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Abstract
In this thesis, we study the d-dimensional rectilinear drawings of d-uniform hypergraphs

in which each hyperedge contains exactly d vertices. A d-dimensional rectilinear drawing of
a d-uniform hypergraph is a drawing of the hypergraph in Rd when its vertices are placed
as points in general position and its hyperedges are drawn as the convex hulls of the cor-
responding d points. In such a drawing, a pair of hyperedges forms a crossing if they are
vertex disjoint and contain a common point in their relative interiors. A special kind of
d-dimensional rectilinear drawing of a d-uniform hypergraph is known as a d-dimensional
convex drawing of it when its vertices are placed as points in general as well as in convex
position in Rd. The d-dimensional rectilinear crossing number of a d-uniform hypergraph
is the minimum number of crossing pairs of hyperedges among all d-dimensional rectilinear
drawings of it. Similarly, the d-dimensional convex crossing number of a d-uniform hyper-
graph is the minimum number of crossing pairs of hyperedges among all d-dimensional convex
drawings of it.

We study two types of uniform hypergraphs in this thesis, namely, the complete d-uniform
hypergraphs and the complete balanced d-partite d-uniform hypergraphs. We summarise the
main results of this thesis as follows.

• We prove that the d-dimensional rectilinear crossing number of a complete d-uniform

hypergraph having n vertices is Ω(2d
√
d)

(
n

2d

)
.

• We prove that any 3-dimensional convex drawing of a complete 3-uniform hypergraph

with n vertices contains 3

(
n

6

)
crossing pairs of hyperedges.

• We prove that there exist Θ
(
4d/

√
d
)( n

2d

)
crossing pairs of hyperedges in the d-dimensional

rectilinear drawing of a complete d-uniform hypergraph having n vertices when all its
vertices are placed over the d-dimensional moment curve.

• We prove that the d-dimensional rectilinear crossing number of a complete balanced
d-partite d-uniform hypergraph having nd vertices is Ω

(
2d
)
(n/2)d ((n− 1)/2)d.

We also study the properties of different types of d-dimensional rectilinear drawings and
d-dimensional convex drawings of the complete d-uniform hypergraph having 2d vertices by
exploiting its relations with convex polytopes and k-sets.
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Chapter 1

Introduction

A hypergraph H = (V,E) is a combinatorial object where V denotes the set of vertices

and E ⊂ 2V denotes the set of hyperedges. Hypergraphs are extensively studied in the

literature [13]. A hypergraph is called uniform if each hyperedge contains an equal number

of vertices. A hypergraph is said to be d-uniform if each of its hyperedges contains d vertices.

In particular, a graph is a 2-uniform hypergraph, i.e., each hyperedge contains two vertices.

As a result, uniform hypergraphs are natural generalizations of graphs. Many combinatorial

problems on graphs are generalized for uniform hypergraphs. For example, the 2-colorability

of a uniform hypergraph is a generalization of the graph colorability problem and has been

widely studied in the literature [12, 49]. Füredi [25], Alon et al. [6] studied the problem of

matching in uniform hypergraphs. Lehel [39] studied the edge covering problem in uniform

hypergraphs. Hypergraphs are also used to model various practical problems in different

domains, e.g., RDBMS [24] and social networks [40].

Graph drawing is also an active area of research for many decades, with applications

in various fields of computer science, e.g., CAD, database design and circuit schematics

[33, 53]. Dey et al. [18] generalised the concept of graph drawing to the drawing of uniform

hypergraphs. In this thesis, we address the problem of drawing a uniform hypergraph. Let us

introduce some basic notations that are used throughout the thesis. A hypergraph H = (V,E)

is d-uniform if each of its hyperedges contains d vertices. A complete d-uniform hypergraph

with n vertices, denoted by Kd
n, contains

(
n

d

)
hyperedges. A d-uniform hypergraph H =

(V,E) is said to be d-partite if there exists a sequence < X1, X2, . . . , Xd > of disjoint sets

12
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such that V =
d⋃

i=1

Xi and E ⊆ X1 × X2 × . . . × Xd. The set Xi is called the ith part of

V . Such a d-partite d-uniform hypergraph is called balanced if each of the parts contains

an equal number of vertices. A d-uniform d-partite hypergraph H is said to be complete if

|E| = |X1 ×X2 × . . .×Xd|. In particular, let Kd
d×n′ denote the complete balanced d-partite

d-uniform hypergraph with n′ vertices in each part.

A good drawing of a graph is defined as a drawing of the graph in R2 such that its vertices

are placed as points in general position and its edges are drawn as simple continuous curves

(i.e., homeomorphic to a line segment) joining the corresponding two vertices. In such a

drawing of a graph, two edges are said to be crossing if they do not share a common vertex

and intersect each other at a point different from their vertices. The crossing number of a

graph G, denoted by cr(G), is defined as the minimum number of crossing pairs of edges

among all such good drawings of it. For a graph G with n vertices and m ≥ 4n edges, Erdős

et al. [21] conjectured that cr(G) ≥ cm3/n2 for some constant c > 0. Ajtai et al. [4] and

Leighton [38] independently proved the conjecture affirmatively and established a value of c

to be 1/64.

Let Km,n denote a complete bipartite graph having m vertices in one part and n vertices

in the other part. Let K1,m,n denote a complete tripartite graph having 1 vertex in the

first part, m vertices in the second part and n vertices in the last part. Finding the crossing

number of Km,n is also an active area for research. In 1944, Turan in his famous “brick factory

problem” asked for the crossing number of a complete bipartite graph [54]. Kleitman [36]

proved that cr(K6,n) = 6 bn/2c b(n− 1)/2c. Zarankiewicz [57] conjectured that cr(Km,n) =

bm/2c b(m− 1)/2c bn/2c b(n− 1)/2c and this number has been proven to be an upper bound

on cr(Km,n) [57]. The crossing numbers of some other special graphs have been widely studied

in the literature [16, 37]. For example, Gethnerand et al. [28] studied the crossing number of

balanced complete multipartite graphs. Ho [34] gave a lower bound on the crossing number

of K1,m,n. Glebsky et al. [29] studied the crossing number of cartesian product graphs. We

summarise the crossing numbers of a few special graphs in Table 1.1.

A rectilinear drawing of a graph is a good drawing of it where each edge is drawn as

a straight line segment connecting the two corresponding vertices. The rectilinear crossing

number of a graph G, denoted by cr(G), is defined as the minimum number of crossing
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Graph Crossing Number Reference
K1,3,n 2 bn/2c b(n− 1)/2c+ bn/2c [9]
K1,4,n n(n− 1) [35]
K2,3,n 4 bn/2c b(n− 1)/2c+ n [9]
K6,n 6 bn/2c b(n− 1)/2c [36]
K11 100 [48]

Table 1.1

pairs of edges among all rectilinear drawings of G. The currently best-known lower and

upper bounds on the rectilinear crossing number of a complete graph with n vertices are

0.37997

(
n

4

)
+ Θ(n3) and 0.380449186

(
n

4

)
+ Θ(n3), respectively [10, 1]. The exact values

of rectilinear crossing numbers of complete graphs with n vertices are known for n ≤ 27

[11]. The rectilinear crossing numbers for a few special graphs have also been studied in the

literature [14].

A convex drawing of a graph is a rectilinear drawing of it where all of its vertices are

placed as the vertices of a convex polygon. The convex crossing number of a graph G,

denoted by cr∗(G), is defined as the minimum number of crossing pairs of edges among all

such convex drawings of it. Shahrokhi et al. [50] studied the convex crossing number problem

for graphs. They established an upper bound on cr∗(G) with respect to cr(G). In particular,

they proved that cr∗(G) = O((cr(G) +
∑

v∈V d2v) log
2 n), where V is the set of n vertices of

G and dv denotes the degree of the vertex v.

Dey et al. [18] defined a d-dimensional geometric d-hypergraph H = (V,E) as a collection

of (d− 1)-simplices, induced by some d-tuples of a vertex set in general position in Rd. Simi-

larly, Anshu et al. [8] defined a d-dimensional rectilinear drawing of a d-uniform hypergraph

H as a drawing of it in Rd where its vertices are placed as points in general position in Rd

(no d+1 points on a (d − 1)-dimensional hyperplane) and each hyperedge is represented as

a convex hull of the d corresponding vertices. In a d-dimensional rectilinear drawing of a

d-uniform hypergraph, a pair of hyperedges is said to have an intersection if they contain a

common point in their relative interiors [18].

The convex hull of a finite point set P is denoted by Conv(P ) and the affine hull of P

is denoted by Aff(P ). The convex hulls Conv(P ) and Conv(P ′) of two finite point sets P

and P ′ intersect if they contain a common point in their relative interiors. The convex hulls
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Conv(P ) and Conv(P ′) cross if they are vertex disjoint and they intersect.

In a d-dimensional rectilinear drawing of a d-uniform hypergraph, a pair of hyperedges is

said to be crossing if the hyperedges are vertex disjoint and contain a common point in their

relative interiors [8, 18]. For u and w in the range 2 ≤ u,w ≤ d, a (u− 1)-simplex Conv(U)

spanned by a point set U containing u points and a (w − 1)-simplex Conv(W ) spanned by

a point set W containing w points (when these u + w points are in general position in Rd)

cross if Conv(U) and Conv(W ) intersect, and U ∩W = ∅ [18].

Figure 1.1: (left) Crossing simplices in R3, (right) Intersecting simplices in R3

The d-dimensional rectilinear crossing number of a d-uniform hypergraph H is defined

as the minimum number of crossing pairs of hyperedges among all d-dimensional rectilinear

drawings of H and it is denoted by crd(H) [8]. Dey et al. [17] proved the following results

about the 3-dimensional geometric 3-hypergraph.

Lemma 1. [17] (i) A 3-dimensional geometric 3-hypergraph can have at most n2 2-simplices

if there does not exist an intersecting pair of 2-simplices in the collection.

(ii) A 3-dimensional geometric 3-hypergraph can have at most 3n2

2
2-simplices if there does

not exist a crossing pair of 2-simplices in the collection.

Later, Dey et al. [18] proved that a d-dimensional geometric d-hypergraph can have at

most O(nd−1) (d−1)-simplices if it does not have a crossing pair of (d−1)-simplices induced

by n vertices. Anshu et al. [8] established the first non-trivial lower bound on crd(K
d
n) for

n ≥ 2d. In particular, they established that crd(K
d
2d) = Ω

(
2d log d√

d

)
. Since the set of

crossing pairs of hyperedges due to a particular set of 2d vertices is disjoint from the set of

crossing pairs of hyperedges due to another set of 2d vertices, it follows from this result that
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crd(K
d
n) = Ω

(
2d log d√

d

)(
n

2d

)
for n ≥ 2d. They also proved that cr4(K

4
8) = 4. Note that

we use log d to denote log2 d in this thesis.

This thesis contains results about the d-dimensional rectilinear drawings of d-uniform

hypergraphs. Unless specified otherwise, the dimension d used throughout the thesis is a

sufficiently large integer even though several statements are true for smaller values of d as

well. In Chapter 4, we improve the lower bound on crd(K
d
2d). In Chapter 5, we investigate

the d-dimensional convex drawings of Kd
n. We also establish the first non-trivial lower bound

on crd
(
Kd

d×n

)
in Chapter 6. Let us introduce some basic definitions and theorems before

discussing the main results of this thesis.

Let V = {v1, v2, . . . , v2d} be the set of points corresponding to the set of vertices in a

d-dimensional rectilinear drawing of the hypergraph Kd
2d. The points in V are said to be

in convex position if there does not exist any point vi ∈ V (for some 1 ≤ i ≤ 2d) such

that vi can be expressed as a convex combination of the points in V \ {vi}. We define a

d-dimensional convex drawing of a d-uniform hypergraph H as a d-dimensional rectilinear

drawing of H such that the vertices of H are placed as points in general, as well as in

convex position. The d-dimensional convex crossing number of H, denoted by cr∗d(H), is the

minimum number of crossing pairs of hyperedges among all d-dimensional convex drawings

of H. Note that the convex hull of the vertices of H in a d-dimensional convex drawing

of it forms a d-dimensional convex polytope. All d-dimensional polytopes considered in this

thesis are convex polytopes with vertices placed in general position in Rd. The d-dimensional

moment curve is defined as {(a, a2, . . . , ad) : a ∈ R}. Let us define the ordering between two

points pi = (ai, (ai)
2, . . . , (ai)

d) and pj = (aj, (aj)
2, . . . , (aj)

d) on the d-dimensional moment

curve by pi ≺ pj (pi precedes pj) if ai < aj. A d-dimensional convex polytope is said to

be t-neighborly polytope if each subset of its vertex set having at most t vertices forms a

face of the polytope. A bd/2c-neighborly polytope is called neighborly polytope since any

d-dimensional convex polytope can be at most bd/2c-neighborly unless it is a d-simplex. The

d-dimensional cyclic polytope is a special kind of d-dimensional neighborly polytope where

all of its vertices are placed on the d-dimensional moment curve.

We summarize the main contributions of this thesis in Section 1.1. In order to prove

them, we use a few theorems and techniques from combinatorial geometry. We introduce
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those theorems and techniques briefly.

Ham-Sandwich Theorem for measures. [44] Let µ1, µ2, . . . , µd be d finite Borel measures

in Rd such that any hyperplane has measure 0 for each µi. There exists a hyperplane h in Rd

that bisects each of these d measures, i.e., µi(h
+) = µi(h

−) =
µi(Rd)

2
for each i in the range

1 ≤ i ≤ d, where h+ and h− denote the open half-spaces created by h.

The Ham-Sandwich theorem for measures can be proved using the Borsuk-Ulam theorem.

We now state the Ham-Sandwich theorem for finite point sets and refer to it as the

Ham-Sandwich theorem in this thesis.

Ham-Sandwich Theorem. [5, 43] There exists a (d− 1)-dimensional hyperplane h which

simultaneously bisects d finite point sets P1, P2, . . . , Pd in Rd, such that each of the open

half-spaces created by h contains at most
⌊
|Pi|
2

⌋
points for each of the sets Pi, 1 ≤ i ≤ d.

The Ham-Sandwich theorem is a direct consequence of the Ham-Sandwich theorem for

measures. We replace each point in Pi by a ball of very small radius and apply the Ham-

Sandwich theorem for measures to get the desired result.

Colored Tverberg Theorem with restricted dimensions. [44, 55] Let {C1, C2, . . . , Ck+1}

be a collection of k+1 disjoint finite point sets in Rd. Each of these sets is assumed to be of

cardinality at least 2r − 1, where r is a prime integer satisfying the inequality r(d− k) ≤ d.

Then, there exist r disjoint sets S1, S2, . . . , Sr such that Si ⊆
⋃k+1

j=1 Cj,
⋂r

i=1 Conv(Si) 6= ∅

and |Si ∩ Cj| = 1 for all i and j satisfying 1 ≤ i ≤ r and 1 ≤ j ≤ k + 1.

Throughout this thesis, we use the Gale transformation extensively. The Gale transfor-

mation is a technique to convert a point sequence to a vector sequence in a lower dimension.

In Chapter 2, we discuss it in detail. We also use k-set and related concepts extensively. We

discuss these in Chapter 3.
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1.1 Our Contributions

In Chapter 4, we improve the lower bound on crd(K
d
2d) to Ω(2d) from Ω

(
2d log d√

d

)
that was

proved in [8]. We use the Gale transformation and the Ham-Sandwich theorem to improve

this lower bound. We further improve the lower bound on crd(K
d
2d) to Ω(2d

√
log d) and then

to Ω(2d
√
d) by using the properties of k-sets and balanced lines, respectively.

Theorem 1. The number of crossing pairs of hyperedges in a d-dimensional rectilinear

drawing of Kd
2d is Ω(2dd3/2) if the vertices of Kd

2d are not in convex position.

Theorem 2. The d-dimensional rectilinear crossing number of a complete d-uniform hyper-

graph having 2d vertices is Ω(2d
√
d), i.e., crd(Kd

2d) = Ω(2d
√
d).

In Chapter 5, we investigate a special d-dimensional convex drawing of Kd
2d where all of

its vertices are placed on the d-dimensional moment curve. For such a d-dimensional convex

drawing of Kd
2d, we count the exact number of crossing pairs of hyperedges in it. This number

is denoted by cmd . We also prove that the 3-dimensional convex crossing number of K3
6 is 3.

We then investigate some special types of d-dimensional rectilinear drawings of Kd
2d. We

summarize the results obtained in Chapter 5 here.

Theorem 3. Let cmd be the number of crossing pairs of hyperedges in a d-dimensional convex

drawing of Kd
2d where all of its vertices are placed on the d-dimensional moment curve. The

value of cmd is

cmd =


(
2d− 1

d− 1

)
−

d
2∑

i=1

(
d

i

)(
d− 1

i− 1

)
if d is even(

2d− 1

d− 1

)
− 1−

⌊
d
2

⌋∑
i=1

(
d− 1

i

)(
d

i

)
if d is odd

= Θ

(
4d√
d

)

Theorem 4. The number of crossing pairs of hyperedges in a 3-dimensional rectilinear

drawing of K3
6 is 3 when all the vertices of K3

6 are in convex as well as general position in

R3.
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Theorem 5. For any constant t ≥ 1 independent of d, the number of crossing pairs of

hyperedges in a d-dimensional rectilinear drawing of Kd
2d is Ω(2dd3/2) if the vertices of Kd

2d

are placed as the vertices of a d-dimensional t-neighborly polytope that is not (t+1)-neighborly.

Theorem 6. For any constant t′ ≥ 0 independent of d, the number of crossing pairs of

hyperedges in a d-dimensional rectilinear drawing of Kd
2d is Ω(2dd5/2) if the vertices of Kd

2d

are placed as the vertices of a d-dimensional (bd/2c − t′)-neighborly polytope.

In Chapter 6, we deal with a generalized version of the rectilinear crossing number problem

for bipartite graphs. We investigate the d-dimensional rectilinear drawing of the complete

balanced d-partite d-uniform hypergraph with nd vertices. Using Colored Tverberg Theorem

with restricted dimensions, we first prove that crd
(
Kd

d×n

)
= Ω

(
(8/3)d/2

)
(n/2)d ((n− 1)/2)d

for n ≥ 3. By using the Gale transformation and the Ham-Sandwich theorem, we then

improve this bound to Ω
(
2d
)
(n/2)d ((n− 1)/2)d for n ≥ 3. In summary, we prove the

following.

Theorem 7. For n ≥ 3, crd
(
Kd

d×n

)
= Ω

(
2d
)
(n/2)d ((n− 1)/2)d.

In Chapter 7, we summarize the results in this thesis and discuss some open problems.

1.2 Organization of the Thesis

The thesis is organised as follows.

• Introduction

We survey the literature on the rectilinear drawings of graphs in a plane. Thereafter, we

mention that the concept of rectilinear drawings of graphs in a plane can be generalized

to the d-dimensional rectilinear drawings of d-uniform hypergraphs. We then survey the

literature on the d-dimensional rectilinear drawings of d-uniform hypergraphs. Finally,

we define the problems that are studied in this thesis and briefly discuss the results

obtained by us.
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• Gale Transformation

We use Gale transformation and its properties for the proofs in this thesis. In Chapter 2,

we study Gale transformation in detail. In particular, we mention the properties of a

Gale transform of a point set and discuss their proofs. These properties are well-known

but their proofs are not written in detail elsewhere as per our knowledge.

• Balanced Lines, j-Facets and k-Sets

We use the concepts of balanced lines, j-facets and k-sets to obtain the results of this

thesis. First, we study the concepts of j-edges and k-sets of planar point sets and

discuss the relation between them in Observation 1. The proof of Observation 1 is

well-known but we produce the proof in the thesis for the sake of completeness. We

then discuss the concept of a balanced line and prove Observation 2 which is used

later. Finally, we discuss the concepts of j-facets and k-sets of a point set in R3 and

also discuss their properties in Observation 3, Observation 4 and Observation 5 that

are used later in the thesis.

• Rectilinear Crossing Number of Complete d-Uniform Hypergraphs

In this chapter, we first reproduce the results obtained by Anshu et al. [8]. We then

improve the bound obtained by Anshu et al. [8] by proving that the d-dimensional

rectilinear crossing number of a complete d-uniform hypergraph with 2d vertices is

Ω(2d). In Section 4.3, we prove Theorem 1. Subsequently, we improve the lower bound

on the d-dimensional rectilinear crossing number of a complete d-uniform hypergraph

with 2d vertices to Ω(2d
√
log d). Finally, we prove Theorem 2 in this chapter.

• Convex Crossing Number of Complete d-Uniform Hypergraphs

In this chapter, we first reproduce the proof of Gale’s evenness criterion. We then

compute a Gale transform of d + 3 points on the d-dimensional moment curve. Using

these results, we prove a non-trivial lower bound on cmd . We then prove Theorem 3 and

Theorem 4. Finally, we prove Theorem 5 and Theorem 6 in Section 5.3.

• Rectilinear Crossings in Complete Balanced d-Partite d-Uniform Hyper-

graphs



21

In this chapter, we first prove a non-trivial lower bound on the d-dimensional rectilin-

ear crossing number of the complete balanced d-partite d-uniform hypergraph having

nd vertices by using the Colored Tverberg theorem with restricted dimensions. In the

subsequent section, we improve this lower bound by proving Theorem 7.

• Conclusions

In this chapter, we summarise the results of the thesis. We then state some open

problems.

1.3 List of Symbols

Kd
n A complete d-uniform hypergraph with n vertices

Kd
d×n′ A complete balanced d-partite d-uniform hypergraph with n′ vertices in each part

crd(H) The d-dimensional rectilinear crossing number of a d-uniform hypergraph H

Conv(P ) The convex hull of the point set P

Aff(P ) The affine hull of the point set P

cmd The number of crossing pairs of hyperedges in a d-dimensional convex drawing of

Kd
2d where all of its vertices are placed on the d-dimensional moment curve

D(P ) A Gale transform of the point set P

D(P ) An affine Gale diagram of the point set P

e′k(S) The number of k-sets of a planar point set S

E ′
j(S) The number of j-edges of a planar point set S

ek(S) The number of k-sets of a point set S in R3

Ej(S) The number of j-facets of a point set S in R3



Chapter 2

Gale Transformation

The Gale transformation is a useful technique to deal with the properties of high dimensional

point sets [43]. Consider a sequence of m > d + 1 points P = < p1, p2, . . . , pm > in Rd such

that the affine hull of the points is Rd. Let the ith point pi be represented as (xi
1, x

i
2, . . . , x

i
d).

To compute a Gale transform of P , let us consider the (d + 1)×m matrix M(P ) whose ith

column is
[
xi
1 xi

2 . . . xi
d 1

]T
.

M(P ) =



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1


Since there exists a set of d+1 points in P that is affinely independent, the rank of M(P )

is d+1. Therefore, the dimension of the null space of M(P ) is m−d−1. Let {(b11, b12, . . . , b1m),

(b21, b
2
2, . . . , b

2
m), . . . , (b

m−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m )} be a set of m − d − 1 vectors that spans

the null space of M(P ). A Gale transform D(P ) is the sequence of vectors < g1, g2, . . . , gm >

where gi = (b1i , b2i , . . . , bm−d−1
i ) for each i satisfying 1 ≤ i ≤ m. Note that D(P ) can also be

treated as a point sequence in Rm−d−1. We denote vectors and points as row vectors in this

thesis.

We define a linear separation of D(P ) to be a partition of D(P ) into two disjoint sets

of vectors D+(P ) and D−(P ) contained in the opposite open half-spaces created by a linear

22
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hyperplane (i.e., a hyperplane passing through the origin). A linear separation of D(P ) is

called proper if one of the sets among D+(P ) and D−(P ) contains
⌈m
2

⌉
vectors and the other

contains
⌊m
2

⌋
vectors. We list the following properties of D(P ). For the sake of completeness,

we mention the proofs of these properties.

Property 1. [43] Every set of m − d − 1 vectors in D(P ) spans Rm−d−1 if and only if the

points in P are in general position.

Proof. (⇒) Without loss of generality, let us assume that the first d+1 points in P are not in

general position. This implies that there exist real numbers µ1, µ2, . . . , µd+1, not all of them

zero, satisfying the following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1





µ1

...

µd+1

0
...

0


=


0

0
...

0

 (2.1)

It is evident from Equation 2.1 that the vector (µ1, µ2, . . . , µd+1, 0, 0, . . . , 0) lies in

the null space of the row space of M(P ). This implies that (µ1, µ2, . . . , µd+1, 0, 0, . . . , 0)

= α1(b
1
1, b

1
2, . . . , b

1
m) + α2(b

2
1, b

2
2, . . . , b

2
m) + . . . + αm−d−1 (bm−d−1

1 , bm−d−1
2 , . . . , bm−d−1

m ) for

some real numbers α1, α2, . . . , αm−d−1, not all of them zero. In other words, there exist α1,

α2, . . . , αm−d−1, not all of them zero, such that α1b
1
j + α2b

2
j + . . . + αm−d−1b

m−d−1
j = 0 for

j = d + 2, d + 3, . . . ,m. This shows that the last m − d − 1 vectors in D(P ) lie on the

hyperplane
m−d−1∑
i=1

αixi = 0. This implies that there exists a set of m− d− 1 vectors in D(P )

that does not span Rm−d−1, leading to a contradiction.

(⇐) Without loss of generality, let us assume that the first m − d − 1 vectors in D(P ),

i.e., (b11, b21, . . . , bm−d−1
1 ), (b12, b

2
2, . . . , b

m−d−1
2 ), . . . , (b1m−d−1, b

2
m−d−1, . . . , b

m−d−1
m−d−1) do not span

Rm−d−1.
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This implies that there exist real numbers λ1, λ2, . . . , λm−d−1, not all of them zero, such

that λ1(b
1
1, b

2
1, . . . , b

m−d−1
1 )+λ2(b

1
2, b

2
2, . . . , b

m−d−1
2 )+ . . .+λm−d−1(b

1
m−d−1, b

2
m−d−1, . . . , b

m−d−1
m−d−1) =

~0. Let us consider the vector (λ1, λ2, . . . , λm−d−1, λm−d = 0, . . . , λm = 0). It is easy to

see that λ1(b
1
1, b

2
1, . . . , b

m−d−1
1 ) +λ2(b

1
2, b

2
2, . . . , b

m−d−1
2 )+ . . .+ λm(b

1
m, b

2
m, . . . , b

m−d−1
m ) = ~0.

This implies that (λ1, λ2, . . . , λm) lies in the row space of M(P ). This further implies that

there exist real numbers α1, α2, . . . , αd+1, not all of them zero, such that the following linear

equations hold for each i satisfying 1 ≤ i ≤ m.

α1x
i
1 + α2x

i
2 + . . .+ αdx

i
d + αd+1 = λi

This implies that the last d+ 1 points in P , i.e., pm−d, pm−d+1, . . . , pm lie on the hyperplane

α1x1 + α2x2 + . . . + αdxd + αd+1 = 0. This further implies that the points in P are not in

general position, leading to a contradiction.

Property 2. [43] Consider two integers u and v satisfying 1 ≤ u, v ≤ d−1 and u+v+2 = m.

If the points in P are in general position in Rd, there exists a bijection between the crossing

pairs of u- and v-simplices formed by some points in P and the linear separations of D(P )

into D+(P ) and D−(P ) such that |D+(P )| = u+ 1 and |D−(P )| = v + 1.

Proof. Let σ be a u-simplex that crosses a v-simplex ν, such that 1 ≤ u ≤ d − 1, 1 ≤ v ≤

d − 1 and u + v + 2 = m. Without loss of generality, we assume that σ is spanned by

the first u + 1 points {p1, p2, . . . pu+1} of P and ν is spanned by the remaining v + 1 points

{pu+2, pu+3, . . . , pm} of P . As there exists a crossing between σ and ν, we know that there

exists a point p belonging to the relative interiors of both σ and ν. This implies that there

exist real numbers λk > 0, 1 ≤ k ≤ m, satisfying the following equations:

p =
u+1∑
i=1

λipi =
m∑

j=u+2

λjpj

u+1∑
i=1

λi =
m∑

j=u+2

λj = 1

Therefore, we obtain the following equation.
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x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1





λ1

...

λu+1

−λu+2

...

−λm


=


0

0
...

0

 (2.2)

It is evident from Equation 2.2 that the vector (λ1, λ2, . . . , λu+1, −λu+2, . . . , −λm) lies

in the null space of the row space of M(P ). This implies that (λ1, λ2, . . . , λu+1, −λu+2,

. . . ,−λm) = α1(b
1
1, b

1
2, . . . , b

1
m) + α2(b

2
1, b

2
2, . . . , b

2
m) + . . . + αm−d−1 (bm−d−1

1 , bm−d−1
2 , . . . ,

bm−d−1
m ) for some real numbers α1, α2, . . . , αm−d−1, not all of them zero. In other words, there

exist α1, α2, . . . , αm−d−1, not all of them zero, such that α1b
1
i+α2b

2
i+ . . .+ αm−d−1 b

m−d−1
i > 0

for i = 1, 2, . . . , u+ 1, and α1b
1
j + α2b

2
j + . . .+ αm−d−1b

m−d−1
j < 0 for j = u+ 2, u+ 3, . . . ,m.

This shows that the hyperplane
m−d−1∑
i=1

αixi = 0 separates the first u+1 vectors in D(P ) from

the remaining v + 1 vectors in it.

In the other direction, let us assume without loss of generality that the hyperplane

m−d−1∑
i=1

α′
ixi = 0

separates the first u + 1 vectors in D(P ) from the remaining v + 1 vectors. This implies

that there exists a vector (µ′
1, µ

′
2, . . . , µ

′
m) = α′

1(b
1
1, b

1
2, . . . , b

1
m) + α′

2(b
2
1, b

2
2, . . . , b

2
m) + . . .+

α′
m−d−1(b

m−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m ) such that the signs of µ′

i for 1 ≤ i ≤ u+ 1 are opposite

to the signs of µ′
j for u + 2 ≤ j ≤ m. Without loss of generality, let us assume that µ′

i > 0

for 1 ≤ i ≤ u + 1 and µ′
j < 0 for u + 2 ≤ j ≤ m. As this vector (µ′

1, µ
′
2, . . . , µ

′
m) lies in the

null space of the row space of M(P ), it satisfies the following equation.
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x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1




µ′
1

µ′
2

...

µ′
m

 =


0

0
...

0

 (2.3)

From Equation 2.3, we obtain the following.

u+1∑
i=1

µ′
ipi =

m∑
j=u+2

−µ′
jpj

u+1∑
i=1

µ′
i =

m∑
j=u+2

−µ′
j

Rearranging the above equations, we obtain the following.

u+1∑
i=1

µ′
i

u+1∑
i=1

µ′
k

pi =
m∑

j=u+2

µ′
j

m∑
j=u+2

µ′
k

pj

u+1∑
i=1

µ′
i

u+1∑
i=1

µ′
i

=
m∑

j=u+2

µ′
j

m∑
j=u+2

µ′
j

= 1

It shows that there exists a crossing between the u-simplex spanned by the first u + 1

points of P and the v-simplex spanned by the remaining v + 1 points of P .

We now prove the following property that is a slight variation of Property 2. We use this

property in the proof of Theorem 7.

Property 3. [43] Let h be a linear hyperplane, i.e., a hyperplane passing through the origin, in

Rm−d−1 such that it partitions the vectors in D(P ). Let D+(P ) ⊂ D(P ) and D−(P ) ⊂ D(P )

denote two sets of vectors such that |D+(P )| , |D−(P )| ≥ 2 and the vectors in D+(P ) and

D−(P ) lie in the opposite open half-spaces h+ and h− created by h, respectively. Then, the

convex hull of the point set Pa = {pi|pi ∈ P, gi ∈ D+(P )} and the convex hull of the point set
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Pb = {pj|pj ∈ P, gj ∈ D−(P )} cross.

Proof. Let us assume that the hyperplane h is given by the equation
m−d−1∑
i=1

αixi = 0 such

that αi 6= 0 for at least one i, and h+ (h−) is the positive (negative) open half-space created

by h with an orientation assigned to it. Let D0(P ) = {gk|gk ∈ D(P ), gk lies on h}. This

implies that there exists a vector (µ1, µ2, . . . , µm) = α1(b
1
1, b

1
2, . . . , b

1
m) + α2(b

2
1, b

2
2, . . . , b

2
m)

+ . . .+ αm−d−1(b
m−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m ) such that µi > 0 for each gi ∈ D+(P ), µj < 0

for each gj ∈ D−(P ) and µk = 0 for each gk ∈ D0(P ). Since this vector (µ1, µ2, . . . , µm) lies

in the null space of M(P ), it satisfies the following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1




µ1

µ2

...

µm

 =


0

0
...

0



From the equation above, we obtain the following.

∑
i:gi∈D+(P )

µipi =
∑

j:gj∈D−(P )

−µjpj,
∑

i:gi∈D+(P )

µi =
∑

j:gj∈D−(P )

−µj

Rearranging the equations above, we obtain the following.

∑
i:gi∈D+(P )

µi∑
i:gi∈D+(P )

µi

pi =
∑

j:gj∈D−(P )

µj∑
j:gj∈D−(P )

µj

pj

∑
i:gi∈D+(P )

µi∑
i:gi∈D+(P )

µi

=
∑

j:gj∈D−(P )

µj∑
j:gj∈D−(P )

µj

= 1

It shows that Conv(Pa) and Conv(Pb) cross.

Property 4. [43] The points in P are in convex position in Rd if and only if there is no

linear hyperplane h with exactly one vector from D(P ) in one of the open half-spaces created

by h.
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Proof. (⇒) Without loss of generality, let us assume that the hyperplane

m−d−1∑
i=1

α′
ixi = 0

ensures that exactly one vector from D(P ) lies in an open half-space created by it. This

implies that there exists a vector (µ′
1, µ

′
2, . . . , µ

′
m) = α′

1(b
1
1, b

1
2, . . . , b

1
m) + α′

2(b
2
1, b

2
2, . . . , b

2
m)

+ . . .+ α′
m−d−1(b

m−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m ) such that µ′

i ≥ 0 for 1 ≤ i ≤ m− 1 and µ′
m < 0.

As this vector (µ′
1, µ

′
2, . . . , µ

′
m) lies in the null space of the row space of M(P ), it satisfies the

following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1




µ′
1

µ′
2

...

µ′
m

 =


0

0
...

0

 (2.4)

From Equation 2.4, we obtain the following.

m−1∑
i=1

µ′
ipi = −µ′

mpm

m−1∑
i=1

µ′
i = −µ′

m

Rearranging the above equations, we obtain the following.

m−1∑
i=1

µ′
i

m−1∑
i=1

µ′
i

pi = pm

m−1∑
i=1

µ′
i

m−1∑
i=1

µ′
i

= 1

It shows that pm can be expressed as the convex combination of P \ {pm}, leading to a
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contradiction.

(⇐) Let us assume that the points in P are not in convex position. Without loss of

generality, we assume that pm can be expressed as the convex combination of the points in

P \ {pm} = {p1, p2, . . . pm−1}. This implies that there exist real numbers λk ≥ 0, 1 ≤ k ≤

m− 1, satisfying the following equations:

m−1∑
i=1

λipi = pm

m−1∑
i=1

λi = 1

Therefore, we obtain the following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1





λ1

λ2

...

λm−1

−1


=


0

0
...

0

 (2.5)

It is evident from Equation 2.5 that the vector (λ1, λ2, . . . , λm−1,−1) lies in the null space

of M(P ). This implies that (λ1, λ2, . . . , λm−1,−1) = α1(b
1
1, b

1
2, . . . , b

1
m) + α2(b

2
1, b

2
2, . . . , b

2
m)

+ . . .+ αm−d−1 (bm−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m ) for some real numbers α1, α2, . . . , αm−d−1, not

all of them zero. In other words, there exist α1, α2, . . . , αm−d−1, not all of them zero, such

that α1b
1
i + α2b

2
i+ . . .+ αm−d−1 bm−d−1

i ≥ 0 for i = 1, 2, . . . ,m− 1, and α1b
1
m + α2b

2
m + . . .+

αm−d−1b
m−d−1
m < 0. This shows that the hyperplane

m−d−1∑
i=1

αixi = 0 ensures that exactly one

vector from D(P ) lies in an open half-space created by it, leading to a contradiction.

Let us state the definition of an acyclic vector configuration.

Acyclic Vector Configuration. [58] A vector configuration V ′ = {v′1, v′2, . . . , v′n} ⊂ Rd is

said to be acyclic if there does not exist any non-zero vector (α1, α2, . . . , αn) in Rn such that

αi ≥ 0 for each i satisfying 1 ≤ i ≤ n and
∑n

i=1 αiv
′
i = ~0.
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In Lemma 2, we mention a property of an acyclic vector configuration that is used to

prove Property 5 and Property 6 of the Gale transformation. In order to prove Lemma 2, we

mention the following version of the Farkas’ Lemma. Recall that we denote vectors as row

vectors in this thesis.

Farkas’ Lemma. [58] Let A be a (d+ 1)× n matrix with each element from R, and let z be

a vector in Rd+1. Either there exists a vector x ∈ Rn with AxT = zT , x ≥ ~0, or there exists

a vector c ∈ Rd+1 with cA ≥ ~0 and czT < 0, but not both.

Lemma 2. [58] V ′ = {v′1, v′2, . . . , v′n} ⊂ Rd is an acyclic vector configuration if and only

if there exists a hyperplane h passing through the origin such that all the vectors in V ′ are

contained in one of the open half-spaces created by h.

Proof. (⇐) Let the ith vector v′i ∈ V ′ be represented as (v′i1, v′i2, . . . , v′id). Let us consider the

(d+ 1)× n matrix M(V ′) whose ith column is
[
v′i1v

′
i2 . . . v

′
id1
]T

.

M(V ′) =



v′11 v′21 · · · v′n1

v′12 v′22 · · · v′n2
... ... ... ...

v′1d v′2d · · · v′nd

1 1 · · · 1


Suppose that the vector configuration V ′ = {v′1, v′2, . . . , v′n} ⊂ Rd is not acyclic. Since the

vector configuration V ′ = {v′1, v′2, . . . , v′n} ⊂ Rd is not acyclic, there exists a non-zero vector

(α1, α2, . . . , αn) in Rn such that αi ≥ 0 for each i satisfying 1 ≤ i ≤ n and
∑n

i=1 αiv
′
i = ~0. For

1 ≤ i ≤ n, let us define µi =
αi∑n
i=1 αi

. Note that each µi ≥ 0 and (µ1, µ2, . . . , µn) satisfies

the following equation.
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v′11 v′21 · · · v′n1

v′12 v′22 · · · v′n2
... ... ... ...

v′1d v′2d · · · v′nd

1 1 · · · 1




µ1

µ2

...

µn

 =



0

0
...

0

1


(2.6)

Let us denote the vector (0, 0, . . . , 0, 1) ∈ Rd+1 by z. The Farkas’ lemma implies that

there does not exist a vector c = (c1, c2, . . . , cd, c0) ∈ Rd+1 with cM(V ′) ≥ ~0 and czT = c0 < 0.

This implies that there does not exist a hyperplane h passing through the origin such that

all the vectors in V ′ are contained in one of the open half-spaces created by h.

(⇒) Let us assume that the vector configuration V ′ = {v′1, v′2, . . . , v′n} ⊂ Rd is acyclic.

This implies that there does not exist a non-zero vector (µ1, µ2, . . . , µn) which satisfies Equa-

tion 2.6. The Farkas’ lemma implies that there exists a vector c = (c1, c2, . . . , cd, c0) ∈ Rd+1

with cM(V ′) ≥ ~0 and czT = c0 < 0. This further implies that there exists a hyperplane h

passing through the origin such that all the vectors in V ′ are contained in one of the open

half-spaces created by h.

Two nonempty convex sets C and D in Rd are said to be properly separated if there exists

a (d− 1)-dimensional hyperplane h such that C and D lie in the opposite closed half-spaces

determined by h, and C and D are not both contained in the hyperplane h [32].

Proper Separation Theorem. [30, 32] Two nonempty convex sets C and D in Rd can be

properly separated if and only if their relative interiors are disjoint.

Let Q be a d-dimensional convex polytope.

Face of a Convex Polytope. [30] A face of the convex polytope Q is defined as follows:

• Q itself is a face.

• Any subset of Q of the form Q ∩ h is a face of Q, where h is a (d − 1)-dimensional

hyperplane such that Q is contained in one of the closed half-spaces created by h.
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We consider the following property of D(P ).

Property 5. [30] Let the points in P be in general, as well as in convex position in Rd. Note

that Conv(P ) is a d-dimensional polytope. A t-element (t ≤ d) subset P ′ = {p1, p2, . . . , pt} ⊂

P forms a (t − 1)-dimensional face of Conv(P ) if and only if the relative interior of the

convex hull of the points in D(P ) \ {g1, g2, . . . , gt} contains the origin.

Proof. (⇒) Let us assume that the relative interior of Conv({gt+1, gt+2, . . . , gm}) does not

contain the origin. The Proper Separation theorem implies that there exists a hyperplane

α1x1 + α2x2 + . . .+ αm−d−1xm−d−1 = 0 such that the points gt+1, gt+2, . . . , gm lie in the same

closed half-space created by the hyperplane and not all of these points lie on the hyperplane.

This implies that there exists a vector (µ1, µ2, . . . , µt, µt+1 ≥ 0, µt+2 ≥ 0, . . . , µm ≥ 0)

= α1(b
1
1, b

1
2, . . . , b

1
m) + α2(b

2
1, b

2
2, . . . , b

2
m) + . . . + αm−d−1 (bm−d−1

1 , bm−d−1
2 , . . . , bm−d−1

m ) for

some real numbers α1, α2, . . . , αm−d−1, not all of them zero. Since the vector (µ1, µ2, . . . , µt,

µt+1 ≥ 0, µt+2 ≥ 0, . . . , µm ≥ 0) lies in the null space of the row space of M(P ), it satisfies

the following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1





µ1

µ2

...

µt

µt+1

...

µm


=


0

0
...

0

 (2.7)

From Equation 2.7, we obtain the following.

−
t∑

i=1

µipi =
m∑

j=t+1

µjpj

−
t∑

i=1

µi =
m∑

j=t+1

µj
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Also, note that µj ≥ 0 for each j satisfying t+ 1 ≤ j ≤ m.

Rearranging the above equations, we obtain the following.

t∑
i=1

µi

t∑
i=1

µi

pi =
m∑

j=t+1

µj
m∑

j=t+1

µj

pj

This implies that Conv({pt+1, pt+2, . . . , pm}) ∩ Aff({p1, p2, . . . , pt}) 6= ∅. This further

implies that {p1, p2, . . . , pt} does not form a (t − 1)-dimensional face of P , leading to a

contradiction.

(⇐) Let us assume that {p1, p2, . . . , pt} does not form a (t − 1)-dimensional face of P .

This implies that Conv({pt+1, pt+2, . . . , pm}) ∩ Aff({p1, p2, . . . , pt}) 6= ∅. This implies that

there exist real numbers λi, 1 ≤ i ≤ m, satisfying the following equations:

t∑
i=1

λipi =
m∑

j=t+1

λjpj

t∑
i=1

λi =
m∑

j=t+1

λj = 1

λj ≥ 0 for each t+ 1 ≤ j ≤ m

Therefore, we obtain the following equation.



x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

... ... ... ...

x1
d x2

d · · · xm
d

1 1 · · · 1





−λ1

−λ2

...

−λt

λt+1

...

λm


=


0

0
...

0

 (2.8)

It is evident from Equation 2.8 that the vector (−λ1, −λ2, . . . , −λt, λt+1, . . . , λm) lies
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in the null space of the row space of M(P ). This implies that (−λ1, −λ2, . . . , −λt, λt+1,

. . . , λm) = α1(b
1
1, b

1
2, . . . , b

1
m)+α2(b

2
1, b

2
2, . . . , b

2
m) + . . .+αm−d−1 (b

m−d−1
1 , bm−d−1

2 , . . . , bm−d−1
m ),

for some real numbers α1, α2, . . . , αm−d−1, not all of them zero. In other words, there exist

α1, α2, . . . , αm−d−1, not all of them zero, such that α1b
1
j + α2b

2
j + . . . + αm−d−1b

m−d−1
j ≥ 0

for j = t + 1, t + 2, . . . ,m. This implies that the points gt+1, gt+2, . . . , gm lie in the same

closed half-space created by the hyperplane α1x1 + α2x2 + . . . + αm−d−1xm−d−1 = 0. Since

the points in P are in general position in Rd, all the points in {gt+1, gt+2, . . . , gm} can not

lie on the hyperplane. The Proper Separation theorem implies that the relative interior of

the convex hull of the point set {gt+1, gt+2, . . . , gm} does not contain the origin, leading to a

contradiction.

Property 6. [30] Let the points in P be in general, as well as in convex position in Rd. A

d-dimensional polytope formed by the convex hull of P is t-neighborly (2 ≤ t ≤ bd/2c) if and

only if each of the linear separations of D(P ) contains at least t + 1 points in each of the

open half-spaces created by the corresponding linear hyperplanes.

Proof. (⇒) Note that P is the vertex set of a t-neighborly d-dimensional polytope having m

vertices. Consider a Gale transform D(P ) of P . Without loss of generality, assume for the

sake of contradiction that there is a linear separation of D(P ) into two sets of size m− t and

t. Property 3 of the Gale transformation implies that the convex hull of some t points of P

crosses with the convex hull of the remaining m − t points. This is a contradiction to the

fact that every set of t vertices of P forms a face of Conv(P ).

(⇐) Let us assume that Conv(P ) is not a t-neighborly d-dimensional polytope. Without

loss of generality, we assume that the first t points p1, p2, . . . , pt do not span a face of Conv(P ).

Property 5 implies that the relative interior of Conv({gt+1, gt+2, . . . , gm}) does not contain

the origin. Since the vectors in D(P ) are in general position in Rm−d−1, this implies that

there does not exist a non-zero vector (α1, α2, . . . , αm−t) such that αi ≥ 0 for each i satisfying

1 ≤ i ≤ m − t and
∑m−t

i=1 αigt+i = ~0. This implies that {gt+1, gt+2, . . . , gm} forms an acyclic

vector configuration in Rm−d−1. Lemma 2 implies that there exists a hyperplane h passing

through the origin such that all the vectors in {gt+1, gt+2, . . . , gm} are contained in one of

the open half-spaces created by h. This implies that the other open half-space created by h

contains at most t points of D(P ), leading to a contradiction.
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We obtain an affine Gale diagram [43] of P by considering a hyperplane h̄ that is not

parallel to any vector in D(P ) and is not passing through the origin. For each 1 ≤ i ≤ m,

we extend the vector gi ∈ D(P ) either in the direction of gi or in its opposite direction until

it cuts h̄ at the point gi. We color gi as white if the projection is in the direction of gi, and

black otherwise. The sequence of m points D(P ) = < g1, g2, . . . , gm > in Rm−d−2 along with

the color of each point is defined as an affine Gale diagram of P .

We define a separation of D(P ) to be a partition of D(P ) into two disjoint sets of points

D+(P ) and D−(P ) contained in the opposite open half-spaces created by a hyperplane. We

restate Property 2 using these definitions and notations.

Property 7. [43] Consider two integers 1 ≤ u, v ≤ d − 1 satisfying u + v + 2 = m. If the

points in P are in general position in Rd, there exists a bijection between the crossing pairs

of u- and v-simplices formed by some points in P and the partitions of the points in D(P )

into D+(P ) and D−(P ) such that the number of white points in D+(P ) plus the number

of black points in D−(P ) is u + 1 and the number of white points in D−(P ) plus

the number of black points in D+(P ) is v + 1.
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Figure 2.1: An affine Gale diagram of 8 points in R4



Chapter 3

Balanced Lines, j-Facets and k-Sets

In this chapter, we state the definitions and discuss the properties of j-facets and k-sets of

a finite set of points in R2 and R3. The concepts of j-edges and k-sets of planar point sets

were first studied by Lovász [42] and Erdős et al. [22]. They have been extensively studied

in discrete geometry since then. We also state the definition of a balanced line and discuss

some of its properties in this chapter.

3.1 j-Edges and k-Sets in R2

Consider a set S containing s points in general position in R2.

j-Edge. [43] A j-edge of S is an directed line spanned by 2 points of S such that exactly j

points of S lie in the left open half-space created by it.

k-Set. [43] A k-set of S is a subset of S of size k that can be separated from the rest of the

points by a line that does not pass through any of the points in S.

We observe the following on the relation between the number of (k− 1)-edges and k-sets

of S. Let us denote the number of k-sets of S by e′k(S). We also denote the number of

(k − 1)-edges of S by E ′
k−1(S). We use this observation in the proof of Lemma 11.

Observation 1. [56] For each k satisfying 1 ≤ k ≤ s− 1, e′k(S) = E ′
k−1(S).

37
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Figure 3.1: k-Set and (k − 1)-Edge

Proof. Let T be a k-set of S which can be separated from S \ T by the line l as shown in

Figure 3.1. It is easy to observe that there exists a unique ordered pair of points (p, q) where

p ∈ T and q ∈ S \ T such that T \ {p} lies completely in the left open half-space created by

the directed line −→pq and (S \ T ) \ {q} is completely contained in the other open half-space

created by the directed line −→pq. This implies that the directed line −→pq is a (k − 1)-edge of S,

since there exist k−1 points in its left open half-space. The directed line −→pq is a (k−1)-edge

of S corresponding to this particular k-set.

On the other hand, let the directed line −→pq be a (k − 1)-edge of S as shown in Figure 3.1.

If we rotate the directed line −→pq counter-clockwise around the midpoint of the line segment

[p, q], we obtain a line l which does not pass through any of the points in S and k points (i.e.,

all the points in {p} ∪ (T \ {p})) are contained in one of its open half-spaces. This implies

that T is a k-set of S.

The above argument establishes a bijection between (k − 1)-edges and k-sets of S. This

implies that e′k(S) = E ′
k−1(S) for each k satisfying 1 ≤ k ≤ s− 1.

3.2 Balanced Lines in R2

We now introduce the concept of a balanced line. Consider a set R containing r points in

general position in R2, such that dr/2e points are colored white and br/2c points are colored



39

black. Let us state the definitions of a balanced line and an almost balanced directed line

of R, and discuss their properties that are used in the proof of Theorem 2.

Balanced Line. [47] A balanced line l of R is a straight line that passes through a white

and a black point in R and the number of black points is equal to the number of white points

in each of the open half-spaces created by l.

Note that a balanced line exists only when r is even. The following lemma gives a non-trivial

lower bound on the number of balanced lines of R.

Lemma 3. [47] When r is even, the number of balanced lines of R is at least r/2.

We extend the definition of a balanced line to define an almost balanced directed line of R.

Almost Balanced Directed Line. When r is even, an almost balanced directed line l of

R is a balanced line with direction assigned from the black point to the white point it passes

through. When r is odd, an almost balanced directed line l of R is a directed straight line that

passes through a white and a black point in R such that the number of black points is equal

to the number of white points in the left open half-space created by l.

The following observation follows from Lemma 3.

Observation 2. The number of almost balanced directed lines of R is at least br/2c.

Proof. As already mentioned, an almost balanced directed line is a balanced line if r is even.

When r is even, Lemma 3 therefore implies that there exist br/2c balanced lines.

Let us assume that r is odd. As mentioned earlier, we assume that R contains r points in

general position in R2 such that dr/2e points are colored white and br/2c points are colored

black. We remove one white point from R. Let us denote this new set by R′. Lemma 3

implies that the number of balanced lines of R′ is at least br/2c. Note that the removed

point can not lie on any of these balanced lines, since the points in R are in general position

in R2. Consider a balanced line of R′. The removed point must lie in one of the open half-

spaces created by it. Note that we can assign a direction to each balanced line of R′ such

that the removed point lies in the right open half-space created by each of the balanced lines
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of R′. This therefore implies that the number of almost balanced directed lines of R is at

least br/2c.

3.3 j-Facets and k-Sets in R3

Let us introduce the concepts of j-facets and k-sets of a set of points in general position

in R3. Consider a set S containing s points in general position in R3. Let us first state

the definitions of a j-facet and an (≤ j)-facet of S for some integer j ≥ 0. We then state

the definitions of a k-set and an (≤ k)-set of S for some integer k ≥ 1, and discuss their

properties that are used in the proofs of Theorems 1, 5 and 6.

j-Facet. [7] A j-facet of S is an oriented 2-dimensional hyperplane spanned by 3 points of

S such that exactly j points of S lie in the positive open half-space created by it.

Let us denote the number of j-facets of S by Ej(S).

(≤ j)-Facet. [7] An (≤ j)-facet of S is an oriented 2-dimensional hyperplane h spanned by

3 points of S such that at most j points of S lie in the positive open half-space created by it.

Almost Halving Triangle. An almost halving triangle of S is a j-facet of S such that

|j − (s− j − 3)| is at most one.

When s is odd, note that an almost halving triangle is a halving triangle containing an equal

number of points in each of the open half-spaces created by it. The following lemma gives a

non-trivial lower bound on the number of halving triangles of S. In fact, it is shown in [51]

that this lemma is equivalent to Lemma 3.

Lemma 4. [51] When s is odd, the number of halving triangles of S is at least bs/2c2.

The following observation follows from Lemma 4.

Observation 3. The number of almost halving triangles of S is at least b(s− 1)/2c2.

Proof. Consider a set S containing s points in general position in R3. As already mentioned,

an almost halving triangle is a halving triangle if S is odd. When s is odd, Lemma 4 implies

that there exist bs/2c2 halving triangles.
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Let us assume that S is even. We remove one point from S. Let us denote this new set

by S ′. Lemma 4 implies that the number of halving triangles of S ′ is at least b(s− 1)/2c2.

Note that the removed vertex can not lie on any of the hyperplanes which created those

b(s− 1)/2c2 halving triangles of S ′ since the points in S are in general position in R3. Con-

sider a halving triangle of S ′. The removed vertex must lie in one of the open half-spaces

created by the hyperplane corresponding to the halving triangle. This implies that each

halving triangle of S ′ corresponds to a unique almost halving triangle of S. This further

implies that the number of almost halving triangles of S is at least b(s− 1)/2c2.

We consider the following lemma which gives a non-trivial lower bound on the number of

(≤ j)-facets of S.

Lemma 5. [3] For j < s/4 , the number of (≤ j)-facets of S is at least 4
(
j + 3

3

)
.

k-Set. [43] A k-set of S is a non-empty subset of S having size k that can be separated from

the rest of the points by a 2-dimensional hyperplane that does not pass through any of the

points of S.

Let us denote the number of k-sets of S by ek(S).

(≤ k)-Set. [7] A subset T ⊆ S is called an (≤ k)-set if 1 ≤ |T | ≤ k and T can be separated

from S \ T by a 2-dimensional hyperplane that does not pass through any of the points of S.

Andrzejak et al. [7] gave the following lemma regarding the number of the j-facets and

the k-sets of S.

Lemma 6. [7] e1(S) = (E0(S)/2) + 2, es−1(S) = (Es−3(S)/2) + 2, and ek(S) = (Ek−1(S) +

Ek−2(S))/2 + 2 for each k in the range 2 ≤ k ≤ s− 2.

The following observation follows from Observation 3 and Lemma 6.

Observation 4. There exist a total of Ω(s2) k-sets of S such that min{k, s− k} is at least

d(s− 1)/2e.

Proof. Consider a set S containing s points in general position in R3. Let us assume that s is

even. Lemma 6 implies that ed(s−1)/2e(S) = (Eb(s−1)/2c(S)+Eb(s−1)/2c−1(S))/2+2. For even s,
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a (b(s− 1)/2c − 1)-facet is an almost halving triangle. Observation 3 implies that the number

of almost halving triangles of S is Ω(s2). This implies that ed(s−1)/2e(S) > Eb(s−1)/2c(S)/2 =

Ω(s2).

Let us now assume that s is odd. Lemma 6 implies that e(s−1)/2(S) = (E(s−3)/2(S) +

E(s−5)/2(S))/2 + 2. For odd s, a ((s− 3)/2)-facet is a halving triangle. Observation 3 im-

plies that the number of halving triangles of S is Ω(s2). This implies that e(s−1)/2(S) >

E(s−3)/2(S)/2 = Ω(s2).

The following observation follows from Lemma 5 and Lemma 6.

Observation 5. The number of (≤ ds/4e)-sets of S is Ω(s3).

Proof. Lemma 6 implies that the number of (≤ ds/4e)-sets of S is at least
∑ds/4e−1

i=0 Ei(S)/2.

This further implies that (≤ ds/4e)-sets of S is at least
∑bs/4c−1

i=0 Ei(S)/2. Lemma 5 implies

that
∑bs/4c−1

i=0 Ei(S)/2 is at least 4

(
bs/4c+ 2

3

)
= Ω(s3).



Chapter 4

Rectilinear Crossing Number of

Complete d-Uniform Hypergraphs

As mentioned in the introduction, we present the proofs of Theorem 1 and Theorem 2 in this

chapter. Let us recall that a d-dimensional rectilinear drawing of Kd
2d is a drawing of it in

Rd such that all its 2d vertices are placed as points in general position and each of the
(
2d

d

)
hyperedges is drawn as the convex hull of d corresponding vertices. In such a drawing of

Kd
2d, two hyperedges are said to be crossing if they are vertex disjoint and contain a common

point in their relative interiors. Recall that the d-dimensional rectilinear crossing number of

Kd
2d, denoted by crd

(
Kd

2d

)
, is defined as the minimum number of crossing pairs of hyperedges

among all d-dimensional rectilinear drawings of it.

4.1 Motivation and Previous Works

As mentioned earlier, Anshu et al. [8] proved the first non-trivial lower bound of Ω

(
2d log d√

d

)
on crd(K

d
2d). They used the Gale transformation to reduce the crossing number problem to

a linear separation problem. For a given set of d + 4 points in Rd, Property 2 of the Gale

transformation ensures that there exists a bijection between the crossing pairs of
⌊
d+ 4

2

⌋
-

and
⌈
d+ 4

2

⌉
-simplices in Rd and the proper linear separations of d+ 4 vectors in R3 [43].

In order to calculate the lower bound on cd, Anshu et al. [8] chose a set of d+ 4 vertices

43
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from the set of 2d vertices of Kd
2d in Rd. A Gale transform of these d + 4 vertices is a set

of d + 4 vectors in general position in R3. Using the Ham-Sandwich theorem, Anshu et

al. [8] proved the existence of Θ(log d) distinct proper linear separations of the set of d + 4

vectors mentioned above. Each proper linear separation of d + 4 vectors in R3 corresponds

to a crossing between
⌊
d+ 4

2

⌋
and

⌈
d+ 4

2

⌉
simplices in Rd. They extended the crossings

between the lower dimensional simplices to the crossings between (d−1)-simplices to get the

bound crd(K
d
2d) = Ω

(
2d log d√

d

)
. In particular, they showed that cr4(K

4
8) ≥ 4. They also

constructed an arrangement of 8 vertices of K4
8 in R4 having 4 crossing pairs of hyperedges.

This arrangement established that cr4(K
4
8) = 4. In this section, we reproduce the proofs in

detail.

Lemma 7. [8] The 4-dimensional rectilinear crossing number of a complete 4-uniform hy-

pergraph with 8 vertices is 4, i.e., cr4 (K4
8) = 4.

Proof. In a 4-dimensional rectilinear drawing of K4
8 , its vertices are represented as points

in general position in R4. Let P = {p1, p2, . . . , p8} be a set of 8 points in general position

in R4. Let D(P ) = {g1, g2, . . . , g8} a Gale transform of P , be a collection of 8 vectors in

R3. As already mentioned, the vectors in D(P ) can be treated as points in R3. We use the

Ham-Sandwich theorem to obtain the proper linear separations of D(P ). As the points in

D(P ) are in R3, we use three colors, namely, c0, c1 and c2. The coloring argument proceeds

as follows.

We color the origin with c0 and all the 8 points of D(P ) with color c1. The Ham-Sandwich

theorem guarantees that any separating hyperplane passes through the origin. Property 1 of

the Gale transformation guarantees that at most 2 vectors in D(P ) can lie on the separating

hyperplane. It is easy to observe that we can rotate the separating hyperplane to obtain a

proper linear separation of the vectors in D(P ). Let us assume without loss of generality

that the proper linear separation obtained in this way is {{g1, g2, g3, g4}, {g5, g6, g7, g8}}.

After obtaining the first proper linear separation, we color the points in {g1, g2, g3, g4}

with c1 and the points in {g5, g6, g7, g8} with c2. The origin is colored with c0. We apply the

Ham-Sandwich theorem to obtain a separating hyperplane passing through the origin. Since

at most 2 vectors in D(P ) can lie on the separating hyperplane, we obtain a new proper
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linear separation of D(P ) by rotating the separating hyperplane, if necessary. Without loss

of generality, let us assume that the new partition of D(P ) is {{g1, g2, g5, g6}, {g3, g4, g7, g8}}.

Note that the pairs of points {g1, g2},{g3, g4},{g5, g6} and {g7, g8} remained together in both

the partitions obtained previously.

We color {g1, g2} with color c1 and rest of the six points with color c2. The origin is

colored with c0. We again obtain a new proper linear separation as g1 and g2 get separated.

The proper linear separation obtained in this way can be of two types: (i) all the four pairs

of points, i.e., {g1, g2}, {g3, g4}, {g5, g6} and {g7, g8} get separated, (ii) two of the three pairs

of points, i.e., {g3, g4},{g5, g6} and {g7, g8} remain together.

In Case (i), let us assume without loss of generality that the proper linear separation

obtained is {{g1, g3, g5, g7}, {g2, g4, g6, g8}}. Note that three out of four points in {g1, g2, g3, g5}

have remained together in all the three partitions obtained till now. In this case, we color

{g1, g2, g3, g5} with c1, the rest of the four points with color c2 and the origin with c0 to obtain

a new proper linear separation of D(P ). In Case (ii), we color one of the two unseparated

pairs with color c1 and the rest with color c2. We also color the origin with color c0 to obtain

a new proper linear separation of D(P ).

Since Property 2 implies that each of these four proper linear separations of vectors in

D(P ) corresponds to a unique crossing pair of 3-simplices, the above argument shows that

cr4 (K
4
8) ≥ 4. Anshu et al. [8] created a particular 4-dimensional rectilinear drawing of K4

8

having 4 crossing pairs of hyperedges. In the following, we mention the placement of 8 points

in general position in R4 to obtain the above mentioned 4-dimensional rectilinear drawing

of K4
8 with 4 crossing pairs of hyperedges. The coordinates of the points are listed in the

following table [8].
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Point Coordinate

p1 (1, 0, 0, 0)

p2 (−1/4, 1, 0, 0)

p3 (−1/4,−1/3, 1, 0)

p4 (−1/4,−1/3,−1/2, 4/5)

p5 (−1/4,−1/3,−1/2,−4/5)

p6 (−1/28, 1/16, 0, 3/40)

p7 (−1/5, 1/100, 3/200, 1/10)

p8 (−6/25, 0,−1/20, 1/20)

Lemma 8. [8] The d-dimensional rectilinear crossing number of a complete d-uniform hy-

pergraph with 2d vertices is Ω

(
2d log d√

d

)
, i.e., crd

(
Kd

2d

)
= Ω

(
2d log d√

d

)
.

Proof. In a d-dimensional rectilinear drawing of Kd
2d its vertices are represented as points in

general position in Rd. Let P ′ = {p1, p2, . . . , p2d} be a set of 2d points in general position in

Rd. Let us consider a subset containing d+4 points of P ′. Without loss of generality, let the

subset be P = {p1, p2, . . . , pd+4} ⊂ P ′. Let D(P ) = {g1, g2, . . . , gd+4}, a collection of d + 4

vectors in R3, be a Gale transform of P . As already mentioned, the vectors in D(P ) can

be treated as points in R3. We use the Ham-Sandwich theorem to obtain the proper linear

separations of D(P ). As the points in D(P ) are in R3, we use three colors, namely, c0, c1
and c2. The coloring argument proceeds as follows.

We color the origin with c0 and all the points in D(P ) with c1. The color of the origin

remains unchanged throughout the process. By the Ham-Sandwich theorem and rotating the

separating hyperplane if needed (as mentioned before), we obtain a proper linear separation

of D(P ) into D11(P ) and D12(P ) having b(d+ 4)/2c and d(d+ 4)/2e vectors, respectively.

We then color all the vectors in D11(P ) with c1 and all the vectors in D12 with c2. The

Ham-Sandwich theorem guarantees that we obtain a partition D21(P ) and D22(P ) of D(P ).

Note that at least b(d+ 4)/4c points of D(P ) have stayed together in both the partitions.

Next, we color these b(d+ 4)/4c points of D(P ) with c1 and rest of the points with

c2 to obtain a new proper linear separation of D(P ) into D31(P ) and D32(P ). Note that
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b(d+ 4)/8c points of D(P ) have stayed together in all three partitions obtained till now.

In particular, in the kth step, we obtain a proper linear separation of D(P ) into Dk1(P )

and Dk2(P ). Note that the kth proper linear separation of D(P ) is distinct from all the k− 1

proper linear separations obtained before. It is easy to observe that
⌊
(d+ 4)/2k

⌋
points of

D(P ) have stayed together in all the k proper linear separations obtained so far.

We then color these
⌊
(d+ 4)/2k

⌋
points of D(P ) with c1 and rest of the points with c2

to obtain the (k + 1)th proper linear separation of D(P ). We keep on coloring in this way

until only a pair of points stays together. This implies we can keep on coloring for Θ(log d)

times without repeating any of the previous proper linear separations of D(P ). Property 2

implies that each of these Θ(log d) proper linear separations of vectors in D(P ) corresponds

to a unique pair of crossing (b(d+ 4)/2c − 1)-simplex and (d(d+ 4)/2e − 1)-simplex. Any

such crossing pair of simplices can be extended to a crossing pair of (d − 1)-simplices in(
d− 4

b(d− 4)/2c

)
= Θ

(
2d√
d

)
distinct ways. This implies that crd

(
Kd

2d

)
= Ω

(
2d log d√

d

)
.

4.2 Lower Bound by Gale Transformation and Ham-

Sandwich Theorem

In this section, we improve the lower bound on cd by using the Gale transformation and

Corollary 1 mentioned below. Let P denote the set of 2d vertices of Kd
2d that are in general

position in Rd. Let us recall that two nonempty convex sets C and D in Rd are said to be

properly separated if there exists a (d− 1)-dimensional hyperplane h such that C and D lie

in the opposite closed half-spaces determined by h, and C and D are not both contained in

the hyperplane h [32]. Let us recall the proper separation theorem that is mentioned earlier

in Chapter 2.

Proper Separation Theorem. [32] Two nonempty convex sets C and D in Rd can be

properly separated if and only if their relative interiors are disjoint.

Lemma 9. Consider a set A that contains at least d + 1 points in general position in Rd.

Let B and C be its disjoint subsets such that |B| = b, |C| = c, 2 ≤ b, c ≤ d and b+ c ≥ d+1.

If the (b− 1)-simplex formed by B and the (c− 1)-simplex formed by C form a crossing pair,



48

then the u-simplex (u ≥ b− 1) formed by a point set B′ ⊇ B and the v-simplex (v ≥ c− 1)

formed by a point set C ′ ⊇ C satisfying B′ ∩ C ′ = ∅, |B′|, |C ′| ≤ d and B′, C ′ ⊂ A also form

a crossing pair.

Proof. For the sake of contradiction, we assume that there exist a u-simplex and a v-simplex,

formed respectively by the disjoint point sets B′ ⊇ B and C ′ ⊇ C, that do not cross. We

consider two cases.

Case 1. Let us assume that Conv(B′) ∩ Conv(C ′) = ∅. It clearly leads to a contradiction

since Conv(B) ∩ Conv(C) 6= ∅.

Case 2. Let us assume that Conv(B′) ∩ Conv(C ′) 6= ∅. Since the relative interiors of

Conv(B′) and Conv(C ′) are disjoint, the Proper Separation theorem implies that there exists

a (d−1)-dimensional hyperplane h such that Conv(B′) and Conv(C ′) lie in the opposite closed

half-spaces determined by h. It implies that Conv(B) and Conv(C) also lie in the opposite

closed half-spaces created by h. Since the relative interiors of Conv(B) and Conv(C) are not

disjoint and they lie in the opposite closed halfspaces of h, it implies that all b + c ≥ d + 1

points in B∪C lie on h. This leads to a contradiction since the points in B∪C are in general

position in Rd.

Corollary 1. Consider two disjoint point sets U, V ⊂ P such that |U | = p, |V | = q,

2 ≤ p, q ≤ d and p+ q ≥ d+1. If the (p− 1)-simplex formed by U crosses the (q− 1)-simplex

formed by V , then the (d − 1)-simplices formed by any two disjoint point sets U ′ ⊇ U and

V ′ ⊇ V satisfying |U ′| = |V ′| = d also form a crossing pair.

Since Corollary 1 is a special case of Lemma 9, its proof is immediate from Lemma 9.

Lemma 10. The d-dimensional rectilinear crossing number of a complete d-uniform hyper-

graph with 2d vertices is Ω(2d).

Proof. Consider the hypergraph Kd
2d whose vertices are in general position in Rd, and let A

be any subset of d+3 vertices selected from these vertices. The Gale transform D(A) of the

point set A contains d+3 vectors in R2, which can also be considered as a sequence of d+3

points (as mentioned earlier). In order to apply the Ham-Sandwich Theorem (mentioned in
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the Introduction) in R2, we assign the points in D(A) to P1 and the origin to P2 to obtain

a line l passing through the origin that bisects the points in D(A) such that each partition

(open half-space) contains at most
⌊
1
2
|D(A)|

⌋
points from D(A). Since the points in A are in

general position, every pair of vectors in D(A) spans R2. Hence, at most one point from D(A)

can lie on l. As a consequence, l can be rotated using the origin as the center of rotation to

obtain a proper linear separation of D(A) into 2 subsets l+1 and l−1 of size
⌊
d+3
2

⌋
and

⌈
d+3
2

⌉
,

respectively, such that l+1 denotes the left (counter-clockwise) side and l−1 denotes the right

(clockwise) side of l. Property 2 implies that this proper linear separation corresponds to

a crossing pair of a (
⌊
d+3
2

⌋
− 1)-simplex and a (

⌈
d+3
2

⌉
− 1)-simplex in Rd. We observe from

Corollary 1 that this crossing pair of simplices can be used to obtain
( d−3⌊

d−3
2

⌋) distinct crossing

pairs of (d− 1)-simplices formed by the vertices of the hypergraph Kd
2d.

We rotate l clockwise using the origin as the center of rotation, until one of the d + 3

points in D(A) moves from one side of the line l to the other side. Since every pair of

vectors in D(A) spans R2, it can be observed that exactly one point of D(A) can change its

side at any particular time during the rotation of l. We further rotate l clockwise to obtain

another new partition {l+2 , l−2 }, each having at least
⌊
d+1
2

⌋
points, at the instance a point in

either l+1 or l−1 changes its side. This new linear separation corresponds to a crossing pair

of simplices in Rd, which can be used to obtain at least
( d−3⌊

d−5
2

⌋) distinct crossing pairs of

(d − 1)-simplices formed by the vertices of the hypergraph Kd
2d. Note that all the crossing

pairs of simplices obtained by extending the partitions {l+1 , l−1 } and {l+2 , l−2 } are distinct.

Continuing in this manner for any 1 ≤ k ≤
⌊
d−3
2

⌋
− 1, we rotate l clockwise to obtain a new

partition {l+k+1, l
−
k+1}, each having at least

⌊
d−2k+3

2

⌋
points, at any time a point in either l+k

or l−k changes its side. Therefore, the corresponding crossing pair of simplices in Rd can be

extended to crossing pairs of (d − 1)-simplices in at least
( d−3

d−
⌊
d−2k+3

2

⌋) = ( d−3⌊
d−2k−3

2

⌋) distinct

ways. Hence, the number of crossing pairs of (d− 1)-simplices obtained using this method is

at least
(
d− 3⌊
d−3
2

⌋) +

(
d− 3⌊
d−5
2

⌋)+

(
d− 3⌊
d−7
2

⌋)+ ...+

(
d− 3

1

)
= Θ(2d).

4.3 Improved Lower Bound

In the following, we state Carathéodory’s Theorem which is used in the proof of Theorem 1.
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Carathéodory’s Theorem. [43] Let X ⊆ Rd. Then, each point in the convex hull of X

can be expressed as a convex combination of at most d+ 1 points in X.

Theorem 1. The number of crossing pairs of hyperedges in a d-dimensional rectilinear

drawing of Kd
2d is Ω(2dd3/2) if the vertices of Kd

2d are not in convex position.

Proof. Since the points in V are not in convex position in Rd, we assume without loss of

generality that vd+2 can be expressed as a convex combination of the points in V \ {vd+2}.

The Carathéodory’s theorem implies that vd+2 can be expressed as a convex combination of

d + 1 points in V \ {vd+2}. Without loss of generality, we assume these d + 1 points to be

{v1, v2, . . . , vd+1}.

Consider the set of points V ′ = {v1, v2, . . . , vd+5} ⊂ V . Note that a Gale transform D(V ′)

of it is a collection of d+5 vectors in R4. Property 4 of the Gale transformation implies that

there exists a linear hyperplane h that partitions D(V ′) in such a way that one of the open

half-spaces created by h contains exactly one vector of D(V ′). Since the points in V ′ are in

general position in R4, Property 1 implies that at most three vectors of D(V ′) lie on h. Since

the vectors in D(V ′) are in general position, it can be easily seen that we can slightly rotate

h to obtain a linear hyperplane h′ that partitions D(V ′) such that one of the open half-spaces

created by h′ contains d+ 4 vectors and the other one contains exactly one vector.

Consider a hyperplane parallel to h′. We project the vectors in D(V ′) on this hyperplane

to obtain an affine Gale diagram D(V ′). Note that D(V ′) contains d+ 4 points of the same

color and one point of the other color in R3. Without loss of generality, let us assume that

the majority color is white. Also, note that the points in D(V ′) are in general position in R3

since the corresponding vectors in the Gale transform D(V ′) are in general position in R4.

Consider the set W containing d + 4 white points of D(V ′) in R3. Observation 4 im-

plies that there exist Ω(d2) distinct k-sets of W such that min{k, d + 4 − k} is at least

d(d+ 3)/2e. Each of these k-sets corresponds to a unique linear separation of D(V ′) having

at least d(d+ 3)/2e vectors in each of the open half-spaces created by the corresponding

linear hyperplane. Property 2 of the Gale transformation implies that there exists a unique

crossing pair of u-simplex and v-simplex corresponding to each of these linear separations of

D(V ′), such that u + v + 2 = d + 5 and min{u + 1, v + 1} ≥ d(d+ 3)/2e. It follows from
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Corollary 1 that each such crossing pair of u-simplex and v-simplex can be extended to ob-

tain at least
(

d− 5

d− d(d+ 3)/2e

)
crossing pairs of (d− 1)-simplices formed by the hyperedges

in E. Therefore, the total number of crossing pairs of hyperedges in such a d-dimensional

rectilinear drawing of Kd
2d is at least Ω(d2)

(
d− 5

d− d(d+ 3)/2e

)
= Ω

(
2dd3/2

)
.

In the following, we improve the lower bound on crd
(
Kd

2d

)
to Ω(2d

√
log d) using the prop-

erties of k-sets of R2.

Lemma 11. The d-dimensional rectilinear crossing number of a complete d-uniform hyper-

graph with 2d vertices is Ω(2d
√
log d), i.e., crd

(
Kd

2d

)
= Ω(2d

√
log d).

Proof. Consider a subset V ′ = {v1, v2, . . . , vd+4} ⊂ V having d+4 points. The Gale transform

D(V ′) is a set of d + 4 vectors in R3. Using the similar procedure employed by Anshu et

al. [8], we apply the Ham-Sandwich theorem to obtain Ω(log d) proper linear separations of

D(V ′). Consider an affine Gale diagram D(V ′). Let us ignore the colors of the points in

D(V ′). Note that each of the Ω(log d) proper linear separations of D(V ′) corresponds to a

k-set of D(V ′) for some k satisfying 1 ≤ k ≤ d+ 3. For each of these Ω(log d) k-sets, we can

obtain a distinct (k− 1)-edge in D(V ′) as mentioned in the proof of Observation 1. We need

at least Ω(
√
log d) distinct points of D(V ′) to span these Ω(log d) lines. This implies that

there exists a set of Ω(
√
log d) (k − 1)-edges such that each of them contains a unique point

of D(V ′) for some k satisfying 1 ≤ k ≤ d+3. Let us denote the collection of these Ω(
√
log d)

(k − 1)-edges by L.

Let l1 be a member of L. Without loss of generality, let us assume that g1 is the unique

point contained in l1. Without loss of generality, let us also assume that l1 contains g2. We

rotate l1 counter-clockwise around the mid-point of [g1, g2] to obtain the line l1(0). Note that

l1(0) does not contain any point of D(V ′). We obtain a partition of the points in D(V ′) by

l1(0). This partition corresponds to a linear separation of vectors in D(V ′) such that each of

the open half-spaces contains at least b(d+ 1)/2c vectors. We now rotate l1 counter-clockwise

with respect to g1 until it meets another point gj of D(V ′) and let us denote this line by l11. We

then rotate the line l11 counter-clockwise around the mid-point of [g1, gj] as mentioned in the

proof of Observation 1 to obtain the line l11(0). Note that l11(0) does not contain any point of
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D(V ′). We obtain a new partition of the points in D(V ′) by l11(0). This partition corresponds

to a linear separation of vectors in D(V ′). We now rotate l11 counter-clockwise around g1 until

it meets the next point and let us denote this line by l21. We then rotate l21 counter-clockwise

around the mid points of its two endpoints in D(V ′) to obtain l21(0). We obtain a new

partition of the points in D(V ′) by l21(0). In general, we rotate lj1 around the mid-points of its

two endpoints in D(V ′) to obtain the line lj1(0). lj1(0) creates a new partition of the points in

D(V ′). We then rotate lj1 counter-clockwise around g1 to obtain a new (k − 1)-edge lj+1
1 for

some k satisfying 1 ≤ k ≤ d+3. Note that we can keep on rotating like this until all the points

in D(V ′) \ {g1, g2} are covered. Note that we obtain d+ 3 distinct proper linear separations

while rotating the line with respect to g1. Let us denote the linear separation of D(V ′) that

corresponds to the line lj1(0) by {D+
j (V

′), D−
j (V

′)}. Note that
∣∣∣∣D+

j (V
′)
∣∣− ∣∣D+

j+1(V
′)
∣∣∣∣ ≤ 4

for j satisfying 0 ≤ j ≤ d+2. Each of these proper linear separations corresponds to distinct

crossing pairs of u-simplex and v-simplex where u+v = d+2 and 1 ≤ u, v ≤ d−1. It follows

from Corollary 1 that each such crossing pair of u-simplex and v-simplex can be extended

to obtain at least
(

d− 4

d− u− 1

)
crossing pairs of (d− 1)-simplices formed by the hyperedges

in E. The total number of crossing pairs of hyperedges obtained in this way is at least(
d− 4

d− b(d+ 1)/2c

)
+

(
d− 4

d− b(d+ 1)/2c − 4

)
+ . . .+

(
d− 4

d− 4

)
= Ω(2d).

For each of the Ω(
√
log d) (k−1)-edges in L, we obtain Ω(2d) crossing pairs of hyperedges

in a similar way. Note that Observation 1 implies that partitions of points in D(V ′) obtained

during the rotation of a line in L are distinct from the partitions of points in D(V ′) obtained

during the rotation of another line in L. This implies that for each of the lines in L, we obtain

Ω(2d) distinct crossing pairs of hyperedges. This proves that crd(K
d
2d) = Ω(2d

√
log d).

We further improve the lower bound on cd from Ω(2d
√
log d) to Ω

(
2d
√
d
)

using the prop-

erties of balanced lines in the following.

Theorem 2. The d-dimensional rectilinear crossing number of a complete d-uniform hyper-

graph having 2d vertices is Ω(2d
√
d), i.e., crd

(
Kd

2d

)
= Ω(2d

√
d).

Proof. Consider a set V ′ = {v1, v2, . . . , vd+4} ⊂ V , whose Gale transform D(V ′) is a set of

d + 4 vectors in R3. As mentioned before, the vectors in D(V ′) can be treated as points in
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R3. In order to apply the Ham-Sandwich theorem to obtain a proper linear separation of

D(V ′), we keep the origin in a set and all the points in D(V ′) in another set. The Ham-

Sandwich theorem implies that there exists a linear hyperplane h such that each of the open

half-spaces created by it contains at most b(d+ 4)/2c vectors of D(V ′). Since the vectors in

D(V ′) are in general position in R3, note that at most two vectors in D(V ′) can lie on h and

no two vectors in D(V ′) lie on a line passing through the origin. As a result, it can be easily

seen that we can slightly rotate h to obtain a linear hyperplane h′ which creates a proper

linear separation of D(V ′). Consider a hyperplane parallel to h′ and project the vectors in

D(V ′) on this hyperplane to obtain an affine Gale diagram D(V ′). Note that D(V ′) contains

b(d+ 4)/2c points of the same color and d(d+ 4)/2e points of the other color in R2. Without

loss of generality, let us assume that the majority color is white. Also, note that the points

in D(V ′) are in general position in R2.

Observation 2 implies that there exist at least b(d+ 4)/2c almost balanced directed lines

of D(V ′). Consider an almost balanced directed line that passes through a white and a black

point in D(V ′). Consider the middle point p of the straight line segment connecting these two

points. We rotate the almost balanced directed line slightly counter-clockwise around p to

obtain a partition of D(V ′) by a directed line that does not pass through any point of D(V ′).

Note that this partition of D(V ′) corresponds to a unique linear separation of D(V ′) having

at least b(d+ 2)/2c vectors in each of the open half-spaces created by the corresponding linear

hyperplane. This implies that there exist at least b(d+ 4)/2c distinct linear separations of

D(V ′) such that each such linear separation contains at least b(d+ 2)/2c vectors in each of

the open half-spaces created by the corresponding linear hyperplane. Property 2 of the Gale

transformation implies that there exists a unique crossing pair of u-simplex and v-simplex

corresponding to each linear separation of D(V ′), such that u+ v + 2 = d+ 4 and min{u+

1, v+1} ≥ b(d+ 2)/2c. It follows from Corollary 1 that each such crossing pair of u-simplex

and v-simplex can be extended to obtain at least
(

d− 4

d− b(d+ 2)/2c

)
= Ω

(
2d/

√
d
)

crossing

pairs of (d − 1)-simplices formed by the hyperedges in E. Therefore, the total number

of crossing pairs of hyperedges in a d-dimensional rectilinear drawing of Kd
2d is at least

b(d+ 4)/2cΩ
(
2d/

√
d
)
= Ω

(
2d
√
d
)

.



Chapter 5

Convex Crossing Number of Complete

d-Uniform Hypergraphs

5.1 Motivation and Previous Works

In this chapter, we investigate some d-dimensional convex drawings of Kd
2d. Our main focus

in this chapter is to derive a closed form expression on the number of crossing pairs of

hyperedges when all 2d vertices of Kd
2d are placed on the d-dimensional moment curve. Note

that the points placed on the d-dimensional moment curve are in general, as well as in convex

position in Rd. Also, recall that a d-dimensional cyclic polytope is a polytope whose vertices

lie on the d-dimensional moment curve. The d-dimensional moment curve plays an important

role in discrete geometry.

Our motivation to work on this particular d-dimensional convex drawing of Kd
2d is the

Upper Bound theorem [45], which states that the d-dimensional cyclic polytope has the

maximum number of faces (of any given dimension i in the range 1 ≤ i ≤ d − 1) among

all d-dimensional convex polytopes having an equal number of vertices. Gale’s evenness

criterion [27, 43] provides a necessary and sufficient condition to determine the number of

facets ((d−1)-dimensional faces) of the d-dimensional cyclic polytope. Let us recall that there

exists a natural ordering among the points on the d-dimensional moment curve. Given two

points pi = (ai, (ai)
2, . . . , (ai)

d) and pj = (aj, (aj)
2, . . . , (aj)

d) on the d-dimensional moment

curve, we say pi ≺ pj (pi precedes pj) if ai < aj.

54
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Gale’s Evenness Criterion. [43] Let V ′ be the set of vertices of a d-dimensional cyclic poly-

tope with the usual ordering on the d-dimensional moment curve. Let F = {v′1, v′2, . . . , v′d} ⊂

V ′ be a set of d vertices of the d-dimensional cyclic polytope such that v′1 ≺ v′2 ≺ . . . ≺ v′d.

F spans a facet ((d− 1)-dimensional face) of the cyclic polytope if and only if the number of

vertices v′i ∈ F with the ordering u′ ≺ v′i ≺ v′ is even for each pair of vertices u′, v′ ∈ V ′ \ F .

Lemma 12. [43] The number of facets of a d-dimensional cyclic polytope with n ≥ d + 1

vertices is 
(
n− bd/2c
bd/2c

)
+

(
n− bd/2c − 1

bd/2c − 1

)
if d is even,

2

(
n− bd/2c − 1

bd/2c

)
if d is odd.

Proof. The Gale’s evenness criterion implies that counting the number of facets of a d-dimensional

cyclic polytope with n ≥ d+1 vertices is equivalent to counting the number of ways of placing

d black points and n−d white points in a row such that there exists an even number of black

points between every two white points. Let us call an arrangement of d black points and

n−d white points in a row a valid arrangement if there exist an even number of black points

between every two consecutive white points.

Let us first consider the case when d is odd. Let d be 2k+1. Note that there can be odd

number of black points at the beginning or at the end but not both in a valid arrangement.

Let us consider the case when there are odd number of black points at the beginning. We

ignore the first black point. We are then left with 2k black points and n − 2k − 1 white

points. Also, note that each contiguous segment of remaining black points contains an even

number of black points. The total number of ways we can obtain such an arrangement is(
n− k − 1

k

)
, since by deleting every second black point from the remaining 2k black points

we obtain a one-to-one correspondence with selecting k positions for the black points out of

n−2k−1+k = n−k−1 positions. We repeat the same argument when there are odd number

of black points at the end by ignoring the last black point. This implies that the number of

facets of a d-dimensional cyclic polytope with n ≥ d+ 1 vertices is 2

(
n− bd/2c − 1

bd/2c

)
when

d is odd.

Let us now consider the case when d is even. Let d be 2k. Note that there can be

odd number of black points or even number of black points at the beginning in a valid
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arrangement. Let us assume that there are odd number of black points at the beginning.

This implies that there are odd number of black points at the end. We ignore the first

and the last black points. We are then left with 2k − 2 black points and n − 2k − 2 white

points. Note that each contiguous segment of the remaining black points contains an even

number of black points. The total number of ways we can obtain such an arrangement is(
n− k − 1

k − 1

)
, since by deleting every second black point from the remaining 2k − 2 black

points we obtain a one-to-one correspondence with selecting k − 1 positions for the black

points out of n − 2k + k − 1 = n − k − 1 positions. Let us now assume that there are an

even number of black points at the beginning and the end. In this case, each contiguous

segment of black points contains an even number of black points. The total number of ways

we can obtain such an arrangement is
(
n− k

k

)
, since by deleting every second black point

from the 2k black points we obtain a one-to-one correspondence with selecting k positions

for black points out of n−2k+k = n−k positions. This implies that the number of facets of

a d-dimensional cyclic polytope with n ≥ d+ 1 vertices is
(
n− bd/2c
bd/2c

)
+

(
n− bd/2c − 1

bd/2c − 1

)
when d is even.

It can be noted that the cyclic polytope is a neighborly polytope [27, 43]. Also, it is easy

to verify that any (d − 1)-dimensional hyperplane cuts the d-dimensional moment curve in

at most d points [43]. The Upper Bound theorem also guarantees that any d-dimensional

neighborly polytope whose vertices are in general position in Rd has the maximum number

of faces (of any given dimension i for any i satisfying 1 ≤ i ≤ d− 1) among all d-dimensional

convex polytopes having the same number of vertices [45]. The Upper Bound theorem moti-

vated us to investigate the d-dimensional convex drawings of Kd
2d when its vertices are placed

in general position as the vertices of a neighborly polytope.

In this chapter, we determine a Gale transform of d+3 points placed on the d-dimensional

moment curve. This result helps us to obtain a lower bound on the number of crossing pairs of

hyperedges when all 2d vertices of Kd
2d are placed on the d-dimensional moment curve. Let us

recall that cmd denotes the number of crossing pairs of hyperedges in a d-dimensional convex

drawing of Kd
2d when its 2d vertices are placed on the d-dimensional moment curve. We

obtain the exact value of cmd . We also prove that the number of crossing pairs of hyperedges

among all 3-dimensional rectilinear drawings of K3
n is maximized when its vertices are placed
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on the 3-dimensional moment curve.

5.2 Crossings in Cyclic Polytope

In this section, we obtain the value of cmd . Let us recall that cmd is the number of crossing

pairs of hyperedges of Kd
2d, when all the 2d vertices of Kd

2d are placed on the d-dimensional

moment curve. As mentioned in Section 5.1, we first prove a lower bound on cmd using the

Gale transform and show later that this bound can be improved by using other techniques

to obtain the exact value of cmd . Let A =
〈
(a1, (a1)

2, . . . , (a1)
d), (a2, (a2)

2, . . . , (a2)
d), . . . ,

(ad+3, (ad+3)
2, . . . , (ad+3)

d)
〉
, where a1 < a2 < . . . < ad+3, be a subset of d+3 vertices selected

from the set of 2d vertices of Kd
2d. We obtain the following.

Lemma 13. The following sequence of 2-dimensional vectors D(A) =
〈
g1, g2, . . . , gd+3

〉
can

be obtained by the Gale transform of A =
〈
(a1, (a1)

2, . . . , (a1)
d), (a2, (a2)

2, . . . , (a2)
d), . . . ,

(ad+3, (ad+3)
2, . . . , (ad+3)

d)
〉
.

gi =



(
(−1)d+1

∏
j∈{1,2,··· ,d+1}\{i}

(ad+2 − aj)∏
k∈{1,2,··· ,d+1}\{i}

(ak − ai)
, (−1)d+1

∏
j∈{1,2,··· ,d+1}\{i}

(ad+3 − aj)∏
k∈{1,2,··· ,d+1}\{i}

(ak − ai)

)
if i /∈ {d+ 2, d+ 3}

(1, 0) if i = d+ 2

(0, 1) if i = d+ 3

Proof. Let us consider the following matrix M(A).

M(A) =



a1 a2 · · · ad+3

(a1)
2 (a2)

2 · · · (ad+3)
2

... ... ... ...

(a1)
d (a2)

d · · · (ad+3)
d

1 1 · · · 1


To obtain the basis of the null space, we need to find solutions of the following d+1 equations

involving d+ 3 variables γ1, γ2, . . . , γd+3.
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a1 a2 · · · ad+3

(a1)
2 (a2)

2 · · · (ad+3)
2

... ... ... ...

(a1)
d (a2)

d · · · (ad+3)
d

1 1 · · · 1




γ1

γ2
...

γd+3

 =


0

0
...

0

 (5.1)

Rearranging Equation 5.1, we get the following:


γ1

γ2
...

γd+1

 = −



a1 a2 · · · ad+1

(a1)
2 (a2)

2 · · · (ad+1)
2

... ... ... ...

(a1)
d (a2)

d · · · (ad+1)
d

1 1 · · · 1



−1 

ad+2 ad+3

(ad+2)
2 (ad+3)

2

... ...

(ad+2)
d (ad+3)

d

1 1


γd+2

γd+3



Setting γd+2 = 1 and γd+3 = 0, we obtain the vector v1 = (γ1, γ2, . . . , γd+2, γd+3) for every

i satisfying 1 ≤ i ≤ d+ 1.

γi = (−1)d+1

∏
j∈{1,2,··· ,d+1}\{i}

(ad+2 − aj)∏
k∈{1,2,··· ,d+1}\{i}

(ak − ai)
.

Setting γd+2 = 0 and γd+3 = 1, we obtain the vector v2 = (γ1, γ2, . . . , γd+2, γd+3) for every i

satisfying 1 ≤ i ≤ d+ 1.

γi = (−1)d+1

∏
j∈{1,2,··· ,d+1}\{i}

(ad+3 − aj)∏
k∈{1,2,··· ,d+1}\{i}

(ak − ai)
.

Note that the vectors v1 and v2 are linearly independent and form a basis of the null space

of the row space of M(A). Hence, the result follows.

Note that for every 1 ≤ i ≤ d + 3, each vector gi in D(A) is represented as an ordered

pair (bi, ci) where bi, ci ∈ R. We denote the slope of the vector gi as si =
ci
bi

. In order to

count the number of linear separations, we observe the following properties of these vectors.

Observation 6. The sequence of 2-dimensional vectors D(A) =
〈
g1, g2, . . . , gd+3

〉
having

slopes
〈
s1, s2, . . . , sd+3

〉
satisfies the following properties.
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(i) For any 1 ≤ i ≤ d+ 1, gi lies in the first (third) quadrant if d+ 1 + i is odd (even).

(ii) ∞ = sd+3 > s1 > s2 > . . . > sd+1 > sd+2 = 0.

Lemma 14. The number of crossing pairs of hyperedges in a d-dimensional convex drawing

of Kd
2d where all of its vertices are placed on the d-dimensional moment curve is Ω(2d

√
d),

i.e., cmd = Ω(2d
√
d).

Proof. Consider the vectors in D(A), that can also be considered as a sequence of d + 3

points in R2. We apply the Ham-Sandwich Theorem by assigning the points in D(A) to P1

and the origin to P2 to obtain a line l passing through the origin that bisects the points in

D(A) into two partitions, each containing at most
⌊
1
2
|D(A)|

⌋
points. Since at most one point

from D(A) can lie on l, it can be rotated using the origin as the center of rotation to obtain

a proper linear separation of D(A) into 2 subsets l+1 (left or counter-clockwise side) and l−1

(right or clockwise side) of size
⌊
d+3
2

⌋
and

⌈
d+3
2

⌉
, respectively. This proper linear separation

corresponds to a crossing pair of a (
⌊
d+3
2

⌋
− 1)-simplex and a (

⌈
d+3
2

⌉
− 1)-simplex in Rd, as

mentioned in Property 2. It follows from Corollary 1 that this crossing pair of simplices can

be used to obtain
( d−3⌊

d−3
2

⌋) distinct crossing pairs of (d − 1)-simplices formed by the vertices

of the hypergraph Kd
2d. We rotate l clockwise using the origin as the center of rotation until

one of the d + 3 points in D(A) moves from one side of the line to the other side to obtain

new subsets {l+2 , l−2 }, each having at least
⌊
d+1
2

⌋
points. This new linear separation {l+2 , l−2 }

corresponds to a crossing pair of simplices in Rd, which can be used to obtain at least
( d−3⌊

d−5
2

⌋)
distinct crossing pairs of (d − 1)-simplices formed by the vertices of the hypergraph Kd

2d.

Note that all the crossing pairs of simplices obtained by extending the partitions {l+1 , l−1 }

and {l+2 , l−2 } are distinct. Since all the d + 3 points of A lie on the d-dimensional moment

curve, Observation 6 implies that the sequence of vectors in D(A), excluding gd+2 and gd+3,

lie alternatively in the first and third quadrants with increasing slopes. As a consequence,

another clockwise rotation of l results in a point in D(A) changing its side at some point of

time from a side having more than or equal to
⌈
d+3
2

⌉
points to the other side. This creates

a new partition {l+3 , l−3 }, each containing at least
⌊
d+3
2

⌋
points. We continue rotating l

clockwise until we obtain the partition {l+1 , l−1 } again. In this way, we obtain at least 2
⌊
d+3
2

⌋
distinct partitions of D(A) such that each subset in a partition contains at least

⌊
d+1
2

⌋
points.
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Hence, the number of crossing pairs of hyperedges spanned by the vertices of Kd
2d placed on

the d-dimensional moment curve is at least 2
⌊
d+3
2

⌋ ( d−3⌈
d−5
2

⌉) = Θ(2d
√
d).

We now use Lemma 15 and Lemma 16 to prove Theorem 3 that implies cmd = Θ
(

4d√
d

)
.

Lemma 15. [15] Let p1 ≺ p2 ≺ . . . ≺ p⌊ d
2

⌋
+1

and q1 ≺ q2 ≺ . . . ≺ q⌈ d
2

⌉
+1

be two distinct point

sequences on the d-dimensional moment curve such that pi 6= qj for any 1 ≤ i ≤
⌊
d
2

⌋
+ 1

and 1 ≤ j ≤
⌈
d
2

⌉
+ 1. The

⌊
d
2

⌋
-simplex and the

⌈
d
2

⌉
-simplex, formed respectively by these

point sequences, cross if and only if every interval (qj, qj+1) contains exactly one pi and every

interval (pi, pi+1) contains exactly one qj.

Lemma 16. [18] Let P and Q be two vertex-disjoint (d− 1)-simplices such that each of the

2d vertices belonging to these simplices lies on the d-dimensional moment curve. If P and

Q cross, then there exist a
⌊
d
2

⌋
-simplex U ( P and another

⌈
d
2

⌉
-simplex V ( Q such that U

and V cross.

Proof. Let us define an interval Iik = {pj| pj = (aj, (aj)
2, . . . , (aj)

d) and ai ≤ aj ≤ ak} on

the d-dimensional moment curve. For the sake of contradiction, let us assume that P and Q

cross but there do not exist a
⌊
d
2

⌋
-simplex U ( P and another

⌈
d
2

⌉
-simplex V ( Q such that

U and V cross. We color the vertices of P by red and the vertices of Q by blue. Lemma 15

implies that there is no chain of length d + 2 with alternating colors. This further implies

that the set of all vertices of P and Q can be partitioned into at most d+ 1 monochromatic

alternating intervals. Thus, the set of monochromatic red intervals can be separated from

the set of monochromatic blue intervals by a hyperplane passing through d points on the

d-dimensional moment curve. This implies that the set of red points and the set of blue

points can be separated by a hyperplane. This further implies that P and Q lie in the

different open half-spaces created by this hyperplane. This contradicts our assumption that

P and Q cross.

Theorem 3. Let cmd be the number of crossing pairs of hyperedges in a d-dimensional convex

drawing of Kd
2d where all of its vertices are placed on the d-dimensional moment curve. The



61

value of cmd is

cmd =


(
2d− 1

d− 1

)
−

d
2∑

i=1

(
d

i

)(
d− 1

i− 1

)
if d is even(

2d− 1

d− 1

)
− 1−

⌊
d
2

⌋∑
i=1

(
d− 1

i

)(
d

i

)
if d is odd

= Θ

(
4d√
d

)

Proof. Let {C,D} be a pair of disjoint vertex sets, each having d vertices of Kd
2d placed on

the d-dimensional moment curve. Without loss of generality, let us assume that C contains

the first vertex (i.e., the vertex corresponding to the minimum value of t) of Kd
2d. Note that

the number of such unordered pairs {C,D} is 1
2

(
2d
d

)
=
(
2d−1
d−1

)
. Let us color the vertices in C

and D by red and blue, respectively, to obtain d partitions created by the red vertices. In

particular, the first d − 1 of these partitions are between two adjacent red vertices, and the

last one is after the last red vertex. It implies from Corollary 1 and Lemma 15 that the pair

of (d−1)-simplices formed by the vertices in C and D cross if there exists a sequence of d+2

vertices with alternating colors. Similarly, we obtain from Lemma 15 and Lemma 16 that

the pair of (d− 1)-simplices formed by the vertices in C and D do not cross if there does not

exist any sequence of d+ 2 vertices with alternating colors.

When d is even, the number of disjoint vertex sets {C,D} that do not contain any

subsequence of length d+ 2 having alternating colors is equal to the number of ways d blue

vertices can be distributed among d partitions such that at most d
2

of the partitions are non-

empty. This number is equal to
d
2∑

i=1

(
d

i

)(
d− 1

i− 1

)
. When d is odd, the number of disjoint

vertex sets {C,D} that do not contain any subsequence of length d + 2 having alternating

colors is equal to the number of ways d blue vertices can be distributed among d partitions

such that at most
⌊
d
2

⌋
of the first d − 1 partitions are non-empty. This number is equal to⌊

d
2

⌋∑
i=1

(
d− 1

i

)((
d− 1

i− 1

)
+

(
d− 1

i

))
+ 1.

Hence, the total number of crossing pairs of (d− 1)-simplices spanned by the 2d vertices
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placed on the d-dimensional moment curve is

cmd =


(
2d− 1

d− 1

)
−

d
2∑

i=1

(
d

i

)(
d− 1

i− 1

)
if d is even.(

2d− 1

d− 1

)
− 1−

⌊
d
2

⌋∑
i=1

(
d− 1

i

)(
d

i

)
if d is odd.

In the following, we show that 3-dimensional convex crossing number of K3
6 is 3, i.e.,

c∗3 = 3. It is easy to see that c∗2 = 1. However, we are not aware of the exact values of c∗d for

d > 3.

Theorem 4. The number of crossing pairs of hyperedges in a 3-dimensional rectilinear

drawing of K3
6 is 3 when all the vertices of K3

6 are in convex as well as general position in

R3.

Proof. Let A be the set of vertices of K3
6 that are in convex as well as general position

in R3. Let D(A) denote the Gale transform of A. Since the points in A are in general

position, Property 1 of the Gale transformation shows that the 6 vectors in D(A) are in

general position in R2. Since the points in A are also in convex position, Property 4 of the

Gale transformation implies that these vectors can be partitioned by a line l passing through

the origin in two possible ways, i.e., the number of vectors in the opposite open half-spaces

created by l can be either 4 and 2, or 3 and 3. Note that the second case is also known as

a proper linear separation that corresponds to a crossing pair of 2-simplices spanned by the

points in A. Without loss of generality, let us assume that l partitions the vectors in D(A)

in such a way that one of the open half-spaces created by l contains 4 vectors and the other

contains 2 vectors. We rotate l clockwise using the origin as the center of rotation until one

vector changes its side. Since Property 4 of the Gale transformation shows that l cannot

partition the vectors such that there exists 1 vector on one of its side, this new partition

obtained by rotating l is a proper linear separation. We again rotate l clockwise using the

origin as the axis of rotation until one vector changes its side to obtain a new partition having

4 vectors on one side and 2 on the other side. We continue rotating l clockwise till we reach
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the first partition to obtain three proper linear separations of the vectors in D(A).

5.3 Crossings in Other Convex Polytopes

In this section, we consider Kd
2d having the vertex set V = {v1, v2, . . . , v2d} and the hyperedge

set E having
(
2d

d

)
hyperedges formed by these 2d vertices.

Theorem 5. For any constant t ≥ 1 independent of d, the number of crossing pairs of

hyperedges in a d-dimensional rectilinear drawing of Kd
2d is Ω(2dd3/2) if the vertices of Kd

2d

are placed as the vertices of a d-dimensional t-neighborly polytope that is not (t+1)-neighborly.

Proof. Consider the points in V that form the vertex set of a d-dimensional t-neighborly

polytope which is not (t+1)-neighborly. Property 6 of the Gale transformation implies that

there exists a linear hyperplane h̃ such that one of the open half-spaces created by it contains

t + 1 vectors of D(V ). Without loss of generality, we denote the set of these t + 1 vectors

by D+(V ). It implies that one of the closed half-spaces created by h̃ contains 2d − t − 1

vectors of D(V ). If d − 2 vectors of D(V ) do not lie on h̃, we rotate h̃ around the lower

dimensional hyperplane spanned by the vectors on h̃ till some new vector gi ∈ D(V ) lies on

it. We keep rotating h̃ in this way till d − 2 vectors of D(V) lie on it. Property 6 of the

Gale transformation also implies that none of these d− 2 vectors belongs to the set D+(V ).

After rotating h̃ in the above mentioned way, we obtain a partition of D(V ) by a linear

hyperplane h̃′ such that one of the open half-spaces created by it contains t+ 1 vectors and

the other one contains d + 1 − t vectors. This implies that there exist a t-simplex and a

(d− t)-simplex created by the vertices in V such that they form a crossing. We choose any

three vertices from the rest of the d− 2 vertices in V and add these three vertices to the d+2

vertices corresponding to this crossing pair of simplices. This implies that the t-neighborly

sub-polytope formed by the convex hull of the d+ 5 vertices is not (t+ 1)-neighborly.

Without loss of generality, let the vertex set of this sub-polytope be V ′ = {v1, v2,

. . . , vd+5}. Note that a Gale transform D(V ′) of it is a collection of d + 5 vectors in R4.

Property 6 of the Gale transformation implies that there exists a linear hyperplane h such

that one of the open half-spaces created by it contains exactly t + 1 vectors of D(V ′). As

described in the proof of Theorem 1, it follows from Property 1 that at most three vectors
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can lie on h. Since the vectors in D(V ′) are in general position, we can slightly rotate h to

obtain a linear hyperplane h′ such that one of the open half-spaces created by h′ contains

t+ 1 vectors and the other one contains d+ 4− t vectors.

Consider a hyperplane parallel to h′ and project the vectors in D(V ′) on this hyperplane

to obtain an affine Gale diagram D(V ′). Note that D(V ′) contains d + 4 − t points of the

same color and t+1 points of the other color in R3. Without loss of generality, let us assume

that these d+ 4− t points of the same color are white. Also, note that the points in D(V ′)

are in general position in R3.

Let us consider the set W consisting of d + 4 − t white points of D(V ′). Observation 4

implies that there exist Ω(d2) distinct k-sets of W such that min{k, d+4− t− k} is at least

d(d+ 3− t)/2e. Each of these k-sets corresponds to a unique linear separation of D(V ′) such

that it contains at least d(d+ 3− t)/2e vectors in each of the open half-spaces created by the

corresponding linear hyperplane. Property 2 of the Gale transformation implies that there

exists a unique crossing pair of u-simplex and v-simplex corresponding to each of these linear

separations of D(V ′), such that u+ v + 2 = d+ 5 and min{u+ 1, v + 1} ≥ d(d+ 3− t)/2e.

It follows from Corollary 1 that each such crossing pair of u-simplex and v-simplex can be

extended to obtain at least
(

d− 5

d− d(d+ 3− t)/2e

)
crossing pairs of (d− 1)-simplices formed

by the hyperedges in E. Therefore, the total number of crossing pairs of hyperedges in

such a d-dimensional rectilinear drawing of Kd
2d is at least Ω(d2)

(
d− 5

d− d(d+ 3− t)/2e

)
=

Ω
(
2dd3/2

)
.

Theorem 6. For any constant t′ ≥ 0 independent of d, the number of crossing pairs of

hyperedges in a d-dimensional rectilinear drawing of Kd
2d is Ω(2dd5/2) if the vertices of Kd

2d

are placed as the vertices of a d-dimensional (bd/2c − t′)-neighborly polytope.

Proof. Since the points in V form the vertex set of a d-dimensional (bd/2c − t′)-neighborly

polytope, consider a sub-polytope of it formed by the convex hull of the vertex set V ′ con-

taining any d+5 points of V . Without loss of generality, let V ′ be {v1, v2, . . . , vd+5}. Note

that a Gale transform D(V ′) of it is a collection of d + 5 vectors in R4 and an affine Gale

diagram D(V ′) of it is a collection of d + 5 points in R3. In this proof, we ignore the colors

of these points. However, note that the points in D(V ′) are in general position in R3.
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Consider the set D(V ′). It follows from Observation 5 that the number of (≤ d(d+ 5)/4e)

-sets of D(V ′) is Ω(d3). For each k in the range 1 ≤ k ≤ d(d+ 5)/4e, a k-set of D(V ′) cor-

responds to a unique linear separation of D(V ′). Property 6 of the Gale transformation

implies that each of these Ω(d3) linear separations of D(V ′) contains at least bd/2c − t′ + 1

vectors in each of the open half-spaces created by the corresponding linear hyperplane.

Property 2 of the Gale transformation implies that there exists a unique crossing pair

of u-simplex and v-simplex corresponding to each linear separation of D(V ′), such that

u + v + 2 = d + 5 and min{u + 1, v + 1} ≥ bd/2c − t′ + 1. It follows from Corollary

1 that each such crossing pair of u-simplex and v-simplex can be extended to obtain at

least
(

d− 5

d− bd/2c+ t′ − 1

)
= Ω

(
2d/

√
d
)

crossing pairs of (d − 1)-simplices formed by the

hyperedges in E. Therefore, the total number of crossing pairs of hyperedges in such a

d-dimensional rectilinear drawing of Kd
2d is at least Ω(d3)Ω

(
2d/

√
d
)
= Ω

(
2dd5/2

)
.



Chapter 6

Rectilinear Crossings in Complete

Balanced d-Partite d-Uniform

Hypergraphs

6.1 Motivation and Previous Works

In this chapter, we establish a non-trivial lower bound on the d-dimensional rectilinear cross-

ing number of the complete balanced d-uniform d-partite hypergraph having nd vertices.

Finding the rectilinear crossing number of complete bipartite graphs (i.e., complete 2-uniform

bipartite hypergraphs) is an active area of research [36]. Let Kn,n denote the complete bipar-

tite graph having n vertices in each partition. The best-known lower and upper bounds on

cr(Kn,n) are n(n− 1)

5
bn/2c b(n− 1)/2c and bn/2c2 b(n− 1)/2c2, respectively [36, 57]. Na-

has [46] improved the lower bound on cr(Kn,n) to n(n− 1)

5
bn/2c b(n− 1)/2c+9.9× 10−6n4

for sufficiently large n.

Let us recall that a hypergraph H is called d-uniform if each hyperedge contains d vertices.

Let us also recall that a d-uniform hypergraph H = (V,E) is said to be d-partite if there

exists a sequence < X1, X2, . . . , Xd > of disjoint sets such that V =
d⋃

i=1

Xi and E ⊆ X1×X2×

. . .×Xd. We call Xi to be the ith part of V . Moreover, such a d-partite d-uniform hypergraph

is called balanced if |X1| = |X2| = . . . = |Xd| and complete if |E| = |X1 ×X2 × . . .×Xd|.

66
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Let us also recall that Kd
d×n denotes the complete balanced d-partite d-uniform hypergraph

with n vertices in each part. For t ≥ 2, let us denote by Kd
k1×n1+k2×n2+...+kt×nt

the complete

d-partite d-uniform hypergraph if
t∑

i=1

ki = d, ni 6= ni+1 for all i in the range 1 ≤ i ≤ t − 1,

and each of the first k1 > 0 parts contains n1 vertices, each of the next k2 > 0 parts contains

n2 vertices, . . ., each of the final kt > 0 parts contains nt vertices.

We first use the Colored Tverberg theorem with restricted dimensions and Corollary 1 to

observe the lower bound on crd
(
Kd

d×n

)
mentioned in Observation 7. Let us introduce a few

more definitions and notations used in its proof. Two d-uniform hypergraphs H1 = (V1, E1)

and H2 = (V2, E2) are isomorphic if there is a bijection f : V1 → V2 such that any set

of d vertices {u1, u2, . . . , ud} is a hyperedge in E1 if and only if {f(u1), f(u2), . . . , f(ud)}

is a hyperedge in E2. A hypergraph H ′ = (V ′, E ′) is called an induced sub-hypergraph of

H = (V,E) if V ′ ⊆ V and E ′ contains all hyperedges of E spanned by the vertices in V ′.

A (u − 1)-simplex which is a convex hull of a set U containing u points (1 ≤ u ≤ d + 1)

in general position in Rd is denoted by Conv(U). Recall that a (u − 1)-simplex Conv(U)

spanned by a point set U containing u points and a (w − 1)-simplex Conv(W ) spanned by

the point set W containing w points cross if U ∩W = φ and they contain a common point in

their relative interiors. For the sake of completeness, we again mention the Colored Tverberg

theorem with restricted dimensions.

Colored Tverberg Theorem with restricted dimensions. [44, 55] Let {C1, C2, . . . , Ck+1}

be a collection of k+1 disjoint finite point sets in Rd. Each of these sets is assumed to be of

cardinality at least 2r − 1, where r is a prime integer satisfying the inequality r(d− k) ≤ d.

Then, there exist r disjoint sets S1, S2, . . . , Sr such that Si ⊆
⋃k+1

j=1 Cj,
⋂r

i=1 Conv(Si) 6= ∅

and |Si ∩ Cj| = 1 for all i and j satisfying 1 ≤ i ≤ r and 1 ≤ j ≤ k + 1.

We prove the following observation to establish a lower bound on crd
(
Kd

d×n

)
. We improve

this lower bound later in this chapter.

Observation 7. crd
(
Kd

d×n

)
= Ω

(
(8/3)d/2

)
(n/2)d ((n− 1)/2)d for n ≥ 3.

Proof. Let us consider the hypergraph H = Kd
d×n such that its vertices are in general posi-

tion in Rd. Let H ′ = Kd
(dd/2e+1)×3+(bd/2c−1)×2 be an induced sub-hypergraph of it containing
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3 vertices from each of the first dd/2e + 1 parts and 2 vertices from each of the remain-

ing bd/2c − 1 parts. Let Ci denote the ith part of the vertex set of H ′ for each i in the

range 1 ≤ i ≤ dd/2e + 1. Note that C1, C2, . . . , Cdd/2e+1 are disjoint sets in Rd and each

of them contains 3 vertices. Clearly, these sets satisfy the condition of Colored Tverberg

theorem with restricted dimensions for k = dd/2e and r = 2. Since the vertices of H ′

are in general position in Rd, Colored Tverberg theorem with restricted dimensions im-

plies that there exists a crossing pair of dd/2e-simplices spanned by U ⊆
⋃dd/2e+1

j=1 Cj and

W ⊆
⋃dd/2e+1

j=1 Cj such that U ∩ W = ∅ and |U ∩ Cj| = 1, |W ∩ Cj| = 1 for each j in

the range 1 ≤ j ≤ dd/2e + 1. Corollary 1 implies that U and W can be extended to

form 2bd/2c−1 distinct crossing pairs of (d − 1)-simplices, where each (d − 1)-simplex con-

tains exactly one vertex from each part of H ′. This implies that crd (H
′) ≥ 2bd/2c−1. Note

that each crossing pair of hyperedges corresponding to these (d− 1)-simplices is contained in

(n−2)dd/2e+1 distinct induced sub-hypergraphs of H, each of which is isomorphic to H ′. More-

over, there are
(
n

3

)dd/2e+1(
n

2

)bd/2c−1

distinct induced sub-hypergraphs of H, each of which

is isomorphic to H ′. This implies crd
(
Kd

d×n

)
≥ 2bd/2c−1

(n
3

)dd/2e+1(n
2

)bd/2c−1
/

(n− 2)dd/2e+1

= nd(n− 1)d/6dd/2e+1 = Ω
(
(8/3)d/2

)
(n/2)d ((n− 1)/2)d.

In Section 6.2, we improve the lower bound on crd
(
Kd

d×n

)
. To the best of our knowledge,

this is the first non-trivial lower bound on this number.

6.2 Lower Bound on the d-Dimensional Rectilinear Cross-

ing Number of Kd
d×n

In this section, we use Property 3 and the Ham-Sandwich theorem to improve the previously

observed lower bound on the d-dimensional rectilinear crossing number of Kd
d×n for n ≥ 3.

Theorem 7. crd
(
Kd

d×n

)
= Ω

(
2d
)
(n/2)d ((n− 1)/2)d for n ≥ 3.

Proof. Let us consider the hypergraph H = Kd
d×n such that all of its vertices are in general

position in Rd. Let H ′ = Kd
2×3+(d−2)×2 be an induced sub-hypergraph of it containing 3
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vertices from each of the first 2 parts and 2 vertices from each of the remaining (d − 2)

parts of the vertex set of H. Let P = < p1, p2, p3, . . . , p2d+1, p2d+2 > be a sequence of the

vertices of H ′ such that {p1, p2, p3} belongs to the first partition L1, {p4, p5, p6} belongs to

the second partition L2 and {p2k+1, p2k+2} belongs to the kth partition Lk for each k in the

range 3 ≤ k ≤ d. We consider a Gale transform of P and obtain a sequence of 2d + 2

vectors D(P ) = < v1, v2, v3, . . . , v2d+1, v2d+2 > in Rd+1. It follows from Property 1 of the

Gale transformation that any set containing d+1 of these vectors spans Rd+1. As mentioned

before, D(P ) can also be considered as a sequence of points in Rd+1. In order to apply

Ham-Sandwich theorem in Rd+1, we color the origin with color c0, {v1, v2, v3} with color c1,

{v4, v5, v6} with color c2 and {v2k+1, v2k+2} with color ck for each k in the range 3 ≤ k ≤ d.

The Ham-Sandwich theorem guarantees that there exists a hyperplane h such that it passes

through the origin and bisects the set colored with ci for each i in the range 1 ≤ i ≤ d. Note

that at most d points of D(P ) lie on the linear hyperplane h, since any set of d+1 vectors in

D(P ) spans Rd+1. This implies that there exist at least d+ 2 points in D(P ) that lie either

in the positive open half-space h+ or in the negative open half-space h− created by h with

an orientation assigned to it. Let D+(P ) and D−(P ) be the two sets of points lying in h+

and h−, respectively. The Ham-Sandwich theorem ensures that at most d points of D(P )

can lie in one of h+ and h−. This implies that |D+(P )| ≥ 2 and |D−(P )| ≥ 2. Moreover,

note that 2 points having the same color cannot lie in the same open half-space. Property

3 implies that there exist a (u − 1)-simplex Conv(Pa) spanned by the vertices of Pa ⊂ P

and a (w − 1)-simplex Conv(Pb) spanned by the vertices of Pb ⊂ P such that the following

properties are satisfied.

(I) Pa ∩ Pb = ∅

(II) Conv(Pa) and Conv(Pb) cross.

(III) 2 ≤ |Pa|, |Pb| ≤ d, |Pa|+ |Pb| ≥ d+ 2

(IV) |Pa ∩ Li| ≤ 1 for each i in the range 1 ≤ i ≤ d

(V) |Pb ∩ Li| ≤ 1 for each i in the range 1 ≤ i ≤ d
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Corollary 1 implies that the crossing between two lower-dimensional simplices Conv(Pa)

and Conv(Pb) can be extended to a crossing pair of (d− 1)-simplices spanned by vertex sets

U ′,W ′ ⊂ P satisfying U ′ ⊇ Pa and W ′ ⊇ Pb, respectively. In fact, it is always possible to

add vertices to Pa and Pb in such a way that following conditions hold for U ′ and W ′.

(I) U ′ ∩W ′ = ∅

(II) Conv(U ′) and Conv(W ′) cross.

(III) |U ′| = |W ′| = d

(IV) |U ′ ∩ Li| = 1 for each i in the range 1 ≤ i ≤ d

(V) |W ′ ∩ Li| = 1 for each i in the range 1 ≤ i ≤ d

The argument above establishes the fact that crd(H
′) ≥ 1. Note that H contains(

n

3

)2(
n

2

)d−2

distinct induced sub-hypergraphs, each of which is isomorphic to H ′. Since

each crossing pair of hyperedges is contained in (n− 2)2 distinct induced sub-hypergraphs of

H, each of which is isomorphic to H ′, we obtain crd
(
Kd

d×n

)
≥
(
n

3

)2

·
(
n

2

)d−2/
(n− 2)2 =

nd(n− 1)d

9 · 2d
= Ω

(
2d
)
(n/2)d ((n− 1)/2)d.



Chapter 7

Conclusions

In this chapter, we summarize the contributions in this thesis. In Chapter 4, we gave a lower

bound on the d-dimensional rectilinear crossing number of a complete d-uniform hypergraph

with n vertices by using the Gale transformation and the Ham-Sandwich theorem. In Chap-

ter 5, we investigated the d-dimensional convex drawing of a complete d-uniform hypergraph

when all of its vertices are placed on the d-dimensional moment curve. In particular, we

proved that the 3-dimensional convex crossing number of a complete 3-uniform hypergraph

with n vertices is 3

(
n

6

)
. We also investigated different types of d-dimensional rectilinear

drawings of a complete d-uniform hypergraph having 2d vertices in convex as well as general

position in Rd. In Chapter 6, we established a non-trivial lower bound on the d-dimensional

rectilinear crossing number of a complete balanced d-partite d-uniform hypergraph having

nd vertices. We list some open problems related to the d-dimensional rectilinear drawings of

the d-uniform hypergraphs.

• We already showed that the number of crossing pairs of hyperedges in a d-dimensional

rectilinear drawing of Kd
n is asymptotically maximum when all of its vertices are

placed on the d-dimensional moment curve. It is an interesting problem to produce

a d-dimensional rectilinear drawing of Kd
n which maximizes the number of crossing

pairs of hyperedges. The Upper Bound theorem [45] states that the d-dimensional

cyclic polytope (i.e., the polytope whose vertices are all placed on the d-dimensional

moment curve) has the maximum number of faces of any given dimension among all

d-dimensional convex polytopes having the same number of vertices. Inspired by this

71



72

result, we conjecture the following.

Conjecture 1. The placement of n vertices on the d-dimensional moment curve max-

imizes the number of crossing pairs of hyperedges in a d-dimensional convex drawing

of Kd
n.

• Garey and Johnson [26] showed that given a graph G and an integer M , determining

whether the crossing number of G is less than or equal to M is NP-complete. The

same proof can be modified to show that determining whether the rectilinear crossing

number of a graph G is less than or equal to M is NP-hard. For d ≥ 3 and an integer N ,

it is an interesting open problem to prove that determining whether the d-dimensional

rectilinear crossing number of a d-uniform hypergraph is less than or equal to N is

NP-hard.

• There is a significant gap between the lower bound and the upper bound on the

d-dimensional rectilinear crossing number of Kd
2d. It is an interesting problem to reduce

this gap.

• It is an exciting problem to establish a non-trivial upper bound on the d-dimensional

rectilinear crossing number of a complete balanced d-partite d-uniform hypergraph

having n vertices in each part.

• Guy [31] noted that in a rectilinear drawing of a complete graph, the number of crossing

pairs of edges is minimum when the convex hull of its vertices forms a triangle. A rigor-

ous proof of this claim can be found in [2]. No such result is known for the d-dimensional

rectilinear drawings of Kd
2d. Proving a similar result for the d-dimensional rectilinear

drawings of Kd
2d will improve the lower bound on the d-dimensional rectilinear crossing

number of Kd
2d.
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