconstruction error at the
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same time. The LC-KSVD formulation can be written as:

minD,W,A,Z ‖X −DZ‖2
F + λ‖Q− AZ‖2

F + µ‖H −WZ‖2
F s.t. ∀i, ‖zi‖0 ≤ T (1.2.4)

Here Q is a binary matrix whose columns have a 1 where the sample from X and the

dictionary D share the same label. The matrix Q is said to be the matrix of discriminative

sparse codes and the linear transformation A converts the sparse Z to its most discriminative

form Q.

In all these algorithms, one can train on the training samples directly or can code certain

characteristics of the data into features, like spatial pyramidal features, cepstrum features,

eigen faces and the like, and then train the dictionary on such feature vectors. Examples of

such datasets are the CALTECH101 dataset in which the pyramidal features are used and

random faces and eigen faces are popular in face recognition tasks.

Another important classification algorithm is the Fisher Discriminant Dictionary Learn-

ing (FDDL) [26]. This exploits the Fisher’s discrimination criterion to learn discriminative

sparse codes. Here, a projection operator is learnt such that the class centroids are separated

after projection and at the same time the inter class variances of the features is minimized.

Most of the discussed algorithms have their own classification schemes, which typically de-

pend on the nature of the features learnt and the amount of data available (example FDDL

uses a Global Classifier (GC) if amount of training samples is small in each class and Local

Classifier (LC) if there is sufficient training data for each class). The aforementioned algo-

rithms have state of the art performance in face recognition, hand writing recognition, scene

classification and the like for dictionary learning techniques.

1.3 Analysis Dictionary Learning (ADL)

The algorithms discussed in sections (1.1) and (1.2) all belong to the synthesis framework

in which given a signal a sparse coefficient vector is learnt such that, the signal can be

9



Figure 1.3.1: Synthesis versus Analysis Frameworks

represented by the linear combination of small number of atoms from a suitable dictionary.

However, there exists an alternate framework in which the dictionary directly operates on the

signal and produces sparse coefficients. This framework is known as the analysis framework.

Also, sometimes known as the cospare learning framework, Analysis Dictionary Learning

(ADL) has seen a lot of interest in the past few years [27–32]. The difference between the

synthesis and analysis learning framework is depicted pictorially in figure (1.3.1).

In the analysis framework we are concerned with the zeros of the signal over the dictionary.

The basic framework of ADL can be written as

minΩ,z ‖z − Ωx‖2
2 s.t. ‖z‖0 < T (1.3.1)

As is evident from the above equation, the analysis operator Ω acts on the signal x and
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generates a sparse feature vector z. The dimensions of the analysis dictionary Ω is p x d, the

coefficient vector belongs to Rp and the signal x in Rd. The two most important approaches

to ADL has been, Analysis K-SVD [33] and Sparsity Transform Learning [34]. The Analysis

K-SVD approach attempts to learn an analysis dictionary which can produce a clean signal

from a noisy signal. It is a denoising framework which can be seen from the equation written

below,

minΩ ‖X − Y ‖2
F s.t. ‖ΩΛi

xi‖ = 0, rank(ΩΛi
) = d− r, ‖wj‖2

2 = 1 ∀ 1 < j < p (1.3.2)

Here X is the clean estimate of the noisy signal Y . and the dimension of the signal subspace

is r and the co- rank is thus d − r, which is the rank of the co-support, which is the index

set of zeros entries of Ωx or the index set of rows of the dictionary Ω which are orthogonal

to the signal. Also, the notion of sparsity as in synthesis framework changes to co-sparsity,

which is the number of zeros in Ωx. In mathematical terms, if co sparsity is l then

‖Ωx‖0 = p− l (1.3.3)

More will be discussed on co sparsity and the analysis framework in the next chapter in the

context of classification.

Another paradigm for analysis dictionary learning is Sparsifying Transforms [35–38].

Introduced by Bresler, these suite of algorithms generate a sparsifying transform S, which

when applied to the data generates sparse coefficients. The basic formulation for such a

problem is same as equation (1.3.1). In this paradigm a lot of importance is given to

learning good transform which has full rank and good condition number. Incorporating

these constraints the general optimization problem can be written as

minS,Z‖Z − SX‖2
F − λlogdet(S) + µ‖S‖2

F s.t. ‖Zi‖0 < τ (1.3.4)
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The logdet constraint is to ensure that the transform has full rank and no repeated rows and

the Frobenius constraint ensures S does not become arbitrarily large.

These analysis operators have been put to use for various applications like image recon-

struction, signal denoising and image restoration. However, the analysis framework has not

been exploited for classification even though it has been shown that the co sparse model

under certain suitable conditions is richer in the number of parameters available than the

synthesis model [39]. In the recent past Sumit et. al. [40], used the sparsity transform frame-

work to classify faces and hand written digits. They used the transform learning framework

as a feature generator in a completely unsupervised framework and used off the shelf clas-

sifier like the SVM to classify the test data. They showed the efficacy of the procedure by

comparing against well known synthesis dictionary learning techniques.

In this thesis we start by understanding the analysis framework further and formulate

procedures which can exploit the nature of the analysis framework for classification. The

next chapter explores various procedures and algorithms for classification. The subsequent

chapters discuss empirical results and experiments on standard datasets along with a prac-

tical application to Non Intrusive Load Monitoring (NILM).
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Chapter 2

Analysis Dictionary Learning for

Classification

In this chapter, the analysis framework is discussed in the context of data classification. The

intuition behind why such a framework should work is developed and compared with the

existing literature. Algorithms are developed which learn discriminative co-sparse codes of a

signal and unearth the inherent structure within a signal. Both unsupervised and supervised

techniques are presented. Similarities with machine learning structures are discussed and a

deep architecture is suggested for analysis dictionary learning.

Feature generation requires the maximum effort for any recognition or classification task.

Here analysis dictionary learning is used to generate features from the data, following which

an appropriate classifier is used to classify the test data.

2.1 Motivation

It is well known that natural signals have sparse representations in various analytical do-

mains. For example images are known to be sparse in wavelet, curvelets, countorlets and

DCT domains. Audio signals have a sparse structure under the Short Time Fourier Trans-

form (STFT). The following figures emphasize the claim. As we see audio in STFT (Figure
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Figure 2.1.1: Audio is Sparse in STFT

Figure 2.1.2: Images are Sparse in Wavelet Domain
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Figure 2.1.3: Discriminative Sparse Codes in Wavelet Domain

Figure 2.1.4: Discriminative Sparse Codes of Noisy Images in Wavelet Domain

2.1.1) and images in wavelets (here Daubechies wavelets were used to generate the figures)

have extremely sparse representations. Also, if the wavelet coefficients are analysed closely

we find a continuous sparsity pattern for certain samples and then the pattern changes. This

is especially prominent at the lower end of the figure. Figure (2.1.3) exhibits this pattern.

Vertical lines demarcate various classes. Hence, such features (i.e. coefficients) also have

discriminatory power. A signal belonging to a particular class has a feature signature which

is different from the signature of another class. However, when the data is noisy the sparse

nature of the representations get distorted. The dictionary, in this case the wavelet dictio-

nary, is not able to discover the inherent structure of the data, when contaminated with

noise. This is easily seen in figures (2.1.3) and figure (2.1.4). Figure (2.1.5) and (2.1.6) show
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Figure 2.1.5: Discriminative Sparse Codes in Curvelet Domain

Figure 2.1.6: Discriminative Sparse Codes of Noisy Images in Curvelet Domain

Curvelet features for MNIST and noisy MNIST data. As we see the variation in patterns

across classes is similar to the case in which wavelets are used. Hence, the question arises,

is it possible to learn a dictionary which generates sparse features under two circumstances

1. When we do not explicitly know the domain in which the given signal is sparse

2. When we have a noisy version of the signal

In this chapter we will find answer to the above question and formulate a methodology to

generate discriminative features.
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2.2 Analysis Learning Framework

The basic learning problem in Analysis Dictionary Learning (ADL), is to learn a dictio-

nary D such that when it operates on the data X it produces a sparse feature vector Z.

Mathematically the learning problem can be stated as,

minD,Z ||Z −DX||2F s.t. ||Zi||0 < T0 (2.2.1)

Here i is the number of training samples available which are stored as the columns of the

matrix X. Each column of X contains a sample from class c. Generally, there are multiple

classes, i.e., C > 2, where C are the total number of classes. Z as can be easily seen to be

column sparse with T0 zeros in each column and represents the feature for the corresponding

training signal which generated it when coded over D.

As is evident, the analysis framework is a signal model in which the analysed signal is

assumed to be sparse. If D ∈ Rpxd, x ∈ Rd, then ‖z‖0 is small, where z = Dx ∈ Rp. Thus,

in the analysis model we are interested in the zeros of the signal. An important concept

related to the zeros of the signal is the co-sparsity of the signal.

Let us start with a redundant analysis dictionary D ∈ Rpxd where p > d. Therefore, only

d or less than d number of rows of D can be linearly independent. If rank of D is d then x

has to be the zero vector. So, ‖Dx‖0 = 0. If x 6= 0 then there will be atleast p − d no. of

non zeros in z, because if l is the rank of D such that l < d, then DΛx = 0, where Λ indexes

the l rows and the no. of zeros in z become p − l. Therefore, co-sparsity can be defined as

l = p − ‖Dx‖0, i.e., the number of zeros in z and the index set of the zero entries in z is

called the co-support and is denoted by Λ.

The analysis model can also be regarded as a generator framework which generates signals

of a given co-sparsity. Consider an analysis dictionary D ∈ Rpxd and take randomly chosen

l rows with l < d. Take a vector v with randomly generated Gaussian entries and project it
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to the subspace orthogonal to DΛ. The vector so obtained is a l co-sparse vector.

x = (Id −DT
Λ(DΛD

T
Λ)−1)v

The co-rank of a signal x is defined as the rank of DΛ. This data modelling framework

belongs to a larger class of data models known as the Union of Subspaces(UoS). Given an

analysis operator D, a signal x which is l co-sparse with respect to the rows of D can be

thought of lying in the space orthogonal of the space spanned by the rows indexed by the

co-support Λ. If VΛ = span(di, i ∈ Λ)⊥ then

x ∈ ∪i∈Λ:|Λ|=lVΛ

Therefore, the co-sparse signal belongs to the union of all the possible
(
p
l

)
subspaces of

dimension d− l.

A similar approach for synthesis models can be obtained. If A ∈ Rmxn is a synthesis

dictionary and x has a k sparse representation in A, then x lies in the union of
(
n
k

)
subspaces

of dimension k. In order to compare the two models let us consider a situation where the

dimensions of the subspaces are same, i.e., k = d− l. Also allow the same over completeness

i.e. p = n = 2d. Then number of synthesis subspaces available are

log2

(
n

k

)
≈ n.H

(
k

n

)
≈ k.log2

(n
k

)

where H(t) = −tlog2t − (1 − t)log2(1 − t) and using the fact that k << n and Stirling’s

Approximation. The number of available analysis subspace are

log2

(
p

l

)
≈ n.H

(
k

n

)
≈ n.H(0.5) = n

As an example let us take p = n = 2d = 700, l = 300, k = 50, then number of synthesis
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subspaces available are 191 and the number of analysis subspace available are 700. Therefore,

unless d
n
≈ 1, the number of available analysis subspaces far exceeds the synthesis subspace.

A more extensive analysis can be found in [29]. Therefore, using the analysis framework for

classification maybe advantageous. However, getting high co-sparsity is not easy especially

when we want d ≤ l < p. In order for this to happen the rows of the analysis operator

should exhibit high dependencies. However these intricacies will not be dwelt into further

as this work is not directly concerned with the co-sparsity of the signal rather it deals with

the subspaces that characterise the signal and the nature of the features generated by such a

dictionary. The assumption is that signals belonging to different classes will exhibit different

co-sparsity patterns and thus belong to different subspaces. Supervised and unsupervised

settings are explored. The following sections discuss various algorithms by which we can

generate discriminative features for signals belonging to different classes. As specified above

the term feature refers to the sparse coefficient vector z

2.3 Unsupervised ADL

The optimization problem in (2.2.1), as noted before, is a NP hard problem. The l0 norm

constraint can be relaxed to the l1 norm which is the nearest convex relaxation of the l0

norm. Thus writing the Lagrangian for equation (2.2.1) with the norm relaxation we get,

minD,Z‖Z −DX‖2
F + λ‖Z‖1 + µ‖D‖2

F (2.3.1)

s.t.‖d‖2
2 = 1

Here, λ is the Lagrangian multiplier and acts a regularizer trading off the representation

error and the l1 norm penalty on the features. Therefore, λ controls how sparse the feature

is going to be. With l1 norm penalty there won’t be exact zeros in the solution but when λ
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is set properly different classes do tend to have zeros at different positions. The evaluation

of the features do not incorporate label information and hence equation (2.3.1) gives rise to

an unsupervised learning procedure. The constraint on the Frobenius norm of the dictionary

is to prevent scale ambiguities. We also constraint each atom to have unit norm so as to

prevent D to become a zero matrix.

The procedure for solving (2.3.1) is an iterative procedure of alternate minimization of

D and Z. In the first step Z is held constant and D is updated while in the second step

D is held constant and Z is updated. The update for D is a simple least squares update.

Holding Z constant the second term drops from (2.3.1). Representing (2.3.1) with f and

Differentiating with respect to D, we get,

∇Df = D(XXT + µI)ZXT ) (2.3.2)

Equating (2.3.2) to zero, we get the update equation for D as

D = ZXT (XXT + µI)−1 (2.3.3)

Here I stands for the identity matrix of the appropriate dimension. While solving for Z, we

note that the problem can be cast as a proximal gradient problem of the form

f(x) + g(x)

where f(x) is a convex function and g(x) is a smooth differentiable function not necessarily

convex. For such a problem the solution can be obtained by the proximal operator,

proxf (x) = argminu(f(u) +
1

2t
‖u− x‖2

2) (2.3.4)
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and the update equation at iteration k becomes

xk = proxf (x
k−1 − t∇g(xk−1)), k > 1 (2.3.5)

For the problem defined by equation (2.3.1), the proximal operator reduces to the soft

thresholding operator and the Z update at iteration k can be written as

Zk = SoftThresholding(DkX, threshold) (2.3.6)

Where the soft thresholding operator is defined as follows,

SoftThreshold(x, T ) := sign(x)max(0, |x| − T ) (2.3.7)

The threshold value in (2.3.7) for unsupervised ADL is the regularizer λ for equation (2.3.1).

The complete algorithm for solution to equation (2.3.1) is written in the following algorithm:

Input: X, tol, λ,µ

initialization D, Z = DX;

while ‖Z −DX‖2
F < tol do

At iteration k;

Dk = Zk−1XT (XXT + µI)−1;

Zk = SoftThreshold(DkX,λ);

Normalize Atoms of D;

k = k + 1;

end

Algorithm 1: Unsupervised ADL

The above algorithm does not use any label information from the training signals. Thus it

can be treated as an unsupervised learning scheme and we name it Unsupervised Analysis

Dictionary Learning (ADL).
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In the next section, various discriminative constraints are discussed which can be easily

incorporated into this analysis dictionary learning framework. A number of supervised

dictionary learning techniques are discussed along with their intuition and solutions to the

respective optimization problems. These supervised algorithms promote group co-sparse

patterns among the signals of the same class and work as effective feature extractors for

clean and noisy signals.

2.4 Supervised Analysis Dictionary Learning

Supervised dictionary learning involves exploitation of training sample labels to learn features

adapted to a particular class. As previously mentioned the matrix X contains training signals

stacked as columns. Each of the signals belong to a particular class c. Signals belonging to

the same class will be represented as Xc. Intuitively, signals which belong to the same class

should have similar features or similar signatures. This is also in line with the concept of

group sparsity. Thus, three supervised analysis dictionary learning schemes are introduced

to promote the group co-sparsity within signals of the same class.

1. Row sparsity constrained ADL

2. Low Rank constrained ADL

3. Label Consistent ADL

Each of the above algorithm will be discussed in detail in the following subsections.

2.4.1 Row Sparsity Constrained ADL

When signals belong to the same class c and are stacked in columns of a matrix as [X1|X2|...|Xc]

, then they can be assumed to have a similar feature signature or in other words along the

rows of the matrix Zc(= DXc) the signals should have few non zero values at similar posi-

tions, or succinctly, the matrix Zc should be row sparse. Here, we promote signals from the
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Figure 2.4.1: Row Sparse Features for Various Classes

same class to belong to the same subspace.

Xc ∈ ∪i∈Λc:|Λc|=lcVΛc

Overlap between the subspaces of the various classes are allowed. The following figure

displays the scheme more efficiently,

As is evident from the figure such a scheme should be able to generate discriminative

sparse features between various classes.

The row sparse penalty is easily implemented by the mixed l2,1 norm [41]. The l2,1

constraint acts on each class separately and constraints the l2 norm of the rows in the

matrix Zc . It performs l1 thresholding of the l2 norm of the rows. The l2,1 norm is defined

as

‖X‖2,1 = Σn
j=1‖Xj→‖2 (2.4.1)

Where ‖Xj→‖ is the vector whose entries form the jth row of X.
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The optimization problem can be written as

minD,Z‖Z −DX‖2
F + λΣC‖Zc‖2,1 + µ‖D‖2

F (2.4.2)

s.t.‖d‖2
2 = 1

The total number of classes is denoted by C. The above problem is also solved via

alternate minimization between D and Z. The update for D remains the same as equa-

tion (2.3.3). The update for Z is done on a class by class basis by solving the following

optimization problem at each iteration

minZc‖DkXc − Zc‖2
F + λ‖Zc‖2,1 (2.4.3)

Equation (2.4.3) can be solved efficiently via the method stated in [42] in a closed form. The

update equation for the matrix Zc can thus be written at iteration k as

Zk
c = signum(DkXc)max(0, |DkXc| −

λ

α
Γ) (2.4.4)

where α is the maximum eigen value of DTD. Γ at iteration k is given by the following

expression

Γ = diag(‖Zj→
k−1‖)|Z

j→
k−1| ∀j (2.4.5)
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Thus the row sparse ADL algorithm becomes,

Input: X, tol, λ, µ

initialization D, Z = DX ;

while ‖Z −DX‖2
F < tol do

At iteration k;

Dk = Zk−1XT (XXT + µI)−1;

for class = 1 : C do

Zk
class = signum(DkXclass)max(0, |DkXclass| − λ

α
Γ);

end

k = k + 1;

Normalize Atoms of D;

end

Algorithm 2: Row Sparse ADL

In the above algorithm at each iteration we update the feature matrix Z class wise and

then learn a dictionary which would generate row sparse features.

2.4.2 Low Rank ADL

Another way of looking at similarity of features is to consider linear dependence of the

features. Signals belonging to the same class will have higher dependencies among themselves

and a lower dependency on the other class. Thus if features belonging to the same class are

stacked as columns in a matrix they should form a low rank matrix. The input data may or

may not be low rank due to various perturbations like noise, rotation and scaling. However,

a dictionary maybe learnt which cleans, scales and aligns the signals thus resulting in a low

rank feature matrix Zc.

Instead of imposing constraints on the dictionary to be rotation corrective and carry out

denoising, a low rank constraint may be imposed upon the feature matrix which in an

alternate minimization procedure learns a dictionary which brings out the dependencies
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among the various classes. This also imposes discriminative constraints on the features. The

following figure explains the scheme more clearly.

Figure 2.4.2: Dependencies Among Features of Various Classes

In the above figure the different colors denote the respective linear dependencies in each

class. This can be easily formulated in term of the nuclear norm of the feature matrix of

each class Zc. Nuclear norm is the sum of the singular values of matrix. For a m x n matrix

X, nuclear norm can be written as

‖X‖∗ = Σ
min(m,n)
i=1 σi (2.4.6)

The nuclear norm is the nearest convex surrogate of the rank of a matrix. Using this definition

we can formulate the optimization problem as follows,

minD,Z‖Z −DX‖2
F + λΣc‖Zc‖∗ + µ‖D‖2

F (2.4.7)

s.t.‖d‖2
2 = 1

As before an alternate minimization approach is adopted for the solving (2.4.7). The

update rule for D is same as equation (2.3.3). Like in the case of row sparse ADL, the Z
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matrix update is a class wise affair. However, the update rule is different. Z can be easily

solved via singular value shrinkage [43]. The class wise optimization problem is given below

minZcΣc‖DkXc − Zc‖2
F + λ‖Zc‖∗ (2.4.8)

Details of solving (2.4.7) is given in the following algorithm.

Input: X, tol, λ, µ

initialization D, Z = DX ;

while ‖Z −DX‖2
F < tol do

At iteration k;

Dk = Zk−1XT (XXT + µI)−1;

for class = 1 : C do

UΣV T = SV D(DkXc);

Zk
class = USoftλ/2(Σ)V T ;

where Softλ/2 = diag(Σ).max(0, diag(Σ)− λ);

end

Normalize Atoms of D;

k = k + 1;

end

Algorithm 3: Low Rank ADL

2.4.3 Label Consistent ADL

The aforementioned supervised learning algorithms do not take into consideration labels

of the training data explicitly. They learn the feature in a class wise manner forcing the

dictionary to be able to produce a good representation. Taking cue from LC-KSVD [25], a

Label Consistent ADL (LC-ADL) is proposed. Here a classifier mapping is learnt from the

feature space to the target space. This provides additional supervision in the form of a label

consistency term. The map learnt from the feature space to the target space also affects the
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learning of the dictionary and via the target label mapping supervision is introduced. The

optimization problem can be stated as

minD,Z,W‖Z −DX‖2
F + λ1‖Z‖1 + λ2‖H −WZ‖2

F + +µ1‖D‖2
F + µ2‖W‖2

F (2.4.9)

s.t.‖d‖2
2 = 1

Here, H is a binary matrix of label targets. For example, if there are a total of three classes,

then corresponding to the signal belonging to class 1 H will have a vector of (1, 0, 0)T , for

signals belonging to class 2, corresponding columns of H will have the vector (0, 1, 0)T and

for class 3 the corresponding columns H will be (0, 0, 1)T . W is a matrix which maps the

features to labels. The first Frobenius term is the feature generation term while the second

Frobenius term is the label consistency term. In this case the optimization problem is over

three variables D, W and Z. The three sub problems become

1.

minD‖Z −DX‖2
F + µ1‖D‖2

F (2.4.10)

2.

minW‖H −WZ‖2
F + µ2‖W‖2

F (2.4.11)

3.

minZ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 DX
√
λ2H

−
 I
√
λ2W


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣+ λ1‖Z‖1 (2.4.12)
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Equations (2.4.10) and (2.4.11) can easily be solved via a least squares update as in equation

(2.3.3), equation (2.4.12) can be solved via Iterative Soft Thresholding Algorithm (ISTA)

[11]. ISTA solves a problem of the following type:

minx‖y − Tx‖2
F + λ‖x‖1 (2.4.13)

Solution to the above optimization problem is an iterative procedure and has the following

basic steps:

Landweber Iteration: B = xk−1 + 1
α
T T (y − Txk−1)

SoftThresholding: xk = signum(B)max(0, |B| − λ
2α

)

α is the maximum eigenvalue value of T TT . The LC-ADL algorithm can be summarized

as follows:
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Input: X, tol, λ1, λ2, µ1,µ2

initialization D, Z = DX, W ;

while ‖Z −DX‖2
F < tol do

At iteration k;

Dk = Zk−1XT (XXT + µ1I)−1;

A =

 DkX√
(λ2)H

 ;

B =

 I√
(λ2)Wk−1

 ;

Zk = ISTA(A,B, λ1);;

Wk = HZT
k (ZkZ

T
k + µ2I)−1;

Normalize Atoms of D;

k = k + 1;

end

Algorithm 4: Label Consistent ADL

2.5 Connection With RBMs

Restricted Boltzmann Machine (RBM) is a learning unit which learns a latent representation

of an input applied to it. It has a fully connected latent and input layer. It is a restricted

because units from the same layer are not interconnected. The energy function a RBM

minimizes to learn a feature is the Boltzmann function. It learns the representation at its

hidden layer and the connection weights. If the energy function is the euclidean cost then

the entire RBM framework reduces to the analysis dictionary learning framework.

In a RBM the aim is to learn the network weight and the output features such that the

similarity between the projected data (at the input) and the features (ZTDX) is maximized.

In the proposed method, the cost function is modified - instead of maximizing similarity;

the Euclidean distance between the projection of the data (DX) and the generated features
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Figure 2.5.1: Generic Structure of a RBM

(Z) is minimized.

2.6 Deep Analysis Dictionary Learning

A RBM is generally a part of a Deep Belief Network (DBN). In a DBN RBMs are stacked

on top of each other and the features learnt by a particular level is then fed as input to the

consequent level. So, a DBN is a multilayer feature extractor, and hence the word deep.

Each RBM in a DBN is trained in a standalone fashion and then is fine tuned using back-

propagation. It is a completely unsupervised method of learning and is used as a feature

generator for a supervised algorithm. A similar approach can be employed with ADL as

the architecture of the basic units is almost the same. Single layer analysis units can be

stacked to form a deeper network and can be tuned with the any of the algorithms presented

in section 2.3 and 2.4. The optimization problem for such a task can be formulated as follows

minZ(n)D(n)‖Dn−1Dn−2...D1X − Zn‖2
F + µΣi‖D(i)‖2

F + λR(Z(n))

s.t.‖d(n)
j ‖2 = 1

Here, R(.) can be any of the penalties that have been applied to Z . The number of
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Figure 2.6.1: Deep Analysis Dictionary Learning

variables involved is large and hence direct optimization is not feasible. Thus a greedy layer

wise training may work in training such a deep dictionary learning framework.

2.7 Advantages of Analysis Learning For Classification

The advantage of the analysis learning framework in a classification scenario is its ability to

generate a feature vector fast at test time. In all the algorithms once the learning procedure

is over, during test the feature is generated by multiplying the incoming test data with the

learnt analysis dictionary. If xtest denotes the test sample and ztest denotes the corresponding

feature, then the relation between ztest and xtest can be written as

ztest = Dxtest (2.7.1)

However, in case of an synthesis learning framework the following l1 optimization problem

needs to solved

minz‖xtest −Dztest‖+ λ‖ztest‖1 (2.7.2)

Hence, the complexity of generating a feature in a synthesis framework increases. The

complexity of generating a feature in an analysis framework with a dictionary size of mxn is
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O(mn), which is the same as the complexity of a vector matrix multiplication. On the other

hand solving (2.7.2) is iterative in nature and the per iteration cost is O(mn2) and O(n0.5)

number of iterations is required, thus the total complexity becomes O(mn2.5), which is large

compared to O(mn) .

In the next chapter the algorithms discussed in this chapter will be used to gauge clas-

sification performance on standard datasets. Empirical evidence will be given for their

performance, convergence and the features generated by these algorithms will be studied.
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Chapter 3

Experimental Results and Discussion

This chapter discusses the various experiments and simulations which were performed to

show the efficacy of the proposed algorithms. The empirical convergence of the algorithms

are discussed along with the parameter selection procedure. Then the performance of the

algorithms on various datasets and their robustness to noise and missing data is presented.

We compare the proposed work with state of the art synthesis learning algorithms, deep

learning and the analysis classification procedure suggested by Chellapa et. al.. A compar-

ison of the features generated by our algorithms and the algorithm proposed by Chellapa

et. al. is presented. Lastly, we discuss the advantage of the proposed work with respect to

training time and time taken for test feature generation. The four proposed algorithms were

coded and executed in MATLAB. Simulations were performed on an Intel machine with i5

processor working at 1.72 GHz. MATLAB version R2014a was used.

3.1 Empirical Convergence

The following graphs show the convergence of the proposed algorithms. The objective func-

tion is plotted against the iterations of the algorithm.
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Figure 3.1.1: Empirical Convergence for Unsupervised ADL

Figure 3.1.2: Empirical Convergence for Supervised ADL

Figure (3.1.2) shows the convergence for row sparse ADL, while figure (3.1.3) shows the

convergence for low rank ADL. The convergence for the generation term and label consistency

term in Label Consistent ADL is shown in figure (3.1.4) and figure (3.1.5) respectively.

3.2 Parameter Selection

The following bar graphs (figure 3.2.1.) show the variation of recognition rate with the

parameters of the proposed algorithms. The dictionary size and the threshold parameters

which yield the best recognition rate are used to cross validate a classifier. The classifiers

35



considered were Neural Networks and SVMs.

(a) Variation of Recognition Rate With Parame-
ters for Unsupervised ADL

(b) Variation of Recognition Rate With Param-
eters for Row Sparse ADL

(c) Variation of Recognition Rate With Parame-
ters for Low Rank ADL

(d) Variation of Recognition Rate With Param-
eters for LC-ADL with λ2 = 1.6

Figure 3.2.1
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3.3 Results on Digit Recognition

The proposed algorithms were used as feature generators for digit recognition tasks. The

datasets used for digit recognition were the MNIST [44] dataset, it’s variations [45] and the

USPS dataset. The original MNIST dataset has 60 thousand training images and 10 thou-

sand test images of dimensions 28x28 (R784). The dataset has five variations. The mnist-rot,

where the digits have been rotated by an angle chosen uniformly between 0 and 2π radi-

ans. Background pixels whose value is uniformly chosen between 0 and 255 is inserted in

mnist-back-rand. Random patches from black and white images are inserted as backgrounds

in mnist-back-image. The perturbations in mnist-back-image and mnist-rot are combined in

mnist-rot-back-image. Each of these variations have 12 thousand training samples and 50

thousand test samples of the same dimension as the original dataset. The features learnt

from various proposed algorithms were fed to a neural network or a SVM classifier. The pro-

posed algorithms were compared against Label Consistent KSVD (LC-KSVD), Disciminative

KSVD (DKSVD) [24], the transform learning classification method proposed by Chellapa

et. al.[40] (Chellapa-ADL) and two deep learning methods the Deep Belief Networks with

RBMs as the basic unit and Stacked Denoising Auto Encoders(SDAE). Chellapa ADL uses

SVM with RBF kernels as classifiers, LC-KSVD and DKSVD have their inbuilt linear classi-

fiers. Logistic regression has been used along with DBN-3 and SDAE for classification. The

toolbox used for DBN-3 and SDAE can be found in [46]. For wavelets, curvelets and DCT

SPARCO Toolbox was used [47].

Before going into the recognition rate results, a discussion on the features generated by

the proposed algorithms are in order. The next figure shows the MNIST dataset and its

variations.
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Figure 3.3.1: MNIST Dataset and its Variations

In the experiments the original MNIST and mnist-rot datasets were not preprocessed.

The mnist-back-image, mnist-back-rand and mnist-rot-back-image datasets were preprocessed

by thresholding the images with a threshold of 0.9. The final images fed to the algorithms

after preprocessing are shown below,

Figure 3.3.2: MNIST Dataset and its Variations

Let us look at the wavelet features of the clean MNIST and the mnist-back-image. In

figure (3.3.3) the black rows define the rows in the feature which had less than 10% contri-

bution to the l2,1 energy of the feature. On the left the clean MNIST features are presented.

Here certain discriminative rows can be found between various classes. Five hundred samples

from each class was taken. On the right we find that under noise the features lose their dis-

criminative nature. Figure 3.3.4 show the features learnt by the Row Sparse ADL algorithm.

Here also the black rows define those coefficients in the feature whose contribution to the l2,1

norm was less than 10%. In this case better discriminative nature of the features is observed

across each class. Even though, a lot of subspace options are blinded out in the noisy case

but one can still find atoms which are unique to each of the class. To drive the point home
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Figure 3.3.3: Wavelet Features For MNIST Clean (on Left) and MNIST with background
images (on Right)

that adapted analysis dictionaries do work better, let us look at two other parameters, the

amount of overlap between atoms of various classes and the recognition rate with wavelet

features and features generated by Row Sparse ADL.
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Figure 3.3.4: Features For MNIST Clean (on Left) and MNIST with background images
(on Right) for Row Sparse ADL

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 1 0.12 0.17 0.25 0.12 0.25 0.16 0.18 0.2 0.17

Class 1 0.12 1 0.17 0.21 0.17 0.15 0.17 0.16 0.24 0.14

Class 2 0.17 0.17 1 0.18 0.17 0.18 0.13 0.14 0.22 0.19

Class 3 0.25 0.21 0.18 1 0.15 0.32 0.16 0.19 0.29 0.19

Class 4 0.12 0.17 0.17 0.15 1 0.2 0.17 0.24 0.22 0.35

Class 5 0.25 0.15 0.18 0.32 0.2 1 0.19 0.22 0.27 0.17

Class 6 0.16 0.17 0.13 0.16 0.17 0.19 1 0.13 0.18 0.16

Class 7 0.18 0.16 0.14 0.19 0.24 0.22 0.13 1 0.17 0.32

Class 8 0.2 0.24 0.22 0.29 0.22 0.27 0.18 0.17 1 0.26

Class 9 0.17 0.14 0.19 0.19 0.35 0.17 0.16 0.32 0.26 1

Table 3.3.1: Overlap Rate for Co-Supports from Different Classes For Row Sparse ADL
Using MNIST Clean Images
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Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 1 0.71 0.76 0.79 0.75 0.8 0.75 0.68 0.78 0.72

Class 1 0.71 1 0.7 0.73 0.71 0.72 0.74 0.68 0.82 0.72

Class 2 0.76 0.7 1 0.8 0.71 0.75 0.77 0.65 0.75 0.68

Class 3 0.79 0.73 0.8 1 0.77 0.83 0.74 0.73 0.81 0.75

Class 4 0.75 0.71 0.71 0.77 1 0.79 0.71 0.77 0.82 0.82

Class 5 0.8 0.72 0.75 0.83 0.79 1 0.75 0.69 0.83 0.75

Class 6 0.75 0.74 0.77 0.74 0.71 0.75 1 0.66 0.77 0.7

Class 7 0.68 0.68 0.65 0.73 0.77 0.69 0.66 1 0.76 0.85

Class 8 0.78 0.82 0.75 0.81 0.82 0.83 0.77 0.76 1 0.8

Class 9 0.72 0.72 0.68 0.75 0.82 0.75 0.7 0.85 0.8 1

Table 3.3.2: Overlap Rate for Co-Supports from Different Classes For Wavelets Using MNIST
Clean Images

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 1 0.62 0.64 0.64 0.61 0.71 0.68 0.67 0.69 0.66

Class 1 0.62 1 0.76 0.75 0.68 0.75 0.72 0.72 0.72 0.73

Class 2 0.64 0.76 1 0.7 0.71 0.71 0.75 0.66 0.73 0.71

Class 3 0.64 0.75 0.7 1 0.67 0.77 0.71 0.69 0.77 0.74

Class 4 0.61 0.68 0.71 0.67 1 0.71 0.75 0.73 0.75 0.82

Class 5 0.71 0.75 0.71 0.77 0.71 1 0.77 0.7 0.83 0.74

Class 6 0.68 0.72 0.75 0.71 0.75 0.77 1 0.66 0.74 0.72

Class 7 0.67 0.72 0.66 0.69 0.73 0.7 0.66 1 0.7 0.82

Class 8 0.69 0.72 0.73 0.77 0.75 0.83 0.74 0.7 1 0.75

Class 9 0.66 0.73 0.71 0.74 0.82 0.74 0.72 0.82 0.75 1

Table 3.3.3: Overlap Rate for Co-Supports from Different Classes For Row Sparse ADL using
mnist-back-image
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Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Class 0 1 0.72 0.8 0.8 0.73 0.77 0.77 0.71 0.79 0.7

Class 1 0.72 1 0.72 0.72 0.75 0.69 0.69 0.73 0.71 0.69

Class 2 0.8 0.72 1 0.84 0.75 0.74 0.74 0.71 0.79 0.71

Class 3 0.8 0.72 0.84 1 0.75 0.77 0.73 0.75 0.79 0.74

Class 4 0.73 0.75 0.75 0.75 1 0.74 0.73 0.76 0.78 0.79

Class 5 0.77 0.69 0.74 0.77 0.74 1 0.72 0.71 0.81 0.7

Class 6 0.77 0.69 0.74 0.73 0.73 0.72 1 0.66 0.75 0.68

Class 7 0.71 0.73 0.71 0.75 0.76 0.71 0.66 1 0.74 0.8

Class 8 0.79 0.71 0.79 0.79 0.78 0.81 0.75 0.74 1 0.75

Class 9 0.7 0.69 0.71 0.74 0.79 0.7 0.68 0.8 0.75 1

Table 3.3.4: Overlap Rate for Co-Supports from Different Classes For Wavelets using mnist-
back-image

As is clear, in the clean case, Row Sparse ADL produces features whose co-support is

different for different classes and there is very little overlap. The highest is 35% overlap for

the classes 4 and 9 as we would expect as the digits 4 and 9 are similar to each other. On

the other hand there is significant overlap among the co-support produced by the wavelet

dictionary. In the noisy case, we see significant overlap in the co-supports of both the

dictionaries. However, a closer look tells shows that the overlap between class 4 and class

9 in the Row Sparse ADL is 82% and for the wavelet dictionary it is 79%. While for digits

2 and 3 co-supports produced by Row Sparse ADL have an overlap of 70% and the same

for the wavelet system is 84%. Taking another example between the digits 1 and 8, Row

Sparse ADL has a co-support overlap of 69% while the wavelet dictionary has an overlap of

79%. On the whole we can deduce that under noisy conditions Row Sparse ADL is able to

maintain better discrimination of subspaces. This gives us the motivation to use adaptive

dictionaries. Next we look at the recognition rate for the test cases. The recognition rate are

stated based on preprocessed data. The wavelet features and the Row Sparse features were

both fed to a SVM classifier with RBF kernel. The wavelet system yielded a recognition rate

of 0.77, while the SVM trained on Row Sparse features could classify with a recognition rate

of 0.86.
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Next we look into the features generated by the Low Rank ADL. Consider figure (3.3.5).

Figure 3.3.5: Comparison of the class rank in MNIST (on Left) and class rank of features
generated by Low Rank ADL (on Right)

The class rank of the features generated by Low Rank ADL have a faster decay rate of the

singular values, thus denoting the fact that the learnt features when grouped as a class have

only the essential information contained in them. The slope for digit 4 in the MNIST dataset

is -1.11 while the slope for the digit 4 feature is -25.6. Also, the learnt features maintain the

discriminative ability by ensuring that each class has a lower rank than combined classes.

Figure (3.3.5) also shows that there is high amount of dependencies within each class. Thus

the learnt dictionary is able to produce discriminative low rank feature for each class.

Another aspect is initializing the dictionary for the various algorithms. A number of

variations were tried. The one which gave consistently better performance on classification

task was used for the experiments. First the dictionary was initialized with curvelets and

DCT. It was found that features generated by such initializations could not give good classi-

fication performance. Thus, in most of the experiments, the dictionary was either initialized

by samples from the training dataset, or as a random matrix with Gaussian entries.

The following tables show the recognition rate for the various proposed algorithms and
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the comparison with other algorithms for MNIST and its variations.

MNIST(60k) mnist-rot mnist-rot-back-image mnist-back-rand

Unsupervised ADL 0.953 0.81 0.39 0.885

Row Sparse ADL 0.958 0.81 0.392 0.884

Low Rank ADL 0.964 0.79 0.391 0.839

LC-ADL 0.972 0.875 0.371 0.884

LC-KSVD 0.933 0.754 0.487 0.877

DKSVD 0.936 0.754 0.492 0.863

Chellapa-ADL 0.973 0.829 0.579 0.875

DBN-3 0.988 0.897 0.526 0.933

SDAE 0.987 0.905 0.562 0.897

Table 3.3.5: Recognition Rate For MNIST and its Variations With Neural Net as Classifier
for Proposed Methods

MNIST(60k) mnist-rot mnist-rot-back-image mnist-back-rand mnist-back-image

Unsupervised ADL 0.978 0.887 0.556 0.893 0.846

Row Sparse ADL 0.982 0.888 0.552 0.894 0.86

Low Rank ADL 0.971 0.852 0.555 0.901 0.855

LC-ADL 0.972 0.875 0.51 0.901 0.82

LC-KSVD 0.933 0.754 0.487 0.877 0.806

DKSVD 0.936 0.754 0.492 0.863 0.819

Chellapa-ADL 0.973 0.829 0.579 0.875 0.851

DBN-3 0.988 0.897 0.526 0.933 0.837

SDAE 0.987 0.905 0.562 0.897 0.833

Table 3.3.6: Recognition Rate For MNIST and its Variations With SVM as Classifier with
RBF Kernel for Proposed Methods

As is clear from the tables the SVM classifier performs better in classifying the data with

the proposed algorithms. Thus, for further experiments only SVM is used as a classifier with

a RBF kernel. Also, the proposed algorithms all surpass the synthesis algorithms, LC-KSVD

and DKSVD. They also perform better than the analysis classification suggested by Chellapa

et. al. It is interesting to note that in almost all cases the shallow ADL provides comparable

recognition rates with respect to complex feature generation tools such as DBN and SDAE,

which are deep learning tools and have much higher complexity compared to the simple

analysis dictionary learning. Also, in some cases, classification based on features generated by

44



the proposed algorithms beat those generated by DBN. For mnist-back-image the proposed

algorithms beat deep learning techniques and synthesis techniques. An improvement of 3.24%

over SDAE and an improvement of 2.7% over DBN is observed. A maximum improvement

of 7% over synthesis learning algorithms was found. For mnist-rot-back-image, the proposed

features beat the DBN in final recognition rates by a good margin and provide an maximum

improvement of almost 6% and have recognition rate almost equal to that of SDAE. In

case of mnist-back-rand, the classification based on features of Low Rank ADL and LC-ADL

yield better results than SDAE. On the whole the proposed feature generation algorithms

provided good recognition rates when compared with the state of the art feature generation

algorithms at a much lower complexity.

To completely convince ourselves that the proposed algorithms do provide better recogni-

tion rates than synthesis learning algorithms and comparable with deep learning algorithms,

experiments were conducted on the USPS dataset. The USPS dataset contains 7291 training

samples of dimension 16 x 16 and has 2007 samples for testing. No preprocessing was done

to the dataset.

Algorithm Recognition Rate

Unsupervised ADL 0.953

Row Sparse ADL 0.956

Low Rank ADL 0.956

LC-ADL 0.946

LC-KSVD 0.939

DKSVD 0.95

Chellapa-ADL 0.945

DBN-3 0.941

SDAE 0.952

Table 3.3.7: Recognition Rate For USPS dataset, with SVM as Classifier with RBF Kernel
for Proposed Methods

Chellapa et. al. proposed to feed the coefficients learnt by the transform learning into

a classifier. Transform learning performs l0 thresholding upon generating the feature by

application of the transform. Figure (3.3.6) shows the features learnt by the Chellapa ADL
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and the proposed unsupervised ADL. Even though unsupervised ADL uses l1 thresholding

it is able to recognise significant zeros of the signal.

Figure 3.3.6: Feature Comparison For Chellapa ADL (on Left) and Unsupervised ADL (on
Right) For USPS Dataset

Hence, even by relaxing the l0 constraint to l1, Unsupervised ADL are able to identify

the zeros of the signal. So, it is not required to perform a non convex thresholding step.

Another set of experiments were performed to gauge the feature generation ability of the

proposed algorithms in case of missing data. The following graph shows the performance of

various algorithms with increasing number of missing pixels.
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Figure 3.3.7: Variation in Recognition Rate with Missing Pixels for Various Algorithms

It is observed from the above graph that Row Sparse ADL performs best among the

proposed algorithms followed by unsupervised ADL, Low Rank ADL, Chellapa ADL and

LC-ADL. LC-KSVD performs the best, which is expected due to the KSVD type of algorithm

used for solving the problem and performance of KSVD on reconstructing from missing data

is well known.

3.4 Other Datasets

In order to see how the algorithm extends to other classification tasks, experiments were

performed on the ISOLET dataset. This dataset consists alphabets spoken twice by 150

persons. Therefore there are 52 samples from each speaker. The aim is to recognise the

alphabet which was spoken. There are 6238 training samples and 1559 testing samples. No

pre-processing was used.
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Algorithm Recognition Rate

Unsupervised ADL 0.964

Row Sparse ADL 0.963

Low Rank ADL 0.966

LC-ADL 0.959

LC-KSVD 0.85

DKSVD 0.856

Chellapa-ADL 0.928

DBN-3 0.962

SDAE 0.95

Table 3.4.1: Recognition Rate For ISOLET dataset, with SVM as Classifier with RBF Kernel
for Proposed Methods

In this case the proposed algorithms features when used with a SVM classifier out perform

the synthesis as well as deep learning methods.

3.5 Feature Generation Time

The following table shows the time required by various algorithms to generate features at test

time. Here we record the time taken to generate features for the entire test data. To have

a fair comparison the number of dictionary atoms was fixed to 700 for all the algorithms.

Clean MNIST dataset was used for comparison.

Algorithm Time (s)

Proposed Algorithms 0.13

Chellapa-ADL 0.46

LC-KSVD 0.325

DKSVD 0.338

Table 3.5.1: Time Required for Feature Generation at Test Time For MNIST

As is noted the proposed algorithms are fast in generating test features in comparison

to other algorithms. Chellapa-ADL requires more time because a l0 thresholding is required

after application of the transform. In the synthesis case an inverse problem is solved for

generating the coefficients, hence greater the time required to generate features at test time.
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Chapter 4

Application: Consumer Appliance

Device Classification

Non Intrusive Load Monitoring (NILM) systems need to identify devices from their electrical

characteristics. This helps in understanding human activity (e.g. a stove switched on means

cooking) and also helps in management of electrical resources. The goal for energy efficient

buildings can be identified as

1. Use of smart and energy efficient technologies to reduce energy consumption and

2. To reduce wastage by identifying (and thereby preventing) the operations of appliances

in non-working hours.

The analysis dictionary learning framework is applied to the latter goal and used for consumer

appliance device classification. The following sections discuss the motivation, the application

framework and results. The proposed framework is compared with the state-of-the-art.

4.1 Motivation

Conserving energy and reducing consumption of energy is of prime importance in energy

efficient buildings. However, wastage can only be reduced when we know that a device
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is ’ON’ during a lean period. This is of utmost importance in commercial buildings where

quite often than not electrical appliances are left switched on even during non working hours,

which leads to energy wastage. Therefore, accurately detecting and classifying devices on a

power line is an important task. This falls under the broad category of Non Intrusive Load

Monitoring (NILM). NILM systems provide complete information on the current state and

power consumed by a device. Power consumption readings in a scenario of event detection

is not really helpful but the state of the device is. For example an A.C. may consume a lot

of power but a fan or LED light may not, but in order to reduce wastage one just needs to

know which device is on. This is a common scenario in residential places where one forgets

to switch off a CFL or a computer CPU. So, the proposed method of classification in the

thesis is applied to classify and identify the ’ON’ devices. The methodology of detection is

discussed next.

4.2 Methodology

Usually in NILM, the signal is the reading acquired by a smart meter at regular intervals of

time. A few household appliances, such as electric toasters and irons, are simple on/off loads

that show a sharp increase in the power consumption when switched on. These patterns

can be identified with data gathered from smart meters [48]. However, most residential and

commercial appliances are not simple on/off. loads. They are multi-modal (refrigerator,

AC, washer etc.) [49] or continuously time varying (CPU, printers etc.) [50]. Detecting the

operation of these appliances has challenged researchers in the past few years. Multi-modal

loads can still be modelled by stochastic finite state machines (Factorial Hidden Markov

Model or Product of Experts), but the continuously varying loads are the hardest to model

by such classical techniques.

In the last few years, an alternate technique to smart meter sensing has emerged as a

viable method for detecting time-varying power patterns in appliances. The method is based
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on detecting the unique electromagnetic emissions, generated by the switched mode power

supply within the appliance, on the power line [51, 52]. The electromagnetic emissions are of

two types: the differential signal between the phase and neutral power lines; and the common

mode signal between these lines and the earth. The common-mode signal was demonstrated

as a far more robust feature vector for classification in comparison to the differential signal

in [52]. This is because the primary power signal (110V/230V) and its harmonics, which

interfere heavily with the differential signal [50], are not present on the common-mode signal

measurements. Also, most appliances, today, are required to be fitted with high quality

differential mode filters that regulate their emissions. Therefore, Differential Mode Elec-

tromagnetic (DM EMI) emissions form an unreliable feature for detecting appliances and

classification techniques yield poor results. Thus, the Common Mode Electromagnetic (CM

EMI) data is collected from various devices and the learning algorithm is run on various

aggregated instances of the devices. In this work four devices and a fifth class, background

noise, were chosen to form a part of the data. The four devices were CFL, CPU, Laptop

Charger (LC) and LCD. The reason behind choosing these four devices was that they are

commonly found in residential and commercial places and are the ones which are left ’ON’.

4.3 Feature Vector

The data obtained from a CM EMI sensing device are voltage values with a time stamp.

The sampling frequency of the data was 15.625 Mhz. The data consisted of five instances of

measurement for each device and their corresponding background noise. Using the raw data

directly classification does not yield much. The data needed to be converted to a usable

form. Frequency domain techniques were used. The Fourier domain data was generated but

they were not discriminative enough to give good classification. As in [53], the cepstrum

features were tried and they were found to have good discriminative power. The cepstrum
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Figure 4.3.1: Fourier Features For Various Devices. x axis on each subplot define frequency
in kHz and the y axis in each subplot defines magnitude of the coefficients.

Figure 4.3.2: Cepstrum Features for Various Devices. x axis on each subplot define frequency
in kHz and the y axis in each subplot defines magnitude of the coefficients.
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of a signal is the inverse Fourier transform of the logarithm of its Fourier coefficients.

cepstrum of a signal f(t) = F−1(log(|F(f(t))|))

Figure (4.3.2) shows the cepstrum features on which the learning was done. We can identify

various peaks of the devices at various frequencies which discriminate the data. For example,

both CFL and CPU have peaks near 20 and 330 kHz. However, CFL also has a peak around

170 kHz which is missing in the CPU signal and thus distinguishes the two. Laptop Charger

has a similar signature as that of CFL, however misses the important peak at 330 kHz and has

smaller magnitude peaks near 170 kHz which is enough information to distinguish the two

devices. Similarly, the LCD and background noise have a relatively flat cepstrum but at low

frequencies the LCD cepstrum has sharper and a larger number of peaks. Hence the cepstrum

of the devices form a good discriminative set of features on which learning can be done.Such

features were not possible with neither the Fourier domain nor the time domain data.Three

techniques were used for learning. ElectriSense [51], Conditional Likelihood Maximization

[54] and the proposed analysis dictionary learning framework with neural network and SVM

as classifiers.

4.4 Learning Algorithms

The algorithms against which the proposed algorithm is compared are the ElectriSense and

Conditional Likehood Maximization. The Electrisense was developed to specifically classify

devices from EMI data. By itself ElectriSense is just a Gaussian Mixture Model(GMM) for

event detection. It has an event segmentation and feature extraction procedure which works

as follows. When the sensor is switched on, it reads the first twenty five frequency vectors and

then stores it as the baseline noise signature. Then the system reads a window every twenty

five frequency vectors and mean aggregates them. A difference vector is calculated from

the baseline thus segmenting the event. The magnitude of the difference vector components
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is compared with a threshold and a event is detected. Thereafter, a Gaussian function is

fitted to the peaks in the difference vectors to estimate the amplitude, mean and variance

parameters. A feature vector is constructed with the parameters learnt and the central

frequency component and a one neighbour nearest neighbour with euclidean distance metric

with inverse weighting is used to classify the event. The difference between the proposed

approach and ElectriSense is that the proposed method works directly on the disaggregated

data and does not involve segmentation as a separate procedure. Moreover, ElectriSense

works on DM EMI data. However, in the current work, experiments were performed with

CM EMI data which has already been discussed to be more robust for classification.

Conditional Likelihood Maximization is an information theoretic approach to feature

selection which picks up good selection vectors from the given training signals based on

the likelihood of improving prediction accuracy. It uses mutual information between the

selected feature and the target it approximates. The entire optimization procedure is complex

and cannot be explained here. These two algorithms were compared with the proposed

framework.For completeness, a brief discussion of the hardware used is presented next.

4.5 Hardware

The hardware was designed by the Circuits and Systems group at IIITD. A sensor similar

to the one proposed in [52] is used for collecting both common-mode (CM) and differential

mode (DM) EMI data injected by an Appliance Under Test (AUT) on the power line. The

experimental set up is shown in figure (4.5.1) and (4.5.2). The sensor directly interfaces

with the phase, neutral and earth power lines through an extension cord through which

the AUT is powered. The DM EMI is measured from the differential across the phase

and neutral lines. A high pass filter is introduced to remove the 230V, 50Hz power signal

from the measurement. The CM EMI is measured directly from the earth currents. The

measurements are stored in an internal buffer within the sensor and then uploaded to an
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external computer for further processing through wired interface. These figures have been

adopted from [52] and a detail study about the sensor can be found therein.

Figure 4.5.1: Sensor Flowchart for Data Acquisition

Figure 4.5.2: Test Setup
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4.6 Experiments and Results

For the experiments the cepstrum features were generated for the collected data. There

were five instance for each device and each instance had 1500 readings from the meter.

The readings from all the devices for a given instance was aggregated together to form

a matrix. Each column of matrix was the cepstrum feature of a particular device. The

training set consisted of one instance of each device and the rest four instances were used

as testing data. This is the most difficult and most practical situation to be observed in a

residential or commercial building where access to training data is always scarce. Thus there

were 1500 samples for each device to train on and 6000 samples for testing for each device.

The background noise data was used from the LCD due to various stability reasons of the

electrical signal. The following confusion matrices show the recognition rates for each device

upon classification by various methods. The results reported are the average results across

all the five instances taken as training. Neural Networks and SVM were used as classifier for

the proposed methods. LC in the following tables denote Laptop Charger. First the features

learnt from the data are shown followed by the results.

Figure 4.6.1: Row Sparse Features For the Devices

As we can see, the row sparse algorithm can recover the group structure of the various

devices. The black rows indicate the atoms to which the signal is perpendicular. As expected
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there are common directions to which all the signals are orthogonal, but each device has a

class specific signature as is evident from Figure (4.6.1). The low rank features for the various

Figure 4.6.2: Low Rank Features For the Devices

devices are shown in figure (4.6.2). The low rank algorithm learns the dependencies among

he classes and hence each class has a lower rank as compared to a mixture of two or more

classes. This is more evident on case of CFL. CFL has a slower decay rate of the singular

values than CPU and LCD, however any mixture of CFL and another class we see the decay

rate of singular values is far slower. Also we can see that for the CFL data we find almost

60% faster decay rate in the low rank data as compared to the original cepstrum data. Thus

we find that the low rank ADL algorithm generates the most low rank feature for each class.

CFL CPU LCD LC Background Noise

CFL 0 0 0 0 0

CPU 0.75 0.5 0.25 0.25 0.25

LCD 0 0 0 0 0

LC 0.25 0.5 0.75 0.75 0.5

Background Noise 0 0 0 0 0.25

Table 4.6.1: Confusion Matrix: GMM + kNN (ElectriSense)
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CFL CPU LCD LC Background Noise

CFL 0.50 0.38 0.20 0.31 0.2

CPU 0.09 0.51 0 0.005 0

LCD 0.18 0.001 0.79 0.003 0

LC 0.13 0.1 0.002 0.68 0

Background Noise 0.09 0 0 0 0.8

Table 4.6.2: Confusion Matrix: CLM + Neural Network

CFL CPU LCD LC Background Noise

CFL 0.29 0.25 0.01 0.16 0.001

CPU 0.09 0.49 0.065 0.07 0.065

LCD 0.28 0.052 0.84 0.08 0.05

LC 0.23 0.2 0.082 0.69 0.08

Background Noise 0.1 0 0 0 0.8

Table 4.6.3: Confusion Matrix: CLM + SVM

CFL CPU LCD LC Background Noise

CFL 0.66 0.008 0.004 0.031 0.06

CPU 0.017 0.88 0.052 0.001 0

LCD 0.033 .094 0.8 0.26 0

LC 0.04 0.02 0.14 0.68 0

Background Noise 0.26 0 0 0.02 0.94

Table 4.6.4: Confusion Matrix: Unsupervised ADL + Neural Network

CFL CPU LCD LC Background Noise

CFL 0.7 0.01 0.001 0.01 0.05

CPU 0.017 0.88 0.035 0 0

LCD 0.028 0.09 0.8 0.25 0

LC 0.034 0.02 0.16 0.73 0

Background Noise 0.23 0 0 0.02 0.95

Table 4.6.5: Confusion Matrix: Row Sparse ADL + Neural Network
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CFL CPU LCD LC Background Noise

CFL 0.72 0.009 0.006 0.021 0.051

CPU 0.004 0.87 0.023 0.001 0

LCD 0.041 0.12 0.8 0.25 0

LC 0.021 0.02 0.17 0.70 0

Background Noise 0.22 0 0 0.03 0.95

Table 4.6.6: Confusion Matrix: Low Rank ADL + Neural Network

CFL CPU LCD LC Background Noise

CFL 0.53 0.051 0 0.009 0.002

CPU 0.05 0.71 0.07 0.009 0

LCD 0.042 0.19 0.8 0.3 0

LC 0.013 0.05 0.13 0.603 0

Background Noise 0.37 0 0.005 0.084 0.998

Table 4.6.7: Confusion Matrix: Label Consistent ADL + Neural Network

CFL CPU LCD LC Background Noise

CFL 0.78 0.03 0 0.0025 0.07

CPU 0.071 0.89 0.01 0 0

LCD 0.056 0.073 0.8 0.29 0

LC 0.01 0.007 0.2 0.704 0

Background Noise 0.085 0 0.005 0.084 0.932

Table 4.6.8: Confusion Matrix: Unsupervised ADL + SVM

CFL CPU LCD LC Background Noise

CFL 0.77 0.084 0.002 0.005 0.007

CPU 0.14 0.855 0.021 0 0

LCD 0.012 0.0054 0.8 0.32 0

LC 0 0.007 0.18 0.69 0

Background Noise 0.08 0 0 0 0.993

Table 4.6.9: Confusion Matrix: Row Sparse ADL + SVM
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CFL CPU LCD LC Background Noise

CFL 0.77 0.037 0.001 0.006 0.07

CPU 0.09 0.89 0.011 0 0

LCD 0.05 0.067 0.803 0.28 0

LC 0.005 0.01 0.18 0.72 0

Background Noise 0.08 0 0 0 0.933

Table 4.6.10: Confusion Matrix: Low Rank ADL + SVM

CFL CPU LCD LC Background Noise

CFL 0.731 0.04 0.001 0.0053 0.072

CPU 0.105 0.89 0.0138 0 0

LCD 0.07 0.06 0.8 0.32 0

LC 0.005 0.007 0.18 0.672 0

Background Noise 0.09 0 0 0 0.93

Table 4.6.11: Confusion Matrix: Label Consistent ADL + SVM

Method Accuracy

ElectriSense 30

CLM + Neural
Network

65.87

CLM + SVM 62.46

Unsupervised ADL
+ Neural Network

79.29

Row Sparse ADL
+ Neural Network

81.12

Low Rank ADL +
Neural Network

80.85

Label Consistent
ADL + Neural

Network

80.20

Unsupervised ADL
+ SVM

82.05

Row Sparse ADL
+ SVM

81.9

Low Rank ADL +
SVM

82.3

Label Consistent
ADL + SVM

80.43

Table 4.6.12: Classification Accuracies With Various Methods (In Percentage)
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4.7 Conclusion

As can be seen from the confusion matrices for CM EMI data, the proposed algorithms always

perform better on an per device basis as well as on the entire dataset as a whole. Moreover,

the SVM classifier fairs better as compared to the neural network. The CLM method is

able to distinguish between LCD, Laptop Charger and noise. However, it fails miserably in

distinguishing CPUs and CFLs. As is clearfrom the results, ElectriSense procedure is tailor

made for DM EMI data and fails in the CM EMI data framework. The proposed methods

are more robust across devices and detect all devices with reasonable accuracy.
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