
MATRIX COMPLETION TECHNIQUES IN BIOINFORMATICS

by

AANCHAL MONGIA

Under the Supervision of Dr. Angshul Majumdar

Indraprastha Institute of Information Technology Delhi

September, 2020

©Indraprastha Institute of Information Technology (IIITD), New Delhi, 2019



MATRIX COMPLETION TECHNIQUES IN BIOINOFRMATICS

by

AANCHAL MONGIA

Submitted

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

to the

Indraprastha Institute of Information Technology Delhi

September, 2020



Certificate

This is to certify that the thesis titled Matrix completion techniques in Bioin-

formatics being submitted by Aanchal Mongia to the Indraprastha Institute of

Information Technology Delhi, for the award of the degree of Doctor of Philos-

ophy, is an original research work carried out by her under my supervision. In

my opinion, the thesis has reached the standard fulfilling the requirements of

the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree or diploma.

September, 2020

Dr. Angshul Majumdar

Indraprastha Institute of Information Technology Delhi

New Delhi 110020





Acknowledgements

I take this opportunity to express my heart-felt gratitude for my amazing super-
visor Dr. Angshul Majumdar for his consistent support, immense knowledge,
scientific inputs and dedicated help. I don’t think I would be able to thank him
enough for the encouragement, research freedom and patience he has extended.
He has been exceptionally motivating, understanding and a guide in true sense.
I am really pleased to have been associated with a person like Dr. Angshul in
my life. During the last three years, I have learnt extensively from him includ-
ing how to raise new possibilities, how to regard an old question from a new
perspective, time management, etc. To put in simple words, I could not have a
better supervisor.

My special words of thanks should also go to Dr. Debarka Sengupta without
the valuable guidance of whom this work would not have been possible. He has
extended his valuable time, biological insights and expert guidance during the
initial years of my Ph.D.

I would also like to thank Dr. Emilie Chouzenoux for research collaboration
and the theoretical expertise she has provided in this dissertation.

I would like to thank my family, especially the pillar of my life, my father for
always believing in me, supporting my decisions, constantly backing me with
his immense care and love throughout my life.

I owe a special thanks to the members of SALSA lab for being a support
system to my professional and personal life in the past three years.

I also express my regards to Miss Priti Patel (Assistant manager) in our uni-
versity. She has never failed to provide timely advice and support to all the
administrative matters involved right from the beginning. I am also grateful to
the IT helpdesk team of our university for always providing timely technical
support whenever needed and the Indraprastha Institute of Information Technol-



ogy for providing excellent infrastructure and research environments.



Abstract

Data analytics and computational techniques applied to biological sciences aid
rapid technological advances, swift discoveries, and reliable analysis. A broad
range of bountiful tools and algorithms have played pivotal roles in a variety
of biological applications. One such class of algorithms: "Matrix completion",
motivated from recommender systems, has been used to solve different kinds
of biological problems. This dissertation proposes the use of novel low-rank
matrix completion algorithms and their variants as a contribution for two fields:
scRNA-sequencing and drug re-positioning. Specifically, biological problems
such as scRNA-seq imputation, drug-target interaction prediction, drug-disease
association prediction, and the most motivating one, virus-drug prediction (pro-
posed to contribute towards a cure for COVID-19) have been modeled as matrix
completion frameworks bridging the gap between two seemingly disjoint re-
search fields, collaborative filtering, and bioinformatics, initiating a symbiotic
or deep collaborative relationship between the two.

Firstly, this dissertation proposes one of the early tools for the imputation of
scRNA-seq gene expression data. The single-cell RNA seq technology allows
the measurement of gene expression at a single-cell resolution but has a disad-
vantage of a low amount of mRNA in individual cells. This eventually leads to
dropouts in the single-cell gene expression data hindering the single-cell down-
stream analysis. We handle the dropouts problem by modeling scRNA-seq im-
putation as a missing-value prediction problem, employing a novel deep matrix
completion framework.

The second contribution is largely incremental in terms of biological applica-
tion but novel when looked at from an algorithmic perspective. With the aim of
drug re-positioning/drug re-purposing (predicting new targets/diseases for exist-
ing drugs), we propose techniques for drug-disease association and drug-target
interaction prediction. Both take into account the side-information associated
with the drug and target entities and deploy graph regularized matrix completion
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frameworks for the aforesaid tasks.

Apart from this, the third application has consequentially sprouted from the
algorithmic contributions of this thesis which finds its direct mapping to pre-
dict anti-viral treatments/effective against SARS-Cov-2. We put forward a ma-
trix completion framework based on a manually curated drug-virus association
dataset, which uses variants of matrix completion methods (including the pro-
posed ones) for virus-drug association prediction. This work interestingly cov-
ers the entire spectrum of tasks ranging from data curation to algorithms and
biological implications.

The fourth and the last contribution of this dissertation is a new framework
which can collaboratively perform matrix completion, finding its application
in imputation on combined proteomics and transcriptomics data obtained from
RNA sequencing methods such as CITE-seq in which the RNA data is expected
to have relatively more dropouts (due to higher amounts of protein in a cell).
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RNA ribonucleic acid

scRNA-seq single cell RNA sequencing

DTI drug target interaction

DDA drug disease association

DVA drug virus association

1L 1 layer

2L 2 layer

3L 3 layer

SVD singular value decomposition

MM majorization minimization

ADMM alternating direction method of multipliers

PPXA parallel proximal algorithm

S similarity matrix

L row laplacian matrix

N neighborhood matrix

SARS-CoV severe acute respiratory syndrome coronavirus

COVID-19 corona virus disease-19

CV cross validation

MPV maximum precision value

ROC receiver operating characteristic curve

AUC area under ROC curve

AUPR area under precision recall curve

ARI adjusted rand index

Tr Trace

◦ hadamard product
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||.||1 l2 norm

||.||2 l2 norm

||.||F Frobenius norm

||.||∗ Nuclear norm

soft soft thresholding operator

(.)T transpose

(.)−1 inverse
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Chapter 1

Introduction

This dissertation is explicit and the first work to model a range of Bioinformatics

problems using matrix completion frameworks. All biological prediction or

imputation problems where the data can be structured as a low-rank matrix and

has limited noise may be approached via matrix completion technique or any

of its variants. If the data to be recovered is accompanied by side-information

or metadata associated with the row and column entities, one can take leverage

the use of graph regularized Matrix completion frameworks too (refer section

1.1.4).

In this chapter, we give an overview of algorithmic frameworks that form the

backbone of our work (first section). We also describe the contribution of this

dissertation in brief in the next section.
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1.1 Underlying frameworks

The problem of completing a partially observed matrix X is called Matrix com-

pletion. The complete matrix is constituted by the known and the yet unknown

values. We can assume that the data that we have acquired, Y is a sampled ver-

sion of the complete expression matrix X . Mathematically, this is expressed as,

Y = M ◦ (X) (1.1)

Here M is the sub-sampling operator and ◦ is the Hadamard product (element-

wise multiplication operator). M is binary and has 0’s where the complete data

X has not been observed and 1’s where it has been. The values of M are element-

wise multiplied (◦) to the complete matrix X so that Y (the sub-sampled data)

is a sparse representation of X and has values only at positions where values are

observed. Our problem is to recover X , given the observations Y , and the sub-

sampling mask A. It is known that X is of low-rank (refer Appendices section

1).

It should be noted that matrix completion is a well-studied framework [1].

Below, we consider two algorithms for data completion: Matrix factorization

[2] and Nuclear norm minimization [3].
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1.1.1 Matrix factorization

Matrix factorization is the most straightforward way to address the low-rank

matrix completion problem; it has previously been used for finding lower di-

mensional decompositions of matrices [4]. Say X is of dimensions m× n, but

is known to have a rank r (<m,n). In that case, one can express Xm×n as a

product of two matrices Um×r and Vr×n . Therefore the complete problem (1.1)

can be formulated as,

Y = M ◦ (X) = M ◦ (UV ) (1.2)

Estimating U and V from (1.2) tantamount to recovering X.

Figure 1.1: Matrix factorization as product of two latent factor matrices

The two matrices U and V can be solved by minimizing the Frobenius norm

of the following cost function,

min
U,V
||Y −M ◦ (UV )||2F (1.3)

Since this is a bi-linear problem, one cannot guarantee global convergence.

However, it usually works in practice. It has been used for solving recom-

mender systems problems [2], where (1.3) was solved using stochastic gradient

descent (SGD). SGD is not an efficient technique and requires tuning of several
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parameters. In this work, we will solve (1.3) in a more elegant fashion using

Majorization-Minimization (MM) [5].

For our given problem, the cost function to be minimized is given as J(X) =

||Y −A(X)||2F ; the majorization step basically decouples the problem (from A),

so that we can solve the optimization problem by solving the following,

min
U,V
||B − UV ||2F (1.4)

where Bk+1 = Xk + 1
aA

T (Y − A(Xk)) at each iteration k. Here, Xk is the

matrix at iteration k and a is a scalar parameter in the MM algorithm.

This (1.4) is solved by alternating least squares [6], i.e. while updating U , V

is assumed to be constant and while updating V , U is assumed to be constant,

Uk ← min
U
||B − Uk−1Vk−1||2F (1.5)

Vk ← min
V
||B − UkVk−1||2F (1.6)

Since the input would never be negative in case of our problem/s, we have

imposed a non-negativity constraint on the recovered matrix X, so that it does

not contain any negative values.

The matrix factorization algorithm has been summarized in Algorithm 1.

The initialization of factor V is done by keeping r right singular vectors of X in

V obtained by performing singular value decomposition (SVD) of X, where r

is the approximate rank of the expression matrix to be recovered.
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Algorithm 1 Matrix completion using matrix factorization

1: procedure MATRIX-FACTORIZATION(Y,A, r)
2: Initialize: X = random, a, V (SVD initialization), k and l.
3: For loop 1, iterate (k)
4: Bk = Xk−1 + 1

aA
T (Y −A ◦Xk−1)

5: For loop 2, iterate (l)
6: Ul ← min

U
||Bk − Ul−1Vl−1||2F

7: Vl ← min
V
||Bk − UlVl−1||2F

8: End loop 2
9: Xk = UkVk

10: Xk ← X+
k

11: End loop 1

1.1.2 Nuclear norm minimization

The problem depicted in (1.3) is non-convex. Hence, there is no guarantee

for global convergence. Also one needs to know the approximate rank of the

matrix X in order to solve it, which is unknown in this case. To combat this

issue, researchers in applied mathematics and signal processing proposed an

alternative solution. They would directly solve the original problem (1.1) with

a constraint that the solution is of low-rank. This is mathematically expressed

as,

min
X

rank(X) s.t. Y = M ◦ (X) (1.7)

Here, rank(X) denotes the rank or the number of non zero singular values of

X. The above problem turns out to be NP hard problem with doubly exponential

complexity. Therefore, studies in matrix completion [7, 8] proposed relaxing

the NP hard rank minimization problem to its closest convex surrogate: nuclear

6



norm minimization,

min
X
||X||∗ s.t. Y = M ◦ (X) (1.8)

Here ||.||∗ is the nuclear norm and is defined as the sum of singular values of data

matrixX . It is the l1 norm of the vector of singular values of X and is the tightest

convex relaxation of the rank of matrix, and therefore its ideal replacement.

This is a semi-definite programming (SDP) problem. Usually its relaxed

version (Quadratic Program) is solved [9] with the unconstrained Lagrangian

version,

min
X
||Y −M ◦ (X)||2F + λ||X||∗ (1.9)

Here, ||.||∗ is the nuclear norm and λ is called the Lagrange multiplier. The

problem (1.9) does not have a closed form solution and needs to be solved

iteratively.

To solve (1.9), we invoke MM once more. Here J(X) = ||Y −M ◦ (X)||2F +

λ||X||∗ , we can express (1.9) in the following fashion in every iteration k,

min
X
||B −X||2F + λ||X||∗ (1.10)

where Bk+1 = Xk + 1
aM

T (Y −M(Xk)).

Using the inequality ||Z1−Z2||F ≥ ||s1−s2||2 , where s1 and s2 are singular

values of the matrices Z1 and Z2 respective, we can solve the following instead

7



of solving the minimization problem (1.10),

min
sx
||sB − sX ||22 + λ||sX ||1 (1.11)

Here sB and sX are the singular values of B and X , respectively and ||sX ||1 is

the l1 norm or the sum of absolute values of sX . It has been shown that problem

(1.10) is minimized by soft thresholding the singular values with threshold λ/2.

The optimal update is given by,

sX =


sB + λ/2 when sB ≤ −λ/2

0 when |sB| ≤ λ/2

sB − λ/2 when sB ≥ λ/2

(1.12)

or more compactly by,

sX = soft(sB, λ/2) = sign(sB)max(0, |sB| − λ/2) (1.13)

Algorithm 2 Matrix completion via nuclear norm minimization

1: procedure MATRIX-NNM(Y,M )
2: Initialize: X = random, a
3: For loop 1, iterate (k)
4: Bk = Xk−1 + 1

aM
T (Y −M ◦Xk−1)

5: Compute SVD (singular value decomposition) of B : Bk = USV T

6: Soft threshold the singular values: Σ = soft(S, λ/2) . refer equation 6.2
7: Xk = UΣV T

8: Xk ← X+
k

9: End loop 1

We found that the algorithm is robust to values of the hyperparameter λ (a

scalar) as long as as it is reasonably small (< 0.01).

Here, we have optionally imposed the non-negativity constraint on X pro-
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vided the values to be recovered are not smaller than zero (a constraint in most

applications).

1.1.3 Deep matrix factorization

In recent times, deep learning has permeated almost every aspect of compu-

tational science. Min et al. [10] give a comprehensive treatise into the early

applications of deep learning in this area. The deep matrix completion frame-

works of matrix completion proposed in this dissertation are motivated by the

success of deep matrix factorization [11, 12], and deep dictionary learning [13].

The basic idea in there is to factor the data matrix into several layers of basis

and a final layer of coefficients; shown here for three levels,

X = D1D2D3Z (1.14)

Note that this is a feedbackward neural network, the connections are from

the nodes towards the input. This is because matrix factorization is a synthesis

formulation. Incorporating the deep matrix factorization formulation into (1.1)

leads to,

Y = M ◦D1D2D3Z (1.15)

Our task is to solve the different layers of basis (D1, D2, D3) and the coefficients
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(Z) by solving the least squares objective function,

min
D1,D2,D3,Z

||Y −M ◦ (D1D2D3Z)||2F (1.16)

Note that we cannot use techniques derived in [11, 12] for our purpose; this is

because they operated on the full data where as we need to derive for partially

observed data.

1.1.4 Graph regularization

Graph regularization assumes that points close to each other in the original

space should also be close to each other in the learned manifold (Local Invari-

ance assumption). So, Graph regularization would allow the algorithm to learn

manifolds for the row and column spaces in which the data is assumed to lie.

For graph regularization of a matrix completion framework, we model the

row and column entities as nodes of the corresponding row and column graphs.

The distance/similarity information between the entities is interpreted as the

edges of the graphs 1.2. This similarity information between each of the rows/-

columns is encoded as a square symmetric matrix.

Figure 1.2: Graph regularization: Modeling rows and columns as nodes and their side information as edges of the
graphs
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The standard versions of both the matrix factorization and nuclear norm min-

imization techniques are unable to incorporate similarity information of the

drugs and the targets. In recent studies [14, 15], it was shown that the best results

are obtained when these techniques incorporate graph regularization penalties

into them. The authors regularize the objective function by taking into account,

the similarity for row and column entities (encoded as matrices Sr and Sc) by

adding graph laplacian penalties (computed along rows and column) in the for-

mulation [16]. The graph lalplacian [17] is defined as Lr = Dr − Sr for rows

and Lc = Dc − Sc for columns, Dii
r = ΣjS

ij
r and Dii

c = ΣjS
ij
c being the diago-

nal matrices having degree of each node (a row or column here) on its diagonal.

The current works have incorporated the standard similarity measures for drugs

and targets in matrix factorization [14] and Matrix completion [15] frameworks.

The graph regularized version of Matrix facrorization is given by,

min
U,V
||Y −M ◦ (UV )||2F + µ1Tr(U

TLdU) + µ2Tr(V LtV
T ) (1.17)

The graph regularized version of Nuclear Norminimization is given by,

min
X
||Y −M ◦ (X)||2F + λ||X||∗ + µ1Tr(X

TLdX) + µ2Tr(XLtX
T ) (1.18)

1.2 Problems in brief

In this section, we briefly mention the core models proposed and contributions

of this dissertation. The dissertation unfolds advancements along both biologi-
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cal and algorithmic lines.

With the goal of modeling the crucial bioinformatics problem of handling

dropouts in single-cell RNA seq (scRNA-seq) data [18, 19], we first model the

imputation task as a matrix completion problem (Chapter 2). Ours was one of

the first few initial works to handle this problem. Motivated by the success of

deep learning in various fields, we model this using a novel framework devel-

oped, leveraging deep learning in matrix factorization [18] (Chapter 2).

Secondly, we propose to incorporate the various kinds of metadata associated

with the rows and column entities of the matrix by targeting interaction/associ-

ation prediction problems such as drug-target interaction (DTI) prediction and

drug-disease association (DDA) prediction [20, 21] (Chapters 3 and 4). This pri-

marily is a fast, efficient, and intelligent way of repurposing/repositioning drugs

via computational means by pruning out the drug-space to be tested against the

target proteins /diseases. We introduce multi-graph regularized nuclear norm

minimization to solve the DTI prediction problem and use the standard graph

regularized solution with a novel solution which takes into account the binary

nature of the data to solve the DDA prediction task respectively.

Motivated by the above methodology of drug repositioning, we curate a drug-

virus association database (Chapter 5) from the available sources and try our bit

as data scientists to help clinicians in selecting anti-viral drugs [22]. For this,

we model drug-virus association prediction (with the curated drug-virus associ-

ation dataset, available publicly) as a matrix completion task. To enable the use
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of graph-regularized methods, we have collected the drug and virus metadata

using the chemical structure of drugs and the genomic sequences of viruses and

incorporated this as the drug and virus similarity/Laplacian matrices. Using the

best performing techniques, we computationally recommend six drugs (repo-

sitioned) that would be effective against SARS-CoV-2 (the virus which causes

COVID-19) as per the predictions of our model, four of which are already under

trial for COVID-19, suggesting that the computational results are in sync with

the current state of practice..

Lastly, we render the benefits of single cell multiplexing where tools like

REAP-seq [23] enable simultaneous measurement of gene as well as protein ex-

pression in single cells. Since this data has dropouts due to low starting material

in single cells, we devise a formulation (refer Chapter 6) called collaborative ma-

trix completion, to simultaneously co-complete the gene and protein expression

matrices deriving the similarities between the cells from each of these expres-

sion data.

The chapter wise biological application along with the proposed model/methadol-

ogy has been summarized in the Table 1.1 below.

Of note, all the matrix completion models proposed in this dissertation are

devised for specific biological problem in hand, however, the usage is not lim-

ited and can be extended to other similar problems in each case.
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Chapter Application Proposed Model Rows Columns
2 sc-gene Deep matrix completion cell gene

expression
3 Drug-target Multi graph regularized drugs proteins

interaction matrix completion
4 Drug-disease Graph-regularized one bit drugs diseases

association matrix completion
5 Drug-virus All above methods drugs viruses

assocaition
6 sc-transcriptomic Collaborative matrix cells genes/

proteomic expression completion proteins

Table 1.1: Summary of the problems of interest along with the models deployed.
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Chapter 2

scRNA-seq imputation using deep matrix

completion

Single cell RNA-seq has inspired new discoveries and innovation in the field

of developmental and cell biology over the past few years and is useful for

studying cellular responses at individual cell resolution. But, due to the paucity

of starting RNA, the data acquired has dropouts. To address this, we propose

a deep matrix factorization based method, deepMc, to impute missing values

in gene-expression data. For the deep architecture of our approach, we draw

our motivation from great success of deep learning in solving various machine

learning problems. In this work, we support our method with positive results

on several evaluation metrics like clustering of cell populations, differential ex-

pression analysis and cell type separability.
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2.1 Introduction

Bulk RNA sequencing has traditionally been used in transcriptome studies [24,

25, 26] for parallel screening of thousands of genes, revealing a global view of

averaged expression levels. Single cell RNA sequencing (scRNA-seq), on the

contrary, enables transcriptomic analysis and measurement of gene expressions

at the single cell level, thus providing more perceptivity into functioning of in-

dividual cells. Over the past few years, scRNA-seq has transformed the field

of functional biology and genomics [27] by enabling characterization of pheno-

typic diversity among seemingly similar cells [28, 29, 30]. This unique feature

has been proved critical in characterizing cancer heterogeneity [31, 32], identifi-

cation of new rare cell types and understanding the dynamics of transcriptional

changes during development [33, 34, 35].

However, this powerful technology (like many other biological data) suffers

from a number of sources of biological and technical noise and biases, the

major one being lack of starting mRNA captured in individual cells. Due to

small quantities transcripts are frequently missed during the reverse transcrip-

tion step. This leads to ’dropout’ events, where only a fraction of transcriptome

of each cell is detected during the sequencing step [36], leading to a sparse gene-

expression matrix. This is more prevalent in the lowly expressed genes. Exclud-

ing these genes from analysis may not be the most viable solution as many of the

transcription factors and cell surface markers are sacrificed in this process [37].

Also, variability in dropout rate across individual cells or cell types, works as a
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confounding factor for a number of downstream analyses [38, 39]. It has been

shown for scRNA-seq datasets that the first principal components highly corre-

late with proportion of dropouts across individual transcriptomes. So, efficient

imputation strategies need to be devised to recover the lost gene-expression for

more accurate gene expression measurements in scRNA-seq datasets.

Recent efforts [40] to cater this problem include MAGIC [37], scImpute [41]

drImpute [42], deepImpute [43] and SAVER [44]. MAGIC is based on the

idea of heat diffusion and uses a neighborhood based affinity matrix to impute

the dropouts. It works by sharing information across similar cells. scImpute,

first learns each gene’s dropout probability in each cell based on a mixture of

Gamma and Normal distributions. It then imputes the dropout values in a cell

by borrowing information of the same gene in other similar cells, which are se-

lected based on the genes unlikely affected by dropout events. scImpute claims

to have better performance than MAGIC. It should be noted that parametric

modeling of single cell expression is a challenging task as the sources of techni-

cal noise and biases are not known [39]. Also, there is clear lack of consensus

about the choice of probability density function. drimpute assumes that the

clustering of cells is a true hidden cell classification and the expected value of

a dropout event can be obtained by averaging the entries in the given cell clus-

ter. It performs clustering multiple times to identify similar cells, and performs

imputation by averaging the expression values from similar cells, followed by

averaging multiple estimations for final imputation. DeepImpute is based on

deep neural networks and uses dropout layers and loss functions to learn pat-
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terns in the data for imputation. SAVER (single-cell analysis via expression

recovery), borrows information across genes and cells to provide accurate ex-

pression estimates for all genes.

We propose deepMc, a deep Matrix Factorization based imputation tech-

nique for scRNA-seq data. Our technique does not assume any distribution for

gene expression, outperforms other proposed imputation techniques in most ex-

perimental conditions. We believe that superior performancewill make deepMc

the method of choice for imputing scRNA-seq data.

2.2 Dataset

We used scRNA-seq datasets from three different studies for performing various

experiments.

• Jurkat-293T data: This dataset contains expression profiles of Jurkat and

293T cells, mixed in vitro at equal proportions (50:50). All ∼ 3,300 cells

of this data are annotated based on the expressions of cell-type specific

markers [45]. Cells expressing CD3D are assigned Jurkat, while those

expressing XIST are assigned 293T.

This dataset is also available at 10x Genomics website.

• Preimplantation data: This is an scRNA-seq data of mouse preimplanta-

tion embryos. It contains expression profiles of ∼ 300 cells from zygote,

early 2-cell stage, middle 2-cell stage, late 2-cell stage, 4-cell stage, 8-cell
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stage, 16-cell stage, early blastocyst, middle blastocyst and late blastocyst

stages. The first generation of mouse strain crosses were used for studying

monoallelic expression.

We downloaded the count data from Gene Expression Omnibus (GSE45719)

[33].

• Blakeley: Single-cell RNA sequencing was performed on a human em-

bryo to define three cell lineages of the human blastocyst [46]: pluripotent

epiblast (EPI) cells that form the embryo proper, and extraembryonic tro-

phectoderm (TE) cells and primitive endoderm (PE) cells that contribute to

the placenta and yolk sac, respectively. This data with 30 cells, was shared

by the authors of [42].

2.3 Methodology

2.3.1 Data preprocessing

Steps involved in preprocessing of raw scRNA-seq data are enumerated below.

• Data filtering: If a gene was detected with ≥ 3 reads in at least 3 cells

we considered it expressed. We ignored the remaining genes. It should be

noted that these are not the biologically silent genes, for which the expres-

sion is reduced but not 0.

• Library-size Normalization: Expression matrices were normalized by

first dividing each read count by the total counts in each cell, and then
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by multiplying with the median of the total read counts across cells.

• Gene Selection: For each expression data top 1000 high-dispersion (coef-

ficient of variance) genes were kept for imputation and further analyses.

• Log Normalization: A copy of the matrices were log2 transformed follow-

ing addition of 1 as pseudocount.

• Imputation: For various experiments, log transformed expression matrix

was used as input for imputation.

2.3.2 Proposed framework

In recent times, deep learning has permeated almost every aspect of computa-

tional science. Bioinformatics is not an exception. Min et al. [10] give a com-

prehensive treatise into the early applications of deep learning in this area. Our

current work is motivated by the success of deep matrix factorization [11, 12]

and deep dictionary learning [13]. The is to factor the data matrix (which has

cells on rows and genes on columns) into several layers of basis and a final

layer of coefficients (corresponding to the multiple latent factors); shown here

for three levels,

X = D1D2D3Z (2.1)

Here, X here represents the complete scRNA-seq data matrix and the D′s

and Z represent the basis and coefficient matrix of X . For visual understanding,

please see deepMc architecture shown in Figure 2.1.
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Figure 2.1: Overview of deepMc pipeline for imputing single cell RNA sequencing data.

Note that this is a feedbackward neural network, the connections are from

the nodes towards the input. This is because matrix factorization is a synthesis

formulation.

Our task is to solve the different layers of basis (D1, D2, D3) and the coeffi-

cients (Z) by solving the least squares objective function,

min
D1,D2,D3,Z

||Y −M ◦ (D1D2D3Z)||2F (2.2)

Note that we cannot use techniques derived in [11, 12] for our purpose; this is

because they operated on the full data where as we need to derive for partially

observed data. The solution for (2.2) is shown below and algorithm is given in
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Algorithm 3.

Mathematically we need to solve a problem of the form,

Y = M ◦X (2.3)

where Y is the measurement, M is the sampling mask and X the matrix to be

recovered; ◦ is the Hadamard product. Here we model the matrix X as a linear

combination (Z) of several layers (3 in this case) of dictionaries (D1, D2 and

D3). This is expressed as,

X = D1D2D3Z (2.4)

We do not explicitly show the activation functions along the layers, but we im-

pose non-negativity constraints on the variables Z, D3Z and D2D3Z. This is

akin to the rectified linear units (ReLU) used in deep learning. A similar tech-

nique was used in [12] The activation function is needed in order to ensure that

all the dictionaries do not collapse to a single one.

Incorporating the deep factorization model (2.4) into (2.3) leads to,

Y = M ◦ (D1D2D3Z) (2.5)

The task is to solve for the variables D1, D2, D3 and Z by minimizing the Eu-

22



clidean norm,

min
D1,D2,D3,Z

||Y −M ◦ (D1D2D3Z)||2F s.t.

D2D3Z > 0 and D3Z > 0

(2.6)

The constraints account for the ReLU type non-linearity between the layers.

For solving (2.6), we will follow the majorization minimization (MM) ap-

proach [47].

Let us start with X = D1D2D3Z. Therefore we have J(X) = ||Y −

M(X)||2F . The majorizer in the kth iteration will be,

Gx(x) = ||Y −M(X)||2F + (X −Xk)
T (I −MTM)(X −Xk)

= Y Y T +XT
k (aI −MTM)Xk − 2(Y TM +XT

k (aI −MTM))X + aXTX

(2.7)

= a(−2BTX +XTX) + C (2.8)

where B = Xk + 1
aM

T (Y −M ◦Xk), C = Y Y T +XT
k (aI −MTM)Xk and a

is the maximum eigenvalue of MTM .

Using the identity ||B−X||2F = BTB−2BTX+XTX , (2.8) can be expressed

as follows,

Gx(x) = a||B −X||2F − aBTB + C (2.9)
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Instead of minimizing (2.9), one can simply minimize,

Gx
′(x) = ||B −X||2F

=⇒ Xk+1 = B = Xk + 1
aM

T (Y −M ◦Xk)
(2.10)

This concludes the first step. In the next, we substitute Z1 = D2D3Z. This

leads to the following objective function,

J(Z1) = ||Xk −D1(Z1)||2F (2.11)

As before, the majorizer is expressed as (for the lth iteration),

Gl(Z1) = ||Xk −D1(Z1)||2F + (Z1 − Z1,l)
T (aI − ZT

1 Z1)(Z1 − Z1,l) (2.12)

Using the same technique as before, the solution is given by,

Z1,l+1 = Z1,l +
1

b
DT

1 (Xk −D1Z1,l) (2.13)

where b is the maximum eigenvalue of DT
1 D1.

However, we have to ensure that all the coefficients of Z1 are non-negative; this

is ensured by putting the negative entries of (2.15) to zeroes. This non-negativity

constraint acts as a relu activation function across the layers and makes sure that

all the dictionaries do not collapse into one, hence ensuring non-linearity. For

the second layer, i.e. Z2 = D3Z , we will have for the mth iteration,

Z2,m+1 = Z2,m +
1

c
DT

2 (Z1,l −D2Z2,m) (2.14)
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where c is the maximum eigenvalue of DT
2 D2.

As before, we have to ensure that all Z2 is non-negative.

For the final layer, we will have the update for the nth iteration,

Zn+1 = Zn +
1

d
DT

3 (Z2,m −D3Zn) (2.15)

This concludes the derivation of the algorithm. To prevent degenerate solutions

where some of the D’s are very high and others low, the columns of all the

dictionaries are column normalized (such that each column sums 1) after every

update.

This is an iterative solution; since the problem is non-convex, the solution is

dependent on initialization. We initialize deterministically. The initial value of

X is solved by min
X
||Y −M ◦ (X)||2F . For D1, first the SVD of X is computed

(X = USV T ); D1 is initialized by the top left eigenvectors of X. For D2, the

SVD of SV T is computed and the corresponding top eigenvectors are used to

initialized D2. The rest of the dictionaries are initialized in a similar fashion. In

the last level, the coefficient (Z) is initialized by the product of the eigenvalues

and the right eigenvectors of the last SVD. There can be other randomized tech-

niques for initialization which may yield better results, but our deterministic

initialization is repeatable and has shown to yield good results consistently.

Our proposed derivation results in a nested algorithm, i.e. for one update of

D1, the update for D2 is in a loop; similarly for one update of D2, the update for
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D3 is in a loop and so on. In a succinct fashion our algorithm can be expressed

as Algorithm 3.

Algorithm 3 deepMc

1: procedure DEEPMC(a, b)
2: Initialize: D1, D2 and D3.
3: For loop 1, iterate (k)
4: Xk+1 = Xk + 1

aM
T (Y −M ◦Xk)

5: For loop 2, iterate (l)
6: Z1,l+1 = Z1,l + 1

bD
T
1 (Xk −D1Z1,l) . ensure non-negativity

7: For loop 3, iterate (m)
8: Z2,m+1 = Z2,m + 1

cD
T
2 (Z1,l −D2Z2,m) . ensure non-negativity

9: For loop 4, iterate (n)
10: Zn+1 = Zn + 1

dD
T
3 (Z2,m −D3Zn)

11: End loop 4
12: End loop 3
13: End loop 2
14: End loop 1

2.4 Results

2.4.1 Contribution

The main contribution of this work is a deep model for matrix completion. All

previous techniques for addressing the said problem were shallow; based either

on nuclear norm minimization or on matrix factorization. Here we extend the

standard (shallow) matrix factorization approach to deeper levels. Instead of de-

composing the data matrix into two factors, we decompose into multiple factors

(matrices). This is the first work that solves the matrix completion problem by

such a deep approach.
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The ensuing optimization problem is solved using the majorization minimiza-

tion approach. The advantage of this approach is that resulting algorithm does

not introduce any hyper-parameter. This algorithm has only one parameter and

that too can be theoreticaally estimated making the algorithm practically non-

parametric. This is stark constrast to every other deep learning model where a

significant volume of time needs to be expended in tuning a large number of

parameters.

2.4.2 Improvement in clustering accuracy

Clustering single cell RNA-seq data for discovering distinct cell types from

a heterogeneous cell population is one of the most important applications of

scRNA-seq. But, an algorithm which aims to cluster cells of similar types

might get tricked by a large number of dropouts in single cell RNA seq data

which serve as biological noise in the input to clustering algorithm. This in-

correct view of expression levels should be fixed by a reasonable imputation

resulting in accurate delineation of cell types. Hence, we observe the K-means

clustering results on all the log-transformed expression profiles for each dataset

both without and with imputation.Adjusted Rand Index (ARI) was used as the

performance metric to evaluate the correspondence between the original annota-

tions and K-means assigned clusters. The cell type information for each dataset

was treated as the clustering ground truth.
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Figure 2.2 clearly shows not only that 1 layer matrix factorization based

expression re-estimation is the most beneficial as compared to other methods,

but also, as we go deeper to 2 and 3 layers, we observe better performance for

all datasets.

Figure 2.2: ARI values obtained after applying k-means clustering post various imputation techniques.

2.4.3 Improved differential genes prediction

RNA-Seq is widely used in the detection of differentially expressed genes (DEGs)

[48]. A good imputation method should result in better congruence between

scRNA-seq and bulk RNA-seq data of the same biological condition on differ-

entially expressed genes [36].

To assess the accuracy of differential expression (DE) analysis, we used

the standard Wilcoxon Rank-Sum test for identifying differentially expressed

genes from matrices obtained from various imputation methods. The dataset

of pluripotent stem cells [49] (having matching bulk RNA-Seq data) generated

from different individuals was used. The authors call it Tung dataset. They iden-

tify DE and non-DE genes using three standard methods: limma-voom [50, 51],
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edgeR [52] and DESeq2 [53] 1.

We show the agreement between bulk and single cell based DE calls using the

Area Under the Curve (AUC) values obtained from the Receiver Operating Char-

acteristic (ROC) curve (figure 2.3). The 2-layer (2L) deepMc imputation shows

the best performance in predicting differentially expressed genes.

For each method, the AUC value was computed on the identical set of ground

truth genes. We had to make an exception only for drImpute as it applies an

additional filter to prune genes. Hence, the AUC value was computed based on

a smaller set of ground truth genes for drImpute .

Figure 2.3: Plot showing ROC curve and AUC depicting how well do the DE genes predicted from scRNA and
matching bulk RNA-Seq data agree. DE calls were made on expression matrix imputed using various methods.

1https://github.com/hemberg-lab/scRNA.seq.course
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2.4.4 Improvement in cell type separability

Before explaining this analysis, we introduce the following terms:

1. Intra-cell type scatter: For any two cell groups, we first find the median of

Pearson’s correlation values computed for each possible pair of cells within

their respective groups. We define the average of the median correlation

values as the intra-cell type scatter.

2. Inter-cell type scatter: is defined as the median of Pearson’s correlation

values computed for pairs such that in each pair, cells belong to two differ-

ent groups.

3. Cell-type separability (CTS) score: The difference between the intra-cell

scatter and inter-cell type scatter is termed as the cell-type separability

(CTS) score.

An effective imputation should lead to a higher CTS score, showing that

expression similarities between cells of identical type are considerably higher

than that of cells coming from different subpopulations. DeepImpute proves to

be highly beneficial for all 3 datasets, with 2-layer (2L) and 3-layer (3L) deepMc

algorithms giving the highest CTS score, validating our imputation strategy. We

show the variation of CTS with various imputation strategies in figure 2.4 and

observe that our algorithms best separates the cell types, giving the highest CTS.
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Figure 2.4: Plot showing the variation of CTS with various imputation strategies.

2.5 Conclusion

Single cell RNA-seq has inspired new discoveries and innovation in the field

of developmental and cell biology over the past few years and is useful for

studying cellular responses at individual cell resolution. But, due to the paucity

of starting RNA, the data acquired has dropouts. To address this, we propose

a deep matrix factorization based method, deepMc, to impute missing values

in gene-expression data. For the deep architecture of our approach, we draw

our motivation from great success of deep learning in solving various machine
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learning problems. In this work, we support our method with positive results

on several evaluation metrics like clustering of cell populations, differential ex-

pression analysis and cell type separability.
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Chapter 3

Drug-target interaction prediction using

multi graph regularized nuclear norm

minimization

The identification of interactions between drugs and target proteins is crucial

in pharmaceutical sciences. The experimental validation of interactions in ge-

nomic drug discovery is laborious and expensive; hence, there is a need for ef-

ficient and accurate in-silico techniques which can predict potential drug-target

interactions to narrow down the search space for experimental verification.

In this work, we propose a new framework, namely, Multi Graph Regularized

Nuclear Norm Minimization, which predicts the interactions between drugs and

proteins from three inputs: known drug-target interaction network, similarities

over drugs and those over targets. The proposed method focuses on finding a

low-rank interaction matrix that is structured by the proximities of drugs and

targets encoded by graphs. Previous works on Drug Target Interaction (DTI)
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prediction have shown that incorporating drug and target similarities helps in

learning the data manifold better by preserving the local geometries of the orig-

inal data. But, there is no clear consensus on which kind and what combination

of similarities would best assist the prediction task. Hence, we propose to use

various multiple drug-drug similarities and target-target similarities as multiple

graph Laplacian (over drugs/targets) regularization terms to capture the proxim-

ities exhaustively.

Extensive cross-validation experiments on four benchmark datasets using

standard evaluation metrics (AUPR and AUC) show that the proposed algo-

rithm improves the predictive performance and outperforms recent state-of-the-

art computational methods by a large margin.

3.1 Introduction

The field of drug discovery in Pharmaceutical Sciences is plagued with the prob-

lem of high attrition rate. The task is to find effective interactions between chem-

ical compounds (drugs) and amino-acid sequences/ proteins (targets). This is

traditionally done through wet-lab experiments which are known to be costly

and laborious. An effective and appropriate alternative to avoid costly failures

is to computationally predict the interaction probability. A lot of algorithms

have been proposed for DTI (Drug-target interaction) prediction in recent years

[54, 55], which use small number of experimentally validated interactions in

existing databases such as ChEMBL [56], DrugBank [57], KEGG DRUG [58],
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STITCH [59] and SuperTarget [60]. Identification of drug-target pairs leads to

improvements in different research areas such as drug discovery, drug reposi-

tioning, polypharmacology, drug resistance and side-effect prediction [61]. For

instance, Drug repositioning [62, 63] (reuse of existing drugs for new indica-

tions) may contribute to its polypharmacology (i.e. having multiple therapeutic

effects). One of the many successfully repositioned drugs is Gleevec (imatinib

mesylate). It was originally thought to interact only with the Bcr-Abl fusion

gene associated with leukemia but later, it was found to also interact with PDGF

and KIT, eventually leading it to be repositioned to treat gastrointestinal stromal

tumors as well [64, 65].

Figure 3.1: Drug repositioning using DTI
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There are three major classes of computational methods for predicting DTI:

Ligand-based approaches, Docking based approaches, and Chemogenomic ap-

proaches. Ligand-based approaches leverage the similarity between target pro-

teins’ ligands to predict interactions [66]. These approaches use the fact that

similar molecules tend to share similar properties and usually bind similar pro-

teins [67]. However, lack of known ligands per protein in some cases might com-

promise the reliability of results. Docking-based approaches are well-accepted

and utilize the 3D structure information of a target protein and a drug; and

then run a simulation to estimate the likelihood that they will interact or not

[68, 69, 70]. But docking is heavily time-consuming and cannot be applied to

protein families for which the 3D structure is difficult to predict or is unavailable

[71] for example the G-protein coupled receptors (GPCRs).

Chemogenomic approaches overcome the challenges of traditional methods

and thus, have recently gained much attention. The approaches under this cat-

egory work with widely abundant biological data, publicly available in exist-

ing online databases and process information (chemical structure graphs and

genomic sequences for the drugs and targets) from both the drug and target

sides simultaneously for the prediction task. These approaches can further sub-

classified based on the representation of the input data: Feature-based methods

and Similarity-based methods. Feature-based techniques are machine learning

methods, which take their inputs in the form of feature vectors, representing

a set of instances (i.e. drug-target pairs) along with their corresponding class

labels (i.e. binary values indicating whether or not an interaction exists). Ex-
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amples of typical feature based methods include Decision Tree (DT), Random

Forest (RF) [25] and Support Vector Machines (SVM) to build classification

models based on the labeled feature vectors [72]. Positive instances are the

known interactions and negative instances, the non-interactions. It should be

noted that negative instances here include both non-interactions and unknown

drug-target interactions (false negatives). The other category of chemogenomic

techniques, Similarity-based methods, use two similarity matrices correspond-

ing to drug and target similarity, respectively, along with an interaction matrix

which indicates which pairs of drugs and targets interact.

In a very recent review paper [55] it was empirically shown that matrix fac-

torization based techniques yields by far the best results. The fundamental as-

sumption behind matrix factorization to work is that there are very few (latent)

factors that are responsible for drug target interactions. This is the reason, one

can factor the DTI matrix into a tall (drug) latent factor matrix and a fat (target)

latent factor matrix. Mathematically speaking, the assumption is that the DTI

matrix is of low-rank. Matrix factorization is being used to model low-rank ma-

trices for the past two decades since the publication of Lee and Seung’s seminal

paper [73]. However, matrix factorization is a bi-linear non-convex problem;

there are no convergence guarantees. In order to ameliorate this problem, math-

ematicians proposed an alternate approach based on nuclear norm minimization

[74, 75, 76]. The nuclear norm is the closest convex surrogate to the rank min-
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imization (known to be NP-hard) problem and there are provable mathematical

guarantees on its equivalence to rank minimization.

The standard versions of both the matrix factorization and nuclear norm min-

imization techniques are unable to incorporate similarity information of the

drugs and the targets. In recent studies [14, 15], it was shown that the best re-

sults are obtained when these technique incorporate graph regularization penal-

ties into them. But, these works regularize the objective function by taking into

account, just the standard chemical structure similarity for drugs (Sd) and the

genomic sequence similarity for targets (St). No study in literature gives a clear

picture of which kind of similarities would be the best for DTI prediction. We,

therefore, incorporate different other kinds of similarities and a combination of

them as a multi graph Laplacian regularization with Nuclear Norm Minimiza-

tion for DTI prediction. The algorithm uses four new similarity measures over

the drugs and targets, apart from the standard similarities to construct the graph

Laplacians. The four newly incorporated similarities are computed from the in-

teraction matrix and take into account the Cosine similarity, Correlation, Ham-

ming distance and Jaccard similarity between the drugs and targets. To the best

of our knowledge, this is the first work on multiple graph laplacian regularized

nuclear norm minimization for DTI prediction.
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3.2 Dataset

We use the four benchmark datasets introduced in [77] concerning four different

classes of target proteins, namely, enzymes (Es), ion channels (ICs), G protein-

coupled receptors (GPCRs) and nuclear receptors (NRs). The data was simu-

lated from public databases KEGG BRITE [78], BRENDA [79] SuperTarget

[60] and DrugBank [57] and is publically available at http://web.kuicr.

kyoto-u.ac.jp/supp/yoshi/drugtarget/. .

The data gathered from these databases is formatted as an adjacency matrix,

called interaction matrix between drugs and targets, encoding the interaction

between n drugs and m targets as 1 if the drug di and target tj are known to

interact and 0, otherwise.

Along with the interaction matrix, drug similarity matrix Sd and a target sim-

ilarity matrix St are also provided. In Sd, each entry represents the pairwise

similarity between the drugs and is measured using SIMCOMP [80]. It repre-

sents the chemical structure similarity computed by the number of shared sub-

structures in chemical structures between two drugs. In St, the similarity score

between two proteins is the genomic sequence similarity. It is based on the

amino acid sequences of the target protein and is computed using normalized

Smith–Waterman [81].

The similarity matrices Sd and St constitute the most standard similarities

that have been used in the DTI prediction task hitherto. We use these similarities

along with the following four more similarities computationally derived from
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the drug-target interaction matrix to form the graph laplacian terms:

• Cosine similarity: measures the cosine of the angle between two drug/tar-

get vectors projected in a multi-dimensional space. Its value ranges from

-1 (exactly opposite) to 1 (exactly the same). Given two n-dimensional

drug/target vectors, the cosine similarity is calculated as follows,

Scos =

n∑
i=1

AiBi√
n∑
i=1

A2
i

√
n∑
i=1

B2
i

• Correlation: computes the Pearson’s linear correlation coefficient indicat-

ing the extent to which two variables are linearly related. It has a value

between +1 and 1, where 1 is total positive linear correlation, 0 is no linear

correlation, and 1 is total negative linear correlation. For a pair (say A and

B) of drugs/targets with sample size n, it is given by,

Scor =

n∑
i=1

(Ai − A)(Bi −B)√
n∑
i=1

(Ai − A)
2

√
n∑
i=1

(Bi −B)
2

where

A =
1

n

n∑
i=1

Ai and B =
1

n

n∑
i=1

Bi

• Hamming similarity: has been computed using hamming distance. For any

two drugs/targets, the hamming distance is the percentage of interaction

positions that differ. We calculate Hamming distance based similarity by
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simply subtracting hamming distance from 1, giving us its complementary

(the percentage of common interaction positions for a pair of drugs/targets).

It can be calculated as follows,

Sham = 1− #(Ai 6= Bi)

n

• Jaccard similarity: is defined as the percentage of common non-zero inter-

action positions for the two given sample sets of drugs/target,

Sjac =
#[(Ai = Bi) ∩ ((Ai 6= 0) ∪ (Bi 6= 0))]

#[(Ai 6= 0) ∪ (Bi 6= 0)]

Table 3.1 summarizes the features of all four datasets.

3.3 Methodology

Let us assume that X is the adjacency matrix where each entry denotes interac-

tion between a drug and target (1 if they interact, 0 otherwise). Unfortunately,

we only observe this matrix partially because all interactions are not known. If

M denotes the partially observed adjacency matrix, the the problem of recov-

ering X from its partially observed entries can be solved via Nuclear Norm

minimization (section 1.1.2).

Table 3.1: Drugs, Targets and Interactions in each dataset used for validation.

Datasets NR GPCR IC E
Drugs 54 223 210 445
Targets 26 95 204 664
Interactions 90 635 1476 2926
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3.3.1 Data preprocessing

Each of the drug and target similarity matrices were summed up to compute

the combined similarity matrices SCOMd and SCOMd (equation (3.13)). We then

follow the below steps for preprocessing the interaction data,

• SIMILARITY SPARSIFICATION: The combined similarity matrices were

further sparsified by using p-nearest neighbor graph which is obtained by

keeping only the similarity values of the nearest neighbors for each drug/-

target in the similarity matrices. The usage of such a pre-processing, as

shown by [14], helps learn a manifold on or near to which the data is as-

sumed to lie which, in turn, is expected to preserve the local geometries of

the original data and hence give more accurate results.

∀i, j

Nij =


1, j ∈ Np(i)&i ∈ Np(j)

0, j /∈ Np(i)&i /∈ Np(j)

0.5, else

where Np(i) is the set of p nearest neighbors to drug di. Similarity matrix

sparsification is done by element-wise multiplying it with Nij. In the next

step, the combined graph laplacian terms are computed.

• NORMALIZATION OF GRAPH LAPLACIANS: Instead of the graph lapla-

cians (LCOMd/t and LCOMt ), we have used the normalized versions of them

((DCOM
d )−1/2LCOMd (DCOM

d )−1/2 and (DCOM
t )−1/2LCOMt (DCOM

t )−1/2) in-

42



stead as normalized graph Laplacians are known to perform better than

their un-normalized counterparts [82].

3.3.2 Proposed framework

Nuclear Norm based Low-rank Matrix Completion has been around since the

past decade. The problem with standard Nuclear norm minimization (NNM) is

that it cannot accommodate associated information such as Similarity matrices

for Drugs and Targets. But, it has been seen in recent studies that accommo-

dating the similarity information is crucial for improving the DTI prediction

results. The current works have incorporated the standard similarity measures

for drugs and targets in matrix factorization [14] and Matrix completion [15]

frameworks. It is imperative that NNM should be capable of taking into ac-

count more types and combinations of similarities. To achieve this, we have

augmented four other types of similarities between drugs/targets and presented

Multi Graph regularized Nuclear Norm Minimization (MGRNNM).

Graph regularization assumes that points close to each other in the original

space should also be close to each other in the learned manifold (Local Invari-

ance assumption). So, Graph regularization would allow the algorithm to learn

manifolds for the drug and target spaces in which the data is assumed to lie.The

multi graph regularized version of Nuclear norm minimization, aims to prevent

over fitting and greatly enhance the generalizing capabilities. It is incorporated

into the formulation/objective function as Laplacian weights corresponding to
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drugs and targets as follows,

min
X
||A−M ◦ (X)||2F + λ||X||∗ + µ1Tr(X

T
nos∑
i=1

LidX) + µ2Tr(X
nos∑
i=1

LitX
T )

(3.1)

where λ ≥ 0, µ1 ≥ 0 and µ2 ≥ 0 are parameters balancing the reconstruction

error of NNM in the first two terms and graph regularization in the last two

terms, Tr(.) is the trace of a matrix, nos stands for number of similarity matri-

ces (nos = 5 in our case) while recovering complete DTI matrix X (with drugs

on rows and target proteins on columns) from its sampled version A.

If, say we consider a single similarity matrix for drugs (Sd) and that for tar-

gets (St), then Ld = Dd − Sd and Lt = Dt − St are the graph Laplacians [17]

for Sd (drug similarity matrix) and St (target similarity matrix), respectively,

and Dii
d = ΣjS

ij
d and Dii

t = ΣjS
ij
t are degree matrices.

We employ Problem (3.1) is solved using a variable splitting approach [83].

The augmented Lagrangian is expressed as (3.2). We introduce two new proxy

variables Z and Y such that ZT = X and Y = X ,

min
X,Y,Z

||A−M ◦ (X)||2F + λ||X||∗ + µ1Tr(Z
nos∑
i=1

LidZ
T ) + µ2Tr(Y

nos∑
i=1

LitY
T )+

ν1||ZT −X||2F + ν2||Y −X||2F
(3.2)
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The variables are updated using ADMM (alternating direction method of

multipliers) [84, 85] where we divide the problem into sub problems which are

easier to solve. This leads to the following subproblems (3.3), (3.4) and (3.5),

X ← min
X
||A−M ◦ (X)||2F + ν1||ZT −X||2F + ν2||Y −X||2F +λ||X||∗ (3.3)

Y ← min
Y
µ2Tr(Y

nos∑
i=1

LitY
T ) + ν2||Y −X||2F (3.4)

Z ← min
Z
µ1Tr(Z

nos∑
i=1

LidZ
T ) + ν1||ZT −X||2F (3.5)

Problem (3.3) can be expressed as a standard NNM probelm (by column stack-

ing the variables),

∥∥∥∥∥∥∥∥∥∥


A

√
ν1Z

T

√
ν2Y

−

M

√
ν1I

√
ν2I

X

∥∥∥∥∥∥∥∥∥∥

2

F

+ λ||X||∗ (3.6)

To solve for Y and Z, we differentiate (3.4) and (3.5) wrt Y and Z, respec-

tiveley,

Y =
Y

(F1) where F1 = µ2Tr(Y
nos∑
i=1

LitY
T ) + ν2||Y −X||2F (3.7)
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Z =
Z
(F2) where F2 = µ1Tr(Z

nos∑
i=1

LidZ
T ) + ν1||ZT −X||2F (3.8)

∂F1

∂Y
= µ2(Y (

nos∑
i=1

Lit)
T + Y

nos∑
i=1

Lit) + 2ν2(Y −X) (3.9)

∂F1

∂Y
= µ2Y [

nos∑
i=1

(Lit
T

+ Lit)] + 2ν2(Y −X) (3.10)

Since Lt is a symmetric matrix, LTt = Lt. So,

∂F1

∂Y
= 2µ2Y

nos∑
i=1

Lit + 2ν2(Y −X)

Equating the derivative to zero, we get,

ν2Y + µ2Y

nos∑
i=1

Lit = ν2X (3.11)

The matrix equation of this form (AT+TB=C) cannot be solved directly for vari-

able T and is called Sylvester equation. Such an equation has a unique solution

when the eigenvalues of A and -B are distinct.

A similar Sylvester equation and update step for Z can be obtained by differ-

entiating F2 and equating to 0,

ν1Z + µ1Z

nos∑
i=1

Lid = ν1X
T (3.12)
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It can be shown that computing the sum of the Graph Laplacians is equiv-

alent to computing the Laplacian from the sum of various similarity matrices

involved. For instance, consider the sum of drug Graph Laplacians,

nos∑
i=1

Lid

=
nos∑
i=1

(Di
d − Sid)

=
nos∑
i=1

Di
d −

nos∑
i=1

Sid

=
nos∑
i=1

diag(
∑
j

Sjd)−
nos∑
i=1

Sid

= diag(
∑
j

(
n∑
i=1

Sid)
j)−

nos∑
i=1

Sid

Let
nos∑
i=1

Sid = SCOMd where SCOMd stands for combined similarity for drugs. Es-

sentially,

SCOMd = Sd + Scosd + Scord + Shamd + Sjacd (3.13)

Then,

nos∑
i=1

Lid = diag(
∑
j

SCOMd )− SCOMd = DCOM
d − SCOMd = LCOMd (3.14)

Here,DCOM
d andLCOMd denote combined degree matrix and combined Lapla-

cian matrix (sum of graph laplacians) for drugs. Of note, the individual Lapla-

cians or the similarities can be weighted unequally to give more or less empha-

sis on a specific type of similarity. The pseudo-code for MGRNNM has been
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given in Algorithm 4.

The standard NNM is a convex problem and the introduced graph regulariza-

tion penalties are also convex, so entire formulation (5), being a sum of convex

functions, is convex. Therefore it is bound to converge to a global minima. We

chose the number of iterations such that the algorithm halts when the objective

function does not change with iterations.

Algorithm 4 Multi Graph regularized Nuclear Norm Minimization

1: procedure MGRNNM(A,M,SCOM
d , SCOM

t )
2: Sparsify: SCOM

d , SCOM
t

3: Initialize: λ, µ1, µ2, ν1, ν2, LCOM
d , LCOM

t , Y = A,Z = AT

4: MM ←

 M√
ν1I√
ν2I


5: For loop 1, iterate (k)

6: Y Yk ←

 A√
ν1Z

T

√
ν2Y


7: Xk ←MATRIX − SV S(Y Yk,MM,λ)
8: Yk ← solve-sylvester(ν1I, µ1LCOM

d , ν1X
′
k)

9: Zk ← solve-sylvester(ν2I, µ2LCOM
t , ν2Xk)

10: End loop 1

3.4 Results

3.4.1 Experimental setup

We validated our proposed method by comparing it with recent and well-performing

prediction methods proposed in the literature. Out of the 5 approaches with

which we compare,

• Three are specifically designed for DTI task (WGRMF: Weighted Graph

Regularized Matrix Factorization, CMF: Collaborative Matrix Factoriza-
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tion, RLS_WNN: Regularized Least square Nearest neighbor profile) [14,

86, 87];

• One being traditional matrix completion (MC: matrix completion) [88] and

• Last one being a naive solution to our problem, available as an unpublished

work (MCG: matrix completion on graphs). Of note, the Space complexity

of MCG is O(n4) while that of MGRNNM is O(n2). [89])

All baselines designed for DTI problem are recent and are already compared

against older methods.

We performed 5 repetitions of 10-fold cross-validation (CV) for each of the

methods under three cross-validation setting (CVS) [55]:

• CVS1/Pair prediction: random drug–target pairs are left out as the test set

for prediction. It is the conventional setting for validation and evaluation.

• CVS2/Drug prediction: entire drug profiles are left out to be used as test

set. It tests the algorithm’s ability to predict interactions for novel drugs i.e.

drugs for which no interaction information is available.

• CVS3/Target prediction: entire target profiles are left out to be used as test

set. It tests the algorithm’s ability to predict interactions for novel targets.

κ-fold cross validation is an evaluation method where we divide the data into

κ equal subsets (called folds). Out of all the subsets, 1 of them is treated as a

testing set, while the remaining κ− 1 ones constitute the training set.

49



As the evaluation metrics, we used:

• AUC: AUC stands for Area under the ROC Curve. That is, AUC mea-

sures the entire two-dimensional area underneath the entire ROC curve (a

plot showing the true positive rate for a method as a function of the false

positive rate). AUC provides an aggregate measure of performance across

all possible classification thresholds. One way of interpreting AUC is the

probability that the model ranks a random positive example more highly

than a random negative example. The higher it is, the better the model is.

• AUPR: We also evaluated the performance by AUPR (Area Under the

Precision-Recall curve), because AUPR punishes highly ranked false pos-

itives much more than AUC, this point being important practically since

only highly ranked drug-target pairs in prediction will be biologically or

chemically tested later in an usual drug discovery process, meaning that

highly ranked false positives should be avoided [90, 14]. The precision-

recall curve shows the tradeoff between precision and recall for different

thresholds. A high area under the curve represents both high recall and high

precision, where high precision relates to a low false positive rate, and high

recall relates to a low false negative rate. High scores for both show that the

classifier is returning accurate results (high precision), as well as returning

a majority of all positive results (high recall).
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3.4.2 Parameter settings

For setting the parameters of our algorithm, we performed cross-validation on

the training set on the parameters p, λ, µ1, µ2, ν1, ν2 to find the best parameter

combination for each dataset, under each cross-validation setting. As mentioned

earlier, the individual laplacians or the similarities can be weighted unequally

to give more or less emphasis on a specific type of similarity, we weigh the

Cosine, Correlation and Jaccard similarities heavily (4 times) relative to Ham-

ming similarity. This was done because hamming similarity showed the least

improvement in prediction accuracy as compared to the other three similarities

when taken into account along with standard similarities (Refer Figure 3.2). For

the other methods, we to set the parameters to their optimal (which were found

to be already optimal) in [55].

’

3.4.3 Interaction prediction

Tables 3.2, 3.4 and 3.6 show the AUPR results and Tables 3.3, 3.5 and 3.7 show

the AUC results from the above-mentioned cross validation settings. MGRNNM

outperforms the state-of-the-art prediction methods. The second column in

each table shows the results of our algorithm when only the standard similarity

matrices (Sd: chemical structure similarity for drugs, St: Genomic sequence

similarity for target proteins) were used for prediction.
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Figure 3.2: Bar plots depicting that incorporating all the similarities for drugs and targets for prediction task
yields best results for every dataset (a) E (b) IC (c) GPCR and (d) NR under the three cross-validation settings in
comparison to the cases where each type of similarity was considered separately. Here, standard represents the
case when only the chemical structure similarity for drugs and genomic sequence similarity for targets were taken
into account and COMBINED refers to the use case where all the similarity matrices (standard similarity, Cosine
similarity, Correlation, Hamming similarity and Jaccard similarity) were considered.

3.4.4 Validation of multiple similarities

To precisely analyze the consequence of multiple similarities incorporation, we

observed the mean AUPR for several cases:

• standard: When only the standard similarity matrices (Sd: chemical struc-

ture similarity for drugs, St: Genomic sequence similarity for target pro-

teins) were used for prediction.

• standard+Cosine: When Cosine similarity between each pair of drugs/tar-
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gets (Scosd , Scost ) was taken into account along with standard similarities.

• standard+Correlation: When Pearson’s linear Correlation between each

pair of drugs/targets (Scord , Scort ) was taken into account along with stan-

dard similarities.

• standard+Hamming: When Hamming similarity between each pair of drugs/-

targets (Shamd , Shamt ) was taken into account along with standard similari-

ties.

• standard+Jaccard: When Jaccard similarity between each pair of drugs/tar-

gets (Sjacd , Sjact ) was taken into account along with standard similarities.

• COMBINED: When all five similarity types between each pair of drugs/-

targets (SCOMd , SCOMt ) were taken into account.

The analysis was carried out for every dataset under all the three cross-validation

settings. Figure 3.2 clearly depicts that incorporating all the similarities for

drugs and targets for prediction task yields the best results.

3.5 Conclusion

Drug-target interaction prediction is a crucial task in genomic drug discovery.

Many computational techniques have been proposed in the literature. In this

work, we presented a novel chemogenomic approach for predicting the drug-

target interactions, MGRNNM (Multi Graph regularized Nuclear Norm Min-

imization). It is a graph regularized version of the traditional Nuclear Norm
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Table 3.2: AUPR results for interaction prediction under validation setting CVS1.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.9660
(0.0006)

0.9014
(0.0018)

0.7882
(0.0022)

0.7621
(0.0025)

0.8768
(0.0020)

0.8093
(0.0045)

0.8837
(0.0026)

IC
0.9585
(0.0013)

0.9298
(0.0026)

0.8868
(0.0028)

0.8346
(0.0025)

0.9225
(0.0022)

0.8459
(0.0106)

0.9373
(0.0019)

GPCR
0.8515
(0.0033)

0.7483
(0.0039)

0.6481
(0.0116)

0.5956
(0.0102)

0.7370
(0.0024)

0.6933
(0.0226)

0.7543
(0.0017)

NR
0.8791
(0.0019)

0.6408
(0.0234)

0.3950
(0.0298)

0.4558
(0.0202)

0.6016
(0.0378)

0.7072
(0.0290)

0.6383
(0.0149)

Table 3.3: AUC results for interaction prediction under validation setting CVS1.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.9955
(0.0003)

0.9798
(0.0004)

0.8753
(0.0023)

0.9596
(0.0015)

0.9647
(0.0013)

0.9635
(0.0014)

0.9705
(0.0013)

IC
0.9947
(0.0004)

0.9829
(0.0012)

0.9415
(0.0015)

0.9539
(0.0010)

0.9747
(0.0022)

0.9786
(0.0026)

0.9832
(0.0008)

GPCR
0.9785
(0.0020)

0.9531
(0.0028)

0.8110
(0.0055)

0.8977
(0.0047)

0.9432
(0.0010)

0.9458
(0.0044)

0.9493
(0.0031)

NR
0.9660
(0.0056)

0.9083
(0.0058)

0.5882
(0.0253)

0.8315
(0.0165)

0.8892
(0.0153)

0.9329
(0.0114)

0.8679
(0.0124)

Table 3.4: AUPR results for interaction prediction under validation setting CVS2.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.8603
(0.0095)

0.4089
(0.0104)

0.0114
(0.0005)

0.0457
(0.0008)

0.4019
(0.0128)

0.2409
(00272)

0.3848
(0.0094)

IC
0.9026
(0.0197)

0.3650
(0.0178)

0.0473
(0.0035)

0.0925
(0.0013)

0.3666
(0.0169)

0.3090
(0.0200)

0.3538
(0.0137)

GPCR
0.8538
(0.0112)

0.4175
(0.0076)

0.0404
(0.0017)

0.1091
(0.0044)

0.4247
(0.0113)

0.3463
(0.0106)

0.4059
(0.0104)

NR
0.8773
(0.0125)

0.5620
(0.0262)

0.1120
(0.0206)

0.2404
(0.0337)

0.5695
(0.0136)

0.5373
(0.0216)

0.5203
(0.0250)

Table 3.5: AUC results for interaction prediction under validation setting CVS2.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.9460
(0.0033)

0.8260
(0.0108)

0.5060
(0.0090)

0.7413
(0.0118)

0.7982
(0.0144)

0.7755
(0.0093)

0.7952
(0.0110)

IC
0.9714
(0.0095)

0.7913
(0.0090)

0.5512
(0.0034)

0.7196
(0.0071)

0.7902
(0.0149)

0.7669
(0.0140)

0.7576
(0.0125)

GPCR
0.9567
(0.0084)

0.8805
(0.0024)

0.5855
(0.0039)

0.7745
(0.0027)

0.8800
(0.0025)

0.8524
(0.0072)

0.8067
(0.0067)

NR
0.9533
(0.0127)

0.8452
(0.0215)

0.5294
(0.0200)

0.6992
(0.0244)

0.8615
(0.0244)

0.8390
(0.0261)

0.8124
(0.0228)
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Minimization algorithm which incorporates multiple Graph Laplacians over the

drugs and targets into the framework for an improved interaction prediction.

The algorithm is generic and can be used for prediction in protein-protein inter-

action [91], RNA-RNA interaction [92], etc.

The evaluation was performed using three different cross-validation settings,

namely CVS1 (random drug-target pairs left out), CVS2 (entire drug profile

left out) and CVS3 (entire target profile left out) to compare our method with 5

other state-of-the-art methods (three specifically designed for DTI prediction).

In almost all of the test cases, our algorithm shows the best performance, out-

performing the baselines.
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Table 3.6: AUPR results for interaction prediction under validation setting CVS3.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.9041
(0.0125)

0.8087
(0.0156)

0.0124
(0.0005)

0.0691
(0.0009)

0.8070
(0.0185)

0.5465
(0.0144)

0.7808
(0.0131)

IC
0.9029
(0.0024)

0.8079
(0.0096)

0.0421
(0.0043)

0.2256
(0.0038)

0.8128
(0.0069)

0.7437
(0.0088)

0.7786
(0.0108)

GPCR
0.7228
(0.0323)

0.5963
(0.0336)

0.0549
(0.0105)

0.1061
(0.0027)

0.6093
(0.0314)

0.5397
(0.0193)

0.5989
(0.0323)

NR
0.5418
(0.0309)

0.4356
(0.0177)

0.0850
(0.0227)

0.2669
(0.0288)

0.4643
(0.0183)

0.4907
(0.0326)

0.4774
(0.0173)

Table 3.7: AUC results for interaction prediction under validation setting CVS3.

AUPR MGRNNM standard MC MCG WGRMF RLS_WNN CMF

E
0.9683
(0.0043)

0.9246
(0.0091)

0.5234
(0.0057)

0.8065
(0.0012)

0.9338
(0.0071)

0.9067
(0.0105)

0.9272
(0.0050)

IC
0.9541
(0.0019)

0.9346
(0.0041)

0.4724
(0.0065)

0.7871
(0.0069)

0.9460
(0.0034)

0.9286
(0.0046)

0.9368
(0.0032)

GPCR
0.8975
(0.0093)

0.8798
(0.0134)

0.5683
(0.0310)

0.6289
(0.0151)

0.8892
(0.0110)

0.8694
(0.0146)

0.8966
(0.0073)

NR
0.7502
(0.0285)

0.7263
(0.0211)

0.3767
(0.0204)

0.6522
(0.0297)

0.7967
(0.0132)

0.8124
(0.0202)

0.8373
(0.0083)
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Chapter 4

Drug-disease association prediction using

graph-regularized one bit matrix

completion

The importance of Drug repositioning has been discussed in the previous sec-

tion. Just like drug-target interaction prediction, Drug-disease association pre-

diction is another approach to predict the best disease indication for a drug given

the open-source biological datasets. Owing to the fact that similar drugs tend

to have common pathways and disease indications, the association matrix is

assumed to be of low-rank structure. Hence, the problem of drug-disease as-

sociation prediction can also been modelled as a low-rank matrix-completion

problem.

In this work, we propose a novel matrix completion framework which makes

use of the side-information associated with drugs/diseases for the prediction of

drug-disease indications modelled as neighborhood graph: Graph regularized
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1-bit matrix completion (GR1BMC). The algorithm is specially designed for

binary data and uses parallel proximal algorithm to solve the aforesaid mini-

mization problem taking into account all the constraints including the neighbor-

hood graph incorporation and restricting predicted scores within the specified

range. The results of the proposed algorithm have been validated on two stan-

dard drug-disease association databases (Fdataset and Cdataset) by evaluating

the AUC across the 10-fold cross validation splits. The usage of the method is

also evaluated through a case study where top 5 indications are predicted for

novel drugs and diseases, which then are verified with the CTD database. The

results of these experiments demonstrate the practical usage and superiority of

the proposed approach over the benchmark methods.

4.1 Introduction

There have been some successfully re-positioned drugs through manual and

rational investigations but this is not an efficient and scalable way given the

huge space of drug interactions. Therefore, computational approaches have

been used over the past years to systematically predict the indications, pruning

down the massive search space for researchers and saving huge amounts of

efforts, time and cost. This explains the immense importance of predicting new

associations between drugs and diseases using statistical and machine learning

based methods .

Early attempts to predict novel indications were based on gene expression
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profiles [93, 94]. [93] proposed a database having ranked drug response gene

expression which were queried with a gene signature specific to a disease. The

drug response profiles which either correlate or anti-correlate were identified.

This approach lacks validation on a large scale dataset and may not be precise

enough owing to different conditions under which expression profiles are gen-

erated.

Drug-disease association prediction can also be modelled intuitively as a col-

laborative filtering problem. The objective of this class of approaches is to

recover a complete matrix from its sampled entries by exploiting its low-rank

structure. The low-rank assumption stems from the idea that similar drugs affect

biological systems in a similar way and have common indications [95].

In this work, we formulate drug disease association prediction as a one-bit

matrix completion problem. Furthermore, we introduce graph regularization

to exploit the similarities between drugs and diseases. The objective function is

minimized using parallel proximal algorithm (PPXA) [96]. PPXA is an iterative

proximal splitting algorithm that paralelly solves for each of the non-necessarily

smooth terms in the objective function, while benefiting from sounded conver-

gence guarantees. The novelty of our approach lies in

• Modelling the drug-disease association prediction as graph-regularized ma-

trix completion problem.

• Restricting the association scores in range [0,1] for obtaining meaningful

biological scores.
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• Solving the optimization problem using PPXA which has guaranteed con-

vergence properties [96].

A schematic overview of GR1BMC is shown in Figure 4.1.

4.2 Dataset

We have used two gold standard databases to validate our approach. The first

one, called F dataset, proposed by [97] has 313 diseases, 593 drugs and 1933

drug-disease associations from various sources. The second dataset, called

Cdataset is a larger one with 663 drugs, 409 diseases and 2532 associations

[98].

For the datasets the drug information is obtained from DrugBank [99], an

exhaustive database containing comprehensive information about drugs and tar-

gets. The disease information was assembled from human phenotypes listed in

public database, OMIM ( Online Mendelian Inheritance in Man) database [100],

which has information on human genes and diseases.

The similarity information of drugs, calculated as Tanimato score [101], is

extracted using Chemical Development Kit (CDK) [102] based on the chemi-

cal structures of drugs in SMILES (Simplified Molecular-Input Line-Entry Sys-

tem) format, obtained from DrugBank. MimMiner [103] provides the similar-

ities between diseases using the medical descriptors of diseases from OMIM

database by measuring the number of MeSH (medical subject headings vocabu-
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lary) terms. Both kinds of similarites are in range [0,1].

The information on number of drugs, diseases and the associations between

them has been summarized in Table 4.1.

Figure 4.1: A schematic overview of GR1BMC for predicting drug-disease assocations

Table 4.1: A summary of the number of associations, drugs and diseases in each dataset used.

Datasets # Associations # Drugs # Diseases
# Fdataset 1933 593 313
# Cdataset 2532 663 409
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4.3 Methodology

4.3.1 Data preprocessing

We process the drug and disease similarity and graph laplacian matrices as per

the two steps mentioned in subsection 3.3.1 of Chapter 3 to ensure better learn-

ing.

4.3.2 Proposed framework

To predict the drug-disease association matrix X (with drugs on rows and dis-

eases on columns), we model it as a low-rank matrix and aim to complete its

available version Y . Since low-rank approximation is an NP-hard problem, we

solve its closest convex surrogate i.e. nuclear norm minimization. Nuclear norm

is defined as the sum of absolute singular values of a matrix.

To incorporate the disease and drug similarities into this imputation frame-

work, we introduce the Laplacian graph regularization terms,

min
X
||Y −M ◦X||2F + λ||X||∗ + µ1Tr(X

TLdiX) + µ2Tr(XLdrX
T )

s.t. X ∈ [0, 1] (4.1)

Here, ||.||∗ denotes the nuclear norm, Tr denotes the trace. M is the binary

masking operator which is element-wise multiplied to complete data matrix X

(having 1’s at train indices and 0’s at test indices) using hadamard product oper-

ator (◦). Ldi and Ldr denote the disease and drug Laplacian matrices.
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Here, we propose to make use of the parallel proximal algorithm (PPXA)

from [96] (see also [104] for its application in the context of biochemistry).

In this algorithm, we solve for X , by taking a proxy variable for each of the

terms in (4.1) [83] and an extra proxy variable X3 to ensure that the predicted

scores are in range [0,1]. For each iteration k, we need to compute the following

proximity operators,

X̂
(k)
1 = arg min

X

θ

2
||Y −M ◦X||2F +

1

2
||X(k−1)

1 −X||2F (4.2)

X̂
(k)
2 = arg min

X
λθ||X||∗ +

1

2
||X(k−1)

2 −X||2F (4.3)

X̂
(k)
3 = min(max(X

(k−1)
3 , 0), 1) (4.4)

X̂
(k)
4 = arg min

X
θµ1Tr(X

TLdiX) +
1

2
||X(k−1)

4 −X||2F (4.5)

X̂
(k)
5 = arg min

X
θµ2Tr(XLdrX

T ) +
1

2
||X(k−1)

5 −X||2F (4.6)

Hereabove, θ corresponds to the number of terms treated in parallel, that is

θ = 5. Below we provide the solution of each of the above sub-problems:

• Solving for X̂(k)
1 involves taking the gradient of (4.2) and equating to 0,

θ(−MT )(Y −MX̂
(k)
1 ) + (X̂

(k)
1 −X

(k−1)
1 ) = 0

θMTMX̂
(k)
1 − θMTY + X̂

(k)
1 −X

(k−1)
1 = 0

(θMTM + I)X̂
(k)
1 = X

(k−1)
1 + θMTY
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where I is the identity matrix. The above can now be easily solved by find-

ing least squares solution.

• X̂(k)
2 can be obtained by soft-thresholding the singular values of X(k−1)

2

and multiplying the thresholded singular value matrix by the left and right

singular vector matrices of X(k−1)
2 i.e.,

X
(k−1)
2 = US(k−1)V T

Ŝ(k−1) = soft(S(k−1), λθ/2)

X̂
(k)
2 = UŜ(k−1)V T

where soft(S(k−1), λθ/2) =sign(S(k−1))max(0, |S(k−1)|−λθ/2). Here S(k−1)

denotes the singular value matrix, U and V are the left and right singular

matrices of X(k−1)
2 , obtained after SVD-decomposition.

• Solving for X̂(k)
3 is done by applying max-thresholding followed by min-

thresholding on X(k−1)
3 .

• To solve for X̂(k)
4 , we employ the same strategy as for X̂(k)

1 and equate the
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gradient of (4.5) to 0,

θµ1(LdiX̂
(k)
4 + LTdiX̂

(k)
4 ) + (X̂

(k)
4 −X

(k−1)
4 ) = 0

2θµ1LdiX̂
(k)
4 + X̂

(k)
4 = X

(k−1)
4

X̂
(k)
4 = (2θµ1Ldi + I)†X

(k−1)
4

• SSimilarly, update step for X̂(k)
5 can be obtained as follows,

X̂
(k)
5 = X

(k−1)
5 (2θµ2Ldr + I)†

In the above two update steps, A† denotes the Moore-Penrose pseudo inverse of

A. The next iterate X(k) is finally obtained by averaging over the five proximal

values, as follows,

X̂(k) =
1

θ
(X̂

(k)
1 + X̂

(k)
2 + X̂

(k)
3 + X̂

(k)
4 + X̂

(k)
5 ) (4.7)

with θ = 5. Furthermore, each of the proxy variables is updated via the follow-

ing update rule,

X
(k)
i = X

(k−1)
i + 2X̂(k) − X̂(k−1) − X̂(k)

i (4.8)

The complete algorithm is given in Algorithm 5. 1

We display in Figures 4.2 and 4.3 example of convergence plots (i.e. evo-
1The code of GR1BMC is available at https://github.com/aanchalMongia/GROBMC-PPXA-DDA
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Algorithm 5 GR1BMC (Y,M, Sd, St)
1: Initialize: p, µ1, µ2, λ
2: X

(0)
1 , X

(0)
2 , X

(0)
3 , X

(0)
4 , X

(0)
5

3: Sparsify: Compute N ij
di , N

ij
dr, Ŝdi = N ij

di � Sdi, Ŝdr = N ij
dr � Sdr

4:

5: Ddi =
∑

j(Ŝdi)
ij , Ldi = (Ddi)

−1/2(Ddi − Ŝdi)(Ddi)
−1/2

6: Ddr =
∑

j(Ŝdr)
ij , Ldr = (Ddr)

−1/2(Ddr − Ŝdr)(Ddr)
−1/2

7:

8: For loop 1, iterate (k)
9:

10: X̂
(k)
1 = (5MTM + I)−1(X

(k−1)
1 + 5MTY )

11: X
(k−1)
2 = US(k−1)V T

12: Ŝ(k−1) = sign(S(k−1)) max(0, |Sk| − 5λ/2)

13: X̂
(k)
2 = UŜ(k−1)V T

14: X̂
(k)
3 = min (max(X

(k−1)
3 , 0), 1)

15: X̂
(k)
4 = (10µ1Ldi + I)†X

(k−1)
4

16: X̂
(k)
5 = X

(k−1)
5 (10µ2Ldr + I)†

17:

18: X̂(k) = 1
5(X̂

(k)
1 + X̂

(k)
2 + X̂

(k)
3 + X̂

(k)
4 + X̂

(k)
5 )

19:

20: X
(k)
i = X

(k−1)
i + 2X̂(k) − X̂(k−1) − X̂(k)

i , i = 1, 2...5
21:

22: End loop 1
23: Return: X̂(k)
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lution of objective function along iterations) for Fdataset and Cdataset, respec-

tively.
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Figure 4.2: Convergence plot for GR1BMC on Fdataset

4.4 Results

4.4.1 Evaluation criteria

To experimentally evaluate the prediction performance of GR1BMC, we use κ-

fold cross validation strategy (κ = 10) as used in subsection 3.4.1 of Chapter

3, called CVS1 (Cross validation setting 1) where we divide all the known asso-

ciations into κ equal subsets and 1 of them is treated as a testing set, while the

remaining ones constitute the training set. The associations in training set are
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Figure 4.3: Converegence plot for GR1BMC on C dataset

given as input to the algorithm which then returns the fully imputed association

matrix.

After this matrix completion, the predictions on testing set and other can-

didate associations for all drugs are ranked in descending order of scores and

TPR (True Positive Rate)/Recall, FPR (False Positive Rate) and PPV (Positive

predicted value)/Precision is calculated for every rank threshold. These values

at every threshold are used to plot an ROC (Receiver Operating Characteristic)

curve with FPR on x-axis and TPR on y-axis. In a similar way, a Precision-

Recall curve is obtained by plotting Recall/TPR on x-axis and Precision on y-

axis. The area under both these curves called Area under the ROC curve (AUC)
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and Area under the precision-recall curve (AUPR) are used to asses the perfor-

mance of the methods used to predict drug-disease associations, similar to the

way we did in subsection ?? of chapter 3 in Drug-target interaction prediction.

Figures 4.4 and 4.5 show the ROC curves obtained on all the 10 folds after

running GR1BMC on both the datasets. The average AUC and AUPR across

all the folds has been shown in Tables 4.2 and 4.3. As can be observed from

the table, GR1BMC performs better than the benchmarks techniques on both

the datasets, especially in terms of AUPR. It should be noted that AUPR is a

relatively more important metric in this problem since it heavily punishes highly

ranked non-associations (false positives), which is crucial given the nature of

application as false positive indications would lead to wastage of resources if

the proposed indications are tested in clinical experiments.

4.4.2 Comparison with benchmark techniques

To evaluate the performance of GR1BMC, we compare the results of cross-

validation experiments with those of the latest methods proposed for drug-disease

association prediction: Bounded nuclear norm regularization (BNNR) [105],

Heterogeneous Network for drug-Disease association prediction (HNRD) [106]

and drug repositioning recommendation system (DRRS) [107]. BNNR and

Table 4.2: Average AUC across 10-fold cross-validation for various techniques while predicting drug-disease
associations.

Datasets GR1BMC BNNR HNRD DRRS
Fdataset 0.9773 0.9330 0.9420 0.9300
Cdataset 0.9807 0.9480 0.9500 0.9470
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Figure 4.4: ROC curves obtained for all the 10 folds after applying GR1BMC on Fdataset

DRRS are the closest in terms of formulation used to model the problem. Both

the methods deploy nuclear norm minimization on a heterogeneous network

matrix obtained by integrating drug similarity, disease similarity, association

matrix and its transpose; BNNR additionally handles the noise originating from

similarities which violate the low-rankness and restrict the predicted values to

be in range [0,1]. But, the low-rank property of the heterogeneous matrix is

unexplained in both the works; which is a crucial assumption behind nuclear

Table 4.3: Average AUPR across 10-fold cross-validation for various techniques while predicting drug-disease
associations.

Datasets GR1BMC BNNR HNRD DRRS
Fdataset 0.7247 0.4410 0.5720 0.3780
Cdataset 0.7537 0.4710 0.6700 0.4020
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Figure 4.5: ROC curves obtained for all the 10 folds after applying GR1BMC on Cdataset

norm minimization. This heterogeneous matrix comprises of associations be-

tween drugs and diseases as well as drug-drug and disease-disease similarities.

The authors clearly explain validity of the low-rank assumption in association

matrix but not for the heterogeneous matrix.

The results of 10-fold cross-validation have been shown in Tables 4.2 and 4.3.

It can be seen that our proposed approach shows competitive performance in

terms of area under the ROC curve and is better than the benchmark techniques

in terms of precision and recall also.
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DRUG INFORMATION DISEASE INFORMATION
Drug name DrugBank ID Disease name OMIM ID Confirmation
Levodopa DB01235 (PARKINSON DISEASE, LATE-ONSET; PD) 168600 CTD confirmed

(DEMENTIA/PARKINSONISM WITH NON-ALZHEIMER AMYLOID PLAQUES) D125320 CTD confirmed
(DYSTONIA 9; DYT9 D601042 CTD confirmed
(DEMENTIA, LEWY BODY; DLB) D127750
(RENAL FAILURE, PROGRESSIVE, WITH HYPERTENSION; RFH1) D161900

Doxorubicin DB00997 (COLORECTAL CANCER; CRC) D114500 CTD confirmed
(DOHLE BODIES AND LEUKEMIA) D223350
(RETICULUM CELL SARCOMA) D267730 CTD confirmed
(RENAL CELL CARCINOMA, NONPAPILLARY; RCC) D144700 CTD confirmed
(LEUKEMIA, CHRONIC LYMPHOCYTIC, SUSCEPTIBILITY TO, 2) D109543 CTD confirmed

Amantadine DB00915 (PARKINSON DISEASE, LATE-ONSET; PD) D168600 CTD confirmed
(DEMENTIA/PARKINSONISM WITH NON-ALZHEIMER AMYLOID PLAQUES) D125320 CTD confirmed
(ALZHEIMER DISEASE, FAMILIAL EARLY-ONSET, WITH COEXISTING AMYLOID AND PRION PATHOLOGY) D605055 CTD confirmed
(DEMENTIA, LEWY BODY; DLB) D127750 CTD confirmed
(ALZHEIMER DISEASE; AD) D104300 CTD confirmed

Flecainide DB01195 (ATRIAL FIBRILLATION, FAMILIAL, 1; ATFB1) D608583 CTD confirmed
(HYPERTENSION, DIASTOLIC, RESISTANCE TO) D608622 CTD confirmed
(RENAL FAILURE, PROGRESSIVE, WITH HYPERTENSION; RFH1) D161900
(INSENSITIVITY TO PAIN WITH HYPERPLASTIC MYELINOPATHY) D147530
(STROKE, ISCHEMIC) D601367

Metformin DB00331 (DIABETES MELLITUS, INSULIN-DEPENDENT, 2) D125852 CTD confirmed
(COLORECTAL CANCER; CRC) D114500 CTD confirmed
(HYPERLIPOPROTEINEMIA, TYPE V) D144650 CTD confirmed
(ENDOMETRIOSIS, SUSCEPTIBILITY TO, 1) D131200
(UTERINE ANOMALIES) D192000

Table 4.4: Top 5 predicted diseases for Levodopa, Doxorubicin, Amantadine, Flecainide and Metformin with their
evidence in CTD database

4.4.3 Parameter settings

The matrices X(0)
1 , X

(0)
2 , X

(0)
3 , X

(0)
4 and X(0)

5 are initialized randomly and the

algorithm is run for a fixed number of iterations k (k=20 here) that appears

sufficient to reach practical stabilization of the objective function. The running

time is in the order of seconds; PPXA takes approximately 4 and 6 seconds

on Fdataset and Cdataset respectively on a single core machine with a clock

speed of 2.8 GHz, 64 GB RAM (Intel(R) Xeon(R) CPU E5-1603 v3 processor)

. To look for a feasible solution in the space of low-rank association matrices,

we need to determine the values of the hyperparameters λ, µ1 and µ2. This

is done to weigh the importance of nuclear norm term and the trace terms in

our objective function for each of the two datasets. The values of µ1 and µ2

determine the weights given to each of the drug and disease laplacians, hence

exhibiting the importance of neighborhood information of drugs and targets

in our framework for a dataset. The optimal values of these parameters are
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found by performing cross validation on the training set and taking the value of

parameters from the set {0.01, 0.05, 0.1, 0.5, 1, 5, 10}. The values of λ, µ1 and

µ2 are robust across the two datasets and are found to be 0.1, 0.05, 0.1 for both

the datasets.

’

4.4.4 Case study to predict novel associations

To asses the practical usage of the proposed algorithm, we perform a case study

where we chose 5 candidate drugs to look for their novel indications (dummy

drug re-positioning) after prediction the associations using our proposed ap-

proach.

We train our model on the known associations on Fdataset. After the matrix

completion is done, we rank the remaining candidate diseases for each drug in

descending order or predicted association scores.

These rankings or predictions of novel indications for drugs is verified by

validating the top-5 indications for any 5 drugs with the public database com-

parative toxicogenomics database (CTD) [108]. We show the validation on the

following 5 drugs: Levodopa, Doxorubicin, Amantadine, Flecainide and Met-

formin.

The indications predicted by GR1BMC and the evidence from CTD is shown

in table 4.4. It can be seen that at least 3 indications are confirmed with the CTD

databse for 4 out of 5 drugs and a total of 17 out of 25 predicted associations
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have evidence in CTD database. Also, the indications which are not verified

could be the potential candidates for drug-repositioning and could be explored

by medical researchers.

4.5 Conclusion

The huge amount of time and efforts taken for the development drugs calls

for the need for efficient and reliable computational methods to assist drug re-

positioning. In this thesis, we present a novel approach to predict drug-disease

indications based on parallel proximal algorithm, which benefits from guaran-

teed convergence and great numerical performance. Cross validation and exper-

iments on gold standard dataset demonstrate the superiority of the proposed ap-

proach over the benchmark techniques. The practical usage is also validated by

the case study where novel indications for existing drugs are found and majority

are validated with the CTD database. The proposed method is generic and can

be applied to other association/interaction prediction problems such as protein-

protein interaction prediction, human microbe-disease association (MDA) pre-

diction, gene-disease association prediction, etc.
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Chapter 5

Drug-virus association database: anti-viral

drug prediction using matrix completion

COVID-19 has fast-paced drug re-positioning for its treatment. This work

builds computational models based on matrix completion variants for the same.

The aim is to assist clinicians with a tool for selecting prospective antiviral treat-

ments. Since the virus is mutating fast [109], the tool is likely to help clinicians

in selecting the right set of antivirals for the mutated isolate.

The most crucial contribution of this work is a manually curated database

publicly shared, comprising of existing associations between viruses and their

corresponding antivirals. The database gathers similarity information using the

chemical structure of drugs and the genomic structure of viruses. Along with

this database, we make available a set of state-of-the-art computational drug re-

positioning tools based on matrix completion. The tools are first analysed on

a standard set of experimental protocols for drug target interactions. The best

performing ones are applied for the task of re-positioning antivirals for COVID-
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19. These tools select six drugs out of which four are currently under various

stages of trial, namely Remdesivir (as a cure), Ribavarin (in combination with

others for cure), Umifenovir (as a prophylactic and cure) and Sofosbuvir (as a

cure). Another unanimous prediction is Tenofovir alafenamide, which is a novel

tenofovir prodrug developed in order to improve renal safety when compared to

the counterpart tenofovir disoproxil. Both are under trail, the former as a cure

and the latter as a prophylactic. These results establish that the computational

methods are in sync with the state-of-practice. We also demonstrate how the

selected drugs change as the SARS-Cov-2 mutates over time, suggesting the

importance of such a tool in drug prediction.

5.1 Introduction

There has been an exponential rise in the total active cases and deaths due to

COVID-19 (COrona VIrus Disease-2019) since the first case in Wuhan, China

in December, 2019 [110]. The disease results in severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), which is known to be highly transmittable

and has spread across more than 100 countries. This pandemic has wreaked

havoc on people’s social life, the global economy, and most importantly the

health of the human race. The death numbers are frightening, confirming about

467K deaths worldwide till mid-June, 2020 [110].

As medical professionals are striving to save lives, research scientists special-

ized in drug development, are racing against time to develop a vaccine against
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SARS-CoV-2 [111]. The investigation involved for developing a vaccine (or

even a new drug) is time consuming, requiring several phases of extensive trials.

Experts believe that it is highly unlikely that a vaccine will be ready before a

year or more. In such circumstances a better way may be to re-position existing

drugs for treating COVID-19. This is a well known approach where existing

drugs (which have already been approved for release in the market) are investi-

gated for new disease/s [62]. Drug re-positioning is usually cost effective and

fast (compared to developing a new drug / vaccine) since its effects are well

studied. One classic example for drug re-positioning is Chlorocyclizine , which

was initially developed as an anti-allergic but later found to act against the hep-

atitis C virus [112]. Another example is Imatinib mesylate (sold under the trade

name Gleevec), it was originally used as a treatment for leukemia but later was

found to be effective against genes associated with gastrointestinal-stromal tu-

mors [64, 65].

Given the relatively large drug-virus association space, manual investigation

in wet-labs is not a scalable strategy. Putting all the anti-virals in trials for treat-

ing corona is not very feasible either; especially because time is of essence. In

such a scenario, computational approaches can help; they can be used to prune

down the search space for the drugs to be investigated [55]. Practically, such ap-

proaches could also assist the clinicians to come up with treatments for rapidly

mutating viruses by pruning the anti-viral drug space. Specifically, a computa-

tional approach which takes into account the genomic structure of the latest viral

isolate or its similarity with the previously occuring strains of viruses would be
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helpful in deciding the treatment. With this objective, we have manually cu-

rated a comprehensive database called DVA (Drug Virus Association), having

the approved (anti-viral) drug-virus associations in the literature along with the

similarity measures associated with drugs (chemical structure similarity) and

viruses (genome sequence similarity). To the best of our knowledge there is no

existing database for drug virus association.

The DVA database we propose in this work lies the foundation for further

computational studies on this topic. There can be various methodologies to

predict drug virus association. The prediction problem can be approached via

feature-based classification models, neighborhood models, matrix completion

models, network diffusion models etc. A recent empirical study on well estab-

lished drug-target interaction databases exhibit the best prediction performance

by matrix completion models [55]. In computer science, matrix completion

is used routinely in recommendation systems. The general problem of drug-

disease association can actually be thought of as a recommendation system,

where drugs are being recommended for treating a disease. Given the success

of matrix completion techniques in drug target interaction, we deploy state-of-

the-art matrix completion techniques on our curated DVA database. We perform

a thorough comparative analysis of those for predicting assessed drug-disease

associations. Then, we apply the methodology for pruning the search space of

potential candidates for COVID-19 trial drugs. Finally, we show how the tool

helps in selecting drugs as the virus mutates.
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5.2 Dataset

The proposed DVA dataset aims at being exhaustive. It compiles various ex-

isting sources, housing together all the anti-viral drugs proved clinically to be

effective against viruses infecting humans. The dataset has 121 drugs and 38

viruses. We believe such resource would be highly useful for analysing and

proposing anti-virals not only for the novel coronaviruses but other viruses too.

Along with that, it may also be used to computationally identify viruses that a

newly discovered drug may target. The associated metadata (information about

the drugs and viruses) may also help clinicians in manual analysis and having a

deeper insight.

5.2.1 Drug-virus association compilation

All the associations corresponding to anti-viral drugs clinically shown to act

against human host viruses have been assembled from standard DrugBank database

[99] (https://www.drugbank.ca/categories/DBCAT000066). To ensure that the

database is fully comprehensive, other literature works [113, 114, 115, 116, 117,

118, 119, 120, 121] and resources such as ViPR [122] were also scanned for any

additional drug-viral associations. ViPR or NIAID Virus Pathogen Database

and Analysis Resource (http://www.viprbrc.org/) is a repository of data and

analysis tools for virology research [122] capturing various types of informa-

tion derived from comparative genomics analysis and visualization tools. It has

antiviral drug information (for 21 viral species) derived imported from Drug-
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Bank (https://www.drugbank.ca/) [99].

The DrugBank Identifier (DrugBank ID) of the anti-viral drugs involved is

considered as the unique key for the drugs, obtained from DrugBank vocabulary

(https://www.drugbank.ca/releases/latestopen-data). Along with the viral asso-

ciation information, we also store the target pathway and mechanism of action

of each drug for quick reference in any further investigation. Apart from this,

each drug is mapped to its corresponding KEGG Identifier (KEGG ID) from the

KEGG Compound/KEGG Drug database (https://www.genome.jp/kegg/drug/,

https://www.genome.jp/kegg/ compound/) of the KEGG (Kyoto encyclopedia

of genes and genomes) [78]. The KEGG IDs were taken from the linking file

provided at https://www.drugbank.ca/releases/latestexternal-links [99] or man-

ually added in the case of drugs missing in the linking file.

Each virus is identified by an acronym assigned to it (in case of no acronym,

full virus name is used). The viral family, genome type, transmission route

and incubation period is also available in the virus metadata file along with the

accession number of the complete genomic sequence of the viruses fetched from

NCBI (National Center for Biotechnology Information) Viral genome browser

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi [123]).

5.2.2 Similarity computation

To integrate the similarity information to the drug-virus associations, we have

computed similarities between the drugs based on their chemical structures and
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between the viruses using their complete genomic sequences.

• DRUG SIMILARITY: All the DrugBank IDs were mapped to KEGG IDs

of the corresponding drug/compound in the KEGG database [78]. The

chemical structure similarity was measured between the drugs by comput-

ing the SIMCOMP score [80] based on the maximum common substruc-

tures between the chemical structure of the compounds using the KEGG

API page at GenomeNet (https://www.genome.jp/tools

/gntoolsapi.html). The drugs for which the SIMCOMP score was less than

the set cutoff (0.001) and the drugs with no KEGG IDs available were as-

signed a similarity score of 1 to themselves and 0 to other drugs in the

dataset.

• VIRUS SIMILARITY: The d2∗ distance based on ONF (Oligonucleotide

frequency) measure between the DNA sequences was shown to be the best

amongst various other ONF metrics with several k-mers length in host pre-

diction accuracy at the genus level [124]. Hence, we compute d2* dissimi-

larity/distance (at k=6) between the viral genome sequences obtained from

NCBI [123]. The reference sequences of viruses were saved in FASTA for-

mat to be used by the distance computation software (https://github.com/jessieren/VirHostMatcher)

proposed by [124]. The d2∗ distance was subtracted from 1 to obtain the

similarity measure.

For the viruses with segmented structure (Influenza A virus, Influenza B

virus, Influenza C virus, Lassa mammarenavirus), the coding sequence in
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the nucleotide sequence of each genomic segment (taken in decreasing

order of length was taken) was combined to form the complete viral se-

quence.

5.3 Methodology

5.3.1 Data preprocessing

The drug-virus indications have been stored and processed in a matrix form of

size m × n (m being no of drugs in the database and n being the number of

viruses) to be used as input for any of the 6 matrix completion algorithms we

made available in our repository.

The similarity information has been represented as symmetric matrices of

size m×m (drug similarity matrix) and n× n (virus similarity matrix). These

matrices and the correspodning laplacian matrices were processed as per the

two steps mentioned in subsection 3.3.1 of Chapter 3 to ensure better learning.

5.3.2 Proposed framework

The proposed computational approach is to use Matrix compeletion and its vari-

ants for drug-virus association prediction. In this subsection, we describe each

of the matrix completion algorithms used (www.github.com/AanchalMongia/DVA),

along with their mathematical formulations and resolution strategies.

Let Xm×n be the complete drug-virus association matrix (with m drugs on
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rows and n viruses on columns) with binary entries (1 denoting that the drug

is known to act against the virus and 0 denoting no association). Here X is

the matrix to be recovered from its sampled (partially known) entries in Y . Let

M denote the masking operator (elementwise multiplied to X) having 1’s at

positions where associations are known and 0 otherwise. Then, the matrix com-

pletion problem can be formulated as searching for X (as shown in equation

(1.1)) satisfying,

Y = M ◦ (X), (5.1)

under specific constraints. In particular, it is typically assumed that similar

drugs act in a similar manner, hence X to be recovered (from Y and M ) is of

low-rank.

5.3.2.1 Matrix factorization (MF)

The most straightforward technique of solving low-rank matrix completion is

matrix factorization, where the data matrixXm×n is decomposed into two latent

factor matrices Um×k and Vk×n, where k denotes the number of latent (hidden)

factors deciding if a drug is associated with a virus or not. X is recovered by

solving for U and V in the following minimization problem,

min
U,V
||Y −M ◦ (UV )||2F . (5.2)

The above problem is solved in an alternating manner, by first decoupling the

mask using a majorization-minimization technique [5, 125] and then using al-
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ternating least squares method [6] to obtain U and V . The complete algorithm

is described in [126].

5.3.2.2 Deep matrix factorization (DMF)

An extension of matrix factorization has been proposed motivated by the suc-

cess of deep dictionary learning [13], where the data matrix X is decomposed

into multiple factor matrices (analog to multiple layers) to capture more com-

plex hidden features in the data. The formulation of the minimization problem

in the case of 2-layer matrix factorization is given below,

min
U1,U2,V

||Y −M(U1U2V )||2F s.t. U1 ≥ 0, U2 ≥ 0. (5.3)

The above problem is solve alternatively. The minimization with respect to

variables U1 and V , is done in a similar way to that of matrix factorization,

while the update on U2 can be obtained as shown in [18].

5.3.2.3 Graph regularized matrix factorization (GRMF)

Another variant of Matrix factorization has been proposed to incorporate meta-

data associated with the row and column entities (drug and virus similarities in

this case) [14]. Here, the drug and virus entities form the nodes of two separate

graphs and the similarity between them is assumed to be the weights between

the nodes. Regularization is imposed by adding graph Laplacian penalties to
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the cost function of matrix factorization as shown below,

min
U,V
||Y −M ◦ (UV )||2F + µ1tr(U

>LdU) + µ2tr(VLvV>), (5.4)

where µ1 > 0 and µ2 > 0 are coefficients penalizing the graph regularization

Laplacian terms and tr denotes the trace of the matrix. Ld = Dd − Sd and

Lv = Dv−Sv are the graph Laplacians [17] for Sd (row/drug similarity matrix)

and Sv (column/virus similarity matrix), respectively, and Dii
d = ΣjS

ij
d and

Dii
v = ΣjS

ij
v are the associated degree matrices. A resolution technique for the

above formulation has been shown in [14].

5.3.2.4 Matrix completion (MC)

Matrix factorization based approach leads to a non-convex minimization prob-

lem and hence rarely benefits from global convergence guarantees. To limit the

space of minimizers, it may be useful to impose a low-rank constraint on the so-

lution X . Since rank minimization is still an NP-hard problem, it was proposed

to relax the above constraint to its closest convex surrogate by making use of

the nuclear norm penalty [7, 8]. The formulation for the resulting nuclear norm

minimization problem (referred to as matrix completion by the authors) is,

min
X
||X||∗ s.t. Y = M ◦ (X). (5.5)

The above problem can be solved alternatively, by invoking majorization-minimization

arguments [5] to deal with the mask operator M and by applying thresholding
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operations on the singular values to process the nuclear norm term [126].

5.3.2.5 Graph regularized matrix completion (GRMC)

Just like matrix factorization, nuclear norm minimization based matrix comple-

tion can also be graph regularized by incorporating graph Laplacian penalties

to take metadata/similarity information into account. The formulation for the

minimization problem is given by,

min
X
||Y −M ◦ (X)||2F + λ||X||∗ + µ1tr(X

>LdX) + µ2tr(XLvX>). (5.6)

The above formulation can either be solved using ADMM (alternating direction

method of multipliers) [85, 127] as was done in [21] (referred as GRMC here)

or by explicitly taking care of the constraint that the recovered values should be

in the range [0, 1]. If the latter range constraint is taken into account, we obtain

then a new variant called graph regularized binary matrix completion. The min-

imization with respect to X can be solved by making use of the PPXA (parallel

proximal algorithm) [96]. Such approach allows to decouple the constraints

by introducing proxy variables and then solving each subproblem in a parallel

fashion as shown in [20] (referred as GRBMC here).

5.3.3 Setting of hyperparameters

The stepsize, regularization parameters and latent factor dimensions, for the

above techniques have been tuned using cross-validation on training set (after
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hiding 10 % of the data) in each of the three cross-validation settings (see Sec-

tion 5.4.2). The parameters obtained after extensive cross-validation on the set-

ting CV2 (randomly hiding the virus entities) have been further used in predict-

ing drugs for SARS-Cov-2 and the corresponding isolates (see Sections 5.4.4

and 5.4.5). Similarly, the parameters selected for the setting CV3 (randomly hid-

ing drug entities) have been used to evaluate the performance of the approaches

in Section 5.4.3.

5.4 Results

We assess the performance of different matrix completion techniques in this

section. The techniques have been described in the Methods section. Six matrix

completion methods were used, which can be categorized into three families

provided below.

• Basic frameworks (MF: Matrix factorization [126] and MC: Matrix com-

pletion or Nuclear norm minimization [126])

• Deep frameworks (DMF: Deep matrix factorization) [128],

• Graph regularized frameworks (GRMF: graph regularized matrix factor-

ization [14], GRMC: graph regularized matrix completion [21], GRBMC:

graph regularized binary matrix completion [20])

Matrix factorization (MF) is the traditional matrix completion method which

factorizes the data matrix into two latent factor matrices (tall and short) and the
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algorithm recovers these factor matrices to recover the original matrix. Since

this problem is non-convex, it may not converge to a global minimum of the

cost function. Nuclear-norm minimization based matrix completion (MC) was

proposed as a (mathematically) better alternative; it directly recovers the ma-

trix by penalising its nuclear norm (convex surrogate of rank). Deep matrix

factorization (DMF) generalises MF to more than two factors. None of the

techniques mentioned so far can take advantage of genomic structure of the

viruses or chemical structure of the drugs. The said pieces of information can be

incorporated into the graph regularized matrix completion techniques (GRMF,

GRMC, GRBMC). These techniques have been explained in detail in the Meth-

ods section.

5.4.1 Overview: DVA prediction

The typical anti-viral drug discovery process involves genomic and biophysical

understanding of the virus. It aims to target the enzymes or peptides involved

in the viral replication cycle and takes years for successful clinical validation.

Other approaches involve screening all the broad-spectrum anti-viral drugs or

chemical libraries comprising large numbers of existing compounds/databases

(having information on transcriptional signatures in different cell lines) to be

further evaluated by standard anti-viral assays [129]. In view to assist acceler-

ation of this process (by pruning down the search space), we create and share

a publicly available DVA database, along with a number of matrix completion

techniques (mentioned above) for drug-virus association prediction.
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Figure 5.1: Schematic diagram depicting the DVA framework

The originality of the proposed work lies in the formalization of the drug-

virus association prediction as a matrix completion problem, without the need

for any anti-viral assays. Such a computational approach requires the chemi-

cal structure of the drugs and, in case of graph-regularized matrix completion

techniques, the genome of the viruses, or existing associations otherwise. Fig-

ure 6.5 depicts the schematic flow of the proposed work involving data curation

and implementation overview.
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5.4.2 Empirical evaluation

In this sub-section, we carry out extensive experimental protocol to illustrate

and compare the ability of the different methods to retrieve the drug-disease as-

sociations available in our curated dataset. The protocol dictates three variants

of κ-fold (with κ=10 here) cross-validation setting (CV) as described in subsec-

tion 3.4.1 of Chapter 3. In the first setting CV1 (cross validation 1), 10 % of

the associations selected at random are left out as testing set. This allows to as-

sess each algorithm’s ability to predict associations between existing drugs and

viruses. To evaluate an algorithm for its ability to predict association for novel

drugs and viruses i.e. those which have no association information, we use two

other (more stringent) CV settings. In CV2 and CV3, 10 % of the complete

virus and drug entities selected at random are left out as test set respectively.

The standard metrics for evaluation are the AUC (Area under the Receiver

Operating Characteristic curve) and AUPR (Area under the precision-recall

curve). AUC is more common in machine learning literature, it assumes that the

classes are evenly balanced. Problems in drug-disease association have highly

imbalanced classes, in such a scenario the AUPR is a more appropriate metric

for evaluation [90, 14].

Table 5.1 shows how each of the 6 tested algorithms performs in retrieving

the associations. A clear observation from the experiments is that the graph

regularized-based matrix completion algorithms that incorporate the similarity

information associated with the drugs and viruses, perform fairly well giving
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an AUC greater or equal than 0.83 in CV1. The best performing algorithm

(GRBMC) exhibits an AUC and AUPR of 0.88 and 0.54 respectively. Predict-

ing the associations for novel drugs and viruses also have a reasonable perfor-

mance with the best AUC/AUPR of 0.81/0.44 and 0.73/0.31 by GRBMC and

GRMF. It can be noted that the standard matrix completion methods, which

do not take into account the metadata, fail to learn from the association data

giving a near-random performance as far as the prediction on novel viruses is

concerned, depicting how very important the similarity information is.

Metric MC MF DMF GRMF GRMC GRBMC
CV1 AUC 0.5959 0.6753 0.6974 0.8652 0.8279 0.8834

AUPR 0.3238 0.2656 0.2615 0.4812 0.4445 0.5220

CV2 AUC 0.4909 0.5033 0.5704 0.7346 0.6705 0.6632
AUPR 0.1106 0.0504 0.0855 0.3112 0.2951 0.2746

CV3 AUC 0.5438 0.5215 0.4529 0.7806 0.7507 0.8181
AUPR 0.0538 0.0637 0.0824 0.4265 0.4333 0.4383

Table 5.1: Results for association prediction for all techniques under the 3 cross validation settings.

5.4.3 Association prediction for new drugs

DVA database and its associated computational tools can also be used on new

drugs without any previously known virus association information. For evaluat-

ing this ability, we identified in our database all the drugs which are known to

interact with only one virus (drugs associated with a single virus only) and hide

that association to the methods. This allows us to assess the performance of the

algorithms in predicting viruses associated with the new drugs in the database.

We hide the only virus corresponding to each of the 76 drugs (with only a
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single virus associated with it) and run matrix completion to predict candidate

viruses for these drugs. The drugs for which the test virus associated with it is

the top-ranked virus predicted by the algorithm would have the maximum preci-

sion value (MPV) of 1. The number and percentage of drugs with a maximum

precision value of 1 are reported in Table 5.2.

Nearly 34 % (26/76) of single association drugs with a maximum precision

of 1 were predicted using GRMF. Other graph regularized frameworks show

comparable performance in terms of predicting drugs with MPV of 1.

MC MF DMF GRMF GRMC GRBMC
# drugs with MPV=1 2 4 4 26 22 8
% drugs with MPV=1 2.6316 5.2632 5.2632 34.2105 28.9474 10.5263

Table 5.2: Number and percentage of drugs predicted with MPV=1 by the matrix completion methods.

5.4.4 SARS-CoV-2 prediction

In this experiment, we add the SARS-CoV-2 sample in our database by provid-

ing its ONF based d2* similarity [124] in the virus similarity matrix.

We then apply the matrix completion algorithms to predict the associations

and rank prediction scores corresponding to SARS-CoV-2 to predict the top 10

recommended drugs.

As can be seen from the results of section 5.4.2 (Table 5.1), MC, MF and

DMF often yield considerably worse results than their graph regularized coun-

terparts (GRMF, GRMC and GRBMC). Such poor performance of non-graph

regularized versions of matrix completion methods could be explained as they
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Technique SARS-Cov-2
GRMF Remdesivir

Ribavirin
Sofosbuvir
Umifenovir
Taribavirin
Tenofovir alafenamide
Ibuprofen
Pleconaril
Geldanamycin
Vidarabine

GRMC Remdesivir
Ribavirin
Sofosbuvir
Taribavirin
Tenofovir alafenamide
Vidarabine
Telaprevir
Boceprevir
Simeprevir
Palivizumab

GRBMC Remdesivir
Ribavirin
Sofosbuvir
Umifenovir
Taribavirin
Vidarabine
Brivudine
Tenofovir alafenamide
Paritaprevir
Peginterferon alfacon-1

Table 5.3: Top-10 drugs predicted for SARS-Cov-2 by the DVA computational methods.

do not incorporate any knowledge about the genomic structure of the viruses

and the chemical structure of the drugs. Since the three graph-based methods

perform reasonably well in the prediction task, we consider these techniques

for the drug prediction on the novel coronavirus. The top-10 drugs they pre-

dicted have been reported in Table 5.3 (ranked by their predicted scores). Drugs

highlighted with blue text are unanimously predicted drugs by the three consid-

ered matrix completion techniques and those in red text are predicted by two
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methods. We also highlighted with yellow cells the drugs which are under tri-

al/investigation as a potential cure/prophylactic against COVID-19.

It can be seen that the three techniques have consistently and unanimously se-

lected six drugs, namely Remdesivir, Ribavarin, Sofosbuvir, Taribavirin, Teno-

fovir alafenamide and Vidarabine. Umifenovir has been recommended by two

(GRMF and GRBMC) out of three techniques. Amongst these recommenda-

tions, Remdesivir [130], Ribavarin [131, 132], Sofosbuvir [133] and Umifen-

ovir [134] are under clinical trials. Taribavirin is similar to Ribavirin but it is

not approved by the FDA. Tenofovir alafemanide (an antiretroviral for HIV-1)

is on undergoing trial [135]. GRMF has additionally selected Ibuprofen which

is expected to be investigated in UK [136, 137]. The fact that three techniques

unanimously select the aforementioned drugs make us confident about these

recommendation results.

5.4.5 Predictions evolution with mutating novel coronavirus

In the previous sub-section, we have established that the results from our mod-

els are mostly in sync with clinical practice. In this sub-section, we will demon-

strate how our proposed approach can be of help to clinicians.

All the results generated so far have been generated using the reference se-

quence of the SARS-Cov-2 strain (collected in December, 2019 in Wuhan). The

novel coronavirus is rapidly mutating [109]. In such a scenario, it is necessary

to select drugs that are effective against the mutated strain. While mutating,
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the virus isolates may develop resistance to previous drugs used for its treat-

ment. Our model may be of help to clinicians in this respect. Before proposing

a treatment regime (trial, for e.g.) for COVID-19 treatment, the practitioner

may use our approach to check the drugs selected for the particular isolate of

novel coronavirus. In Table 5.4, we have experimented with three isolates of

the novel coronavirus (collected over an interval of 2 months), in addition to

the reference sequence (collected in December 2019). Those three isolates have

been collected in February (from USA), April (from Australia) and June (from

India).

One can note from the Table 5.4 that the selected drugs change with muta-

tions. Baloxavir marboxil was not selected even once for the reference sequence

from December 2019, but has been selected by two methods for the February

isolate. A recent pre-print [138] reports the results of this antiviral on COVID-

19 patients. The drug Ibuprofen, was selected by one of the methods for the

December reference sequence, it was not selected for the February isolate, then

it was selected by two methods for the April isolate and selected by all three

for the June isolate. It may be worthy to note that lipid Ibuprofen is being con-

sidered in a trial in UK from starting June, 2020 [136]. Similarly, Pleconaril

has been selected for by all three methods for the most recent (June) isolate, it

was selected by only one of the techniques for the reference sequence (Decem-

ber) and was not selected for the February or June sequences. Pleconaril, al-

though developed for treating enterovirus and rhinovirus, is not FDA approved.

Rilpivirine and Etravirine are two antiretrovirals developed for treating HIV
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positive subjects. Both of them have been predicted by all three methods in the

latest isolate, but not in the previous isolates or in the reference sequence. To

the best of our knowledge, this antiretroviral is not under study for COVID-19

trials. Note that Vidarabine, which was getting predicted for the reference se-

quence (albeit wrongly) has not been predicted from the later ones. Based on

this discussion, we can see that how the mutations in genomic structure results

in different predictions of drugs. Since the novel coronavirus is mutating, it

may be judicious to account for the structure of the latest isolate while deciding

the treatments to be put in trial. In such a case, our model may be of help to

clinicians.

5.5 Conclusion

Computational techniques have the inherent advantage of learning from the data

(which can be huge given a large number of drugs to be tested) and scale to a

large number of drugs and viruses and hence be of immense importance to the

clinicians by narrowing down the search space for the clinical trials to be carried

out.

We would like to emphasize that the proposed DVA database and methods

are not particular to the novel coronavirus. Such computational approaches

have the general capability to help for identification of drugs which might be

effective against a broad spectrum of viruses [139], or the viruses which can be

targeted by multiple drugs (since many drugs could target specific elements of
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Technique SARS-Cov-2: february, 2020 SARS-Cov-2: april, 2020 SARS-Cov-2: june, 2020
GRMF Remdesivir Remdesivir Remdesivir

Ribavirin Sofosbuvir Umifenovir
Umifenovir Umifenovir Pleconaril
Taribavirin Ribavirin Ibuprofen
Sofosbuvir Tenofovir alafenamide Sofosbuvir
Baloxavir marboxil Ibuprofen Rilpivirine
Geldanamycin Pleconaril Etravirine
Tenofovir alafenamide Hydroxychloroquine Tenofovir alafenamide
Tecovirimat Valomaciclovir Rimantadine
Peramivir Dexamethasone Ribavirin

GRMC Remdesivir Remdesivir Umifenovir
Umifenovir Sofosbuvir Remdesivir
Ribavirin Tenofovir alafenamide Ibuprofen
Taribavirin Boceprevir Pleconaril
Sofosbuvir Telaprevir Sofosbuvir
Vidarabine Palivizumab Chloroquine
Tenofovir alafenamide Simeprevir Etravirine
Nelfinavir Ribavirin Rilpivirine
Amprenavir Umifenovir Tenofovir alafenamide
Boceprevir Ibuprofen Nelfinavir

GRBMC Remdesivir Remdesivir Umifenovir
Ribavirin Umifenovir Remdesivir
Umifenovir Sofosbuvir Pleconaril
Taribavirin Ribavirin Ibuprofen
Sofosbuvir Taribavirin Sofosbuvir
Paritaprevir Paritaprevir Rilpivirine
Tenofovir alafenamide Brivudine Etravirine
Atazanavir Vidarabine Ribavirin
Baloxavir marboxil Daclatasvir Tenofovir alafenamide
Favipiravir Beclabuvir Trifluridine

Table 5.4: Top-10 drugs predicted for three isolates of SARS-Cov-2 (collected at an interval of 2 months) by the
DVA computational methods.

viral replication) [140]. We believe that the proposed work will pave the way

for more scientific ideas for anti-viral drug re-positioning and assist clinicians

in the process.
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Chapter 6

Transcriptomic-proteomic expression

completion using collaborative matrix

completion

A very recent technology, REAP-seq (RNA expression and protein sequencing

assay sequencing) allows simultaneous measurement of gene and protein ex-

pression levels in single cells. Both the expression profiles of genes and proteins

are not complete (gene expression profiles being more sparse). This calls for an

imputation framework that has the ability to impute both of these. In this work,

we propose a collaborative matrix completion framework that performs matrix

completion on both transcriptomic and proteomic data, using cell-information

for the proteomic and transcriptomic counterparts. This work is still ongoing

and is expected to yield meaningful biological results. The algorithmic frame-

work proposed has been shown in this dissertation.
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6.1 Introduction

The benefits of single-cell RNA sequencing enables the measurement of gene

expressions in individual cells, assisting the discovery of novel or rare cell types.

The measurement of gene expression also helps in giving an insight into the

mechanisms of cellular development and cellular response to therapeutics. But

the mRNA abundance does not infer the protein abundance, which is the pri-

mary target for drugs. To have a view of the proteins in cells for modeling the

response to therapeutics, new technologies have been introduced [141, 23]. For

instance, REAP-seq (RNA expression and protein sequencing assay) allows the

simultaneous measurement of mRNA and proteins in single cells. But, due to

low starting mRNA material in one cell in the reverse transcription step, the

gene expression data obtained has dropouts. Not only this, the protein expres-

sion data is not fully complete because of the very few numbers of proteins

profiled in a cell. Hence, there is a need for a collaborative matrix completion

framework that simultaneously completes the transcriptomic and proteomic pro-

files. In this work, we propose such a collaborative framework, which uses the

information in proteomic data to impute transcriptomic data and vice-versa.

The proposed algorithm employs graph regularized nuclear norm minimiza-

tion introduced in chapter 3. The formulation has been modified to take care of

the simultaneous imputation goal as shown in section 6.3.
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Figure 6.1: Schematic diagram depicting the collabrative imputation framework

6.2 Dataset

The gene and protein expression data has been generated using REAP-seq [23]

and comprises of 1723 cells in gene expression and 1668 cells in protein expres-

sion data.

The imputation and entire analysis have been performed by taking 1453 com-

mon samples after cell filtering (removing zero count cells) from both.

6.3 Methodology

For the imputation of Gene expression matrixG (having cells on rows and genes

on columns) and Protein-expression matrix P (with cells on rows and proteins

on columns), we exploit the graph laplacians from both G and P .
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6.3.1 Data preprocessing

We process the gene and protein expression matrices by performing the follow-

ing steps:

• Cell filtering: To remove low-quality cells, the expression of all genes/pro-

teins for every cell (cj) is added to give a vector (v) of size n, where n is the

total number of cells present in the expression data (1jn). This vector (v)

is divided into four quartiles. The 1.5 ×IQR (inter-quartile region) rule was

applied to detect the outlier cells in the genomic/proteomic space. The cells

with total expression below Q1− 1.5 ∗ IQR and above Q3 + 1.5 ∗ IQR are

discarded (Q1, Q2, and Q3 denote quantiles or cut-points used to partition

the data into quartiles).

• Gene selection: The genes with read count≥ 3 in at least 3 cells are consid-

ered as filtered genes (as done in Chapter 2). The rest of the genes which

do not satisfy the above criteria are eliminated.

6.3.2 Proposed framework

To solve the simultaneous imputation of G and P , we use Collaborative Graph

regularized Matrix completion. Both the matrices have cells on rows, and genes

in G and proteins in P on column.
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6.3.2.1 Formulation

The formulation to jointly co-complete both the gene expression and protein

expression matrices is shown below:

min
G,P,LG,LP

||YG −MG ◦ (G)||2F + λG||G||∗ + Tr(GT (αGLG + βGLP )G)+

||YP −MP ◦ (P )||2F + λP ||P ||∗ + Tr(P T (αPLP + βPLG)P )

(6.1)

Motivated by [142], we replace the trace terms in the above objective func-

tion by weighted l1 norm ofW which enables us to alternatively solve the matrix

completion and graph learning task jointly.

min
G,P,WG,WP

||YG −MG ◦ (G)||2F + λG||G||∗+

αG{||WG ◦ ZG||1,1 + σ2
GΣi,jW

G
i,j(log(WG

i,j)− 1)}+

βG{||W P ◦ ZG||1,1 + σ2
PΣi,jW

P
i,j(log(W P

i,j)− 1)}+

||YP −MP ◦ (P )||2F + λP ||P ||∗+

αP{||W P ◦ ZP ||1,1 + σ2
PΣi,jW

P
i,j(log(W P

i,j)− 1)}+

βP{||WG ◦ ZP ||1,1 + σ2
GΣi,jW

G
i,j(log(WG

i,j)− 1)}

(6.2)
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6.3.2.2 Solution

This subsection shows how we solve the above proposed formulation for collab-

orative matrix completion.

We use ADMM to solve it and employ variable separation method to ob-

tain the solution for each of the unknowns (G,P, LGorWG, LPorWP ) as shown

below,

G← min
G,P,WG,WP

||YG −MG ◦ (G)||2F + λG||G||∗ + αG{||WG ◦ ZG||1,1}+

βG{||W P ◦ ZG||1,1}

OR

G← min
G,P,WG,WP

||YG −MG ◦ (G)||2F + λG||G||∗ + αG{Tr(GTLGG)}+

βG{Tr(GTLPG)}

OR

G← min
G
||YG −MG ◦ (G)||2F + λG||G||∗ + Tr(GT (αGLG + βGLP )G)

(6.3)

Similarly,

P← min
P
||YP −MP ◦ (P )||2F + λP ||P ||∗ + Tr(P T (αPLP + βPLG)P )

(6.4)

Solution to equations (6.3) and (6.4) is shown in section 3.3.2.
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WG
i,j ← αG{||WG ◦ ZG||1,1 + σ2

GΣi,jW
G
i,j(log(WG

i,j)− 1)}+

βP{||WG ◦ ZP ||1,1 + σ2
GΣi,jW

G
i,j(log(WG

i,j)− 1)}
(6.5)

Differentiating equation (6.5) wrt WG
i,j and equating to 0, we get:

αG(ZG + σ2
Glog(WG

i,j)) + βP (ZP + σ2
Glog(WG

i,j)) = 0

(αG + βP )(σ2
Glog(WG

i,j)) = −(αGZ
G + βP (ZP )

WG
i,j = exp(−αG||gi−gj ||22+βP ||pi−pj ||22

(αG+βP )σ2
G

)

Similarly,

W P
i,j = exp(−αP ||pi−pj ||22+βG||gi−gj ||22

(αP +βG)σ2
P

)

NOTE: The above expression can be written as:

WG
i,j = exp(−αG||gi−gj ||22

(αG+βP )σ2
G

)× exp(−βP ||pi−pj ||22
(αG+βP )σ2

G
)

6.4 Results

This section shows the preliminary results of applying this framework to the

gene and protein expression data. In the future, we would add more kinds of

biological validation to evaluate the proposed method.
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6.4.1 Cell visualization

We represent the transcriptomic and proteomic data visually by reducing it to a

two-dimensional space and coloring each cell by its cell type. Since t-SNE is

shown to be well-suited for the visualization tasks [143], we use t-SNE (with

perplexity=30) on both the expression matrices.

Figure 6.2: t-SNE representation of cells from unimputed gene expression data

As it can be observed, the imputation has helped the cells of the same type

to come close together in the t-SNE space, when looking at the transcriptomic

view. The same is not the case when looking at the proteomic view. This can

be attributed to the fact that the information derived from gene-data is not as

reliable (due to dropouts) for the completion of protein-data.
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Figure 6.3: t-SNE representation of cells from imputed gene expression data

Figure 6.4: t-SNE representation of cells from unimputed protein expression data
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Figure 6.5: t-SNE representation of cells from imputed protein expression data

6.5 Conclusion

In this work, we propose a collaborative matrix completion framework to im-

pute gene and protein expression data obtained using a multiplexed quantifica-

tion of genes and protein in single cells. The work is ongoing and is expected

to improve the underlying downstream analysis after imputation. The method

can also be used for other problems where simultaneous matrix completion

is required, reaping benefits of matrix completion and side-information/graph-

regularization.
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Chapter 7

Conclusion

The proposed work in this thesis focuses on modeling various prediction or im-

putation problems in the field of Bioinformatics as Matrix completion problem,

making use of the biological insights and the algorithmic techniques.

7.1 Summary of contribution

In this section, we briefly summarize the chapter-wise contribution giving a

bird’s eye view to the dissertation.

7.1.1 scRNA-seq imputation using matrix completion frameworks

In this part of the dissertation, we primarily model scRNA-seq data imputation

for dropouts as a low-rank matrix completion problem. Although the model

uses existing methods, ours was one of the first works in the field to have mod-

eled the single-cell transcriptomic imputation using a novel approach exploiting
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advantages of deep learning and matrix factorization based matrix completion:

deepMc (deep matrix completion).

7.1.2 Drug-target Interaction prediction using multi graph regularized nuclear norm

minimization

This chapter introduces a Drug-target imputation framework that can incorpo-

rate multiple kinds of metadata/side-information of the drugs and target entities

involved. In particular, multiple types of similarity information between drugs

and targets have been used to predict interactions between them. Although the

contribution is largely incremental in terms of biological application, the nov-

elty lies in the algorithm, which is the first framework to incorporate multiple

types of similarity/graph-laplacians associated with drugs and targets.

7.1.3 Drug-disease association prediction using graph-regularized one bit matrix com-

pletion

This work is motivated by the fact that the values to be imputed in an associa-

tion problem are binary. None of the existing matrix completion methods take

care of this constraint. Hence, we ensure that the prediction is in the range

[0,1] by solving the graph-regularized matrix completion in a different manner-

PPXA (Parallel proximal algorithm). The results on drug-disease association

prediction are at-par with the state-of-the-art and even better in some specific

evaluation strategies.
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7.1.4 Drug-virus association database: anti-viral drug prediction using Matrix comple-

tion

This part of the dissertation is overall the most crucial contribution. It puts-

forward the first-ever drug-virus association database which can be explored,

analyzed, and used for deploying other computational artificial intelligence/ma-

chine learning approaches apart from the one proposed in this dissertation to

help clinicians in selecting a few antivirals that can be tried out for a particu-

lar virus. Apart from the database, we also propose to use the association and

similarity information between drugs and viruses collected by deploying matrix

completion frameworks. As can be seen, the dissertation already solves associ-

ated problems like- drug-target interaction and drug-disease association. Hence,

it was only natural to address the most important pandemic (COVID-19) of our

generation when the necessity arose by creating such a database and predicting

drugs for the novel coronavirus (SARS-Cov-2).

7.1.5 Transcriptomic-proteomic expression completion using collaborative matrix com-

pletion

In the last ongoing work, we have created an imputation framework that has

the capability to perform matrix completion simultaneously on transcriptomic

and proteomic data using cell-information from each other. Such a framework

can also be used for other problems where simultaneous matrix completion

is required, reaping benefits of matrix completion and side-information/graph-

regularization.
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7.2 Future work

The algorithms proposed are generic and can not only be used in other bioin-

formatics problems like protein-protein interaction [91], RNA-RNA interac-

tion [92], etc but also other research fields where one could capture the side-

information associated with the data by finding the similarities amongst row

entities and column entities and use them to learn deep representations.

Specifically, One may like to explore other similar interaction problems like

• Cancer-drug response prediction: As we move towards an era of pre-

cision medicine, the ability to predict patient-specific drug responses in

cancer-based on molecular information such as gene expression data rep-

resent both an opportunity and a challenge. In particular, methods are

needed that can accommodate the high-dimensionality of data to learn inter-

pretable models capturing drug response mechanisms, as well as providing

robust predictions across datasets. Prediction of cancer drug responses for

unseen cell-lines/patients is a crucial problem.

• Gene-disease association prediction: Correctly identifying associations

of genes with diseases has long been a goal in biology. With the emer-

gence of large-scale gene-phenotype association datasets in biology, we

can leverage statistical and machine learning methods to help us achieve

this goal

• Microbe-disease association prediction: Accumulating clinical observa-
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tions have indicated that microbes living in the human body are closely

associated with a wide range of human non-infectious diseases, which pro-

vides promising insights into the complex disease mechanism understand-

ing. Predicting microbe–disease associations could not only boost human

disease diagnostic and prognostic but also improve the new drug develop-

ment. However, little efforts have been attempted to understand and predict

human-microbe disease associations on a large scale until now
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.1 Plot of singular value decay

We plot of decay of singular values (against no of singular values) for one of the

datasets for each of the problems in Introduction (Chapter 1) to support the low-

rank assumption made in the dissertation for emploing the matrix completion

tchniques.

The plots shown here (Figure 1) correspond to "Preimplanation" dataset for

scRA-seq imputation problem, "E" (Enzymes) dataset for the drug-target inter-

action problem, "Catasets" for the drug-disease association problem. For the

rest of the two chapters the only dataset used for each of the applications has

been used.

The plot shows that the singular values decreases rapidly (approximating

exponential decay), so all but the k ( rank of the matrix) largest singular values

contain very little information anyway. This supports the low-rank assumption

made on the biological datasets.

.2 Majorization minimization

Majorization minimization (MM) is a concept from optimization theory where

the goal is to replace a difficult minimization problem with a sequence of easier

minimization problems by adding a majorizer term (which is easy to minimize)

with some constraints to get a new function (to majorize the original cost func-

tion) and then minimizing this new function. This leads to a landweber update,
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iterative application of which solves the cost function.

Figure 2 gives an idea of the majorization minimization algorithm. Let, J(x)

be the function to be minimized. Start with an initial point (at k = 0) xk (sub

figure (a)). A smooth function Gk(x) is constructed through xk which has a

higher value than J(x) for all values of x apart from xk, at which the values are

the same. This is the Majorization step. The function Gk(x) is constructed such

that it is smooth and easy to minimize. At each step, minimize Gk(x) to obtain

the next iterate xk+1 (sub figure (b)). A new Gk+1(x) is constructed through

xk+1 which is now minimized to obtain the next iterate xk+2. As can be seen,

the solution at every iteration gets closer to the actual solution.
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(a) Jurkat-293T (b) PBMC

(a) Jurkat-293T (b) PBMC

(a) Jurkat-293T (b) PBMC

Figure 1: Singular value decay plot of each of the dataset taken from (a) scRNA-seq imputation (b) DTI prediction (c)
DDA prediction (d) DVA prediction (e) gene expression matrix and (f) protein expression matrix in transcriptomic-
proteomic prediction problem
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(a) Function J(x) to be minimized

(b) One iteration of MM

(c) Subsequent iteration

Figure 2: Majorization Minimization - Schematic Diagram:
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