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Abstract

Recent upsurge in data intensive applications over wireless communication networks is stimu-
lating rapid expansion of such networks and thus presenting new research challenges pertaining
to their efficient deployment. In the present communication networks, the increased traffic load
entails network operators to expand their networks by the deployment of a large number of base
stations (BSs) and access points (APs). Studies have reported that a major portion of energy
consumption occurs at the access network entities. This means that the massive data traffic is
being served at the expense of increased carbon footprint and huge energy consumption. There-
fore, energy saving has emerged as one of the major aspects in such data intensive and high
traffic communication networks. Considering this, the energy efficient operation of BSs and APs
has become a major research problem and it is well taken up in this thesis for the case of wireless
networks.

In this work, the research aim of energy saving has been considered for both, cellular BSs and
Wi-Fi APs to cover the major part of the wireless communication networks. An actor-critic
(AC) reinforcement learning (RL) framework is used to enable traffic based ON/OFF switching
of BSs and APs. Furthermore, previously estimated traffic statistics is exploited through the
process of transfer learning for further improvement in energy savings and speeding up the
learning process. Herein, this novel approach is used for three cases: realization of a transfer
learning framework for Wi-Fi networks, implementation of a three state RL based BS switching
scheme for existing cellular networks and application of RL in heterogeneous networks (HetNets)
consisting of macro and femto BSs. The use of practical scenario and real time data collected
from institute’s Wi-Fi network to validate the adopted scheme is an important feature of this
study. The superiority of the proposed framework is depicted through simulations and relevant
mathematical analysis.
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Chapter 1

Introduction

1.1 Background

Over the past few years, the information and communication technology (ICT) sector has seen

major technological advancements and there has been an explosive growth of data intensive

applications over the communication networks. This massive data traffic is being served at the

expense of increased carbon footprint and huge energy consumption. It has been reported that

ICT industries contribute to 2-10% of worlds overall total energy consumption [1]. Furthermore,

higher energy consumption would mean higher capital expenses (CapEx) and operational ex-

penses (OpEx) for the network operators. Therefore, reducing the energy consumption in ICT

operations is a major research challenge and it is extremely crucial to handle this from both

ecological and economical perspectives.

Studies have shown that more than 55% of energy consumption in the current communication

systems take place at the access network. To serve high traffic and high data rates, there is

a need for deployment of large number of base stations (BSs) and access points (APs) in the

access networks leading to high energy consumption [1]. Therefore, in order to reduce energy

consumption in such network, ensuring energy efficient operation of BSs and APs is extremely

important. In the current deployment of access networks, the BSs and APs are more or less

active all the time with the capacity to serve peak load. The aspect of variation in the traffic

load which is a practical scenario is generally not taken into account. This kind of deployment

leads to inefficient usage of access network resources when the traffic load is low and causes high

energy consumption. Therefore, there is a need to develop an optimal switching scheme such

that the BSs/APs are switched ON/OFF according to the traffic load. Furthermore, the existing

networks do not fully exploit the past usage statistics for optimal operation of BSs/APs. It is

seen that there is a reasonable correlation between the current data traffic and the data traffic

in the past. In the case of Wi-Fi networks, this could be attributed to a regular schedule of

activities in the concerned organization or area where these are deployed. For instance, in an

academic institution, a similar schedule is followed on the same days of the week. In case of

cellular networks, there is a typical day-night behavior of users and daily movements of users
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carrying their mobile devices from residential to office areas and back [1]. Hence, there is a high

possibility that the traffic variations at a given location follow a similar pattern at same time

instants on different days. Therefore, the past data statistics is indeed significant and could be

used effectively for devising present energy saving scheme. Considering these factors, there is an

ample scope of new research initiative to address this vital aspect of design of energy efficient

communication networks.

1.2 Motivation and Objectives

Recently, there has been increased research on traffic based BS switching in cellular networks.

However, application of these schemes on Wi-Fi network APs and on real time data have not

been studied extensively. This calls for significant research initiatives in this direction due to

the deployment of new data-intensive services ranging from high-speed data to multimedia and

operator’s interest in cellular data off-loading on Wi-Fi networks. Same way, in the case of

cellular networks, there are some bottlenecks in the current research direction for BS switching.

In most of the research works, two state BS switching is considered wherein BSs are switched

between the active mode and sleep mode according to the traffic load. In the active state, the BSs

operate in tri-sectorized mode in which for each active sector there is an active power amplifier

which consumes a large amount of energy. However, when the traffic load is moderate the BSs

can be configured to operate in omnidirectional mode. This could lead to a reduction in system

energy consumption owing to lower energy consumption of BSs operating in the omnidirectional

mode as compared to those in tri-sectorized mode. Apart from this, to make the cellular networks

more power efficient and sustain high speed data traffic, the propagation distance between nodes

can be decreased to reduce the transmission power. Hence, next generation communication

systems are marked by significant deployment of small cells. This calls for sincere research

efforts for devising energy saving schemes for herogeneous networks (HetNets).

In the backdrop of above discussed status of technology and research, the objective of this work

is to make efforts towards realization of energy efficient access networks for next generation

communication systems. Broadly, the main objectives of this work are:

• Realization of a transfer learning framework for energy efficient Wi-Fi networks and per-

formance analysis using real data.

• Implementation of a three state reinforcement learning (RL) based BS switching scheme.

• Application of RL for energy saving in HetNets consisting of macro and femto BSs.
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1.3 Related Work

Traffic load based dynamic BS switching has been identified as a promising technique for energy

efficient operation of wireless access networks. This technique is studied in [2–4] assuming

prior information about the traffic load. In [2], a theoretical framework for BS energy saving

is developed. A cost minimization problem is formulated and its solution is obtained using

greedy ON-OFF algorithm. In [3], an optimization problem is formulated which is aimed at

minimization of BS energy consumption with constraint that blocking probability is less than

a threshold value. The traffic profile is modelled as a periodic sinusoidal profile and the key

factors affecting energy saving are analysed. It is deduced that the energy saving is a function of

traffic parameters and the number of neighbouring BSs. In [4], a centralized greedy algorithm is

provided which requires the complete traffic and channel information followed by a decentralized

approach, which requires only the local load information. In the centralized approach, the energy

saving problem is formulated as an optimization problem with constraint on the bandwidth

occupancy of the user associated with a certain BS. In decentralized approach, information

requirement by the centralized algorithm is relaxed by triggering user-specific BS association

by designing a BS selection preference function. In [5], RL is applied for optimal BS switching

assuming traffic load to follow a Poisson distribution. Furthermore, the concept of transfer

learning discussed in [6–9] is effectively applied to BS switching problem. Transfer learning has

emerged as an effective way to exploit knowledge from a previous task (source task) to more

efficiently learn and solve a new related task (target task).

The advent of long term evolution (LTE) is marked by the growth of small cell deployments.

This is primarily because of the boost in capacity and quality provided by small cells which

is extremely critical, given the tremendous surge in data traffic [10]. Moreover, due to shorter

distances between the transmitter and receiver, same quality of service (QoS) can be achieved

using lower transmit power, increasing energy efficiency of the communication network. This

trend has given rise to expanding research interest in energy efficient HetNet deployment tech-

niques including dynamic switching of BSs in HetNets. Sleep mode techniques for small cells

are broadly introduced in [11]. In [12] optimal sleep/wake-up mechanism is derived using MDP

(Markov decision process). The solution to the MDP is obtained through dynamic programming

based Blackwell optimality conditions. However, for implementation simplicity a deterministic

policy is used. A simple fixed time femto BS sleeping scheme is presented in [13]. Optimization

problem formulation is used to derive ON/OFF scheme for two tier networks in [14–16].

The growth of research activities pertaining to dynamic BS/AP switching is evident from the

above discussion. However, there are a few bottlenecks in the state of art dynamic switching

schemes:

• There is a limited research on the application of these schemes in Wi-Fi networks and on

real time data. Although, the concept of Wi-Fi AP sleep mode is introduced in [17] but

the APs are switched ON and OFF periodically without learning the traffic pattern.
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• In case of cellular networks, the current research mainly focuses on two state BS switching

schemes. The BSs are switched to an active state at high traffic and sleep state at low

traffic. The fact that moderate traffic can be served with lower transmit power and has a

lower capacity requirement have not been exploited.

• In a practical scenario, when certain BSs are switched off the users would associate with

different set of BSs thereby changing the traffic loads on these BSs. Hence, consecutive

BS switching operations are correlated. The current BS switching operation would affect

overall energy consumption in the future. Learning based BS switching schemes can pro-

vide foresighted BS switching strategy which would increase system energy efficiency in

the long run [5]. Therefore, significant research efforts are needed in this direction.

• As discussed earlier, there could be a reasonable similarity in the current and future traffic

pattern at a given location. Therefore, the past data statistics could be effectively used for

devising present energy saving scheme. There is a limited research to exploit this concept

of knowledge transfer.

Effective application of RL along with transfer learning to achieve energy saving in cellu-

lar networks discussed in [5] provides an incentive to use this concept in various related

research domains. In the current work, this concept is effectively used to:

i) Achieve energy saving in localized Wi-Fi networks through an effective ON/OFF switch-

ing scheme exploiting transfer learning for Wi-Fi APs.

ii) Realize a three state BS switching scheme for cellular networks to increase energy

efficiency at moderate traffic.

iii) Derive an optimal BS switching scheme for HetNets consisting of macro BSs and femto

BSs.

1.4 Thesis Outline

The research problem formulation and findings of this work are organized as follows:

Chapter 2 describes the design of an actor-critic (AC) RL framework to enable traffic

based ON/OFF switching of APs in Wi-Fi network. Furthermore, it discusses the use of

knowledge transfer and validation of the proposed framework using real data.

Chapter 3 discusses the use of AC learning framework and transfer learning concept for

dynamic sectorization based BS switching scheme. Herein, a three state BS switching

scheme is studied in which apart from an active state at high traffic and sleep state at low

traffic, the BSs are switched to an omnidirectional state at moderate traffic leading to a

more efficient energy saving scheme. The performance of the proposed scheme is analysed

through relevant mathematical formulations and simulations.

Chapter 4 discusses the application of RL for energy saving in HetNets consisting of

macro and femto BSs. The performance of the proposed scheme is evaluated through

4



simulations and a brief analysis on trade-off between the energy consumption and QoS is

presented.

Chapter 5 concludes the thesis and suggests future research directions.
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Chapter 2

Transfer Learning Framework for

Energy Saving in Wi-Fi Network

2.1 Introduction

Rapid growth of business and institutional entities and the need for cellular data off-loading

has led to a phenomenal increase in localized Wi-Fi network deployment. High data rate

offered by Wi-Fi networks is being increasingly used to accommodate the recent upsurge

in data intensive applications. Growing concern about the energy efficient operation of

Wi-Fi networks is a natural consequence of their increased deployment. In such networks,

a major portion of energy consumption occurs at the access network entities making energy

efficient operation of Wi-Fi APs extremely crucial. The previous research works in this

domain [2–5] mainly focus on traffic based switching of BSs in cellular networks. Moreover,

in these works, switching schemes are applied on assumed traffic load or considering the

traffic load to follow a given distribution. Switching scheme for Wi-Fi APs is previously

discussed in [17]. However, APs are switched periodically without learning the traffic

pattern. Considering the aforementioned factors, in this work a novel approach is discussed

in which AC learning algorithm is used for switching the APs according to the traffic load

variations. Furthermore, the previously learned data statistics is well exploited by using

transfer learning approach in which data from appropriate period from the past is utilized

to make decision on the AP switching at the present. This scheme indeed leads to further

improvement in performance and speeds up the learning process. Moreover, to have a well

founded analysis, the algorithm is applied on real data collected from distinct APs of a

W-Fi network deployed in an academic institution.

2.2 System Model

For the present study, Wi-Fi network of an academic institution (IIIT-Delhi campus) has

been taken as a model. The algorithm is applied on a defined area of the campus as
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indicated in Figure 2.1. The data is in five minutes average format, i.e a single data point

corresponds to traffic load averaged over five minutes interval. The traffic data is collected

from 20 distinct APs as indicated in Figure 2.1 and a Markov decision process (MDP) is

formulated using the traffic variations. To ascertain reliability of the adopted scheme, the

algorithm is applied on two set of APs. Set-1 APs are the subset of APs serving lecture

blocks of the institution and Set-2 APs serve other areas like cafeteria and faculty cabins.

An attempt has been made to cover all the APs in the academic block. Lecture halls are

not present on the third, fourth and fifth floor, therefore lecture block APs are not present

on these floors.

Figure 2.1: Floor plan of academic building with 20 APs distributed over 5 floors.(LB:Lecture Block)

An MDP is characterized by the tuple M = <S,A, P,C>, where S is the state space, A

is the action space, P is the state transition probability, C is the cost function. At stage

k, traffic load is at state s(k)= {s(k)1 , s
(k)
2 , ...}, where s

(k)
i represent state of ith AP at stage

k. When an action a(k)= {a(k)1 , a
(k)
2 , ...} is taken, the ith AP is switched OFF if a

(k)
i = 0.

Otherwise, if a
(k)
i = 1, the AP remains ON. If n APs are considered, there would be 2n

possible states and actions.

The system cost, C in this case is power consumption of the system. Power consumption

of an AP consist of two parts: static power consumption which is independent of traffic

load and dynamic power consumption which varies proportional to the traffic load. This

can be expressed as follows:

7



C =
∑
i∈A’

[(1− qi)ρiPi + qiPi] (2.1)

where qi is fraction of static power consumption of ith AP, ρi is traffic load density, Pi is

total power consumption and A′ is the set of active APs.

2.3 AC Algorithm based ON/OFF Switching Scheme for

APs

As discussed in section 2.2, the traffic load variations are modelled as an MDP and an

optimal AP switching scheme can be established by finding its solution. In this work, the

solution to the formulated MDP is obtained through AC learning algorithm through a

series of relevant steps discussed here in the subsections.

AC learning algorithm is a subclass of RL algorithms. In general, RL framework consists of

an agent and an environment. There is a continuous interaction between the agent and the

environment. At each time step, the agent implements a mapping from states to action,

which is called agent’s policy. There is a reward (or cost) associated with each action. The

goal of RL is to maximize the reward received in the long run. If a problem is modelled

in such a way that each action has a cost associated with it, the goal of RL is to minimize

the cost incurred in the long run. In precise terms, if the sequence of rewards received

after time step t is denoted by rt+1, rt+2, rt+3.... then the goal of RL is to maximize the

expected value of the return. The return, Rt can be numerically expressed as:

Rt = rt+1 + γrt+2 + γ2rt+3 + .... =

∞∑
k=0

γkrt+k+1 (2.2)

where, γ is the discount factor having value between 0 and 1. It can be seen that the value

of γk decreases as k increases. This term is included to incorporate the fact that the worth

of immediate reward is greater than the later rewards. In the present case, the goal of is

to minimize the expected value of the discounted return which is termed as state value

function. The state value function is given by,

V π(s) = Eπ

[ ∞∑
k=0

γkC(sk, π(sk))|s(0) = s

]
(2.3)

where, E is the expectation operator, C(sk, π(sk)) represents system cost at stage k which

depends on state sk and action π(sk) [18]. In the current work, the problem is modelled

in such a way that there is a cost associated with each action. Here, the cost is the system

energy consumption given in Eq. (2.1). Hence, the return used in the computation of state

value function is in terms of cost instead of reward.

8



In AC algorithm, the policy structure is called the ‘Actor’ as it selects the action and the

value function acts as a ‘Critic’ as its value determines how good is the action taken and

consequently decides the future course of action.

In the present context, the objective of AC algorithm is to find an optimal strategy π

which maps every state ‘s’ to an action π(s(k)) such that system cost, C, is minimized. As

the learning proceeds, the policy structure tends towards optimal value and at each state

optimal action is taken such that the energy consumption of the system is minimized.

The AC algorithm for optimal AP switching is applied to the system through a sequence

of steps summarized in Figure 2.2. These steps are action selection, state value function

update, policy update and knowledge transfer which are elaborated in this section. Prior

to the application of these steps the policy and the state value function are initialized.

Consequently, their values get updated at each stage of learning. Further, if n APs are

considered the state value function is initialized as an 2n×1 vector as there is a state value

associated with each of the 2n possible states. Similarly, the policy would be a 2n × 2n

matrix as there is a policy value corresponding to each state-action pair.

Figure 2.2: Flowchart of AC algorithm.
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2.3.1 Action Selection

Action selection is done according to the policy structure. The selected action determines

which APs to be switched ON and OFF when the system is at a given state. In deter-

ministic terms, if the traffic load corresponding to an AP is high, it should be switched

ON, otherwise should be switched OFF. However, a deterministic policy would inhibit

the exploration factor in learning and may not guarantee convergence for various traffic

models. Therefore, in this work a probabilistic policy is used in which action selection is

done according to Boltzmann distribution as given in Eq. (2.4) [18]:

π(k)(s(k), a) =
exp{p(s(k), a)/τ}∑

a′∈A exp{p(s(k), a′)/τ}
(2.4)

where, π(k)(s(k), a) is the probability with which an action is taken at a given stage, τ is

a positive constant and p(s(k), a) specify the tendency to select an action a in state s(k).

2.3.2 State Value Function Update

The data transmission occurs after the APs are switched according to the selected action.

Consequently, load at active APs change which in turn changes the state of the system.

This requires a corresponding change in the value function discussed in Eq. (2.3). To

update the value function, the temporal difference (δ) is calculated as follows:

δ(s(k), a(k)) = C(k)(s(k), a(k)) + γV (k)(s(k+1))− V (k)(s(k)) (2.5)

Hence, δ(s(k), a(k)) is the difference between estimated state value function at the preceding

stage, V (k)(s(k)) and the foresighted state value function at stage k if action a(k) is taken

at state s(k) i.e., Eπ[C(sk, ak) + γkC(sk+1, ak+1) + γk+1C(sk+2, ak+2)....] = Eπ[C(sk, ak) +

γ(C(sk+1, ak+1) + γkC(sk+2, ak+2)....)] = C(k)(s(k), a(k)) + γV (k)(s(k+1)).

A negative value for δ(s(k), a(k)) suggest that the foresighted cost of taking the correspond-

ing action at that state is less than the estimated system cost. Therefore, the value function

corresponding to the next state after taking action a(k) should be decreased. Hence, value

function is updated as:

V (k+1)(s(k)) = V (k)(s(k)) + α(ν1(s
(k), k))δ(k)(s(k), a(k)) (2.6)

where, ν1(s, k) represents number of times state s occurs in k stages and α(.) is the positive

step size parameter. From the update rule it is clear that the value function decreases if

δ is negative and increases otherwise [5].
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2.3.3 Policy Update

State value function update is followed by policy update so as to increase the probability

of taking a favourable action at a given state and decrease its probability if the action

leads to an increase in the system cost. The policy update is done according to,

p(k+1)(s(k), a(k)) = p(k)(s(k), a(k))− β(ν2(s
(k), a(k), k))δ(k)(s(k), a(k)) (2.7)

where, ν2(s, k) represents number of times action a(k) is taken at state s(k) in k stages

and β(.) is the positive step size parameter. Certainly, a negative δ indicates a favourable

action as discussed earlier. Hence, when δ is negative p(k+1)(s(k), a(k)) is increased, as a

result, the probability of taking the favourable action increases according to Eq. (2.4) [5].

2.3.4 Knowledge Transfer

Transfer learning is a vital part of present study. In this work, the concept of transfer

learning has been evaluated by its application on real time data collected from the APs of

a localized Wi-Fi network chosen here. As indicated in the literature review, some transfer

learning based studies have been reported but these have not covered Wi-Fi networks

specifically. The present study is thus a step to add more knowledge in this domain while

considering a practical scenario and use of real time data. As discussed previously, there

is a reasonable similarity in traffic variation at a given location at the same instants in the

past and the present. Hence, it is quite worthwhile to exploit past data statistics in the

learning process to improve the performance and to eliminate the need for learning from

scratch. For transferring the knowledge gained from the past, the overall policy is divided

into two parts ‘native policy’ and ‘exotic policy’.

poverall = (1− ζ(k))pnative + ζ(k)pexotic (2.8)

where ζ(k) = θk is transfer rate that determines fraction of exotic policy that contributes to

overall policy, θ ∈ (0, 1) is the transfer rate factor, pnative is the policy which is continuously

updated as the learning proceeds and pexotic is the previously learned policy which is

transferred to the current task. Hence, pnative helps to explore new optimal values pertinent

to the current scenario and pexotic helps to exploit the optimal values learned previously.

When transfer learning is used, p(sk, a) in Eq.(2.4) is the overall policy, poverall. Too much

dependence on exotic policy may have negative impact on learning because the native

policy becomes more and more optimal with each stage of learning process. Therefore, the

knowledge transfer rate should decrease as the learning proceeds. Further, as discussed

in [6] the selection of source task from which knowledge is being transferred should be

given due consideration to avoid negative transfer and ensure reasonable improvement in

performance. Selection of source task should be such that there is sufficient similarity

between the source task and the current task [6]. For the present study, the choice of
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source task is instinctive. This is due to reasonable similarity between the last week’s and

last day’s schedule with the current day’s schedule. However, when there is irregularity

in system’s traffic pattern more robust approaches discussed in [8] can be used for source

task selection.

2.4 Results and Discussions

Considering a practical scenario, the AC algorithm is applied on two sets of APs as shown in

Figure 2.1. The algorithm is applied on real time data on 6 different dates, viz., November

18, 2015, November 24, 2015, November 25, 2015, January 13, 2016, January 21, 2016 and

January 22, 2016 . The performance is measured in terms of a metric termed as ‘Energy

Consumption Ratio (ECR)’ which is the ratio of energy consumption of the system on a

particular instant of learning process to the energy consumption of the system when there

is no learning and all APs are ON at that instant. The learning process proceeds in k

stages and each stage is termed as an Episode.

In this work, model of an academic institution is taken where a weekly academic schedule

is followed. Hence, there is certain correlation between the traffic variations at same days

of the week. Similarly, there are factors like weather conditions, a nearby festival or an

extra-curricular college activity which could lead to similar traffic patterns on consecutive

days. Hence, while transferring the knowledge from the past the exotic policy, pexotic is

taken as the combination of the last day’s policy and the last week’s policy i.e.,

pexotic =
1

2
[plastday + plastweek] (2.9)

Figures 2.3 and 2.4 represents the simulation results when the algorithm is applied on Set-1

APs for Nov. 2015 and Jan. 2016 data respectively. Simulation results depict that as the

learning proceeds, optimal value of policy is attained and the system energy consumption

reduces in-turn reducing the ECR. Figures 2.5 and 2.6 depict the simulation results when

the algorithm is applied on Set-2 APs. Furthermore, it can be inferred from Figures 2.3-

2.6, that there is a significant improvement in performance after application of transfer

learning.

The transfer rate factor, θ can be varied between 0 and 1 which consequently varies

ζ (transfer rate). The simulation results shown in Figures 2.3-2.6 are with θ = 0.2.

Conceptually, lesser value of θ would mean lesser dependence on exotic policy and a greater

exploration factor in learning. Figure 2.7. shows variation of mean ECR with θ for four

different dates viz. Nov. 24, 2015, Nov 25, 2015, Jan. 13, 2016 and Jan. 22, 2016. It can

be seen that minimum value of mean ECR and hence the best performance is obtained for

θ = 0.2. A similar trend is observed for the other dates as well. Therefore, for the present

system model, the value of θ is selected as 0.2.
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The percentage reduction in energy consumption as compared to the case when AP switch-

ing is not used is tabulated in Table 2.1. The maximum possible improvement refers to

the improvement when genie-aided policy is used where there is prior knowledge of traffic

data. It can be seen from the numerical results in Table 2.1 that by using AC algorithm

along with transfer learning a significant amount of energy saving can be achieved. There

is consistency in reduction of energy consumption on all chosen days, however the different

level of energy reduction on different days is due to specific traffic pattern.

Table 2.1: Percentage energy saving with the proposed scheme.

Date
Mean %

improvement
with AC algorithm

Mean %
improvement

with AC algorithm
and knowledge transfer

Maximum
possible

Improvement

18/11/2015 47.5 69.5 96.4
24/11/2015 60.9 78.6 96.9

Set-1 25/11/2015 73.6 79.1 95
13/1/2016 81.36 86.9 96.09
21/1/2016 81.49 88.09 97.18
22/1/2016 80.46 85.33 95.2

18/11/2015 74.49 83.2 85
24/11/2015 75.4 81 91

Set-2 25/11/2015 81.8 87 90
13/1/2016 63 67.3 94.12
21/1/2016 94.7 96.16 98.5
22/1/2016 94.74 96.4 98.6
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Figure 2.3: ECR curve for Set-1 APs (a) Combined policy of Nov. 11 and Nov. 17, 2015 as applied
on Nov. 18, 2015 (b) Combined policy of Nov. 17 and Nov 23, 2015 as applied on Nov. 24, 2015 (c)
Combined policy of Nov. 18 and Nov. 24, 2015 on Nov. 25, 2015
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Figure 2.4: ECR curve for Set-1 APs, (a) Combined policy of Jan. 6 and Jan. 12 , 2016 as applied
on Jan. 13, 2016. (b) Combined policy of Jan. 14 and Jan. 20, 2015 as applied on Jan 21, 2016. (c)
Combined policy of Jan. 15 and Jan. 21, 2016 as applied on Jan. 22, 2016.

15



1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

Episode

E
C

R

 

 

AC

AC with transfer learning

(a)

1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

Episode

E
C

R

 

 

AC

AC with transfer learning

(b)

2 3 4 5 6 7

x 10
4

0

0.2

0.4

Episode

E
C

R

 

 

AC

AC with transfer learning

(c)

Figure 2.5: ECR curve for Set-2 APs, (a) Combined policy of Nov. 11 and Nov. 17 , 2015 as applied
on Nov. 18, 2015. (b) Combined policy of Nov. 17 and Nov. 23, 2015 as applied on Nov 24, 2015. (c)
Combined policy of Nov. 18 and Nov. 24, 2015 as applied on Nov. 25, 2015.
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Figure 2.6: ECR curve for Set-2 APs, (a) Combined policy of Jan. 6 and Jan. 12 , 2016 as applied
on Jan. 13, 2016. (b) Combined policy of Jan. 14 and Jan. 20, 2015 as applied on Jan 21, 2016. (c)
Combined policy of Jan. 15 and Jan. 21, 2016 as applied on Jan. 22, 2016.
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Figure 2.7: (a)Variation of mean ECR with θ for Nov. 24, 2015 and Nov 25, 2015. (b) Variation of mean
ECR with θ for Jan. 13, 2016 and Jan 22, 2016.

2.5 Summary

The study on energy saving in Wi-Fi networks using real time data, presented in this

chapter is well conforming to the first objective outlined for the research work. This is

significant as energy efficiency in Wi-Fi networks is a vital factor, considering increased

deployment of such networks in organisations worldwide. Further, it addresses the re-

quirement of add-on applications in present and future communication networks with low

consumption of energy. As an innovative way, RL is used to device an optimal AP switch-

ing scheme which results in significant reduction in energy consumption of the system. A

further improvement in performance is achieved through transfer learning process. On an

average, the scheme presented in this chapter can lead to around 75% saving in energy

consumption as compared to the case when AP switching is not used. In both the cases,
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the results are derived considering a model of limited area Wi-Fi communication network

in an academic institution and using real time traffic data of the network. Importantly,

these results are applicable to similar networks in other organizations as well and the study

can be extended for large size Wi-Fi networks. In nutshell, the innovative approaches of

RL and transfer learning adopted here for a Wi-Fi network have yielded satisfactory result

in terms of energy saving.
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Chapter 3

RL Framework for Three State BS

Switching

3.1 Introduction

As discussed in section 1.1, the energy consumed by the BSs constitutes a major portion

of energy consumption of the overall communication system. Figure 3.1 depicts the energy

consumption by different components of a cellular BS. It is evident from Figure 3.1 that

the maximum energy consumption occurs at the radio heads, specifically within the power

amplifiers. In the present deployment, when a BS is active it operates in tri-sectorized

mode wherin for each active sector there is an active power amplifier leading to a high

energy consumption. To achieve energy saving in BSs, several BS switching schemes

have been proposed in [2–5, 11–17]. In these schemes BSs are switched between active

state and sleep state depending on the traffic load. However, as a different approach

when the traffic load is moderate the BSs can be configured to operate in omnidirectional

mode. This could lead to a reduction in system energy consumption owing to lower energy

consumption of BSs operating in the omnidirectional mode as compared to those in tri-

sectorized mode. This chapter discusses a novel scheme in which the previous work on RL

based BS switching [5] has been extended for three state BS switching. In the proposed

scheme, apart from an active state at high traffic and sleep state at low traffic, the BSs

are switched to an omnidirectional state at moderate traffic leading to a more efficient

energy saving scheme. It is quite intuitive that with such a scheme, the reduction in

energy consumption would be maximum in case of moderate traffic load. This is because

at moderate traffic a larger fraction of BSs would go into low power omnidirectional mode.

In this chapter, in addition to simulation, a suitable mathematical formulation is developed

to represent the new approach and reduced energy consumption.
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Figure 3.1: Power consumption of different BS components [25].

3.2 System Model

To analyse three state BS switching, the algorithm is applied on a system containing

uniformly distributed users in a region served by a set of overlapping BSs. The traffic

load at a given location is considered to follow a Poisson distribution with arrival rate

λ [19–21], then an MDP is formulated using the traffic load variations. When an action

a(k)= {a(k)1 , a
(k)
2 , ...} is taken if aki = 0 the ith BS is switched OFF else it is switched ON if

aki = 1. When a BS is ON , if the corresponding traffic load is greater than a threshold, it

is made to operate in tri-sectorized mode otherwise it is switched to omnidirectional mode.

The BSs are switched in a similar way as the Wi-Fi APs following the AC algorithm steps

described in chapter 2. In this case, there is an additional step after action selection i.e

user association and rest of the steps remain the same. After action selection, when certain

BSs are switched OFF, users associate themselves with the BSs belonging to the set of

ON BSs according to the following metric:

i∗(x) = argmaxj
c(x, j)

Pj
(3.1)

where, c(x, j) is the upper-bound on the capacity of the link between user located at x

and jth BS calculated according to Shannon’s theorem and Pj is the power consumed by

the jth BS. According to Eq. (3.1), a user located at position x chooses to be served by a
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BS j if the link between them provide maximum capacity and the BS consumes minimum

power.

3.3 Mathematical Analysis

The energy saving scheme presented here indeed works better than conventional two state

schemes. This argument can be supported through underlying mathematical formulation

developed in this study. Let Si be a random variable which represent the state of ith BS

in the set of available BSs. The random variable Si is a function of BS traffic load which

in-turn is a Poisson random variable. Si is either 0 or 1 depending on whether the BS is

ON or OFF and can be described as:

Si =

{
0, when BStraffic < threshold

1, when BStraffic ≥ threshold

Therefore, in a two state system, expected value of power consumption of a BS can be

given as,

E = f(Si = 0)P (Si = 0) + f(Si = 1)P (Si = 1) (3.2)

where f(Si = si) represents the probability that ith BS is at state si and P (Si = si)

represents power consumed by the ith BS at state si. Now, f(Si = 0) = f(BStraffic <

threshold) and f(Si = 1) = f(BStraffic ≥ threshold) therefore,

E = f(BStraffic < threshold)P (Si = 0) + f(BStraffic ≥ threshold)P (Si = 1)

(3.3)

Substituting P (Si = 0) = 0 and P (Si = 1) = Psectorized,

E = f(BStraffic < threshold)× 0 + f(BStraffic ≥ threshold)× Psectorized
(3.4)

Traffic load at a given BS is the sum of traffic due to all users associated with it. Traffic

from each user follow Poisson distribution i.e. F (X = x) = e−λλx/x! (Poisson(λ)). From

the property of Poisson random variable, sum of independent Poisson(λi) distribution is

a Poisson(
∑
λi) distribution. Let

∑
λi = λ and BStraffic = x

f(BStraffic ≥ threshold) =

∞∑
x=threshold

e−λλx/x! (3.5)

Therefore,

E = Psectorized × [
e−λλthreshold

threshold!
+

e−λλthreshold+1

(threshold+ 1)!
· · · ] (3.6)
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In the three state model presented in this work, at a particular instance, a given BS can

be either in active mode, sleep mode or omnidirectional mode. Hence, in this case the

random variable Si can be defined as,

Si =


0, when BStraffic < threshold

omni, when threshold ≤ BStraffic ≤ n× threshold
1, when BStraffic ≥ n× threshold

where, n is a scalar such that n > 1. In this case, the expected value of power consumption

of a BS would be,

Eomni = f(Si = 0)P (Si = 0) + f(Si = 1)P (Si = 1) + f(Si = omni)P (Si = omni) (3.7)

Eomni = f(BStraffic < threshold)P (Si = 0)+f(threshold ≤ BStraffic ≤ n×threshold)P (Si = omni)

+ f(BStraffic > n× threshold)P (Si = 1)

(3.8)

Eomni = Pomni ×

[
e−λλthreshold

threshold!
+

e−λλthreshold+1

(threshold+ 1)!
· · ·+ e−λλn×threshold

n× threshold!

]
+

Psectorized ×

[
e−λλ(n+1)×threshold

(n+ 1)× threshold!
+ · · ·

]
(3.9)

In Eq.(3.6) entire range of values are multiplied by Psectorized while in Eq.(3.9) values

for which BSTraffic > n × threshold are multiplied by Psectorized and rest by Pomni. As

Pomni < Psectorized, therefore Eomni < E. Hence, the expected value of power consumption

for omnidirectional mode is always less than the sectorized mode.

3.4 Results and Discussions

To evaluate the performance improvement through the proposed scheme, the AC algo-

rithm is applied on the system under two scenarios: a) the BSs are switched between

active mode and sleep mode according to traffic load b) BSs are switched between active,

omnidirectional and sleep modes based on traffic load. As the traffic load is considered to

follow a Poisson(λ) distribution, higher the value of λ, higher would be the traffic load.

Simulations are performed for varied traffic load. Figure 3.2 depicts the variation of mean

differential improvement with λ i.e. traffic load. Mean differential improvement is the

average of difference between energy consumption in a two state model and the proposed

three state model. The improvement is highest when the load is moderate as the fraction
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of BSs going into low power omnidirectional mode would be highest in this case. The

proposed scheme gives better performance for wide range of traffic models. At moderate

traffic, the performance gain is high and performance is equal to the existing scheme at

very low and very high traffic. Further improvement in performance can be achieved by

exploiting the past data statistics and using the concept of transfer learning as discussed

in section 2.3.4. This improvement in performance is depicted in Figure 3.3 for moderate

load. In this case also, the performance is measured in terms of ECR vs Episode curve.

It is observed that the proposed three state BS switching using AC learning framework

leads to 15% additional reduction than the two state switching scheme. Furthermore, the

application of transfer learning to this scheme leads to 40% reduction which is a quite

significant amount.
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Figure 3.2: Variation of Mean differential improvement with respect to traffic load.
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Figure 3.3: Reduction in system energy consumption at moderate traffic depicted through ECR curve.
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3.5 Summary

The analysis presented in this chapter addresses the requirement of a suitable energy

reduction approach in cellular networks. The three state base station switching is well

explained through related mathematical formulation and precise simulation results. A sig-

nificant drop in energy consumption level is observed in case of moderate traffic load owing

to switching of BSs to omnidirectional state. It is further dropped with the application of

transfer learning approach.

25



Chapter 4

RL framework for energy saving in

HetNets consisting of macro and

femto BSs

4.1 Introduction

In the previous chapters, RL based energy saving schemes are discussed for single tier

systems. This chapter presents the use of RL framework to develop an energy saving

scheme for a two-tier HetNet consisting of macro and femto BSs. Small cell deployment

has emerged as a promising solution to serve ever increasing data traffic in next generation

communication systems. Growing attraction towards small cells is due to their ability to

extend the coverage and boost the network capacity by reducing the propagation distance

between nodes and offloading the macro cell traffic. However, the inclusion of additional

BSs to serve greater traffic demands and data intensive services has become a major chal-

lenge towards the energy efficient deployment of cellular networks. Considering this trend,

there have been many recent research efforts in this direction [11–16]. This chapter dis-

cusses the use of AC learning algorithm and application of transfer learning concept in the

context of energy efficient BS switching in HetNets comprising of macro cells and femto

cells. Further, the trade-off between system delay and energy saving is analysed. Rel-

evantly, various sleep mode techniques for small cells are discussed in [11]. Sleep mode

techniques for small cells can be broadly classified into three categories, viz., small cell

controlled sleep mode, core network controlled sleep mode. In this work, core network

controlled sleep mode is considered to avoid the requirement of active user detection ca-

pability within the small cells and reduce implementation complexity as compared to user

equipment controlled sleep mode technique.
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4.2 System Model and Application of AC Algorithm Based

BS Switching Scheme on the System

To analyse the performance of AC learning based energy saving scheme, the algorithm is

applied on a hypothetical system which is discussed in this section. As a simple case, a

small region is considered consisting of two macro BSs separated by a distance of around 1

km and 20 femto BSs at fixed location within this region. Figure 4.1 shows the schematic

representation of the system.

Figure 4.1: Schematic representation of the system.

Traffic from each user follows Poisson distribution as discussed in chapter 3. The present

framework is modelled considering core network controlled sleep mode [11]. In LTE, the

control functionality is embedded within the macro BSs [22]. Hence, macro BSs are re-

sponsible for providing coverage and control functionality in the HetNets. Considering

this, in the present scheme the macro BSs are held in ON state and the femto BSs are

switched based on AC learning algorithm as described in section 2.3.

In this case also, action selection step is followed by user association. Based on the de-

scription of core network controlled sleep mode given in [11], the user association occurs

in two steps:

– Firstly, a connection between the macro BS and user is established based on the

macro cell coverage.

– Then, the user is associated with the femto BS lying in that macro cell region de-

pending on the metric given by Eq.(3.1).

The user association step is followed by state value function update and policy update

as described in section 2.3. Finally, transfer learning is used for further improvement in
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performance. The steps involved in the application of the algorithm to the system are

summarized in Figure 4.2.

Figure 4.2: Flowchart of the algorithm.

4.3 Results and Discussions

The energy saving obtained by the proposed scheme is validated through simulations and

the results are discussed in this section. For link capacity calculation for user association

step, COST-231 modified Hata model [23] is used for macro BS link and ITU-R specified

path loss model [24] is used for femto BS link. Figure 4.3 shows the ECR vs Episode

curve when the proposed scheme is applied on the system. It can be seen that as the

learning proceeds, the energy consumption of the system is reduced. Numerically, mean

improvement achieved on the application of AC learning algorithm is 78% and when trans-
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fer learning is applied, around 82% of improvement is achieved as compared to the case

when BS switching is not used.

To analyse the trade-off between system delay and energy saving, the system cost described

in Eq.(2.1) is modified as,

C =
∑
i∈A’

[(1− qi)ρiPi + qiPi] + ςCd (4.1)

where, Cd is the delay equivalent cost given by Cd =
∑

i∈A’
ρi

(1−ρi) . As discussed in [20],

minimizing Cd is equivalent to minimizing the average delay. A′ is the set of active BSs

and ς is a scalar that determines the weightage which is to be given to the delay equivalent

cost reduction [5].

The simulations are performed by varying the value of ς between 500 and 3500. For each

value of ς, the mean ECR and delay are computed and are plotted against each other.

Figure 4.4 indicates that a higher value of ς corresponds to a lower delay and greater

energy consumption. This is due to the fact that higher value of ς amounts to a greater

importance to delay equivalent cost reduction. If there is a lower tolerance to delay, lesser

number of BSs would be turned OFF and hence the energy consumption would be greater

which is apparent from Figure 4.4. Therefore, to ensure the required quality of service it is

necessary to take care of the trade-off between the system energy consumption and delay.

Further, it is observed that when the value of ς is increased from 500 to 1500 a small

increase in energy consumption is observed. After ς = 1500 a steep increase in energy

consumption is observed, suggesting ς = 1500 to be optimal value for the present model.
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Figure 4.3: Reduction in system energy consumption depicted through ECR curve
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Figure 4.4: Variation of mean ECR with delay importance parameter (ς)

4.4 Summary

In the preceding chapters, the objective of reducing energy consumption in wireless net-

works has been well attempted for localized Wi-Fi network and cellular networks. This

research is broadened by considering the case of HetNets consisting of macro and femto

BSs. The AC algorithm is relevantly modified to analyse performance of chosen scheme

of BSs deployment. Same way, the effect of transfer learning is analyzed for the HetNet

configuration. One more important aspect related to the trade-off between system delay

and energy saving is analysed. The tolerable limits of system delay with respect to desired

level of energy reduction is a point of intelligent trade-off and the discussed results are

undoubtedly a significant outcome of the research efforts here.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

ICT is one of the important areas which is dominating technological growth in the present

era. Rapid technological growth presents new research challenges to keep it sustainable

and in broad perspective, to conform with societal, economical and ecological aspects. This

is true with communication systems technology as well. Making communication systems

energy efficient is an interesting research motivation from technical, economical as well as

ecological perspective. The research work presented in this thesis well addresses this issue

and contributes in terms of presenting some novel approaches and their validation through

a significant reduction in energy consumption in key segments of wireless communication

networks i.e. cellular and Wi-Fi networks. Various research initiatives for development of

energy efficient wireless communication networks are reported in the literature. However,

there is ample of scope for improvement in order to address the requirement of next

generation communication systems which are heavily loaded with surging data applications

and traffic.

As such, the research work presented in this thesis relevantly attempts to address the

requirement of energy efficiency in next generation communication networks. Following

are the main contributions of the present research work:

Firstly, the innovative approaches of RL and transfer learning are applied to a Wi-Fi

network, this has yielded a satisfactory result in terms of energy saving. Importantly,

results are validated with real time data of a selected Wi-Fi network of an academic

institution.

Secondly, for the case of cellular networks, in addition to usual two state base station

switching scheme of active and sleep modes, a three state scheme comprising of an ad-

ditional omnidirectional mode is analyzed with related modification in AC algorithm,

relevant mathematical formulation and simulations. A significant drop in energy con-

sumption level is observed in the case of moderate traffic load owing to switching of BSs
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to omnidirectional state. It is further dropped with the application of transfer learning

approach.

Thirdly, the energy efficiency aspect is analyzed for the case of HetNets consisting of macro

and femto BSs. The AC algorithm is relevantly modified and transfer learning approach

is applied to the system. A significant drop in energy consumption is observed in this case

as well. Importantly, the aspect related to the trade-off between system delay and energy

saving is also analyzed here.

5.2 Future Work

– The concept of RL and Transfer learning for energy efficient access network deploy-

ment is applied to a limited case here, this can be extended to different deployment

scenarios. For example, this scheme could be applied to larger size Wi-Fi networks.

Furthermore, the study can be extended by the inclusion of data offloading from

cellular BSs to WiFi APs for high data rate applications.

– Preliminary attempt has been made here to analyse the trade-off between system

delay and energy saving for HetNets. In addition to system delay parameter, the

trade-off analysis could be extended to other compromising parameters when evalu-

ating limits of energy efficiency with respect to over all efficiency of the network. For

instance trade-off between energy efficiency and spectral efficiency could be analysed.

Further, interference among different cells could be taken into account.
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