
Adapting Vehicular Planning and

Communications for Optimized Driving

Student Name : Mayank Kumar Pal
July, 2020

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF

M.Tech in Electronics and Communication Engineering
in General Category

Electronics and Communication Engineering

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY
DELHI

NEW DELHI– 110020

Thesis Committee

Dr. Sanjit K. Kaul (Chair)
Dr. Saket Anand (Co-Chair)

Dr. Gourab Ghatak
Dr. Sayan Basu Roy



Acknowledgement

I dedicate this thesis work to my parents and sister, who are my pillars of
strength. I like to express my deepest gratitude to my advisor, Dr. Sanjit
Krishnan Kaul, for his guidance and support. I am grateful to have an advisor
like him who always helped me whenever I got stuck at some problem. He
always motivated me to deal with the problem right from the basics. His efforts
in my thesis are invaluable. I also like to sincerely thank my co-advisor, Dr.
Saket Anand, for discussing my problems and providing his valuable inputs and
steer me in the right direction. I like to thank my esteemed committee members,
Dr. Gourab Ghatak and Dr. Syan Basu Roy, for agreeing to evaluate my thesis
work. I am also grateful to all the members of Wireless System Lab at IIIT
Delhi, who have consistently helped me with their inputs and suggestions on
my work.

i



Abstract

Connected Autonomous Vehicles (CAVs) have for long had the attention of
the intelligent transportation systems community due to their promise of im-
proving road safety and efficiency via increased perception. CAVs broadly rely
on two components: (a) wireless technologies such as DSRC, WiFi, and 5G,
to enable information exchange amongst the vehicles and the roadside infras-
tructure, and (b) a vehicle planner that uses this information along with local
information from the vehicle’s sensors to find a motion plan that maximizes the
vehicle’s driving utility. Most existing works on vehicular planning either don’t
assume any communications network or neglect network constraints and costs.
On the other hand, works on vehicular networks ignore motion planing. In our
work, we consider motion planning that adapts to the available communications
resource. Further, by associating costs with communication, we adapt the use
of the network to physical on road constraints.

We consider an on-road environment that consists of an autonomous (ego)
vehicle, human driven vehicles, and roadside infrastructure. The ego vehicle
would like to optimize its driving utility by using information from its sensors
and that obtained by querying the infrastructure over the constrained network
while being cognizant of associated costs.

We formulate the above as a reinforcement learning (RL) problem. The ego
vehicle would like to learn a policy function, which at every decision instant,
chooses (a) a motion planning action responsible for the longitudinal and latitu-
dinal behaviour of the ego vehicle and (b) a communications action that queries
relevant information from the infrastructure. We use deep reinforcement learn-
ing to make the vehicle learn the optimal policy, in a model-free setting, using
a custom made simulator that integrates traffic scenarios, communications, and
reinforcement learning algorithms. We demonstrate via simulations, the ability
of the ego vehicle to smartly choose communications and planning actions while
achieving huge gains in driving utility from the use of communications.
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Chapter 1

Introduction

Connected autonomous vehicles (CAVs) are transformative technology that
are expected to improve road safety, enhance the quality of life, and improve
the efficiency of transportation systems [1]. A CAV uses local sensors such
as LIDARs, RADARs and cameras to perceive its surroundings, and wireless
technologies such as DSRC, Wi-Fi, and 5G to allow information exchange to
expand the perceived region. The information from these local sensors is almost
instantly available with negligible sensing delay at every decision step [2]. A
connected autonomous vehicle can extend its range of perception by querying
information about the vehicles and the on-road artifacts that don’t lie in the
view of its local sensors from road-side infrastructure that may have access to
the same. We will refer to the region around the ego vehicle that it can perceive
using its own sensors as it local view. The region that it may query from the
infrastructure will be referred to as the extended view. Figure 1.1 provides an
illustration. The ego vehicle queries its extended view from the infrastructure
over a constrained communications network.

Lane 1

Lane 2

Is Lane 2 free?

Figure 1.1: Illustration of the on road environment. A Vehicle may query the
infrastructure for information that it uses to extend its local view. The infras-
tructure makes its own measurements and may receive measurements made by
other vehicles too. The local view and the extended view are shown for the
vehicle V1.

x



Work that studies the impact of communication constraints on the driving
utility is limited. Most of the work that considers communication and planning
assumes no constraints on the communication and often treats it as a free re-
source. However, in practice, communication constraints do exist and there are
associated costs. Specifically, transmission delays and limited bandwidth im-
pact the ego vehicle’s ability to query its extended view. This should influence
the planner’s motion plan and the resulting driving utility. Conversely, high-
density traffic diminishes the need to communicate with other vehicles over the
network. Given the costs of communicating and, more generally, to ensure an
efficient use of the constrained communication resource, it becomes crucial to
learn when and what regions of the extended view, if any, need to be queried
from the infrastructure with the goal of optimizing the vehicle’s driving utility.

Motivated by the above observations, we investigate joint selection of com-
munication and planning actions such that the driving utility of the ego vehicle
is optimized. We consider a vehicle-to-infrastructure (V2I) network architec-
ture, where the infrastructure is assumed to always have current information of
all on road artifacts in the extended view of the ego vehicle.

1.1 Contributions

Our main contributions are as follows.

• We formulate optimizing the driving utility of an autonomous vehicle that
smartly leverages the network to query the infrastructure to populate its
extended view as a reinforcement learning problem. At every decision
instant, the RL policy uses the information obtained from the ego vehicle’s
sensors together with information it has received over the network to
choose its next motion planning and communication action. The optimal
policy is learnt for the given communication constraints and costs.

• We use deep reinforcement learning to learn the optimal policy using the
proximal policy optimization [3] (PPO) algorithm by repeatedly interact-
ing with our custom simulation environment.

• We developed a simulation environment that can simulate various traffic
conditions with a single autonomous vehicle, human driven vehicles, traffic
lights, and one or more lanes. We implemented the intelligent driver model
for longitudinal [4] and MOBIL [5] for the latitudinal behaviour of the
human driven vehicles. The simulator also enables smart querying of the
extended view. It further allows easy integration with RL algorithms.

• We empirically demonstrate how the gains of using communications are
impacted by assumptions about network delays and how delayed infor-
mation is used by the ego vehicle’s policy. We also demonstrate how
traffic density impacts the the usefulness of communications. Our learnt
policy demonstrates the need of communication diminishes as the traffic
density increases. Further, we introduced a keep strategy which retained

xi



the old information for non queried regions and this approach brought
huge gains to the ego vehicle’s driving utility. This tells us that retaining
old information may help alleviate a constrained communication with the
infrastructure.

1.2 Thesis Organization

The thesis is organised as follows.

• Chapter 2 - Related Works

– We review the current work and literature around topics such as
cooperative planning, vehicular communication, and the application
of reinforcement learning to these problems.

• Chapter 3 - Model and Optimization Problem

– We discuss in detail the model and the optimization problem.

• Chapter 4 - Grid Based Representation

– We discuss a grid based representation of the ego vehicle’s observa-
tion that tracks the occupancy and speed of an occupant in every
cell of the grid.

• Chapter 5 - Learning An Optimal Policy using Deep Reinforcement
Learning

– This chapter discusses in detail the policy representation and the RL
algorithms such as the policy gradient algorithm. We also discuss in
detail the proximal policy optimization algorithm, which we used to
learn the optimal policy for our experiments.

• Chapter 6 - Simulation and Training Setup

– This chapter discusses the details of the simulation platform that we
used to simulate vehicle-to-infrastructure network and the training
flow that was used to learn the optimal policy.

• Chapter 7 - Results and Conclusions

– This chapter discusses various simulation scenarios and provides an
extensive evaluation of the ego vehicle’s performance.

xii



Chapter 2

Related Works

We summarize works that consider cooperative planning and perception
for mixed autonomy settings, vehicular communications for planning, and the
application of reinforcement learning to these problems.

2.1 Cooperative perceptions and planning

There exist extensive works [6], [7] and [8] that study cooperative planning
and perception to improve traffic safety and flow. [7], [8] and [9] talk about
increasing the perception of the ego-vehicles and its effect on improving the
traffic flow. [6] and [7] combine this information to create a merged occupancy
map used by the planner for path planning. The authors also conclude that
critical safety systems should rely on local sensing information. The longer-
term decisions such as lane change or lane-keeping can benefit from remote
sensing. Authors in [8] use the Bayesian approach to include uncertainty in the
perception module and communication delays to create a merged occupancy
grid over which the RRT (Rapidly-exploring Random Trees) algorithm is used
for path planning. However, all the schemes discuss broadcasting of information
and do not consider the usefulness of the sensing information received by the
ego vehicle. This naive approach of collecting data may lead to unnecessary
bandwidth consumption and processing delays.

2.2 Communications and planning

DSRC (Dedicated Short Range Communication) is a wireless technology
developed for automotive platforms to support fast, secure, and reliable in-
formation exchange between vehicles and infrastructure. The widely adopted
implementation [10] of DSRC uses the IEEE 802.11p standard and the 5.9 GHz
frequency band for low-latency, high-speed information exchange between the
vehicles (V2V) or infrastructure (V2I). Works [11] and [12] talk about a net-
work of cars that can aid each other via cooperation to predict and respond to
hazards. The vehicles relay their information, such as speed and position, to
other surrounding vehicles using a wireless network. The data is then used to
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improve vehicle collision systems. In [11], the authors propose using a reinforce-
ment learning-based approach to enhance the adaptive cruise control through
vehicle-to-vehicle communication where the current speed and acceleration are
shared with other vehicles.

Works that study the impact of communication on planning are limited.
In [9], the authors study the effects of communication constraints such as inter-
ference on the maximum vehicle speed in dense networks. In [13], the authors
consider a multi-agent setting and learn a policy with each agent broadcasting
its local view with no cost for communicating. At execution time, however,
a heuristic approach is taken, where an agent decides to communicate when
it benefits the team performance. In [14], the authors take a planning-aware
communication approach for decentralized coordination of multiple agents. A
particle filter framework is used where each agent tracks the action distribution
of every other agent and decides to communicate with one only when its local
utility can improve with new information.

2.3 RL based perception and planning

Works [15] and [16] provide a framework to simulate mixed autonomy traffic
control problems and integrates it with the ray-framework [17] to train deep-
reinforcement learning policies easily. The learnt policy shows behaviors of
stabilization and platooning, which are known to improve ring road efficiency
for such traffic settings. Works [18] and [19] use RL methods such as Deep-
Q-learning to train policies for a roundabout. These methods perform well
in uncertain environments but fail to generalize in dynamic environments and
with continuous action spaces. [20] shows that stop-and-go waves occur in high-
density traffic even without any geometric or lane-changing maneuvers. These
traffic waves can be dampened by controlling the speed of a few vehicles in the
flow. They conducted a field experiment that consists of a circular track with
20 human-driven vehicles and a single vehicle whose speed and acceleration are
controlled via a PID controller. The experiments show smoother ride, lesser
braking, less fuel consumption, and higher throughput with a penetration rate
of autonomous vehicles as low as 5%.
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Chapter 3

Model and Optimization Problem

3.1 System model

We assume a discrete-time model with time slots indexed by k = 0, 1, 2, . . . T .
The slot duration ∆t is assumed to be fixed for all time slots. The decision
frequency fd, is given by 1/∆t which describes how often the simulation envi-
ronment is updated. The time evolution of the environment can modeled by a
discrete-time dynamical system [21].

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , (3.1)

where xk is the state of the system which includes the speeds and positions of
all the vehicles at time k, and is not directly visible to the ego-vehicle, uk is
the action that the ego vehicle chooses at time k, and wk captures any random
disturbances in the environment and uncertainty in the next positions and speed
of human driven vehicles. As a consequence of choosing the action uk in state
xk, the system transitions to state xk+1 at time k + 1. Note that, if it is given
xk, the ego vehicle has all it needs to make its best choice of action at k.

3.2 Observation

The state of the system xk is not directly visible to the ego vehicle. Instead,
an observation ok = [o

(l)
k , o

(q)
k ], is available to the ego vehicle for decision making

at k. This observation is a vector of size n × 1. It consist of two vectors o
(l)
k

and o
(q)
k . The former is a nl × 1 vector that is an observation of the local view

made by local sensors, and the latter is a nq × 1 vector for the extended view,
which is refreshed by making a query.

3.3 Action

The action uk = [u
(l)
k , u

(q)
k ] consists of vectors u

(l)
k and u

(q)
k . The vector u

(l)
k

is the motion planning action that is responsible for longitudinal and latitu-
dinal behaviour (lane-changing) of the ego-vehicle on the road. The u

(q)
k is a

communication action that determines the query the ego-vehicle makes to the
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infrastructure. The query made at time k given by u
(q)
k , populates one or more

elements in x̄
(q)
k+1.

3.4 Action constraints

Let U
(l)
k and U

(q)
k , respectively, be the set of all feasible planning and com-

munication related actions. The set U
(l)
k restricts the on-road maneuvers that

ego-vehicles can perform. For example, U
(l)
k may specify the set of allowed

velocities and accelerations. The set U
(q)
k of possible communication actions re-

stricts what an ego-vehicle can query and obtain from the infrastructure using
the communication network. An example of communication-related constraints
is the limit on the amount of data that can be queried from the infrastructure
at time k. At any time k, uk is feasible only if u

(l)
k ∈ Uk(l) and u

(q)
k ∈ Uk(q).

3.5 State Estimate

The ego vehicle may obtain an estimate x̄k of the underlying state at time k
by using its history of observations o0, o1, . . . , ok and actions u0, . . . , uk−1. The
estimate x̄k is used by the ego vehicle to decide on its action uk at time k.

3.6 Cost function

At any time k, given that ego-vehicle estimates x̄k and takes action uk, it
incurs a bounded stage cost gk(xk, uk(x̄k), xk+1). Let X be the set of all states
and X̄ be the set of all the state estimates. We define a stationary (independent
of time k) policy µ, which is a function that maps every state estimate x̄k ∈ X̄
to a feasible action uk in U

(l)
k ×U

(q)
k . Let Jµ(x0) be the finite-horizon discounted

expected sum cost of policy ,when the ego-vehicle starts in state x0 and follows
the policy µ thereafter.

Jµ(x0) = E

[
T∑
k=0

αkgk(xk, µ(x̄k)|x0

]
, (3.2)

where 0 < α < 1 is the factor that discounts future costs. The discount factor
is used to set how important rewards further in time are relative to rewards
that may be accrued closer to the current time. Setting a smaller value of α,
makes the ego vehicle short sighted and a larger α makes it far sighted. The
expectation is over the sequence of the states ego-vehicle encounters, and policy
µ, given that the initial state is x0.

3.7 Optimization problem

The optimization problem is find the optimal policy µ∗ that minimizes the
the expected sum cost Jµ(x0) , for all x0 ∈ X. Let Π be the set of admissible
policies.

xvi



The optimal policy is

µ∗ = arg minµ∈ΠJµ(x0), ∀ x0 ∈ X. (3.3)

The policy µ∗, at every time step k, chooses the optimal action u∗k, which
contains an optimal motion planning and a communication action, as a function
of state estimate x̄k, such that expected discounted sum cost (3.2) is minimized.
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Chapter 4

Grid Based Representation

We use an occupancy grid to represent the ego vehicle’s nearby environment.
Occupancy grids [22], [23] are often used in robotics, for example, algorithms
such as RRT that do path planning. An occupancy grid represents the contin-
uous on-road space around the ego vehicle as set of discrete cells.

Each cell of the grid is either empty or occupied (has a static object or a
moving object). Since the objects in the cells may be moving, we also associate
a speed with each cell. If a cell is occupied by static objects, the speed is 0.

The local view part of the grid encodes the occupancy and speeds around
the ego-vehicle measured by the local sensors. The occupancy and speeds of the
cells that span the extended view can only be obtained only by querying the
infrastructure. The cell-size dictates the number of the cells required to encode
a given local or extended view. Figure 4.1 illustrates occupancy grid for a local-
view of size 8m and cell resolution of 1m. A large value of the cell-size implies
that fewer cells are used to encode a given region leading to poor resolution [24].
In practice, the occupancy information is obtained by fusing information from
sensors, which is used to generate a point-cloud map. This point-cloud map is
projected to the 2D space [24], followed by filtering of noise.

4.1 Agent’s Observation in grid representation

The observation ok, which consists of vectors o
(l)
k and o

(q)
k at time k, is

obtained from the grids. The vector o
(l)
k consists of the occupancy and speed

information of each cell that lies in the local view and can be measured by
the ego vehicle’s own sensors. We assume that these occupancy and speed
measurements are current and noise free. The vector o(q) consists of occupancies
and speeds corresponding to the cells that lie in the extended view. Their
information can be obtained by querying the infrastructure. The occupancies
and speeds of the cells that are not queried are initially assumed unknown. Later
we consider the possibilities that the ego vehicle (a) retains old information for
a cell that it may have obtained from an earlier query and (b) at every time
step the ego vehicle marks a cell in the extended view that wasn’t queried as
unknown.

For all time steps, the size and resolution of the local view and extended view
are kept fixed. We use a 4-byte integer and a float, respectively, to encode the
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Figure 4.1: Illustration of the occupancy grid based representation for a local
view of 8m and an extended view of 8m. The cell resolution is 1m. Ego-vehicle
V1 creates occupancy grids relative to its position. The actual occupancy of the
local view is always available. The occupancy of the extended view is by default
unknown and can be obtained by querying the infrastructure.

occupancy and speed for a cell. Let R
(l)
b and R

(q)
b be the amount of information

generated by the local view and the extended view per second. The information
rates from the views are, respectively,

R
(l)
b = fd × (nl × 8× 8) bits/sec and (4.1)

R
(q)
b = fd × (nq × 8× 8) bits/sec, (4.2)

where fd is the decision frequency, which was defined in Chapter 3, nl and nq
are the number of cells used to encode local-view and extended view occupancy
and speed information, respectively.

4.2 Actions in the grid representation

Recall from Chapter 3 that the set U
(l)
k is the set of motion planning actions

the ego vehicle can perform. We allows the actions (a) accelerate, (b) decelerate,
(c) do-nothing, and (d) change lane. Accelerate and decelerate actions are
used, respectively, to increase and decrease the speed of the ego-vehicle. The
do-nothing action keeps the speed and lane of the ego vehicle unchanged.

Recall that the set U
(q)
k contains the communication actions that the ego

vehicle may choose. We group one or more cells in the extended view together.
The extended view is captured by a union of such mutually exclusive groups.
The set U

(q)
k includes the action of querying each such group and also the action
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of not querying any group. The total number of actions in the set is therefore
one more than the total number of groups. Note that in case a query is made,
exactly one group can be queried. In our work, the groups are picked a priori
and stay fixed.

The maximum number of cells any group can have is constrained by the
network bandwidth. Larger number of cells in a group imply the ego vehicle has
access to a larger available communication bandwidth (bits/sec or equivalently
bits/time slot). On the other hand, a smaller maximum number of cells in
a group implies access to a smaller communication bandwidth. Since we fix
groups, we assume that the communication bandwidth constraint is fixed for
all time. For example, Figure 4.2 shows the extended view of length 8m divided
into four groups of mutually exclusive cells, where each group consists of 8 cells.

In case a group is queried by the ego vehicle at time k, it receives the
occupancy and speed information of every cell in the group at time k + 1. We
consider the two possibilities of it receiving information that was current at k
and is current at k + 1.

Figure 4.2: Cells in the extended view are organized as groups. We have four
mutually exclusive groups named Reg 1, Reg 2, Reg 3, and Reg 4. Each has a
size of 512 kilo bits (calculated using (4.1) and (4.2)).
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Chapter 5

Learning an Optimal Policy

In this section, we describe our deep reinforcement learning based approach
to learning a policy. We focus on model-free methods that don’t require to know
the state transition model and are suitable for learning policies via repeated
interactions at discrete time steps with the environment in simulation.

Given that every cell in both the local and extended views may either be
empty or occupied and that we must keep track of the speed associated with
each cell, the state space, even for a modest number of cells can become very
large. This together with the fact that at any time k, the vehicle doesn’t
have access to the state but only has access to the history of observations and
its actions, (imperfect state information), an estimate x̄k of state at k must
incorporate (a subset of) the history of observations and actions. Given the
resulting large number of elements in the set X̄ of state estimates and the
likely large action space U = U (l)×U (q), exact reinforcement learning methods,
for example, tabular Q-learning, are not feasible. This motivates us to find an
approximation of the optimal policy using deep reinforcement learning methods.

In reinforcement learning parlance we have a Partially Observable Markov
decision process (POMDP), which is defined by the tuple (X, X̄,O, U, P, g, ρ, α, T ),
where O : X × X̄ → [0, 1] is the joint probability distribution of observations
and states. The goal is to find the optimal policy (3.3), which minimizes the
expected discounted sum cost given by (3.2).

5.1 Policy representation

We represent the agent’s policy using a neural-network µ(u|x̄; θ), param-
eterized by the weight vector θ. The policy function µ : X̄ × U → [0, 1],
accepts an agent estimate of the state x̄k and returns a distribution over all
u ∈ U (l) × U (q). The x̄ is some function of observations ok, ok−1, ..., o0. In our
experiments, we estimate the underlying state xk, using last four observations,
x̄k = {ok−3, ok−2, ok−1, ok}. We used two layered fully-connected neural network,
each having 256 nodes, followed by a ReLU activation to represent the policy
function. The logits obtained from the last layer are passed through a softmax
layer to obtain probabilities (See Figure 5.1). An action uk at time k, can be
obtained from this policy by inputting x̄k to the network and sampling from
the distribution at the output.
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Figure 5.1: The policy function accepts x̄ estimate vector as the input to the
policy. The input layer is passed through a two layered deep (Hidden Layer 1
and Hidden Layer 2) neural network each of having 256 nodes followed by ReLU
activation. The Output layer of the network outputs logit for each action, which
are then passed through a softmax layer to obtain action probabilities.

5.2 Policy based learning

We used policy based learning methods. One of such method is the REIN-
FORCE [25] family of algorithms. Standard REINFORCE updates the policy

parameter θ in the direction of ∇θ

[
log µ(uk|x̄; θ)(

∑T
k=0 gk)

]
, which is an es-

timate of the ∇θ

[
E
[∑T

k=0 gk(xk, µk(x̄k, θ), wk)
]]

. This method of updating

parameters θ suffers from the issue of high variance in the estimate of gradient.
It is possible to reduce the variance of this estimate while keeping the estimate
unbiased by subtracting a learned function of x̄k, called as the baseline. The

resulting gradient becomes ∇θ

[
log µ(uk|x̄; θ)(

∑T
k=0 gk − bk(x̄k)

]
.

A learned estimate of the state-value function V µ(x̄) is commonly used as
the baseline. That is bk(x̄k) = V µ(x̄), where V µ(x̄) estimates the expected
discounted sum cost starting in x̄. The approximate state-value function when
used as a baseline can be seen as the estimate of the advantage of action uk
in x̄k. The advantage is defined as A(uk, x̄k) = Qµ(uk, x̄k) − V µ(x̄k), which
measures the relative usefulness of action uk. This approach can be viewed as
the actor-critic architecture where the policy µ is the actor and the baseline bk
is the critic [26].

Policy gradient methods alternate between interacting with the environment
to collect samples and using those samples to estimate the gradient to update the
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policy parameters. However, it is seen in practice that multiple steps of updates
using the estimate of the gradients above often leads to destructively large policy
updates [3], which may cause the policy to diverge or get stuck amongst poor
policies (local minima). In TRPO [27], the authors used a surrogate objective
function which penalizes the large policy updates. The penalized version is
given by

min
θ

[
µθ(µk|x̄k)
µθold(µk|x̄k)

Ak − β KL[µθold(.|x̄k), µθ(.|x̄k)]
]
, (5.1)

where Ak is the advantage estimate for action uk = µ(x̄k), θold is the vector of
parameters before update and β is KL penalty.

In [3], the authors provide a method of computing penalty coefficient β,
based upon the KL-divergence d between updated and old-policy.

d = Ek [KL[µθold(.|x̄k), µθ(.|x̄k)]] . (5.2)

The β is updated as follows.

• If d < dtarg/1.5, β ← β/2

• If d > 1.5dtarg, β ← β × 2

With this scheme, policy updates which are significantly different than dtarg,
are rare. Further, β is a hyperparameter but not very important as algorithm
automatically adjusts it.

5.3 Learning the Optimal Policy

We use PPO style updates (5.1) and (5.2) to learn a policy which mini-
mizes the sum cost defined in (3.2). The learning process starts by initializing
the parameters of the policy and value function estimator to θ0 and φ0 respec-
tively. The learning proceeds in an episodic manner. An episode begins by
calling RESET() which resets the state of the simulator to x0 and returns an
estimate of it, x̄0. For an estimate of time k, x̄k, the agent infers a joint-action
by running the policy and sampling an action uk ∼ µ(x̄k, |; θk). The action is
then sent to the simulator via STEP(), which executes it and returns the stage-
cost gk(xk, uk, xt+1), next estimate x̄k+1 and episode termination status (bool).
The episode termination status indicates whether a collision of the ego-vehicle
with another vehicle ended the episode. In such case, the episode is terminated
and the new episode must be started by calling RESET(). We collect N such
episodes each of T time steps, and for each interaction, we store the current esti-
mate, reward and current estimate of value function which are used to calculate
the policy gradient for policy update.

For each collected interaction, we calculate the cost to go, ĝk =
∑T

t=0 γ
tgk

followed by the advantage estimate Âk = ĝk − V (x̄k)φk , using the current value
function Vφk . We update the parameters for the policy and value function as
given in equations (5.3) and (5.4) for K epochs, where e is current epoch, θe
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is the parameter after e epoch. The KL divergence of µe and µe−1, calculates
the distance between the old and the new distribution. A larger value indicates
that a big update took place and the same is penalized, thereby restricting large
policy updates. This PPO based approach is summarized in Algorithm 1.

Algorithm 1 Learning optimal policy µ, using PPO

Initialize: initial policy parameters θ0, initial value function parameters φ0.
for training episode e = 0, 1, ...N do

Receive initial estimate x̄0, from simulator using RESET().
for k=1 to T do

Select motion planning action u
(l)
k , by running the policy µ(x̄k|; θk).

Select communication action u
(q)
k , by running the policy µ(x̄k|; θk).

uk ←
[
u

(l)
k , u

(q)
k

]
;

Execute action uk, and observe next-estimate x̄k+1, stage-cost gk and
episode terminal status done using STEP().
x̄k+1 = x̄k

end for
end for
Compute cost-to-go ĝk, for the collected trajectories.
Compute advantage estimates Âk, using current Value-function Vφk .
for e = 1, 2, ... to K do

Update the policy parameters by minimizing the PPO-objective for K
epochs.

θk+1 = arg min
θ

1

|N |T

N∑ T∑[
µθe−1(uk|x̄k)
µθe(uk|x̄k)

Âk − β KL[µθe(.|x̄k), µθe−1(.|x̄k)]
]

(5.3)
Fit the value function by regression on mean-squared error via gradient
descent algorithm.

φk+1 = arg min
φ

1

|N |T

N∑ T∑
(Vφ(x̄k)− ĝk)2 (5.4)

end for
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Chapter 6

Simulation and Learning Setup

We created an open-source Python framework [GitHub] using PyGame and
Numpy libraries that provides a utility to solve the problem of simulating and
learning motion planning and querying policies for mixed traffic settings. The
user can access the environment using Python APIs which provide an interface
to initialize, reset and step through the simulation. The simulation also provides
a mechanism of collecting observations, applying actions and defining costs.

Our framework consists of the two major components, the v2i simulator and
the Trainer. Figure 6.1 demonstrates the interaction between the v2i simulator
and the RLlib library to train a RL based policy. The environment provides all
the algorithms and scripts with all necessary information such as observations,
actions, stage costs to learn a policy. The v2i simulator is used to simulate the
autonomous and human-driver behaviour. Furthermore, the simulator provides
a means of simulating the infrastructure, capable of exchanging information
with a ego-vehicle via query. In our work, we make use of existing RISELab’s
RLlib [17] library to implement various RL algorithms. The Trainer uses RL-
lib library to train an RL agent to learn a policy by interacting with the v2i
simulator.

Furthermore, the simulator is compatible with OpenAI’s Gym [28] which
allows the easy integration of our simulator with other various open-source RL
algorithm implementations. RLlib is an open-source library supporting the im-
plementation, training and evaluation of reinforcement learning algorithms. It
was created to address the issue of scaling the training process for reinforcement-
learning tasks. It supports distributed computation over CPUs and GPUs. The
libraries include highly-parallelizable versions of policy gradient algorithms such
as TRPO and PPO, out of which PPO is used as the default choice in our ex-
periments.

Central focus in the design of our simulator was the ease of modifying the
setup to support mixed-traffic, different traffic densities, vehicle parameters,
different sizes of local and extended view and different grid resolutions. We
also allow to simulate traffic lights to add perturbations to the speed of vehicles
which otherwise is deterministic due to the nature of driving models. Further-
more, the setup allows multiple-lanes, varied vehicles sizes. Once trained, poli-
cies can be evaluated on the simulated scenarios in a straightforward manner.
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Figure 6.1: Simulator provides components to programmatically control the
simulation and training process. An experiment requires two files (a) sim-config
and (b) training-config. The v2i simulator accepts a sim-config, which specifies
the simulation parameters and returns an instance which can be used to retrieve
observation and stage-costs and apply actions. The RLlib accepts a training-
config, which defines learning parameters and returns an trainer instance, which
interacts with the v2i-instance to train an RL policy.

6.1 v2i simulator

Now, we will briefly describe the internals of the v2i simulator. Figure 6.2
shows few different simulation scenarios which can be created using v2i. As de-
scribed in Figure (6.1), the simulator accepts a sim-config file, which defines all
the simulation parameters and returns an instance of gym-based environment.
Table 6.1 lists the simulation parameters which can be configured by the user
to simulate different traffic settings.

1. Observation : The simulator keeps track of the position and velocities of
each vehicle in the scenario. At every time step, simulator generates an
occupancy and velocity grid relative to the position of the ego vehicle for
the area defined as the local and the extended view. The perception range
of the local sensors is defined using the local-view parameter, the size of
the extended view is defined using the extended-reg and the resolution of
the grid is controlled using the cell-size parameter. As the ego vehicle and
other vehicles move, at every time step, new grids are generated. The cells
corresponding to the local view are available to the agent at every time
step. However, the cells corresponding to the extended-view are accessed
by making an query to the infrastructure.
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Simulator Parameter Purpose
decision-frequency Time step duration in seconds.

max-speed Sets a maximum limit on the speed of all the vehicles.
local-view Size of local view in metres.
total-view Size of local view and extended view

extended-reg Size of extended view in metres.
reg-size Size of each communication region. Should completely

divide extended-reg.
cell-size Resolution of grids in metres.
enable-tf Enable/Disable traffic lights
density Sets lane-wise traffic density

Table 6.1: Different simulation parameters supported by v2i simulator and their
usage. The parameters can be changed to simulate different scenarios.

2. Longitudinal controller : As described in Chapter (3), the valid longitu-
dinal actions are (a) accelerate, (b) decelerate and (c) do-nothing. The
simulator uses two different controllers, one for human-driven vehicles and
another one for ego-vehicle(s). The longitudinal motion of the human-
driven vehicles is simulated using the Intelligent Driver Model (IDM) [4],
which is a continuous-time car-following model developed for modeling
freeway and urban traffic. The acceleration for each human-driven vehi-
cle is calculated using

v̇ik = a

[
1−

(
vik
v0

)δ
−
(
s∗k
i(vik,∆v

i
k)

sik

)]
, (6.1)

where

s∗k
i(vik,∆v

i
k) = s0 + max

[
0,

(
vikTheadway +

vik∆v
i
k

2
√
ab

)]
, (6.2)

where vik is the speed of the vehicle i, at time k and a is the maximum
allowed acceleration, which we set to 0.73 m/s2. v0 is the maximum
allowed speed for vehicles, which can be adjusted by setting the max-
speed simulation parameter. s0 is the minimum gap between vehicles,
which is set to 2m. b is the comfortable deceleration rate, which is set to
1.67 m/s2. ∆v is the speed difference between vehicle i and the vehicle
ilead (vehicle just in-front of vehicle i). sik is bumper to bumper distance
between vehicle i and ilead. T is the headway time in seconds. The choice
of the IDM model parameters is guided by the empirical experiments
presented in the [29], which studies several German freeways for a variety
of traffic settings such as lane closing and intersections. The acceleration
at time k, for human-driven vehicle i, given by v̇ik is calculated using (6.1).
The acceleration for the ego-vehicle is controlled using an RL policy. The
policy can select from three different acceleration rates {0.73, 0.0,−1.67}
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Figure 6.2: Mixed-traffic setting in v2i simulator. Vehicles are represented using
circles. Ego-vehicles are colored in green and Human-driven vehicles in yellow.
Clockwise from top left: single-lane with traffic light and only local view;
single-lane with traffic light and extended view (Red portion of the grid denotes
the non-queried regions); Multiple lane, no traffic lights and low traffic density
scenario; Multiple lane, no traffic lights and high traffic density scenario;

m/s2. 0.73 corresponds to accelerate, 0.0 corresponds to do-nothing and
−1.67 corresponds to decelerate. Given acceleration, the new position and
velocity of the vehicle i, is calculated using

sik+1 = sik +
(
vik∆t

)
+

1

2
v̇ik∆t

2; vik+1 = vik + v̇ik∆t (6.3)

3. Lateral controller : As described in Section (4), the valid lateral action
is (a) lane-change. Similar to longitudinal control, the simulator uses
two controllers. The lane-change for human-driven vehicle is modelled
using the MOBIL [5] that models the driver’s lane-change behaviour as
a function of vehicle’s acceleration and bumper-to-bumper distance. The
lane-change decision for a vehicle is given by

(v̇ik+1 − v̇ik) + p
(
v̇nk+1 − v̇nk+1 + v̇ok+1 − v̇ok

)
> ∆ath, (6.4)

where v̇ik, v̇
n
k and v̇ok are the accelerations calculated using the IDM model

at time k for vehicle i, its follower n and successor o respectively. The
politeness factor p ∈ [0, 1] controls the aggressive of the drivers. Setting
p = 0, makes driver egoistic and doesn’t consider whether follower and
successor will have any disadvantage if it executes the lane-change. ∆ath

is the changing threshold at which lane-change is executed. We set p = 0.5
and ∆ath = 0.2 m/s2 for our simulations. The lane-change for the ego-
vehicle is controlled using an RL policy. The simulator tries to execute
the lane-change if policy outputs a lane-change maneuver. A successful
lane-change puts the ego vehicle into the desired lane. When there are
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more than two lanes, action space of policy has two lateral actions (a)left
lane-change and (b)right lane-change instead of one. An unsuccessful
lane-change denotes the collision of ego-vehicle with another vehicle and
results in termination of the episode.

4. Communication controller : As discussed in Section (4), the communi-
cation actions are created by dividing the extended region into a set of
mutually exclusive groups of cells. The size of group of cells can be con-
figured by setting the reg-size simulation parameter. The reg-size should
completely divide the defined extended region. Based upon the defined
parameters, the continuous reg-sized communication regions are created.
The RL policy decides/learns which region to query given the agent’s state
estimate. In practice, reg-size represents the bandwidth or limit on the
size of the query which can transmitted using a communications network.
Additionally, the set of communication actions contains a Null region,
which doesn’t query any region and can save communication bandwidth
whenever necessary.

5. Stage-costs : To make the ego vehicle learn an optimal policy using deep
RL we must set the stage cost (see Equation 3.2) appropriately. The
stage-cost can be divided into two sub-costs, namely (a) planner and (b)
communication costs. For planner, we use current speed of the ego-vehicle
as the reward and normalize it by the maximum allowed speed. To dis-
courage unnecessary lane-changes, we penalize the agent for making a
lane-change. As a penalty, we subtract 0.1 from the planner reward.
Communication cost is imposed by adding an additional cost of 1.0 to the
planner cost, if any region is queried by the agent. For Null query, no cost
is added to the planner reward to motivate the planner to save bandwidth
whenever it can.

6.2 Trainer

Now, we will briefly describe the internals of Trainer. As described above,
the trainer is used to train a RL policy and is built on top of the RLlib library.
The trainer encapsulates the additional work of setting up the RLlib to train a
policy. Similar to v2i simulator, the trainer accepts a training-config (see Figure
6.1) to control the training process. Table 6.2 lists the parameters which are
common across deep RL algorithms. The algorithm specific hyper-parameters
can be tuned by setting the algorithm using run parameter and then supplying
the algorithm specific parameters to over-write the default values.

The lr is the learning rate of the optimizer which controls the size of the
parameters update of the policy (actor) and the critic if any. The number-
workers and num-gpus parameters are used to scale up the RL training process.
The former is used to control the number of parallel instances of the environment
and the later controls the number of GPUs to use for training policy and critic.
Higher value of number-workers results in better gradient estimate and thereby

xxix



Trainer parameter Purpose
run Deep RL algorithm to use for training.
lr learning rate for SGD update.

number-workers Number of parallel instances to run.
horizon Maximum length of the episode.

grad-clip The threshold for gradient clipping
num-gpus Number of GPUs to use for training.

enable-lstm Enable the use recurrent policies.
fcnet-hiddens A list containing the size of each FC-layer.

fcnet-activations Activation function.

Table 6.2: Common training parameters. The parameters can be set to control
the various aspects of the RL training process.

results in faster learning and stable policy or critic updates. enable-lstm allows
the agent to use the lstm layer to model the temporal dependencies. fcnet-
hiddens and fcnet-activations controls the architecture of the policy and critic.
The former is a list specifying the size of each fully connected layer and the
latter defines the non-linearity to be used between these layers.
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Chapter 7

Evaluation and Results

We now demonstrate the efficacy of the learnt policy in optimizing the driv-
ing utility under communication constraints. We create different scenarios via
the simulation setup discussed in Chapter 6 to capture different settings like
transmission delay, limited bandwidth, traffic density and perturbations via the
means of traffic lights. We will compare the following scenarios. For each of
them, the decision frequency and cell-size is set to 2.5Hz and 1m respectively.

1. Only Local View (LV10m) - This scenario simulates an ego-vehicle with
a local view only. The ego-vehicle has no access to communications. The
plan is adapted based upon the local view information only. The size
of the local view is considered to be 10m, measured from the center of
the ego-vehicle in both directions. We assumed zero sensing delay and
therefore, the local-view information is available instantly.

2. Only local view (LV40m) - This scenario is similar to LV10m. However,
the size of local view is set to 40m. This scenario acts as a baseline against
which we the other schemes.

3. Communication with zero transmission delay (EV40m Inst.) - This sce-
nario simulates an ego-vehicle with a local-view of size 10m and an ex-
tended view of size 30m relative to the ego vehicle’s position in both
directions.

As per equation (4.2), The rate at which data is generated in the extended
view for this scenario is 9.6kb per slot per second. The extended view is
divided into two regions, each of size 30m starting from left. Therefore,
a single query can query 4.8kb per slot per second out of available 9.6kb
per slot per second information with zero transmission delay, i.e. a query
made at time t for a region, returns at t + 1 the occupancies and speeds
of the queried region at time t+ 1. Hence, the communication network is
constrained to query only 4.8 kilo bits of information per slot per second.
However, the query returns the latest information.

4. Communication with transmission delay (EV40m delayed) - This scenario
simulates the transmission delay in the query. This is similar to the (3),
except that a query takes a delay of one decision step, i.e. a query made
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at time t, returns at t = 1 the information of the queried region that was
current at time t.

5. Communication with zero transmission delay and retain old information
(EV40m keep Inst.). Scenarios (3) and (4) mark the non-queried regions
as Unknown in the occupancy grids. However, one can argue that we can
retain the old information for such regions and let the policy use it. This
scenario is similar to EV40m Inst, except that it retains old information
for non-queried regions.

6. Communication with transmission delay and retain old information (EV40m
keep delayed) - Adds transmission delay to the information returned in
the query. Otherwise similar to EV40m keep Inst.

(a) Agent’s average speed without pertur-
bations introduced using traffic lights.

(b) Lane change action distribution.

Figure 7.1: Learned policy performance on various scenarios obtained by av-
eraging over 100 independent runs. Figure 7.1a curve summarizes the driving
utility obtained by the agents for various scenarios discussed above. Figure 7.1b
summarizes the percentage of number of lane changes executed by the agent.

Note that only in EV40m Inst, EV40m delayed, EV40m keep delayed and
EV40m keep Inst, the ego vehicle policy jointly chooses planning and commu-
nication actions. For LV10 and LV40m the ego vehicle chooses only planning
action. For each scenario, we train an RL agent using the PPO algorithm until
the algorithm empirically converges. To test the performance of the agent as
shown in figures (7.2) and (7.1), we run the learned policy for 100 episodes,
each of 2200 time-steps to collect the data. The data is used to analyze the
agent’s behavior. During the training time, we ensure the behavior of the ve-
hicles doesn’t achieve steady state by adding perturbations by the means of
introducing traffic lights.
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(a) Query actions distribution. (b) Planning actions distribution

Figure 7.2: Agent’s planning and query actions distribution when perturbations
are enabled. Figure 7.2a shows the percentage of the regions queried and Figure
7.2b shows the planning action percentage taken by the agent.

7.1 Understanding gains from the increased perception

Figure 7.1a, shows the average driving utility (speed) of the ego-vehicle for
different scenarios we detailed above. Not surprisingly, LV40m demonstrate the
advantage of having a larger perception over LV10m . The agent in LV40m was
able to maintain a higher average speed compared to other scenarios. On the
other hand, given the very limited view that the ego vehicle has in LV10m, the
average speed of the agent suffered a lot. Observe that the differences between
the average speed of the agents. A smaller perception, forces the agent to stick to
smaller speed to avoid collisions. Further, from Figure 7.2b, it is evident that the
larger perception in LV40m allows for better planning as in LV40m, the agent
has a higher percentage of do-nothing and a lower percentage of acceleration
and deceleration actions compared to LV10m that has a very high percentage of
acceleration and deceleration actions. Also, the significant percentage of lane-
changes in LV40m shows the advantage of better lane changes due to increased
perception.

7.2 Understanding gains from the addition of communications

LV10m and LV40m demonstrate the advantage of increased perception.
However, in practice, the range of an on-vehicle sensors and other on-road oc-
clusions restrict how much an ego-vehicle can perceive. From figure 7.1a, one
can observe the advantage of having communication. EV40m Inst. shows the
higher average speed of the ego-vehicle with the same size of local view as of
LV10m. However, EV40m Inst. is not comparable to an LV40m which has the
same size of total-view. This is because of the communication constraint im-
posed on the EV40m agent, which limits the amount of information that can be
queried at once to either the extended view infront of the vehicle or rear of the
vehicle. EV40m delayed introduces the one-time step delay in the query that
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further deteriorates the driving utility of the agent significantly and making it
only marginally better than LV10m. EV40 keep delayed and EV40m keep Inst
introduces the scheme of keeping the old occupancies and velocities for EV40m
delayed and EV40m Inst. respectively. Figure (7.1a), shows the advantage of
keeping the old information as this helps the ego-vehicle to improve its average
driving utility. Keeping the old information allows the agent to learn to re-use
the old information, which might be queried by the agent previously, for current
decision making.

7.3 Adapting motion planning actions to communication constraints

From figure 7.1a and 7.2b, it is clear that in LV40m the ego-vehicle has the
highest average speed. Further, the planning distribution of the LV40m demon-
strates better path planning as we see a higher percentage of do-nothing action
and much less acceleration and deceleration than rest. For all communication-
based scenarios (EV), the planning distribution shows a similar trend like LV40m
that clearly shows the advantage of communications in terms of better path
planning. Access to communications allows the agent to query information
that helps the ego-vehicle to plan well in advance. Furthermore, LV10m shows
the worse planning of all as its percentage of do-nothing is considerably lower
and has a higher percentage of acceleration and deceleration actions. In Figure
7.1b, EV40m Inst. shows the addition of communication makes the agent much
less willing to do lane-change. However, keeping the old information (EV40m
keep delayed and EV40m keep Inst) for the non-queried regions improves the
lane-change capability of the ego vehicle marginally.

7.4 Adapting communications to a constrained communications net-
work

Figure (7.2a), shows the distribution of the queries made by the ego-vehicle
for various scenarios. Note that, the query distribution is valid only for scenarios
that involve communications. The figure shows that, in all scenarios, the ego-
vehicle is slightly biased towards querying the front region than the rear. This is
likely to be explained by the fact that any vehicle that may get added to the view
will be added towards the front. Hence, querying the front region allows the
ego-vehicle to plan ahead. Further, the figure shows that scenarios that don’t
keep the old information (EV40m Inst. and EV40m delayed) are significantly
biased towards querying the front region of the extended view. Also, EV40m
delayed is slightly more biased towards the querying front region than EV40m
Inst. Keeping the old information allows the agent to query other non-queried
regions, as the information for the queried regions can likely be trusted some
time steps. EV40m keep delayed and EV40m keep Inst. shows the significant
decrease in the bias towards querying the front region.
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7.5 Understanding the effect of decision frequency on driving utility.

(a) Agent’s average speed. (b) Agent’s planning actions distribution.

Figure 7.3: Performance of the ego-vehicle for different set of decision frequen-
cies. Figure 7.3a summarizes the agent’s average speed with 5Hz and 2.5Hz
decision frequency for various scenarios and Figure 7.3b summarizes the actions
distribution of the corresponding scenarios.

Figure 7.3, summarizes the average driving utility and planning actions dis-
tribution of ego-vehicle with 2.5Hz and 5Hz decision frequencies. From figure
(7.3a), it is clear that LV40m 5Hz and EV40m delayed 5Hz has much higher
average driving utility than their 2.5Hz counterparts. This shows the clear ad-
vantage of having high decision frequency that allows ego-vehicle to improve its
driving utility which in our case is maximizing the ego vehicle’s speed. Further,
comparing EV40m delayed 5Hz and EV40m keep delayed shows that higher
decision frequencies can nullify the need of keeping the old information. This
can also be thought as the higher decision frequency corresponds to faster up-
dates and if the rate at which underlying information changes is slower than
the decision frequency than there is little value in keeping old information.

From Figure (7.3b), LV40m 5Hz and EV40m delayed 5Hz shows significant
spike in the acceleration action which directly corresponds to the improved
gains in average speed in figure (7.3a). Higher decision frequency allows the
ego-vehicle to get the updates at a faster rate which in turn can be used by the
ego-vehicle to plan better.

7.6 Understanding the effect of traffic density on motion and com-
munication planning.

To understand the effect of traffic density on agent’s behaviour, we train
a policy where for each episode the traffic density is sampled uniformly from
set (0, 1]. Figure (7.4a), summarizes the performance of the learned policy by
evaluating the agent on bunch traffic densities with (EV40m Inst) and without
(LV10m) communications. It is clear from the figure that as the traffic density
increases, the gain from the communication towards driving utility diminishes.
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(a) Agent avg. speed for different traffic
densities.

(b) Agent query distribution for different
traffic densities.

Figure 7.4: Performance of the policy trained on the varied traffic densities.
All the performance metrics were obtained by running the 15 independent runs
each of 2200 time steps, for each traffic densities using the trained policy. Figure
7.4a summarizes the agent driving utility with(LV10m) and without extended
view (EV40m) and Figure 7.4b curve summarizes the region query distribution
for EV40m for different traffic densities.

The decrease in the gain is likely due to the fact that the vehicles are so tightly
packed that having access to more information doesn’t help the agent as it
blocked between the slow moving vehicles. Further, from the figure 7.4b, we
can observe that when policy is trained for varied densities, the ego-vehicle
at lower traffic densities queries the front region more often than read. Also,
the number of time agent choose not to query is much lower for lower traffic
densities. However, as the density increases, the agent frequency of choosing
null query increases as querying doesn’t help to improve driving utility.

From Figure 7.5a, we can observe that ego vehicle spent almost all of its time
adjusting its speed (high percentage of acceleration and deceleration). Also,
the ego vehicle rarely chooses do-nothing and lane change action which demon-
strates the agent inability to plan better. The very low percentage of lane
changes and do-nothing action is likely due to the smaller perception the ego
vehicle has. For lower traffic densities, the ego vehicle choose acceleration more
often than deceleration. However, the trend reversed as traffic density increases.
From Figure 7.5b, we can observe almost equal amount and high percentage
of acceleration and do-nothing actions, which demonstrates the EV40m Inst
agent’s ability to plan better which is likely due to the increased perception due
to communications. Further, we can also observe the agent learns to do lane
changes as compared to no rare lane changes in LV10m. AS traffic densities
increases, the percentage of lane change also diminishes, which is likely due to
the decrease in the opportunity to do successful lane changes due to high traffic
density.
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(a) Agent planning distribution without
communications.

(b) Agent planning distribution with com-
munications.

Figure 7.5: Planning action distribution of the learned policy on varied traffic
density. Figure 7.5a summarizes the agent planning actions distribution without
communication and Figure 7.5b summarizes the same with communication for
different traffic densities.
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