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Abstract

Electromagnetic interference (also known as EMI) is a byproduct of high-speed switch-
ing circuits used inside most of present-day electrical and electronic appliances. EMI
propagates through conduction along the power lines and through radiation to lim-
ited distances. Due to its intrusive nature, EMI signals are generally suppressed or
filtered out. Despite this, these signals are fairly ubiquitous. Hence, we explore the
possibility of leveraging the weak EMI signals for two applications - appliance detec-
tion and energy harvesting.

There has been increased research, in recent years, in appliance detection for non-
intrusive load monitoring (NILM). NILM facilitates consumers with direct energy
feedback, information regarding daily activities, and supports data-driven load schedul-
ing for realizing the long-term goal of optimization of energy consumption in buildings.
Traditionally, appliance detection has relied on low-frequency smart meter data. How-
ever, in current literature, NILM has been unsuccessful in identifying many informa-
tion technology loads - such as laptops, desktop computers, modems, and projectors
- due to their complex time-varying power consumption patterns. In our thesis, we
have investigated the use of conducted and radiated EMI, arising from the switching
circuits within these loads, as unique and time-invariant features for detection and
classification.

Differential mode (DM) conducted EMI signals were first proposed in 2010 as possi-
ble features for identifying appliances having complex power consumption patterns.
However, these EMI signals were not robustly characterized to ascertain their effec-
tiveness in real world scenarios. In my thesis, we conducted an in-depth study of DM
EMI signals through both measurements and simulations for 24 different appliances.
Our studies showed that the performance of DM EMI is impacted significantly by the
power line impedance, the filters present in the switching power supply circuitry of
neighboring appliances on a common power line and power line harmonics.
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Based on our findings with DM EMI, our follow-up work proposed common-mode
(CM) conducted EMI for appliance detection. CM EMI originates from capacitive
coupling from the switching circuitry and flows along the earth conductor. Hence, the
signal is not affected by power line harmonics. Also, most appliances are not fitted
with common mode chokes because of which the signals from multiple appliances do
not interfere with each other. Hence, the CM EMI is a far more robust feature for
appliance detection. In order to experimentally test our hypothesis, we designed an
EMI sensor to simultaneously monitor both DM and CM EMI from appliances. We
evaluated the detection performance, across multiple instances of five commonly used
electronic appliances typically found in office setups. We used statistical features de-
rived from the histograms of measured EMI signals to differentiate across the various
classes of appliances. We found that the CM EMI indeed serves as a superior feature,
having higher detection accuracy of 87% in comparison to lower accuracy of 45% in
the case of DM EMI. Expanding on this line of work, we envision CM EMI data to be
combined with instantaneous, low-frequency power data gathered from smart meters
to provide actionable insights to energy stakeholders.

Along with conducted EMI, we also explored radiated emissions (also known as RFI)
from appliances with an end goal of providing personalized energy apportionment
(PEA). PEA is a process of attributing energy consumption to individual stakehold-
ers in a shared space. As radiated emissions can propagate as far as 30cm, they
can be leveraged using a wearable sensing device for mapping appliance usage to the
instantaneous power data from smart meters. In our study, we characterized RFI
from 10 electrical and electronic appliances, in multiple test scenarios, at variable
distances. Our test setup consisted of custom-off-the-shelf components like software
defined radio and ultra-wideband antennas. We found that a simple peak finder al-
gorithm yielded 72% accuracy for detecting these appliances using RFI signals.

Taking our initial exploration with EMI signals one step further, we employed low-
frequency stray emissions from AC power lines for energy harvesting. Energy har-
vesting is a process of scavenging energy from ambient physical sources - such as me-
chanical load, vibrations, temperature gradients, and light - to support battery-less
low-power sensing in the nW-mW range. Since the advent of cyber-physical systems
and the internet of things, energy harvesting has been a topic of interest. However,
the intermittent nature of existing natural sources restricted the applications of en-
ergy harvesting.

In this thesis, we leveraged the ubiquitous and continuous nature of stray electric
fields from power lines, for facilitating 24x7 energy harvesting for long-term, self-
powered deploy and forget sensor networks. Stray electric field signals do not require
an isolating wire bundle or an active appliance for harvesting, unlike stray magnetic
field signals. We proposed a novel capacitive energy harvester (CapHarvest) with an
ultra-low-power management circuit connected to the harvesting electrodes to effec-
tively gather energy from this nano-watt source. Furthermore, we demonstrated the
efficiency of our circuit for powering two applications. The first application, called
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ApplianceTag, is a new stick-on sensing system which monitors appliance state using
stray magnetic field signals present around the power line. The second application,
called FarmCheck, monitors all the ambient physical parameters like temperature,
light intensity, and relative humidity for vertical farming applications.

This thesis paves a new dimension of sensing and repurposing the otherwise ig-
nored ubiquitous EMI signals for appliance detection and energy harvesting to support
the long-term goal of energy sustainability. In the future, the blend of simultaneous
sensing and energy harvesting - as demonstrated with CapHarvest - may enable more
such exciting applications.

Thesis Supervisor: Dr. Amarjeet Singh
Title: Assistant Professor, IIIT-Delhi

Thesis Supervisor: Dr. Shobha Sundar Ram
Title: Associate Professor, IIIT-Delhi
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Chapter 1

Introduction

"Your Noise is My Signal,"

Shwetak N. Patel, University of Washington,

Since the early days of radio and telegraph communications, it has been known that

switching circuits generate electromagnetic waves, rich in spectral content, that can

interfere with electronic and electrical devices in the neighborhood [3, 4]. This phe-

nomenon, known as EMI, may propagate through electrostatic coupling, electromag-

netic induction, conduction, or radiation depending on the frequency [3]. A major

portion of EMI transmits in the form of conducted EMI. Conducted EMI can further

be categorized as DM conducted EMI or CM conducted EMI depending on the mode

of coupling [5]. Present-day power electronic circuits are specifically designed with

filters, chokes, and shields to mitigate EMI and adhere to EMC guidelines laid down

by the International Electro-technical Commission. However, these signals can never

be entirely suppressed [3]. Due to the ubiquitous nature of these signals, a recent

research question that has emerged is whether these electrical signals can be used to

some benefit [6]. In this thesis, we examine the possibility of using EMI for two appli-

cations - appliance detection and monitoring and energy harvesting. We discuss the

research questions, methodology, and results pertaining to each of these applications

in greater detail.

23



1.1 EMI for Appliance Detection

Appliance detection has been a popular research topic under the broader ambit of

NILM. NILM is a process of analyzing changes in the voltage and current at the mains

level to deduce appliance level energy consumption patterns [7]. Furthermore, NILM

provides a low-cost alternative to attaching individual monitors on each appliance

[7, 8]. Such appliance level consumption information, can facilitate actionable insights

on activities of daily living (ADLs) [9], provide personalized energy feedback [8] and

support data driven load scheduling. Darby et al. in her review paper suggested that

direct energy feedback can yield up to 5-15% of energy savings and is quite effective

in optimizing energy consumption [10].

Most of the present-day appliances rely on high-speed switching circuits (also

known as SMPS1) to power-up, which consume power in a non-linear and time-

varying manner to improve efficiency [5]. Current NILM techniques, based on machine

learning algorithms [8, 11, 12], often underperform or fail to identify these appliances

due to their complex power consumption behavior [13].

In recent years, along with our exploration with HF EMI signals in commercial and

office buildings, several other research groups also investigated other HF approaches

for NILM and AD. There are several attempts to design low-cost HF sensing systems

that can measure voltage and current waveforms at higher sampling rates typically

around a few kHz in comparison to conventional LF smart meters [14, 15, 16, 17,

18, 19, 20, 21]. Most of these systems are built using commodity and open-source

hardware to facilitate ease of scalability, repair, and maintenance. This has also

resulted in several HF energy datasets ranging from tens of kHz to hundreds of kHz

specifically logged for NILM research.

PLAID is a high resolution (30 kHz) energy dataset [22, 23] having 17 distinct

types of individually metered appliances, having 330 different makes and models.

Likewise, it also contains data for the combined operation of 13 of these appliance

types. Kahl proposed NoFaRe, a non-intrusive facility resource monitoring system

1Switched-Mode Power Supplies
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[24] to enable low-cost monitoring of electrical devices in buildings using advanced

Non-Intrusive Load Monitoring (NILM) techniques. In this work, authors specifi-

cally target facility management based on the Building Management System (BMS)

prototypes.

One more work proposed a model to generate a realistic synthetic dataset for com-

mercial buildings [25, 26], to circumvent the need for real-world data for commercial

buildings. In this work, authors account for both public and private real-world energy

datasets to generate this model. Along with this, the authors also presented a detailed

statistical analysis of ED in commercial buildings [27] similar to [28]. Statistically

analyzing residential and commercial buildings, especially for clustering them using

their load curves, is a new research thread. It can lead to collective optimization

strategies customized and implemented on a set of buildings having identical load

profiles [29, 30].

Another dataset, WHITED [31, 32], measured transients of both voltage and

current waveforms recorded for the first 5 seconds of appliance start-up around 110

appliances (47 different categories). These measurements are taken in households

and small industry settings in different regions around the world. In addition to this,

there are few more HF energy datasets like COOLL [33], REDD [34], BLUED [35],

UK-Dale [36], and LIT-Dataset [37].

Apart from this, this expedition has led to several analytical techniques using HF

data for NILM and AD. Giri et al. proposed an energy estimation framework for

event-based methods used in NILM [38]. This framework automatically builds appli-

ance models using classification labels and aggregate power consumption in time-series

data. The underlying model relies on feature extraction, clustering, perturbation of

extracted states to mimic appliance behavior, creation of FSM models, correction

of errors in classification [39], and estimation of energy based on corrected labels.

Another extension of this work proposes an error correction framework for sequences

resulting from known state-transition models [40]. Bolt [41], introduced an online

binary matrix factorization of current waveforms for ED and evaluated this on a

publicly available dataset. Once the model is trained, the algorithm can perform
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inference in real-time on inexpensive general-purpose hardware, which allows leverag-

ing high-frequency information without offloading it for computation. These authors

also proposed a neural algorithm performing variational identification and filtering

for stochastic non-linear dynamical systems [42]. They have applied this to NILM

by enforcing domain-constraints of the state variable. The algorithm makes use of

an approximate inference technique called Variational Inference in conjunction with

Deep Neural Networks as the optimization engine. Authors of the BOLT framework

also proposed an extension, Dyna-BOLT [43] recently. In this work, Domain Adaptive

Binary Factorization of current waveforms for NILM is proposed. Authors provide

private decoders for the source and target domains to account for the differences in

the current waveforms. Also, they tie the weights between the two decoders using a

specifically trained metric to distinguish between appliance classes.

Kahl et al. performed a comprehensive feature study for appliance recognition

on high-frequency energy data [44]. Authors evaluate a broad set of features consist-

ing of 36 signatures for electrical appliance recognition, extracted from HF start-up

events. An extension of this work attempted appliance classification across mul-

tiple HF energy datasets [45]. In this work, the authors experimented with four

different classifiers on 36 spectral and temporal features to perform a cross-, mixed-

, and intra-dataset validation. The same authors also proposed an Unsupervised

Multi-Environment Event Detection framework (MEED) leveraging multi-variate su-

pervised classification of SMPS based appliances [46, 47].

Henriet proposed a matrix factorization technique based on Semi Non-Negative

Matrix Factorization (SNMF) for NILM in commercial buildings [48]. This optimiza-

tion problem is constrained with total variation penalization (TV-SNMF). Exper-

iments on a simulated commercial building dataset show significant improvements

compared to other approaches such as Independent Component Analysis (ICA) and

classic SNMF. Furthermore, Henriet also explored Independent-Variation Matrix Fac-

torization for NILM and tested it against Independent Component Analysis (ICA)

and Semi Nonnegative Matrix Factorization (SNMF) [49]. Experiments performed

on a synthetic source separation problem, and a practical NILM application for large
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commercial buildings show that IVMF outperforms competing methods. This algo-

rithm is particularly appropriate for recovering positive sources with a strong temporal

dependency and sources whose variations are independent of each other.

One significant difference with these HF techniques is that all of them are focused

on capturing voltage and current waveforms at a few kHz. While, in our case, we

measured HF EMI signals which are in the range of 10 kHz to 5 MHz. Within the

EMI domain, several attempts [11, 9] have been made to investigate the possibility of

using DM EMI - generated by SMPS between phase and neutral wires of power lines

- as a unique signature for appliance detection. However, despite the initial promise,

some fundamental questions regarding the effectiveness and robustness of DM EMI

for appliance detection remained unanswered. In our first study on DM EMI, we

specifically set out to answer the following questions:

∙ Do the EMI characteristics of an appliance vary when observed at different

places within a home?

∙ Do conducted EMI from multiple appliances interfere with each other? Are the

interference mechanisms unique to an appliance, or will they vary depending on

the other appliances that are connected to the power-line?

∙ Does background noise from the power-line infrastructure that may differ from

one home to another, significantly impact the observed EMI from an appliance?

∙ Do all appliances follow specified EMI standards?

∙ Do all appliances of the same category exhibit similar EMI characteristics?

To address this, we performed systematic empirical evaluation and designed physics-

based simulation models to study the characteristics of DM EMI. We created multiple

experiments to characterize conduction of DM EMI signals in different scenarios to

test (1) the impact of line impedance on the conducted DM EMI signal; (2) the effect

of EMI filters of the neighboring appliances on the EMI generated by the appliance

under test; (3) and the impact of background noise present on the power lines due to

the harmonics of the power supply. The results of our first study are the following:
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∙ The impedance of a power-line attenuates the conducted DM EMI. Conse-

quently, the EMI characteristics of an appliance vary when observed at different

plug points within a home.

∙ The DM EMI signals from the appliances interfere with each other, resulting

in distorted signatures when multiple appliances are connected to a common

power supply.

∙ The DM EMI signals are significantly impacted by background noise from the

power-line infrastructure - such as the harmonics of the main power signal.

∙ Not all appliances follow the specified EMI standards.

∙ All appliances of the same category, e.g. CFLs from different manufacturers,

may not exhibit similar EMI characteristics.

To address the challenges associated with DM EMI, we explored the use of CM

conducted EMI in our follow up study. CM EMI also originates from SMPS based

power supplies and circulates through the power-line [3]; however, it is less likely

to suffer interference from power-line noise and attenuation from EMI filters as it

propagates through the earth wire which is only meant for leakage currents (stray

signals) unlike phase and neutral conductors. Additionally, most of the present-day

appliances carry bidirectional EMI filters, which are meant to suppress DM EMI, but

common-mode EMI chokes are mostly limited to medical equipment and rarely used

on residential and office devices such as the information and technology (IT) loads.

IT and office loads such as LCD monitors, laptops, printers, desktop CPUs, and

CFL lamps constitute a significant proportion of energy wastage in office spaces when

they are left operational during non-working hours. Currently, IT plug loads account

for 12%-50% of commercial building energy consumption, and they are expected to

increase in both proportion of energy use and actual energy use, as office equipment

energy consumption is expected to rise at a rate of 0.8% per year [50, 51].

Current single point sensing solutions with smart energy meters have been un-

successful in detecting these IT and electronic loads, due to their dynamic power

28



consumption patterns [7, 13, 8]. Quite a few attempts have been made to model

this power behavior [13, 8] like using time-domain voltage and current transients as

appliance signatures [52], utilizing event window to label individual non-overlapping

electrical activities [53] and modeling distinct topology of front-end of electronic cir-

cuits to identify power signatures [54]. Employing frequency-domain EMI signals

for appliance classification [55, 11] and leveraging wavelet-based models to uniquely

assign labels to the union of transient and steady-state power signatures of these so-

phisticated appliances are other techniques being adopted [56]. However, even with

so many attempts, very few have taken off from the lab settings to the real-world

deployments and commercial adoption in the NILM framework. One such promising

effort is using EMI signatures from appliances for appliance identification. These

appliances (and many more) generate CM EMI on the phase and neutral power-lines

with respect to the earth at low frequencies through capacitive coupling as well as DM

EMI between the phase and neutral at higher frequencies through inductive coupling.

Such behavior makes them appropriate for comparing the effectiveness of CM

and DM EMI for NILM in a real-world environment. In this thesis, we designed a

small portable sensor made of commercial, off-the-shelf components to simultaneously

measure both CM and DM EMI generated by these IT and office loads. We used a

nearest neighbor-based classification algorithm on the statistical features extracted

from histograms of the measured EMI signals. Our experimental evaluations showed

87% detection accuracy using CM EMI signals when compared to 45% accuracy with

the DM EMI signals from the same set of appliances. We further demonstrated that

the CM EMI signals gathered from a single instance of an appliance can be used to

detect other appliances of the same make and model. This is particularly relevant in

an office scenario where multiple instances of appliances having the same make and

model are likely to exist.

Continuing with this idea, we also explored radiated emissions (also known as

RFI) from appliances and power-lines for appliance detection. Radiated emissions

are also part of EM noise signals generated from switching circuits in appliances

with a difference that their mode of transmission is radiation rather than conduction.
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These signals also carry a significant amount of information about the type of appli-

ance from which they are radiated. Our idea of using radiated emissions for appliance

detection was to design a wearable sensing system, which can help in inferring the ap-

pliance being used and also allow us to assign this energy usage to the individual who

has operated this appliance. Typically this process is known as personalized energy

apportionment, which is quite useful for shared spaces having multiple stakeholders,

and net energy consumption has to be attributed to all of them in a personalized

manner.

Prior work in radiated emissions involved using a copper plate as an antenna [57],

capacitive [58] and magnetically coupled sensors [59]. However, most of these sensors

required touching the appliance to capture the stray electric or magnetic field. Also,

the lower sensitivity of these sensors to the electromagnetic field strength affected

the detection of the appliance at long ranges. To overcome these challenges and in

order to capture these stray emissions effectively, we developed an RFI sensor using

off-the-shelf UWB antennas and a SDR system from Ettus Research2 for sensing.

UWB antennas can provide a higher gain over a wider bandwidth along with better

impedance matching. Also, ultra-low noise circuitry in SDR allows us to monitor

weak signals, which were otherwise hard to capture with conventional analog DAQs.

In our work, we precisely worked on answering the following questions -

∙ How do the characteristics of RFI signatures vary for the different classes of

appliances?

∙ How do RFI signatures vary with an increase in distance between the source

and sensor?

∙ How do signatures vary for different electrical states (such as standby, active,

shut-off) of the same appliances?

This study allowed us to characterize the weak RFI signals in a controlled manner

before establishing them for appliance detection with a contactless wearable sensor.

2https://www.ettus.com/
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We did a rigorous empirical evaluation of RFI signal measurements from ten elec-

trical and electronic appliances at varying distances. Additionally, we found that a

simple peak-finder algorithm could yield 72% accuracy in detecting these appliances

using RFI signals, which could be subsequently employed for energy apportionment

in shared spaces.

1.2 EMI for Energy Harvesting

The second application of EMI that we investigated was for energy harvesting. Ac-

cording to the 2017 forecasts by Gartner Inc, a total of 20.4 billion IoT devices will

be connected to the Internet by 20203. These devices demand frequent battery re-

placement, adding to overall deployment and maintenance costs. As the number of

connected devices continues to grow, the need for scalable power management poses

a major concern. Self-powered sensor nodes have emerged as a possible solution to

the problem, relying on energy harvesting to continuously power them up. Energy

harvesting is a process of scavenging energy from ambient physical sources - such as

mechanical load, vibrations, temperature gradients, and light - to support battery-

less low-power sensing in the nW-mW range [60]. However, none of these sources can

be used reliably for continuous sensing applications due to the intermittent nature

of these physical signals. Instead, in our research, we focus on stray fields (electric

field and magnetic field) generated from low-voltage AC power-lines. The ubiquitous

AC power-lines can be used to harvest energy 24x7 for ambient sensing nodes with-

out any hassle of replacing batteries, connecting power adapters and their additional

maintenance.

Previous works, that discussed harvesting stray magnetic field from AC power-lines,

required bulky electromagnetic harvesters like inductive coils or transformers placed

around the phase wire to gather energy. The sensing mechanism also required isolating

the phase wire from the rest of the conductors (neutral and earth) in case all three

wires were bundled together [61, 62, 63]. In the case of stray electric field harvesters,

3https://www.gartner.com/newsroom/id/3598917
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the circuits derived local earth ground by making Ohmic contact with the earth wire

by running additional wires from the harvester to a nearby ground terminal, or by

scraping off the paint to create contact with concrete walls to generate an earth ground

[64, 65]. Thus, all of these solutions are inherently intrusive and require mechanical

modifications to the electrical circuitry.

In our work, we designed our harvester in a manner that it overcomes these chal-

lenges. Our configuration carries an additional ultra-low-power management circuit,

which continuously harvests from this nano-watt energy source. The main advan-

tage of our system design is that it does not require bulky transducers or isolating

conductors like magnetic field harvesting. Additionally, we created an effective earth

ground by designing novel double-layer stacked capacitive electrodes. The inner elec-

trode acts as a high potential electrode placed right next to the shielded wire carrying

alternating AC voltage. The outer electrode was kept at some distance with an air-

gap to serve as a local ground that is loosely coupled with a nearby earth ground.

This design allowed us to make a stick-on capacitive energy harvester, which can be

deployed on any wire bundle carrying AC voltage for energy scavenging. We used

our harvester to collect sufficient energy from the stray electric field around different

types of AC power-lines (wires) in various scenarios such that we can enable ambient

sensing applications like appliance detection. Also, we could sense physical parame-

ters like temperature, pressure, and relative humidity for smart-home and for indoor

farming applications.

1.3 Thesis Impact and Organization

In the future, both appliance detection and energy harvesting using EMI can be fused

to enable the broader goal of energy sustainability, connected and smart devices, and

ubiquitous sensing. Some examples:

1. Energy harvesting can aid numerous self-powered sensor nodes deployed inside

the building during construction.
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2. They can be used for supporting distributed sensing of ambient parameters such

as room temperature and relative humidity for controlling heating ventilation

and air conditioning (HVAC) systems.

3. They can be used to monitor state of appliances and provide real-time feedback

to the end electricity consumers. Apart from this, they can help in locating,

identifying, and rectifying the malfunctioned and failed instances of appliances.

4. They can serve as active beacons, which can enable indoor localization and

fingerprinting applications inside buildings.

This thesis is organized as following: Chapter-2 provides an overview of EMI signals

and mechanisms of propagation. Also, it describes methodology and findings from

our study where we evaluated DM EMI signals for appliance detection. In Chapter-3,

we propose the use of CM EMI signals over DM EMI for appliance detection. Also,

the chapter highlights the design of a novel sensor to measure both DM and CM

EMI. In this chapter, we present the performance of appliance detection using both

of these signals measured from IT and office loads. In Chapter-4, we discuss the

characteristics of radiated emissions from shared appliances and assess the efficacy of

appliance detection using RFI with an end goal to attribute net energy consumption

to the individuals. Chapter-5 introduces a new stick-on CapHarvester leveraging

stray EM emissions from AC power lines. The circuit continuously harvests energy

to enable appliance detection and ambient sensing applications. Furthermore, we

present a comparison of the existing techniques for harvesting energy from AC power

lines. We conclude the thesis with Chapter-6 where we highlight some of the future

research directions that have been enabled with the work carried out in this thesis.
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Chapter 2

Differential Mode Conducted EMI

Signals for Appliance Detection

EMI are stray electromagnetic fields, ranging from a few Hz to 10 GHz, that adversely

impact the functioning of electrical devices in the neighborhood [3, 66]. Naturally

existing sources of EMI are lightning and atmospheric noises while man-made sources

include communication devices emitting radio signals, heavy machinery, and HVAC

equipment that switch large currents during operation [67].

In this thesis, we focus on exploiting man-made EMI generated from SMPS circuits

that are found within many modern electronic appliances. As shown in Figure-2-1,

the first stage in an SMPS is an AC to DC converter with a rectifier and filter. A high-

frequency switching circuit that generates square-shaped pulses follows this AC-DC

circuit. These pulses cause a rapid inrush of current when the load is connected at the

output of the SMPS, leading to the generation of EMI [68, 69, 70]. Due to the highly

nonlinear nature of these switching circuits, the dominant component of EMI from

an appliance consists of the switching frequency and its harmonics. The switching

frequencies of these circuits are determined by the output power requirements of

the appliance and hence may be unique to an appliance [5]. The size of the power

transformer, required to step down the voltage in the second stage of the SMPS

circuit, reduces as the switching frequency increases. Therefore, modern compact

SMPS are characterized by high switching frequencies (of the order of MHz) unlike
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Figure 2-1: Functional block diagram of SMPS highlighting five power conversion
stages of an SMPS [1].

traditional linear regulation based power supplies where the step-up or step-down

voltage conversion is done at AC power line frequencies of 50 or 60 Hz. Post power

conversion, the output high-frequency AC voltage is rectified and filtered back to DC

in the final stage. A feedback and control circuit drives the duty cycle of the high-

frequency switching stage through a pulse width modulation based error-feedback

amplifier [3, 71]. EMI generated by these SMPS based power supplies is propagated

either in the form of conducted EMI through the transmission power lines or radiated

into the ambient environment as RFI. Conducted EMI is generated when there is

a direct conduction route along which these signals can travel [72] and is further

categorized into DM EMI and CM EMI.

DM EMI signals appear on the phase and neutral power lines in opposite di-

rections. The time-domain voltage and current differential signals are highlighted

as 𝑉𝑑𝑖𝑓𝑓 and 𝐼𝑑𝑖𝑓𝑓 in Figure-2-2. This kind of interference primarily appears in series

with the 110/230V AC power signal [73]. CM EMI signals of identical magnitude and

phase occur on the phase and neutral lines with respect to the earth. The voltage

and current common-mode signals are shown as 𝑉𝑐𝑚 and 𝐼𝑐𝑚 in the figure. The di-

rection of flow of CM EMI currents (𝐼𝑐𝑚) propagating through the phase and neutral

conductors towards the earth conductor is identical. The signal on each line returns
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Figure 2-2: Differential mode and common-mode voltage along with the direction of
flow of EMI currents (both DM and CM) [2].

through a common ground. In this chapter, we focus on DM EMI from SMPS power

supplies for appliance detection. In the subsequent chapters, we discuss CM EMI

signals and radiated emissions.

2.1 DM EMI for Appliance Detection and NILM

Appliance detection forms the basis of the NILM. NILM is a technique used to disag-

gregate the electric load composition of a household using single point sensing usually

at the mains power feed. Though NILM was originally introduced more than two

decades ago [7], recent large-scale deployments of smart meters by electrical utilities

across the world have resulted in increased research interest [74]. However, due to

limited data collection capabilities of smart meters being deployed, significant NILM

research in the recent past are driven by low frequency data (1 Hz or lower).

While there is some work involving NILM using higher frequency (few kHz - MHz)

power consumption data, much of it is limited to controlled laboratory experiments

[75]. In 2010, Gupta et al [11] proposed indirectly identifying disaggregated energy

consumption using high frequency DM EMI that emanate from electronic appliances.

They showed that DM EMI propagates through the power infrastructure and hence

can be measured from a single point installation at the home level. A follow up work

[76] showed that DM EMI signals can be further used to get detailed information re-
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garding the operational state of an appliance e.g. the type of programs being watched

on a television. In this chapter, we present the key challenges towards exploiting DM

EMI as a unique and deterministic signature for appliance disaggregation. While

prior work in power line EMI sensing for NILM may sound promising, much of this

work is based upon certain assumptions derived from limited set of experiments. For

instance, Gupta et al. [11] observed that SMPS based appliances conduct unique

and observable DM EMI. However, their study was restricted to a small set of ap-

pliances. Furthermore, they stated that appliances with DM EMI filters will also

conduct observable EMI but the actual impact of such filters on the DM EMI signa-

ture of the appliance and other devices on the power line was not well studied. Miro

and Froehlich et al in their work [55, 76], limited to televisions, observed that DM

EMI signatures remain time-invariant and robust to background noise.

Through an extensive set of experiments performed both in lab setting and in a

real home, on a wide range of appliances, we show some of the limitations of the

above mentioned assumptions.

2.2 Empirical study highlighting implications of us-

ing DM EMI for appliance detection

2.2.1 Experimental Setup

Figure 2-3: Test setup used for DM EMI measurements. AUTs were connected
through an optional LPF to the mains power line. Observations after filtering through
a differential high pass filter (HPF), shown in detail in Figure 2-4, were made either
with a signal analyser or a universal software radio peripheral (USRP).
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Figure 2-3 shows details of the experimental setup used for collecting DM EMI

data from the 230V power line, for multiple appliances, in both the laboratory and the

residential settings. The mains power line consists of 50 Hz power signal, background

noise from the electrical infrastructure of the building (such as air handling units,

variable speed drives and lighting sources) and DM EMI introduced by the AUTs. To

isolate the background noise for some experiments, the mains power supply is replaced

with Luminous 600VA UPS. AUTs are connected to the mains either through an off-

the-shelf power extension cord, having a distance of few centimeters between plug

points or, a custom built 10 meter long extension cord, with a plug point at every 2

meters. Some off-the-shelf extension cords come with built-in low-pass EMI filters,

to isolate the appliances from noise in the power supply. To analyze the impact of

such filters, an Elcom EP-15AP power line DM EMI filter offering an attenuation

of approximately 10 to 20 dB from 1 MHz to 100 MHz is used for some of the

experiments. Though IEC specifies the range of conducted EMI from 9 kHz to 30

Figure 2-4: Differential High Pass Filter schematic and it’s interconnection to the
mains power supply.

MHz, the AUTs, in our measurements, show DM EMI only up to 5 MHz. A custom

built differential HPF shown in detail in Figure-2-4, with a cutoff frequency of 60 kHz,

is used to pass this high frequency DM EMI noise to the measurement equipment

(either a signal analyser or a USRP). The high cutoff frequency is chosen in order to

prevent the 50 Hz power signal and its harmonics from damaging the sensitive analog

front end of the measurement devices. The detailed schematic of the high pass filter
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is shown in Figure-2-4. While the circuit is similar to the one previously used in [11],

the component values are slightly modified for 230V operation. EMI is measured

using either the Agilent N9000A CXA signal analyser or a USRP1 N200.

DM EMI measurements in the lab settings are carried out with four different

configurations of the experimental setup. In setup-1, an AUT is connected to a NPP

on the off-the-shelf extension cord. Therefore, the NPP, is a few centimeters from the

SPP where the signal analyzer is connected. In setup-2, the AUT is connected to a

DPP, 10 meters from the SPP, on the custom extension cord. This test is performed

to study the impact of power line impedance on the DM EMI measurements. In

both the cases described above, the low-pass DM EMI filter is not connected to the

experimental setup. In setup-3, the impact of a power line DM EMI filter is studied

by incorporating a low-pass filter to setup-1. In these three cases, extension cords

are connected directly to the AC mains power supply. In setup-4, a UPS having 3

power outlets, few centimeters apart, is used to power the AUTs. Since the UPS

is independently powered, it is isolated from the noise in the building’s electrical

infrastructure. Due to the limited power capacity of the UPS, DM EMI measurements

with setup-4 could only be carried out for medium and the low power AUTs. In all

four cases, DM EMI measurements are carried out with both individual AUT or a

combination of AUTs, from 10 kHz to 5 MHz. Additionally, background noise on the

power line is measured for each case with the AUTs disconnected from the extension

cord. Setup-1 described above is repeated in residential settings while replacing the

signal analyzer with the USRP. Table-2.1 shows the list of 24 AUTs used in lab and

residential settings along with their manufacturer details and power ratings.

2.2.2 Observations and Analysis

Appliance Specific DM EMI Signatures

In Figure-2-5, we display the DM EMI measurements taken from four AUTs, from test

setup-1, along with background noise from the power line. Each appliance conducts

1https://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral
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S.No. AUTs Brand Category Power Rat-
ings (in
Watts)

Location
Used

1 CFL-1, 2, 3,
4

Crompton Greaves
[1], Bajaj [2, 3, 4]

SMPS 18, 15, 15, 5 L, R

2 LED Lamp-
1, 2, 3

Genre India [1], Un-
branded [2], Cromp-
ton Greaves [3]

SMPS 5, NA, 0.5 L, R

3 Laptop
Charger-1, 2

Dell [1], HP [2] SMPS 90, 65 L, R

4 Phone
Charger-1,
2, 3

Samsung [1], Asus
[2], LG [3]

SMPS NA, 7, 6 L, R

5 LCD Moni-
tor

HP SMPS NA L, R

6 Printer HP SMPS 5 L, R
7 Speakers Harman Kardon SMPS 24 L, R
8 Modem Asus Router SMPS 18 L, R
9 Induction

Cooktop -1,
2

Philips [1], Maharaja
Whiteline [2]

SMPS [500,1300],
[600,1000]

L, R

10 Microwave Kenstar NOT SURE 1250 R
11 Refrigerator LG NON SMPS 1020 R
12 Blender Inalsa NON SMPS 180 L, R
13 Iron Philips NON SMPS 535 L
14 Room

Heater
North Star NON SMPS 1500 L

15 Television LG SMPS 60 R

Table 2.1: List of appliances used in Lab and Residential settings

DM EMI in a specific band of frequencies. CFL1 (Figure-2-5a) conducts high DM EMI

up to -25 dBm from 80 kHz to 3 MHz; the induction cooktop (Figure-2-5b) conducts

DM EMI from 3.5 MHz to 5 MHz; the LED lamp (Figure-2-5c), conducts EMI from 1

MHz to 4 MHz; CFL2 (Figure-2-5d) does not show any noticeable DM EMI. The DM

EMI data from CFL1, CFL2 and induction cooktop were collected in the lab while

the LED lamp data was collected in the home. The background noise traces clearly

indicate that the harmonics of the 50 Hz power signal are suppressed by the high pass

filter. Also, the background noise level in the lab data was consistently higher than the

background noise level at home. We believe this is because of the complex electrical
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(a) CFL1 (b) Induction Cooktop

(c) Led Lamp-1 (d) CFL2

Figure 2-5: Measured DM EMI from different AUTs connected independently to
mains power supply along with background noise traces measured with AUTs discon-
nected from the setup.

infrastructure in the building where our laboratory is located. Besides CFL2, other

appliances such as CFL3 and laptop chargers 1&2 did not conduct any observable

DM EMI.

It is worth noting, although identical, even a minute change in switching circuits

or passive components used inside SMPS based power supplies cause a distinct EMI

signal [3]. Also, most appliance manufacturers follow their custom designs for dif-

ferent SMPS-based supplies with discrete components, leading to separate DM EMI

signals across the same class of appliances. For e.g. there are several CFL man-

ufacturers across the globe, but none of them follow identical switching circuits to

protect trademarks and copyrights. Hence, even the same CFL (18W) may have a

distinct EMI signature depending on SMPS topology’s nature and the exact design

parameters chosen for that particular model.

These results provide two useful insights - (1) All SMPS based appliances may not

42



conduct significant DM EMI; (2) DM EMI signatures of the same class of appliances

such as CFLs (Figures-2-5a, 2-5d and 2-6a) may not be consistent across different

manufacturers.

Effect of Background Noise

Two appliances - a CFL and a router, are used to examine the effect of background

noise on the measurable DM EMI from an AUT. Figure-2-6 illustrates observed DM

EMI for both the AUTs when connected to mains power supply (setup-1) and UPS

(setup-4). The DM EMI from both the appliances are hardly noticeable when they are

connected to the mains power supply (see Figure-2-6a for CFL4 and 2-6c for router).

This is because of the high interference feature arising from the background appliances

on the same power line, resulting in poor signal to interference ratio. When connected

to an independently powered UPS, that is isolated from the electrical infrastructure

of the building, both the appliances show significant DM EMI (see Figure-2-6b and

2-6d for CFL4 and router respectively). The thermal noise floor is uniform in both

the cases and is limited by the bandwidth of the measurement device. These results

indicate that in certain sensing configurations, with high background interference,

disaggregation of individual appliances with low DM EMI may be challenging.

Effect of Power Line Impedance

Next we study the impact of power line impedance on the DM EMI conducted by

AUTs. We measure the DM EMI trace of an AUT, connected at a NPP from the

SPP where the measurement device is connected (setup-1). Then the measurement

is repeated with the AUT connected at a DPP, 10 meters from the SPP (setup-2).

Figure-2-7 shows that DM EMI from CFL1 was attenuated at DPP in comparison

to DM EMI observed at NPP especially at high frequencies above 2 MHz. This can

be attributed to the transmission line effects of the long extension cord. An in-depth

analysis of higher order effects of the transmission line is required to better understand

the impact of line impedance on DM EMI measurements. Some extension cords have

inbuilt DM EMI filters, to protect the appliances from noise in the power supply.
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(a) CFL4 connected to the mains power
supply

(b) CFL4 connected to the UPS

(c) Router connected to the mains power
supply

(d) Router connected to the UPS

Figure 2-6: Background noise from mains interferes with EMI from (a) and (c).
However, EMI from (b) and (d) can be observed when they are connected to the UPS
with a much lower background noise as it is independently powered.

In order to study their impact, we measured the EMI from CFL1 when an external

DM EMI filter is connected between the off-the-shelf extension cord and mains power

supply (setup-3). This result is shown in Figure-2-8 and compared with the DM EMI,

shown earlier in Figure-2-5a, from setup-1 which did not have an DM EMI filter on

the extension cord. We observe two effects of the power line filter. First, the strength

of background interference features from the power supply is lowered. Second, the

DM EMI from the AUT is also lowered. We postulate that this phenomenon occurs

because DM EMI currents from the AUT flow into the low impedance path of the

filter and hence cannot be measured at the sensing point. Thus the power line DM

EMI filters impact the measurability of EMI, of an appliance connected to the power

line.
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Figure 2-7: Effect of line impedance on DM EMI from CFL1 on a nearby and a
distant plug point

Figure 2-8: Impact of inbuilt DM EMI filter of the extension cord on the EMI observed
from CFL1 connected to the mains power supply

Effect of Multiple Appliances on a Common Power Line

Finally, we consider the case, when multiple AUTs are connected on the same power

line. This is a common setting in a home where different appliances may operate si-

multaneously, during some time intervals. Figure-2-9a shows the DM EMI conducted

by CFL1 and laptop charger when powered independently and when connected to-

gether. As mentioned earlier when connected independently, the DM EMI from the

CFL1 is clearly observed while the DM EMI from the laptop charger is weak due
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to its inbuilt DM EMI filter. Interestingly, when the two appliances are connected

together, the DM EMI of the CFL1 is suppressed from 40 kHz to 1.5 MHz. We pos-

tulate that this phenomenon is the result of the low impedance path offered, to the

DM EMI currents from CFL1, by the inbuilt DM EMI filter in the laptop charger.

Similar behavior is observed when an LED lamp and a laptop charger are connected

together (Figure-2-9b). We further investigate this phenomenon, by measuring the

DM EMI (as shown in Figure-2-9c) when the CFL1 is connected to NPP with respect

to SPP, while the laptop charger is connected at DPP. In this case, the DM EMI

currents from CFL1 do not flow through the filter in the laptop charger and instead

flow through the sensing point, where they can be measured. This is due to the line

impedance introduced between the two AUTs. The damping effect of the inbuilt DM

EMI filters of an appliance on the EMI signatures of neighbouring appliances on the

power line is significant only when the appliances are in close proximity.

2.3 Simulation Models for DM EMI

During DM EMI measurements, we observed certain factors that affected the con-

ducted DM EMI from an appliance, such as line impedance and appliance coupling

behavior (specifically for appliances with low pass DM EMI filters). Further, We

designed a generic model for DM EMI that can be customized to mimic actual setup

to gain a better understanding of these observations. The following objectives led us

towards the development of a detailed simulation model: (1) Actual measurements of

DM EMI from an appliance are complicated due to the presence of several appliances

in the background. Simulation models allow us to independently analyze the DM

EMI from an individual appliance as well as combinations of multiple appliances; (2)

Simulations allow us to analyze the impact of transmission line parameters of the

mains power line which are difficult to measure in real world settings; (3) Simulation

models can be, potentially, useful for generating large volumes of training databases

for supervised learning techniques, for appliance level disaggregation.

In the beginning of this chapter, we gave an overview of SMPS operation, which
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(a) CFL and Laptop Charger (b) LED and Laptop Charger

(c) CFL (NPP) and Laptop Charger (DPP)

Figure 2-9: DM EMI as observed with a combination of CFL1 and LED lamp with
laptop charger on the same power line. Here, plot(a) and (b) shows the attenuation
offered builtin EMI filter of laptop charger and plot (C) shows the reduced attenuation
due to increased power-line impedance between CFL1 and Laptop Charger.

forms the basis of our simulation models. Now, we focus on simulating the DM

EMI currents generated in the DC to DC converter (switching) section of the SMPS.

These EMI currents are coupled to the mains power line through galvanic, inductive

or capacitive coupling modes, within the circuit [3].

We assume that the coupling modes of the EMI to the power line are fairly uniform

across multiple appliances and do not significantly alter the nature of the DM EMI

spectrum, at frequencies up to 5 MHz.

To simulate the behavior of DM conducted EMI, an equivalent model for an

appliance’s power supply is presented here, utilizing a simplified version of a buck

converter shown in Figure-2-10. A detailed description of the behavior of a buck

converter is presented in [5]. A buck converter is a standard DC to DC step down
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Figure 2-10: Spice model of a simplified buck convertor used as an equivalent appli-
ance model for EMI generation

converter that utilizes a MOSFET or a transistor as a switch, 𝑆1, to generate a

pulsating DC (𝑉𝑑𝑖𝑜𝑑𝑒) from input unregulated DC (𝑉𝑠𝑢𝑝𝑝𝑙𝑦). The switching frequency

(𝐹𝑠𝑤) and the duty cycle of this pulsating DC are varied by a pulse width modulated

(PWM) control signal driving 𝑆1. 𝑉𝑑𝑖𝑜𝑑𝑒 is averaged using an inductor-capacitor (𝐿𝐶)

combination to provide a constant DC (𝑉𝑙𝑜𝑎𝑑) at the load. The diode, 𝐷1, provides

a path for the current through the inductor to discharge when S1 is "open". The

ratio of 𝑉𝑙𝑜𝑎𝑑 to 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 is governed by the duty cycle of the PWM control signal. A

standard buck converter may also consist of a feedback loop to maintain a constant

output voltage, in the case of a fluctuating input voltage. We omit this feedback loop

in our simulations and, instead, assume a constant DC supply voltage. To simplify

this model, we also assume that the load impedance of the appliance is purely resistive

(𝑅). The currents (𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦)) drawn from the DC supply of the DC to DC converter

are coupled to the mains power line giving rise to EMI. Therefore, the frequency

response of 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦) provides an EMI signature of the appliance.

We model the DM EMI from a specific SMPS based appliance on the basis of DM

EMI measurements of the appliance when powered by a UPS. The input parameters

governing the simulated DM EMI spectrum are 𝑉𝑠𝑢𝑝𝑝𝑙𝑦, duty cycle and 𝐹𝑠𝑤 of PWM

control signal, and load impedance (𝑍/𝑅). 𝐹𝑠𝑤 is chosen based on the fundamental

frequency component and harmonics observed in the measured DM EMI spectrum.
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The baseline of the simulated DM EMI spectrum is adjusted to match the noise

floor in the measured DM EMI spectrum by modifying the value of 𝑉𝑠𝑢𝑝𝑝𝑙𝑦. 𝑉𝑙𝑜𝑎𝑑

and 𝑅, are adjusted to control the amplitude of 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦), which in turn, controls

the magnitude of DM EMI peaks in the frequency spectrum. The component values

for 𝐿 & 𝐶 are computed by buck converter design equations [5]. The width of the

DM EMI peaks, observed in the frequency spectrum, are adjusted by introducing

suitable series resistances to 𝐿 and 𝐶. The main advantage of the simulation method

that we have designed is that, our model is created on the basis of accurate DM

EMI measurements of an appliance and not on any prior knowledge of the internal

circuitry of the appliance which is usually difficult to obtain.

Figure 2-11: Simulated steady-state time domain behavior of a simplified buck con-
vertor used as an equivalent appliance model. 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦) is the EMI current that
couples to the mains power line.

2.3.1 Appliance Specific DM EMI

We present a model to simulate the DM EMI spectrum of a router based on measure-

ments, presented earlier in Figure-2-6d. We computed the following design parame-

ters: 𝑉𝑠𝑢𝑝𝑝𝑙𝑦=0.05V, duty cycle=0.5, 𝐹𝑠𝑤=100 kHz, 𝐿=2.5uH, 𝐶=5uF and 𝑅=1000Ω.

Figure-2-11 illustrates the steady-state time-domain results from the simulations.

𝑉 (𝑣𝑑𝑖𝑜𝑑𝑒), the pulsating DC at the diode, has a time period of 1/𝐹𝑠𝑤 and duty cycle of

0.5. 𝐼(𝐿), the current across the inductor, continually charges and discharges during
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Figure 2-12: Frequency spectrum of simulated DM EMI from 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦) along with
DM EMI observed from router on test setup-3

the ON time and OFF time of the pulse. 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦) is the current drawn from the DC

power supply and is highly non-linear as indicated by the inverted triangular shaped

pulses. This current is the primary component that couples to the mains power sup-

ply giving rise to DM conducted EMI. The frequency domain response of 𝐼(𝑉𝑠𝑢𝑝𝑝𝑙𝑦) is

presented in Figure-2-12. Qualitatively, the simulated and measured spectrums show

a good match. For instance, the DM EMI peaks, the baseline and the width of the

frequency peaks are similar in both the spectrums. Although the frequency spectrum

shows spectral overlap, some baseline noise features observed in the measured DM

EMI are not present in the simulated model. The measured data has thermal noise

which has not been modelled in simulations. By modifying the parameters of this

model, we can generate unique DM EMI signatures for other SMPS based appliances

for further analysis.

2.3.2 Impact of Line Impedance on DM EMI from an Appli-

ance

We model the transmission line characteristics of the power line with a series impedance

between the sensing point where the DM EMI currents are observed (near the DC

supply) and the plug point where the appliance is connected as shown in Figure2-10.

50



Figure 2-13: Effect of line impedance of 𝑅 = 0 & 2Ω on DM EMI conducted by an
appliance.

Though, the series impedance lies on the 230V AC power line in real world settings,

we have introduced the equivalent resistance in the internal circuitry of the SMPS.

Due to the low frequencies of observation, the effect of the inductance and capacitance

of the transmission line are negligible. Most residential electrical lines are character-

ized by line impedance that varies with the thickness of wires, the number of copper

strands, and the quality of shielding material [77]. We model, a 10m long electrical

line with a 2Ω resistor. We compare the DM EMI signatures when an appliance is

connected near the sensing point (when the line impedance is 0Ω) with the DM EMI

signatures generated when an appliance is connected at a distant point, 10m from

the sensing point. Figure-2-13 shows that the DM EMI signal from an appliance at

a distant point is weaker (up to 7 dBm) than the DM EMI from an appliance near

the sensing point. These results are similar to the line impedance effects observed on

the CFL data in Section-2.2.2.3.

2.3.3 Impact of Appliance Coupling

In Section-2.2.2.2, we postulated that a DM EMI filter of an appliance can significantly

impact the EMI signature of a neighbouring appliance, provided the two appliances

are close together on the power line. To validate this hypothesis with simulations, we

consider the following three cases which are configured as per Figure-2-14. Figure-2-
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Figure 2-14: Appliance coupling model having, mains PL impedance (Case-1, 2, 3),
DM EMI filter (Case-2) and line impedance & DM EMI filter (Case-3).

15 shows the frequency spectrum of the DM EMI currents (DC supply current) for

all three cases.

Case-1: Two appliances-1 & 2, without DM EMI filters, are connected together

on the same electric line. Appliance-1 has a switching frequency (𝐹𝑠𝑤) of 100 kHz,

similar to the router. Appliance-2 has 𝐹𝑠𝑤 of 40 kHz. Note that in real world settings,

the two appliances would be connected on the 230V AC power line. In our simulations,

we instead consider the appliances connected to the same electric line from a common

DC power supply. Here we are assuming that the EMI coupling mechanisms, from

the DC section to AC mains power line, across different appliances are uniform. A

series resistance of 4Ω is inserted between the appliances and the power supply, to

model the power line impedance. Dominant frequency components in the DM EMI

spectrum in Figure-2-15 include the EMI effects from both appliances i.e. 100 kHz

& 40 kHz signals and their harmonics. The magnitudes of higher order harmonics

decay gradually with frequency. Interestingly, we also observe inter-harmonics due

to mixing of the 100 kHz and 40 kHz signals in the non-linear sections of the circuit
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(such as diode).

Case-2: In this case, we consider the impact of an appliance with an inbuilt DM

EMI filter on a neighbouring appliance. Therefore, a bi-directional DM EMI low pass

filter, of 1 kHz cut off frequency, is incorporated into the front-end of appliance-2

(with 40 kHz switching frequency). As expected, the DM EMI filter suppresses the

EMI currents (40 kHz and its harmonics) from appliance-2 at the sensing point in

the circuit. However, the filter additionally suppresses the DM EMI (100 kHz and

its harmonics) from appliance-1 from being observed at the sensing point. This is

because the DM EMI filter of appliance-2 offers a low impedance path, compared to

the electric line at the power supply, to the DM EMI currents from appliance-1. This

simulation validates our earlier hypothesis, in Section-2.2.2.2, that inbuilt DM EMI

filters within the module of an appliance have a two-fold effect on DM EMI based

appliance disaggregation. The filters not only suppress DM EMI emanating from the

appliance that they are connected to but also impact the measurability of DM EMI

currents conducted by neighbouring appliances on the power line.

Case-3: In this case we consider how the line impedance between two appliances

can impact the effect of the inbuilt DM EMI filter. We simulate conditions when the

two appliances, considered above, are 10m apart on the power line by introducing a

series resistance of 2Ω in the electric line between the two appliances. In Figure-2-15,

the frequency spectrum exhibits weak DM EMI from appliance-2 and significant DM

EMI (100 kHz and harmonics) from appliance-1. We observe that the impact of the

DM EMI filter in appliance-2 on appliance-1 is reduced since the DM EMI currents

from appliance-1 do not find a low-impedance path through the DM EMI filter when

significant line impedance is introduced between the two appliances.

2.4 HFED Dataset and Spice Model Simulations

Our High Frequency EMI Dataset (HFED)2 is also released as part of this work.

It contains DM EMI traces collected from both lab and home settings, having 24

2http://hfed.github.io
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(a) Coupling with line impedance (b) Coupling with one appliance having
DM EMI filter

(c) Coupling with line impedance and one
appliance having DM EMI filter

Figure 2-15: DM EMI spectrum, obtained from simulation model for the three used
cases - Case-1, Case-2, Case-3.

appliances connected over four different test setups in lab settings and one test setup

in home settings. DM EMI data from lab consists of data from signal analyser as well

as USRP, while home data contains data from USRP only. DM EMI measurements

from signal analyser and USRP are taken over a frequency range of 10 kHz to 5 MHz.

Parameter Value
Frequency range 10 kHz to 5 Mhz
Number of appliances tested 24
Number of test setups 5 (4 in home, 1 in lab)
Number of FFT points 32k (Signal Analyser), 100k (USRP)

Table 2.2: Summary of HFED dataset

To further facilitate reproducible research, we also release our CAD layout files

and our SPICE simulations on the dataset webpage. Our dataset is summarized in

Table 2.2.
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2.5 Conclusion

In this chapter, we highlight some key observations obtained from our in-depth study

of DM EMI signatures over an extensive set of home appliances, tested in both lab-

oratory and residential settings. Some of these observations either counter or qualify

the observations made in earlier DM EMI related research (e.g. not all SMPS based

appliances will conduct DM EMI due to high attenuation offered by inbuilt DM EMI

filters) or provide novel insights (e.g. DM EMI from neighbouring appliances may

significantly interfere through the DM EMI filters and line impedance along the power

line). Empirical analysis, discussed in this chapter, calls for a detailed review of differ-

ent factors that may impact the observed DM EMI from appliances before using the

DM EMI as a signature for appliance disaggregation. Setting up controlled environ-

ments for better understanding of EMI sensing may either neglect real conditions - by

isolating background noise and interference from other appliances on the power line; or

would require a very extensive study accounting for all of these noise factors. To sim-

plify the overall review process, accurate simulation models that account for several

of these noise factors will significantly help in improved and thorough understanding.

We made the first attempt in creating such simulation models and demonstrated their

utility in explaining some of the peculiar behavior discussed in this chapter through

physics. Such simulation models can further help in analyzing minute events which

are otherwise not observable with standard measuring equipment.

To overcome challenges identified with DM EMI, we explore the second coupling

mode demonstrated by conducted EMI i.e. CM EMI in our next chapter. Certain

characteristic features of CM EMI exhibit guarantee to serve as a reliable feature for

appliance detection. Hence, we carefully designed our follow-up study with CM EMI

to establish its robustness over DM EMI.
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Chapter 3

Common Mode Conducted EMI

Signals for Appliance Detection

In the previous chapter, we showed that the DM EMI is an unreliable feature since the

harmonics from the power supply and electrical infrastructure may interfere severely

with the measurements. Additionally, federal regulations mandate that all appliances

are fitted with sophisticated filters for rejecting their DM emissions. In this chapter,

we demonstrate that high-frequency CM EMI can be used to identify specific types

of electronic appliances uniquely.

On the consumption side, buildings, across the world, contribute to approximately

40% of the total energy expenditure. Offices, retail markets and educational insti-

tutes absorb roughly 50% of this energy [78]. Within these buildings, HVAC are the

dominant loads (40%), followed by information technology (IT) loads and lighting

(25%) [79, 80]. While there has been considerable focus on optimizing the HVAC en-

ergy consumption, there is currently little work on energy optimization for IT loads

[81, 82]. A significant portion of the IT load energy consumption arises from the

wasteful operations of these loads during non-working hours [83]. The detection of

these appliances can enable the quantification of energy wastage and this informa-

tion, when provided as consumer feedback, can motivate energy conservation. In this

work, we designed a low cost sensing solution that can be used to accurately detect

the operation of these IT appliances within office spaces during off-hours. Let us first
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formulate the challenges that motivate and set apart this work:

1. Even a small office may have a large number of IT appliances. Therefore, the

deployment and maintenance of an individual load monitor for each appliance, in

a distributed setting, may quickly become prohibitive in terms of both cost and

maintenance.

2. Single point sensing frameworks have been proposed (primarily for residen-

tial environments) for detecting appliances based on their energy usage patterns

[7, 8, 56, 53, 54, 84, 55, 85, 86, 87]. These include permanent loads that oper-

ate throughout the day (refrigerators and thermostats); on-off appliances (fans

and lamps); loads based on finite-state machines (washing machines and dimmer

lamps); and time-varying loads (IT loads). State of the art single point sensing

solutions mainly involve exploiting information gathered from the power consump-

tion characteristics for appliance detection [8]. Other works in the smart grid

community proposed techniques to detect appliances using either physics based

models derived from voltage and current waveforms [54] or from features extracted

from the real and reactive power, wave shape and harmonic content [88]. As a

result, while these solutions have been effective in detecting appliances of the first

3 categories, they have been unsuccessful in detecting IT appliances due to their

time-varying power consumption pattern. Also, most of these techniques are lim-

ited by signal interference in the presence of multiple appliances. The problem is

even more challenging in an office environment as the number of such appliances

is large.

3. In much of the previous work on single point sensing for appliance detection, the

proposed detection and classification systems were evaluated based on the test and

the training data gathered from the same appliance. Such approaches assume that

different instances of the same appliance (e.g. 2 different CFL lamps) will likely

behave in the same manner. While this may be somewhat true at low sampling

frequency, it must be experimentally validated at higher sampling frequencies

as well. Accuracy of a single point sensing system should ideally be proved by
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training and testing on different appliance instances, for its general applicability

in real world settings.

In this work, we have developed a sensor for measuring high frequency CM EMI

injected by the appliances on the power lines. We also verified that we can use training

data gathered from one instance of an appliance to classify other instances of the same

make and model. Such a sensor offers an effective solution to detect IT appliances

in office scenarios. This can eventually be used to identify their wasteful operations,

thus contributing to the smartness on the consumption side in the grid. Previously

[11, 76, 89, 90, 91, 92] used bulky (and expensive) systems for EMI sensing such as

USRP, vector network analyzers and spectrum analyzers. These systems cannot be

easily modified to support CM EMI measurements. Instead, we designed a low cost,

portable, plug and play system for EMI sensing developed using commercial, off-the-

shelf data acquisition systems. The classification algorithms, in prior works, were

based on features extracted from frequency domain EMI data. They subsequently

used a variety of algorithms such as k-nearest neighbor (k-NN) [11], neural networks

[76] and support vector machines (SVM) [89] for classification. However, different

appliances show considerable temporal variation in their EMI characteristics. To

improve upon these results, we employed statistics learnt from histograms of the EMI

data. These histograms show consistency across time and across instances of the same

type. While similar statistics have been previously used on time series data [93], this

is the first time they are being used to discriminate electrical appliances based on

their EMI signatures.
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Figure 3-1: Equivalent circuit diagram of (a) single ended power supply and a (b)
split phase power supply.
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3.1 Description of CM and DM EMI measurements

Most consumer and power appliances with SMPS inject EMI into the power lines

as shown in Figure-3-1. A single-phase power supply (or a single branch of a three

phase power supply) consists of three power lines: the phase, neutral and earth,

which are characterized by transmission line impedances 𝑍. The power supply may

be single ended (Figure-3-1a) or split phase (Figure-3-1b) with a 230V, 50 Hz (Indian

standard) between phase and neutral. In our work, we considered the more commonly

found single ended supply where the neutral and earth terminals are shorted at the

distribution transformer outlet. However, the principles we have outlined in this

work are equally applicable to split phase power supplies. Electrical appliances are

either three pin appliances (Figure-3-1a) with earth connections or two pin appliances

without an earth connection (Figure-3-1b). EMI that is generated from the switching

circuits in the appliance or due to the passives may be resolved into two components

- (1) the differential mode (𝐼𝑑𝑚) component that is inserted into the power lines

across the step down transformer that interfaces between the switching circuitry and

the power lines and (2) the common mode (𝐼𝑐𝑚) component on both the phase and

neutral, with respect to the local ground of the appliance. The CM EMI noise is

injected into the power lines through parasitic capacitances (𝐶𝑇 ) in the transformer.

Therefore, the current on the phase, neutral and earth lines are: 𝐼𝑐𝑚/2 + 𝐼𝑑𝑚/2,

𝐼𝑐𝑚/2− 𝐼𝑑𝑚/2 and 𝐼𝑐𝑚 respectively. Note that the CM EMI component exists even in

single-phase supplies (Figure-3-1a) due to the line impedances across the power lines.

In the case of two pin appliances without an earth connection (not shown), the CM

current loop is completed through a secondary coupling capacitance (𝐶𝑃 ) between

the phase and neutral terminals of the appliance and the local ground.

3.1.1 Comparison of DM and CM EMI as feature vectors for

classification

The authors in [11] postulated that appliances generate a unique and time-invariant

DM EMI between the phase and neutral terminals, which can be exploited as a reli-
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able feature vector for classification. However, in previous chapter we showed several

of the challenges associated with using the DM EMI as a reliable feature vector.

First, DM noise currents, which are generated by inductive coupling through the

transformer, mostly dominate high frequency bands. Therefore, these noise currents

rapidly attenuate with increase in line impedance (or distance between the measure-

ment outlet and the appliance outlet). In contrast, CM EMI currents, which are

generated at low frequencies due to capacitive coupling, are likely to attenuate more

gradually with the increase in line impedance. Second, higher order harmonics of the

power supply (230V, 50 Hz) may dominate over the DM EMI from appliances in many

cases. In [11], they tackled this issue by carrying out background subtraction in the

frequency domain in the logarithmic scale (or division in the linear scale). However,

this results in the emergence of spurious artifacts in the frequency domain signatures

of the appliances. In contrast, the earth wire (where the CM EMI measurements can

be made), is not meant for conduction of mains power supply and only meant for

common mode leakage currents. As a result, the noise floor on CM EMI measure-

ments is likely to be much lower than DM EMI. Third, there are federally mandated

regulations on emission of DM noise from appliances so as to prevent the EMI from

an appliance from interfering with the functioning of other appliances connected to

the same grid. Therefore, most appliances come with inbuilt EMI filters that regulate

the DM emission. In the previous chapter, it was observed that the DM EMI of some

appliances such as laptops and CPUs was observed to be non-existent due to their

EMI filters. The EMI filter of an appliance also significantly suppressed the DM EMI

of neighboring appliances on the power lines by offering their DM EMI currents a

low impedance path to ground. Therefore, appliances that may be detected indepen-

dently may not be detected when they are powered simultaneously on the same lines.

This may considerably reduce the efficacy of DM EMI as a feature vector for detecting

multiple appliances. In contrast, most appliances are not fitted with CM EMI filters

since CM noise is far less likely to impact the functioning of neighboring appliances.

Despite this, if these appliances are fitted with CM EMI filters, the electromagnetic

behavior due to CM filters do not significantly couple together. A detailed study of
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the CM and DM EMI coupling between multiple appliances on a single power line is

presented in Section-3.7.

3.1.2 Measurement of CM and DM EMI components

In the case of split phase power supplies, the CM and DM EMI can be measured by

the sum and difference of phase (𝑉𝑝) and neutral (𝑉𝑛) voltages with respect to the

earth measured at the power supply.

𝑉𝐶𝑀 = 𝑉𝑝 + 𝑉𝑛 (3.1)

𝑉𝐷𝑀 = 𝑉𝑝 − 𝑉𝑛 (3.2)

In single-phase power supplies, DM EMI can be measured by the potential difference

between the phase and the neutral. But the measurement of CM EMI is more chal-

lenging. One method is to measure 𝑉𝑑𝑚 and 𝑉𝑝 independently and estimate 𝑉𝑐𝑚 by

subtracting 𝑉𝑑𝑚 from 𝑉𝑝. The advantage of this technique is that it can be applied

to both two pin and three pin appliances. However, in practice, the performance

of this technique is poor due to (1) the phase mismatch between DM and CM EMI

components and (2) because the magnitude of DM EMI measurements usually ex-

ceeds the magnitude of CM EMI by a few orders due to power supply harmonics. A

second method is to directly measure the earth currents, which correspond to the CM

EMI components. The main advantage of this method is that the background noise

across the earth lines is much lower than the phase and neutral lines. However, this

technique can only be applied to three pin appliances due to the absence of a physical

earth line connection in two pin appliances. The earth currents can be measured

using either a current sense coil (such as the wide-band Rogowski coil) or through a

current sense resistor. We have chosen to measure the current through the current

sense resistor, to facilitate the development of a cheap sensor.
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Figure 3-2: (a) Our custom EMI Sensor; (b) Actual prototype; (c) Reference view-
graph of the DM EMI sensor.

3.2 Plug and Play EMI Sensor Using Conducted EMI

for Appliance Detection

In previous studies on EMI for NILM, measurements were made with spectrum an-

alyzers and USRP boards [11, 76, 90]. These equipment are expensive and bulky.

Hence, the measurements were mostly restricted to laboratory conditions. On the

other hand, electronic manufacturers measure the DM and CM EMI emitted by ap-

pliances with expensive line impedance stabilization networks [3]. For the first time,

we designed a low cost, portable sensor, made with off-the-shelf components, that is
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capable of simultaneously measuring both the CM and DM EMI components from

appliances on the single phase (single ended) power lines. The DM EMI component is

estimated from the potential difference between the phase and neutral lines as shown

in Figure-3-2a. The power signal (230V, 50 Hz) and some of its lower harmonics are

removed from the signal through a differential HPF with a cut off frequency of 9 kHz.

The CM EMI signal is estimated by measuring the voltage across a current sense re-

sistor (𝑅𝑠) on the earth line. Note that while the current sense resistor offers a cheap

technique for measuring the CM EMI currents, the deployment introduces a break in

the connection between the power supply and the appliance (or the power line feeding

multiple appliances). A non-intrusive, but more expensive alternative, would be to

introduce a current sensing coil around the earth line. The data acquisition is carried

out with the open source high speed Red Pitaya1 board. The choice of the value of

the current sense resistor is based on the ADC resolution and the shunt resistance

shown in Figure-3-3 and Figure-3-2a. The common mode voltage measured by the

ADC is

𝑉𝑐𝑚 =
𝐼𝑐𝑚𝑅𝑠ℎ𝑢𝑛𝑡𝑅𝑠

𝑅𝑠ℎ𝑢𝑛𝑡 + 𝑅𝑠

(3.3)

A low value of 𝑅𝑠 (much lower than 𝑅𝑠ℎ𝑢𝑛𝑡) should be chosen to ensure minimum

noise injection, while ensuring that the measured voltage is greater than 𝑉𝑚𝑖𝑛.

𝑉𝑐𝑚 ≈ 𝐼𝑐𝑚𝑅𝑠 > 𝑉𝑚𝑖𝑛 (3.4)

Here, 𝑉𝑚𝑖𝑛 is the minimum voltage measurable with the ADC. In our case, the board

is configured with a shunt resistance of 1MΩ and 16-bit ADC with 2V peak to peak (∴

𝑉𝑚𝑖𝑛 = 0.131𝑚𝑉 ). An empirically chosen value of 100Ω satisfied both the conditions

and hence was found suitable for the current sense measurements. Please note that

placement of a current sense resistor in the earth line can pose a potential risk.

Firstly, it can provide a path for high voltage (HV) signals to the DAQ. To avoid

this safety hazard we have used two decoupling capacitors (𝐶𝐷) as shown in Figure-

3-2a to provide isolation from low-frequency (50 Hz) HV signals. These capacitors

1http://redpitaya.com/
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Figure 3-3: Schematic showing connection diagram for current sense resistor (𝑅𝑠)
with shunt resistor 𝑅𝑠ℎ𝑢𝑛𝑡 inside ADC on Red Pitaya.

(0.1uF each) are meant for HV operation, can operate at 480VAC and provide an

isolation of 1.5kVDC (EPSON Part number - B32023A3104M). Secondly, it violates

the ground wire impedance regulations, which are 5Ω according to NFPA [94] and

IEEE article number NEC 50.56 and 25Ω according to article number NEC 250.56

[95]. It can pose a risk to human using the appliance as 100Ω resistor grounds ground

path for leakage currents. Currently, we are planning to tackle these issues in next

non-intrusive version of this sensor. Both the CM and DM EMI data are acquired

at a sampling frequency of 15.625 MHz and stored in internal buffers. The data

from the buffers can be loaded into a server or CPU for further processing through

either an Ethernet or a wireless interface. This sensor can be easily modified to

measure EMI from split phase power supplies. Instead, of directly measuring the

DM and CM EMI components, the phase (𝑉𝑝) and neutral voltages (𝑉𝑛) must be

measured. The DM and CM EMI components can be estimated through (1) and (2).

There is, therefore, no requirement of a current sense resistor or coil in the case of

split phase power supply measurements. The sensor can be directly plugged onto

any electrical outlet of the building. The equivalent circuit of our custom designed

sensor is shown in Figure-3-2a, Figure-3-2b shows the actual prototype and Figure-

3-2c shows a contrasting sensing solution developed in [11]. The power line interface

in Figure-3-2c corresponds to the HPF in Figure-3-2b and the USRP in Figure-3-2c
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corresponds to the DAQ in Figure-3-2b. All the stand-alone modules such as power

line interface, data acquisition and data logging modules have been integrated into a

single box in our custom sensor.
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Figure 3-4: Flow chart showing the steps followed during (a) training phase and (b)
test phase.
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3.2.1 Signal Processing and Feature Extraction

Consider that there are 𝐼 appliance categories and 𝐽 instances of each category. Ac-

cordingly, 𝑥𝑠
𝑖,𝑗(𝑡) represents a single trace or sample from 𝑆 time-domain EMI traces

measured for the 𝑗𝑡ℎ instance of appliance category 𝑖. The time-domain data gathered

by the sensor for each appliance are not directly used as a feature vector for classifi-

cation because the measurements are not synchronized. Instead, we hypothesize that

the CM EMI data from each appliance has a unique and time-invariant histogram

that can be used as its signature. The histogram, derived from each sample (𝑠), is

obtained by binning the time domain data based on its magnitude. The distribution

can be uniquely described by certain statistics. In this work, we extracted the follow-

ing features from the histograms for classification: {entropy, skewness, interquartile

range, kurtosis, percentile-75, range, maximum, median, percentile-90, mean absolute

deviation}. The features are listed in the order of their effectiveness towards classi-

fication and form a vector for each sample trace (𝑓 𝑠
𝑖,𝑗). Features such as minimum

and percentile-25 are not used since they look identical across multiple classes when

we consider the magnitude of the measured data. Figure-3-4a shows the pipeline

followed during the training phase. The data from one instance (𝑗 ′), of appliance

category (𝑖′), are used for training while the data from the remaining instances (test

instances 𝑗 ̸= 𝑗
′) are used for testing. The mean of the statistics, 𝑓𝑖′ ,𝑗′ from all the

traces corresponding to 𝑗
′ , is used as the training model. Figure-3-4b shows the test

procedure. Each trace of the testing instances (𝑗), corresponding to appliance cat-

egory (𝑖), is treated as a separate test case. A test case is classified based on the

minimum Euclidean distance between the test vector, 𝑓 𝑠
𝑖,𝑗, and the training models

for all the appliances as shown below.

𝑚𝑖𝑛
𝑖′

⃦⃦⃦
𝑓 𝑠
𝑖,𝑗 − 𝑓𝑖′ ,𝑗′

⃦⃦⃦2

2
∨ 𝑖, 𝑗 ̸= 𝑗

′
(3.5)
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(Laptop Charger) 

UPS Power Supply 

Figure 3-5: Test setup shows the conducted EMI sensor used for CM and DM EMI
sensing for single ended power supply along with AUT.

List of SMPS Appliances
(connected to UPS) Quantity Power

(Watts) Total Power

Router 23 10 230
Projector 15 250 3750
Projector Screen Controller 5 10 50
CCTV Cameras 20 5 100
Fire Control Systems 2 250 500
Desktop (CPU + Monitors)
HP LE1902x Hewlett Packard
Compaq 8200 Tower

91 100 9100

RFID Access Control Systems 24 5 120
Laptop and Charger
(Lenovo X1 20A80056I) 150 45 6750

A4 Sheet Scanner 10 25 250
Printer (HP LaserJet P1008) 55 700 38500
CFL(Crompton Greaves) 380 18 6840

Table 3.1: IT loads within the institute. Highlighted appliances were used for the
experiment.

3.3 Experimental Results

The common IT loads and lighting sources in most offices are CPUs, LCD moni-

tors, laptops, telephones, modems, wireless routers, printers and CFL lamps. Many
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published works on appliance detection note that several of these appliances, are very

difficult to detect with single point sensing [53, 96, 84]. For instance, the time domain

signatures of laptops and CPUs show considerable variation depending on the opera-

tional state of the appliance [13]. Hence, smart meters (with low sampling frequency)

have not been successful in detecting these appliances. Additionally, these appliances

are fitted with high quality EMI filters to reject DM EMI emission. Therefore, they

are difficult to detect with DM EMI data. In this section, we show the utility of

CM EMI feature vector for successfully detecting some of these appliances. In most

office setups, multiple appliances of the same type (make and model) are used due

to logistical reasons. Due to practical considerations, only a single instance of an

appliance can be used for generating training data for learning the features.

However, once the features are learnt, they must be useful for detecting other

instances of the same appliance type. Therefore, in this work, our classification

algorithm is trained on data from a single instance of each appliance category and is

used to detect other instances of the same type. This test protocol marks a significant

departure from previous works in this domain.

In this work, we surveyed the SMPS based electrical appliances in our institute,

which includes faculty offices, research labs, lecture halls and a small-scale data center.

The complete list of appliances, their quantity, individual and aggregate power con-

sumption are listed in Table-3.1. In this survey, we found that CFLs, LCD monitors,

CPUs, printers and laptops (highlighted in the table with their make and model de-

tails) were the most commonly used appliances accounting for over 92% of the energy

consumption. Hence, we focused our study on the detection of these appliances.

Servers and air conditioners used in the data center, and centralized HVAC sys-

tems used for air conditioning were not considered part of this study. In general,

there is a lot of prior and ongoing research work to optimize servers [97, 98, 99],

HVAC systems [81, 100], and air-conditioning systems [82, 101, 102]. Also, quite

a few commercial entities like SmartJoules2, Zenatix Solutions3, BuildingIQ4, and

2https://www.smartjoules.co.in/
3https://zenatix.com/
4https://buildingiq.com/
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Building Robotics5 focus on these loads. Hence, we tried to restrict our focus on the

second most significant load in office buildings: IT and Electronic appliances.

We carried out the measurements inside the office precincts of our institute where

the appliances are powered from an uninterrupted mains power supply (UPS). The

EMI sensor, described in the previous Section, is connected to an outlet on an exten-

sion cord that is connected to the UPS. The AUT was connected to the EMI sensor as

shown in Figure-3-5. We first examine the time-invariant characteristics of the CM

EMI signal. These results are presented in Appendix-B. Additional measurements

are made on the power line without connecting any of the appliances. This is useful

in determining the background noise on the power lines in the absence of the AUT.

The EMI data collection from the twenty five individual appliances (five instances of

each of the five appliance categories) spanned over a week from which we considered

a data set spanning 5-6 hours (which includes measurement and logging time). This

complete dataset6 is released as part of this work. In the next two Sections, we discuss

the measurement data and classification results for all appliances.

3.4 Measurement Results

Time-domain CM and DM EMI are measured simultaneously for each individual in-

stance of an appliance at a sampling frequency of 15.625 MHz. Each time-domain

trace is 150ms long, consisting of 150 sub-frames measured and logged for 1ms du-

ration. Each time-domain sub-frame (approximately 1ms duration) includes 16384

data points having a precision of 16-bits, which is guided by 16-bit Differential ADC

that we have used in our DAQ board. The length (duration) of each sub-frame is

guided by the ADC buffer size available to us. However, the total duration for each

time-domain frame (150ms in this case) is decided to ensure that we have sufficient

data points to analyze this signal acquired at 15.625 MHz. A total of ten traces

(total duration - 1500ms) are collected for every appliance instance to account for the

5https://www.comfyapp.com/
6https://goo.gl/wpxEh9
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Figure 3-6: Frequency domain plots showing CM EMI and DM EMI measured from
5 appliances along with background noise on the power lines.

dynamic nature of background data (baseline noise), which can facilitate smoothing,

averaging, and other signal processing operations. In total, there are 5 instances of

each appliance, and the corresponding amount of background data are also collected.
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3.4.1 Frequency Domain Results

Figure-3-6(a-e) and Figure-3-6(f-j) show the frequency domain CM and DM EMI

signatures of an instance of each of the 5 appliances highlighted in Table-3.1. The

frequency range of interest is from DC to 5 MHz. Before turning on the appliance,

the background noise on the power lines are measured for each case. This exercise was

carried out to monitor the change in the background noise characteristics in the power

lines during the measurements. We note that across all the figures, the background

noise in the CM EMI measurements (-100dBm to -130dBm) is lower than the DM

EMI measurements (-60dBm to -120dBm). This is possibly because of the absence

of power line harmonics and other fluctuations on the earth line where CM EMI is

measured. Secondly, we observe that above 4 MHz, the frequency data look identical

for all the appliances as it is dominated by the background noise on the power lines.

Finally, the CM EMI signatures are reasonably consistent across multiple instances

of the same appliance make and model. This is not true for the case of DM EMI.

These results are not shown here due to constraints of space. In the case of the laptop

charger (LC) and LCD monitor, a broad band CM EMI noise can be discerned over the

background noise floor, up to 2 MHz. The average signal to noise ratio over this band

of frequencies is 15dB and 20dB respectively. However, the poor DM EMI to noise

ratio, clearly shows that the EMI filters in the laptops and monitors have successfully

removed all DM EMI. Therefore, the detection of these appliances is likely to be very

poor if DM EMI data are used as feature vectors for classification. Considerable CM

and DM EMI are observed in the case of CFL. The average SNR across the entire

frequency domain, are 30dB and 25dB respectively for CM and DM EMI respectively.

The EMI signatures from CFL are characterized by the fundamental peak, at 41.4

kHz, corresponding to the switching frequency of the power supplies within the CFL

and its higher order harmonics. Therefore, we anticipate that both CM and DM

EMI data can be successfully used for identifying CFLs. In the case of the CPU and

printer, the background noise on the CM EMI measurements were occasionally high.

This may affect the classification results in these cases. In this work, we chose to not
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Figure 3-7: Histogram of CM EMI data, of five appliances (from 2 of 5 instances) and
Background noise (BGN), showing significant similarity across instances from same
class of appliances.

use the frequency domain data for machine learning and classification since a large

portion of the data, from 4 MHz to 7.8125 MHz (half the sampling frequency) show

significant overlap across the multiple appliances.

3.4.2 Histograms

Time domain measurements are not synchronized in any manner. Hence they show

considerable variation across multiple instances of the same appliance and across

time depending on the starting time (and phase) of the measurements. Therefore,

these traces cannot be directly used as signatures for appliance classification. On

the other hand, statistical distributions derived from the time domain data from the

same appliance category may show similar features. We examine this by plotting the
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normalized number of counts per bin (histogram) of the magnitude of the CM EMI

from each appliance category. Figure-3-7 shows the histograms from two of the five

appliance categories. Each of these histograms are drawn from data from a single

time-domain trace of 150ms. The figures show the following features: the histograms

of the measured voltages show considerable variation across different appliance cat-

egories. The most distinct histogram belongs to the CFL and the background noise

category. On the other hand, the histograms show much smaller variation across mul-

tiple instances of the same appliance category. CPU, printer and LCD have roughly

similar histograms. However, due to distinct peak values and width of slope in his-

tograms, statistics such as kurtosis and skewness are able to capture this dissimilarity.

Therefore, statistics (listed in Section-3.2.1) that describe the histogram can form the

basis for appliance detection and classification. DM EMI data that are dominated by

background noise show very similar histograms across multiple appliance categories.

These histograms are not shown here due to constraints in space.

3.5 Classification Results and Discussion

As mentioned earlier, there are 6 categories in the classification - {LCD monitor,

Laptop Charger (LC), CFL, CPU, Printer (PRT) and Background (BGN)}. The

last category, {BGN }, implies the absence of any of the other five IT appliances

on the power line. 10 samples were measured for each of the 5 instances of every

appliance category. Thus, I = 6, J = 5 and S = 10 based on the definitions provided

in Section-3.2.1.

The training model is the vector formed from the mean of the statistics drawn

from the histograms corresponding to the samples of the training instance (20% of

measured data). Each of the samples from the remaining four test instances form an

individual test case (80% of measured data). Five-fold cross validation is carried out

where the training and testing instances are swapped. As a result, there are a total of

200 (4 x 10 x 5) test samples corresponding to each appliance category. Each test case

is assigned to one of the 6 appliance categories on the basis of the minimum Euclidean
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distance between the test feature vector and the training models as described in (5).

We carry out the classification process using CM EMI data and then repeat the

process with DM EMI data. We present the appliance confusion matrix7 along with

precision and recall results from the nearest neighbor based classification algorithm

on a per appliance basis in Table-3.2(A) and Table-3.2(B). The column headers, in

the tables, indicate the classification classes whereas the row headers indicate the

test classes. The highlighted features in the table indicate correctly identified test

cases. The precision of appliance detection is computed as the ratio of correctly

classified test cases of each appliance class (𝑖) to the total number of traces classified

as that appliance class. The total number, therefore, includes test traces from other

appliances that are falsely classified to this particular class. The recall of an appliance,

on the other hand, is computed as the number of correctly classified test cases of each

appliance class to the total number of traces from that appliance class. Therefore,

some of the traces of this class have been missed (or falsely identified as belonging to

another class).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑖 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠|𝑖 × 100

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠|𝑖 + 𝑓𝑎𝑙𝑠𝑒 𝑐𝑙𝑎𝑠𝑠|𝑖
(3.6)

𝑟𝑒𝑐𝑎𝑙𝑙|𝑖 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠|𝑖 × 100

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠|𝑖 + 𝑚𝑖𝑠𝑠𝑒𝑑 𝑐𝑙𝑎𝑠𝑠|𝑖
(3.7)

Together, the precision and recall indicate the accuracy of the classification algorithm

and the efficacy of the chosen feature vector. The following inferences can be drawn

from the results: the average CM EMI precision and recall results (87.3% and 86.8%

respectively) are far superior to the DM EMI precision and recall results (49.6%,

45.2% respectively). This validates the key hypothesis of our work that CM EMI is

a far superior feature for IT appliance detection compared to DM EMI. The poor

performance of the DM EMI results can be attributed to the high background noise

(-60 to -120dBm) that dominated the DM EMI measurements as seen in Figure-3-

6b. The background results in the CM EMI case is 100% (both precision and recall)

compared to the low values for DM EMI. This is because of the distinct low noise floor

7https://en.wikipedia.org/wiki/Confusion_matrix
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that was observed in the CM EMI measurements due to the absence of the power

signal and its higher order harmonics.

Past research efforts, using either smart meters or DM EMI, have reported the

challenges in detecting IT appliances such as laptop chargers, LCD monitors and

printers [103, 13]. This is because these appliances show considerable variation in

their smart meter readings while operating in different modes (standby, hibernation,

full operation and so on) [13]. Since these appliances are usually fitted with powerful

DM EMI filters, they show very poor performance with respect to DM EMI (16.5%,

33.5% and 39.5% recall for laptop chargers, LCD monitors and printers respectively).

The high precision and low recall value for printers, in the DM EMI case, is due to

the poor SNR in the measurements due to the high background noise values. The

classification of printers is therefore, largely on the basis of background noise rather

than EMI signal itself. Nevertheless, these appliances are accurately detected with

their CM EMI signatures (above 90% precision and recall for laptop chargers and

printers; 72% for LCD monitors). CFLs can be accurately detected using either DM

EMI or CM EMI data due to their strong and unique signatures and the absence of

any type of EMI filters (DM and CM). Desktop CPUs show some improvement from

DM EMI to CM EMI (from 35% to 60%). However, these appliances still remain

challenging to detect. This can be attributed to the high background noise floor in

the CM EMI measurements of the CPUs (refer Figure-3-6).

In this work (and all other prior works related to EMI sensing), the feature extrac-

tion for classification is carried out when the appliances are individually connected

to the power lines. We have limited the study to one appliance at a time in order

to evaluate the signal quality, stability and consistency across multiple instances of

same appliance. In order to detect an appliance in the presence of multiple appliances

on the grid, more complex appliance features (as opposed to the simple statistical

features used in this work), extracted from dictionary-learning techniques may be

needed. However, CM EMI will still serve as a useful signal for classification since

CM EMI (unlike DM EMI) does not couple between multiple appliances. Therefore,

this problem presents a unique opportunity for future research in this field. Secondly,
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while the sensing solution presented in this work detects and classifies appliances on

the power lines, the technique does not provide information regarding the actual en-

ergy dissipation by the appliance. The second piece of information can, however, be

gathered by operating a simple energy meter in conjunction with our custom designed

EMI sensor.

BGN LC LCD CFL CPU PRT Recall
(%)

BGN 200 0 0 0 0 0 100
LC 0 197 3 0 0 0 98.5

LCD 0 15 144 0 33 8 72
CFL 0 0 0 200 0 0 100
CPU 0 0 12 0 119 69 59.5
PRT 0 0 1 0 17 182 91

Precision
(%) 100 92.9 90 100 70.4 70.3

(B)

BGN LC LCD CFL CPU PRT Recall
(%)

BGN 99 30 61 0 10 0 49.5
LC 106 33 43 0 18 0 16.5

LCD 87 29 67 0 17 0 33.5
CFL 3 4 0 193 0 0 96.5
CPU 51 22 38 0 69 20 34.5
PRT 7 5 12 0 97 79 39.5

Precision
(%) 28.1 26.8 30.3 100 32.7 79.6

Table 3.2: Results from Nearest Neighbor based Classification on (A) CM EMI data
and (B) DM EMI data on 6 classes (5 appliances and background): (A)

3.6 CM EMI Coupling Behavior across Multiple Ap-

pliances

In prior work, we studied how DM EMI coupled between neighboring appliances using

simulation models of appliance SMPS [103]. Here, we analyze the CM EMI coupling

between two appliances (AUT-1 and AUT-2) using a generalizable model shown in
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Figure 3-8: A generalizable model for analyzing CM and DM EMI coupling between
two appliances (AUT1 & AUT2), having DM and CM EMI filters.
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Figure 3-9: CM and DM EMI spectrum showing coupling between two appliances
(AUT1 & AUT2) (a) without and (b) with DM and CM EMI filter

Figure-3-8. Each appliance is fitted with a distinct CM and DM EMI source. First,

we consider the case when neither of the appliances are fitted with filters (Figure-3-8

without DM and CM EMI filters). Figure-3-9a shows the corresponding CM and

DM EMI spectrums. The spectrums shows superposition of signals from both the

appliances - CM peaks at 100 kHz (AUT-1) and 130 kHz peaks (AUT-2) and DM

EMI peaks at 40 kHz (AUT-1) and 50 kHz peaks (AUT-2). Since the amplitudes

of both the CM and DM EMI current sources are assumed to be 1A, the peaks of
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the corresponding signals in the EMI spectrums are of equal magnitude. Next, we

consider the case when a DM EMI and CM EMI filter are applied to AUT-1 [3, 104].

In an ideal scenario, these filters should only suppress the EMI from AUT-1 and have

no impact on the neighboring AUT-2. The resulting spectrums, shown in Figure-3-9b

show that the DM EMI and CM EMI from AUT-1 are attenuated by approximately

40dB by their respective filters. Interestingly, the DM EMI from AUT-2 is also

attenuated (by approximately 8dB) by the filter in AUT-1. This attenuation can

severely impact the detection of DM EMI signals especially in low SNR scenarios as

discussed in [11]. On the other hand, the CM EMI of AUT-2 is not affected by the

filter in AUT-1. Therefore, this study suggests that CM EMI signals are less prone to

interference between neighboring appliances and theoretically should still be detected.

Figure 3-10: Real power (top), reactive power (middle) and CM EMI spectrum (bot-
tom) from the printer in different states (off, active & low power).
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3.7 Time-Invariance Property of the CM-EMI Sig-

nals

In this section, we investigated the time-invariance nature of the CM EMI signals of

simple commonly found IT appliances that have two operational states - active and

low power, besides the off state. Figure-3-10 shows the CM EMI measured from a

printer along with the corresponding real and reactive power measured by a smart

meter. When the SMPS is powered off (off-state), we do not observe any EMI.

However, the SMPS remains active with constant EMI in both the active state and

low-power state even though the actual load differs. In the low power state, there is

non-zero reactive power consumption and no real power consumption while the active

state has non-zero reactive and real power consumption.

Next, we considered an LCD monitor connected to a desktop CPU on which a

variety of programs are run over a duration of an hour. Figure-3-11 shows the corre-

sponding CM EMI spectrum (up to 2 MHz) measured from the monitor. The figure

shows that despite the time-varying operations by the monitor, the EMI spectrum

remains consistent. The findings from this work may not apply to multi-state do-

mestic appliances that have closed loop controllers and show adaptive EMI behavior

according to the instantaneous load condition [105].

3.8 Combining low-frequency smart meter data with

EMI data for appliance disaggregation

Using high-frequency electromagnetic interference (EMI) emissions for detecting and

extracting appliance state information of electronic loads seems to be a promising

technique. Considering prior work in differential mode conducted EMI [11, 90, 105]

and present work using common mode conducted EMI [106, 103], it sounds practical

to infer appliances from these noise signals present on the power lines. However, it

still requires more work before ensuring that appliance state information captured
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Figure 3-11: CM EMI spectrum measured from LCD monitor. This spectrum clearly
shows consistent EMI peaks throughout operation of LCD monitor.

using EMI becomes useful in optimizing energy consumption.

Although, these electronic loads are the second highest consumer of electricity

in office buildings after HVAC, to ensure effective energy feedback this information

has to be augmented with duration of appliance usage, location inside building and

amount of power consumption [10, 107]. EMI signals can be exploited to extract

duration of appliance usage and type (category) of the appliance being used. How-

ever, it is hard to infer similar instances appliances and their collective power usage

using EMI signals [106]. To fetch this information the appliance state information

gathered from EMI data has to be combined with instantaneous low-frequency power

data from conventional smart meters in a time aligned manner. This combination of

low-frequency power data and appliance state information from high-frequency EMI

signals can provide state of the appliance, duration of appliance usage, total instances

of similar appliances which are operational and possibly the location of the appliance

too.
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We envision to extract appliance state information using dictionary learning based

techniques [108, 109] by learning the basis matrix for each appliance category. Prior

attempts of using time and frequency based features or using statistical features will

not be effective in the multi-appliance scenario as when multiple appliance types

are operated together EMI from one appliance interferes with other and can lead to

change in EMI spectrum [103, 3]. Although CM EMI is less prone to this behavior,

however, to ensure the efficacy of appliance detection we use a more robust and

well-known technique (dictionary learning). Once we have the basis (dictionary) for

each appliance, each time-domain EMI vector (trace) captured from EMI sensor is

multiplied with the basis to extract appliance state information. This will help us

to infer what all appliances were operational at that particular moment. Post this

analysis of EMI data, time-aligned power data captured using smart meter is fed to

a linear model having known types of appliances to infer how many instances of each

appliance are operational.

27

AUT-1 AUT-2 AUT-3

AUT-4 AUT-6 AUT-7

AUT-5

Mains Power 
Supply

EMI Sensor 
(DM & CM)

Appliance State 
Detection

Smart Meter Real-time Power 
Consumption

Future Work in EMI Sensing

Figure 3-12: Block diagram of combination of high-frequency EMI sensing system
with low-frequency smart meter based instantaneous power sensing system.

Figure 3-12 shows the block diagram of how EMI data is being collected and

combined with instantaneous power data from the smart meter. The analysis and
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results from the combination of these two data streams are not discussed in this thesis

and they are yet to be published.

3.9 Conclusion

IT loads such as LCD monitors, laptops and desktop CPUs constitute a significant

proportion of energy wastage in office spaces when they are left operational during

non-working hours. Current single point sensing solutions with smart energy meters

have been unsuccessful in detecting these loads, due to their dynamic power con-

sumption patterns. All of these appliances (and many more) generate CM EMI on

the phase and neutral power lines with respect to the earth at low frequencies through

capacitive coupling as well as DM EMI between the phase and neutral at higher fre-

quencies through inductive coupling. The DM EMI is difficult to detect due to the

presence of EMI filters on the appliances as well as harmonics of the mains power

supply. The CM EMI, on the other hand, has a much higher signal to noise ratio.

A significant advancement is made in this research in terms of the systems used

for measuring EMI. Until now, bulky and expensive equipment constitute system

setup for EMI measurements. In this work, both CM and DM EMI were measured

simultaneously with a small and portable sensor made of commercial, off-the-shelf

components. In the case of single ended power supplies, the CM EMI is estimated

by measuring the earth currents. This measurement method is, however, limited to

three pin appliances and not two-pin appliances. In split phase power supplies, the

CM EMI can be measured by the mean of the phase and neutral voltages with respect

to the earth.

Our experiments show that the histograms of CM EMI measured from IT ap-

pliances are reasonably time-invariant and consistent across multiple instances of

appliances of the same make and model. Signature feature vectors of 5 IT appliances

and the background electrical infrastructure are learnt from statistics extracted from

their histograms. These training models are formed from data collected from a sin-

gle instance of the appliance and used to classify other instances of the same make
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and model. This is a rather challenging protocol that is important in office scenarios

where there is a high likelihood of finding many appliances of the same make and

model. We found that, CM EMI forms a better feature, than any other feature re-

searched so far, for detecting many of the IT based appliances. Additionally, since the

CM EMI signal arises from the SMPS within electrical appliances, the new method

demonstrated here is not limited to IT appliances, and can be extended to other

SMPS appliances in residential and office settings as well. Future directions to this

work are to investigate the possibility of using these features for load disaggregation

of appliances with dynamic power consumption, which is the holy grail of NILM.
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Chapter 4

Radiated EMI Signals for Appliance

Detection

Appliance activity recognition is an emerging domain targeted towards personalized

energy feedback and individual energy apportionment. Some research studies in the

past have shown the utility of providing energy feedback to the end consumers and

how it can lead to significant energy savings [10, 107]. This work takes energy feed-

back a step further by using RFI for appliance activity recognition and associating

it to an end consumer. Some prior studies in appliance activity recognition have

utilized distributed sensing approach by placing individual plug load monitors at all

appliances to monitor individual power consumption [110]. Another technique pro-

posed by Hart [7], utilizes disaggregated power information from NILM based single

point sensing method to do this. However, this technique underperforms in the pres-

ence of complex appliances, having time varying power consumption [13]. On similar

lines, some studies have fused multiple sensor streams to extract appliance activity

information; for instance, Kim et al. [111] utilized a fusion of magnetic, acoustic,

temperature, and luminosity sensors to monitor the realtime status of appliance us-

age. The work by Taysi et al. [112] used acoustic sensor nodes to detect appliance

operation. Although these studies have explored a diverse set of sensing modalities

to infer appliance operation but still the goal of attributing energy consumption to

individuals is not achieved as most of these methods can quantify ’which’ appliance
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is consuming but fails to capture ’who’ is using this appliance. Further, most of these

sensing methods require distributed sensing technique, having one or more than one

sensor per appliance, which incurs huge deployment and maintenance cost. In this

chapter, we have explored the feasibility of having a wearable sensor, which not only

infers ’which’ appliance is operational, but also ’who’ is operating that appliance

by assigning a unique id to the person wearing RFI sensor. The appliance usage

data associated with the RFI sensor, having a unique identifier, can be compared

with the power consumption data from the smart meter to get person level energy

consumption.

Once this information is fused with power data from the smart meter, three-step

information can be obtained regarding -

1. Which appliance is operational using distinct RFI signatures,

2. Who are operating this appliance by individual wearable RFI sensors,

3. How much energy is being consumed in this activity by fusing real time smart

meter data.

This RFI study is one of the first detailed studies on utilizing RFI signatures for

appliance activity detection, which covers sensing, feature extraction, and detection

aspects along with comprehensive inferences.

4.1 Overview of RFI

RFI is a high-frequency noise radiated from nearby electronic devices that propagate

in ambient RF environment [113, 114, 115]. Broadly RFI sources can be categorized

into two sub-categories by their purpose of transmission (1) Intelligent sources (2)

Nonintelligent sources. Intelligent sources are essentially wireless transceivers op-

erating in adjacent or same frequency band to communicate with peers while the

non-intelligent ones radiate due to high-frequency oscillators emitting RFI [116]. Wi-

Fi, Bluetooth and other wireless radios operating at 2.4 GHz (license-free ISM band),
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GSM etc. falls under the first category. Non-intelligent sources of RFI consist of elec-

tric and electronic appliances, buses and clocks in computing platforms. RFI sources

are also categorized on the basis of the effective frequency band occupied by RFI

i.e. low-high frequency emitters (< 30 MHz) and very high-frequency emitters (> 30

MHz). With increasing proliferation of such systems, RFI has become an active area

of research from last two decades, especially in the wireless communications commu-

nity. Although FCC has also laid down certain guidelines to maintain RFI within

tolerable limits [115] but due to higher sensitivity of present day sensing systems, RFI

can still be measured. RFI sensing is either blind spectrum sensing to detect nearby

intruders or deterministic spectrum sensing to identify possible RF energy leakage

from a known wireless device operating in same or adjacent frequency band. Our

current work leverages this high frequency RFI as a signature for appliance activity

recognition.

4.2 Prior work in RFI

Prior work in RFI can be classified into five subcategories as (1) Detection or sensing

of RFI [117, 57, 118, 119], (2) Feature extraction and characterization of RFI [116,

120], (3) Modeling of RFI [116], (4) Techniques for mitigating RFI [116, 121] and

(5) implications of RFI in a particular field of study [114, 122, 123, 124, 125, 126].

Schewabe considered RFI interference from lighting and other electronic appliances

[119]. Kvasznicza also performed a similar study of RFI from public lighting sources

[118]. On same lines, Hannan analyzed interference from electrical appliances (motor

based loads) in smart buildings [126]. Although a substantial amount of work has

been done in the past to analyze the impact of RFI. However, most of this work

is restricted to analyzing interference with other electronic devices. There is a very

limited amount of work that characterizes and model RFI from non-intelligent sources

with a goal of appliance activity recognition. In our work, we have focused on RFI

from non-intelligent sources, generated by electrical and electronic appliances. This

RFI is generated due to the presence of high-speed switching circuits used in these
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appliances. Switching circuits embedded in electronic appliances give rise to high-

frequency noise which is either conducted into power lines as conducted EMI or

radiated into ambient environment as radiated EMI (or RFI). The noise peaks of this

EMI or RFI are centered around switching frequency of these circuits. Some prior

work on conducted EMI has shown that these noise peaks can be used as a signature

to detect appliances running on power line [11, 103]. Recently [57] and [59, 127]

have also explored the possibility of using RFI to identify appliances operational in

the vicinity. Our work augments this existing work significantly by characterizing

and modeling RFI generated from electrical and electronic appliances emitting both

low-frequency and high-frequency RF emissions.

4.3 Appliance Acivity Recognition Using RFI

This work followed a systematic pipeline as shown in Figure-4-1. The first step con-

sists of sensing and detection of RFI from non-intelligent sources of RFI i.e. electrical

AUT. The second step includes feature extraction and characterizing the spectral be-

havior of different appliances followed by step three, which involves feature learning

from RFI measured from different appliances. Finally, step four evaluates the per-

formance of appliance detection using k-nearest neighbor (k-NN) based classification

technique. In particular, this work answers the following questions:

Figure 4-1: RFI Sensing Pipeline followed in this work showing different steps of
execution.

1. How characteristics of RFI signatures vary for the different class of appliances?
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2. How RFI signatures vary with increase in distance from the source?

3. How signatures vary for different states of appliances?

4.4 Experimental Setup

Our experimental setup, for RFI measurements, consists of Ettus N-210 USRP, low-

frequency receiver (LFRX) and SBX11 daughter boards, two UWB dipole antennas

(off-the-shelf) and an extension cord [128]. Ettus USRP N210 provides a real-time

band-width of 40 MHz with an ADC resolution of 14 bits and a frequency accuracy

of 2.5 ppm, with an only constraint of Gigabit Ethernet interface. In our case, we

have used scripts written in GNU Radio [129] to perform RFI measurements, using

USRP however it can be controlled using Matlab or Simulink. Along with USRP, two

daughter boards (LFRX and SBX) are used to facilitate RFI sensing at low-frequency

baseband, GSM, and Wi-Fi bands. LFRX provides a bandwidth of DC to 30 MHz,

with a unity receiver gain and it doesn’t include any local oscillator as down conversion

is not required. SBX board provides a bandwidth of 40 MHz starting from 400 MHz

going up to 4.4 GHz, thus supports sensing in GSM, Wi-Fi, and Bluetooth frequency

bands. It also facilitates user defined receiver gain in the range of 0 - 31.5dB. RFI

measurements are performed from a set of nine appliances mentioned in Table-4.1, at

a distance of 1 cm, 10 cm, and 100 cm. Each of these measurements includes 2000

steady state traces of RFI, having 1000 data points. Along with these measurements,

we have also measured (i) background noise present in ambient RF environment and

(ii) transients observed in RFI spectrum. Background noise is measured to detect

the presence of any unknown RFI source operating in background and transients

are measured to understand the temporal change in RFI spectrum. The overall

time for taking these measurements spanned over a week. Among the list of AUTs,

CFL, LCD monitor, laptop charger and induction cooktop are categorized as low-

frequency RFI emitters as they radiate near the baseband frequencies i.e. < 10

MHz). Printer and UPS usually radiate in LF and GSM bands and are categorized
1https://www.ettus.com/product/details/SBX120
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as low-frequency emitters and microwave oven is considered as high-frequency RFI

source as it emits in the whole Wi-Fi band. The choice of appliances is made to

cover a variety of daily activities involving a distinct set of appliances thus targeting

cooking, reading and operating a laptop, etc. Details of the sampling frequency and

frequency band of observation are mentioned in Table-4.2. Figure-4-2a shows the

measurement setup having USRP and appliance under test and Figure-4-2b shows

the UWB dipole antennas used for RFI sensing [128].

(a) Entire setup

(b) Ultra wideband antennas from Amitec Electronics
[130] used for RFI sensing

Figure 4-2: Test Setup used for RFI measurements having USRP, UWB antenna and
AUT (top) and antennas (bottom).
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S.No. Appliance Name Make Model
1 Printer Canon MF4890DW
2 CFL Crompton Greaves Roof Mount
3 Laptop Charger Dell Inspiron 5520
4 LCD Monitor Hewlett Packard LE1902x
5 Microwave Oven LG MC2841SPS
6 UPS Luminous 600VA
7 Hand Drill Bosch GSB10RE
8 CPU Hewlett Packard Compaq 8200 Micro Tower
9 Induction Cooktop Philips HD4907

Table 4.1: List of appliances (make and model) used for RFI measurements

S.No. Frequency Band
of Measurement

Sampling
Frequency (MHz)

Center
Frequency (MHz)

Bandwidth
(in MHz)

1 Baseband 2 DC 1
2 Baseband 10 DC 5

3 GSM 25 877.5, 890, 902.5,
922.5, 935, 947.5 25

4 Wi-Fi [CH:1-7] 25
2390, 2395, 2400,
2405, 2410, 2415,
2420

25

Table 4.2: Details of RFI measurements (frequency band of measurement, sampling
frequency, center frequency and bandwidth)

4.5 Observations And Analysis

Some broad observations made from RFI traces analyzed in the frequency domain

are highlighted below.

Figure 4-3: Background (BGND) RFI measured when no known appliance was oper-
ational in the vicinity.
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1. Background Noise Floor in Baseband (DC-1 MHz) Range From -50 to -60dBw

As shown in Figure-4-3, from baseband trace captured at Fs = 2 MHz no peaks

were observed except strong 50 Hz component placed very close to DC (center

frequency). This 50 Hz component was coming from nearby power supplies

that were omnipresent and were hard to isolate. Another spurious having a

fundamental component around 500 kHz is also observed in this trace. We

assume it is coming from some adapter running in the background, as this peak

was present in all the RFI traces taken over the span of multiple days.

(a) Case:1 None of the appliances are opera-
tional in the vicinity

(b) Case:2 Transient’s in RFI spectrum when
CFL is just turned on

(c) Case:3 Steady state RFI measured from
CFL

Figure 4-4: RFI noise floor and spectrum (DC-500 kHz) measured from CFL.

2. Appliances have distinct transient and steady state RFI characteristics Certain

appliances (like CFL, hand drill and Microwave) were giving distinct charac-

teristics in RFI during the transient duration in comparison to RFI measured
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during steady state operation of the appliance. Figure-4-4a shows RFI noise

floor, measured before turning on CFL, Figure-4-4b shows RFI, when CFL was

just turned on (transient mode) having wide-band RFI, having first peak at 38

kHz and Figure-4-4c shows RFI examined during steady state operation of CFL

having fundamental peak at 41 kHz (exact switching frequency of SMPS used

inside this class of CFL).

(a) CFL (b) Hand Drill (c) Laptop Charger

(d) Induction Cooktop (e) CPU SMPS (f) UPS

Figure 4-5: RFI measured in baseband (at a sampling frequency of Fs = 2 MHz) from
six appliances.

3. Different appliances show unique RFI characteristics. As observed from Figure-

4-5, CFL gives weak RFI (approx. 5 dB) centered at 41.4 kHz, hand drill didn’t

show characteristic peaks, but wideband noise is clearly observable. In case

of hand drill, RFI (up to 5 dB) is observed, however, in this case instead of

distinct RFI peak the whole noise floor went up and was high throughout the

observation band. Laptop charger gave a band limited RFI (up to 100 kHz) but

having a peak amplitude of 10 dB and was clearly discernable from baseline noise

floor. Most interesting RFI signature was found from CPU, SMPS, induction

cooktop and UPS having a peak amplitude of almost 20 dB w.r.t to baseline
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noise. Moreover, harmonics of fundamental RFI peak were also visible. Apart

from these six appliances (CFL, hand drill, microwave, CPU SMPS, UPS and

laptop charger) other two appliances (LCD monitor, printer) didn’t show any

observable RFI signatures, we assume this is due to shielding on SMPS used

inside them.

Figure 4-6: RFI measured from microwave oven in Wi-Fi band (2.412 GHz - 2.484
GHz).

4. Microwave oven exhibits time-varying RFI properties Apart from baseband cer-

tain RFI sources like microwave oven radiate significantly in higher frequency

bands like 2.4 GHz but most of the RFI in 2.4 GHz is time-varying in behavior

due to cyclic operation of magnetron used inside microwave oven. This kind

of behavior is hard to capture using the traditional approach of RFI sensing

which involves capturing of time domain RFI trace and computing averaged

Fast Fourier Transform (FFT). However, we have tried to capture this behavior

using spectrum analyzer application in GNU Radio as shown in the Figure-4-6.

As shown in figure, microwave oven radiates a wideband RFI covering entire

Wi-Fi band, and the most affected band is between 2.449 GHz - 2.451 GHz

having RFI as high as 20 dB. This band also experiences a maximum burst of

energy from microwave.
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(a) (b) (c)

Figure 4-7: RFI measured in baseband from CFL (DC - 1 MHz) at varying distances
(at 1 cm, 10 cm and 100 cm from left to right).

(a) (b) (c)

Figure 4-8: RFI measured in baseband from SMPS (DC - 1 MHz) at varying distances
(at 1 cm, 10 cm and 100 cm from left to right).

5. RFI decays exponentially as the distance between sensing system and AUT

increases. As shown in Figure-4-7a RFI plots, CFL gives RFI (approximately

5 dB) centered at 41.4 kHz which is spread across entire baseband up to 1

MHz and with increasing distance on a log scale, RFI from CFL decays rapidly.

Moreover, from Figure-4-7b and Figure-4-7c it can also be seen that higher

frequencies are damped at 10 cm distance, while lower band (<500 kHz) is

observable up to 100 cm distance. RFI measured from SMPS, as shown in

Figure-4-8 decays significantly with increase in distance from source having an

amplitude of 20 dB at a distance of 1 cm, 15 dB at 10 cm and 1 dB at 100 cm,

this shows RFI decays exponentially with increase in distance from RFI source.

In order to verify this hypothesis, we took another set of measurement for RFI

from SMPS and induction cooktop with increase in distance of separation on

a linear scale. As shown in Figure-4-9, RFI from induction cooktop varies

significantly from 1 cm to 30 cm (almost 20 dB decay is observable from 41 dB
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to 55 dB), this shows that RFI decays exponentially. Despite of this fact that

RFI decays frequently with distance, RFI still satisfies conditions required for

appliance detection.

4.6 Feature Extraction From RFI and Modelling

To model and extract features from the RFI measured from non-intelligent sources,

having emissions in the form of spurious Gaussian energy peaks, GMM model [131],

[132] is the most likely choice. This model takes data vector along with frequency axis

and fit this data in eight Gaussian curves, similar to the non-linear regression. This

model returns three conventional parameters for each Gaussian curve fit i.e. mean,

variance and amplitude. During our attempt to model RFI peaks using GMM, we

found that for appliances with a limited number of peaks like CFL, GMM is near

perfect fit as shown in Figure-4-10. However for appliances with RFI peaks followed

by harmonics of fundamental frequency GMM underperformed, i.e., with an increase

in the number of fits the efficacy of curve fitting started degrading. Figure-4-11 and

Figure-4-12 show how GMM underperforms with RFI from SMPS and UPS when a

broader frequency band is modeled. The worst fit is observed when the bandwidth

is 1 MHz. To overcome this, we used k-peak finder algorithm to extract amplitude,

position, and width as features from RFI peaks. Furthermore, to perform supervised

learning, we have used the position of top k-peaks as a feature to train detection

algorithm for all appliances uniquely.

4.7 Appliance Detection Using RFI Features

k-NN classification technique is used as a supervised learning method to learn RFI

features i.e. position of top k-peaks (20 in our case) to differentiate appliances. As

mentioned earlier, our data collection spanned over a couple of weeks, and it covers

almost all the aspects of the temporal variations. In total, 2000 steady-state traces

were collected, each having 1 thousand data points from CFL, laptop charger, UPS,
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(a) Exponential decay in RFI (DC-500 kHz) with linear increase in
distance from the sensing system

(b) Decay in fundamental component of RFI centered around 52 kHz

Figure 4-9: RFI spectrum (DC-500 kHz) measured from induction cooktop with
varying distance from the sensing system from induction cooktop.

hand drill, SMPS, and induction cooktop to evaluate the performance efficacy of the

appliance detection algorithm. In Stage-1, FFT spectrum is computed for all traces
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Figure 4-10: RFI measured in baseband (DC - 400 kHz) from CFL, superposed with
parameters learnt using Gaussian Mixture Model (8-fit GMM).

(a) Case-1: Frequency range
DC - 200 kHz

(b) Case-2: Frequency range
DC - 400 kHz

(c) Case-3: Frequency range
DC - 600 kHz

Figure 4-11: RFI measured in baseband from SMPS (DC - 1 MHz) with GMM applied
over different frequency bands.

(a) Case-1: Frequency range
DC - 200 kHz

(b) Case-2: Frequency range
DC - 400 kHz

(c) Case-3: Frequency range
DC - 600 kHz

Figure 4-12: RFI measured in baseband (DC - 1 MHz) from UPS with GMM applied
over different frequency bands.

individually for all appliances, followed by feature extraction using top k-peak finder

algorithm. Finally, the position of top 20 RFI peaks (as shown in Figure-4-13) is used

for learning classes by kNN algorithm. Red marks show the position of top-k peaks

used as a feature for appliance detection. Table-4.3 provides a summary of results
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S.No. Appliance Name Mean Accuracy
1 Background Noise 52.42%
2 Induction Cooktop 78.98%
3 Laptop Charger 58.02%
4 Hand Drill 84.79%
5 UPS 54.48%
6 SMPS 100%
7 CFL 55.13%

Table 4.3: Average accuracy achieved from k-NN after 10 fold cross validation

(a) Induction Cooktop (b) SMPS (c) UPS

Figure 4-13: Output of k-peak finder algorithm used for extracting RFI features (DC
- 1 MHz).

obtained after 10 fold cross validation with a 7 class supervised classification process.

As shown in Table-4.3 background noise, laptop charger, UPS and CFL had low

detection accuracy in comparison to hand drill, induction cooktop and SMPS (which

lies between 80-100%). Since laptop charger and UPS have similar RFI characteristics

(around 10-20dB above baseline noise floor as seen in Figure-4-5) hence one can be

easily misclassified as another. This is also evident in Table-4.4. To further extract

insights on this behavior, we computed confusion matrix for 1999 trials performed

(Table-4.4) during the 10-fold cross validation process. During our evaluation, we

deduced that features learned from the former set of appliances are almost similar to

background noise and thus are misclassified to some extent. However, despite these

facts even in the worst-case scenario detection accuracy is more than 50%. On the

other hand, SMPS, hand drill and induction cook-top exhibit maximum RFI with

distinct characteristic peaks. Hence, the our algorithm can identify these appliances

with more than 75% accuracy. This analysis shows that appliance identification using

RFI as a feature will be useful in energy profiling especially for activities like cooking,
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working on a computer and studying, etc. As shown in Table-4.3 background noise,

laptop charger, UPS and CFL had low detection accuracy in comparison to hand drill,

induction cooktop and SMPS (which lies between 80-100%). Since laptop charger

and UPS have similar RFI characteristics (around 10-20 dB above baseline noise

floor as seen in Figure-4-5) hence one can be easily misclassified as another. This

is also evident in Table-4.4. In order to further extract insights on this behavior

we computed confusion matrix for 1999 trials performed (Table-4.4) during 10-fold

cross validation process. During our evaluation, we deduced that features learnt

from the former set of appliances are almost similar to background noise and thus

are misclassified to some extent. However, despite of these facts even in the worst

case scenario detection accuracy is more than 50%. On the other hand SMPS, hand

drill and induction cooktop exhibit maximum RFI with distinct characteristic peaks,

hence the algorithm is able to identify these appliances with more than 75% accuracy.

This analysis shows that appliance identification using RFI as a feature will be useful

in energy profiling especially for activities like cooking, working on a computer and

studying, etc.

AUT BGN CFL Laptop
Charger UPS Hand Drill SMPS Induction

Cooktop
BGN 1048 920 41 0 0 0 0
CFL 675 1102 202 16 2 0 2
Laptop Charger 59 133 1160 358 236 0 53
UPS 9 22 322 1080 306 0 243
Hand Drill 0 1 102 145 1695 0 56
SMPS 0 0 0 0 0 1999 0
Induction Cooktop 0 7 45 228 140 0 1579

Table 4.4: Confusion matrix derived from k-NN classification after 10 fold cross vali-
dation (total 1999 trials)

4.8 Conclusion

In this work, RFI from nine non-intelligent sources was measured and analyzed [128].

Their behavior was characterized in terms of transients (if present) and steady-state
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features of RFI. These measurements spanned across baseband, GSM and Wi-Fi

bands with multiple sampling frequencies and at varying distance from RFI source. It

was also demonstrated that RFI from appliance decays exponentially with the increase

in separation between sensing system and the appliance under test. Gaussian mixture

modeling and k-peak finder were used to extract RFI features, followed by k-nearest

neighbor based classification technique to detect appliances, which is simple yet robust

supervised learning technique. This work showed that using a simple k-NN classifier,

it was possible to identify an appliance with a mean accuracy of 71.9%, which can be

augmented further with other robust ML techniques to improve detection accuracy

and also to infer other commonly used appliances.
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Chapter 5

Stray Electric Field Signals from

Low-Voltage Power Lines for Energy

Harvesting

In the previous chapters, we showcased the applicability of stray EMI emissions orig-

inating from appliances having switch-mode power supplies for appliance detection.

Appliance detection for energy monitoring and feedback is the foremost step to achieve

long-term energy sustainability.

In this chapter, we exercise stray emissions from power lines for energy harvesting

and leverage it to enable self-powered deploy-and-forget sensor nodes inside buildings.

In our initial studies for appliance detection, we took EMI measurements in India

having a 230V 50 Hz AC power supply while the later studies for energy harvesting

were performed in the US on 110V 60 Hz power supply. Despite this transition, the

findings from these studies are equally applicable in both of these settings having

230V 50 Hz or 110V 60 Hz power supply.

According to the 2017 forecasts by Gartner Inc, a total of 20.4 billion IoT devices

will be connected to the Internet by 20201. These devices demand frequent battery

replacement, adding to overall deployment and maintenance costs. As the number of

connected devices continues to grow, the need for scalable power management poses
1https://www.gartner.com/newsroom/id/3598917
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a major concern. Reducing power consumption could allow small batteries to stay

active for a year or two instead of months. However, keeping track of these batteries

is still a tedious task. Self-powered sensor nodes have emerged as a possible solution

to the problem. These nodes can harvest energy from the ambient environment in

the form of light [133], temperature [134, 133, 135, 136], vibration [137, 138], RF

[139, 140], and Wi-Fi [141]. Based on the availability of these ambient signals, each

solution has its own benefits and constraints [142].

In this chapter, published as [143], we invented a novel battery-free, stick-on

capacitive energy harvester that harvests energy from stray electric fields around

the ubiquitous AC power lines as shown in Figure 5-1. Although prior preliminary

work has explored harvesting energy from power lines [64, 144], these solutions have

traditionally required a direct ohmic connection to ground — that is, the harvester

requires an end-user to run a wire from each of the harvester devices to earth ground

(achieved in prior art by connecting to a copper plate inside a wall). In contrast, our

solution relies on capacitive coupling to ground, enabling easier and safer end-user

deployment and use in many more scenarios, where a direct ground connection is not

feasible. For instance, attics can have long insulated runs of electrical cabling with

no easy access to earth ground, except at junction boxes. Although advantageous,

designing a harvester without this ohmic ground connection poses a significantly more

challenging problem.

To address this challenge, we use stacked capacitive electrodes to provide a lo-

cal ground and design our device to effectively harvest from this nanowatt source —

a significant contribution of this work. Power lines are ubiquitous inside buildings,

thus facilitating a broad range of applications like monitoring ambient temperature,

detecting building occupancy, monitoring appliance usage for optimizing energy con-

sumption, environmental sensing for indoor vertical farming applications, and water

leakage detection. All of these applications can be enabled with our battery-free wire-

less device, which is capable of periodically transmitting collected sensor data over

an RF channel to a base station.

Unlike prior work [63, 62, 61], our harvester can clamp on to any fully bundled and
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insulated AC power line without intercepting individual conductors (phase, neutral,

and earth) and can harvest continuously without any active appliance operating on

these power lines.

This is a notable contribution and improvement over the commonly used electromag-

netic harvesters that require:

1. the user to access and clamp onto individual conductors so that the two direc-

tions of current does not produce a null field)

2. a device on the tapped conductor be consuming current in order to create a

magnetic field around the wire. These requirements are obviated with CapHar-

vester’s capacitive coupling approach, which results in a safer, more convenient

device.

Our measurements in controlled lab settings and real-world environments exhib-

ited that we can harvest up to 270 µJ in 12 min using a 14 cm-long harvester deployed

at 10 cm above ground.

In summary, the contributions of this chapter are:

1. A novel stick-on capacitive energy harvester that harvests the stray electric

fields from AC power lines with no need for access to ohmic earth ground thus

providing increased safety and ease of use.

2. A characterization of the energy harvesting capabilities of our device in various

environments and with different power cables, as well as an analysis of the trade

offs in the design of the device’s geometry.

3. Three real-world representative applications of this device, including distributed

temperature sensing for HVAC control, non-intrusive appliance state (on/off)

sensing, and environmental sensing for indoor farming.

5.1 Prior work in energy harvesting

The tradeoff between battery life and communication range is one of the foremost

concerns in IoT technology [145, 146]. Extending communication range requires that

devices increase their transmission power, leading to quicker battery drainage. Al-

105



(a) The CapHarvester clamps on to a low-
voltage power cable and harvests power
without current flow

(b) Our power harvesting circuitry recti-
fies the capacitively coupled 60 Hz power
line signal and stores energy in a capaci-
tor

Figure 5-1: CapHarvester alongwith power harvesting circuitry having rectifier, stor-
age capacitor, a high-side switch, timer, and MOSFET.

though people have proposed ultra-low power sensors and MCUs with on-chip wireless

support, batteries are still the major bottleneck for power-intensive sensing. Further-

more, keeping track of the battery level in widespread, dense deployments is a major

hassle.

In response, energy harvesting from the ambient environment has been explored

as an alternative to battery-powered IoT. A number of different of energy sources

have been leveraged, including light [133], temperature [134, 133, 135, 136], vibration

[137, 138], RF [139, 140], and Wi-Fi [141]. Non-invasive energy harvesting from AC

power lines, as in our work, has not been explored as thoroughly as other techniques.

In 2011, Gupta et al. explored using stray electromagnetic fields from power lines

for low duty cycle sensing applications [61]. However, this work requires a large

transformer placed in between conductors, which is not feasible for most applications

due to space constraints. In 2013, DeBruin proposed a smart meter which uses

two current transformers: one for harvesting energy to power the sensing circuit,

and another for taking power measurements; this approach does not require an AC-

DC transformer[62]. Campbell et al. proposed a self-powered circuit-level current
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meter [63] that uses two split core current transformers, and Moon et al. proposed

Vampire, which has a custom toroid-based harvester [147]. The latter three devices

can be clamped onto any current-carrying conductor for harvesting local magnetic

fields and measuring power consumption. The major limitation of these works is that

they require isolated phase and neutral conductors for installation. This is possible

for some applications, but not in general for everyday use. Another line of work

has explored a low-profile power meter which connects with a 3-pin plug point for

measuring the power consumption of appliances [148]. It harvests energy without

making any ohmic connection with actual conductors, enabling a new dimension of

plug load metering. However, this harvester design is specific to power cables that

have plug points; again, it does not work for general applications. Harvesting stray

electric fields from AC power lines through capacitive coupling is an exciting approach

as it can continuously harvest energy and does not require any appliance to be active

on the power line. However, most of the exploration in this space is limited to power

lines with a high voltage overhead [149, 150, 151].

We now present a capacitively coupled stray electric field harvester with low voltage

AC power lines; these power lines typically carry 110 V (North America) or 230 V

(Asia Pacific) AC voltage at 60 Hz and 50 Hz respectively. Although this concept

is not novel [65, 64, 144], prior work required an ohmic connection to earth ground

for each harvester. In a building with painted walls, an ohmic connection requires

scraping the paint off of the walls or digging a copper plate to get an earth contact, as

demonstrated by Kim and Kong et al. [64, 144]. This is undesirable for ubiquitous,

end-user deployable sensors. Our harvester design addresses this challenge by using

stacked electrodes to generate local reference ground and leveraging an optimized

power management circuit to efficiently harvest stray electric fields.
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Figure 5-2: Cross-sectional model of a power line having three conductors and their
respective capacitance with harvester electrodes.

5.2 Theory of operation: Stray electric field har-

vester

In this work [143], we designed a novel capacitive energy harvester using stray electric

fields from low-voltage AC power lines for energy harvesting. Whenever an alternat-

ing voltage signal is fed through a power line (single-wire or multi-wire topology), a

corresponding alternating electric field is generated on the outer surface of the cable.

The strength of this field varies depending on the magnitude of the voltage signal

and the dielectric constant of the shielding across the power line’s conductors. Fig-

ure 5-2 illustrates the working principle for the capacitive energy harvester using a

cross-sectional model of a power line having three conductors (phase, neutral, and

earth). Each conductor has a primary capacitance (𝐶𝑝𝑝, 𝐶𝑝𝑛 and 𝐶𝑝𝑔) with respect

to the inner electrode and a secondary capacitance (𝐶𝑠) exists between the inner and

outer electrodes of harvester. 𝐶𝑝𝑝 represents the primary capacitive coupling between

the outer surface of the power line and the phase conductor carrying a 110 V AC

signal. 𝐶𝑝𝑝 serves as the driving source for an alternating electric field on the surface.

The other two conductors present in a multi-wire topology, neutral and ground, are
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tied to earth ground at the distribution side of the transformer. The capacitances

corresponding to these two conductors, denoted as 𝐶𝑝𝑛 and 𝐶𝑝𝑔, do not contribute

any electric field.

Techniques for conventional electric field harvesting depend on the type of power

line in question. For the high-voltage (HV) power lines found in industrial settings,

a copper plate placed at some distance provides access to stray electric fields. For

low-voltage (LV) power lines in residential and office settings, copper tape around

the power line suffices. However, there are certain technical constraints that restrict

the application of conventional techniques, particularly for the LV power lines we

are interested in leveraging for harvesting. One of the foremost challenges is the

availability of the earth ground to act as a reference. Earth ground can be accessed

outdoors for HV power lines by digging a pit in the ground for a connection; for

LV power lines, however, accessing earth ground requires concrete walls that lead

directly to it or cumbersome infrastructure alterations to do so [64, 65]. Secondly,

weak capacitive coupling limits the output power available at the harvester electrodes

(a couple of volts with <1 𝜇A of current). Typically, this capacitive coupling is

weak since the voltage supply fed to the LV power lines is weaker (∼100-300 V) in

comparison to HV power lines (∼11-33 kV); the coupled signal for LV power lines

will be proportionally lower (i.e., a few volts per cm length of electrode). Also,

capacitive coupling depends on the frequency of the signal and dielectric material.

Coupling is weaker in most applications due to lower power signal frequencies (50 Hz

or 60 Hz) and the presence of insulation material that lowers the dielectric constant

of the power cables for shielding. Furthermore, in the absence of a reference to earth

ground, energy harvesting becomes non-trivial and the amount of energy available at

the output of the electrodes reduces significantly since in this case we tried to harvest

energy from a voltage source with a really high impedance. In order to analyze the

available power with local reference ground, we characterize the power harvesting

capabilities of our device in various environments and with different power cables.

We also analyze the trade-offs in the design of harvester. These findings are discussed

in detail in Section 5.4 and Section 5.5.
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Figure 5-3: The block diagram of our CapHarvest system used for continuous and
event based sensing applications.

In order to harvest energy from ubiquitous LV power lines in a continuous manner,

we designed a double-layer stacked capacitor model for capacitive energy harvesting.

Our approach does not require a solid earth ground for reference and generates its

own reference ground. Furthermore, our approach can effectively harvest power as

little as nanowatts using ultra-low power harvesting circuit.

5.3 Hardware design

We designed a capacitive energy harvester with five main components: capacitive

electrodes, a diode rectifier bridge, a storage capacitor, a high-side switch, and a

wireless MCU. Figure 5-3 illustrates the block diagram of the entire system and the

different sections of the harvester. Before discussing the remaining blocks, we describe

the double-layer stacked capacitor model of the harvesting electrodes since it is one

of the most critical design choices required for the harvester.

5.3.1 Double-layer Stacked Capacitor Model of Electrodes

In order to remove the requirement of a reference earth ground, we designed a double-

layer stacked capacitor model for the harvesting electrodes. Figure 5-2 shows the
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primary and the secondary layer of the stacked harvester model. Primary capaci-

tance (𝐶𝑝𝑝, 𝐶𝑝𝑛 and 𝐶𝑝𝑔) exists between the power line conductors (phase, neutral

and ground) and the inner electrode made up of copper tape having contact with

the outer surface of the power line. The inner electrode serves as the high potential

electrode in our case. In order to generate a local reference ground that can serve

a lower potential than the inner electrode, we add another layer of conductive elec-

trodes made of copper tape2, which is propped up by a 3D-printed support structure

(Figure 5-3). Ideally, the secondary capacitance between the inner and the outer

electrodes (𝐶𝑠) should be as low as possible. Air, with a dielectric constant of ∼1,

is the primary dielectric between the inner and the outer electrodes. The area and

separation of these capacitive electrodes are critical design parameters since they di-

rectly determine the voltage and power available at the output of these electrodes. In

order to understand this relationship, we characterize variations in harvested power

from different lengths and electrode spacings. These measurements are discussed in

Section 5.4 (Analysis). Our design decisions and component selections are motivated

by this power characterization. Some of these design parameters are variable and can

be adjusted depending on the nature of the application. We discuss this strategic

power management in more detail in Section 5.5 (Design Space).

5.3.2 Diode Rectifier Bridge

The AC voltage output from the capacitive electrodes is fed to a diode rectifier bridge

consisting of small signal Schottky diodes for AC-DC conversion. Small signal Schot-

tky diodes with ultra-low forward voltage drop are widely used in harvesting appli-

cations; however, most of them are designed to operate at fixed frequencies. In this

system, we choose Vishay BAT85S diodes, which have a forward voltage drop (𝑉𝑓 ) of

around 100 mV (𝐼𝑓=1 µA) at 60 Hz. The choice of a rectifier bridge over a full-wave

rectifier is due to the fact that the latter requires an earth ground reference, which

restricts the application space of this harvesting technique. As our harvester is de-

2Both the inner and outer electrodes are built using copper foil tape (3M 45J589) with a thickness
of 3.50 mm, wrapped on the inner and outer surface of the support structure
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signed for low frequencies (50 Hz or 60 Hz), we are not concerned about the parasitic

capacitance that arises from diode leads.

5.3.3 Storage Capacitor

After AC-DC conversion, the output of the rectifier bridge is fed to a storage ca-

pacitor (𝐶𝑠𝑡𝑜𝑟𝑒). The choice of capacitor depends highly on its DC leakage (DCL)

and equivalent series resistance (ESR). The dielectric material of a capacitor is an

imperfect insulator that allows a small amount of current to flow between the two

conductive plates which is called the DCL. Electrolytic capacitors have large leak-

age currents while plastic, ceramic and tantalum capacitors have very small leakage

currents. The storage capacitor should have as little DCL and ESR as possible in

order to harvest effectively from a nano-watt source. We choose AVX TAJ (AVX

TAJD477K004RNJ)3 series tantalum capacitors for this reason. The maximum DCL

for this capacitor is 18.8 µA. We have to note that this number is reported at the

rated voltage, which is 4 volts at 80 ∘C. Since our system is operating at much lower

temperature and voltage the DCL will reduce significantly. The other benefit of this

capacitor is it’s low ESR (around 0.9Ω). Along with the dimensions of the harvest-

ing electrodes, the ideal value of the storage capacitor 𝐶𝑠𝑡𝑜𝑟𝑒 also varies depending

on application’s requirement. Continuous sensing applications may require a bigger

capacitor (∼1-10 mF), but a sparse sensing application like temperature sensing can

work with a smaller capacitor (∼220 µF to 330 µF). The data rate at which the sens-

ing system can communicate also depends on the size of the capacitor. We discuss

capacitor selection in detail under strategic power management in Section 5.5 (Design

Space).

5.3.4 Charge Controller (High-side Load Switch)

Like typical energy harvesting systems, our setup also requires a charge-controller

that can switch output loads once the harvested energy reaches a certain threshold.

3http://www.avx.com/products/tantalum/smd-tantalum-mno2/taj-series/
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There are several integrated solutions for this purpose, such as TI BQ25570, Ablic

(Seiko) S8823, and LT LTC3108. These solutions use dual-stage boost and buck

converters or multi-stage charge pumps. However, none of them can be employed in

this system as they require a cold-start. A cold-start consumes a few milliamperes of

current to turn on the primary boost converter/charge pump or a quiescent current

(𝐼𝑞) of ∼1 µA, making them impractical for our harvester. Note that some of these

charge controllers can perform a cold-start from a secondary storage cell or battery,

but we strive towards a battery-free harvester. In order to control the output load in a

hysteric manner, we explored N-MOSFET-based high-side switches. These switches

drain quiescent current on the order of microamperes to facilitate the bias voltage

requirements for the gate-source voltage (𝑉𝑔𝑠). To overcome this high drain quiescent

current, we use the nano-watt high-side load switch from Semtech (TS12001-C018).

This load switch has an on-state current of 70 nA and and off-state quiescent current

of 100 pA. It also has a factory-programmed threshold voltage (𝑉𝑡ℎ) for a comparator

and does not require any external bias voltage like conventional N-MOSFET-based

switches4. This high-side switch turns the output on when the storage capacitor hits

𝑉𝑡ℎ+500 mV and lets it discharge down to 𝑉𝑡ℎ, giving it a hysteric window of 500 mV.

The storage capacitor is always harvesting charge, even when the high-side switch

is closed); depending on the size of electrodes, though, it takes variable amounts of

time to charge up to 𝑉𝑡ℎ again. Please note that 𝑉𝑓𝑖𝑛𝑎𝑙 (or 𝑉𝑡ℎ) is the lower threshold

voltage of the high-side switch until which it will discharge the storage capacitor while

𝑉𝑖𝑛𝑖𝑡 is the turn-on voltage of the high-side switch at which it will start its operation

which is typically 𝑉𝑡ℎ+500 mV.

5.3.5 Wireless MCU

During the on-state, the high-side switch powers up an ultra low-power (ULP) wireless

MCU (TI CC1350) for approximately 20 ms. All the sensing and data communication

tasks are handled by this MCU. We prefer the CC1350 wireless MCU over other

4https://www.digikey.com/en/maker/blogs/introduction-to-high-side-load-
switches/9324fe174d494b9e82f733fc23884050
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MCUs as it supports long-range sub-GHz band (𝑓𝑐=868 MHz) communication with

an integrated ULP MCU (Active Tx consumes ∼11mA at 1.95 V). It also supports a

proprietary 15.4-Stack for sub-GHz band communication.

5.3.6 Charge Controller for Continuous Sensing (Nano-power

Timer-based MOSFET Driver)

We also explore a continuous sensing application where we periodically turn on

an ULP MCU MSP430FR5959 using a nano-power timer (TI TPL5110) and a P-

MOSFET (Infineon IRLML6402), sample the ADC, and write these values to the

MCU’s FRAM. The timer and MOSFET are connected to the output of the high-

side switch and the gate of the MOSFET is controlled with the timer. The choice of

the MOSFET is very important since it needs to have extremely low on resistance.

This benefit, combined with the fast switching speed and small leakage current en-

ables continuous sensing for CapHarvester. After a known interval (12-24 hours), the

data that has been stored in the FRAM can be transmitted using a low-power trans-

mitter. Apart from these design considerations, application specific design variations

are discussed in Section 5.6 (Application Space).

5.4 Analysis: Harvester specifications and efficiency

Like most energy harvesting systems, the CapHarvester operates in a duty-cycled

fashion, charging a storage capacitor up to a maximum voltage (2.21 V) before acti-

vating. As shown in Figure 5-4, the system when first installed, the harvester begins

its cold start period. Once the storage capacitor reaches the trigger voltage of the

high-side switch (2.21 V here), the switch activates and the device becomes active

until the voltage drops to the lower cutoff or threshold voltage (𝑉𝑡ℎ = 1.8 V here).

After that the recharge time of the device is significantly reduced. Because our device

relies on a local ground generated by an electrode, the performance strongly depends

on the electrical environment in which it is placed. In the following sections, we in-
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vestigate the impact of an ohmic ground connection, explore diverse environmental

effects, and characterize our device performance with different power cables.

Figure 5-4: Charge discharge curve of storage capacitor in CapHarvester showing
cold start period, turn-on state of high-side switch (2.21 V here) and shut-off at lower
cut-off point (1.8 V here).

5.4.1 Methodology

In the following experiments, we measure the energy harvested by our device by mea-

suring the voltage across the storage capacitor over time. For most of our applications,

we use a high-side switch that remains active from 𝑉𝑡ℎ = 1.8 𝑉 to 𝑉𝑖𝑛𝑖𝑡 = 2.21 𝑉 .

To enable a meaningful comparison, we report harvesting performance as the time it

takes the capacitor to charge from 1.8 V to 2.21 V. We also report the average power,

𝑃 , harvested during this time, 𝑡, according to Equation 5.1.

𝑃 =
(𝑉 2

𝑖𝑛𝑖𝑡 − 𝑉 2
𝑡ℎ)𝐶store

2𝑡
(5.1)

Our measurement setup consists of a National Instruments (NI) USB 6003 DAQ unit

configured for taking analog measurements in fully differential mode [-10 V to 10 V]

at a sampling rate (𝐹𝑠) of 10 kHz. We chose NI USB DAQ over a conventional

digital storage oscilloscope (DSO) as the latter has a much lower input impedance (in

range of tens of MΩs) and can significantly load a nano-watt source like a capacitive
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ID Location Surface Charge
Time (s)

Average
Power (uW)

A Ground floor of cement office
building Tile floor 277 0.95

B Fifth floor of cement office building Carpet 731 0.36
C Second floor of wooden house Carpet 1308 0.20
D Outdoors Concrete 242 1.09
E Wooden Stud Wood 780 0.34
F Wooden Attic Wood 2356 0.11
G Wooden floor Wood 2500 0.11
H Residential Basement Carpet 653 0.40
I Table in Residential Basement Wood 617 0.43
J Residential garage Epoxy Coating 267 0.99

K Fifth floor of a cement laboratory
building Epoxy Coating 467 0.57

Table 5.1: Charge time and average power harvested using CapHarvester in various
locations in the US (110V/60 Hz)

harvester by consuming few milliamperes of current. Also, most DSO’s do not allow

differential measurements without referencing to earth ground. NI USB DAQ has an

input impedance of >10 GΩ, consuming <1 nA for taking each measurement and

allows differential measurements without referencing to earth ground. The available

power is so little that even this device, with its high input impedance, has a significant

impact on the charge time. Rather than leave it connected to the circuitry, we

periodically connect it to sample the voltage across the storage capacitor. We use

Python (PyDAQMx, SciPy and NumPy) for configuring, logging, and filtering data

from the DAQ.

5.4.2 Environment

Our device relies on the capacitive coupling to the ground; hence, it is essential to

characterize its performance in a variety of locations. We tested the device in 11

locations. Table 5.1 summarizes the performance in these locations. Charge time is

reported using a 4 cm high and 14 cm long electrode with a 330 µF storage capacitor.

These results show that performance is best when our device has a good coupling to

the earth’s ground. For example when tested on a concrete floor which has a good
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coupling to ground the charge time of CapHarvester was only 277 second on average.

When placed on wooden surfaces, or When elevated off the ground, the charge time

increases significantly. In the 11 locations we tested, we observed power harvesting

rates that varied by a factor of 5x - 10x. We note that this technique will not work

when suspended in free air, placed on drywall, or placed on a wooden table with poor

coupling to ground. This poor coupling is mostly due to lack of conducting medium

between the outer electrode of CapHarvester and the earth ground. Construction

materials with a higher value of the dielectric constant can serve as a better cou-

pling medium for capacitive energy harvester in comparison to materials with lower

dielectric constant (good dielectrics) like dry air or vacuum. Hence the materials like

wooden table and drywall act as a non-conductive medium (good dielectrics) and

offer poor coupling to earth ground.

ID Cable Type
and Make Gauge Length (ft) Power

Rating (W)
Charge
Time (s)

Average
Power (uW)

A HDX (SPT-2) 16 12 1625 443 0.595

B Aurum (Outdoor
/Indoor) 16 15 1625 707 0.373

C Inermatic Table top 14 2 1250 1030 0.256
D Hanvex-HAX10G 16 10 1250 1070 0.247

E HDX (Outdoor
/Indoor) 16 50 1625 1500 0.176

Table 5.2: The available output power with different types of extension cords arranged
in the order of increasing charge time.

5.4.3 Power Cable

We also characterized the amount of power harvested from different cables (extension

cords) using a 14 cm long and 4 cm high CapHarvester electrode with a local reference

ground. We picked five commonly used cables (of different gauge, round/flat and

lengths) and also calculated the average power delivered to CapHarvester. As shown

in the Table-5.2 the charge time and the amount of power delivered to capacitive

harvester varied significantly even for cables having a similar gauge, this is due to
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different capacitive coupling offered by these cables due to the variable length of outer

shielding, inner conductors, and nature of dielectric used for shielding. In the future,

a regression model can also be proposed which can help in estimating power delivered

by a particular type (length, gauge, dielectric shielding) of power cable.

5.5 Design Space: Employing the Capacitive Energy

Harvester

In this section, we first discuss the power management strategies for different appli-

cations that we exhibited in this work. We then discuss the design considerations

for these applications, which can also be used as a reference by future designers and

inventors for other applications where this capacitive harvester can be employed.

5.5.1 Strategies for Power Management

We separate the application space for capacitive harvesting into two broad categories

depending on the nature of the sensing involved. We discuss the strategies for power

management that we employ for these categories and then their suggested hardware

design configurations.

∙ Sparse Sensing: These are scenarios when data does not need to be delivered

at a specific time. Examples of scenarios in this category include distributed

temperature sensing, appliance state monitoring, and sensing environmental

parameters for indoor farming. For most of these applications, we use a fixed

length (14 cm) and spacing (4 cm) between electrodes for ease of deployment and

vary the size of the storage capacitor depending on the energy budget required

for sensing and data transmission. We also occasionally include a high-side

switch with a higher threshold voltage.

∙ Continuous- and Event-based Sensing: Applications like pressure moni-

toring in industrial scenarios require continuous sensing for data logging and
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reporting anomalous events. This cannot be facilitated through a high-side

switch-based charge controller as it will drive the load depending on a fixed

turn-on voltage. However, continuous sensing applications require an uninter-

rupted supply of energy after a fixed time interval. To enable such applications,

we employ an optional timer-based load driver that can be connected to the

output of the high-side switch. This programmable timer can periodically drive

a load for a known duration and can be turned off through an external control

signal. Event-based sensing can be enabled by adding an additional firmware

constraint on top of continuous sensing to transmit data whenever an anomalous

event occurs or a predefined threshold is met. The size of the storage capacitor

will vary depending on the energy requirements for continuous sensing and the

data transmission rate.

Figure 5-5: Charge time and incoming power for different lengths of electrode.

5.5.2 Design Space

In total, there are three major design variables: the length and spacing of capacitive

electrodes, the size of the storage capacitor, and the configuration of the high-side

switch or charge control circuit.
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Figure 5-6: Charge time and incoming power for different separation distances be-
tween the two electrode

Figure 5-7: Charge time and incoming power for different capacitors size

Length and Spacing of Electrodes

The design of the electrodes is critical for determining the instantaneous power avail-

able at their output. For most applications, we prefer to use a fixed length (14 cm)

and spacing (4 cm) of electrodes as they were more convenient to install than longer

electrodes. Figure 5-5 shows the charge time and incoming power for different lengths

of electrode and Figure 5-6 charge time and incoming power for different separation

distances between the two electrode. It shows how charge time reduces with increased

length and separation of electrodes. Here location A corresponds to the ground floor

of cement office building having tile floor and location B corresponds to the fifth floor
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of the same building having carpet surface.

Size of Storage Capacitor

We compute the capacitor required for each application according to the net energy

required and equate this to the amount of energy discharged from the storage capac-

itor (𝐶𝑠𝑡𝑜𝑟𝑒) using Equation 5.2.

𝐸𝑟𝑒𝑞 ≤ 𝐸𝑑𝑖𝑠 =
1

2
× 𝐶𝑠𝑡𝑜𝑟𝑒 × (𝑉 2

𝑖𝑛𝑖𝑡 − 𝑉 2
𝑓𝑖𝑛𝑎𝑙) (5.2)

Consider a sensor that periodically measures temperature. A CC1350 MCU requires

2 V and consumes ∼10-12 mA of current for taking one temperature measurement and

transmitting this data over a sub-GHz radio. This entire process takes approximately

10 ms. Details specific to this application are discussed in Section 5.6. We use a

high-side switch (Semtech TS12001) with a hysteresis window of 500 mV so we can

discharge the storage capacitor by only 500 mV. As this application requires 2 V,

we use a high-side switch with a threshold voltage of 1.8 V and a turn on voltage of

2.21 V. We compute energy required for this application as

𝐸𝑟𝑒𝑞 = 𝑉 × 𝐼 × 𝑇

= 2𝑉 × 0.012𝐴× 0.010𝑠 = 240𝜇𝐽
(5.3)

Next we compute the value of the storage capacitor 𝐶𝑠𝑡𝑜𝑟𝑒 using Equation 5.2:

𝐶𝑠𝑡𝑜𝑟𝑒 =
2 × 𝐸𝑑𝑖𝑠

(𝑉 2
𝑖𝑛𝑖𝑡 − 𝑉 2

𝑓𝑖𝑛𝑎𝑙)
(5.4)

In this case, the turn-on voltage of the high-side switch (𝑉𝑖𝑛𝑖𝑡) is 2.21 V and the lower

threshold of the high-side switch (𝑉𝑓𝑖𝑛𝑎𝑙) is 1.8 V. 𝐸𝑑𝑖𝑠 can be equated to 𝐸𝑟𝑒𝑞, but

ideally should be greater than 𝐸𝑑𝑖𝑠. From Equation 5.4, we compute value of storage

capacitor as 292.68 µF. However, the nearest available capacitor value with low DC

leakage is 330 µF (AVX TAJC337K004RNJ), which can facilitate an energy budget of

270.6 µJ. Similarly, we can select the storage capacitor size based on the application’s
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energy budget. Note that the time required to store energy on the capacitor will

depend on the length of electrodes as the instantaneous power would vary with the

length of the harvesting electrodes. Figure 5-7 shows the charge time and incoming

power for different capacitors size.

Configuration of the Charge Control Circuit

The threshold voltage of the high-side switch is the third design variable which con-

trols the output voltage of this harvester. For sparse sensing applications, the dis-

charge time from 𝑉𝑖𝑛𝑖𝑡 to 𝑉𝑓𝑖𝑛𝑎𝑙 is a few ms and the average voltage output is around

(𝑉𝑖𝑛𝑖𝑡 +𝑉𝑓𝑖𝑛𝑎𝑙)/2. For most of the applications, we rely on a high-side switch that has

a threshold voltage of 1.8 V and turn on voltage of 2.21 V as it can serve most of the

sensing applications unless they require greater than 2 V on an average. For applica-

tions which require more than a 2 V input, like sensing environmental parameters or

powering a time-lapse camera, we use a high-side switch with a threshold of 3 V and

a turn-on voltage of 3.5 V which can provide an average voltage of 3.25 V. For sparse

sensing applications which do not have any timing constraints for sensing, we only

vary these three design parameters. However, apart from these three design variables,

we optionally add a timer (TI TPL5110) controlled MOSFET driver (IRLML6402)

for specific applications which require a continuous or event-based power draw. This

timer can be programmed to the drive output load in a periodic manner for a known

duration, thus facilitating continuous sensing by delivering a small amount of energy

after a known time interval.

5.6 Application Space

In order to exhibit the applicability of this capacitive energy harvester, we developed

three different applications: appliance state (on/off) monitoring for energy sustain-

ability; sensing environmental parameters like temperature, humidity, and light in-

tensity for indoor vertical farming applications; and distributed temperature sensing

inside buildings for HVAC control. Each of these applications requires optimization of
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certain design parameters of the CapHarvester in order to facilitate a variable energy

budget.

5.6.1 ApplianceTag

ApplianceTag, an exciting application of CapHarvester, allows for non-invasive stick-

on appliance state monitoring. It uses an inductive pick-up (Bourns SDR1806-

102KL5) connected to an ADC (CC1350) to detect appliance state (on/off) using

stray magnetic fields present around power cords. This approach to appliance state

(a) ApplianceTag having inductive pick-up
for sensing appliance state (on/off) and ca-
pacitive electrodes for energy harvesting

(b) ApplianceTag powered using CapHar-
vester installed on a power cord for mea-
suring appliance state information

Figure 5-8: Block diagram (left) and actual prototype (right) of ApplianceTag

sensing is based on work by Rowe et al. [152]. Intuitively, as per KCL, one expects

the net magnetic field present around multi-wire power cables with phase, neutral and

earth wires bundled together to be zero. However, depending on the position of the

inductive pick-up around a wire bundle and the bundle’s asymmetry, stray magnetic

fields, albeit with low SNR, can be sensed. In our application, this is sufficient to

detect loads of approximately 500 W. We note that with an appropriate low power

amplifier, we can significantly lower this detection threshold.

Key features of the ApplianceTag include:

∙ Potentially possible to install on any power line with no ohmic connection for

appliance state monitoring and for energy harvesting.

∙ Likely to harvest energy even when appliance is not active or drawing any

current.
5http://www.bourns.com/docs/Product-Datasheets/SDR1806.pdf
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∙ Does not require a junction box for installation and can go behind walls for

infrastructure mediated sensing.

Figure 5-9: Appliance state information (on/off) for a 1 kW hot plate measured using
ApplianceTag

Once the storage capacitor reaches a certain threshold (2.21 V in this case), the

CC1350 wireless MCU turns on, which is programmed to immediately take 56 ADC

samples at a sampling rate of 3.360 kHz. These parameters were chosen to ensure that

an entire 60 Hz AC cycle is captured. Next, the signal is de-meaned and the signal

energy is computed. This value is transmitted back to a base station over an RF link.

A threshold is used to detect the appliance ON/OFF state followed. This application

requires an energy budget of 250 µJ, which is facilitated by the use of a 330 µF storage

capacitor. In our testing, this resulted in an average duty cycle of 1 transmission every

13 minutes. Figure 5-8a shows the block diagram of ApplianceTag. We tested this

scenario by monitoring the state of a 1 kW hot plate, which was manually turned on

and off. We compare our data against ground truth data collected using a current

transformer (CR3100)6 for two hours in Figure 5-9.

5.6.2 HeatMap

In this application, distributed temperature across a building is gathered to create

an hourly heat map of the building. Most building managers perform temperature
6http://www.crmagnetics.com/Assets/ProductPDFs/CR3100.pdf
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Figure 5-10: A possible implementation of a temperature monitor deployed on a stud
(location E)

logging on an hourly basis for fine grained control of HVAC systems. HVAC, being

the most energy-expensive load in any commercial or residential building, requires

indoor temperature sensing for an effective scheduling of different zones. This requires

putting temperature loggers in each and every zone and as the deployment scales,

keeping track of batteries becomes a challenging job. We alleviate this by enabling

temperature sensing powered by the capacitive energy harvester connected to power

lines that are close to air handling units (AHUs). For this application, we chose a

220 uF storage capacitor which results in an average transmission every 6 min with a

standard capacitive electrode (14 cm long with a 4 cm separation between electrodes).

Figure-5-10 shows a self-powered temperature monitor installed on a stud.

Figure 5-11 shows the temperature variation logged using an on-chip (TI CC1350)

temperature sensor powered via the capacitive harvester along with the ground truth

data logged using a high resolution temperature sensor (TI HDC10007)

7http://www.ti.com/lit/ds/symlink/hdc1000.pdf
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Figure 5-11: Temperature variation logged using on-chip temperature sensor pow-
ered using capacitive harvester along with the ground truth data logged using high
resolution temperature sensor (TI HDC1000)

5.6.3 FarmCheck

FarmCheck exhibits sensing environmental parameters like temperature, humidity,

and light intensity for indoor vertical farming applications. We make use of the TI

CC1350 SensorTag8 platform for this application. SensorTag is a development board

that is fitted with ten different ambient sensors including high resolution temperature

(TMP007), humidity (HDC1000YPA), and light sensors (OPT3001). In contrast to

previous applications, FarmCheck requires the most power and a 3 V power supply

for operation. These requirements were met by designing a circuit that employs a

high-side switch with a threshold voltage (𝑉𝑡ℎ) of 3 V and a 660 µF storage capacitor

resulting in being able to produce 1072 µJ. On an average, this results in a RF

transmission every 27 minutes. Figure 5-12 shows the temperature, humidity, and

light intensity variation for 36 hrs of a kitchen garden.

8https://www.mouser.com/publicrelations_ti_cc1350_devkits_2016final/
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Figure 5-12: Environmental parameters logged by our harvester and wirelessly
streamed to a base station over a period of over 36 hours.

5.7 Discussion

Previous capacitive energy harvesters using stray electric fields required a direct

(ohmic) connection to earth ground which has severely limited their applications

on low voltage AC power lines. In this work [143], we have designed a stick-on ca-

pacitive energy harvester that does not require an ohmic connection to earth ground

and generates a local reference ground using stacked capacitive electrodes. Our ex-

periments exhibit that our device can harvest 270.6 µJ of energy in 12 min. We also

exhibited several applications, such as distributed temperature monitoring, appliance

state monitoring, and environmental parameter logging for indoor farming.

∙ Study Limitations: The experiments performed in the residential setting involved

environments with variable humidity; the attic, garage, and house had humidities

of 63%, 39%, and 30% respectively. We hypothesize that higher humidity increases
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the harvesting potential of our system. As an environment becomes more humid,

the material of the floor and walls become more wet, which improves their coupling

to earth’s ground.

Our study was only conducted in the United States. North American AC power

lines operate at 110V, while AC power lines in other regions operate at 230V (Asia-

Pacific) and 220-240V (Europe). Although we have done all the experiments with

110 V AC power lines, our same electronic design can also be used with 220 V

AC power lines since the reverse voltage of the diodes in the rectifier bridge is

high enough. Also, the junction capacitance of these diodes supports the range

of frequencies available in other countries. If someone wants to use our design for

more HV power lines, they need to customize the layout of harvesting electrodes a

bit to ensure that voltage output from capacitive harvester along with the available

earth ground is enough to sustain the DCL of storage capacitors, i.e.>10-12V. Also,

the output of electrodes should be less than the maximum reverse voltage of these

diodes. The stray electric field generated on the outer surface of the power line

is proportional to the magnitude of the alternating voltage fed through the power

line, so the capabilities of this harvester will scale up in regions with AC power

lines that have higher voltage ratings.

∙ Hardware Limitations: Our novel capacitive energy harvester relies on the local

reference ground generated by the stacked capacitive electrodes and relies weakly

on coupling with the earth ground available through nearby metallic or concrete

structures. Our harvester under performs in certain scenarios when there is a huge

air gap between earth ground and the local reference (outer electrode of harvester).

Since air is the worst dielectric possible (𝜖𝑟=1.0), the gap provides negligible cou-

pling to earth ground and the outer electrode becomes a floating electrode. Our

harvester struggles to collect energy in scenarios where power lines are dangling in

the air or do not have any surface in contact with them. For example, our harvester

is less effective on a table with wooden legs than it is on a shelf with vertical boards.

∙ Unexplored Applications: We outlined three different application categories for

our harvester - sparse, continuous, and event-based - but our evaluation focuses

128



on three different sparse sensing applications. We informally evaluated a contin-

uous sensing application on a breadboard where a timer based MOSFET driver

is connected on the output of the high-side switch. The setup included an ADC

(MSP430) that was triggered by a timer-based MOSFET driver every 5 minutes.

We found that taking each ADC sample and writing it to FRAM consumes 20 µJ

of energy. These results to do not translate to real-world applications given the

controlled setup and different grounding; however, we were encouraged by these

results. Our harvester can collect 270.6 µJ in 12 minutes (across a 330 µF storage

capacitor), which is more than enough given our informal results. Hence, we can

enable applications which sample data every minute and do delayed transmission

by computing the appropriate size of the storage capacitor to do a transmission

every 12 or 24 hours. Similarly, we can enable event-based sensing by adding soft

constraints on continuous sensing and enable an event-based transmission, such as

an occupancy sensor or pressure gauge trigger.

5.8 Conclusion

The increase of smart devices due to the popularity of Internet of Things applications

demands devices that can operate without the need for frequent battery maintenance.

To support battery-free applications, we made a novel battery-free, stick-on capacitive

energy harvester that harvests the stray electric field generated around AC power lines

without a reference connection to earth ground. Also, our harvester does not require

an active load on the power line, making it more widely applicable and easier and safer

to deploy. Our controlled lab measurements and real-world deployments affirmed that

our device can harvest 270.6 µJ of energy from a 14 cm long interface in 12 min. We

foresee a number of possible applications, ranging from sparse sensing of temperature

in houses to event-driven appliance state monitoring. We plan to improve upon our

initial designs and make them work in other countries as well. We also look forward

to other researchers and engineers doing the same.
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Chapter 6

Thesis Conclusion and Future Work

This thesis emphasizes on leveraging stray EMI emissions (conducted and radiated)

from appliances and power lines to improve state-of-the-art appliance detection and

energy harvesting.

Specific research contributions, their impact and scope for future extensions are dis-

cussed below:

1. DM EMI signals, that originates through inductive coupling from switching

power supply circuits within appliances, are unreliable feature for appliance

detection. The signal is sensed between the phase and neutral power lines and

is considerably affected by power line impedance; interference due to filters

present inside neighboring appliances connected on the same power line; and

power line harmonics. The common mode conducted EMI from appliances, that

originate from capacitive coupling, can be sensed through earth wire carrying

only leakage signals. Hence these signals are not prone to interference from

power line artifacts. Besides this, most appliances are not fitted with common

mode chokes because of which the CM EMI signals from multiple appliances do

not interfere with each other.

2. We demonstrated a novel sensor capable of simultaneously measurements of DM

and CM EMI signals from appliances. Based on our measurements, we found
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that the CM EMI is a far more robust feature for appliance detection than

DM EMI. CM EMI outperformed DM EMI with higher detection accuracy of

87% in comparison to an accuracy of 45% in the case of DM EMI. In future,

simultaneous measurement and fusion of CM conducted EMI data and low-

frequency power data from smart meters can yield several new functions such as

real-time appliance identification, tracking instances of anomalies in appliance

operation, load segregation and fine-grained energy breakdown. As discussed

earlier in the thesis, these inferences can facilitate direct energy feedback to

all energy stakeholders; cater to data-driven load scheduling and peak load

balancing. Further, these inferences can provide insights into daily activities,

which can be used for an assisted and improved living for elderly and disabled

people.

3. We demonstrated that statistical features derived from time-domain EMI signals

are unique signatures which are useful for classifying complex appliances even

under considerably challenging scenarios - where the algorithms were trained

on data gathered from one appliance instance and used to infer other instances

of similar make and model. We achieved good results with a very basic clas-

sification algorithm based on nearest neighbors. We believe that further im-

provement of the classification performance can be achieved when the features

are derived from time-frequency representations of the EMI data. Additionally,

instead of naive machine learning techniques like nearest neighbor more robust

technologies like sparse dictionary learning or deep neural networks (RNN and

CNN) can be employed for supervised learning of EMI features and subsequent

appliance classification. To facilitate future research using conducted EMI sig-

nals, we have released two data sets (HFED and ComBED) in the open-source

community.

4. Through the development and deployment of a custom sensor, we demonstrated

the effectiveness of radiated EMI for appliance detection. We showed that these

signals are detectable up to an approximate range of 30 cm for commonly found
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appliances such as laptop chargers and desktop CPUs. RFI based appliance

detection could be a key enabling technology for applications such as PEA.

PEA is critical in shared spaces having multiple stakeholders typically having

ill utilization of resources. It is not far from reality, when we will see a person

operating appliances in a shared kitchen or living room and all those appliances

with their corresponding electricity usage will be assigned to that person. All

this can be made possible with a wearable band having RFI sensors, which can

tag appliance activity to the end-users. Some follow-up work already exists in

literature which leveraged insight from our initial study with RFI signals to

design a near-field wearable sensor specifically for PEA.

5. We demonstrated a novel ultra-low power non-intrusive capacitive circuit (CapHar-

vest) for continuously harvesting energy using stray electric field signals, of the

order of a few nano-watts, from ubiquitous AC power lines. Our circuit handled

all the challenges associated with prior techniques associated with energy har-

vesting from stray fields like finding an earth ground for electric field harvesting

or requiring bulky transformers for capturing stray magnetic fields.

6. The CapHarvest circuit demonstrated a nice blend of sensing and harvesting

with two sample applications. First is Appliance Tag - a stick-on sensing system

for detecting appliance states and second is Farm Check, which monitors am-

bient parameters for indoor farming applications. Future possibilities around

this fusion of simultaneous sensing and harvesting are numerous. For example,

applications like active beaconing using tags placed inside walls for indoor local-

ization; powering ambient sensor nodes placed during construction for HVAC

control; anomaly detection in appliances and other similar energy sustainability

applications. Apart from this, energy harvested from outdoor AC power lines

can enable traffic monitoring and time-lapse cameras. CapHarvest can also fa-

cilitate event-based sensing applications like pressure valve or thermostat failure

notifications, which rarely occur and require a significant chunk of energy for

communication. These applications are just some samples that we envisioned in
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this thesis. However, the work carried out as part of this thesis can enable many

more such exciting applications, which we leave up to the research community

to explore.
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Chapter 7

List of Publications

All the publications (first author) accepted during the course of this thesis dissertation

are listed in reverse chronological order below.

2018

∙ Gulati, M., Parizi, F. S., Whitmire, E., Gupta, S., Ram, S. S., Singh, A., &
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vester using stray electric field from AC power lines. Proceedings of
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IMWUT), 2(3), 1-20 [143].

2016

∙ Gulati, M., Ram, S. S., Majumdar, A., & Singh, A. (2016). Single point

conducted EMI sensor with intelligent inference for detecting IT ap-

pliances. IEEE Transactions on Smart Grid, 9(4), 3716-3726 [106].

∙ Gulati, M., Singh, V. K., Agarwal, S. K., & Bohara, V. A. (2016). Appli-

ance activity recognition using radio frequency interference emissions.

IEEE Sensors Journal, 16(16), 6197-6204 [128].

∙ Gulati, M., Ram, S. S., Majumdar, A., & Singh, A. (2016, May). Detecting

IT and lighting loads using common-mode conducted EMI signals. In

Proceedings of 3rd International Workshop on Non-Intrusive Load Monitoring
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Different: Insights into home energy consumption in India. In Pro-
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