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Chapter 1

Introduction

A cryptographic hash function is a mathematical algorithm that maps arbitrary
size data, called the message to a fixed size value, called the hash or message
digest or digest. The hash so obtained is one way and computationally hard
to invert. Hence, for a given hash value; it is computationally infeasible to re-
trieve its message. The security of any hash function is given by the degree of
its resistance to following properties - pre-image resistance, second pre-image
resistance and collision resistance. Additionally, a hash function should be fast
and efficient.
A hash function is pre-image resistant if it is computationally infeasible to
obtain the corresponding message, m from the given hash value h such that
Hash(m) = h i.e., given a hash h; it is difficult to find a value m that hashes
to h. In mathematical terms, given the range value ; it is difficult to find the
domain point which hashes to the given range value. For a second pre-image re-
sistant hash function, given a message m1, it is computationally hard to obtain
another message m2 such that they both produce the same hash value h. In
other words, given a message m1, it computationally hard to find m2 6= m1 such
that h(m1) = h(m2). In a collision resistant hash function, it is computationally
hard to find two messages that hash to same value, i.e. it is hard to produce
two different inputs (say m1 and m2) such that they have the same hash value.
One notable property is that the hash size is fixed and is much smaller that the
domain. Therefore, theoretically, it is impossible to prevent the preimage, sec-
ond preimage and collision attacks on any hash functions. Figure 1.1 shows the
inequality in the size of the range and the domain. The computational hardness
of problems in hash function domain depends on the amount of computation
that is needed to break the various properties discussed previously. Since the
output size of a hash function is a fixed number 2n (assuming that the hash
function has n bit output), it is easy to show that a generic preimage attack
can be constructed for an attacker who can call the hash function 2n times.
Similarly, a collision attack can succeed with probability more than 50% if the
attacker can call the hash function more than 2n/2 times. Finally, a generic
second preimage attack exists for an attacker who can call the hash function 2n
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times. Thus, it is no surprise that an attacker who has the power to call a hash
function as many times as mentioned earlier can break any or all of the security
properties of the hash function.

The security of a hash function is therefore defined in terms of the computa-
tional power of an adversary. If an adversary who makes lesser than 2n/2 calls
to an n-bit hash function can produce a collision for the hash function then we
call this function to be broken with respect to its collision resistance. Similar
arguments can be given for preimage and second preimage attack resistance as
well.

For example, the hash function SHA-1 produces 160 bit digests. With 280

calls to it, one should expect to find collisions with high probability. However,
a shortcut attack requiring only 269 calls to the hash function was shown by X.
Wang and her team. However, this attack has not yet been demonstrated in
practice due to the high number of calls to the hash function. Attacks like this
are called “theoretical attacks” and attacks which can be exhibited in practice
are called “practical attacks”. Hash functions MD4, MD5, and SHA-0 suffer
from practical collisions attacks, for example.

Further, it is also desirable that a hash function is secure from any length
extension attacks. In a length extension attack, an attack uses the previous
instances of the computation and generates the new computation by simply
adding one or more new message blocks. This attack does not breaks any basic
properties of hash function but violates another basic property of hash function
i.e. randomness, according to which a hash function must produce random
output even a one bit change is done in the message. A compression function
is used at the end to prevent this attack. Figure 1.2 shows the compression
function diagrammatically.

Figure 1.1: Size of domain and the range of Hash Functions
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1.1 Applications of Hash Functions

Following are few domains where hash functions are used:

• Public Key Algorithms

– Password Logins

– Encryption Key Management

– Digital Signatures

• Integrity Check

– Virus and Malware scanning

• Authentication

– Secure Web Connection (PGP, SSL, SSH, S/MIME)

1.2 SHA2

The SHA2 is a cryptographic hash function designed by the National Institute of
Standards and Technology (NIST). SHA2 is the successor of SHA1. It describes
an improved version of algorithm which brings more security as compared to
SHA1. SHA2 works on eight 32 bit words. Following are the hash sizes of SHA2
- SHA-224, SHA-256, SHA-384 and SHA-512. We are interested in study of
SHA-256 which produces a hash size of 256 bits.

SHA2 is based on Merkle-Damg̊ard (MD) construction. The MD construc-
tion was first described in [5]. It was independently proven in [6] and [2] that
the structure is secure and collision resistant if appropriate padding scheme is
used and the compression function is collision resistant. Figure 1.2 describes
MD the design principle:

Figure 1.2: Merkle-Damg̊ard design for hash functions

The computation of hash is based on repeated application of some mathe-
matical function, f in Figure 1.3. Figure 1.4 describes the iteration of the hash
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Figure 1.3: Iteration based hash function

Figure 1.4: SHA2 Step Function

for SHA2. As clear from the figure that the original message is first expanded
and then step transformation is performed on the expanded message. The final
value or the digest is the xor of IV and nth step.

As our interest lies in analysis of SHA256, hence from hereon we refer SHA2
to SHA256. Further we describe the internal structure and bit manipulation of
SHA256 only omitting the details of other variants.
Figure 1.4 shows the details of single step of SHA2. Each step function or step
transformation operate on 8 state variables each of which is 32 bits; Ai, Bi, Ci,
Di, Ei, Fi, Gi and Hi, where i denotes the ith step. The initial value of the state
variables are given by the initialization vector, IV. The IV are predetermined
and are listed below:

〈A0 = 0x6a09e667〉
〈B0 = 0xbb67ae85〉
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〈C0 = 0x3c6ef372〉
〈D0 = 0xa54ff53a〉
〈E0 = 0x510e527f〉
〈F0 = 0x9b05688c〉
〈G0 = 0x1f83d9ab〉
〈H0 = 0x5be0cd19〉

As stated above and shown in figure; calculation of hash consists of two phases,
the message expansion and the step transformation. In case of SHA2, theses
phases are described as follows:

1. Message Expansion
There are 16, W0 to W15 base message words in SHA2. The rest 64
message words are obtained from the base using the following recurrence
relation:

Wi =

{
Wi for 0 ≤ i ≤ 15,

σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for 16 ≤ i ≤ 63

where
σ0(x) = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)
σ0(x) = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)

2. State Update
The state update transformation takes place in span of 64 steps (0 to
63) using the message word and the round constant Ki. We have used
alternative description of SHA2 as described in [4]. In this description
there are only two updates namely the Ai and the Ei; rest all the state
variables takes the values from these two in form of chaining input, due
to this chaining value of state update function, we can represent all the
state variables in terms of A and E as described below:

Ai = Ai, Bi = Ai−1, Ci = Ai−2, Di = Ai−3, Ei = Ei, Fi = Ei−1,
Gi = Ei−2 and Hi = Ei−3
SHA2 uses two boolean functions as described below:

• f0(x, y, z) = (x ∧ y)⊕ (x ∧ y)⊕ (y ∧ z)
• f1(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

SHA2 also use two auxiliary functions given below:

•
∑

0(X) = (X >>> 2)⊕ (X >>> 13)⊕ (X >>> 22)

•
∑

1(X) = (X >>> 11)⊕ (X >>> 6)⊕ (X >>> 25)

From the Figure 1.4 it clear that step transformation is dependent only
on two message words, Ai and Ei. Any other words, B, C, D, F , G and
H can be obtained by knowing previous value of Ai and Ei .i.e. Ai−1 and
Ei−1.
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1.3 History and Related Work

There are very few theoretical references explaining the full round differential
trail of the SHA256 while the practical ones haven’t reached full round differ-
ential. There are two different approaches of performing the attack on any hash
function. The local collision technique has provided some major break through
in studying the attack on hash functions. In [3] and [7], the author showed how
local collisions can be used for attacking iterated hash functions. These works
are centered around the study of non-linearity of message expansion and its
correlation in subsequent steps. Using these technique Sanadhaya and Sarkar
formulated SS local collision technique and produced 21 round collision of SHA2
in [8] which was later improved and increased to 24 rounds [9]. Using similar
concept, a 24 round attack was also given in [7]. It was computationally hard to
increase the rounds using this technique. These attacks were based on combi-
natorial analysis of internal functions of SHA-2. Due to the further complexity
and cost of the internal structure, the σ0 and the σ1, extension to more rounds
using this approach was not possible.

The second technique is based on the disturbance vector. Canniere and
Rechberger in [1] showed the trails on SHA1. They described a generalized
characteristic of SHA1 and presented the trail using the automation. This
technique was later used by Mendel et.al [4] and a 28 round attack was presented
on SHA2. This attack was later improved and increased to 46 rounds.

We found that though work done by Mendel et.al was considerable and
remarkable yet it lacked an efficient back tracking scheme. During the last
few years there has been lots of improvements in the implementation and also
the research has shifted more on the finding of the impossibility conditions
that occur in SHA2 during the generation of automated trail. These various
research and their formulation do provide some improvements on the previous
ones but none of them is able to define all the set of conditions for generating
the automated trails of SHA2.

1.4 Motivation

Our aim is to study the second technique for the attack on hash function and
come up with an open source implementation that provides a framework for
generating automated trails. There are very few implementation on generating
the automated trails of SHA256, hence it becomes our motivation to work on
this area.
We examine the paper [1] which is completely based on SHA-1 trails. SHA2 is
more complex than SHA-1. There are several conditions in SHA2 that causes
inconsistency behaviour in generating trails. Several research are still on going
over this field and new conditions are being discovered. Recently, one such con-
dition called the ”double bit condition” was published in [4]. There seems to be
no standard approach or any pre-defined framework to generate the automated
trails of SHA-256 and hence it still remains open problem and interesting topic
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of research. Our aim is to formulate an open source implementation for finding
trails that is able to handle the inconsistent values automatically.
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Chapter 2

Collision Attack on
Reduced Round SHA2

Our problem specification begins on the footprints of SHA-1. We carry forward
the described sub-routine in [1].
We begin by defining basic foundations of the implementation into following
factors:

• Design of algorithm

• Formulation of algorithm into the data structure

The design of algorithm is the first step in any implementation task. Further
as our implementation is computationally intensive and lot of backtracking is
inherent, we need to incorporate these factors into our algorithm. The data
structure must also be redesigned and should incorporate the condition de-
scribed in the algorithm. We begin by describing the algorithm and discussing
constraints on data structure. Later we show non-random properties of the σ
function and its graphical plot. Analyzing all these things, in section 2.4 we
start formulating the trails. Later in section 2.6, we provide complete analysis
of various data structure used and studied. Then in section 2.6.5, we present
the best data structure for our work. Then we present the description of the
implementation, the algorithm and the generated trails from the algorithm. We
research on following points that are discussed in this chapter:

• Overview of algorithm design

• Overview of data structure

• Non-Randomness in σ

• Strategy for developing differential trail

• Design and Analysis of Data Structure
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• Description of the implementation

• Theoretical bounds

• Precomputation

• Algorithm

2.1 Algorithm Design

The algorithm design is based on satisfying two conditions namely the two bit
condition and the consistency check. The consistency check is done randomly
over several steps but two bit condition is done at each and every step. The
algorithm must fill each value that is consistent and correct value. If this is
not the case, then backtracking occurs that removes the conflicting values and
populates the correct one.
Few helper sub-routines are also used like the depth first search etc. Further,
there is also lot of auxiliary manipulations and looksups like the bit vector etc.
Detail algorithm is presented in section 2.10.

2.2 Data Structure

Choice of data structure is very important for any computation based task. The
choice is formulated on the type of computation and its limitations. Most of-
ten we are required to make decisions on the acceptance of values or whether
to drop the value or rectify the value. This decision making involves frequent
lookups on the previous values. Also, a single value is capable of generating a
trail and therefore providing a path. Henceforth, we use a tree data structure
for implementing the algorithm.
The tree data structure makes our few operation very efficient like the estab-
lishment of path (hence, giving us the trails), previous value lookups (using the
parent of the node) and the backtracking (using the parent and the siblings).
Thus, from here on we discuss and analyze the tree data structure only.

The algorithm needs complete redesign and redesign it to suit the SHA-2.
We perform several tests on different data structures We formulate several condi-
tions and design our approach into set of algorithms as described in section 2.10.

2.3 Non-Randomness in σ

2.3.1 Analysis of σ0

The analysis of σ0 shows that the range of values of σ0 when plotted over the
entire domain of word W, takes a periodic sequence. Any simple c-code, like
one as mentioned below can be used to generate the values. The plot is shown
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in figure 2.

Figure 2.1: σ0(ω)

Figure 2.2: σ1(ω)
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c-snippet for σ0

#d e f i n e ROTRIGHT( a , b) ( ( ( a ) >> (b ) ) | ( ( a ) << (32−(b ) ) ) )

#d e f i n e SIG0 ( x ) (ROTRIGHT(x , 7 ) ˆ ROTRIGHT(x , 1 8 ) ˆ ( ( x ) >> 3) )
#d e f i n e SIG1 ( x ) (ROTRIGHT(x , 1 7 ) ˆ ROTRIGHT(x , 1 9 ) ˆ ( ( x ) >> 10))

i n t main ( ){
unsigned i n t s i g 0 ;
unsigned i n t W;
unsigned i n t i ;

f o r (W = 0 ; W < LIMIT ; W++)
s i g 0 = SIG0 (W) ;

}

Figure 2.1 shows the graph representing first 12000 values of σ0(W ) on Y-
axis and W on X-axis. From the plot, we can infer that whatever value we take
on the Y-axis .i.e. σ1(W ), we will get solution with probability one, that is we
will get an intersection on the graph when drawn a line from the chosen point.

Given δ, number of solution pairs (ω, α) satisfying
σ0(ω+α)−σ0(ω) = (number of times the upper line cuts the curve) ∗ (number
of times the lower line cuts the curve)
where δ is taken from Y-axis and α from X-axis.
Let σ0(ω + α)− σ0(ω) = ∆
Further, once we fix a δ, the number of solutions of the above equation do not
differ to much from ∆.

2.3.2 Analysis of σ1

In the similar way, we can show the analysis of σ1. Below is the C code similar
to σ0. Figure 2.2 shows the plot of values. Similar analysis as that of σ0 can
be done here.

c-snippet for σ1

#d e f i n e ROTRIGHT( a , b) ( ( ( a ) >> (b ) ) | ( ( a ) << (32−(b ) ) ) )

#d e f i n e SIG0 ( x ) (ROTRIGHT(x , 7 ) ˆ ROTRIGHT(x , 1 8 ) ˆ ( ( x ) >> 3) )
#d e f i n e SIG1 ( x ) (ROTRIGHT(x , 1 7 ) ˆ ROTRIGHT(x , 1 9 ) ˆ ( ( x ) >> 10))

i n t main ( ){
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unsigned i n t s i g 1 ;
unsigned i n t W;
unsigned i n t i ;

f o r (W = 0 ; W < LIMIT ; W++)
s i g 1 = SIG1 (W) ;

}

2.3.3 Differential Analysis of σ0

We perform local analysis of σ0 by running the simulation on random δ for each
of the message values. The equation can formulated as below:

σ0(W + δ)− σ0(W ) = ∆

The distribution is almost random and non-conclusive. The below plot in figure
4, shows the values of the corresponding equation. The x-axis represents first
16000 values while the y-axis solves the equation - σ0(W + δ)− σ0(W ) = ∆

2.3.4 Differential Analysis of σ1

The differential analysis of σ1 could also be performed in the similar way. The
corresponding equation is:

σ1(W + δ)− σ1(W ) = ∆

The distribution is seems similar to the σ0 plot. In the Figure 2.4, the values
shown for the corresponding equation. The x-axis represents first 16000 values
while the y-axis solves the equation - σ1(W + δ)− σ1(W ) = ∆

2.4 Building Characteristics

The building of characteristic for SHA2 can be demonstrated using following
flow chart in Figure 2.5 :

Following points describes the flowchart:

• Choose a random message pair (m,m∗)

• Build differential characteristic of the chosen message pair (m,m∗)

• Store the intermediate results in augmented data structures and define
the time based heuristics, Th

• Drill the search for the conforming message to the SHA2 rounds limited
by Th.
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Figure 2.3: Differential Analysis of σ0

• Once Th expires, perform backtracking

Two Bit Condition and Cyclic Anomaly in SHA2: Conditions of type (A(i−2),j =
A(i−3),j) ∧ (A(i−2),j 6= A(i−3),j) are called two bit conditions. Such condition
occur very frequently in SHA2. They have a deep impact on the search heuris-
tics. As setting of one bit affects a total of 4 steps,, we must carefully mine
out two bit condition and fix it. Conditional branching spanning over 5 steps
for each set bit should be sufficient. Though this would decrease the searching
efficiency but is vital in generating valid differential characteristic.

Conditional Checks: Checking each bit and assigning values becomes complete
test for generating the differentials. This process becomes very costly and hence
some times abrupt omissions are done. Each equal bit bit is assigned with value
0 or 1. Each unequal bit is assigned a value u or n and otherwise (check table
1).
To define the algorithm for conforming message words, let us first define set all
possible values that a message difference can take (Table 1).

2.5 Strategy and Initial Setup

2.5.1 Starting Pair

For getting the differentials extending over 24 steps we need to choose the initial
characteristic spanning between 9 ≤ t ≤ 16. At t = 16, the attack can be
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Figure 2.4: Differential Analysis of σ1

Table 2.1: Set of all possible condition on a pair of bits

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? 3 3 3 3
- 3 - - 3
x - 3 3 -
0 3 - - -
u - 3 - -
n - - 3 -
1 - - - 3
# - - - -
3 3 3 - -
5 3 - 3 -
7 3 3 3 -
A - 3 - 3
B 3 3 - 3
C - - 3 3
D 3 - 3 3
E - 3 3 3

extended to 32 steps. Any starting point will begin by fixing the value of t.
Once the span is fixed then we try to choose the message word that makes the
SHA2 rounds consistent. One more metric for choosing the message word is the
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Figure 2.5: Flowchart

sparsity of the message word so that the search time is greatly reduced. Further,
the higher the value of t, more difficult it becomes to choose a good message
word.

2.5.2 Valid Differentials and Conforming Pair

For a given starting point, we perform the state update together with the mes-
sage expansion. During this phase if we get any inconsistency we move a step
backward and fix a bit to remove the consistency. The huge amount of incon-
sistency in SHA2 is due to the update of two state variables together with the
diffusion of Σi. A generalized framework cannot be determined which covers
all the inconsistent properties. The idea is to put checkpoints on most com-
mon factors (that cause inconsistencies) that occur in SHA2 like the two bit
condition, cyclic dependency and the complete condition check. These three
checks seems sufficient to generate a valid trail. Due to the high probability of
inconsistent behavior of the differentials, merely creating differentials will not
help. A strategy for searching conforming message pair has to be to combined
to the above process. Doing this will detect critical bits (the bits that cause two
bit condition and hence the critical bits).

2.5.3 Improving Computation

We divide the Wi, Ai and Ei into 3 sub steps. We take each individual bit of
σi, Σi and fi and perform the modular additions. The bit computation reduces
to 3.
Memoization: While we are creating the trail of differential, we can use the
previous computed values in backtracking. Hence, we need to store the trails
in some hash map or some fast data structure. These values are very big and
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provides an upper bound on the stored value.

2.6 Design and Analysis of Data Structure

Selecting the most appropriate data structure for the implementation of the
cryptanalytic technique is very important. The should be an optimal solution
between the storage, retrieval and updates. Hence, in our current problem
domain following points represents a metric for choosing any data structure:

• Insertion and Deletion

• Retrieval

• Space complexity

• Update

Further, in any cryptanalytic technique the trails provides a path from the
root node to the leaf node. Each node is dependent on its parent and its ances-
tors and thus our data structure must additionally put following constraints to
handle these relations:

• It must be able to represent the relationship between different trails and
among the individual values. For example - a value is dependent on the
parent value which itself is dependent on several previous values. These
value forms a path starting from initial random chosen value. Hence, a
tree data structure would be appropriate to represent such scenario.

• It must be simple so that the data can be processes easily whenever re-
quired.

Let us study some data structure in detail and check its applicability for our
application. As already mentioned above about the relevancy of tree data struc-
ture, we are going to study and formulate our problem domain on tree data
structure.

2.6.1 Binary Search Tree

Binary Search Tree or BST is a lightweight data structure. The design of BST
depends on the assumption that the data inserted is random in nature. This
assumption is often not correct and the resulting BST may become skewed to
some degree. If we consider the BST created via random permutation, the total
number of BST is given below.
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Number of BST on a given number of nodes, ’n’

Let there be n nodes to construct a BST.
At a given instance, let i be the root of the BST. Thus, there are two subtrees
spanning over (n-i) and (i-1). As 1 ≤ i ≤ n, the span of i takes all the possibil-
ities recursively defines by both the sub-BST’s. Thus, the recurrence relation is
given by the following equation:

T (n) = T (n− i) ∗ T (i− 1)

Summing i over n nodes gives us the total number of BSTs

T (n) =
∑i=n

i=1 T (n− i) ∗ T (i− 1)

T (n) =
(2n

n )
(n+1)

The above expression is called the CatalanNumber.

In our area of applicability, the construction of trails occurs by analyzing
and changing few bits. These results in values that are not random and some
times very nearer and thus makes the BST, a skewed one.
We perform an experiment to prove our claim. We generate a random number
to mimic the message word pair. Then we try to generate differential trail by
making one bit change. The bit flip is repeated 10 times and the generated
values are populated into a Binary Search Tree. Figure 7 shows the plot of such
trail. From the observation it is obvious that the value is highly skewed. We
insert the generated values into a BST using following C - code in List 1.
The analysis shows that the values are populated first in increasing order and
then in decreasing order, there by creating a skewed tree. The height of left
subtree is six and that of right subtree is two making the difference between
right subtree and left subtree to 4. Out of possible 16796 tree, we get a tree
that is skewed one.
Thus, we conclude that there is necessity of balancing the height of the tree.

i n t i n s e r t ( s t r u c t bt r ee ∗∗q , i n t va lue ){
i f (∗q == NULL){

s t r u c t bt r ee ∗temp = NULL;
temp = ( s t r u c t bt ree ∗) mal loc ( s i z e o f ( s t r u c t bt r ee ) ) ;
temp−> l e f t = NULL;
temp−>r i g h t = NULL;
temp−>key = value ;
∗q = temp ;

}
e l s e i f ( (∗ q)−>key < value )

i n s e r t (&((∗q)−> r i g h t ) , va lue ) ;
e l s e i f ( (∗ q)−>key >= value )

i n s e r t (&((∗q)−> l e f t ) , va lue ) ;
r e turn 0 ;

18



}

List 1:BST insert code

Figure 2.6: Differential Trail having one bit difference

2.6.2 AVL Tree

AVL Tree is a height balanced version of a BST. The height of the two left and
right subtrees differ by atmost one. Let Lh and Rh be the height of left and
right subtree at any given node. Then following equation holds:

|Lh −Rh| ≤ 1

The AVL Tree uses rotations to balance its height. There are three rotation
when we insert the above data into an AVL Tree. Due to self balancing nature,
this data structure is very fast in data retrieval but the problem arises when
there are lots of updates and deletion. The rotation goes on increasing. In
our analysis a ten node tree made three rotation, so in the nodes increase the
rotation also increases. Hence, a lot of computation is wasted in rotation and
shifting the tree.

2.6.3 Red Black Tree

RB Tree is also height balanced tree. Each node of RB Tree carries an extra
information, i.e. the color of the node; which can be either Red or Black. The
main idea behind RB Tree is to make it balanced during insertion and deletion.
There are several properties that must be maintained in a RB Tree. Due to
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the consequences of these properties, the path from the root to the farthest leaf
is no more than twice as long as the path from the root to the nearest leaf.
Henceforth, the tree is roughly height balanced.
One further advantage of RB Tree is in the parallel programming paradigm.
RB Tree are very efficiently constructed and managed on parallel hardwares. A
sorted list of items takes about O(loglog(n)).
A redblack tree is similar in structure to a B-tree of order 4, where each node
can contain between 1 and 3 values and (accordingly) between 2 and 4 child
pointers. In such a B-tree, each node will contain only one value matching the
value in a black node of the redblack tree, with an optional value before and/or
after it in the same node, both matching an equivalent red node of the redblack
tree.

Note: From the above walk through we conclude that among the available
data structures, the RB Tree is one of the better option. The only disadvantage
of RB Tree is the amount of space it takes. A BST or an AVL Tree would
additionally need an auxiliary vector array to keep the track of the previous
nodes.

2.6.4 Augmentation

Any custom RB Tree comes with three naive pointers, the left child, the right
child and the parent pointer (we refer this as threading). The threading is very
important and must be explicitly implemented. Apart from that there are few
more augmentation as described below.

There exists one more constraint on data structure .i.e. huge backtracking
with very frequent inserts and updates. The insert and delete can be handled
by the RB Tree while the frequent backtracking requires access of the parent
node in constant time. Hence an extra augmentation of the data structure is
required to access parent in constant time. For this we have implemented the
threaded tree. In a threaded tree the parent of the node can be accessed in O(1)
time. Thus, the definition of the used data structure is given below, RBt:

s t r u c t bt r ee {
s t r u c t bt r ee ∗ thread ;
s t r u c t bt r ee ∗ l e f t ;
unsigned i n t data ;
unsigned i n t id ;
char c o l o r ;
s t r u c t bt r ee ∗ r i g h t ;

} ;

Each augmented node of RBt will branch according to the number of con-
ditions imposed. A unique id is also associated with the node. This id will
uniquely identify the node and will be populated in auto-increment manner.
Figure 5 shows the detail of single node of the augmented RBt.
The node begins with a parent pointer. The pointer points to its immediate
parent. The parent pointer is followed by a left child pointer that contains the
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address of its immediate left child. Then comes the storage of the differen-
tial trail. Here we store data that are currently generated using the algorithm
described in section 9. The values here are not static and changes frequently
according to the backtracking. Upon backtracking the value is simply overwrit-
ten with any memoization to save space. The node requires an id to uniquely
identify itself to distinguish it from any other node on a different path that
contains same value as the current node. If id is not used the algorithm 3 and
5 will make whole trails inconsistent by changing values for other paths as well.
The probability of same value occurrence is very bleak but when occurs will
must be correctly dealt. Further, to maximize the automation of consistency
checks, id must be used. Any node has a char that identifies it as a red or black
node. This information is used to balance the tree. In the end is the pointer to
the right child that keeps the track of immediate right child.

Figure 2.7: Detail of one node of RBt

2.6.5 Time and Space Trade off

Though we have achieved a decent complexity to mine out the differential trail
using the RBt, yet the space consumption is the biggest let down of the above
approach. The implementation using the RBt takes over one hour for gener-
ating the differential trail of 18 steps on an average. There were few instance
when the trail went as far as 22 steps but never exceeded that. The algorithm
used for the above approach is described in section 2.10 under Algorithm 1, 2,
3, 4, 5 and 6.
The bottleneck in the above approach is the bulky data structure. The serial-
ization and the de-serialization becomes very time consuming task and hence
we need some simple data structure. Further this new design must also keep
the track of values that are obtained as they will be used for resetting the trail
(like the path in tree).
One solution is to use linear array. Using the linear array enforces us to use
additional following arrays:

• LB - a linear array that keeps track of branching to facilitate backtracking
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• DB - a linear array that keeps track of dirty bit

• TBC - an optional linear array to keep track of two bit condition. This
array will provide us with all inconsistent two bit conditions that occur
randomly on the given data for the given number of steps. Analysis of
this array would lead to further improvement of the trails in future work.

2.7 Brief Description of the Implementation

The implementation producing differentials spans over two phases. The first
phase is static and does not require inconsistency checks. The other phase is
dynamic and is completely based on the inconsistency checks. The achievement
of number rounds are completely dependent on how efficiently we handle the
dynamic phase. If we use non-linear data structure we get less differential rounds
as compared to the linear data structure.

• Phase 1: Unrestricted Step Transformation
The step transformation happens without any restriction. The is no con-
dition check required; be it the two bit condition or the consistency check.
The phase 1 on an average occurs two times during the complete trails.
The first time is the initial start trail itself. On an average it goes to 3-4
rounds. Few times it goes to 5th round. There were also instance where
the phase 1 spanned only for two rounds. The second time phase 1 occurs
randomly (no specific order or consistency) but very few times. Most of
the times it occurred between 10th-11th and 12th-13th round. In case of
linear approach the results were better. The initial trail went constantly
till 5th and 6th round. Further, inconsistency still occurred around the
13th and 14th steps.

• Phase 2: Restricted Step Transformation
All the step transformations that does not follow phase 1, comes under
the phase 2. Here a valid differential is found only using the backtracking.
The backtracking spans ranging 1-2 steps to several steps. Any bit whose
backtracking order is four or more is considered as critical bit. Such bit
occur in random order. Once occurred, the priority is to fix this bit first.
Fixing this bit results in changing of the trails to a large extent. The
critical bits start occurring from round 6-7 on an average for non linear
and 8-10 on an average for the linear approach. Many a times the critical
bits made the complete trails inconsistent and whole process had to be
repeated again.
The phase 2 is constructed around the two bit condition. We constantly
check each and every bit that has been set in previous steps for its consis-
tency in current step. Further, a separate consistency check is required.
This check validates each an every bit against the current set bit. This
check is very costly and is not done at each step. Instead, this is done
only few times. During the analysis, we never found any conflict using the
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extra consistency check and hence it was pure overhead for our analysis.
One of the reason for being unsuccessful could be due to not checking each
and every transformation. Such analysis could be done but is very costly
and would need good hardware support.

Using the above approach, we were able to get to 17 to 19 rounds on an average
for non linear and 21 to 23 steps on an average for linear approach. There was
one instance that the trail went as far as 22 steps for non-linear and 26 steps for
linear approach. After the average number of rounds the backtracking gets into
some kind of deadlock and keeps running and changing the differential values.

2.8 Computational Complexity

We define the computational complexity as the time taken to produce valid
differential upto 18 rounds on an average. On our laptop, with intel i7 dual core
processor clocked at 2.6 GHz with hypervisor technology (two threads per core);
it takes about one hour and fifteen minutes to generate 18 round differential.
In case of linear implementation we produced differential upto 21 rounds on an
average in about 40 minutes.
Further, we have implemented SHA2 in different way as described above. The
bounds are not very stiff and few work around should bring it down.

2.9 Precomputation

Let W and W ′ be two message words. We randomly populate these mes-
sage words and define them on the basis of table 1, as described above. The
state variables A and E have fixed initial value. A0 = 0x6A09E667 and
E0 = 0x510E527F . Thus, we define the characteristic of A and E as follows:
∇Ai = 01101010000010011110011001100111, where i = 0
∇Ei = 01010001000011100101001001111111, where i = 0
Define φ as the set containing undetermined bits .i.e. φ will contain 32 instances
of ? or x. Let φi denote the ith bit of φ

2.10 Algorithm

We have defined a total set of 6 algorithms. The first algorithm is the imple-
mentation using the RBt while the 7th algorithm implements the characteristics
using the Linear array L; rest 4 algorithms are the sub-routine to the first one
and the seventh one and finds two bit condition and the performs the consis-
tency checks.
Note: DFS aka depth first search used in algorithm 5 is self explanatory and
naive one and hence did not required separate sub-routine. Also the 6th al-
gorithm is the naive RB tree insert/delete and update and does not require
separate mention.
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The table 2 shows trail for 17 rounds. It took about 1hr 15mins for gener-
ating the given trail. We started with the algorithm 1 with the values of ∇A
and ∇E as given in the algorithm 1. Then we proceeded as in algorithm 1 by
randomly taking a value from the W and update in to ′−′ or ′n′ or ′u′. Then
we calculate the trails using the step transformation by using the subroutine
CA - Checking the two bit conditions and cyclic anomaly. The subroutine for
consistency check is also done randomly (not at each and every step). In case
of backtracking we directly call the thread pointer as defined above and in the
algorithm ”RBt → thread→ id”. Then we repeat the whole process again (step
no. 27). A separate variable called the time stamp defined as Th is also used.
This keeps track that we are not unnecessarily looping on a deadlocked state.
We have taken its value between 15 min to 20 mins. This timeout occurs more
often on consistency check rather than on two bit condition.

Alternatively; when we used the linear approach, we were able to generate a
26 round trail on an average with around 40mins for generating the trail. The
process and procedure for consistency check and the two bit condition remains
the same. The implementation difference comes in the path traversal where in
RBt path was obvious and automatically constructed as we generated trails.
Here, we must explicitly provide a different linear data structure that keeps the
track of the trails. There is extremely low trade off in case of serializing and
de-serializing a linear data structure as we just need to write the values and
parse it while retrieving. Comparing this implementation with any non-linear
implementation following two efficiency enhancements are obvious:

Red Black Tree

• Serialize and de-serialization of path

• Huge trade off in reconstruction of tree in case of backtracking

Linear Array

• No serialize or de-serialization of path

• Minimal trade of in reconstruction of values while backtracking
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Algorithm 1 Generating Differential Characteristics Part 1

1: procedure GDC 1
2: Set ∇Ai = 01101010000010011110011001100111, where i = 0
3: Set ∇Ei = 01010001000011100101001001111111, where i = 0
4: Initialize RBt

5: srand(time(NULL))
6: Randomly populate W and W ∗

7: Define ∇W according to table 1
8: Define φ and set it as the root of the RBt

9: Pick v ∈ φi and perform following check
10: if (v == ?) then
11: Assign v as ’-’ and update φi
12: Create a branch from the node of RBt

13: else
14: Assign v as ’u’ or ’n’and update φi
15: Create a branch from the node of RBt

16: ConsistencyCheck()
17: Perform the step transformation and update the state variables
18: while (v, z) ∈ CA(v, z) ∀ i, j|v ∈ φi ∧ z ∈ φj do
19: Perform backtrack, Set RBt → thread→ id
20: if (v == ?) then
21: Assign v as ’x’ and update φi
22: else
23: if (v == n) then
24: Assign v as ’u’ and update φi
25: else
26: Assign v as ’n’ and update φi
27: Recurse on the path from id(φi) to id(φ0) | (id(φi), id(φ0)) /∈ CA
28: if (steps bactracked > 3) then
29: Mark v as critical
30: Resolve v first
31: if timestamp ≥ Th then
32: Discard the current differential
33: goto Step 9.

Note: ConsistencyCheck() gets called after random amount of steps
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Algorithm 2 Generating Differential Characteristics Part 2

1: procedure GDC 2
2: Pick v ∈ φ randomly
3: if v 6= ’-’ then
4: goto 2

5: Assign v ’0’ or ’1’
6: Compute the propagation
7: ConsistencyCheck()
8: if consistency fails then
9: goto 5 and pick and pick a different value

Algorithm 3 Two Bit Condition and Cyclic Anomaly (vi, vj)

1: procedure CA
2: if (Path(vi, vj)) then
3: if (id(φi) == id(φj) ∧ id(φi) 6= id(φj)) then
4: return true
5: else
6: return false
7: else
8: return false

Algorithm 4 Consistency Check

1: procedure ConsistencyCheck
2: Assign a value to the bit and check for consistency with all other bits

Algorithm 5 Check if nodes are in same path

1: procedure Path (vi, vj)
2: if (DFS(vi, vj)) then
3: return true
4: else
5: return false

Note: DFS is Depth First Search sub-routine

Algorithm 6 Augmented RB Tree

1: procedure Insert
2: Create a new threaded node with color red
3: Add the node to the RBt

4: Call the auxiliary routine to re-color nodes to maintain Red-Black properties

5: procedure Update
6: Change the value of the bit u at the current node

Note: This algorithm uses normal RB Tree operation
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Algorithm 7 Generating Differential Characteristics using Linear Array

1: procedure LinearArray
2: Set ∇Ai = 01101010000010011110011001100111, where i = 0
3: Set ∇Ei = 01010001000011100101001001111111, where i = 0
4: Initialize L
5: srand(time(NULL))
6: Randomly populate W and W ∗

7: Define ∇W according to table 1
8: Define φ and set it as the current value of L
9: Pick v ∈ φi and perform following check

10: if (v == ?) then
11: Assign v as ’-’ and update φi
12: Initialize and Populate LB as the current branching factor
13: else
14: Assign v as ’u’ or ’n’and update φi
15: Populate the next available space of crossponding LB

16: ConsistencyCheck()
17: Perform the step transformation and update the state variables
18: while (v, z) ∈ CA(v, z) ∀ i, j|v ∈ φi ∧ z ∈ φj do
19: Perform backtrack, fetch last value of LB and update the sentinel
20: if (v == ?) then
21: Assign v as ’x’ and update φi
22: else
23: if (v == n) then
24: Assign v as ’u’ and update φi
25: else
26: Assign v as ’n’ and update φi
27: Recurse from L to LB from id(φi) to id(φ0) | (id(φi), id(φ0)) /∈ CA
28: if (steps bactracked > 4) then
29: Mark v as critical
30: Resolve v first
31: if timestamp ≥ Th then
32: Discard the current differential
33: goto Step 9.

Note: ConsistencyCheck() gets called when backtracking occurs more than two times
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Table 2.2: 17 round differential trail using RBt

i ∇Ai ∇Ei ∇Wi

0 01101010000010011110011001100111 01010001000011100101001001111111 x???????xx?x?xxxxxx?x?xx?x???xxx

1 11010110101000110101010101110001 10110110001110110001100101011101 x??-????xx?x?xxxxxx?x?xx?x???xxx

2 00101100111100000110101100110000 01000100000111010100100111111011 x?–????xx?x?xxxxxx?x?xx?x???xxx

3 00110100011100001111110110010010 00111001111110010111101111110101 x?–????xx?x?xxxxxx?x?xx?x-??xxx

4 01000101000011010000111000100001 01110010100011011111000111011011 x?–????xx?x?xxxxxx?x?xx?x-?-xxx

5 01000010011110000101111001110111 00001011101100001010011000100110 x?–????xx?x?xxxxx0?x?xx?x-?-xxx

6 01011001010011100100110000111001 00111110100010000100001011101000 x?–??-?xx?x?xxxxx0?x?xx?x-?-xxx

7 10101001110101100111101111001100 11001111011110000001001010000001 x?–??-?xx?x?xxxxx0?x?xx?x—xxx

8 01111000010100101101100111111100 01101010010100110010111111010100 x?–??-?xx?x?0xxxx0?x?xx?x—xxx

9 11100111111100001111110011000111 11111101110011000011100101001111 x?–??-?xx?x?0x1xx0?x?xx?x—xxx

10 00111010110101111000111111111111 01111001101101110000100000001101 x?–?–?xx?x?0x1xx0?x?xx?x—xxx

11 10100000110111001000110011001111 11101011011001011001000110111100 x?–?–?xx?x?0x1xx0-x?xx?x—xxx

12 00010001011011011110000111000111 01011101000101001100101110000111 x?–?–?xx?x?0x1xx0-x?x1?x—xxx

13 11111101101001000101010110001011 10000000010000100010101101110110 x?–?–?xx?x?0x1xx0-x?x1?x—xxx

14 11110100011100100001010101011000 10010111011011111100011011111001 x?–?–?xx?x?011xx0-x?x1?x—xxx

15 11101111101111110000100110111100 11101000111001110111010100101011 x?–?–?xx?x?011xx0-x?x1?x—xx0

16 00001110110100011011101100010100 00010011111111100110011010010011 0?–?–?xx?x?011xx0-x?x1?x—xx0
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Table 2.3: 26 round differential trail using L
i ∇Ai ∇Ei ∇Wi

0 01101010000010011110011001100111 01010001000011100101001001111111 ??????x?xxxxx?x?x??xxxxxxxx?xx??

1 01010011100111001000010000111001 00110011000010101111000000010011 ??????x?xxxxx?x?x??xxxxxxxx?x1??

2 11110001111000011011011110001001 10110111010000001001110101010111 ??????x?x1xxx?x?x??xxxxxxxx?x1??

3 10101111010001000101111011101000 11001101111001100001110111001101 ??????x?x1xxx?x?x??x1xxxxxx?x1??

4 01001111100101001110111011011000 01001111111000110100111100111111 ??????x?x1xxx?x?x??x1xxxxxx?x1?-

5 00110111100010110010110111110110 00110000000001111111000100001011 ??????x?x1xxx?x?x-?x1xxxxxx?x1?-

6 01101010100000000100000100111110 01011100100010110111011010110011 ??????x?x1xxx?x?x-?x1xxxxx0?x1?-

7 10010110011000001000001111100000 10111101110000110000001101001100 ??????x?x1xxx?x?x-?x10xxxx0?x1?-

8 00001001001011011010101101011001 00000101001101001010100001110101 ??????x?x1xxx?x?x-?x10xxxx0?x1?-

9 11101001001100111110010000101110 10101101101110000100101110000100 ??????x?x1xxx?x?x-?x10xxxx0?x1?-

10 00010010101010101010110111100100 00111101000011101000101010101011 ???-??x?x1xxx?x?x-?x10xxxx0?x1?-

11 11111101010100010001111101011011 11100011010110111010010110101110 ???-??x?x1xxx-x?x-?x10xxxx0?x1?-

12 00011101000010001111010110010011 01001011101101111011000011110010 ???-??x?x1xxx-x?x-?x10xxxx0?x1?-

13 10000110000010110011000111101100 11010000100110111101111010111101 ???–?x?x1xxx-x?x-?x10xxxx0?x1?-

14 11001100111100011100111010011101 11010100110110100000011010110111 ??—?x?x1xxx-x?x-?x10xxxx0?x1?-

15 01001100100111011011110101100100 00010011111001111101101100110000 ??—?x?x1xxx-x?x-?110xxxx0?x1?-

16 11111111101001101111111110110000 11100000111001011001001100101110 ??—?x?x1xxx-x?x-?110xxxx0?x1?-

17 11111000100011100100111000111111 11110001101101101101010010111110 ??—?x?x1xxx-x?x-?110xxxx0?x1?-

18 10111011111111110100101111111111 11110100111101010011110101110001 ??—?x?x1xxx-x?x-?110xxxx0?x1?-

19 11000000000101100100110010010011 10101011111010001101110010001001 ??—?x?x1xxx-x?x-?110xxxx0-x1?-

20 11011011110000001010101011010010 10100001011011010111010011010010 ??—?x?x1xxx-x?x-?110xxxx0-x1?-

21 11010111001111111100110110101110 11101000111100101100110001111100 ??—?x?01xxx-x?x-?110xxxx0-x1?-

22 11101110011011100000110111001101 11010111011001010001110010100001 ??—?x?01xxx-x?x-?110xxxx0-x1?-

23 11111110011000001000000011001011 10101101011011110101010001101110 ??—?x?01xxx-x?x-?110xxxx0-x1?-

24 10101001000011011010011101100011 11110011011101001010010001010010 ??—?x?01x0x-x?x-?110xxxx0-x1?-

25 10110001100101000000001000100101 11101001011111100101010001001001 ??—?x?01x0x-x?x-?110xx1x0-x1?-

26 11111111010011000001101010010101 10100001011101000010110001100001 ??—?x?01x0x-x?x-?110xx1x0-x1?-

29



Chapter 3

Conclusions - Future Works
and Directions

The future scope of our work is centered around studying the inconsistent be-
haviour of the trails and omitting them in the initial rounds. Finding the bits
that do not contribute for valid trail is not easy to find in the run time. One of
the way to mine out those dirty bits is to store all the inconsistent values in an
array and later exhaustively study each and every value.
The linear array TBC in our algorithm represents the inconsistent values. We
need to grill down each and every value together with its path and all the con-
ditions. The research on array should center on following points:

• Initial trail - There would be no impact on the initial trails. As described
in paper this is unrestricted trails without any condition and hence our
array provides no improvement here

• Span of First Inconsistency and Second Inconsistency - The study of array
should directly affect the steps covered between the first and the second
inconsistent values. Here we should get significant improvements as more
and more values from TBC is removed out. The number of steps between
them should increase on an average. A condition might occur where we
might get a decreased efficiency if the values from TBC have some cyclic
dependency on the future values.

• Final Inconsistency - Here we also get lots of improvement as we tackle
the array. The arguments remains similar as above. The only difference
the large span in the number of steps.

• Backtracking - There is not much significant improvement in the degree
of backtracking though number of backtracking instances do decrease.
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