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Abstract

Achieving optimal floor-plans during the physical synthesis flow is an iterative and

resource intensive process and its quality has a significant impact on subsequent

synthesis stages in terms of runtime and quality of results. This problem intensifies

due to the abundance of macros in advance technology nodes which poses challenges

in the physical design flow, especially in the floor-plan stage. It has resulted in an

excessive number of channels among macros that need to be spaced carefully and

optimized as they consume placement and routing resources. The work presented

here is two-fold: First, a tool is introduced for automatic channel space adjustment.

Second, the impact of channel space minimization on the quality of results along

with runtimes are investigated. Experimental results for two complex partitions of

a taped out design, Design-A and Design-B, each with 3M instances including 225

and 205 macros respectively, are presented. The results indicate an existence of an

optimum channel spacing in which a 35% and 124% reduction in turn-around-time

is observed with same or better quality of results, when compared to the taped out

version of the same.
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Chapter 1

Introduction

In a VLSI design cycle, the physical synthesis is a process which transforms the netlist

(mapped to a given technology node such as 28nm) into actual physical layouts/geometries for

fabrication while meeting the design constraints such as timing, area, power and routability

[1, 2]. It is composed of floor-planning, placement, clock tree synthesis and routing stages. The

quality of the design at each stage has a significant impact on the succeeding stages [3] in terms

of runtime of the EDA tool.

Scaling has enabled complex designs as shrinking technology nodes has resulted in integra-

tion of more functionality to the existing and current designs. Advancing technology nodes add

more metal layers, varied metal thickness, complex design rules etc. [4] ultimately impacting

the physical synthesis flow which is computationally intensive. To alleviate these complexities,

today’s complex SoC are partitioned into several blocks which undergo physical synthesis flow

in parallel thereby optimizing the available compute and human resources.

Floor-planning is the first step in the physical design flow and one of the emerging challenges

in this stage is the growing number of macros, IPs and embedded memories in the design [5, 6].

Abundance of macros has resulted in an excessive number of channels that need to be spaced

carefully and optimized. The channels are intrinsic to macro placement and space is reserved

by placement blockages to prevent an interference of the standard cells that might impact the

closure of the design (especially routing). Macros are stacked along the periphery of the chip

[6, 7] and their placement is responsible for the creation of the core area which is utilized by

succeeding stages of the physical synthesis flow.

The channels present among macros, consume placement and routing resources. The knowl-

edge of resource utilization in these channels is conceived after placement and global routing

which, depending on the design complexity, is compute intensive. Manual spacing of channels

involves multiple iterations of the placement and global routing stages to achieve an optimal

solution. In order to minimize the impact of an iteration on the turn-around-time, optimal

solutions are never achieved in general. Also, manual channel space adjustment is unreliable

and tedious due to vast amount of channels that exist in a design.

In order to minimize the impact of manual spacing on the turn-around-time, a tool to

accomplish an automated channel spacing, is proposed. In addition, to optimize the channel

1



CHAPTER 1. INTRODUCTION 2

spaces, spacing formulations are further developed based on experimentations on most recurring

patterns of macro placement. For this purpose, a router originally derived from the work in [8],

has been extended.

1.1 Related Work

The physical synthesis domain consists of computationally intensive problems. Advanced

technology nodes along with increased number of instances add more complexity to the problem

space which results in increased runtime to achieve optimal solutions. Runtime reduction while

maintaining same or better quality of results with better design methodology or flow, is an

active research area [9].

Most of the work relating to the handling of macros, falls into the category of mixed-size

placement with the primary objective being the removal of overlaps (legalization), optimization

(for routability) and provision of better macro placement in terms of wire length and runtimes

[6]. Of these, the existence of channels between macros is addressed in [7, 10], albeit briefly. In

either case, the technique of inflating the macro sizes is used to either reserve routing resource

around a macro [7] or block the narrow channels (in case of fixed macro) [10].

To the best of our knowledge, explicit evaluation of the impact of channel spaces and its

minimization on the entire physical synthesis flow has not been studied, which forms the basis

of the work presented here.

1.2 Organization

The report is organized into four chapters. Chapter 1 introduces the reader to the report

and briefly explains the problem, its impact and related work. Chapter 2 describes the spacing

formulations developed along with the tool and its algorithm. The experimental results are

presented in chapter 3, while chapter 4 concludes the report.



Chapter 2

Channel Spaces

The channels between macros consume placement and routing resources (see appendix A.1

for further information). Routing resources are further constrained due to macro porosity.

After macro placement, the channels are allowed to exist so as to provide enough placement

resources for insertion of buffers to prevent any expected timing issues and to provide enough

routing resources to prevent any expected congestion. Under-utilization of these resources

creates unused spaces or white-space while over-utilization results in congestion. Congestion

impacts design closure while white-space indicates a room for optimizing the design. Usually,

the spacing is performed manually on selected channels based on the number of pins, global

routing data or from experience during floor-planning, keeping the aspect of design closure.

The algorithmic behavior of the subsequent routing stage is not taken into account.

2.1 Resource Estimation

The state-of-the-art technique to estimate the resource utilization, especially routing re-

sources, requires global routing which can be only invoked after the placement of the design

is complete. The channels which are congested or with white-spaces, are identified and their

spacing is accustomed to the required resources. This trivial approach has drawbacks, fore-

most of which, is the channel adjustment itself. Manual alteration of channel space involves

a revision of the macro placement. Since macros consume a significant amount of placement

and routing resources (see appendix A.2.1 for further information), any relocation of macros or

channel space adjustment impacts its surrounding resource allocations extensively. Likewise, if

the macro is placed at the periphery of the core area, the recovered resources in the core area

might result in a completely different floor-plan and a placement solution (see appendix A.2

and A.2.2 for further information). Both of the aforementioned facts render the global routing

solution irrelevant for all the other channels except the adjusted channel. In order to accurately

adjust the channels, placement and global routing needs to be performed iteratively for each

channel which is infeasible. Both placement and global routing are runtime intensive and their

reiterations need to be avoided. A routing resource estimation without placement of the design

and hence global routing, require the development of spacing formulations and heuristics.

3
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2.2 Experimentation

Initially, to analyse the approach of spacing channels between macros without performing

placement and global routing, a hypothesis was developed and tested on Design-A (see table

3.1) with the primary objective of achieving routing closure.

Hypothesis 1 Given a legal macro placement, for a macro of M pins, a channel space of M
2

at the port-side between adjacent macros suffices the routing requirement for the macro under

consideration.

The hypothesis is developed considering each pin of a macro as a net. The routing resources are

halved to accommodate the fact that the connected instances are placed together and assuming

they are placed on either side of the macro. Since spacing was accomplished manually, only

horizontal channels were adjusted. The design tested under hypothesis condition achieved

routing closure.

Assessing the routability of the macros without placement of the design necessitates the de-

velopment of a router which performed detailed routing such as the one introduced in [8]. This

router has been extended to emulate the routing conditions of the technology node. Specifi-

cally, the developed router supported six layers for routing using the vertical-horizontal-vertical

(VHV) routing model.

2.2.1 Methodology

Iterative or annealing techniques using channel space as cost and routability as a constraint

were not used for optimization due to their time complexity and the scale of the design. Instead,

the routability of the most recurring placement pattern of macros which are shown in figures

2.1 and 2.2, are verified using the developed router.

The patterns such as the one in figure 2.1a, were re-created as shown in figure 2.3. In

this figure, the port of macro-1 is shown at the bottom and the blue region depicts resource

blockages (in terms of macro-2 and other macros). To test the routability of this pattern,

the sources are assigned on the port-side of macro-1 while the targets were distributed in the

core area (refer to figure 2.1a). This is realized to maximize the connectivity of a macro with

standard cells. Each pin of the macro is assumed as a two-point net as macro porosity within

the channels would prevent its fanning out. Also, the macro porosity is initially extended up to

the fifth layer to ascertain the exact required routing resource. Later, it is reduced to the fourth

layer to emulate the technology node under test. The routing resources within the channels

are sized akin to the technique used in [7] for inflation with a few modifications: Instead of

inflating the macro sizes by the required amount of routing resources before their placement,

the channels (after obtaining a legal macro placement from the EDA tool) which are allowed

to exist, are spaced based on the pin count of the macro, its relative location within a cluster

and its orientation. For a net to be routed completely, it requires at least two layers with

alternate routing preferences, i.e. a vertical layer followed by a horizontal layer. This fact is
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Figure 2.1: Different macro placement configurations with horizontal channels (HC) and vertical
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Figure 2.2: A typical macro cluster with annotated channels as per configuration shown in
figure 2.1a.

used to constraint the spacing, hence reducing the routing resources (within the channels), with

Channel Division Factors (CDF ) in increments of two. Hence, for the 28nm technology node,

CDF varies from two to six as there are six signal routing layers available.

The routability of macro placement pattern depicted in figure 2.1a is tested as this is ob-

served to be the primal configuration. Other configurations can be derived from the primal

configuration by stacking macros vertically similar to figure 2.1a, including orientation con-

straints (figure 2.1b) or the dimensions of the macro (figure 2.2).

2.2.2 Observations

The first observation is that given the exact routing resources in channels, routing closure

was achieved. From the wire length distribution across different layers (figure 2.4a and 2.4b),

it can be observed that, after reducing the macro porosity by a layer, the nets preferred direct
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(a) Macro porosity up to the 5th layer (Minimal
routing resources)

(b) Macro porosity up to the 4th layer (28nm)

Figure 2.3: Layer utilization under different macro porosity condition for macro configuration
shown in figure 2.1a.

(a) Macro porosity up to the 5th layer. (b) Macro porosity up to the 4th layer.

Figure 2.4: Wire length distribution with CDF .

traversal over the macro (using the fifth vertical layer) instead of detouring around channels

to minimize the wire length irrespective of channel space constraints (figure 2.3b and 2.3a).

Both of these observations can be attributed to [11]. Finally, constraining channel increases

the channel congestion.

2.2.3 Formulations

Equations 2.1 and 2.2 represent the formulations for horizontal and vertical channels re-

spectively. Equation 2.1 can be considered as a natural extension of the inflation methodology

described in [7]. Equation 2.2 is aware of the neighbours and the dimensions of the macro.

Both of these formulations are used by the proposed channel adjustment tool without iterative
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Figure 2.5: Computational representation of a macro cluster of configuration shown in figure
2.2.

annealing techniques.

HCN =
MN × P
CDF

. (2.1)

V CN,L =
WN × P × (MN−1 + . . .+M1)

WN−1 × CDF
(2.2)

In above equations, MN corresponds to M pins of N th macro. P is the pitch of the tech-

nology node. CDF is channel division factor. WN corresponds to width of N th macro. HCN

and V CN,L are the horizontal and vertical channels of the N th macro while L is either 1 or 2

indicating left or right vertical channel, respectively. Unlike in [7], the numerator of equation

2.1 and 2.2 is not divided by all available layers as all are not available for signal routing in

actual industrial designs. Spacing the channels using all available layers, impacts the synthesis

flow severely as evident from the results presented in chapter 3. Likewise, the CDF is provided

as an input to the tool.

2.3 Automation

A legal macro placement as shown in figure 2.2, is translated into a graph G(V,E) by the

tool, in which V represents the set of macros and E the set of channels as shown in figure

2.5a. The graph is partitioned to obtain subgraphs which represent macro clusters such as the

one shown in figure 3.2a. Channel spacing is performed in each subgraph using graph traversal

techniques which can be considered as a compaction problem. The location of each subgraph

is determined relative to the core by inspecting the orientation information of all the vertices

which is used to determine the direction of graph traversal (see figure 2.5b). Using the indegree

information, the vertices near to the chip boundary are identified and traversed till there are no

more neighbours in the given direction. During the vertical traversal, the horizontal channels

are spaced using equation 2.1 while equation 2.2 is applied to the space allocation of the vertical

channels during the succeeding horizontal traversal. The spacing constraints in terms of CDF
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Algorithm 1 Horizontal Channel Spacing Algorithm

Require: Legal Macro Placement (from EDA tool), CDF
Ensure: Altered Macro Placement
1: procedure MacroToGraph(G(V,E))
2: MacroGraph← ∅
3: for each v ∈ V do
4: N ← findNeighbors(v)
5: addVertex(v, MacroGraph)
6: for each n ∈ N do
7: addVertex(n, MacroGraph)
8: addEdge(n, v, MacroGraph)
9: end for
10: end for
11: return MacroGraph
12: end procedure
13: procedure ChannelSpaceV(MacroGraph, CDF )
14: MacroCluster ← partitionGraph(MacroGraph)
15: for each m ∈MacroCluster do
16: if inDegreeVert(m) = 0 then
17: start← m
18: updateCoord(start, 0, MacroGraph)
19: N ← findVertNeighborBFS(start)
20: for each n ∈ N do
21: updateCoord(n, HCN , MacroGraph)
22: end for
23: end if
24: end for
25: return MacroGraph
26: end procedure

can be provided to the tool by the user. All macro clusters can be spaced with the same

or different spacing constraints depending on the design. The pseudo code for the horizontal

channel spacing is listed in algorithm 1. The algorithm for vertical channel spacing is similar to

algorithm 1, but uses equation 2.2 for spacing instead. The time complexity of the algorithm,

hence the tool, is dominated by neighbourhood search which is O(V 2). The time complexity of

the channel spacing is O(V +E). Also, the proposed tool is generic and can be integrated with

the flow developed with any commercial EDA tool.



Chapter 3

Results

Two designs, Design-A and Design-B (figures 3.1a and 3.1b), are used as a case study. The

designs statistics are given in table 3.1. Design-A had a large number of movable macros while

Design-B had a complexity impacting its closure during its tape out. Since the designs are

already taped out, for a fair comparison, the channel between the movable macros is adjusted.

Each of the designs and its iterations with reduced channel spacing in terms of CDF is pushed

through the physical synthesis flow using the latest iteration of the state-of-the-art EDA tool

from Cadence. The recovered resources from the channels are either re-allocated to the core area

or to the neighbouring block resulting in area reduction. The results presented in this chapter

involve resource re-allocation from the channels to the core area while the results involving

area reduction are presented in appendix C. Due to highly uncorrelated dimensions of the

macros in the designs, initially, the macro clusters are individually handled and all clusters are

spaced using a common CDF . The runtimes of each stage along with the quality of results

(see appendix B) are recorded from the reports generated by the EDA tool and presented. In

each of the results, CDF=1 corresponds to taped out version. CDF is varied from 2 (maximal

resource in channel) to 8 (minimal resources) as shown in figure 3.2.

Figures 3.3a and 3.3b show the quality of results along with variations induced due to

different channel spacing (in terms of CDF ) in the design after placement and global routing.

In Design-A, the overall core area utilization (see appendix B.1 for further information) reduces

by 13.3% while for Design-B it reduces by 6.02% when compared to their taped out versions

with minimal (CDF=8) channel spacing. The average channel congestion increases as channels

are constrained and vary by a maximum of 35.8% and 7.5% for Design-A and Design-B when

CDF=1 and CDF=8 are compared, respectively. The impact of congestion within the channels

due to the variations in CDF are presented in appendix D. The overflow (see appendix B.2

Design Cells Movable Fixed Nets Channels
(M) Macros Macros (M)

A 3 131 94 3 736
B 3 65 140 3 569

Table 3.1: Design statistics

9
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(a) Design-A (b) Design-B

Figure 3.1: Floor-plans of designs used for case study.

(a) CDF=1 (taped-out) (b) CDF=2

(c) CDF=4 (d) CDF=6

Figure 3.2: A macro cluster of Design-A. Channels are adjusted using the tool.
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Figure 3.3: Core Area Utilization and Average Channel Congestion vs CDF .
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Figure 3.4: Overflow (Horizontal and Vertical) vs CDF .

for further information) metrics are shown in figures 3.4a and 3.4b. In Design-A, the overflow

(horizontal and vertical) show a decreasing trend till CDF=6 post which values increases. A

similar trend is observed in Design-B till CDF=4. In either case at CDF=4, the overflow

reduces by 42.8% and 75% for horizontal and vertical directions while it reduces by 228% and

235% for the same in Design-B which indicates that the design can achieve faster closure in

terms of routing.

Figures 3.5a and 3.5b show the variations in setup and hold timings in terms of total

negative slack along with violating paths (see appendix B.3 for further information) for each.

The results for setup and hold timings for the designs were obtained after clock tree synthesis

and routing respectively. At CDF=4, Design-A achieves an overall reduction in total negative

slack from the hold perspective by 21.6% along with 10% increase in violating paths when

compared to taped out version. For Design-B, hold timings worsen by 4.4% along with 24%

reduction in violating paths. In Design-A, the total negative slack for setup observe a dip of

2.9% at CDF=4 with 11.6% reduction in violating paths. In Design-B, the variations in total

negative slack and violating paths for setup timings are negligible. Improvement of these values

can be attributed to the overall decrease in core utilization resulting in availability of additional

resources for buffers insertions to meet the timing constraints of the design. As channels are

further constrained i.e. the resources within the channels are reduced, the timing worsens either

in terms of total negative slack, violating paths or both.

Figures 3.6a and 3.6b, show the total design rule checks (see appendix B.4 for further

information) for the designs. It decreases for CDF ≤ 4 as core utilization decreases and

then increases within channels. The wire length of the designs are shown in figure 3.7. When

compared to taped out version, Design-A at CDF=4 achieves a reduction of 59% in design rule

checks while wire length increases by 3%. Similar results are seen for Design-B. At CDF=4,

Design-B achieves an overall reduction of design rule checks by a factor of 150 with a wire length

improvement of 4%. In either case, lower number of design rule checks directly translates to a

reduced effort required to achieve closure of the design.

Figures 3.8a and 3.8b, show the variation of runtimes as channel spaces are reduced. For
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Figure 3.9: Overall synthesis effort vs CDF

Design-A, the runtimes are minimum at CDF=2 but the quality of results in terms of timing

and design rule checks are not optimal. At CDF=4, the runtimes are higher by 10.1% but

with better quality of results. For Design-B, the minimum runtimes are observed at CDF=4

along with better quality of results.

Overall at CDF=4, Design-A achieves an reduction of 35% in turn-around-time, while

Design-B achieves an reduction of 124% with better quality of results when compared to their

taped out versions (CDF=1). In order to visualize the optimum, all results are added and

normalized. Since the data is derived from the quality of results and runtimes of the EDA

tool of the design at each stage of physical synthesis flow, the data can be regarded as the

total combined effort required by the EDA tool as well as the design engineer to achieve design

closure. Since the change in effort is realized by optimizing the channel spaces between the

macros, it can be concluded that at the optimal channel spacing (CDF=4), the overall effort

required by the EDA tool and design engineer is minimal thereby achieving faster design closure.

The optimum can be clearly observed from figure 3.9a for Design-A and from figure 3.9b for

Design-B.



Chapter 4

Conclusion and Future Work

A tool has been proposed to adjust the channel space among macros. The channels are

spaced based on the relative location of a macro within a cluster, its orientation and number of

pins. Formulations used for macro inflation were extended, developed and applied to space the

channels in the design. Based on the experimentation on two taped out designs, it was found

that a channel spacing with CDF=4 provided an optimum condition for the entire physical

synthesis flow. The total effort required by the EDA tool or the design engineer to achieve

design closure, was observed to be reduced by 34% for Design-A and by a factor of 13 for

Design-B. It was also found that abutting the macros to achieve maximal core area has a

detrimental effect on the synthesis.

The work presented here is a proof of concept. The experimentations were conducted using

the latest iteration of the EDA tool by Cadence using a basic design flow of placement, clock

tree synthesis, and routing. Since, the industry uses different tools and different design flows

at different stages of the design, one of the possible future work is to validate the observations

using a mix of different EDA tools in varied designs.

14
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Appendix A

Preliminaries

A.1 Resources

The problem of placement and routing corresponds to the mapping of cells from the struc-

tural netlist derived from logic synthesis onto a physical die and to embed physical wires to

replace their logical connectivity, respectively. From the computational perspective, the prob-

lem space within which the solution for placement and routing is found is the actual physical

partition of the SoC. Hence, the chip is composed of resources termed as placement and routing

resources, which are explained below:

• Placement Resources:

A chip or its partition is composed of rows which are placement resources. The height of

the rows (figure A.1b) is same as the height of the standard cell (figure A.1a) in a given

technology node/library. Rows are composed of smaller units called sites.
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(b) Rows and sites

Figure A.1: Placement resources

A standard cell can occupy a row and an integral number of sites depending upon its

functionality and characteristics (figure A.2).
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Figure A.2: Typical cell placement

• Routing Resources:

Rows are overlaid with tracks (figure A.3a and figure A.3b), which act as guide for the

router to embed the physical wire. The width of the track is based on the pitch or line2via

spacing [12, 13] of the technology node.
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Figure A.3: Routing resources

Today’s router are based on the preferred direction routing model [8, 13] and designs are

composed of multiple layers with alternating preferred direction such as VHV or HVH.

This superposition of layers constitutes a routing grid (figure A.4) with an intersection of

a horizontal and vertical track constituting a routing cell. Switching between the routing

layers is possible by the usage of vias.
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Wire Pitch

Figure A.4: Routing grid

Usually, a chip or its partition may contain thousands of rows and equivalent tracks along

with multiple layers for routing. For example, in the 28nm technology node (standard cell

height is 0.8µm), a square partition of height 500µm may have 625 rows with 5000 horizontal

and vertical tracks alternating with its multiple layers.

A.2 Floor-plan

Floor-planning is the first step of the physical synthesis flow. In this stage the chip dimen-

sions are determined based on the target utilization and instance in the design. If the design

is hierarchical, the dimensions are determined from the top level. In hierarchical flow, the par-

tition area is fixed and cannot be changed during the entire flow, hence, the designs are called

as fixed-die designs. Floor-planning involves pad placement, macro placement and power grid

definitions with routing (special nets). Once these tasks are performed, the core area, or the

area where all the functional and critical logic resides, is defined. Core area utilization is one of

the important quality indicators that can be used to assess the quality of the floor-plan. Higher

utilization might indicate a congested design which might impact timing and routing closure.

The quality of core area is defined by the macro placement. Usually, the macros are stacked

along the periphery of the die so as to maximize the core area with minimal discontinuity and

maximize the utilization. Continuity of core area refers to the availability of placement and

routing resources without any blockage (for routing and placement). Also a core area of 1:1 is

desired, but not necessarily available. Continuous resource availability depends on macros and

their placement which are discussed in the next section. A typical floor-plan is shown in figure

A.5 which is composed of rows. The placement and routing resources can be seen in further

detail in figures A.1a, A.1b, A.3a, A.3b and A.4.
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Figure A.5: A typical floor-plan

Cell type Height Width Placement Resources Routing Resources
(µm) (µm) (Rows:Site) (Routing Cells)

Standard Cell 0.8 1 1:1 80
Macro 150 300 187:56100 18x106

Table A.1: Disparity in resource consumption between a macro and a standard cell

A.2.1 Macros

A macro is a rectilinear object (but most often rectangular) which is constrained by orien-

tation in a given technology node and consume a significant amount of placement and routing

resources compared to a standard cell. Also, due to macro-porosity, they block routing resource

up to certain layers. For example, in the 28nm node, macro blocks the routing resources up to

4th layer of possible 8 layers. To quantify the disparity in the resource consumption refer table

A.1 (standard height SH is 0.8µm and site width assumed is 1µm).

A.2.2 Core Area

Core area, as mentioned before, is the central area in which all the functional logic is placed.

Due to the resource disparity that exists between macros and standard cells, it is preferred

not to have macros placed in the core area as it would lead to discontinuity in the problem

space constraining the tools finding the solution for placement, routing and their optimization

routines impacting their run-times and the resulting quality of results. In order to avoid a

discontinuous core area, usually as a standard industry practice, the macros are placed along

the periphery of the chip. Figure A.6a depicts a floor-plan with macro stacked along periphery

while maintaining a continuous core area while figure A.6b depicts a discontinuity in core area

due to macro placement within the desired core area.
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Figure A.6: Different types of core area

Once the core area is defined, the utilization value is used as an indicator for assessing the

quality of floor-plan as well as to predict its impact on the downstream stages in the physical

synthesis flow.
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Quality Indicators

The quality of the design is analysed in each stage of physical synthesis flow and are used

to address issues that could impact design closure. At the floor-plan stage, core area utilization

or density is used as the quality indicator. Once placement is performed, congestion in the core

area as well in the channel between macros using overflow metrics are used to assess the quality.

After clock tree synthesis, timing slack and number of paths responsible for timing violations

are used as quality indicators. After routing, the primary quality indicators are timing slack

(hold) and the number of violating paths along with design rule checks (DRC).

B.1 Core Area Utilization

It is the ratio of occupied sites (by standard cells) in the core area to that of total available

sites (in the core area). Usually, a lower core area utilization directly correlates with faster

runtimes with better quality of results in terms of timing and routing as more resources are

available for the EDA tool for achieving better design convergence. Figure B.1a depicts a core

area which is less utilized while figure B.1b depicts high utilization of core area.

Occupied Site

Empty Site

(a) Low core utilization

Occupied Site

Empty Site

(b) High core utilization

Figure B.1: Different core area utilizations

B.2 Congestion and Overflow

Congestion is one of the primary factors that is addressed after placement and its estimate

is obtained after performing global routing. During the global routing process, the entire chip

22
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is divided into grid cells, g-cells or bins which are composed of tens of tracks [8, 13, 14]. For

a given bin, hence, for the entire design, congestion is defined as a ratio of required routing

resources (demand) to that of available routing resources (supply) while overflow is the positive

difference between the demand and supply. A design is said to be congested when the amount

of routing resource required exceeds the available routing resources. A congestion map is

generated using different parameters such as total track overflow, maximum congestion and the

number of congested bins [14]. Usually, core area is devoid of channels. Channels usually exist

between the macros and have very limited placement and routing resources. The nets from the

macros are routed across these channels and buffers are placed to meet the timing constraints

as the placement resources are reserved for buffers using placement blockages. High congestion

within channels would impact routing closure while deteriorating timing. It is always desired

to minimize the congestion within the channels.

B.3 Slack and Path Violations

Timing slacks are defined as the difference between arrival and required times [8] of clock

signals for a given register to register path. Timing slacks are categorized as positive and

negative slack.

• Positive Slack: For any given timing path, slack is always desired to be positive. It

indicates that the timing constraints for the path has been met and is better by the

margin indicated by the absolute value of the positive slack.

• Negative Slack: It is not desired and it indicates that the timing constraints for the

timing path has not been met and is worse by the margin indicated by the absolute value

of the negative slack.

Usually, during the physical synthesis flow, the timing paths with negative slacks need to

be fixed. The total negative slack or TNS is an aggregate of all the negative slacks of those

paths which have violated the imposed timing constraint. These violating paths are fixed by

the design engineers using the EDA tools. Consequently, a lower number of violating paths can

be used as an indicator for the better quality of the design.

B.4 Design Rule Violations

The number of design rule violations that need to be fixed are one of the primary quality

indicators for a design after routing is completed. Design rules are imposed by the foundries

for the manufacturability of the chip. Some of the design rules are spacing rules, minimum

width rule, via rule etc. Usually, the EDA tools are capable of removing the design rule

violations automatically by performing local repairs and the remaining violations which exist

after automatic repair need manual intervention which impacts the design closure.
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Area Reduction

The results presented in chapter 3 involved reallocation of placement and routing resources

from the channels to the core area as CDF was reduced. In area reduction trails (emulating

block to block resource reallocation), all the channels are spaced with CDF=4 and the core area

utilization is maintained similar to the taped out version (CDF=1) as the recovered resources

are not allocated to the core area, instead, the equivalent amount of placement and routing

resources are reserved by the usage of placement and routing blockages for all layers in the

design at appropriate locations. Figure C.1b shows the area reduced (indicated by red regions)

version of Design-A with channels spaced using CDF=4.

(a) CDF=1 with no area reduction (b) CDF=4 with area reduction (red regions)

Figure C.1: Different versions of Design-A

Of the two designs presented in chapter 3, Design-A achieved routing closure as the overflow

was manageable by the tool while Design-B did not which can be attributed to heavy congestion

(figure 3.4b) and overflow as the utilization was maintained similar to that of taped out version

with reduced resources. The results for Design-A are tabulated in table C.1.

24
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Design Version Placement Clock Tree Optimization Routing

Runtime Runtime Runtime

(Hours) (Hours) (Hours)

Taped Out (CDF=1) 1.282 1.368 1.046

Optimized (CDF=4) 0.76 0.919 0.857

Area Reduced (with CDF=4) 1 1 1

Table C.1: Normalized runtime comparisons of different versions of Design-A

The overall area of Design-A was reduced by 4.1% by the usage of placement and routing

blockages (see figure C.1b). Compared to the taped out (CDF=1) version of Design-A, the

version with reduced area and channels spaced using CDF=4 achieved placement with run-

times reduced by 28%, clock tree optimization with run-times reduced by 36.81% and routing

with run-times reduced by 4.6%.
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Impact within Channels

The resources within the channels among the macros are usually reserved for buffer insertion

and for routing. Three types of net namely power/ground (P/G), clock and signal nets are

routed in the given order. P/G nets are routed in floor-plan stage, clock nets are routed in

clock tree synthesis stage while signal nets are routed in routing stage of the physical synthesis

flow. Metal M1, M2, M7 and M8 were used for P/G routing for Design-A and Design-B.

Also, for macros, P/G routing and clock routing used metal four (horizontal) and metal five

(vertical).

Minimization of channel spaces results in reduced resources within layers one to four which

results in increased congestion while timing deteriorates. Figure 3.3 and 3.5 depict the afore-

mentioned trend as CDF is varied from two to eight. A congested bin lacks the required re-

source for routing which results in incomplete routing, opens or shorts [14] which are removed

by performing localized repair using the EDA tool along with manual intervention impacting

the design closure. The variations in the number of shorts (represented as black crosses) in the

design with CDF is shown in figures D.1 and D.2 for Design-A and figures D.3 and D.4 for

Design-B. In either case the number of shorts is observed to be minimum within channels when

channel spacing is optimum i.e. CDF=4 (see figure D.2a and D.4a).
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(a) CDF=1

(b) CDF=2

Figure D.1: Shorts (black crosses) within channels as CDF is varied in Design-A - I
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(a) CDF=4

(b) CDF=6

Figure D.2: Shorts (black crosses) within channels as CDF is varied in Design-A - II
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(a) CDF=1

(b) CDF=2

Figure D.3: Shorts (black crosses) within channels as CDF is varied in Design-B - I
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(a) CDF=4

(b) CDF=6

Figure D.4: Shorts (black crosses) within channels as CDF is varied in Design-B - II
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