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Abstract

Mean shift is a non-parametric mode seeking procedure widely used in many computer vision
problems. Mean shift clustering in particular is a well studied and established algorithm, which
has many merits over the classic k-means clustering algorithm. These algorithms repeatedly cal-
culate distance between data points to compute mean shift vector and cluster mean respectively
using some distance function. In most of the cases, Euclidean distance function is used which
weighs every dimension equally in the input space and thus often fails to capture the semantics
of the data. To alleviate this problem, a general form of distance metric based on Mahalanobis
distance is used that can be learned using the training data.

Distance metric learning has received a lot of attention in recent years and has proven to
be very successful in various problem domains. By learning a Mahalanobis distance metric, the
input space is transformed such that, similar points get closer to each other and dissimilar points
move further apart. A lot of research has been done on learning a global metric and integrating
it with k-means algorithm, but there have been very few efforts of integrating metric learning
with mean shift clustering.

This work focuses on developing a unified framework for improving mean shift clustering
by using global and local metric learning. We use a recently proposed Sparse Compositional
Metric Learning (SCML) framework and integrate it with mean shift clustering to investigate
the affect of using local metrics over a global metric. We also perform kernelization in the
proposed framework that can handle datasets with non-linear decision boundaries. To establish
the effectiveness of our approach, we performed experiments on 6 datasets of varying difficulty.
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Chapter 1

Introduction

1.1 Overview

The problem of finding relevant clusters has been a focus of considerable research in machine

learning and pattern recognition community. The aim of clustering is to find structure/pattern

in the data so as to group similar points into the same cluster and dissimilar points into dif-

ferent clusters. Although, clustering is an unsupervised learning problem, many algorithms

have been proposed in the past that use some labeled data or pairwise/triplet constraints on

some examples to improve clustering performance. Specifically, the supervision is usually added

either by modifying the clustering algorithm and enforcing the constraints during the cluster-

ing process [11, 27], or by learning a distance metric that satisfies the imposed constraints and

then running the clustering algorithm which uses the learned metric [2, 10, 30]. Some of the

works [4, 20,33] have integrated both by performing distance metric learning with each cluster-

ing iteration to capture arbitrary shaped clusters. In this work, we are interested in the former

approach, where we independently learn global and local metrics and then use these metrics in

mean shift clustering.

Mean shift is a general non-parametric mode seeking procedure, which was first introduced

by Fukunga and Hostetler [13] with its application to clustering and data filtering. Unlike k-

means, mean shift is a robust procedure which does not make any explicit assumptions on the

number, shape or any kind of random initialization of clusters. The procedure works iteratively

by maximizing the kernel density estimate (KDE) to locate modes in the underlying probability

distribution. Due to these properties, mean shift has been an active topic of research over

the years and has been commonly used in computer vision tasks, e.g., image segmentation and

smoothing [7] and real-time object tracking [6, 8, 31]. While k-means has been integrated with

metric learning in many previous works [2,4,10,20,30,33], mean shift has hardly been explored

in such a setting. However, there have been some efforts of introducing weak supervision [26]

and semi-supervision [1] in the kernel induced feature space.

A distance metric (function) plays a pivotal role in many classification and clustering algo-

rithms. In most of the clustering algorithms, a distance metric is required to compute distance
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between data points and determines the type (compact/loose) of clusters discovered by the al-

gorithm. In general, distance metric learning techniques use training samples to learn a distance

function that is semantically consistent with the data. The default Euclidean distance weighs

each dimension equally in the input space and is often inadequate to capture the semantics of

the data. To incorporate the correlation between features, the well studied Mahalanobis dis-

tance metric is often used which is characterized by a symmetric positive semidefinite (PSD)

matrix. Much of its popularity is because it can be easily extended to non-linear spaces via

kernelization [10,18,33] and leads to simpler formulations.

Learning a global Mahalanobis metric is equivalent to learning a linear transformation of the

input space where the given constraints are satisfied. One of the earliest works by Xing et al. [30]

learned a PSD Mahalanobis metric using similarity (dissimilarity) constraints by a combination

of gradient descent and iterative projections for k-means clustering. Although, using a single

Mahalanobis metric has shown to be quite effective, it is often unable to capture the complexity

of the task in heterogeneous data. To overcome this limitation Bilenko et al. [4] learned global

as well as multiple cluster metrics for k-means clustering to capture arbitrary shaped clusters

and improve clustering performance.

More recently, local metric learning has been explored in the context of nearest neighbor

classification and has been shown to improve classification accuracies over global metric learning.

This line of work is motivated by the fact that locally, simple linear metrics perform well [24].

Most of the existing methods [16, 23, 28, 29] learn full rank matrices, which do not scale well

with high dimensional data and are thus prone to overfitting. In this work, we use the recently

proposed sparse compositional metric learning (SCML) [25] by Shi et al. which uses low-

rank locally discriminative metrics extracted from the training data and integrates these into

meaningful global and local metrics. The method learns a sparse combination of low-rank

metrics and thus requires learning much less parameters for both global and local metrics than

the existing methods. We derive the mean shift clustering formulation for both global and local

metrics. We also show the benefit of using local metrics over global metrics with mean shift

clustering through empirical experiments on various datasets.

1.2 Motivation and Aim

More often than not we encounter such tasks in which a linear global metric is not able to

accurately capture the complexity (modality/complex boundaries) of the problem. In such

cases multiple (more than one) metrics or instance-specific metrics can be learned to capture

complex data patterns. The idea is that by allowing the metric to vary across feature space,

semantic information can be better captured by local metrics than by a global metric.

The objective function used in SCML-Global 2.12 and SCML-Local 2.15 promotes local

structure in the data by imposing large margin nearest neighbor (LMNN) [29] constraints.

Also, the local metrics correspond to a distance measure that locally adapts to the underlying
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structure of the data. This ability gives more power to an algorithm that uses local metrics over

a global metric. SCML learns these local metrics by using locally discriminative low-rank metrics

extracted from local regions in the data, and this discriminatory information can additionally

help in detecting better separated clusters in the data.

With respect to mean shift clustering, the benefit of using point-wise bandwidths over a single

global bandwidth has been very well studied in [9,14]. Using a global metric on top of that can

be visualized as locating modes in the KDE in the transformed space. On the other hand, the

use of local metrics fits very well with point-wise bandwidths in the kernel density estimate. In

this case, local metrics capture the local structure w.r.t the point and the point-wise bandwidth

acts as the scaling parameter for that point. Thus, the idea of using local metrics with point-wise

bandwidths is more appropriate than using a global metric.

Therefore, the aim of this work is to determine how local metrics can increase the performance

of mean shift clustering over the use of a global metric.

1.3 Organization of Thesis

This thesis is organized as follows:

• Chapter 2 provides a brief introduction to mean shift clustering and metric learning which

are required for developing the algorithm proposed in chapter 4.

• Chapter 3 underlines the related work that has been done on combining metric learning

and clustering into a unified framework.

• Chapter 4 proposes the framework for integrating global and local metric learning with

mean shift clustering. It also proposes the kernelization of proposed framework.

• Chapter 5 applies the approaches proposed in 4 on various datasets to show the effective-

ness of the proposed approach. It also provides the details of preprocessing the data and

evaluation metrics used for evaluating the framework.

• Chapter 6 concludes the thesis by summarizing the contribution of work and also gives

possible extensions or improvements that can be further explored.
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Chapter 2

Preliminaries

This chapter briefly discusses the basic theoretical concepts of mean shift clustering and met-

ric learning which are required to understand our work. We specifically discuss about Sparse

Compositional Metric learning (SCML) which is central to our work.

2.1 Adaptive Mean Shift Clustering

We first discuss about kernel density estimate in section 2.1.1 and then mean shift vector com-

putation in section 2.1.2.

2.1.1 Kernel Density Estimate

Kernel density estimate (KDE) is a nonparametric technique to estimate the underlying proba-

bility density function (p.d.f) from the training data. The idea behind KDE is simple, more the

data in a region, larger is the density function. These dense regions correspond to the regions

where the probability of finding a mode is very high.

Given n data points xi, i = 1, . . . , n in a d-dimensional space Rd and the corresponding

point-wise isotropic bandwidth matrices hiId×d, sample point density estimator is given by

fK(x) =
1

n

n∑
i=1

1

hdi
k

(∥∥∥∥x− xi
hi

∥∥∥∥2
)

(2.1)

which is the average of differently scaled kernels centered at each data point. Here, k(x) is the

kernel profile of the radially symmetric kernel K, which is non-negative and integrates to one.

With kernel profile k(x), for x ≥ 0, kernel K satisfies

K(x) = ck,dk
(
‖x‖2

)
(2.2)

where ck,d is the normalization constant which makes kernel K(x) integrate to one.

4



Comaniciu, Ramesh and Meer in [9] showed that using point-wise bandwidths gives better

performance and estimate of the underlying distribution than using fixed bandwidth. The mean

shift procedure also converges faster when using point-wise bandwidths.

The number of modes (peaks) in the KDE depends on the bandwidths and the kernel function.

If the bandwidths are too small, the KDE will be noisy with more number of modes, whereas if

bandwidths are too large, the KDE will be over-smoothed with less number of modes. In such a

case, reasonable bandwidths can be learned from the training data before the clustering process.

The simplest way to estimate hi’s is by nearest neighbor approach. If xi,k is the k-nearest

neighbor of point xi, then

hi = ‖xi − xi,k‖2 (2.3)

where k should be large enough such that density increases within the support of the differently

scaled kernels.

A normal (gaussian) kernel function that gives more weight to closer (to x) points than farther

points gives a smooth KDE and reasonable number of modes. On the other hand, Epanechnikov

kernel which gives zero weight to points which are farther than a threshold, results in a less

smoother KDE and more number of modes for the same bandwidths.

2.1.2 Mean Shift Procedure

The intuition behind mean shift computation is that the local mean centered at x shifts toward

the region in which the majority of points reside. The point at which the shift is negligible is

called the stationary point. In terms of density estimate, these modes or stationary points are

located at the point where gradient of the density estimate is zero, i.e. ∇f(x) = 0. This gives

an elegant procedure to estimate the modes in the data without explicitly estimating the KDE.

Therefore, by taking the gradient of Eq. 2.1, we get the following equation that is satisfied by

stationary points

2

n

n∑
i=1

1

hd+2
i

(x− xi) k
′

(∥∥∥∥x− xi
hi

∥∥∥∥2
)

= 0 (2.4)

Using g(x) = −k′(x) assuming that derivative of k(x) exists and introducing it into the

Eq. 2.4, the stationary point can be iteratively reached by following the mean shift procedure

starting with y1 = x

yj+1 =

∑n
i=1

xi

hd+2
i

g

(∥∥∥yj−xi

hi

∥∥∥2)
∑n

i=1
1

hd+2
i

g

(∥∥∥yj−xi

hi

∥∥∥2) j = 1, 2 . . . (2.5)

where {yj}j=1,2... is the sequence of locations or the path leading to a stationary point of the

estimated p.d.f. The mean shift procedure stops when

‖δy‖ =
∥∥yj+1 − yj

∥∥
2
≈ 0 (2.6)
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where yj and yj+1 is the current mean and shifted mean respectively, and δy is the mean shift

vector.

The mean shift procedure is an adaptive gradient ascent method where the learning rate

changes w.r.t the neighborhood. In regions of low-density, δy is large and in regions of high

density or when near local maxima, δy is small. The mean shift vector always points towards

the direction of maximum increase in the density. This was first mentioned by Fukunga et al.

in [13] and the convergence guarantee that a point converges to the local mode of the density

was later shown by Comaniciu et al. in [7].

For clustering the points, the mean shift procedure is run on every point and the points

converging to the same mode are clustered together.

2.2 Metric Learning

Metric learning plays an important role in capturing the underlying structure (correlation be-

tween features) for measuring distances between data points, which standard Euclidean metric

often fails to capture. Therefore, a lot of research has been done on metric learning, which is

summarized in this recent survey by Bellet, Habrard and Sebban [3]. In this section, we briefly

discuss about what a metric is, its properties and describe Mahalanobis distance metric.

A metric is real valued function mapping d : X ×X → <+
0 over a m-dimensional vector space

X , if ∀x,x′,x′′ ∈ X , it satisfies the following properties:

• d(x,x′) + d(x′,x′′) ≥ d(x,x′′) (triangle Inequality)

• d(x,x′) ≥ 0 (non-negativity)

• d(x,x′) = d(x′,x) (symmetric)

• d(x,x) = 0 (identity)

Although, there are many methods (linear and non-linear) to learn a metric as summarized in

[3], learning a globally linear Mahalanobis distance metric is the most common one. Mahalanobis

distance refers to generalized squared distance parameterized by a m ×m symmetric positive

semi-definite (PSD) matrix M, which satisfies the above mentioned properties.

dM(x,x′) =
√

(x− x′)TM(x− x′) M ∈ Sm+ (2.7)

M can also be expressed as M = LTL, where L ∈ Rr×m is transformation matrix and r

(≤ m) is the rank of M. In such a case, the Eq. 2.7 becomes the Euclidean distance in the

transformed space after linear projection of the data by L.

dM(x,x′) =
√

(Lx− Lx′)T (Lx− Lx′) (2.8)
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If M is low rank (r ≤ m), then it induces a linear projection of data into a lower (r)

dimension space. This produces a compact representation of data and leads to cheaper distance

computations.

The task of Mahalanobis distance metric learning is to learn a PSD matrix M that satisfies

the distance constraints imposed by the training data. There are a number of challenges when

learning M: 1) it scales poorly with dimensionality of the data, as it requires learning O(m2)

parameters, 2) optimization involves projecting M onto the PSD cone to maintain M ∈ Sm+
which is an expensive O(m3) procedure, and 3) to preferably learn a low-rank M, especially

in case of high dimensional data. Unfortunately, learning a low-rank M is NP hard and most

methods [19,22] fix the rank and use special regularizer functions to learn the matrix.

Most of the metric learning methods use pairwise or triplet distance constraints to learn a

PSD matrix M.

• Pairwise distance constraints are in the form of similarity (must-link) and dissimilarity

(cannot-link) pairs of points, where the learned metric ensures that similar points move

closer whereas dissimilar points move further apart.

• Triplet constraints are in the form of relative comparisons (x is closer to x′ than x′′) where

the learned metric tries to maximize the difference between two relative distances. In this

form, the distance between x and x′ can increase after transforming the space with the

learned metric.

The optimization function 2.9 usually has a loss function (L) which incurs a penalty on violation

of distance constraints and a regularization function (R) on the parameters of the learned metric

M to limit the risk of overfitting.

f(M, C, β) = min
M
L(M, C) + βR(M) (2.9)

2.2.1 Sparse Compositional Metric Learning

SCML [25] is a unified and flexible framework from which three different formulations, namely

global, multi-task and local metric learning can be derived. In this work, we are only interested

in global and local metrics.

The framework focuses on learning higher-rank linear metrics from a sparse combination of

rank-1 “basis metrics”. These basis metrics are rank-1 locally discriminative metrics extracted

efficiently from the training data by applying Fisher discriminant analysis in the local regions.

The task in SCML is to select the most useful basis metrics by learning the combination weights.

By using these readily available basis elements, the number of parameters to learn is much smaller

(linear in number of basis elements) and projection on to the PSD cone is not required as in

other existing methods, which is expensive in case of high dimensional data.
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In SCML, a m × m PSD Mahalanobis matrix M can be represented using K rank-1 PSD

matrices as

M =
K∑
i=1

wibibi
T (2.10)

where w ≥ 0 and bi’s are d-dimensional column vectors.

SCML uses a set of triplet constraints C where each (xi,xj ,xk) ∈ C indicates xi should

closer to xj than xk. These constraints are constructed in a fully supervised manner as in

LMNN [29], where xj (target neighbor) is the nearest neighbor to xi from the same class as

xi and xk (imposter) is the nearest neighbor from a different class. The constraints can also be

generated in a weakly supervised manner to incorporate relative comparisons.

The loss function in both the global and local formulations is the margin-based hinge loss

function as defined in LMNN, i.e.

Lw(xi,xj ,xk) = [1 + dw(xi,xj)− dw(xi,xk)]+ (2.11)

where dw(xi, xj) is the Mahalanobis distance as defined in Eq. 2.7 parameterized by w , and

term [c]+ = max(c, 0) is the standard hinge loss.

The loss function in Eq. 2.11 incurs a penalty when the imposter xk is closer to xi than xj .

The learned metric pushes the imposters such that there is a unit margin between the perimeter

defined by target neighbors, in which case the loss function would be minimum.

Global Metric Learning

The formulation for SCML-Global is simple and just involves learning K parameters by

combining the basis elements into a global metric that satisfies the constraints in C.

min
w

1

|C|
∑

(xi,xj ,xk)∈C

Lw(xi,xj ,xk) + β ‖w‖1 (2.12)

where β ≥ 0 is the regularization parameter with the l1 norm regularizer that induces sparsity

in w , which allows M to be dependent only on the most useful basis metrics. The optimization

function in Eq. 2.12 is linear in both terms, which makes it convex and thus is bounded below

by a global minimum. The generalization bound for SCML-Global is provided in [25].

Local Metric Learning

When learning instance-specific metrics, the number of parameters can scale very rapidly w.r.t

to number of training points as well as the dimensionality of the data, and thus cause overfitting.

Another challenge with existing local metric learning methods is that, there is no proper way of

generalizing the learned metrics to new regions of the space at the test time.

SCML’s local metric framework addresses the above challenges by; 1) learning a metric tensor
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(function) T (x), which is smooth and maps any instance x to its metric matrix [24]. This allows

distances to be computed from x by its own metric, as

dT (x,x′) = (x− x′)TT (x)(x− x′) , T (x) =

K∑
i=1

wx,ibibi
T (2.13)

where wx is the weight vector for instance x; 2) instead of learning a weight vector for every

training instance, the weight vector itself parametrically depends on some embedding of x. The

metric tensor in Eq. 2.13, then corresponds to

T (x) =
K∑
i=1

(ai
T zx + ci)

2bibi
T (2.14)

where A = [a1 . . .aK]T ∈ Rd′×K , c ∈ RK and zx is an embedding of x.

The above parametrization reduces the number of parameters to just K(d′+1) and also gives

the generalization ability of learning a metric for any point in the feature space. The formulation

for SCML-Local corresponds to

min
Ã

1

|C|
∑

(xi,xj ,xk)∈C

LTA,c
(xi,xj ,xk) + β

∥∥∥Ã∥∥∥
2,1

(2.15)

where Ã ∈ R(d′+1)×K is a matrix obtained by concatenating Ã and c. The l2/l1 norm regularizer

introduces sparsity at the column level and forces local metrics to use the same basis subset.

SCML-local is nonconvex and is thus subject to local minima.
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Chapter 3

Related Work

As we are using a metric learning framework which has been used for multi-class classification,

we will discuss other techniques that have introduced multiple metric learning for improving

classification performance. We will also discuss metric learning frameworks that have been

introduced specifically for improving clustering performance.

Multiple/Local Metric Learning

In the last decade, several multiple metric learning algorithms have been proposed in the nearest

neighbor scheme. MM-LMNN [29] proposed by Weinberger and Saul is an extension of LMNN

which learns multiple (typically one per class) metrics to overcome overfitting. msNCA [16]

by Hong et al. learns a function that splits the input space into small regions and then learns

a metric per region using NCA [15]. PLML [28] by Wang et al. on the other hand learns a

combination of full-rank metrics just like SCML, but here weights are not sparse and use no

discriminatory information as they depend only on a manifold assumption. Another problem

with PLML is that it learns a weight vector for every training instance and there is no way to

generalize to new instances. While all these approaches are discriminative in nature, GLML [23]

proposed by Noh et al. learns a metric for each point in a generative way under some assumption

for the class distributions by minimizing the 1-NN expected error. All these approaches learn

a large number of parameters which do not scale well with the dimensionality of the data and

the number of metrics (classes). Another approach which learns multiple metrics was recently

proposed by Bohne et al. [5] that uses similarity and dissimilarity pairs instead of triplets to

learn a dissimilarity function. The dissimilarity function is obtained by aggregating local metrics

which are estimated by solving a convex optimization problem.

Metric Learning and Clustering

Most approaches that integrate metric learning and clustering use semi-supervision in the form

of pairwise distance constraints to improve the performance of k-means clustering algorithms.
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One of the earliest works by Wagstaff et al. [27] imposes pairwise distance constraints on k

regions such that similarity pairs lie in the same cluster while dissimilarity pairs lie in different

clusters. Xing et al. [30] proposed a better approach of integrating metric learning with k-

means by using pairwise distance constraints to learn the Mahalanobis metric as well as drive

the clustering process as in [27], that helped in generalizing to unseen data points. Similarly,

Bilenko et al. [4] proposed an approach that iteratively learns a Mahalanobis metric during the

clustering process that permits better separated clusters than the previous approaches. They

also introduced cluster specific metrics that helps in capturing arbitrary shaped clusters in the

data. While these methods use pairwise distance constraints, Kumar et al. [20] proposed a

metric learning approach similar to [4] but uses triplet constraints to update the metric during

the clustering process. All these methods are quite effective but they often perform poorly

for datasets with non-linear decision boundaries. To overcome this problem, Yin et al. [33]

proposed a metric learning approach with nonlinear semi-supervised clustering that improves

the separability of the data for clustering. Unlike all the above supervised methods, Ye et

al. [32] introduced an unsupervised framework that simultaneously performs metric learning

and clustering. This approach projects the data onto a low-dimensional manifold with an aim

to maximize separability between different classes.

As these methods are designed for k-means clustering, they are limited by and depend on

the parameter k, which is the number of clusters (classes). This poses a serious problem in

cases where classes in datasets are multimodal and cannot be separated into k clusters. In

such cases, density based methods such as DBSCAN [12] has been shown to perform effectively.

The method uses two parameters (radius and minimum points within radius) to group points

in the dense regions into compact clusters of any shape. SSDBSCAN [21] is a semi-supervised

variant of DBSCAN that uses labels of very few points from each class to determine the required

parameters. Mean shift clustering on the other hand provides a robust way to detect multiple

clusters by locating modes in the density. In [26] Tuzel et al. proposed semi-supervised mean

shift clustering that imposes similarity pairwise distance constraints in the kernel induced feature

space to promote clustering within same class points. An extension to this work by Anand et al.

in [1] imposes both similarity and dissimilarity pairwise distance constraints to learn a low-rank

kernel matrix, that promotes clustering of similar class points and separation of dissimilar class

points.
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Chapter 4

Proposed Method

In this chapter, we propose a framework that integrates global and local metric learning with

mean shift clustering. We also propose kernelization of the algorithm, which helps to achieve

better clustering performance in complex datasets that have non-linear decision boundaries.

Suppose we have a set of points {xi}i=1...n ∈ Rd and the corresponding point-wise bandwidths

hi’s and for mean shift clustering, we have the multivariate normal profile

k(x) = exp

(
−1

2
x

)
, x ≥ 0 (4.1)

which produces the multivariate normal kernel

K(x) = (2π)(−
d
2
)exp

(
−1

2
‖x‖2

)
(4.2)

4.1 Mean Shift Clustering with Global Metric

4.1.1 Bandwidth Estimation

For computing the bandwidths, we use the k-nearest neighbor approach by transforming the

points, where k is supplied by us. If L is the linear transformation corresponding to the learned

global metric M where M = LTL and xi,k is the k-nearest neighbor of xi, then

hi = ‖Lxi − Lxi,k‖2 (4.3)

4.1.2 Mean Shift Procedure

Let M be the global Mahalanobis PSD matrix obtained from Eq. 2.10 by using the learned

w and the basis elements. In this case, the sample point density estimator defined in Eq. 2.1

12



becomes

f(x) =
1

n

n∑
i=1

1

hdi
√

detM−1
k(zi) , zi =

(x− xi)
TM(x− xi)

h2i
(4.4)

By taking the gradient of f(x) and equating it to zero, we get

∇f(x) =
2M

n
√

detM−1

n∑
i=1

1

hd+2
i

(xi − x) g(zi) = 0

where g(zi) = −k′(zi).

x
n∑
i=1

1

hd+2
i

g(zi) =
n∑
i=1

xi

hd+2
i

g(zi)

x =

∑n
i=1

xi

hd+2
i

g(zi)∑n
i=1

1
hd+2
i

g(zi)
(4.5)

which is the same expression as Eq. 2.5 but with Mahalanobis distance instead of the standard

Euclidean distance. Here, using M and hi is equivalent to first rotating and scaling the input

space and then again scaling each dimension equally by 1
hi

.

4.2 Mean Shift Clustering with Local Metrics

4.2.1 Bandwidth Estimation

We use the same technique as in previous section but for estimating the bandwidth for point xi,

its own Li is used

hi = ‖Lixi − Lixi,k‖2 (4.6)

4.2.2 Mean Shift Procedure

Let {Mi}i=1...n be the local Mahalanobis PSD matrices obtained from metric tensor T (xi),

which maps every point xi to its metric Mi. Therefore, the problem becomes heteroscedastic as

every point has its own metric to capture the varying local structure. The sample point density

estimator is then

f(x) =
1

n

n∑
i=1

1

hdi

k(zi)√
detM−1i

, zi =
(x− xi)

TMi(x− xi)

h2i
(4.7)

which is the average of differently rotated and scaled kernels centered at each data point.
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Following a similar derivation as in the previous section, we get

∇f(x) =
2

n

n∑
i=1

Mi

hd+2
i

√
detM−1i

(xi − x) g(zi) = 0

=
2

n

n∑
i=1

Bi(xi − x) g(zi) = 0

where Bi = Mi

hd+2
i

√
detM−1

i [
n∑
i=1

Bi g(zi)

]
x =

n∑
i=1

Bi xi g(zi)

x =

[
n∑
i=1

Bi g(zi)

]−1 [ n∑
i=1

Bi xi g(zi)

]
(4.8)

4.3 Kernelizing the Algorithm

For datasets that have non-linear boundaries and are inseparable in the input feature space,

kernelization improves the separability between clusters when metric learning is performed in

the kernel induced feature space. To kernelize the algorithm, we obtain a mapping of every point

x in a high dimensional feature space and then apply metric learning on these new mapped

points.

Let Kσ be the n× n kernel matrix obtained with the Gaussian kernel

Kσ(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(4.9)

where xi, xj ∈ Rd and σ is the bandwidth of the kernel.

By using singular value decomposition (SVD), the kernel matrix decomposes into

Kσ = USV T (4.10)

where U and V are right and left singular vectors, and S are the singular values of Kσ. As Kσ

is a symmetric positive semidefinite matrix, USV T is equivalent to USUT .

To get a low dimensional representation of the points in the kernel space, we choose first r

singular vectors that explain 95% of the total variance. Then the new representation of points

using Ur and Sr becomes

X̂ = Ur
√
Sr (4.11)

Now, the metric learning and mean shift clustering is performed in the kernel induced space

14



using X̂.
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Chapter 5

Experiments and Results

In this section we will evaluate the performance of adaptive mean shift clustering with global

and local metric learning and compare them.

5.1 Datasets and Preprocessing

We use 5 datasets from UCI1 and USPS2 handwritten digits for our experiments. We use the

same preprocessing strategy and parameter settings as used by SCML [25]. We preprocess all

the datasets by first standardizing the input features so that their mean is 0 and variance is

1. Then we normalize the instances so that their L2-norm is 1. We also use PCA for reducing

the dimensionality of USPS by keeping the PCA components that conserved 95% of their total

variance. We split the data into train/test that is mentioned in table 5.1. All the results are

averaged over 5 random splits.

Datasets # Samples # Classes # Features Data split

WDBC 569 2 30 60%/40%

Wine 178 3 13 60%/40%

Vehicle 846 4 18 60%/40%

Segment 2310 7 18 60%/40%

Vowel 990 11 10 60%/40%

USPS 11000 10 256 1200/800

Table 5.1: Datasets for adaptive mean shift clustering using global and local metrics

1http://archive.ics.uci.edu/ml/
2http://www.cs.nyu.edu/~roweis/data.html
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5.1.1 Setup for Global and Local Metric Learning

Setup for metric learning is the same as used in SCML [25]. We use the same basis set and

triplets for both the formulations. Triplets are generated by selecting 3 nearest neighbors with

same label and 10 nearest neighbors with different label for each instance. Kernel PCA is used

for embedding of instances in SCML-Local. Parameter setting for all the datasets is given below

in table 5.2.

Datasets # Basis Elements Embedding Dimension

WDBC 200 40

Wine 200 40

Vehicle 400 40

Segment 400 40

Vowel 400 40

USPS 800 100

Table 5.2: Parameter Setting for SCML

5.1.2 Setup for Mean Shift Clustering and Kernelization

The parameter k for estimating bandwidths in mean shift is provided by us and it varies for

every dataset. The value of k is varied between six values and we select those results which give

reasonable number of clusters and error rate. We will show the effect of k on the number of

clusters for a few datasets. The bandwidth parameter σ for the kernelization is also provided

by us. The best σ is selected by viewing the difference between the initial kernel matrix and the

learned kernel matrix.

Datasets range of k σ
Global MSC Local MSC

WDBC 32 - 37 35 - 40 −−
Wine 20 - 25 22 -27 −−

Vehicle 13 - 18 15 - 20 1

Segment 32 - 37 35 - 40 1

Vowel 20 - 25 25 - 30 1

USPS 15 - 20 17 - 22 1.5

Table 5.3: Parameter Setting for Mean Shift and Kernelization
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5.2 Evaluation Criteria

Since the labels of all the datasets are known, we use Adjusted Rand Index (ARI) [17] and error

rate (%) for analyzing the performance of mean shift clustering. We use training labels only for

the purpose of labeling and evaluating the clusters obtained from mean shift clustering.

5.2.1 Adjusted Rand Index (ARI)

The Rand Index (RI) measures the percentage of predictions for which, the both predicted and

true clusterings agree. A problem with Rand Index is that it does not penalize random clustering

assignments. Therefore, ARI is the ”adjusted for chance” version of RI, which corrects the

agreement that might be solely due to chance between clusterings.

ARI =
RI − Expected RI

max(RI)− Expected RI
(5.1)

It takes a value of 0 for randomly labeled independent clusterings and value of 1 when the

clusterings are identical.

5.3 Results and Discussion

5.3.1 Mean Shift Clustering in Input Feature Space

Here, we show the results for mean shift clustering in the input feature space evaluated on the

test set. Average Error rates and ARI values are mentioned in the tables 5.4 and 5.5 respectively,

and the number of clusters detected are mentioned in table 5.6.

Datasets Global MSC Local MSC

WDBC 4.04 ± 1.47 3.51 ± 1.49

Wine 2.53 ± 1.17 2.25 ± 1.61

Vehicle 34.67 ± 4.45 28.05 ± 4.20

Segment 28.05 ± 3.85 24.78 ± 1.30

Vowel 67.42 ± 1.80 63.56 ± 1.52

USPS 18.30 ± 2.42 15.67 ± 2.74

Table 5.4: Average Error Rates (%) for Global and Local Mean Shift Clustering (MSC)

5.3.2 Discussion

• Local mean shift clustering performs better in all the datasets but, for Vehicle, Segment

and Vowel, both global and local versions produce large number of clusters than the number
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Datasets Global MSC Local MSC

WDBC 0.80 ± 0.06 0.85 ± 0.06

Wine 0.92 ± 0.03 0.93 ± 0.05

Vehicle 0.45 ± 0.04 0.52 ± 0.08

Segment 0.57 ± 0.4 0.59 ± 0.02

Vowel 0.17 ± 0.03 0.19 ± 0.03

USPS 0.70 ± 0.03 0.75 ± 0.04

Table 5.5: Average ARI values for Global and Local Mean Shift Clustering (MSC)

Datasets Global MSC Local MSC # Classes

WDBC 2 ± 0 2 ± 0 2

Wine 3.4 ± 0.54 3 ± 0 3

Vehicle 15.2 ± 1.46 13.6 ± 1.48 4

Segment 16.6 ± 0.89 14.4 ± 1.14 7

Vowel 25.2 ± 5.1 24.2 ± 3.8 11

USPS 15.8 ± 1.9 15.2 ± 1.4 10

Table 5.6: Average number of clusters detected

of classes.

• This is due to the relative (triplet) distance constraints that promote local structure within

the same class, which results in much more number of clusters than the number of classes.

• Local mean shift clustering also takes longer (larger values of k) than global mean shift

clustering to converge to the same number of clusters. This behavior is expected because

every point has its own metric to compute distance to other points instead of a global

metric.

(a) Vehicle data set (b) USPS data set

Figure 5.1: Comparison between Global and Local Mean Shift Clustering showing the relationship be-
tween k and the number of clusters detected.
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5.3.3 Mean Shift Clustering in Kernel Induced Feature Space

We perform kernelization only on Vehicle, Segment, Vowel and USPS because mean shift clus-

tering performs poorly both in terms of error rate and number of clusters.

Datasets Global MSC Local MSC

Vehicle 29.56 ± 2.18 27.35 ± 1.54

Segment 19.25 ± 1.56 16.75 ± 1.32

Vowel 12.32 ± 2.95 10.52 ± 1.75

USPS 7.1 ± 1.53 6.54 ± 1.12

Table 5.7: Average Error Rates (%) for Kernelized Global and Local Mean Shift Clustering (MSC)

Datasets Global MSC Local MSC

Vehicle 0.61 ± 0.02 0.63 ± 0.03

Segment 0.63 ± 0.02 0.66 ± 0.02

Vowel 0.78 ± 0.05 0.81 ± 0.04

USPS 0.86 ± 0.03 0.88 ± 0.01

Table 5.8: Average ARI values for Kernelized Global and Local Mean Shift Clustering (MSC)

Datasets Global MSC Local MSC # Classes

Vehicle 7.4 ± 0.55 8 ± 0.7 4

Segment 10.4 ± 1.14 10.4 ± 1.14 7

Vowel 16 ± 0.71 15.8 ± 0.84 11

USPS 10.6 ± 0.54 10.4 ± 0.54 10

Table 5.9: Average number of clusters detected

5.3.4 Discussion

• Kernelization improves the separation between clusters for all the four datasets. This

is because more number of distance constraints are satisfied by a larger margin between

target neighbors and imposters. Fig. 5.2 shows the difference between distance constraints

after learning in input space and kernel induce space for Vowel dataset. The number of

clusters detected significantly reduces as shown in table 5.9.

• Effect of kernelization and metric learning can be seen in the kernel matrices in Fig. 5.3

for Vowel dataset. There is a significant difference in the kernel matrices, with the learned

kernel matrix nearly block diagonal.
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(a) Input feature space (b) Kernel induced feature space

Figure 5.2: Comparison of constraints between point-neighbor pairs and point-impostor pairs in input
feature space and kernel induced feature space for the Vowel dataset.

(a) Initial Kernel Matrix (b) Kernel Matrix after metric learning

Figure 5.3: Comparison between initial kernel matrix and kernel matrix (990 x 990) after metric learning
on Vowel data set.
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Chapter 6

Conclusion and Future Scope

6.1 Conclusion

In this work, we investigated the problem of mean shift clustering using metric learning. We

wanted to determine the performance improvement of mean shift clustering using local metrics

over a global metric. For metric learning, we used the recently proposed SCML framework

which uses locally discriminatory low-rank metrics to learn global and local metrics, and has

been shown to work very effectively in k-NN classification. We integrated global and local

metric with mean shift and derived two different formulations for mean shift computation. We

also kernelized the algorithm for problems where the data is not linearly separable and it is

not feasible to get homogeneous clusters. We performed experiments on 6 datasets of varying

difficulty and observed that local mean shift clustering performs better than global mean shift

clustering.

6.2 Future Scope

Large margin nearest neighbor framework promotes local regions of points in the input space

and thus is not much advantageous for clustering. Using triplet constraints with the clustering

framework to learn a metric (or metrics) should be more beneficial and thus can be a prospective

extension to the problem.
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