
Addressing Coldstart Problem in Recommender
Systems

Shisagnee Banerjee

IIIT-D-MTech-CS-GEN-14-023

May 15, 2016

Indraprastha Institute of Information Technology Delhi
New Delhi

Thesis Advisor

Dr. Angshul Majumdar

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science

c© Banerjee, 2016

Keywords : Recommender Systems,Cold-Start Problem, Demographic Data

Certificate

This is to certify that the thesis titled “Addressing Coldstart Problem in Recommender

Systems” submitted by Shisagnee Banerjee for the partial fulfillment of the requirements

for the degree of Master of Technology in Computer Science & Engineering is a record of the

bonafide work carried out by her under my guidance and supervision at Indraprastha Institute of

Information Technology, Delhi. This work has not been submitted anywhere else for the reward

of any other degree.

Dr. Angshul Majumdar

Indraprastha Institute of Information Technology, Delhi

2

Abstract

In the following three chapters of my thesis , I have applied several methods to solve the coldstart

problem in Recommender Systems. The coldstart problem is the situation where a user or item

is new to a website and recommendations need to be given to the new user or the new item needs

to be recommended. The framework proposed in my work uses user’s demographic information

and the genre of movies for creating the model. The chapters propose a framework, parallelize it

and also imrove predictions and allows speedup by using different techniques to meet the given

goal (alleviate the coldstart problem).

Acknowledgments

Towards the completion of my Masters degree, I would like to pay my heartfelt tributes to

people who contributed in many ways. After expressing gratitude towards God and my loving

parents, I would like to thank my advisor Dr. Angshul Majumdar for his support and guidance

throughout the journey. His constant guidance and input have helped me prosper towards

becoming a confident and improved personality. He made great efforts in supporting me in all

possible ways. His advise and guidance not only helped me in my work here but has triggered

my interest in this domain for future. This section can not be complete without a vote of thanks

to academic department for their help and never ending support .

i

Contents

1 Introduction 2

2 Addressing Cold-Start Problem using Neural Net 5

2.1 Introduction . 5

2.2 Literature Review . 6

2.3 Proposed Method . 8

2.4 Experimental Results . 9

2.4.1 Data Description . 9

2.4.2 Evaluation Metric . 11

2.4.3 Comparitive Results . 12

2.5 Conclusions . 14

3 Divide and Conquer Approach Using Sparse Representation Classifier 20

3.1 Abstract . 20

3.2 Introduction . 20

3.3 Literature Survey . 22

3.3.1 Divide and Conquer . 22

3.3.2 Sparse Representation Based Classification 23

3.4 Proposed Algorithm . 25

3.4.1 Proposed algorithm for Divide and Conquer using SRC 26

3.5 Experimental Setup and Evaluation . 28

3.5.1 Description of Dataset . 28

3.5.2 Evaluation Measures . 29

3.5.3 Results . 29

3.6 Conclusion . 30

4 Nearest Subspace Classifier 32

4.1 Introduction . 32

ii

4.2 Background . 32

4.2.1 Nearest Subspace Classifier . 32

4.2.2 Dictionary Learning . 34

4.3 Proposed Method . 34

4.3.1 Algorithm DL-NS . 35

4.4 Experiments and Results . 36

4.4.1 Description of Data . 36

4.4.2 Evaluation Metrics . 37

4.4.3 Results . 38

4.5 Conclusion . 43

5 Conclusion 44

iii

List of Figures

2.1 Genres of Movies . 8

2.2 Encoding Occupation Information . 9

2.3 Comparison of Precision for 100K Movielens . 14

2.4 Comparison of Recall for 100K Movielens . 15

2.5 Comparison of Precision for 1M Movielens . 15

2.6 Comparison of Recall for 1M Movielens . 16

2.7 Comparison of MAEs of all the papers reviewed in with Our Methods(NN-User,
NN-Item) . 16

2.8 Confusion Matrix for NN-User . 17

2.9 Confusion Matrix for NN-Item . 18

3.1 Parallel Training . 27

4.1 Diagram representing how NS works . 35

4.2 Regularisation VS. MAE and RMSE . 40

4.3 Precision and Recall VS. No. of Recommendations 40

4.4 Confusion Matrix for MovieLens 100K . 41

4.5 Confusion Matrix for MovieLens 1M . 42

4.6 Comparison of Methods and their Computational Time 43

iv

List of Tables

2.1 Techniques and Results . 6

2.2 Techniques and Results Continued . 7

2.3 Organising The Classification Problem . 10

3.1 Comparison of Classification Accuracies of SRC, Neural Net and SVM 30

3.2 Comparison of DC-SRC with other popular Divide and conquer methods 30

3.3 Results of DC-SRC . 31

4.1 Precision And Recall . 38

4.2 DL-NS Results . 38

4.3 NS Results for 100K . 39

4.4 NS Results for 1M . 39

1

Chapter 1

Introduction

Overview and Research Motivation

Today, with the explosion of e-commerce companies the amount of choices available to any user

is humongous. Often it is not possible for a user to browse all possible items listed online as

he/she might have done in a shop, the scale is too large. Thus there is a distinct feeling of

missing out on what is the best product, or facing frustration at not finding something attuned

to ones tastes. If the user does not find the required products they will not purchase / rent

this in turn would mean loss of revenue to the e-commerce portal. To ameliorate this problem,

e-commerce portals have become proactive; they recommend articles / items to the users based

on his/her prior preferences and preferences of other similar users. This is called a recommender

system; the de facto approach for recommendation today is based on collaborative filtering. To

summarize collaborative ltering, the e-commerce portal collects the users choices on different

items these may be ratings (explicit) or browsing/purchase history (implicit). When organised

as a matrix (users as columns and items as rows), it becomes a high dimensional albeit a sparse

matrix. It is high dimensional because there are typically hundreds of thousands of users and

items of the same order.

In a collaborative filtering, the basic idea is to nd items rated highly by similar users and rec-

ommend these. The assumption being that, users having similar choices in the past are likely to

2

have similar choices on new items as well. Broadly speaking there are two approaches in collabo-

rative filtering. The neighbourhood based models, typically nd similar users by computing some

similarity measure between the users and use the similarity value as linear interpolation weights

to compute the expected rating of other similar users. This is called user-based recommendation.

Similarly, one can also have item-based recommendation where the similarity between items are

computed instead. Both of these fall under the neighbourhood (similarity) based model. The

other approach is more abstract and is based on latent factor modelling. The assumption here

is that the users and items have some common factors that decide the choice of the user, e.g.

movie choices are typically based on director and star cast, similarly book choices are largely

based on authors or subjects. Latent factor modelling is abstract, but mathematically powerful

and yields more accurate results. However the pressing problem for all recommender systems is

the data sparsity, the user-item choice matrix is parsimoniously filled. Typically no individual

rates more than one percent of the items. However ameliorating the sparsity problem is not

our topic of interest. We look at the more challenging scenario of cold-start. When a new user

becomes part of the e-commerce portal, the system has no information about the users prior

choices; hence the name cold-start. But it is the responsibility of the e-commerce portal to

start suggesting items since they do not want to lose users. Thus in the cold start problem, the

challenge is to recommend items to the new user when there is no prior choices available from

the user. In almost all e-commerce portals, certain metadata about the user is available from the

sign-up process. For example the users age, gender, occupation, locality, etc. are known to the

portal. Similar metadata regarding the item is also available, for example the genre information

in movies. Such associated information has been used before for improving collaborative filtering

[1]. We propose to use the already available metadata to address the cold-start problem. This

too has precedence [2], but the approach followed here is different from prior studies. Based on

the metadata a binary feature vector is created for each user. Similarly using the item metadata

a binary feature vector is created for the user. The rating is treated as a target class and the

concatenated user-item binary vector acts as the feature. Based on this model, we can learn

any classifier. When there is a new user or an item, the corresponding feature vector is created

and fed into the classifier. The resulting class is assumed to the choice / rating. The decision

3

regarding recommending / not-recommending is based on the predicted class (choice / rating).

Most prior studies (as can be found in [2]) concentrate on the user cold start problem; the

item cold-start problem has not received much importance in the past. Electronic Commerce is

changing at a rapid pace and we believe that the item cold start problem is equally important. A

new item does not have any ratings and hence will not readily interact with the recommendation

system. Most e-commerce customers would like to be recommended with the latest items, be it

movies, books or clothes. In this work, we provide a unified framework for addressing both the

user and item cold-start problems. The following three chapters deal with :

• Chapter 2 I Framework proposed,

• Chapter 3 I Parallelization using divide and conquer approach, and

• Chapter 4 I Removing the class imbalance and reducing computational time

4

Chapter 2

Addressing Cold-Start Problem

using Neural Net

2.1 Introduction

In this work, we propose a unified framework to address the user and item cold-start problem

in recommender systems. We make use of the users’ and items’ metadata and encode them as

binary features. The available rating is treated as the class label. The formulation is general,

but is particularly suitable for addressing the cold-start problem. We compare our proposed

technique with prior works; we found that the proposed method yields considerably better

results in terms of Precision and Recall.

5

2.2 Literature Review

Table 2.1: Techniques and Results

References Techniques Datasets Results

Safoury et al. [20]

Utilizes the training file of each

attribute to calculate the frequency

of all items rated by users

having similar attribute value.

MovieLens

100K

MAE:

0.9441,

Precision:0.09(top 30),

Recall: 0.244(top 30)

Pereira et al. [18]

Co-clustering users and

learning models,

simultaneously based

on demographic data

MovieLens

100K,

Netflix,

Jester

NMAE: 0.198

(MovieLens 100K),

0.195(Netflix),

0.2(Jester)

Gantner, et al. [8]

K-NN regression,Attributes Used

are : genres(Movielens), Directors,

actors, credits (IMDB)

MovieLens

(1 Million),

IMDB

Precison: 0.3

AUC : 0.7

(directors+genres)

Lika, et al. [15]

Finding neighbours using

Demographic data, Each

attribute like age,

occupation is dealt with separately.

MovieLens

MAE: 0.75 to 1.1

(for different

attributes)

Lam, et al. [11]

Parameter estimation using

EM Algorithm from triadic

aspect model and,the vector

aspect model

MovieLens

(1Million)

MAE: 0.69

NMAE: 0.45

Sensitivity:0.85

Specificity:0.51

Yu, et al. [23]

Nearest neighbor approach

based on similarity of

ratings in similar domain

EachMovie
Average MAE

of 0.2

6

Table 2.2: Techniques and Results Continued

References Techniques Datasets Results

Bobadilla, et al. [3]

Neural Networks

on similarity of user

ratings

Movielens

(1 million)

MAE: 1.25

Precision : 0.75

Recall: 0.66

Ahn et al. [1]

Similarity measure on very limited

ratings using Impact, Proximity and

Popularity as well as co-rated items

among users Baseline Rcommendation

used.

Movielens,

Netflix,

Jester

MAE : 0.77

(for 25 items, Movielens)

MAE : 0.785

(for 25 items, Netflix)

Liu et al. [16]

Proposes a similarity measure

composed of Proximity,Significance,

Singularity. Assumes new user has

rated some prior movies.

MovieLens

and Jester

MAE:

0.641(MovieLens)

0.821 (Jester)

Leung et al. [14]

Rating data is converted to the

transactional database of association

rule mining, fuzzified by fuzzy

memberships and then

used for prediction.

MovieLens

MAE: 0.636

(MovieLens)

0.899(Jester)

Cuong et al. [6]

Demographic Information of users

is used to find neighbours,their ratings

are considered representative ratings,

else a similar users rating is

considered representative.

MovieLens MAE: 0.701

L.H. Son [21]

Both user demographic data and

user ratings are used to calculate

final similarity matrix for rating

prediction.

MovieLens

Jester

MAE: 0.697

(MovieLens),

0.895(Jester)

7

2.3 Proposed Method

The method proposed in this paper is simple and can be easily extended. The demographic

information of users is available to us as a part of the sign-up process into the e-commerce

portal; this includes namely gender, age, occupation and location in the form of zip-code. We

do not think that zip code is a relevant piece of information. It only says where the person

resides and is not likely to determine his/her taste in any fashion. We make use of the other

three pieces of information gender, age and occupation.

In this work we are interested in movie recommendation. There are many features for the movies

available - movie id, movie title, release date, video release date, IMDb URL, Genre (Action,

Adventure, Animation, Childrens, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir,

Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western). All except the genre

information is irrelevant for choosing a movie. We have considered only the genre information

here. First we will describe how the movie features have been generated. We generate a binary

vector from the genre, the vector contains a 1 if the movie belongs to that genre or 0 otherwise.

The vector is shown in Figure ??.

Figure 2.1: Genres of Movies

Say a movie like Shawshank Redemption is tagged as crime and drama in IMDB. The corre-

sponding feature vector will be [0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0]T; It has 1s corresponding to

crime and drama and 0 everywhere else.

We now discuss about encoding the user demographic information. Encoding the gender infor-

mation is the simplest. It is a tuple encoded as [1,0]T for male and [0,1]T for female.

8

Figure 2.2: Encoding Occupation Information

To encode the occupation information we have an ordered representation of the dierent occupa-

tions as in Figure ??. For a particular uses, one of the occupations is 1 the rest are 0s.

To encode the age information we divide the users into several ranges; more specifically into set

into 8 groups (7-14, 14-21, 22-28, 29-36, 37-48, 49-55, 56-65 and 66-73). The groups are divided

keeping in mind the relevance of mentality of users according to age. The particular age group,

where the individual belongs to is 1 and the rest of them are 0s.

The users are represented by binary vector of size 31 (gender-2, occupation-21 and age-8). The

item is expressed as a binary vector of size 19 corresponding to 19 genres.

We model cold-start as a classification problem. The rating is the class. It may be 0 (dislike)

or 1 (like) or can be more continuous say on a 5 point or 10 point scale. Each user rates an

item; we represent the user-item combination simply as a concatenation of the user vector fol-

lowed by the item vector. This leads to a feature of size 50 (31+19). The corresponding class

is the rating. The user-item feature and the corresponding rating / class is organised in Table 2.3.

2.4 Experimental Results

2.4.1 Data Description

Movielens 100K

Classes: 5 (ratings 1 to 5)

9

Table 2.3: Organising The Classification Problem

User1 User2 User3

Gender1 0 1 1
Gender2 1 0 0

Age1 0 0 0
Age2 1 0 1

. 0 1 0

.
Occupation1 0 1 0
Occupation2 1 0 1

.

.
Genre1 0 1 0
Genre2 1 0 1

.

.

Rating 3 5 2

Description: Rating dataset has 100000 ratings by 943 users on 1682 items. Each user has rated

at least 20 movies. Users and items are numbered consecutively from 1. The data is randomly

ordered. Item information consists of movie id, movie title, release date, video release date,

IMDb URL and 19 genres. User information consists of user id, age, gender, occupation, zip

code The ratings data is split into 80% and 20% for training and testing.

Movielens 1 Million

Classes: 5 (ratings 1 to 5)

Description: Same as previous dataset except there are 6040 users and 3952 items. The user

data has 20 occupations and 7 age groups.

These datasets are available in the website grouplens.org. There are larger datasets on movie rec-

ommendations as well, such as the Movielens 10 million and the Eachmovie, but these datasets

do not contain the user or item metadata. This information is required for our proposed tech-

nique. The datasets we used are the only ones having this information available.

5 fold cross validation was done on these datasets. This is the standard procedure for evaluating

these datasets, however the folds defined in the datasets could not be used since they were not

10

made for the cold-start problem.

In principle any classification algorithm can be used for solving the problem. But we have used

a Neural Network for our work. The NN used was a 1-hidden layer network with conguration

10 nodes. The activation function is sigmoid; the learning rate is 1; number of epochs = 30;

batchsize = 20 and momentum = 0.9.

2.4.2 Evaluation Metric

To compare the prediction accuracy the standards metrices of precision and recall are used. Pre-

cision measures the probability that a recommended item is relevant to the user. We categorize

an item in test data as relevant if its rated 4 or higher (out of 5) by the user.

Precision =
tp

tp + fp

where, defines true positive i.e. items that are relevant to the user and are selected by RS;

defines false positives i.e. irrelevant items recommended to the user. Precision usually drops

with increase in length of recommendation list.

Recall (25) measures the chances that a relevant item will be selected for recommendation.

Recall =
tp

tp + fn

where, defines true positive; defines false negatives i.e. relevant items not recommended to the

user. The recall value usually increases with increases in recommendation list length.

Many prior studies on cold-start problems have reported results in terms of mean absolute error

(MAE). This metric tells us how much the predicted rating deviates from the actual rating on the

test set. This may not be the best possible metric. Imagine a situation where the recommender

systems algorithm predicts ratings that is shifted by some constant amount (compared to the

actual rating). In such case, the MAE will be poor but the recommendations will be actually

11

perfect. Precision and Recall are more standard evaluations metrics in information retrieval.

We will use them to evaluate different techniques.

2.4.3 Comparitive Results

We have compared our proposed technique with two prior studies on pure cold-start; they are

the works of Safoury and Salah [20], and Lika et al [15]. Both these studies use a mixture of

classification algorithms and similarity based techniques along with user metadata for address-

ing the cold start problem.

Figures 2.3, 2.5, 2.4 and 2.6 show the results for Movielens 100K and 1M datasets respectively.

The algorithms compared against are only for the user cold start problem. We have shown the

plots for both user and item cold start.

In the paper by Safoury and Salah, the frequency of every items rated by a certain demographic

attribute (like gender , age group or occupation) is calculated first. This means for each item

and demographic attribute pair there is a frequency of rating values from 1 to 5. For a new user,

first based on a demographic attribute the appropriate category is selected. Then the rating for

an item is the frequency weighted average of the rating values for all the other users who belong

to the same category as the new user and have rated that item. This is a simple neighbourhood

approach and our model significantly outperforms this method in terms of precision and recall.

Figures 2.3, 2.4 compare the precision and recall obtained by the three methods used in [20]

based on category Gender, Age and Occupation with the results obtained by our method for

the 100K Movielens dataset.

In the paper by Pereira et al. [18] the prediction of rating has 3 phases. In the first phase a

model based on demographic data is designed. This model is then used to group users into

certain categories. Each new user is assigned an estimated category by this model. The users

belonging to this category are now taken as the neighbours of this user. In the second phase a

distance measure is used to find the similarity between a new user and each of its neighbours.

The ratings are generated by calculating the weighted average over the neighbourhood with the

similarity measures as the weights to the actual ratings of the users.Figures 2.5 and 2.6 show

12

the results of precision and recall from both papers discussed along with our results on the 1

Million Movielens dataset.

Some general observations about the results displayed are that as the number of predictions

considered is increased the precision value falls while the recall value rises. To make sense of

this it is important to go back to how precision and recall is defined in this case. Precision and

Recall are calculated via the standard methods [9]. It can be observed from the gures that,

precision decreases while recall improves with increasing length of recommendation list. The

reason being, Precision in this case is Out of total recommended movies, how many are relevant.

So when we recommend fewer movies the percentage of correct recommendation is high. With

the increase in number of recommendations, our accuracy decreases not only because of the

obvious factor but also because there are very less movies actually rated by user. So while we

are recommending 30 , there might not exist 30 rated movies for the user , thus rendering them

irrelevant. Recall is Out of total relevant movies, how many are recommended by us. So while

there might be 100 relevant movies for a user, when we recommend just 10, recall is very less.

It increases as more movies are recommended.

In another paper by Le Hoang Son [21] different papers dealing with the particular problem

at hand have been reviewed and compared. Figure 2.7 compares the MAE values obtained by

those papers with the values obtained by our method. We achieve comparable MAE values to

the papers reviewed although it is slightly higher. However our method has considerably faster

training time compared to many methods. Also since we do not use a neighbourhood concept

to calculate similarity with all neighbours during prediction our prediction time is much less

computation intensive than the nearest neighbour methods. Also we do not selectively choose

attributes for prediction but rather use all the demographic data available leaving it to the model

to learn underlying patterns.

The time taken by user coldstart for 100K dataset 38.5469 seconds for training and an addi-

tional 0.0781 seconds for predicting. The time taken by item coldstart for 100K dataset 55.8281

seconds for training and an additional 0.0782 seconds for predicting.

The time taken by user coldstart for 1M dataset 394.5 seconds for training and an additional

0.3594 seconds for predicting. The time taken by item coldstart for 1M dataset 419.5938 seconds

13

Figure 2.3: Comparison of Precision for 100K Movielens

for training and an additional 0.2343 seconds for predicting. The PC used was Intel CORE i7

2GHz, 8GB RAM.

Even as we have justified the use of metrics like Precsion and Recall, we have also included

confusion matrices in the results to give a better visual understanding of classification of the 5

class problem. Follwoing are the Confusion Matrices for the methods NN-User and NN-Item.

2.5 Conclusions

In this chapter we have presented a simple yet efficient method to alleviate the coldstart problem.

This can be used for both item and user cold-start problems. Prior studies mostly concentrated

on solving the user cold-start problem.

We use the user and item metadata information for addressing the said problem. Information

like the users gender, occupation and age are encoded as binary vectors; similarly information

about the movies genre is encoded as a binary vector. The concatenation of the two is used

14

Figure 2.4: Comparison of Recall for 100K Movielens

Figure 2.5: Comparison of Precision for 1M Movielens

15

Figure 2.6: Comparison of Recall for 1M Movielens

Figure 2.7: Comparison of MAEs of all the papers reviewed in with Our Methods(NN-User,
NN-Item)

16

Figure 2.8: Confusion Matrix for NN-User

17

Figure 2.9: Confusion Matrix for NN-Item

18

as the feature and the corresponding rating is the class label. Recasting the cold-start as a

classification problem is the main contribution of the paper. We used a simple single hidden

layer neural network as the classifier.

We compared our technique with two existing works; both of them have been published in the

last two years. The comparison was carried out on two popular datasets, viz. Movielens 100K

and 1M. These are the only datasets known to us where the relevant user and item metadata

information is available. Experimental results show that the precision and recall values from

our proposed method are considerably superior compared to the techniques compared against.

In this work we propose a unified framework for solving the user / item cold start problem. Our

method depends on the user / item metadata. We have used users demography and movie genre

information; but it can be easily extended to incorporate other relevant information. Although

we have shown results on movie datasets, the framework proposed here in is applicable to other

kinds of items.

19

Chapter 3

Divide and Conquer Approach Using

Sparse Representation Classifier

3.1 Abstract

In this chapter, we have proposed an algorithm for classification using a Sparse Representation

Classifier (SRC) following a divide and conquer approach. The training data is divided into

various percentages of partitions and the classifier is applied on them in parallel. The division

of data is done using a distributed computing approach which uses distributed memory. SRCs

are subsequently used to classify each of the subtasks. The results from all the classifiers are

combined to find the appropriate classification decision. Our method exhibits a large decrease

in computational time and also surpasses considerable benchmarks in terms of Classification

Accuracy.

3.2 Introduction

Machine Learning algorithms have recently made big leaps in producing excellent results on a

wide variety of data. However, the explosion of social networking websites as well as ecommerce

20

websites today produce a massive amount of user data. Along with that increasingly powerful

computers and advanced scientific instruments are constantly generating datasets of inconceiv-

able sizes. Along with size the nature of the data is also extremely varied, including images, text,

audio as well as user information data, etc. While large datasets have been of immense value in

machine learning algorithms like deep learning, the computational costs and the training times

involved are significantly high to the point of being infeasible in computers of moderate power.

In most classification algorithms when the size of the dataset increases beyond a point, memory

bottlenecks cause them to significantly slow down. In some extreme cases, it might become

entirely infeasible to train classifiers on such huge datasets due to memory and computation

costs. In others, the training times may be of the order of many days which might be a major

problem in testing with varying hyper-parameters. One solution to this problem is to train

multiple classifiers. The chief concern here is that the discrete learning systems are independent

or correlated. If they are correlated, they can be used serially to incorporate the loss of the

previous one. This loss is then rectified in the subsequent classifiers. This is the method used in

boosting algorithms. These are not of interest to us as they do not eliminate the problem being

addressed by us. The second approach is to divide the data into subsets and train independent

classifiers on them. These are then recombined by some method like voting or minimum error.

The advantage of this divide and conquer approach is that the independent classifiers can be

trained in parallel on smaller sets of data rather than on the large original dataset. Distributed

computing using distributed memory, helps in materializing the above mentioned concept. The

time saved in this is quite huge and it can be computed on a cluster of less powerful machines

in a much lesser time than a single extremely high end machine. Using this technique, neural

nets and SVMs among others have been proved to work well on a large variety of classification

tasks.

Our proposed idea is implementing this approach using Sparse Representation Classifiers. The

problem solved by the sparse representation is to search for the most compact representation of

data in terms of linear combination of atoms in an over-complete dictionary. The impetus of

using SRC stems from the fact that when optimal representation of atoms is adequately sparse,

its convex optimization can be easily calculated. Although Sparse Representations of data have

21

recently been widely used to create compact representation of data in fields like signal processing,

its use in such a distributed environment to classify data is a novel approach.. Our work claims

its viability by demonstrating that the technique performs well on several standard datasets.

In the next we have presented a survey of recent work in the areas of divide and conquer

approaches in machine learning as well as Sparse Representation based classifier. Section 3

describes our novel approach and the technique used to recombine the results of the multiple

classifiers. In section 4 the experimental results are provided when our implementation was

tested on some standard datasets like MNIST, CIFAR 10 and MovieLens.

3.3 Literature Survey

Detailed surveys of previous work done in the domains of divide and conquer and SRC are

separately illustrated in the following section.

3.3.1 Divide and Conquer

The divide and conquer approach has been becoming popular in dealing with large datasets

for some time now. It has been used in both machine learning as well as matrix factorization

algorithms.

[10], [7], [19], [2] and [18] are some of the papers which have used the divide and conquer approach

using machine learning techniques. Neural Nets and SVMs are two of the most commonly used

classifiers. [1], [2] and [4] have proven that divide and conquer approach works on these classifiers,

showing that our method of partitioning our training data holds. For example in [1], a divide and

conquer solver for SVM is proposed with multiple levels. At each level the dataset is partitioned

in (No.of clusters)̂level. The solutions from the lower levels are used in the upper ones. Using

small number of clusters, a speed up can be achieved. It is shown to have achieved better

accuracies than Lib-SVM [8], C-SVM [9]. [4] also uses a kind of SVM called Rank SVM to give

ranking to a web-based search using a similar method as being discussed here.

In [2] the training data is partitioned using fuzzy C-means clustering or pdf estimation using

22

Gaussian mixtures. Each group is trained using a Multi-layered Perceptron and the results are

combined using a weighted sum of outputs.

The nearest neighbor approach is one of the oldest but still extremely effective. [3] gives a

variation of it called Pairwise Opposite Class-NNs. They are found by recursively splitting

training data into 2 regions. This gives a partitioned training set into respective classes. Though

it is computationally cheaper than Class-NNs, they still have the drawbacks on NNs, namely

taking a large amount of time and needing the whole training data to be present while testing.

There is also some literature on Matrix Factorization methods using the same approach. They

follow a similar line of attack as in [7] and [8]. Input matrices are divided into different partitions

of sub-matrices. Each sub-matrix is factored in parallel using matrix factorization, with each

machine core solving a sub problem, and then all sub-matrix estimates are combined. We have

taken a bit of both worlds to make something both simple and computationally cheap.

5] deals with a specific problem using divide and conquer. It implements an iterative divide and

conquer approach for solving the partial coldstart problem of collaborative filtering, interleaving

clustering and learning based on demographic data.

This works mention is important here since pure coldstart problem in recommender system is

one of the sample problems solved by us using our algorithm in this paper as well. However, the

data used here is controlled in an artificial environment to a great deal, while we work with the

whole data and address pure coldstart as opposed to partial coldstart in this case.

3.3.2 Sparse Representation Based Classification

In this work, Sparse representation based classification [10] assumes that the training samples

of a particular class approximately form a linear basis for a new test sample belonging to the

same class. Let vtest be the test sample belonging to the class k represented as

vtest = αk1vk1 + αk2vk2 ++ αknvkn + ε (3.1)

where, vki denotes the ith training sample and ε is the approximation error.

In a classification problem, the training samples and their class labels are provided. The task is

23

to assign the given test sample with the correct class label. This requires finding the coefficients

ki in Equation 3.1. Since the correct class is not known, SRC represents the test sample as a

linear combination of all training samples from all classes,

vtest = V α+ ε (3.2)

where, V =

v1,1| . . . |v1,n︸ ︷︷ ︸
v1

|v2,1| . . . |v2,n︸ ︷︷ ︸
v2

| . . . vc,1| . . . |vc,n︸ ︷︷ ︸
vc


and α =

α1,1| . . . |α1,n︸ ︷︷ ︸
α1

|α2,1| . . . |α2,n︸ ︷︷ ︸
α2

| . . . αc,1| . . . |αc,n︸ ︷︷ ︸
αc


According to SRC, only the training samples from the correct class should form the basis for

representing the test sample and the samples from other classes should not contribute. Based

on this assumption, it is likely that the vector is sparse, i.e., it should have non-zero values

corresponding to the correct class and zero values for other classes. Thus Equation 3.2 is a linear

inverse problem with a sparse solution. In [10], the coefficient is solved by employing a sparsity

promoting l1-norm minimization.

min
α
‖vtest − V α‖22 + ‖λα‖1 (3.3)

With the sparse solution of Equation (3.3), Wright et al. [10] proposed the following algorithm

to determine the class of the test sample. Solve the optimization problem in Equation (3.1).

For each class k repeat the following two steps: Reconstruct a sample for each class by a linear

combination of training samples belonging to that class by the equation vrecon(k) = Vkαk Find

the error between there constructed sample and the given test sample by error(vtest, k) =‖

vtest− vrecon(k) ‖2 Once the error for every class is obtained, assign the test sample to the class

having the minimum error.

24

3.4 Proposed Algorithm

We have proposed a method where the training data is divided into a number of partitions

since in case of most classifiers training is the most computationally expensive work. The

partitions are done by random sampling of data. Both disjoint and non-disjoint training subsets

are formed. Noteworthy point is that, non-disjoint subsets give us a slightly better accuracy

than disjoint. Each partition is passed through a classifier in parallel. The Classifier used

is Sparse Representation Classifier. The datasets were mainly divided into 5 and 10 sets for

our experiments. Any number of sets could have been implemented in the given framework.

The results from each percentage of splits are compared against each other to give us the best

possible split. Figure 2 is given for a clearer illustration of our method using 5 sets as an example.

As figure 2 demonstrates, each split upon passing through the classifier yields predictions and

residuals. This is due to the fact that these are the two outcomes from our sparse representation

classifier. When a new test sample y is given, it needs to be classified into one of the classes.

To do so, a sparse representation of it is calculated using equation (4):

x̂1 = argmin ‖x‖1 subjecttoAx = y (3.4)

The non-zero entries of x̂1 are associated with the columns of training matrix A from a single

object class i. The test sample can thus be assigned to that class. However error and noise can

make other non-zero entries thus rendering this method flawed. Therefore, the classification of

y is done based on the reproduction capability of the coefficients associated with all training

samples of each object.

y can be approximated as ŷi = Aδi(x̂1)by using coefficients of only ith class. It can be classified

based on the approximation and assigned to the class which minimizes the residual between y

and yi:

min
i
ri(y) = ‖y −Aδi(x̂1)‖2 (3.5)

So, using the above mentioned method for classification we get a prediction vector and a resid-

ual matrix. A modal of the predictions are taken to give us the most suitable prediction for

25

a particular item. The residuals are also used to determine predictions. The class with the

least residual for an item is assigned to that item. Accuracies are calculated for both the direct

predictions and the ones calculated using residuals. After rigorous experimentation, it is found

to give very similar results.

The method used is called fusion where each classifier is assumed to have equal share of expertise

in the decision making process.

3.4.1 Proposed algorithm for Divide and Conquer using SRC

The algorithm is expalined in simple words as follows:

• Divide the data into S overlapping or non-overlapping sets using random sampling.

• Run each set Si into a SRC in parallel.

• Obtain a Predicted set P and Residual R for each set S.

• Take Mode of Pj over all js (cardinality of the test set) to get the Predicted for each test

sample.

• R is given for each class; sample t is assigned to class c if Rc is the least.

Figure 3.1 gives a clear graphical representation of the Algorithm.

The following is the formal description of the Proposed Algorithm:

I The training data A is divided into j sets as A1, A2, ..., Aj .

I A sparse representation for each x1j needs to be calculated using x̂1j = argmin ‖x‖1 subject

to Ajx = y

I Now y is approximated as ŷij = Ajδi(x̂1j)by using coefficients of only ith class.

I We get a residual vector ri(y) for each class.

I For each data point whichever class has the least residual, that class is assigned to that data

26

Figure 3.1: Parallel Training

27

point.And thus we get a residual matrix Rj each consisting of ri for each set.

I Now, all residual matrices are added. Res =
∑j

1Rj

I Res is sorted in ascending order and again the class having the least residual is assigned to

the test data point,

I The Predicted vector received for each set Pj is also used for prediction. A mode of Pj s taken

and that class is assigned to the test data point.

3.5 Experimental Setup and Evaluation

We demonstrate the performance of our algorithm using the MNIST [12] , CIFAR 10 [22]

(https://www.cs.toronto.edu/ kriz/cifar.html), Movielens 100K and 1M dataset [17]

(http://grouplens.org/datasets/movielens/).

3.5.1 Description of Dataset

The MNIST dataset contains images of handwritten digits of 10 classes. There are 60000 images

of 748 features each for training and 10000 images for testing. The CIFAR-10 dataset consists

of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training

images and 10000 test images. Both the Movielens datasets contain ratings on a scale of 1-5.

100K dataset contains ratings by 943 users on 1682 movies and 1M dataset has 1M ratings given

by 6040 users on around 3952 movies.

We have split each dataset into 5 and 10 subsets, of overlapping and non-overlapping structure.

That is the data is randomly selected and grouped into 5 or 10 sets where in some, the data

in two or more sets might be repeated. While in some, the data of each set is distinct. For all

test cases, 5-fold cross validation is performed. The simulations are carried out on system with

i7-3770S CPU @3.10GHz with 8GB RAM.

28

3.5.2 Evaluation Measures

The performance of our proposed approach is evaluated in terms of classification accuracy. It is

calculated as the percentage of correct classifications among the whole test data. So, if Actual

result is A(say) and predicted is P. Then classification accuracy is:

Accuracy =

∑
i
A(i)− P (i)

|A|
∗ 100 (3.6)

3.5.3 Results

Table 3.1 gives the comparison between algorithm using SRC and algorithms using support

vector machine and neural net.

Table 3.2 gives the comparison between SRC using the full data together and the proposed

Divide and Conquer approach of SRC(DCSRC).It shows that DC-SRC surpasses the divide and

conquer methods using Multilayer Perceptrons and Support Vector Machines. It is not a minute

increase but quite a notable increase in accuracy that we have achieved here.

The running time of the Full SRC and DCSRC is also noted to show that apart from proposing a

viable approach which does not majorly compromise in accuracies, the time to run the classifiers

in parallel saves a substantial amount of time. A single classifier on a subset takes i
x

th
the time

x being the number of splits on the original dataset. The time was shown on the MNIST dataset

to establish the above point.

SRC on the whole dataset takes 50991 secs(14.16hrs) while running a single set (when the data

is divided into 5 sets) takes 10241 secs(2.84 hrs). Table 3.3 shows the results of all types of

experiments performed usign DC-SRC for all the datasets. It gives us a clear idea of its strength

and weaknesses.

We have also applied our algorithm on SVHN dataset , and gotten an accuracy of 85.15% which

is quite impressive for a huge dataset like SVHN.

29

Table 3.1: Comparison of Classification Accuracies of SRC, Neural Net and SVM

SRC(all) Neural Net SVM

MNIST 98.33 96.39 93.13(t 3)

CIFAR 40.66 15.27 50.11(t 1)

Movielens 100K 32.38 34.83(30 epochs) 33.93(t 1)

MovieLens 1M 35.13 32.42(100 epochs) 34.95(t 1)

Table 3.2: Comparison of DC-SRC with other popular Divide and conquer methods

DCSRC Divide and Conquer MultiNet DC-SVM

MNIST 97.83 86.89
92.38(rbf,C=1,gamma=0.01,clusters=3),
94.76(rbf,C=2,gamma=0.04,clusters=100)

CIFAR 37.50 10 28.88(rbf,C=2,gamma=0.04,clusters=100)

Movielens 100K 33.39
34.01(100 epochs)
32.08(10 epochs)
36.16(50 epochs)

34.22

MovieLens 1M 35.33 34.3
36.06(rbf,C=1,gamma=0.1,clusters=10)
35.48(rbf,C=1,gamma=0.01,clusters=5)

3.6 Conclusion

In this chapter, a method to parallelize classification is proposed. The most used parallel classfi-

cation algorithms were variations of SVM and Neural Net. Here a divide and conquer variation

of Sparse Representation Classfier is presented which serves in not only parallelizing the process

but also comes at par and in most cases surpasses the accuracies achieved using SVM and NN.

In case of MNIST and CIFAR (two very standard datasets) the algorithm gives an extremely

impressive result. We have also tested it on our coldstart problem which uses a far more com-

plicated set due to its sparsity constraint. But the algorithm still achieves results comparable

to standard state of the arts in this problem.

30

Table 3.3: Results of DC-SRC

Datasets Type and number of sets Predicted Residual

MNIST

5 sets 97.7925 97.88375

5 sets overlap 97.70375 97.7875

10 sets 97.332 97.444

10 sets overlap 97.432 97.524

CIFAR 10

5 sets 34.848 37.75

5 sets overlap 33.578 35.704

10 sets 35.762 38.108

10 sets overlap 35.022 36.664

MovieLens 100K

5 sets 32.90 33.39

5 sets overlap 31.6866 32.97

10 sets 32.00 33.057

10 sets overlap 32.088 33.055

MovieLens 1M

5 sets 34.78 35.44

5 sets overlap 34.28 34.84

10 sets 34.74 35.24

10 sets overlap 34.81 35.55

31

Chapter 4

Nearest Subspace Classifier

4.1 Introduction

In chapter 1, the cold-start problem of recommender systems has been addressed. However there

was a huge future scope for it. The time taken by neural nets is quite large with respect to some

other classifiers. The distribution of classes in also uneven in our previous classification.

To address the above issues, we have used Dictionary Learning on each class ditribution

which reduces the class imbalance problem and used Nearest Subspace Classifier to reduce

the classification time. We have also produced results using only Nearest subspace classifier to

show the comparison with the above.

4.2 Background

4.2.1 Nearest Subspace Classifier

The use of all the training samples of all classes to represent the test sample goes against the

conventional classification methods. These methods typically suggest using residuals computed

from one sample at a time or one class at a time to classify the test sample. Nearest subspace

classifier [13], [5] does precisely that.

Given a test sample y ∈ RM , the purpose of multi-class clasification is to assign y to one of

32

the K classes. There are ni training samples for the ith class and all samples are stacked into a

matrix as

Ai = [ai,1, ..., ai,ni] ∈ RM×ni

, where ai,j ∈ RM is the jth training sample in the ith class. It can be assumed that all samples

are normalised. i.e., ‖Ai,j‖ = 1 and ‖y‖2 = 1.

The Nearest subspace classifier first calculates the distance from the test sample y to the ith class

and measures the projected residual ri from y to the orthogonal principal subspace Bi ∈ RM×k

of the training sets Ai.

The test sample needs to be projected to a orthogonal subspace, as mentioned earlier, the

following gives the formulation used based on Tikonov Regularisation. We try to solve the least

squares problem with a regularisation term :

‖y −Ax‖2 + λ ‖x‖2 (4.1)

On solving the above, we get the equation :

(ATA+ λI)−1AT︸ ︷︷ ︸
Projector

y = x (4.2)

The projected residuals are:

ri =
(
I − (AAT)(AAT + λI)−1

)
y (4.3)

The test sample y is then assigned to the class with the smallest residual among all, i.e.,

i∗ = argmin
i

ri

It is to be noticed that the subspace for each sample is only an approximation to the true

distribution of the test samples. In reality, due to various factors incurred while while collecting

33

data, the actual distribution of samples could be nonlinear or multi-modal. Using only the

distance to the entire subspace ignores information about the distribution of the samples within

the subspace, which could be more important for classification.

Thus, in our experiments we have also shown the difference in classification when the distribution

of data is taken into consideration using dictionary learning techiques on the original data.

4.2.2 Dictionary Learning

In dictionary learning [4], we want to learn a collection of atomic signals called atoms directly

from the given data signals so that the data can be accurately or closely represented by a linear

combinations of those scarce atoms.

To define it formally, given a training data x1, ...,xn ∈ RL and positive integers m, s, an L×m

matrix D and s-sparse vectors γ1, ...γn ∈ Rm are to be found, such that Dγi is close to xi for all

i. The following is the formulation where l2 is used to quantify the error.

min
D,γ1,...,γn

n∑
i=1

‖xi −Dγi‖22 (4.4)

such that ‖γi‖0 ≤ s for all i.

Here, D = [d1, ...dm] ∈ RL×m is called the dictionary. The columns of the dkictionary represent

the atoms. The vector γi ∈ Rm contains at most s non-zero entries. The γi contains the co-

efficients needed by the columns of D to linearly represent xi. The dictionary is considered good

at representing the signals if the total loss is small. Furthermore, the fewer columns D has, the

more efficient it is.

4.3 Proposed Method

The formulation of the problem used here is the one described in details in chapter 1. We have

built our method on the same formulation of the data. The problem we address remains the

same,i.e., User and Item coldstart for recommender systems. The demographic data of users

namely their age, gender and occupation (Figure 2.2) and the genre data of items Figure 2.1 is

34

used to recommend movies to new users and new movies to existing users. The encoding of the

information to organise the classification problem is shown in Table 2.3.

Once the data has been encoded in the above mentioned format, we learn a dictionary for each

class where the number of atoms for each dictionary is a percentage of the population of that

class. So, in our case the dictionary is not only the representation that approximates elements

of a signal class, it also shows the contribution of the signal class with respect to its population

strength.We call this approach DL-NS. We also only employ Nearest subspace classifier without

learning a dictionary previously on it. We call that approach NS.

The figure 4.1 shows how the nearest subspace classifier classifies a sample by assigning it to a

Figure 4.1: Diagram representing how NS works

class with the least projection. Here, the red vector denotes the test sample which lies closer to

the green hyperplane than the blue one.

4.3.1 Algorithm DL-NS

• Take a dataset and divide it into train and test sets

• Encode the data as shown in Chapter 1

35

• Define the number of atoms of a dictionary for a particular class as a percentage of the

strength of its class

• Learn a dictionary for each class

• Classify the learnt dictionary using Nearest Subspace classifier

Algorithm NS just skips the 3rd step of the above algorithm.

4.4 Experiments and Results

4.4.1 Description of Data

The datasets used in the following experiments are MovieLens 100K and MovieLens 1M.

Each of them have 5 classes and they are the ratings of users on items.

Movielens 100K dataset has 100000 ratings by 943 users on 1682 items. Each user has rated

at least 20 movies. Users and items are numbered consecutively from 1. The data is randomly

ordered. Item information consists of movie id, movie title, release date, video release date,

IMDb URL and 19 genres. User information consists of user id, age, gender, occupation, zip

code The ratings data is split into 80% and 20% for training and testing.

Movielens 1M dataset has 6040 users and 3952 items. The user data has 20 occupations and

7 age groups.

These datasets are available in the website grouplens.org. There are larger datasets on movie rec-

ommendations as well, such as the Movielens 10 million and the Eachmovie, but these datasets

do not contain the user or item metadata. However this information is crucial to our work. The

datasets used here are the only ones which have this information available.

5 fold cross validation has been performed on these datasets. This is the standard procedure

for evaluation, however the folds defined in the datasets could not be used since they were not

made for the cold-start problem.

36

4.4.2 Evaluation Metrics

All known evaluation metrics for recommender systems has been reported by us in this work.

This serves in giving a full and well-rounded picture of the scenario based on which proficient

further research can be conducted.

The metrics reported are namely:

• Classification Accuracy : It is calculated as the percentage of correct classifications

among the whole test data. So, if Actual result is A(say) and predicted is P. Then classi-

fication accuracy is:

Accuracy =

∑
i
A(i)− P (i)

|A|
∗ 100 (4.5)

• Mean Absolute Error : It gives us the deviation in Predicted rating from the actual rat-

ing. Let u(c, s) be the true ratings, and up(c, s) be the ratings predicted by a recommender

system. Let W = (c, s) be a set of user-item pairs for which the recommender system made

predictions. Then, the mean absolute error, denoted
∣∣E∣∣, is defined as follows:

∣∣E∣∣ =

∑
(c,s)∈W

|up(c, s)− u(c, s)|

|W |
(4.6)

• Root Mean Squared Error : This is a variation of Mean Absolute Error. It is given

by the following formula:

∣∣∣√E2
∣∣∣ =

√
|E2| =

√√√√ ∑
(c,s)∈W

(u(c, s)− u(c, s))2

|W |
(4.7)

• Precision And Recall : To use these metrics, recommender system must convert its

ratings scale into a binary Do not recommend,Recommend scale. Items for which the

prediction is to recommend are shown to the user, other items are not shown. The

transition mechanism is up to recommender systems. Each item can be either relevant or

irrelevant to the user. We get, therefore, the following matrix:

37

Table 4.1: Precision And Recall

Recommended Not Recommended Total Relevant

Relevant RR RN R = RR+RN

Non-relevant FP NN IR = FP+NN

Total REC = RR+FP NREC = RN + NN N = R+IR = REC+NREC

Precision is the fraction of all recommended items that are relevant.

Precision =
RR

RR+ FP
=

RR

REC
(4.8)

Recall is the fraction of all relevant items that were recommended.

Precision =
RR

RR+RN
=
RR

R
(4.9)

4.4.3 Results

Table 4.2 gives a detailed analysis of all the experiments performed using DL-NS algorithm. All

the above mentioned evaluation metrics are shown in it.

Tables 4.3 and 4.4 gives a similar detailed report for NS algorithm.

Figure 4.2 shows the change in MAE and RMSE based on the regularization parameters. Figure

4.3 shows the change in Precision and Recall for the number of recommendations.

Table 4.2: DL-NS Results

Number Of Atoms Accuracy(in %) MAE RMSE
Precision
(Top 10)

Recall
(Top 10)

10 34.5265 0.8828 1.2054 0.6517 0.1269

20 34.6812 0.8927 1.2236 0.6558 0.1265

30 33.8079 0.8944 1.2157 0.6523 0.1256

40 33.8710 0.8857 1.2007 0.6482 0.1222

50 34.6474 0.8778 1.1976 0.6646 0.1286

60 33.9893 0.9006 1.2237 0.6519 0.1254

70 33.8016 0.8956 1.2152 0.6422 0.1202

80 34.2071 0.8866 1.2039 0.6463 0.1248

90 34.2870 0.8877 1.2044 0.6484 0.1288

38

Table 4.3: NS Results for 100K

Regularization Term Accuracy(in %) MAE RMSE
Precision
(Top 10)

Recall
(Top 10)

0.1 34.1065 0.9046 1.2310 0.6493 0.1235

0.2 33.5782 0.9042 1.2240 0.6479 0.1289

0.3 34.3599 0.8926 1.2151 0.6469 0.1275

0.4 34.2630 0.8821 1.1987 0.6515 0.1260

0.5 33.9962 0.8895 1.2243 0.6511 0.1273

0.6 35.1538 0.8630 1.1776 0.6605 0.1242

0.7 34.5505 0.8872 1.2114 0.6530 0.1287

0.8 34.5532 0.8740 1.1884 0.6531 0.1276

0.9 34.4056 0.8837 1.2037 0.6514 0.1257

Table 4.4: NS Results for 1M

Regularization Term Accuracy(in %) MAE RMSE
Precision
(Top 10)

Recall
(Top 10)

0.1 32.0842 0.9322 1.2396 0.6667 0.1038

0.2 34.7842 0.8735 1.1948 0.6450 0.1007

0.3 34.9799 0.8697 1.1926 0.6475 0.1035

0.4 34.9871 0.8644 1.1836 0.6489 0.1033

0.5 34.9824 0.8697 1.1921 0.6470 0.1034

0.6 34.9472 0.8676 1.1885 0.6509 0.1057

0.7 34.6849 0.8786 1.2019 0.6437 0.1031

0.8 35.3511 0.8586 1.1793 0.6531 0.1035

0.9 35.2126 0.8625 1.1835 0.6461 0.1024

39

Figure 4.2: Regularisation VS. MAE and RMSE

Figure 4.3: Precision and Recall VS. No. of Recommendations

40

Figure 4.4: Confusion Matrix for MovieLens 100K

For a better visual understanding of the classifcation accuracies and their distribution in the

various classes, the follwoing confusion matrices are shown.

41

Figure 4.5: Confusion Matrix for MovieLens 1M

42

The methods DL-NS and NS are both computationally much faster than DC-SRC(3). Whereas

results are comparable, DL-NS takes 0.13 times DC-SRC and NS takes less than 0.025 times

the time taken by DC-SRC.

Figure 4.6: Comparison of Methods and their Computational Time

4.5 Conclusion

In this chapter the class imbalance problem of the earlier approaches is addressed. The most

important thing solved in this chapter is the reduction in computational time taken by all other

algorithms proposed so far. Even if the results achieved are not better than NN-User and DC-

SRC proposed in this thesis, it is comparable to them. However, the novelty of this chapter lies

in the speedup achieved without compromising on accuracy or other evaluation measures.

43

Chapter 5

Conclusion

This thesis, comprising of the 3 chapters has been dedicated to the solution of the cold-start

problem in recommender systems. The Coldstart problem is a major issue in the e-commerce

world thus making it a serious issue faced by every technology-friendly person in daily life as

well. Whenever a user first visits a website, he/she hardly ever expects to get the right recom-

mendations, and so for some disheartened folk it might be a not-so-welcome experience. This

in turn reduces the business of these sites. However, solving the coldstart problem guarantees

better and much more personalised recommendations to all these people and better publicity

for new items. While this problem is being tackled by many researchers today, this has been my

humble attempt at proposing a simple, usable and progressive framework.

The information of users and items play the basis of the framework. It was a simple idea, rising

from the basic fact that the things a person likes are just a reflection of the person they are and

the kind of thing it is. When we combine both these factors, we have the preliminary layout for

recommendations for coldstart. There is ofcourse a huge future scope to this work. However,

the results achieved in this thesis are comparable to the state-of-the-art algorithms at present.

It lays a solid groundwork to build upon.

44

Bibliography

[1] Ahn, H. J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting

problem. Information Sciences 178, 1 (2008), 37–51.

[2] Bian, J., Li, X., Li, F., Zheng, Z., and Zha, H. Ranking specialization for web search: a

divide-and-conquer approach by using topical ranksvm. In Proceedings of the 19th international

conference on World wide web (2010), ACM, pp. 131–140.

[3] Bobadilla, J., Ortega, F., Hernando, A., and Bernal, J. A collaborative filtering approach

to mitigate the new user cold start problem. Knowledge-Based Systems 26 (2012), 225–238.

[4] Chen, G., and Needell, D. Compressed sensing and dictionary learning.

[5] Chi, Y. Nearest subspace classification with missing data. In Signals, Systems and Computers,

2013 Asilomar Conference on (2013), IEEE, pp. 1667–1671.

[6] Cuong, K. M., Minh, N. T. H., Van Canh, N., et al. An application of fuzzy geographically

clustering for solving the cold-start problem in recommender systems. In Soft Computing and Pattern

Recognition (SoCPaR), 2013 International Conference of (2013), IEEE, pp. 44–49.

[7] Frosyniotis, D., Stafylopatis, A., and Likas, A. A divide-and-conquer method for multi-net

classifiers. Pattern Analysis & Applications 6, 1 (2003), 32–40.

[8] Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., and Schmidt-Thieme, L.

Learning attribute-to-feature mappings for cold-start recommendations. In Data Mining (ICDM),

2010 IEEE 10th International Conference on (2010), IEEE, pp. 176–185.

[9] Gunawardana, A., and Shani, G. A survey of accuracy evaluation metrics of recommendation

tasks. The Journal of Machine Learning Research 10 (2009), 2935–2962.

[10] Hsieh, C.-J., Si, S., and Dhillon, I. S. A divide-and-conquer solver for kernel support vector

machines. arXiv preprint arXiv:1311.0914 (2013).

45

[11] Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. Addressing cold-start problem in recom-

mendation systems. In Proceedings of the 2nd international conference on Ubiquitous information

management and communication (2008), ACM, pp. 208–211.

[12] LeCun, Y., and Cortes, C. MNIST handwritten digit database.

[13] Lee, K.-C., Ho, J., and Kriegman, D. J. Acquiring linear subspaces for face recognition under

variable lighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, 5 (2005),

684–698.

[14] Leung, C. W.-k., Chan, S. C.-f., and Chung, F.-l. An empirical study of a cross-level associ-

ation rule mining approach to cold-start recommendations. Knowledge-Based Systems 21, 7 (2008),

515–529.

[15] Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. Facing the cold start problem in

recommender systems. Expert Systems with Applications 41, 4 (2014), 2065–2073.

[16] Liu, H., Hu, Z., Mian, A., Tian, H., and Zhu, X. A new user similarity model to improve the

accuracy of collaborative filtering. Knowledge-Based Systems 56 (2014), 156–166.

[17] Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., and Riedl, J. Movielens unplugged:

experiences with an occasionally connected recommender system. In Proceedings of the 8th interna-

tional conference on Intelligent user interfaces (2003), ACM, pp. 263–266.

[18] Pereira, A. L. V., and Hruschka, E. R. Simultaneous co-clustering and learning to address

the cold start problem in recommender systems. Knowledge-Based Systems 82 (2015), 11–19.

[19] Raicharoen, T., and Lursinsap, C. A divide-and-conquer approach to the pairwise opposite

class-nearest neighbor (poc-nn) algorithm. Pattern recognition letters 26, 10 (2005), 1554–1567.

[20] Safoury, L., and Salah, A. Exploiting user demographic attributes for solving cold-start problem

in recommender system. Lecture Notes on Software Engineering 1, 3 (2013), 303.

[21] Son, L. H. Hu-fcf: a hybrid user-based fuzzy collaborative filtering method in recommender systems.

Expert Systems with Applications: An International Journal 41, 15 (2014), 6861–6870.

[22] Torralba, A., Fergus, R., and Freeman, W. T. 80 million tiny images: A large data set

for nonparametric object and scene recognition. Pattern Analysis and Machine Intelligence, IEEE

Transactions on 30, 11 (2008), 1958–1970.

46

[23] Yu, H.-F., Hsieh, C.-J., Dhillon, I., et al. Scalable coordinate descent approaches to parallel

matrix factorization for recommender systems. In Data Mining (ICDM), 2012 IEEE 12th Interna-

tional Conference on (2012), IEEE, pp. 765–774.

47

	Introduction
	Addressing Cold-Start Problem using Neural Net
	Introduction
	Literature Review
	Proposed Method
	Experimental Results
	Data Description
	Evaluation Metric
	Comparitive Results

	Conclusions

	Divide and Conquer Approach Using Sparse Representation Classifier
	Abstract
	Introduction
	Literature Survey
	Divide and Conquer
	Sparse Representation Based Classification

	Proposed Algorithm
	Proposed algorithm for Divide and Conquer using SRC

	Experimental Setup and Evaluation
	Description of Dataset
	Evaluation Measures
	Results

	Conclusion

	Nearest Subspace Classifier
	Introduction
	Background
	Nearest Subspace Classifier
	Dictionary Learning

	Proposed Method
	Algorithm DL-NS

	Experiments and Results
	Description of Data
	Evaluation Metrics
	Results

	Conclusion

	Conclusion

