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Abstract

Biometric analysis of surveillance videos carries inherent challenges in form of variations in pose,

distance, illumination and expression. To address these variations, different methodologies are

proposed, including utilizing temporal and 3D information. With the introduction of consumer

level depth capturing devices such as Microsoft Kinect, research has been performed in utilizing

low cost RGB-D depth data for characterizing and matching faces.

Face detection being the foremost task in face biometric pipeline has a cascading effect on the

performance of any face recognition system that follows. Face detection algorithms generally

work best for frontal face images with good illumination and low standoff distance. Developing

a face detection system robust to the variates of a surveillance scenario is a highly challenging

task. Recognition of the detected faces in surveillance scenarios is a challenging task owing to

high variance in pose, illumination, expression and resolution. Also, the quality of depth data

in RGB-D videos deteriorates with increase in standoff distance, thus adding to the challenges

of RGB-D face recognition.

This research introduces the KaspAROV RGB-D video face database which provides face videos

and images from Kinect device for over 100 subjects. The database encompasses challenges such

as pose, distance, and illumination. Further, a novel face detection system for RGB-D videos

taken in unconstrained scenario is proposed. The proposed system makes use of human body

detection in color images and fuses it with the corresponding depth map to provide a robust

solution for face detection at a distance in RGB-D videos. For recognizing the detected faces

we introduce a RGB-D face recognition algorithm which can also work with only RGB probe

images in absence of depth data in probe images . The proposed algorithm generates a shared

representation from RGB images which contains discriminative information from both the RGB

and depth images. This representation is much more discriminative than the RGB images as

it gives substantially higher identification accuracy than a conventional fusion based RGB-D

recognition pipeline.
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Chapter 1

Introduction

1.1 Overview and Research Motivation

Face recognition aims to establish identity using the face image of a person. Face is an easily

accessible trait and requires little user cooperation to capture [28]. However, in a non-cooperative

scenario such as surveillance, the covariates that can deter face recognition performance cannot

be controlled. Face images captured in such environments can pose a significant challenge to

existing recognition algorithms that perform significantly worse in unconstrained conditions [5].

Besides improving the various facets of a face recognition algorithm, such as feature extraction

and matching methodologies, image acquisition itself has an important role to play in the overall

efficiency of a recognition framework. For instance, near infrared (NIR) imagery can help in

cases with poor illumination and 3D images can provide much more information about a face

which help in both detection and recognition. However, such data can be expensive to acquire

due to sensor cost and deploying such a system is not feasible in most cases, hence limiting its

applicability.

A potential application of low cost RGB-D sensors and recognition algorithms is in video surveil-

lance. Dedicated 3D sensors have high associated costs which prevent their usage in such scenar-

ios as compared to a low cost Kinect version 2 device. While offering substantially low costs as

compared to pure 3D sensors, it offers RGB-D and infrared data as opposed to pure 2D sensors.
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Figure 1.1: Sample RGB and Depth frames from KaspAROV [27] RGB-D video dataset
.

Besides capturing RGB-D and infrared data, it offers a wide field of vision and audio recording

capabilities, all of which are functionalities required in a surveillance device.

Data captured using RGB-D imaging devices like Microsoft Kinect deploy a RGB camera along

with a depth sensor for capturing RGB and depth images of a scene in synchronization. A

sample RGB and depth video frame from captured using Kinect v2 could be seen in Figure 1.1.

Sample images from Kinect device of a person’s face under varying facial poses and expressions

could be seen in Figure 1.2. Raw depth data is usually captured in form of a 16 bit image

where each image pixel contains distance of the corresponding world point from the camera in

millimeters. For representation sake an 8 bit image of the same scene could be generated as seen

in Figure 1.1. Higher the intensity value of a pixel in the depth image, lower is its depth value

i.e. it is placed closer to the camera than the pixels with lower intensities.

Face recognition systems for RGB-D surveillance videos is an open research problem in the

biometrics and computer vision community. Development of such systems would enable effective

monitoring of challenging surveillance scenarios like banks, airports, secure facilities etc. Image

processing and machine learning algorithms have a major role to play in development of such

systems. Application of Machine learning and Image processing in face recognition system could

be sub-divided under following heads:

• Preprocessing: The acquired frames from the RGB-D cameras are usually ridden with

sparse salt and pepper noise and they also suffer from low contrast problems. Image
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Figure 1.2: Sample RGB-D images of a person showing facial different expressions taken from
IIITD RGBD face database [26].

processing techniques such as median filtering and morphological operations are used to

remove salt and pepper noise. Also histogram equalization is used in certain cases to deal

with issues of contrast.

• Face Detection: Faces in surveillance video frames are often captured at a high standoff

distance and non-frontal poses. Also, the frames suffer from sensor and environmental

noise. Detecting faces in such situations is a arduous image processing task and its effec-

tiveness has a direct impact on the overall performance of the recognition system. The

Viola-Jones face detector [43] detects face images well in constrained conditions where the

face images are mostly in frontal/semi-frontal pose and are well illuminated. The Ever-

ingham face detector [12] works better than standard Viola-Jones face detector [43] in

unconstrained scenarios but it still fails to capture a huge proportion of the face images

in the frames. Face detection systems making use of depth data could be developed for

improved face detection performance in case of RGB-D data.

• Face Image Post-processing: Since the segmented face images from the video frames

are very small in pixel resolution. Most of the finer details of face images crucial towards

face recognition is lost. In order to restore the quality of face images , super-resolution

based techniques could be used.

• Face Recognition: The processed face images are then labeled manually into their iden-

tity based classes and are divided into training and testing sets. Several machine learning
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based models are learnt from the labeled training data and is then tested on testing set to

predict the identity of the data samples in the testing set.

1.2 Literature Review

In recent years, there has been increased focus on usage of RGB-D cameras for development of

3D scene understanding and object detection algorithms [33]. Kinect sensor based surveillance

systems have also been deployed for border control [15]. Usage of Kinect sensors for indoor

surveillance systems is an interesting research problem due to it’s capability of capturing RGB,

Depth and NIR footage from a single camera unit. Recently, decreased cost of depth sensors

has made it feasible to be used in surveillance activities and has consequently led to increased

interest in RGB-D face detection and recognition. In presence of covariates such as pose and

illumination, it has been shown that 3D images perform better than their 2D counterparts in face

recognition [30]. The depth map provides additional discriminative information which enhances

the recognition performance.

Face is one of the highly investigated biometric modality. A large number of methods exist

in literature [48] for identification and verification of face images under controlled scenarios.

Introduction of covariates such as distance from the camera, pose, illumination, and resolution

makes the problem challenging and requires novel and sophisticated algorithms. With the advent

of depth sensors, Han et al. [21] introduced the use of utilizing 3D images (RGB and Depth)

have been introduced for face recognition.

RGB-D images have been used in a variety of applications including Indoor scene segmentation

[39], Human action recognition [44], Face anti-spoofing [11], Head pose estimation [13], Object

recognition [35], Object discovery [29], Face detection [22], Gender recognition [25].

1.2.1 Previous Work on RGB-D Face Detection

The first step in a face recognition pipeline is face detection. The variations in pose, illumination,

and distance in surveillance videos increase the complexity of the task thereby making face
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detection in surveillance scenario a challenging research problem. To improve the detection

performance, research have explored usage of depth cues. However, majority of the research

work in RGB-D based face detection has been focused on improving the speed of face detection

system. Walker et al. [6] used depth information to select areas in the image where there are

higher probability of faces to be found, thus improving the speed of the face detector. Wu

et al. [46] used stereo camera to estimate depth information of the scene and then used it to

accelerate face detection while pruning false positives.

1.2.2 Previous Work on RGB-D Face Recognition

Inspired by the low cost availability of multi-modal data, researchers have proposed several

algorithms that utilize RGB-D data to perform face recognition [4, 20, 24, 31, 34]. Several re-

searchers have explored the applicability of image fusion algorithms to improve the performance

where multimodal information is available. For instance, Singh et al. proposed wavelet fusion

based algorithm to combine images from multiple spectrums [41]. However, these algorithms

either have fixed weighting scheme to generate the fused image or utilize quality assessment to

select local image regions and their weights. Recent introduction of multimodal deep learning

paradigms [40, 42] has provided the researchers a new spectrum of applications where multiple

modalities are involved and not all the modalities are required during testing to perform an

accurate match.

Existing RGB-D algorithms utilize the depth data for improving various facets of face recognition

such as face detection, landmark detection, image alignment, achieving pose invariance, and

extracting additional discriminative information.

Most of the well known RGB-D face recognition algorithms have utilized the discriminative in-

formation from both RGB and depth images using sophisticated information fusion algorithms.

These existing algorithms demonstrate the effectiveness of RGB-D face data in improving recog-

nition performance. However, all but one of these algorithms have been developed with data

obtained from a Kinect version 1 device.

• Li et al. [31] have explored the use of depth map in preprocessing as well as feature

6



extraction.

• Li et al. [31] presented a face recognition algorithm from low resolution 3D images. Texture

transformation and a sparse coding based reconstruction method is used to perform face

matching.

• Beretti et al. [4] have utilized the depth map to create a 3D face model after applying

super-resolution techniques.

• Mantecon et al. [34] have devised a new Depth Local Quantized Pattern (DLQP) descriptor

which extracts features only from the depth data and performs recognition using these

features with a SVM classifier.

• Hsu et al. [24] have not utilized the depth information for feature extraction but instead

rely on it for facial landmark detection and pose estimation followed by feature extraction

and matching based on pose normalized color images.

• Goswami et al. [20] proposed using a descriptor based on entropy of RGB-D images and

saliency feature from the RGB image. Geometric facial features are also utilized and a

sophisticated fusion method is proposed to use the RGB-D images for face recognition.

• Li et al. [32] proposed a 3D keypoint based face matching algorithm using multi-task sparse

representation.

• Elaiwat et al. [10] used a multimodal keypoint detector for identifying keypoints on a 3D

surface, and both texture and 3D local features are utilized.

• Ming [37] proposed a regional bounding spherical descriptor for facial recognition and

emotional analysis which uses regional and global regression mapping for classification.

1.3 Research Contributions

RGB-D sensors could be used to solve the challenges of pose and expression in challenging

unconstrained surveillance scenarios. Availability of real time depth data of the scenes could be
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used in developing algorithms which could help improve current state of the art face detection

and recognition performances in challenging scenarios. Owing to the extensive research potential

and large amount of real life applications we have taken up face detection and recognition in

using RGB-D data in surveillance videos as our prime area of research.

The key contributions of this research are:

• Create and benchmark a RGB-DI video face dataset, titled KaspAROV, collected using

Kinect sensors(both version 1 and 2): The dataset consists of video frames of over 100

subjects taken in surveillance like scenarios. Kinect v2 data consists of RGB, Depth and

NIR face images, while Kinect v1 data consists of only RGB and Depth face images.

• Develop a novel RGB-D face detection algorithm: This algorithm leverages the fact that

detecting human bodies from a distance is easier than detecting faces. The proposed algo-

rithm first detects humans bodies in the RGB images and makes use of the corresponding

depth data to segment tightly cropped human bodies from the scene. The upper portion

of the segmented human bodies are then scanned for presence of faces for detecting faces

in the scene.

• Propose a novel “shared representation based reconstruction network” for RGB-D face

recognition: Here, we pre-trained a cross-modality reconstruction network which learns

a mapping between two input modalities, RGB and depth data. The network is trained

using RGB and Depth data from the dataset under consideration, during testing only RGB

data is used to reconstruct depth image which encodes discriminative properties of both

RGB and depth data. The reconstructed depth images are then used for classification.

In the next chapter, we discuss the KaspAROV RGB-D video face dataset. In third chapter

we propose the KarPOV face detection system in RGB-D videos at a distance and in the same

chapter we also put forth the proposed shared representation based RGB-D face recognition

system. Finally in the last chapter we summarize the contributions of the research works carried

out as part of this thesis and we also talk about future extensions of the work done here.
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Chapter 2

KaspAROV: Unconstrained Kinect

Video Face Database

Unconstrained face recognition poses several challenges to existing algorithms and to address

these variations, different methodologies are proposed, including utilizing video and 3D infor-

mation. With the introduction of consumer level depth capturing devices such as Microsoft

Kinect, research has been performed in utilizing low cost RGB-D depth data for characterizing

and matching faces. Recently, next generation of Kinect device, the Kinect version 2, has been

released which provides higher resolution color and depth images at a comparable sensor cost.

This research work introduces the KaspAROV RGB-D video face database which provides face

videos and images from both versions of the Kinect device for over 100 subjects which will be

made available to the research community. The database encompasses challenges such as pose,

distance, and illumination. We include baseline results using a few existing algorithms and

provide standard experimental protocols for ease of comparative evaluation on the database in

future research.
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2.1 Introduction

Existing RGB-D databases encompass only a small variety of covariates (mainly pose, illumina-

tion, and expression only) and are captured in largely constrained conditions. These databases

are limited in either challenges, subjects, or samples. For example, while the CurtinFaces [31]

database contains pose, illumination, and expression covariates, it has data pertaining to only

52 subjects. For video based recognition, the database with the highest number of videos,

BIWI [14], contains data pertaining to only 20 subjects which is not suitable for evaluating

recognition performance. Also, there is only one existing database with Kinect version 2 data,

HRRFaceD [34], which contains data for only 18 subjects. None of the existing databases ad-

dress cross-distance face recognition or the unconstrained scenario. Therefore evaluating an

algorithm on these databases does not address all the challenging covariates with unconstrained

face recognition. Table 2.1 provides an overview of the existing RGB-D databases

The Kinect version 2 device provides improvements in acquisition technology for both color

and depth. It utilizes the Time of Flight (TOF) technology to obtain a more accurate and

higher resolution depth map (512 × 424) compared to its predecessor (320 × 240) while still

offering low sensor cost. Along with RGB and depth, it can simultaneously capture near infrared

video, enabling exploration of multi-modal techniques as well. While Kinect version 1 device

can also capture infrared data, it cannot do so simultaneously while capturing RGB-D data.

The Kinect version 2 device does not have this limitation. Figure 2.1 presents a comparison

of the RGB-D images obtained using the first and second versions of the Kinect device. The

improved acquisition technology can bolster the performance of recognition algorithms even

further. However, the first requirement to conduct research and evaluation on such algorithms

is a large and challenging Kinect 2 database. A challenging benchmark RGB-DI database

with large number of subjects, samples, and challenges is essential in order to develop better

algorithms and further the state-of-the-art in unconstrained face recognition. In this paper,

we present the KaspAROV [27] RGB-DI database, which contains videos pertaining to 108

individuals captured using both versions of the Kinect sensor. Since the Kinect version 2 device

captures both RGB-D and near infrared data, we term the data captured as RGB-DI (denoting

10
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Figure 2.1: Sample RGB-D frames. The first two columns contain frames captured using Kinect
v1 device (from left to right: visible and depth) and the last three columns contain frames
captured using the Kinect v2 device (from left to right: visible, depth, and NIR).

color, depth, and near infrared). The proposed database provides two videos per sensor for

each subject, captured in two different sessions and under unconstrained pose, expression, and

illumination conditions. The database also encompasses the problem of cross-distance face

recognition. We provide face identification and verification protocols to encourage and facilitate

comparative evaluation as well as a set of baseline results obtained using existing algorithms.

The remainder of this paper is organized as follows: Section 2 describes the proposed database,

Section 3 presents the experimental protocol and results, and Section 4 presents concluding

remarks and future research directions.
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Figure 2.2: Sample frames corresponding to two subjects from the KaspAROV [27] RGB-D
database captured using the Kinect v2 device. The first two columns are visible spectrum
images, the next two columns correspond to depth images, and the final two columns are NIR
images.

2.2 The KaspAROV Database

The KaspAROV [27] RGB-DI database contains videos pertaining to 108 subjects captured

using Kinect version 1 and version 2 devices. Consent for capturing these videos is obtained

from all the participants. There are two videos for each subject for each sensor, resulting in

a total of four videos per subject. These videos are captured in two different sessions. For

any given video, both the Kinect sensors are placed at the same viewpoint within a location

which is not uniformly illuminated. Two subjects are then asked to walk back and forth within

the field-of-view (FOV) of the sensors while not imposing any limitation on expression, pose,

or gesture. Therefore, the database contains unconstrained pose, illumination, and expression

variations along with variations in capture distance. Further, each video contains a full-body

capture of at least two subjects of interest (for whom labeled data is available in the database)

while sometimes containing additional individuals in the background (without labeled data)

which mimics a surveillance scenario. Further details of the database are described below.
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2.2.1 Data Acquisition

A total of 432 videos are captured, 216 of which are captured using a Kinect v1 device and the

other 216 are captured using a Kinect v2 device from 108 subjects. The color, depth, and near

infrared (in case of Kinect v2) streams are split into frames using the Kinect SDK v1.8 for the

Kinect v1 streams and Kinect SDK v2.0 for the Kinect v2 streams. A total of 67,984 frames are

extracted from all the Kinect v1 videos, whereas, a total of 70,518 frames are extracted from all

the Kinect v2 videos. The native resolution of color frames for Kinect v1 videos is 640 × 480

and for the Kinect v2 videos is 1920 × 1080. The native resolution of depth frames for Kinect

v1 is 320 × 240 and 512 × 424 for Kinect v2. The native resolution of the near infrared data

captured by Kinect v2 device is also 512 × 424. Figure 2.2 shows sample color images, depth

images, and NIR images from the database.

No. of individuals 108

No. of videos - Kinect V1 216

No. of videos - Kinect V2 216

No. of frames - Kinect V1 67,984

No. of frames - Kinect V2 70,518

Table 2.2: Characteristics of the KaspAROV [27] face database.

2.2.2 Face Detection

The first step in a face recognition pipeline is face detection. Given the challenging nature of

the database, we asserted that every step of the face recognition pipeline will be challenging.

Therefore, we manually detected all the frames present in all the videos captured using Kinect

v1 and Kinect v2 devices. From Kinect v1, manual annotation provides 55,712 faces and from

Kinect v2, 62,119 faces faces are detected. A bounding box is prepared around all the faces.

These manual annotations can serve as the ground truth to evaluate face detection performance

in RGB-DI scenario.

We then perform automatic face detection to understand the detection performance on these

videos. There are multiple face detectors available in literature. In our evaluation, we used

five different face detectors including the Kinect’s face detector. First, we used the face API of

14



Kinect SDK v2.0 to detect faces in the frames captured from Kinect v2 device. It is important

to note that the API only works on Kinect v2 videos. The Everingham face detector [12] is then

utilized to detect faces from the frames in which no faces are detected by the API. From 70,518

frames of Kinect 2 containing 62,119 faces, the API + Everingham face detector detected 38,544

faces. Since the API does not work for Kinect v1 videos, Everingham face detector forms the first

stage of face detection. We obtained a total of 22,217 faces out of 55,712 frames. We observed

that a lot of faces are not detected even after using the two-level detection in case of Kinect

v2. These are primarily faces with non-frontal pose and captured at relatively large distance

from the sensor. To detect such faces, we further employed Histogram of Oriented Gradients

(HOG) based human body detection [8] on the frames where the previous two detectors could

not detect faces.

The HOG detector detects the human boundary present in the frames which is then refined using

the depth information. The upper 30% of the segmented human body is enlarged, followed by

applying Everingham detector on the specific region. Using this additional level of detection,

the number of detected faces for Kinect v2 increased to 51,401. Unfortunately, the depth data

obtained using Kinect v1 is not suitable for applying this procedure. Therefore, this approach

could not be applied on Kinect v1 videos. A few examples of faces that are detected manually

and not by the automated detection algorithms discussed above are presented in Figure 2.3.

Analyzing these images reveal that poor quality, distance from the camera, and pose are the

three biggest challenges for designing an efficient face detection algorithm that yields good results

in surveillance scenarios like the one captured in the KaspAROV [27] database. It can also be

observed that the Kinect v2 device provides higher fidelity face images in both color and depth

modes, however, both the devices suffer from holes and spikes in the depth map which should

be addressed during preprocessing.

2.2.3 Face Metadata

Along with face detection, Kinect SDK v2.0 face API also provides facial landmarks and at-

tributes corresponding to RGB images. These additional information can be incorporated with
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Figure 2.3: Sample faces from the KaspAROV [27] database that are not detected successfully
by automatic detection.

the recognition pipeline to improve the performance. We extracted five facial landmark points,

left eye, right eye, nose tip, and mouth corners, for all the faces that are detected through the

Kinect SDK v2.0 face API and Everingham’s face detector [12] corresponding to the videos

captured from the Kinect v2 device. Head poses (yaw, pitch and roll angles) and expressions

are also recorded for a total of 21,043 extracted faces. The pose distribution of these faces is

presented in Figure 2.4. Among the faces for which pose data is available from the Kinect SDK,

the majority are semi-profile, a small number are completely profile, and almost 10% of these

faces are frontal. However, it should be noted that since facial landmarks in profile faces are

much harder to label than semi-profile faces for the API to label, the actual number of profile

faces in the complete database may be much higher. Finer divisions of pose can be obtained by

quantization of the yaw, pitch, and roll values and used for training and evaluation of pose esti-

mation algorithms. The pose distribution also showcases the challenging nature of the proposed

database as the API is only able to provide pose labels for approximately 34% of the faces. We

also observe that the labels are obtained successfully when the faces are relatively close to the

sensor. As the distance of the subjects increases the API fails to obtain pose/expression labels.

This further highlights the challenge of distance.

The database also consists of attribute labels that are available for a subset of images. Table

2.3 provides a summary of these attributes in the database. These attributes and their labels
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Attributes
Results

No Yes Maybe Total

Happy 11,852 2,419 2,107 16,378

Engaged 11,851 5,616 2,149 19,616

WearingGlasses 10,328 5,064 986 16,378

LeftEyeClosed 10,311 5,274 793 16,378

RightEyeClosed 10,537 3,882 1,959 16,378

MouthOpen 10,821 2,853 2,704 16,378

MouthMoved 5,597 10,180 601 16,378

LookingAway 12,098 4,688 2,830 19,616

Table 2.3: Attribute labels available for a subset of the database.

are also obtained using the Kinect v2 API. Most of the attributes are available for a subset of

16,378 images and two attributes are available for 19,616 images. Identifying attributes such as

LookingAway and RightEyeClosed/LeftEyeClosed are useful for video recognition applications

since such frames can be discarded and considered as failure to process frames. On the other

hand, the research and development of auto-capture and auto-group image processing applica-

tions can benefit from the accurate identification of attributes such as happy and engaged.

2.2.4 Potential Usage of KaspAROV Database

Owing to the variety of information collected in the database, it can be utilized in several

potential ways. We list a few of these below:

• Face Detection: Since the database contains unaltered frames captured using both

Frontal, 

8.66%

Semi-

profile, 91%

Profile, 

0.34%

Frontal Semi-profile Profile

Figure 2.4: Illustrating the distribution of faces grouped by pose.
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Kinect v1 and v2 sensors, it can be utilized for face detection experiments. Researchers

can compare the detection performance across sensors and evaluate their detection algo-

rithm with faces at varying resolution of both depth and color image, as well as at varying

distances from the sensor. As mentioned earlier, using the Everingham face detection algo-

rithm [12], HOG based body detection (for Kinect v2), and the face API from Kinect SDKs,

detects only 73,618 faces out of 117,831 (obtained using manual annotation) faces from

both Kinect 1 and Kinect 2 videos. This represents a detection rate of only 62.47%, thus

indicating a large scope of research and improvement in face detection in unconstrained

conditions. It is interesting to note that since the database contains three information

sources: RGB image, depth information, and NIR image, the detection algorithms can

also be designed for all three modalities of information.

• Pose Recognition: The database provides 21,043 faces with pose parameter (yaw, pitch,

and roll) information as described in Section 2.2. This subset of the database can be

utilized to design and evaluate pose recognition algorithms on challenging cross-distance

RGB-DI imagery. Moreover, the complete database contains 41,076 face images which the

Kinect v2 API failed to label automatically. These images, if manually labeled for pose,

can be utilized for creating an even more challenging RGB-DI pose benchmark.

• Video Frame Selection: Due to the large size of videos, researchers generally have

used different techniques to reduce the number of frames, for instance, sampling and

frame selection. Recently, frame selection in video based face recognition for 2D videos

has demonstrated significant improvement in performance [16]. Frame selection can also

utilize cues from the depth map and may offer further improvements and robustness to

video based recognition algorithms. Since the number of frames per video ranges between

150-800, these ideas and algorithms can be evaluated on the KaspAROV database [27].

• Face Recognition: The database contains individuals in multiple frames of a video and

hence it can be used for both identification (one-to-many) and verification (one-to-one)

experiments. Given the unconstrained nature of the database, both are important and

challenging problems.
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• Face Reidentification: Since the database contains an individual in multiple frames, it

can be used to re-identify an individual in video frames. In surveillance scenarios, reiden-

tification is an important problem that requires attention from the research community.

• Gait Recognition: Since the videos are captured by asking the subjects to walk, the

database captures the subject’s gait and it can be utilized for both gait analysis and

recognition. As a combined biometric, gait can be combined with face to further im-

prove the recognition performance. This combination is also very useful for surveillance

applications since gait is an important cue in such scenarios.

• Cross-sensor and Cross-resolution: Since the database contains images from two

RGB-D sensors, the possible combinations encompass same-sensor and cross-sensor sce-

narios. If data from only one version of Kinect (v1/v2) is utilized, it represents the

same-sensor scenario. On the other hand, if Kinect v2 samples are utilized as gallery

and only Kinect v1 samples are included as probes this is a cross-sensor cross-resolution

experiment since the native resolutions of the two devices are different. If samples from

both the sensors are included as probes, it represents a hybrid scenario with both same-

sensor and cross-sensor probes. The cross-sensor problem encompasses the issue of sensor

interoperability and can explore whether algorithms designed using Kinect v1 databases

perform similarly on Kinect v2 data and vice versa. Cross-resolution is captured in two

ways: (a) Kinect v1 and v2 have different native resolutions and (b) the resolution of faces

captured in different frames of the same video vary based on subject distance from the

camera. Cross-resolution is an important problem to address, especially in the case of a

surveillance scenario where the resolution of obtained face might vary greatly due to posi-

tioning of cameras at different locations. The proposed database contains data pertaining

to each of these cases and can be utilized to evaluate algorithm performance under these

challenging constraints.

It is interesting to note that for each of the problems discussed above, the database can be used

in RGB, RGB-D, or RGB-DI mode for Kinect v2 data and RGB or RGB-D mode for Kinect v1.
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2.3 Experimental Protocol

Out of the potential applications listed in the previous section, in this research, we perform the

benchmarking for image and video verification and identification. We first prepared four different

protocols related to face verification and identification in images and videos followed by eval-

uating/benchmarking the performance of several face recognition algorithms on the database.

The subsections below present the protocols and the corresponding baseline recognition results.

The number of gallery and probe images present under each protocol for training, testing, and

validation are summarized in Table 2.4. In order to compute these results, both Kinect v1 and

Kinect v2 videos are converted to sets of images by sampling a subset of frames. Even though

Kinect v2 provides a higher quality depth map, it is still prone to noise in the form of holes

and spikes. A median filter of size 5× 5 is utilized to denoise the depth map. Face detection is

performed using Everingham’s face detector [12] on the color image and a mapping between the

face rectangle in the color image and the depth map is obtained. This mapping is then utilized

to crop the face image in both color and depth images.

The benchmark results on the protocols are computed using the following descriptors.

• Local Binary Pattern (LBP) [2]

• Three patch local binary pattern (TPLBP) [45]

• Histogram of oriented gradients (HOG) [8]

These descriptors have been applied successfully in existing RGB-D algorithms and are well-

established in their capability of encoding RGB-D face data efficiently. In addition to these

feature descriptors, we also utilize the below mentioned algorithms for comparing face recognition

performance on the KaspAROV [27] dataset.

• FaceVACS [1]

• RISE [19]

• mRISE
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FaceVACS is used as Commercial-off-the-Shelf (COTS) face recognition software for RGB based

matching and the RISE [19] algorithm is used for RGB-D matching. mRISE is proposed as a

simple extension to the RISE algorithm [20] for RGB-DI data matching. The RISE algorithm

combines four HOG feature vectors, two each extracted from the entropy maps of the RGB and

depth components of an RGB-D image. mRISE includes two additional feature vectors extracted

from the NIR component of the RGB-DI image. All other parameters and components of the

algorithm are kept unchanged. The feature vectors of two RGB-D images are matched using

the cosine, Euclidean, and χ2 distance metrics.

We have also used two algorithms for enhancing the quality of depth images captured by Kinect

v2 sensor.

• Markov Random Fields (MRF) [9]

• Layered Bilateral Filter (LBF) [47]

Markov Random Fields and Layered Bilateral filter both make use of registered high quality

RGB images to improve the quality of corresponding depth images. Since the registration

between RGB and Depth images in Kinect v1 is not optimal, we have applied depth enhancement

techniques only on Kinect v2 data. Given a coarse depth map and RGB image, Markov Random

Fields (MRF) assigns depth labels to all pixels which is the most likely estimate of the ground

truth depth value for a given point. Layered Bilateral filtering uses edges obtained from the

RGB image for improving depth image. In this, bilateral filtering is applied iteratively on the

input depth image followed by a sub-pixel refinement stage to obtain the refined depth map.

The protocols include image verification and video verification. Since all the matchers used for

benchmarking operate on images, the video based protocols essentially run on images and the

scores of each frame are then combined using fusion rules. In order to combine the scores obtained

by using multiple frames of the same video, we have used the below mentioned statistical rules.

• Average

• Min-rule
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Table 2.4: Overview of the experimental protocols defined on the KaspAROV [27] database. 1.
Single gallery identification, 2. Video based identification. K1-K1: only Kinect v1 data, K2-K2:
only Kinect v2 data, K2-K1: Kinect v2 data as gallery and only Kinect v1 data as probe.

Protocol Set Subjects
No. of samples (Images/frames/videos)

Gallery Probe
K2-K2 K1-K1 K2-K2 K1-K1

1.
Training 54 54 54 31,943 27,920
Testing 54 54 54 30,122 27,273

2.
Training 54 16,121 14,100 15,822 13,820
Testing 54 15,929 14,049 14,247 13,278

Aggregated scores obtained from all possible pairs of frames are used to decide the final subject

label for each probe video. We next describe the four protocols proposed and the results obtained

on the KaspAROV [27] database are given in . A summary of the protocols is also given in Table

2.4.

2.4 Benchmark Results on KaspAROV dataset

2.4.1 Single Gallery Identification

The aim of this protocol is to evaluate the performance in a 1 : N matching scenario, i.e.,

identification, while using only one gallery image per subject. Out of the total 108 subjects,

frames pertaining to 50% of the subjects are utilized for training and the remaining 50% subjects

are utilized for testing. The subjects in each partition are selected randomly and the process is

repeated five times for cross validation. An exemplar frame is selected as the gallery image for

each subject and the remaining images of the subject are utilized as probe images. The training

partition is used to learn the model and the performance on validation set is used for parameter

estimation. The algorithm is then evaluated on the test partition to report the final results. For

each fold, each set is mutually exclusive to the others so as to prevent bias in the reported results

by considering only those subjects that are unseen during training and validation. Figure 2.5

and 2.6 and Tables 2.5, 2.6 and 2.7 present the benchmark results obtained on this protocol.

With RGB data, both Kinect v1 and v2 exhibit similar performance on single gallery identifica-

tion experiments on all measures except in case of FaceVACS. In FaceVACS, Kinect v2 performs
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Figure 2.5: CMC curves for single gallery image identification experiments using standard face
recognition algorithms on Kinect v1 data.

much better than Kinect v1. Kinect v1 suffers due to it lower quality RGB camera leading to

poor quality images especially in low illumination scenes. Also a large number of images from

Kinect v1 fail to enroll in FaceVACS system due to poor quality. Also, effect of an improved

depth sensor in Kinect v2 is made evident by better identification results on RGB-D data, which

improve further by using depth enhancement techniques on Kinect v2 depth images. Identifi-

cation accuracies on Kinect v2 data increase even more when RGB-DI data is used, although

absolute identification performance at rank 1 remains very poor with the best case performance

of approximately 1%. We also observe that using RGB-D data improves identification over just

utilizing visible spectrum data.

Furthermore, the performance of Kinect v1 and Kinect v2 in face recognition is further evaluated

using an existing RGB-D algorithm [20] for the case of single gallery image identification exper-

iment. Table 2.8 presents the statistics of the number of probes that were successfully identified

using data from both, none, or individual sensor, whereas Figure 2.9 presents a few examples of

probes belonging to each category. The categories included in Table 2.8 are treated as mutu-

ally exclusive and exhaustive for calculating the number of probes, i.e., the probes belonging to

‘Either Kinect v1 or v2’ category are not counted for the individual sensor categories.
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Figure 2.6: CMC curves for single gallery image identification experiments sing standard face
recognition algorithms and depth enhancement techniques on Kinect v2 data.

2.4.2 Video Based Identification

The aim of this protocol is to evaluate the performance in identification scenario, using one

entire video as the gallery per subject. The data into 50% training and 50% testing is utilized.

Each set is mutually exclusive to the others. However, instead of specifying a single frame as

gallery for each subject, one of the videos is provided as gallery for each subject. The remaining

videos are then used as probe, with each video comprising a single probe. Similar to the previous

protocol, this partition is performed with five times random cross validation. Benchmark results

on this protocol are presented in Figure 2.7 and Figure 2.8 and Tables 2.5, 2.6 and 2.7.

The min rule seems to work best for video identification, outperforming mean and max rules

consistently when all the frames are utilized. The performance is observed to be the best for

Kinect v2 data and worst for the cross-sensor scenario. For the same-sensor experiments, the

best case performance is obtained using only RGB data with FaceVACS However with other face

recognition algorithms, the performance trend remains the same, RGB < RGB-D < RGB-DI

Overall, the LBP descriptor seems to work best on all of the data as compared to other features.

In terms of depth enhancement techniques, MRF generally provides better results.

2.4.3 Observations Across Multiple Experiments

It is observed that Kinect v2 is successful for a higher number of probes, as compared to Kinect

v1. Still there were cases where Kinect v1 provided better results compared to Kinect v2. This
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Figure 2.7: Baseline CMC curves for video based identification experiments on the proposed
KaspAROV [27] database using different algorithms and Kinect v1 data.
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Figure 2.8: Baseline CMC curves for video based identification experiments on the proposed
KaspAROV [27] database using different algorithms and Kinect v2 data.

25



T
ab

le
2
.5

:
B

as
el

in
e

id
en

ti
fi

ca
ti

on
re

su
lt

s
(R

an
k

10
)

on
th

e
p

ro
p

os
ed

K
as

p
A

R
O

V
[2

7]
d

at
a
b

a
se

u
si

n
g

o
n

ly
R

G
B

d
a
ta

.

P
ro

to
co

l
M

et
h

o
d

F
u

si
on

R
u

le
F

ea
tu

re
L

B
P

T
P

L
B

P
H

O
G

F
a
ce

V
A

C
S

1.
S

in
g
le

ga
ll

er
y

K
1
-K

1
-

9.
93
±

3.
04

7.
78
±

1.
48

8.
8
3
±

2.
4
5

19
.1

4
K

2
-K

2
-

7.
61
±

2.
35

9.
26
±

2.
83

7.
8
0
±

3.
0
1

47
.4

8

2
.

M
u

lt
ip

le
ga

ll
er

y
K

1
-K

1
M

ea
n

41
.1

9
±

4.
66

39
.0

2
±

3.
96

26
.7

3
±

4.
6
6

47
.0

3
M

in
62

.4
5
±

4.
66

59
.8

8
±

3.
96

40
.7

7
±

4.
6
6

K
2
-K

2
M

ea
n

43
.4

6
±

3.
94

42
.9

8
±

4.
51

30
.2

9
±

3.
9
4

50
.7

4
M

in
69

.4
4
±

3.
94

66
.9

5
±

4.
51

44
.7

1
±

3.
9
4

26



T
a
b

le
2.

6:
B

a
se

li
n

e
id

en
ti

fi
ca

ti
on

re
su

lt
s

(R
an

k
10

)
on

th
e

p
ro

p
os

ed
K

as
p

A
R

O
V

[2
7]

d
a
ta

b
as

e
u

si
n

g
on

ly
R

G
B

-D
d

a
ta

.

P
ro

to
co

l
M

et
h

o
d

D
ep

th
E

n
h

an
ce

m
en

t
F

u
si

on
R

u
le

F
ea

tu
re

L
B

P
T

P
L

B
P

H
O

G
R

IS
E

1.
S

in
gl

e
g
a
ll

er
y

K
1-

K
1

N
on

e
-

7.
96
±

1.
83

7.
1
2
±

1.
7
0

7.
3
2
±

1.
6
9

1
9.

6
5

K
2-

K
2

N
on

e
-

9.
40
±

1.
85

9.
9
5
±

1.
9
7

8.
4
3
±

2.
5
8

2
1.

5
5

L
B

F
-

9.
23
±

1.
85

10
.2

3
±

2
.5

8
9.

1
3
±

1.
9
7

2
3.

0
1

M
R

F
-

10
.1

4
±

1.
85

10
.5

8
±

2
.5

8
8.

7
6
±

1.
9
7

22
.6

2.
M

u
lt

ip
le

g
al

le
ry

K
1-

K
1

N
on

e
M

ea
n

32
.7

8
±

2.
43

38
.9

0
±

3
.4

0
2
8.

2
8
±

2
.4

3
4
7.

0
3

N
on

e
M

in
60

.7
0
±

2.
43

59
.9

2
±

3
.4

0
4
5.

0
0
±

2
.4

3
1
1.

1
1

K
2-

K
2

N
on

e
M

ea
n

34
.6

6
±

2.
44

37
.9

4
±

2
.6

2
2
3.

6
3
±

2
.4

4
2
0.

3
7

M
in

49
.5

9
±

2.
44

47
.1

6
±

2
.6

2
2
6.

8
2
±

2
.4

4
1
6.

6
6

L
B

F
M

ea
n

30
.1

6
±

2.
65

34
.1

7
±

2
.8

9
2
5.

4
2
±

2
.6

2
1
4.

8
1

M
in

62
.0

3
±

1.
72

55
.0

5
±

2
.5

4
3
8.

7
1
±

2
.0

6
1
8.

5
1

M
R

F
M

ea
n

35
.5

0
±

2.
97

39
.8

9
±

3
.2

7
3
0.

1
5
±

1
.7

4
1
2.

9
6

M
in

56
.8

3
±

1.
92

58
.3

3
±

2
.3

0
4
4.

2
6
±

1
.6

5
2
2.

2
2

27



T
a
b

le
2.

7:
B

a
se

li
n

e
id

en
ti

fi
ca

ti
o
n

re
su

lt
s

(R
an

k
10

)
on

th
e

p
ro

p
os

ed
K

as
p

A
R

O
V

[2
7]

d
a
ta

b
as

e
u

si
n

g
on

ly
R

G
B

-D
I

d
at

a
.

P
ro

to
co

l
M

et
h

o
d

D
ep

th
E

n
h

an
ce

m
en

t
F

u
si

on
R

u
le

F
ea

tu
re

L
B

P
T

P
L

B
P

H
O

G
m

R
IS

E

1.
S

in
gl

e
g
a
ll

er
y

K
2-

K
2

N
on

e
-

9.
08
±

1.
32

10
.6

5
±

1.
9
2

8
.4

6
±

1
.8

1
2
1.

2
7

L
B

F
-

9.
77
±

1.
32

10
.7

1
±

1.
8
1

8
.5

1
±

1
.9

2
1
6.

5
1

M
R

F
-

8.
53
±

1.
32

9.
93
±

1.
8
1

9
.5

9
±

1
.9

2
2
1.

0
7

2
.

M
u

lt
ip

le
g
a
ll

er
y

K
2-

K
2

N
on

e
M

ea
n

32
.3

6
±

2.
46

39
.6

0
±

3.
4
7

3
4.

5
9
±

2.
4
6

2
2.

2
2

M
in

63
.5

1
±

2.
46

65
.9

1
±

3.
4
7

5
8.

8
5
±

2.
4
6

3
5.

1
8

L
B

F
M

ea
n

31
.8

0
±

3.
25

37
.8

1
±

3.
3
8

2
9.

4
0
±

1.
4
6

1
2.

9
6

M
in

63
.9

0
±

1.
57

61
.9

7
±

2.
0
3

5
4.

5
5
±

1.
4
9

2
2.

2
2

M
R

F
M

ea
n

34
.9

1
±

3.
04

41
.2

6
±

3.
4
6

3
3.

4
3
±

1.
6
5

1
4.

8
1

M
in

61
.2

6
±

1.
43

65
.4

9
±

1.
8
3

5
6.

2
4
±

1.
3
3

2
0.

3
7

28



(a) Either Kinect v1 or v2 (b) Kinect v2 only

(c) Kinect v1 only (d) Neither Kinect v1 nor v2

Figure 2.9: Examples of probe images belonging to each of the four cases of sensor choice.
The captions indicate the sensor choice that would lead to correct identification for the probes
as observed in our experiments, i.e., (a) denotes the probes for which data from either sensor
suffices, (b) denotes probes where only Kinect v2 data leads to the correct output and so on.
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Table 2.8: The no. of probes successfully identified in single gallery image identification
experiment.

Data Source No. of Probes successfully identified

Either Kinect v1 or v2 75

Neither Kinect v1 nor v2 3042

Only Kinect v2 1215

Only Kinect v1 677

demonstrates that even with better sensor quality of Kinect v2, it still doesn’t completely super-

sede Kinect v1’s recognition performance. Also, a vast majority of the probes are misclassified

using data from either sensor which suggests a large scope of improvement in the applied algo-

rithms and methodologies for RGB-D face recognition. From Figure 2.9, we can see that the

image samples presented in the worst scenario (d) where neither sensor works, are the most

challenging cases containing pose, expression, illumination, occlusion, missing information, and

poor quality. For videos shot in the daytime where the person of interest is standing against

the sunlight, the recognition performance is very poor. Furthermore, in the night time videos,

there are cases when it is too dark for the camera to record anything significant in the RGB

spectrum. Therefore, it is our assertion that illumination in general, could be addressed to a

large degree in the future by incorporating the NIR data which is simultaneously available only

with Kinect v2 sensor. Addressing multiple frames from the video can be leveraged to provide

pose invariance.

2.5 Summary

Researchers have explored the utility of RGB-D data in improving face recognition. However,

most such effort has utilized RGB-D information obtained using the Kinect consumer level

device. Recently, the Kinect version 2 device has been released which provides higher quality

depth data at comparable sensor cost. In addition, it can also simultaneously capture NIR

data which can further augment detection, recognition, and other tasks. In this paper, we

present a large RGB-DI database with videos of 108 subjects captured using both Kinect v1

and Kinect v2 devices. The database includes standard experimental protocols and encompasses
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the challenges of pose, illumination, expression, quality, cross-distance, and video based RGB-DI

face detection and recognition. The experimental results indicate that the existing approaches

cannot fully address these challenges and further research is required in order to effectively

utilize RGB-DI devices in face recognition.
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Chapter 3

Face Detection and Recognition

Algorithms

In this research, we have developed face detection and recognition algorithms for RGB-D videos

obtained in surveillance scenario. Proposed face detection algorithm makes use of depth images

in conjunction with RGB images for segmenting humans and detecting faces in the video frames.

On the other hand, the proposed face recognition algorithm learns a deep learning based shared

representation of RGB and Depth images for recognizing faces in the videos.

3.1 Face Detection at a Distance in RGB-D Videos

Face detection algorithms generally provide good results for frontal face images with good illumi-

nation and close proximity to the imaging device. However, in the surveillance scenario, cameras

are often placed far away from the subjects and the collected frames from surveillance video suf-

fers from variations in pose and illumination. Developing a face detection system, robust to

all these variations, is a highly challenging task. Among many approaches, depth information

can be utilized for improving face detection results. This research focuses on developing a novel

face detection algorithm for RGB-D videos taken in unconstrained scenarios. The proposed face

detection algorithm utilizes human body detection in color images and combines it with the
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Figure 3.1: Illustrating the steps of the proposed KarPOV algorithm for human segmentation
and face detection in a sample frame.

corresponding depth map to provide a robust solution for face detection at a distance in RGB-D

videos.

MS Kinect also has a software development kit (SDK) [38] for face detection. Along with that,

there are other face detectors in literature, such as Haar face detector [43] and Everingham

detector [12], that operate on RGB images. However, on surveillance quality videos obtained

from Kinect, they yield a significant number of false positives and false negatives. Figure 3.2

shows face detection results of Kinect SDK and Everingham detector. Therefore, in this research,

we focus on detecting faces in video frames where the subjects are at a considerable distance

from the imaging device, which is typical to surveillance scenarios. The proposed approach,

KarPOV, is based on the assumption that if the video is captured from a distance, the body

of the individual should also be visible along with the face. Since body will be larger, it will

be easier to extract that and then determine the region of interest around the top portion of

the detection body. The proposed approach first uses HOG based human body detector [8] for

detecting humans in the video frames and then utilizes the corresponding depth information for

segmenting detected human bodies from background.
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Figure 3.2: Sample frames showing the comparative results of Kinect SDK + Everingham and
KarPOV.

3.1.1 KarPOV - Proposed RGB-D Face Detector

For Kinect v2 sensor, the quality of depth data deteriorates with increase in distance between

the subject and the sensor. Therefore, human body detection is performed primarily on the

RGB frame and corresponding depth data is then used to aid segmentation. The step involved

in the KarPOV face detector are demonstrated in Figure 3.1 and explained below.

1. Human Body Detection and Tracking : RGB frames are captured at a native resolution

of 1920 × 1080 from Kinect v2 device. As mentioned before, major challenges for face

detection are observed when there is a large stand-off distance between the subject and

camera. Interestingly, in such frames, it is easier to detect human bodies due to the fact

that complete bodies (from head to toe) are only captured for the subjects that are at a

minimum distance from the camera. Thus, Histogram of Oriented Gradient based human

body detection [8] is applied for efficiently capturing subjects of interest in the frames

where the Kinect Face API fails to capture faces.
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Algorithm 1 Pseudo-code for implementation of KarPOV face detector

1: procedure KarPOV
2: for each frame in Video do
3: d(x,y)← Depth frame
4: c(x,y)← Color frame
5: mData← Color To Depth coordinate mapping
6: Depth Processing :
7: dmed(x, y)← 5x5 median filter on d(x,y)
8: Scale dmed(x, y) to 1920 times 1080 using mData
9: dscaled(x, y)← Normalize(dnorm(x, y))

10: dcanny(x, y)← Canny(dnorm(x, y))
11: dor(x, y)← Or(dcanny(x, y), dnorm(x, y))
12: dclose(x, y)← Closing(dor(x, y), ‘disk′, ‘3′)
13: dmed(x, y)′ ← 5x5 median filter on dclose(x, y)
14: dopen(x, y)← Opening(d′med(x, y), ‘disk′, ‘5′)
15: d′close(x, y)← Closing(dopen(x, y), ‘disk′, ‘3′)
16: dm(x, y)← 15x15 median filter on d′close(x, y)
17: ddilate(x, y)← Dilate(dm(x, y), ‘disk′, ‘4′)
18: dfinal(x, y)← Threshold(ddilate)
19: Human Body Detection and Tracking :
20: DetectedBodies← DetectHumanBodies(c(x,y))
21: bROI← Detected Bodies location in c(x,y))
22: if count(DetectedBodies) = 0 then
23: c(x, y)′ ← PreviousFrame(c(x, y))
24: DetectedBodies← BodyTracking(c(x, y)′)

25: Depth based Body Segmentation :
26: for each body in DetectedBodies do
27: dcrop(x, y)← Crop(dfinal(x, y), bROI)
28: cseg(x, y)← And(body(x, y), dcrop(x, y))
29: ctorso(x, y)← Crop(cseg(x, y), [h/2 w]))
30: cfaceReg(x, y)← Resize(ctorso(x, y), 3))
31: faces← Everingham(cfaceReg(x, y)))

2. Depth Frame Pre-Processing : Since face recognition algorithms would like to utilize both

RGB and depth information for recognition, it is important to process the depth map as

well for face detection. The depth sensor on the Kinect2 samples input scene relatively

sparsely as compared to the RGB camera. Hence, the native resolution of the depth

sensor on Kinect v2 is lower, 512 × 424, than the RGB counterpart. Different native

resolutions of the RGB and depth sensors require registering the RGB and depth frames.

The color to depth coordinate mapping data is used to register the two information sources

and generate a sparse depth image in matching resolution to RGB camera of Kinect v2.
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This is then subjected to a series of canny edge detection [18], morphological and median

filtering operations and is then thresholded to generate the processed binary depth frame,

as detailed in Algorithm 1 and shown in Figure 3.1. The final processed depth frame is

well registered to the RGB frame at its native resolution i.e. 1920× 1080.

3. Human Body Segmentation: A pixel wise product of the detected human bodies from the

RGB image and corresponding regions of the processed depth image yields the tightly

segmented human bodies from the given RGB frame.

4. Face Detection: Upper 50 % of the segmented human bodies is then enlarged to 300% and

the Everingham face detector is used to detect the faces. The detection boundary in RGB

frames is mapped to depth map as well.

3.2 RGB-D Face Recognition via Learning-based Reconstruc-

tion

It is challenging to apply RGB-D based face recognition in surveillance scenarios due to the large

distance of such cameras from the subject. The depth information captured in such situations is

of poor quality and may not contribute to recognition. We introduce a RGB-D face recognition

system which only needs RGB probe images. This is accomplished using a novel learning-based

reconstruction model presented in our work. The proposed method generates a feature rich

representation from RGB images which contains discriminative information from both the RGB

and depth images. Thus, this representation is much more discriminative than the RGB images

and gives substantially higher identification accuracy than a conventional fusion based RGB-D

recognition pipeline.

Figure 3.3a show as sample of images captured at close distances, where the quality of captured

face images is good. However, with large standoff distance between the camera and the subject,

both RGB and depth cameras fail to capture good quality face images, as seen in Figure 3.3b.

We introduce a new neural network based algorithm to construct a feature rich representation

from RGB images so that it contains discriminative information from both the RGB and depth
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(a) (b)

Figure 3.3: RGB and depth images: (a) in controlled conditions (Eurecom RGBD database [36])
and (b) with large standoff distance and uncontrolled conditions (Kasparov database [27]).

images. During training, a mapping function is learnt between RGB and depth images that

helps to construct feature rich representation that has the properties of both RGB and depth

data, hence making it similar to a shared representation. The property of reconstructing depth

images from the RGB probe images provides an added advantage that it is not necessary to

capture depth information during testing. The major research contributions of our paper can

be summarized as follows:

• We introduce a novel neural network architecture to learn a mapping function between

two modalities M1 and M2. This mapping function can be used to construct a feature rich

representation of both the modalities combined in one .

• The proposed architecture is applied on RGB and depth face images to construct a feature

rich representation. The approach utilizes the discriminative properties of depth data

without the need of capturing depth data for probe images. This approach can be deployed

in scenarios where the standoff distance of the subject from the camera is too high to get

good quality depth data.

• On the Kasparov database [27], the proposed algorithm provides state-of-the-art results

and yields significant improvements in identification accuracy on low quality face images

captured at a distance. On the IIITD RGB-D database [19] the proposed algorithm yield

competitive accuracies with respect to [19].
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Input layer Hidden layer                    Output layer

-
-

Encoder Decoder

Figure 3.4: Illustration of Autoencoder [3].

3.2.1 VaNaND- Proposed Face Recognition Algorithm

This section presents the formulation of the proposed algorithm. Our proposed algorithm, named

VaNaND, derives its basic motivation and idea from a deep learning based unsupervised feature

extraction architecture called Stacked AutoEncoder.

3.2.1.1 SAE: Stacked AutoEncoder

Autoencoder is a deep neural network architecture geared towards unsupervised feature learning.

An autoencoder, as illustrated in Figure 3.4, is comprised of two main steps: the encoding step

and the decoding step. In the encoding step the data on the input layer is fed to the network in

form of an input vector X, which is then encoded into a hidden representation H, as follows:

H = φ (WX + b) (3.1)
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where, φ is the sigmoid function and W, b are the weights and bias respectively.

The hidden representation is then decoded back into the reconstructed data X̂ in the output

layer, as follows:

X̂ = φ
(
W ′H + b′

)
(3.2)

where W ′, b′ are the decoding weights and bias respectively.

The reconstruction error between X and X̂ is then minimized across epochs in the autoencoder,

by optimizing the below given loss function.

argminθ(||X − X̂||22 + λR) (3.3)

where λ is the regularization parameter, R is the regularizer, and θ is the set of parameters

{W1,W2, b1, b2}.

Once the loss function is minimized, the hidden layer representation is treated as a feature

representation of the data at the input layer.

Our proposed network architecture, illustrated in Fig 3.5, instead of reconstructing the data at

the input layer, it reconstructs the data at input layer into its another representation given at

the output layer. After our network is trained, it could be used to reconstruct one representation

of the input data into the desired representation at the output layer.

Our algorithm is presented as a generic model for learning the feature rich representation con-

taining features from both the modalities namely M1 and M2 followed by a classifier for identi-

fication. The learning phase is composed of two main steps, learning the shared representation

and learning the classifier for identification. Figures 3.5 and 3.6 illustrate the steps involved in

the proposed pipeline where M1 and M2 are considered to be RGB and depth images respectively

in this research.
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Modality 1             Hidden layer         Modality2 

-
-

Learning the Reconstruction

(RGB)                                                                          (depth)

Figure 3.5: Illustrating the training module of the proposed algorithm.

3.2.1.2 Learning Mapping and Reconstruction using Neural Network

Let XM1 =
{
x
(1)
M1
, x

(2)
M1
, x

(3)
M1
, ...x

(n)
M1

}
be the n data samples from the first modality (e.g. RGB

or grayscale images). Similarly, let XM2 =
{
x
(1)
M2
, x

(2)
M2
, x

(3)
M2
, ...x

(n)
M1

}
be the n data samples

pertaining to the second modality (e.g. depth data). In this research, we propose to learn a

mapping function R : XM1 −→ XM2 using an autoencoder style neural network architecture. In

the proposed approach, the first layer termed as the mapping layer can be expressed as

H = φ(W1.XM1 + b1) (3.4)

where, φ is the sigmoid function and W1, b1 are the weights and bias respectively. In the second

layer called as reconstruction layer, we learn the mapping betweenXM1 andXM2 using Equations
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3.5 to 3.7.

X̂M2 = φ(W2.H + b2)

= φ(W2.φ(W1.XM1 + b1) + b2)

(3.5)

such that

argminθ(||XM2 − X̂M2 ||22 + λR) (3.6)

expanding Equation 3.6 using Equation 3.5,

argminθ(||XM2 − φ(W2.φ(W1.XM1 + b1) + b2)||22 + λR) (3.7)

where λ is the regularization parameter, R is the regularizer, and θ is the set of parameters

{W1,W2, b1, b2}. In this formulation, we have applied l2 − norm regularization on the weight

matrix, which prevents overfitting by performing weight decay. From equations 3.5 and 3.6, it

can be inferred that X̂M2 is the reconstruction of XM2 . The network for reconstruction also

provides us a feature map, H, in between XM1 and XM2 . Thus, there are two outcomes of the

proposed network,

• X̂M2 as the feature rich representation generated by using XM1 as input.

• H as a mapping function between XM1 and XM2 .

This mapping and reconstruction algorithm can be applied to any relevant bimodal database.

In this research, we utilize the proposed algorithm to improve the performance of RGB-D face

recognition.
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Figure 3.6: Illustrating the steps involved in testing with the proposed algorithm and identifi-
cation using reconstructed data.

3.2.1.3 RGB-D Face Recognition

We next describe the RGB-D face recognition algorithm based on the proposed mapping and

reconstruction algorithm described in the previous section. The proposed algorithm has two

components: (1) training: to learn the mapping and reconstruction layers using a training set

of RGB-D face images and (2) testing: determining the identity of the person using RGB or

depth images.

With M1 being the RGB modality (converted to grayscale) and M2 being the depth data, we

first learn the mapping between XRGB and Xdepth to obtain H and the reconstructed depth

map X̂depth.

X̂depth = φ(W2.φ(W1.XRGB + b1) + b2) (3.8)

such that

argminθ(||Xdepth − X̂depth||22 + λR) (3.9)

Figure 3.7 shows samples of feature rich representation obtained using the proposed algorithm.
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(a) (b)

Figure 3.7: Visualizations of different representations used in the proposed method, (a) IIITD
RGBD database [19], (b) KaspAROV database, where column 1: RGB image in grayscale,
column 2: Captured depth image, column 3: Visualization of feature rich representation V̂shared.

It can be observed that compared to the original RGB image or depth map, the feature rich

representation contains more discriminative information and should be able to provide better

identification performance.

The next step is to use the mapping function and reconstructed output for identification. We

learn a multiclass neural network classifier for face recognition. As shown in Figure 3.6, the input

to the testing module is only the grayscale image. Given input RGB (grayscale) probe images

the learned network is first used to generate X̂depth using equation 3.8. This representation is

then given as input to the trained neural network classifier for identification.

3.3 Summary

Detecting human faces in videos at a distance is a challenging research problem. RGB-D imaging

devices can be effectively used to develop a novel solution to the problem. The algorithm

proposed in this research work uses human body detection in RGB frames where face detection is

challenging due to distance from camera, and combines it with depth data to effectively segment
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human body from background in the frame and provide a novel face detection algorithm. Results

of the proposed face detector shows considerable improvement in the number of faces detected

over Kinect v2 SDK Face API and Everingham face detector. However, there still are cases

where the proposed detector is unable to detect faces. We believe there is a scope for research

in the domain of RGB-D face detection to further improve the results.

The proposed face recognition algorithm presents a novel and effective method of creating a

feature rich representation of RGB and depth images. The presented method can be utilized

in surveillance scenarios as well where obtaining depth data for the probe images is challeng-

ing. Experimental results show that this representation learned in the form of reconstructed

depth images is highly discriminative and contain the properties of both depth and RGB data.

Visualizations are also presented to support these intuitions. We would extend our method to

investigate the effect of learning deeper reconstruction networks and test other classifiers for

surveillance scenarios.
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Chapter 4

Experimental Results

In this research work, we have proposed and detailed algorithms for both detecting and rec-

ognizing faces in RGB-D videos taken in surveillance like scenarios. For testing the efficiency

of the proposed algorithms we have primarily used the KaspAROV [27] RGB-D video dataset.

Both the proposed algorithms have been compared and contrasted with their respective state of

the art counterparts in the following sections.

4.1 Face Detection Results of KarPOV Face Detector

KaspAROV RGB-D Video Dataset [27] contains video frames of 108 subjects, both male and

female, captured in surveillance like scenarios. Each video contains a pair of subjects and each

subject appears in two videos taken in two different sessions. The dataset also provides manually

annotated face image details for each frame, hence serving as ground truth for evaluating the

performance of face detection systems. We have also compared the performance of the proposed

detector with existing face detection algorithms including Kinect v2 API and Everingham face

detector [12].

The Face API of Kinect v2 SDK makes use of depth based human skeleton tracking for aiding

face detection in RGB frames. However, since the maximum range of the depth sensor of Kinect

v2 for effective operation is around 4.5 meter, the performance of Face API drops for faces that
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Table 4.1: Face detection accuracy on the complete KaspAROV dataset.
Face Detection Algorithm Faces Detected

Kinect SDK 54.31%

KarPOV 56.25%

Kinect SDK + Everingham 62.04%

Kinect SDK + KarPOV 82.74%

Table 4.2: Face detection accuracy on only far frames from the KaspAROV dataset.
Face Detection Algorithm Faces Detected

Everingham 16.93%

KarPOV 62.22%

are outside the range of effective operation. Visually also we observed that the detection fails

in the frames where the camera to person distance is large, Therefore, in our experiments, the

frames on which Kinect v2 SDK Face API fails to detect faces are treated as far frames and the

remaining ones are treated as near frames.

We have conducted experiments to first evaluate the performance on the entire dataset and also

analyzed the performance specifically for the far frames. KaspAROV dataset contains 62, 119

manually annotated faces across 108 videos which serves as the ground truth for detection labels.

For experiments on entire dataset, we have compared KarPOV with Kinect v2 SDK Face API

as both the detectors use depth data for face detection. Of the 62,119 faces in the dataset,

Kinect v2 SDK Face API is able to detect 33,737 faces while KarPOV yields slightly better

accuracy and detected 34,942 face images. Specifically, comparing 28,383 far frames which are

not detected by Kinect v2, we have compared the performance of KarPOV with Everingham face

detector. Of these far faces, Everingham’s approach is able to detect 4,807 faces while KarPOV

shows considerably better results with 17,660 face detections. Figure 4.1 shows sample frames

to illustrate the results. In the left frames, both existing algorithms and the proposed algorithm

detect the faces but the existing algorithm detected a false positive. In the right frames, existing

algorithms could not detect any face whereas the proposed KarPOV could detect both the faces.

We have also evaluated a combination face detectors which comprised of Kinect SDK for near

frames and Everingham for far frames against a combination of Kinect SDK for near frames and

KarPOV for far frames. While the former combination detected 38,544 face images, the latter
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Figure 4.1: Sample frames comparing the results of Kinect SDK + Everingham and KarPOV.

detected 51,397 face images. Thus, showcasing the efficacy of the proposed algorithm in aiding

face detection in surveillance scenarios. Tables 4.1 and 4.2 summarize the true positive accuracies

of face detection obtained by individual detection algorithms along with the combination of

algorithms for the complete database and specifically far frames from the database, respectively.

It is to be noted that the detection results reported in Table 4.1 are with respect to the ground

truth values, while the results in Table 4.2 are reported with respect to total number of far faces.

As shown in Figure 4.2, the combination detector of Kinect SDK with KarPOV consistently

performs better than the one with Everingham across all the subjects in KaspAROV dataset.

While KarPOV shows good results on far frames, which makes it suitable for face detection in

surveillance scenarios, according to ground truth, there are still 11, 000 frames that could not

be detected. A sample of face detection results on KaspAROV dataset are shown in Figure

4.3. The analysis of such images shows that majority of the undetected face images suffer from

heavy camera sensor noise, motion blur, and are of very low resolution, thus making them more

challenging candidates for face detection.
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Figure 4.2: Subject wise comparison of the experimental results.

Figure 4.3: Sample face detection results from the KaspAROV RGB-D database. First row
depicts faces detected by all the detectors, the next row depicts faces detected by KarPOV only,
and the final row represents images not detected by any of the face detectors.
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4.2 RGB-D Face Recognition Results of VaNaND Face Recog-

nition Algorithm

For evaluating the performance of the proposed reconstruction based network, we have used

two RGB-D face datasets, the IIITD RGB-D dataset [19] and the Kasparov dataset [27]. Since

training the mapping function requires large training data, the shared representation model is

first pretrained using the EURECOM [36] RGB-D face database.

1. EURECOM RGB-D dataset : The EURECOM dataset [36] contains high quality

registered RGB and depth images images of 52 subjects captured using the Microsoft

Kinect version 1 sensor. The dataset provides face images of each person with expressions,

lighting, and occlusion. The dataset also provides 3D object files of the faces apart from

RGB and depth images.

2. KaspAROV dataset:: KaspAROV is a RGB-D video dataset captured using both Kinect

v2 and v1 sensors in surveillance like scenarios. Detected and cropped faces of 108 subjects,

from the video frames under the variates of pose, illumination, distance and expression

are provided in the dataset. For our experiments we have only used data from Kinect v2

sensor due to better registration of the RGB and depth images as compared to the Kinect

v1 sensor data. The Kinect v2 sensor data in the KaspAROV dataset consists of 62, 120

face images. The resolution of the RGB videos is 1920 × 1080 and those of depth videos

is 512× 424.

3. IIITD RGB-D dataset: The IIITD RGB-D dataset contains images of 106 subjects

captured using the Microsoft Kinect version 1 sensor. Each subject has multiple im-

ages,ranging between 254 to 11 images per subject per fold. The RGB and the depth

images are captured as separate 24 bit images. The resolution of both RGB and Depth

frames is 640× 480.
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Table 4.3: Details of databases used in the experiments

Dataset Device Classes
Image Size

Train set Test set
RGB Depth

Eurecom Kinect 1 52 64× 64 64× 64 364 -

IIITD RGB-D Kinect 1 106 64× 64 64× 64 9,210 13,815

KaspAROV Kinect 2 108 64× 64 64× 64 31,060 31,060

4.2.1 Preprocessing

The images are converted into grayscale, followed by face detection. The detected facial regions

from both grayscale and depth images are resized to a fixed resolution of 64×64 pixels. Since the

IIITD RGB-D [19] and Eurecom [36] datasets contain good quality images, the cropped images

(RGB and depth) provided in the database are utilized without any pre-processing. However,

for the Kasparov dataset, faces are detected using Kinect Face API. The frames where faces are

not detected, manual annotations given with the database are used to detect the faces. Due to

high variance in distance of subjects from the camera sensor, the face images in KaspAROV

dataset (both RGB and Depth) are very challenging. In order to improve the quality of depth

images we have used Markov Random Field based depth enhancement technique. RGB images

are used without any enhancement.

4.2.2 Protocol

Entire EURECOM database is used for pre-training the reconstruction networks. Even though

the number of samples in Eurecom dataset is not large, it provides well registered RGB and

depth images of good quality along with multiple variates in pose, illumination, expression.

The remaining two datasets are used for fine-tuning and testing. As shown in Table 4.3,

they are divided into training and testing sets according to their pre-defined protocols. For

identification experiments on the KaspAROV dataset, the pre-trained network is fine-tuned on

10% of the entire dataset and the neural network classifier is trained on 50% (which includes

the data for finetuning). The remaining 50% is used for testing. For IIITD RGB-D dataset, a

similar finetuning is performed, the classifier is trained on 40% of the dataset and tested on the

remaining 60% of the images.
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4.2.3 Experiments

To evaluate the efficacy of the proposed architecture, we have performed multiple identification

experiments along with comparing the performance with state-of-the-art algorithms in literature.

The experimental setup for all five experiments are described below and these are performed on

both the testing databases.

1. Recognition on raw features: The raw depth and RGB images are used directly as features

to train neural network classifiers. These are numbered as experiments 1 and 2.

2. Recognition on hidden representation: The learnt weights (W1) of the proposed reconstruc-

tion network between two modalities XRGB and Xdepth, we can create a representation H

as explained in Section 3.2.1.3. This is numbered as experiment 3.

3. Recognition using VaNaND: As explained in Section 2, the feature rich representation are

obtained and used for identification. This is referred as experiment 4 and is our proposed

VaNaND face recognition algorithm.

4. Recognition using RISE [19] features: To compare the performance with state-of-the-art

algorithm, RISE [19] features are chosen. This is termed as experiment 5.

5. Recognition using LBP [2] and Gabor [17] features: To compare the performance with 2D

features, LBP and Gabor features are chosen. These is termed as experiments 7 through

12.

4.2.4 Analysis of Results

Table 4.2.3 summarizes the rank-1 identification accuracies of all the experiments on both Kas-

pAROV and IIITD RGB-D databases. The CMC curves for the same are outlined in Figure 4.4.

• The identification accuracies of raw RGB and depth data separately (Experiment 1 and 2 )

can be considered as the baselines against which we can compare all the other experiments.

Depth information yields an accuracy of 11.80% and 26.81% whereas RGB input yields
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Exp. No. Modality1 Modality2 Feature
Accuracy (in %)

KaspAROV IIITD RGBD

1 Depth - Raw 11.80 26.81

2 RGB - Raw 23.24 36.75

4 RGB Depth Hidden 60.00 98.08

5 RGB Depth VaNaND 67.77 98.71

6 RGB-D - RISE [19] 52.38 98.74

7 RGB - LBP [2] 1.63 9.53

8 Depth - LBP [2] 1.61 6.64

9 RGB-D - LBP [2] 1.96 8.22

10 RGB - Gabor [17] 2.53 36.16

11 Depth - Gabor [17] 1.97 32.90

12 RGB-D - Gabor [17] 2.03 35.03

Table 4.4: Identification results (Rank 1) on the IIITD RGB-D and Kasparov Databases

23.24% and 36.75% respectively on KaspAROV and IIITD RGB-D databases. Lower

identification accuracy on depth data as compared to RGB on both the databases portrays

that the discriminative information carried by depth alone is lower than that of RGB. Also

the identification accuracy on KaspAROV database is lower than that on the IIITD RGB-

D database. Hence, verifying the increased challenges of face recognition in surveillance

scenarios.

• The hidden representation also gives competitive accuracies (experiment 3) with respect

to the shared representation learnt by our proposed network for both KaspAROV and

IIIT RGB-D databases. Hence, we can infer that the hidden representation H also learns

discriminative information from both the modalities like the reconstructed depth, however

the properties of the two are believed to be different. The visualization of the hidden layer

weights W1 of the reconstruction network is depicted in Figure 4.5.

• The feature rich representation X̂depth obtained from the RGB to depth mapping network

gives superior identification accuracy (experiment 4 in table 4.2.3) compared to raw RGB

and depth as the representation(experiment 2 and 1 in table 4.2.3). We have also observed

that X̂depth gives much better results than learning features from the RGB data using a

conventional deep autoencoder (feature learning on RGB data) and using the encoding

weights to create a representation. The proposed method (experiment 4 in table 4.2.3)
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Figure 4.4: CMC curves of experiments on (a) KaspAROV Database, (b)IIITD RGBD
Database

outperforms the state of art method [19] significantly on the KaspAROV dataset, where

the images are of surveillance quality. This shows that the representation learned is robust

to illumination, occlusion, pose and resolution variates.

• The feature rich representation X̂depth for different samples in our experiments has two

kinds of information, structural and discriminative. To visualize the fact that they look

different for each subject we create a new visualization V̂shared given by

V̂shared = X̂depth −mean(X̂depth) (4.1)

where mean(X̂depth) is the mean feature rich representation of the entire dataset. This

visualization is depicted in Fig 3.7, column 3 in both (a) and (b). It can be easily observed

that they are different from each other and house important discriminative information.

On closer examination of the V̂shared images it can be observed that they contain the

properties of both RGB and depth data.

• The experiments for comparison with 2D face features uses LBP [2] and Gabor [17] features.

As seen in the identification results in experiments 7 to 12, both LBP and Gabor give much
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Figure 4.5: Visualizations of weights (We) learnt by hidden layer of RGB to Depth mapping
network given in Figure 3.5

lower accuracies on both the databases as compared to other features in experiments 1

to 5. Therefore, we can assert that the proposed algorithm is superior compared to these

existing ones for RGB-D surveillance videos.
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Chapter 5

Conclusions and Future Scope

In this research, we have addressed face detection and recognition in RGB-D video surveillance

scenarios where conventional algorithms fail to scale across variantions in pose, illumination,

expression and standoff distance. We have used depth data in conjunction with RGB data in

our proposed face detection and recognition algorithms, which out perform current state of the

art algorithms on the proposed KaspAROV dataset. Our algorithms also produce competitive

results on IIITD RGB-D face dataset. In KarPOV face detection algorithm we hierarchically

locate a subject’s face in a given scene by first detecting and segmenting humans from the scene

by using depth data of the same and then faces are detected from the segmented human bodies.

In VaNaND face recognition algorithm we have put forth a novel deep learning based technique

which creates a reconstruction based shared representation between two data modalities. Where

the both the modalities are used while training the network but during testing phase either of

the modalities suffice. Such an algorithm can find use in multi-modal learning problems where

limited data is available from one of the modalities. Here, portion of data with both modalities

available could be used to train the deep learning model and testing could be carried out on

either of the modality from the testing dataset.

Such a deep learning architecture improves face recognition performance in domain of multi-

modal recognition systems by creating a discriminative shared representation between the modal-

ities. For instance, we can learn the network between RGB and Depth faces and use the trained
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model on a RGB only dataset where the network will extract depth features from RGB images

only and return it in the shared representation. This could enable improvement of face recog-

nition performance, while working on only RGB data. For building the reconstruction based

shared representation learning network we have used a stacked denoising autoencoder (SAE) as

a base unit. Further research needs to be conducted in direction of:

• Implementing similar network architectures while using probabilistic graphical models such

as Restricted Boltzmann Machines and Deep Belief Networks.

• Exploring the effect of shallow networks vs deeper networks in similar architectures.
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