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Abstract

Knowledge graph (KG) embedding models have recently gained increased attention.
However, most of the existing models for KG embeddings ignore the structure and
characteristics of the underlying ontology. KGs are not always representative of the
underlying configuration knowledge, they tend to capture the semantics at higher level.
However, Ontologies are much generalized semantic data models which can capture more
complex relationships between entities than KGs.
This research work proposes EmEL++ embeddings – an ontology-based embedding model
for theories in Description Logic EL++. EmEL++ maps the classes and relations in an
ontology to an n-dimensional vector space such that the relations between classes and
relations in the ontology are preserved in the vector space. We evaluate the proposed
embeddings on six different datasets and show that the proposed embeddings outperform
the traditional knowledge graph embeddings on the subsumption reasoning task.

Keywords: Ontology, EL++, Description Logic ,Geometric Embeddings, Reasoning
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Chapter 1

Introduction

Methods for learning embedding functions that map the underlying entities (such as words,
concepts, documents, nodes and edges in a graph) to a vector space has gained significant
attention in the recent times. Different methods for learning embedding functions try
to preserve the critical properties of, and relations between, the underlying entities in
the n-dimensional vector space. For instance, the word embedding methods such as
word2vec [23] try to map semantically similar words near each other in the vector space.
Likewise, network embeddings such as node2vec [13] map nodes sharing similar structural
properties close to each other in the vector space. These embeddings can be used for
machine learning, similarity search, or similar tasks. In this work, we the study the
limitations posed by knowledge graph embedding over ontology embedding. Further, we
will look at ontology based embedding model with special focus on theories in Description
Logic EL++. We discuss in detail the related background in Chapter 2 required to
understand our work.

1.1 Motivation

A variety of embeddings for Knowledge Graphs [5, 20, 27, 34, 35, 36] have been proposed.
These different methods differ in terms of the underlying properties of the knowledge bases
preserved in the vector space and the techniques used to learn the mapping functions.
However, most of the knowledge graph embedding models focus on capturing the structural
properties of the graph and the interaction between the entities and do not take into
account the constraints and characteristics of the underlying ontology. Consequently,
the embeddings produced by such methods are not suited for reasoning tasks such as
classification, satisfiability and consistency checking. This in-turn acts as a motivation to
come up with techniques to generate embedding for an ontology.
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1.2 Problem Statement

In this work, we aim to study and propose an approach to generate ontology embedding.
We explore ontologies belonging to OWL 2 EL profile. Since, for more expressive ontologies
like OWL 2 DL or very large size ontologies performing reasoning tasks is complex. Thus,
to the best of our knowledge, we present the first attempt at performing reasoning tasks
by embedding ontologies with OWL 2 EL profile in a vector space.

1.3 Thesis Contribution

The overall contribution of our work can be summarized as follows:

• We showcase the limitations with knowledge graph embedding models to perform
reasoning tasks such as classification.

• We propose a framework for ontology embedding that offers complete coverage of
the EL++ semantics (Chapter 4).

• We show the impact of relations on geometric orientation of classes when the
embeddings are mapped to vector space.

• We show how the resulting embeddings can be used for performing the subsumption
reasoning task. This is important as Baader et al. [2] have shown that all the
standard reasoning tasks in EL++ ontologies can be reduced to subsumption task.

Further, we would also like to emphasize that the capability of performing reasoning in the
vector space is critical as it has the potential to speed up the reasoning process significantly.
As we describe in Chapter 5, the subsumption task in vector space involves computing
distances between the source class and all the other classes in the ontology. In the worst
case, this is an O(n) operation where n is the number of classes. Thus, irrespective of
the complexity of the underlying ontology, the subsumption task could be performed
in O(n) time. Further, with uses of techniques such as semantic hashing or binarized
embeddings [25], the similarity based search operations can be performed in O(1) time.
Therefore, we believe that embedding based approaches, despite their lower accuracies
than standard reasoners and no theoretical guarantees of performance, offer a promising
direction of future research to develop more efficient reasoners, especially for more complex
ontologies (such as OWL2 DL).

1.4 Thesis Outline

Chapter 2 gives an outline of the background needed to understand the work, followed by
a literature review on existing embedding methods. First, we explain the different KG
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embedding approaches and their limitations. Chapter 4 presents our proposed methodology
to generate ontology embedding, wherein we outline the associated background knowledge,
training and implementation approaches. Chapter 5 gives the detailed experimental setup
carried out on different datasets followed by observations and analysis. The final chapter
concludes our thesis and gives some leads for future work.
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Chapter 2

Preliminaries

With the unprecedented explosion in the amount of information being generated and
collected, an appropriate representation of the data becomes necessary. Herein, ontology
and knowledge graphs (KGs) came into being. Both an ontology and knowledge graph
represent knowledge bases, i.e., any collection of information.

2.1 Ontology

Ontologies [14] are semantic data models that define the types of things that exist in our
domain and the properties that can be used to describe them.
An ontology is composed of three main components given as below:

• Classes: the distinct types of things that exist in our data.

• Relations: properties that connect two classes.

• Attributes: properties that describe an individual class.

For simplicity one can consider both relationships and attributes as properties.
Figure 2.1 represents an example of ontology for a given set of information on books,
author and publishers. Since an ontology is a general data model, meaning that we don’t
want to include information about specific books in our ontology. Instead, we create a
reusable framework we could use to describe any books in the future.

2.2 Knowledge Graphs

Knowledge graphs [15] is a multi-relational graph where nodes in KG represent the entities
and the directed edges correspond to the relations between the entities. Together, these
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Figure 2.1: An example of Ontology

form facts in the KGs.These facts are represented in the form of triples as (h,r,t), where h
is the head entity, t is the tail entity and r is the relation associating the head with the
tail entities. Using our ontology as a framework, we can add data to create a knowledge
graph.
For example, with reference to ontology defined in Figure 2.1 we can add in real data about
individual books, authors, publishers, and locations to create a knowledge graph represented
by Figure 2.2. Thus, an ontology reflects the underlying configuration knowledge of a KG.

2.3 Description Logic

Description logics (DLs) are a family of formal knowledge representation languages, most
of these are decidable fragments of First Order Logic(FOL)[4] [18]. Thus, DL is used for
configuration knowledge representation such as ontologies.

2.3.1 DL Basics

Description logic is composed of three elements given as below:

• Concepts/Classes: Concepts are equivalent to unary predicates (e.g. Book,Author).

• Roles/Relations: Roles are equivalent to binary predicates. (e.g. hasAuthor, hasPub-
lisher)
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Figure 2.2: An example of Knowledge Graph

• Individuals: Individual names are equivalent to constants. (e.g. Harper Lee)

Thus, DL models concepts, roles and individuals, and their relationships present in an
ontology. The fundamental modeling concept of a DL is the axiom, a logical statement
relating roles and/or concepts. The logical statements in DL are formed by applying one
or more of the following constructors on one or more of the atomic concepts: negation (¬)
of a concept, equality (=), intersection (u), union (t), and logical inclusion (v) between
two concepts. Also, there are two special concepts called > (every concept) and ⊥ (empty
concept). Finally, the operators universal restriction (∀R.C) and existential restriction
(∃R.C). The axioms can be categorized as TBox and ABox. TBox is a set of terminology
definitions (i.e. complex descriptions of concepts or roles) (e.g. Human vMammal) and
ABox is a set of assertions about named individuals (e.g. Person(james)).

2.3.2 DL Languages

Each description logic describes a language, and each language differ in expressibility
and reasoning complexity, defined by allowing or disallowing different constructs (e.g.
conjunction, disjunction, negation, quantifiers, etc.) in their language. There are many
varieties of description logics and there is an informal naming convention, roughly describing
the operators allowed. The expressivity is encoded in the label for a logic starting with
one of the following basic logics:
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• AL Attributive language is the base language which allows atomic negation (negation
of concept names that do not appear on the left-hand side of axioms), concept
intersection, universal restrictions and limited existential quantification.

• FL Frame based description language which allows concept intersection, universal
restrictions, Limited existential quantification and Role restriction.

• EL Existential language allows concept intersection and existential restrictions (of
full existential quantification).

These languages can be further extended to support different constructs. For Example,
ALC, is simply AL with complement of any concept allowed, not just atomic concepts.
Similary, EL++ is an extension of EL.
Moreover, DLs are the underpinning for web ontology language(OWL). The current version
of the OWL specification is OWL 2 as standardised in 2009. OWL is a family of knowledge
representation languages for authoring ontologies. An OWL 2 profile (commonly called a
fragment or a sublanguage in computational logic) is a trimmed down version of OWL
2. There are three profiles of OWL 2,OWL 2 EL is a fragment that has polynomial time
reasoning complexity; OWL 2 QL is designed to enable easier access and query to data
stored in databases; OWL 2 RL is a rule subset of OWL 2. In this work we focus on EL++

ontologies where EL++ is the underlying DL for the OWL 2 EL profile. .

2.3.3 DL Semantics

The formal meaning of DL axioms is given by their model-theoretic semantics. In particular,
the semantics specifies what the logical consequences of an ontology. The formal semantics
is therefore the main guideline that computes logical consequences of DL ontologies.
Ontologies usually cannot fully specify the situation that they describe. On the one hand,
there is no formal relationship between the symbols we use and the objects that they
represent: for example, an individual name james, is just a syntactic identifier with no
intrinsic meaning. Indeed, the intended meaning of the identifiers in our ontologies has
no influence on their formal semantics: what we know about them stems only from the
ontological axioms. On the other hand, the axioms in an ontology may not provide complete
information. Thus, the DL semantics generally considers all the possible situations where
the axioms of an ontology would hold.

2.3.4 DL Reasoning

The capability of inferring additional knowledge increases the modelling power of DLs.
Description logic reasoning involves deriving facts or patterns that are not expressed
explicitly in an ontology. Description logics are created with the focus on tractable
reasoning where some of the reasoning tasks can be classification/subsumption of concept,
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satisfiability of a concept, consistency checking etc. Herein, we focus on subsumption of
concepts as a reasoning task, i.e.,determine whether concept C subsumes concept D.

2.4 EL++ Ontology

The most notable application of DLs is in biomedical informatics where DL assists in the
representation of biomedical knowledge. In this work we focus on ontologies belonging
to OWL 2 EL because EL++ holds better algorithmic properties compared to others.
Moreover, the expressive power of EL++ enables it for use in more applications. For
example, SNOMED the Systematized Nomenclature of Medicine employs EL++ [33].
Further, large parts of GALEN medical knowledge can also be expressed[29].
The quest for tractable DLs that are expressive enough to be useful in practice led to
EL++, an extension of EL. While considering concepts descriptions for subsumption
made tractability of DLs unattainable as investigated by Donini et. al. [8]. However,
Baader et al. [2] proved that subsumption problem remains tractable even with addition of
standard DL constructors such as concept descriptions for EL DL. Further, he proved that
EL++ expressive power is enough to reduce all standard reasoning tasks to subsumption
problem and vice-versa. Also, he showed that role inclusions (r v s) generalize means
of expressivity important in ontology applications: role hierarchies and transitive roles.
In this work we particularly focus on subsumption reasoning task and also consider the
impact of roles in our model discussed in detail in chapters 4 and 5. Table 2.1 summarizes
the syntax and semantics supported by EL++ description logic.

Table 2.1: EL++ syntax and semantics

Name Syntax Semantics

Top concept > ∆I

Bottom concept ⊥ ∅
Nominal {a} {aI}
Negation ¬C ¬CI

Conjunction C uD CI ∩DI

Disjunction C tD CI ∪DI

Existential restriction ∃R.C {d1 | there exists (d1, d2) ∈ RI with d2 ∈ CI}
Concept inclusion C v D CI ⊆ DI

Role inclusion R v S RI ⊆ SI

Role chain R1 ◦R2 v R R1
I ◦R2

I v RI

Concept assertion A(a) a ∈ AI

Role assertion r(a,b) (aI, bI) ∈ RI

Let O = (C,R, I) be an EL++ ontology where C is the set of classes, R is the set of
relations, I is the set of individuals.
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Baader et al. [3] have shown that subsumption in EL++ can be reduced in linear time
to subsumption with respect to normalized forms in EL++. Thus, accordingly an EL++

ontology can be reduced to a normalized form such that

• all the concept inclusions can take one of the following forms:

1. C1 v D;
2. C1 u C2 v D;
3. ∃r.C1 v D;
4. C1 v ∃r.C2;

• the bottom concept (⊥) can only appear on the right side of the concept inclusions,
and can only appear in the first three forms mentioned above.

• all role inclusions are of the form r v s or r1 ◦ r2 v s

Further, the concept assertion and role assertion axioms in the ABox can be converted
into TBox axioms as follows:

C(a) −→ {a} v C

r(a, b) −→ {a} v ∃r.{b}

Thus, with the above transformations, an EL++ ontology can be reduced to a normalized
form and the task of embedding ontologies in a vector space requires us to learn mapping
functions for both classes and relations in the ontology.
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Chapter 3

Related Work

A wide range of methods for computing KG embeddings have been proposed. These
methods aim to encode the entities and the relations in the knowledge graphs. Node2Vec
proposed by Grover et. al. [13] initiated the idea of learning features for networks
addressing the scalability challenge. It mainly focused upon preserving the neighborhood
information of nodes in the graph/network. In this work features correspond to low
dimensional vectors i.e. the embeddings and the problem derives its analogy from skip-
gram architecture in Natural Language Processing (NLP) [23]. Although their results are
decent with respect to the link prediction task but they make assumptions on conditional
independence and symmetry of the feature space which may not hold true in real world
scenarios. Some relations in a graph can be composition of other relations, in that case the
embeddings generated with such assumptions may not be a good representation of nodes
and relations in the graph. Further, bordes et. al. [6] looked into the problem of learning
representation of elements in low dimensional vector space for a given knowledge base
such that these embeddings can be used into statistical learning systems. They construct
a low-dimension vector per entity and low-dimension matrix per relation. They define a
notion of similarity between two entities and the training set consisting of triplets. Also,
they use ranking to assess the quality of the embeddings learned.
This concept eventually got popularized with knowledge graphs wherein, a fact is repre-
sented as a triple of the form (h,r,t). A typical KG embedding technique generally consists
of three steps (i) representing entities and relations, (ii) defining a scoring function, (iii)
learning entity and relation representations. The first step specifies the form in which
entities and relations are represented in a continuous vector space. Entities are usually
represented as vectors. Then, in the second step, a scoring function is defined on each fact
to measure its plausibility. Facts observed in the KG tend to have higher scores than those
that have not been observed. Finally, to learn those entity and relation representations
(i.e., embeddings), the third step solves an optimization problem that maximizes the total
plausibility of observed facts.
Different KG embedding models were proposed. Semantic matching models for gener-
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ating KG embeddings are based on similarity measures. These models exploit similarity
based scoring functions and match latent semantics of entities and relations based on
vector representations. Nikel et. al. [27] proposed RESCAL method which is categorized
as semantic matching model. RESCAL uses multiple matrices to represent relations among
entities. It introduces a huge number of parameters as it stores relations between each of
the entities in matrices. Thus, scalability remains an issue with RESCAL. Further, Yang
et. al. [36] proposed DistMult to overcome challenges of RESCAL. Although, DistMult
is similar to RESCAL but they differ on the number of parameters. DistMult ensures
low number of parameters for relations by restricting the matrices. Instead of using more
complex matrices it utilizes diagonal matrices.
Later, translational based models for KG embeddings were introduced that use distance
based scoring functions. Embedding models based on this technique gained most attention
due to its simplicity to measure the correctness of a fact. It measures the plausibility of a
fact as distance between the entities after translation carried out by relation. There are
different variants of these translation based models, such as TransE [5] which is the most
representative model. TransE represents the relations as translations such that given a
fact (h,r,t), relation vector r minimizes the distance between h and t in vector space. This
intuition originates from [24], which intends to learn the distributed word representations to
capture linguistic regularities. For example, Inception− ChristopherNolan ≈ Avatar −
JamesCameron, such an analogy holds for multi-relational data because of a certain
relation like DirectorOf in this case. Using these relations we can get Inception +
DirectorOf ≈ ChristopherNolan and Avatar+DirectorOf ≈ JamesCameron. Herein,
the translation of DirectorOf relation over the subject entity i.e. the movie captures the
idea behind TransE model. The scoring function is then defined as the negative distance
between h+ r and t wherein, (h,r,t) denotes a fact. The score is expected to be large if
the fact holds. Later to this, other variants such as TransH and TransR were introduced
which tries to overcome drawbacks of TransE with respect to dealing with 1-to-N, N-to-N
and N-to-1 relations[35][20]. TransH which interprets a relation as a translating operator
on a hyperplane. Herein, each relation is associated to two vectors, the norm vector of
the hyperplane and the translation vector on the hyperplane. It then uses the vectors
obtained by projections of h and t onto the hyperplane i.e. h⊥ and t⊥ and there exists
a vector on hyperplane that represents the relation between h⊥ and t⊥. These identified
triple on the hyperplane then follows a training mechanism like TransE model. TransE
and TransH models assume that the entity and relations are vectors in same semantic
space, therefore similar entity will be close to each other in same entity space. However,
each entity can have different aspects which may vary according to relations respectively.
TransR [20] addresses this issue wherein, it models entities and relations in two distinct
spaces namely, entity space and relation specific entity spaces. Thus, performs translation
on corresponding relation space.
Further, Ristoski et. al. [30] came up with Rdf2vec which generates graph embeddings
using language modelling approach. It requires to convert the graph into a sequence of
entities to which CBOW and skip-gram models are applied. The model then estimates
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the likelihood of the sequence. Garg et. al. [10] worked on a novel approach inspired by
the theory of quantum logic to embed a Knowledge Base (KB) represented as an ontology.
Their work is confined to simplest form of description logic i.e. ALC. Although they map
quantum logic constraints to each of the logical structures in KB but do not talk about
chaining constructs w.r.t. relations in KB. Moreover, the work is restricted to ontologies
with ALC profiles whereas large ontologies for example, that of life sciences have been
formulated in the Web Ontology Language (OWL) [12] and falls majorly under OWL 2
EL profile.
Existing works focusing on ontology embedding such as Onto2vec [32] was proposed. It
uses word2vec as an underlying model which treats axioms in an ontology as sentences to
generate vector representations. Most of this work focuses on encoding the entities and
relations, but they lack in handling the complex relations in an ontology. Moreover, the
existing works do not generalize the embeddings for all kinds of tasks. For example, most
of them take up link prediction as the main task for evaluation of embeddings. Apart from
this, approaches involving RDFs does not support quantifiers whereas an ontology includes
cases of complex relations with quantifiers. Thus, proposed embedding models with KG
or RDF alone cannot perform the reasoning tasks on ontologies accurately. However,
Kulmanov et. al. [17] learns embeddings for ontology using EL++ description logics.
Although, it tries to overcome the drawbacks of KG embeddings but it does not address
all the EL constructs that are relevant to capture the relations present in an ontology.
Further, the evaluation is focused only along link prediction task which may not be an
appropriate way to measure the geometric notion of embeddings. EmEL++ builds upon
existing models to improve embeddings for ontology focusing on subsumption reasoning
task.
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Chapter 4

Embedding EL++ Ontologies in a
Vector Space

This chapter details out the approach involved in our ontology embedding framework
EmEL++. The below sections provide the intuition followed by methodology associated
with our model.

4.1 Intuition

Typically, methods for mapping the entities of interest to a vector space learn the mapping
function subject to certain constraints, encoded in the form of an objective function that
is optimized during the training phase. These objective functions are designed such that
certain specific properties of the underlying entities are also retained in the vector space.
For example, the word2vec [23] model for word embeddings minimizes the distance between
contextually similar words, RDF2Vec [30] adapts language modeling approach to capture
local information from the graph sub-structures, and TransE [5] model for knowledge
base embeddings models the relationship vectors as translation operation on the entities.
Similarly, we are interested to learn mapping functions that can embed EL++ ontologies
in a vector space while maintaining the semantics of the underlying ontologies. In order to
do so, we build upon and extend the framework proposed by Kulmanov et al. [17] that
interprets a class in the ontology as an n-ball (defined by its radius and center) in the
vector space.
Let us consider two classes C and D such that C v D. Let these two classes be
represented by their respective n-balls bc and bd in the vector space such that bc : {~c, rc}
and bd : {~d, rd}; where ~c and ~d are the centers and rc and rd are the radii of the respective
n-balls. Geometrically, if C v D, the mapping function should aim to ensure that the
bc lies inside bd (Figure4.1 (a)). Similarly, if C and D are disjoint, the respective n-balls
should not overlap with each other in the vector space (Figure4.1 (b)). Further, similar to
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Figure 4.1: Geometric Representation of classes and relations

the TransE model [5], the relations in the ontology are interpreted as translations operating
on the classes. More specifically, if C v ∃R.D, the center of n-ball representing C can be
moved to the center of the n-ball representing D translating via relation R (Figure4.1 (c)).

4.2 Loss Functions

With the intuitive framework described above, let us now describe the objective functions
that should be optimized during the training phase to learn the mapping functions. Let
ev : C ∪R 7−→ Rn be the mapping function that maps each class and relation to a unique
vector in the n-dimensional embedding space. For Ci ∈ C, the resulting vector corresponds
to the centre of the n-ball representing the class. Further, let er : C 7−→ R+ be the
mapping function that maps each class into a non-negative real number, that represents
the radius of the n-ball corresponding to class C. Thus, the pair (ev, er) of functions
represents the operations needed to embed an EL++ ontology into an n-dimensional space.
We now describe the various loss functions to represent the different constructs in EL++.
The total loss that needs to be minimized during the learning process is the sum of the
individual loss functions.

Loss Functions for the Normal Forms:

As described before, the first normal form (C v D) when embedded in a vector space can
be interpreted geometrically as two n-balls, such that the n-ball corresponding to class C
lies inside the n-ball corresponding to D. Hence, our mapping functions ev and er should
bring the centers of the two classes closer to each other, and give the sub-class a smaller
radius than the super-class. The loss function presented in Equation 4.1 captures this
intuition and penalizes the mappings that do not adhere to these constraints. Also note
that in addition to the above constraints, we also add margin loss (γ) and a normalization
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loss that brings the centres of n-balls of all the classes on the unity sphere.

LCvD(c, d) = max

0,
(∥∥ev(c)− ev(d)

∥∥︸ ︷︷ ︸
penalize if the two

centers are far away

+ er(c)− er(d)︸ ︷︷ ︸
penalize if sub-class

has larger radius

−γ
)

+
∣∣∣∥∥ev(c)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(d)

∥∥− 1
∣∣∣

(4.1)

In the vector space, the second normal form, i.e., C uD v E, implies that the n-ball for
class E should completely engulf the area of intersection of n-balls for classes C and D.
The first term in the loss function (Equation 4.2) imposes a penalty if the classes C and
D are disjoint. The second and third terms together enforce that the center of the n-ball
for class E lies in the area of intersection of n-balls for classes C and D (optimal position
being the midpoint of the line joining their centers). Finally, the fourth term requires the
radius of the n-ball of E to be greater than the smaller of the radii of n-balls of C and D.

LCuDvE(c, d, e) = max
(

0,
(∥∥ev(c)− ev(d)

∥∥− er(c)− er(d)− γ
))

+ max
(

0,
(∥∥ev(c)− ev(e)

∥∥− er(c)− γ
))

+ max
(
0,
(
||ev(d)− ev(e)|| − er(d)− γ

))
+ max

(
0,
(
min

(
er(c), er(d)

)
− er(e)− γ

))
+
∣∣∣∥∥ev(c)− 1

∥∥∣∣∣+∣∣∣∥∥ev(d)− 1
∥∥∣∣∣+∣∣∣∥∥ ev(e)− 1

∥∥∣∣∣

(4.2)

The first two normal forms are concerned with the mappings of classes and properties of
their respective n-balls in the vector space. The next two normal forms involve relations
and how they are associated with the classes. Recall that similar to TransE [5], we consider
the relations in ontology as translations that operate on classes. Consider the normal
form C v ∃R.D. In the vector space, C and D are represented as two n-balls bc and bd,
respectively. If ev(R) is the vector for R in vector space, then adding ev(R) to a point
in bc should move it to a point in bd (i.e., R translates the points in bc to points in bd).
The following loss functions capture these semantics as expressed by the third and fourth
normal forms.

LCv∃R.D(c, d, r) = max
(

0,
(∥∥ev(c) + ev(r)− ev(d)

∥∥+ er(c)− er(d)− γ
))

+
∣∣∣∥∥ev(c)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(d)

∥∥− 1
∣∣∣ (4.3)

L∃R.CvD(c, d, r) = max
(

0,
(∥∥ev(c)− ev(r)− ev(d)

∥∥− er(c)− er(d)− γ
))

+
∣∣∣∥∥ev(c)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(d)

∥∥− 1
∣∣∣ (4.4)
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Handling Bottom Concept (⊥):

Recall from the discussion in Section 2.4 that the bottom concept can appear only on the
right hand side of the first three normal forms [2]. We now present the loss functions for
each of the three special cases. The resulting first normal form C v ⊥ indicates that class
C is unsatisfiable. Thus, in the vector space, we represent this constraint by reducing the
radius of class C to zero. This is achieved by the following loss function.

LCv⊥(c) = er(c) (4.5)

Next, the second normal form with the bottom concept is C uD v ⊥ indicating that C
and D are disjoint. In the vector space, this indicates that the n-balls of classes C and D
are non-overlapping. This is captured by the following loss function.

LCuDv⊥(c, d) = max
(

0,
(
er(c) + er(d)−

∥∥ev(c)− ev(d)
∥∥+ γ

))
+

∣∣∣∥∥ev(c)
∥∥− 1

∣∣∣+∣∣∣∥∥ev(d)
∥∥− 1

∣∣∣ (4.6)

Finally, the third normal form ∃R.C v ⊥ indicates that in the vector space translating
C by R results in an unsatisfiable class. We already require the radius of unsatisfiable
classes to be zero (Equation 4.5) and since translation does not change the radius of the
original class, we have the following loss function.

L∃R.Cv⊥(c, r) = er(c) (4.7)

Loss Functions for Role Inclusions and Role Chains:

The role vectors in our proposed framework serve the purpose of translating one class to
another class. The constraints considered until now have imposed restrictions on the role
vectors based on their relations with the n-balls of the concerned classes. We now present
two loss functions to capture the constraints imposed by role inclusions and role chains
in the ontology. The role inclusion of R v S implies that the vectors ev(R) and ev(S) in
the vector space should be nearby because any translation produced by R should also be
producible by S plus both the vectors should be in the same direction. This intuition is
captured by the following loss function represented by Equation 4.8. Herein, the first term
is indicative of the distance that ensures the vectors ev(R) and ev(S) lie in near vicinity of
each other. The second term captures the directional aspect of roles in vector space such
that they tend to be in same direction.

LRvS(r, s) = max
(
0,
∥∥ev(s)− ev(r)

∥∥− γ)
+

∣∣∣∣∣ 1− ev(r).ev(s)∥∥ev(r)
∥∥∥∥ev(s)

∥∥
∣∣∣∣∣

+
∣∣∣∥∥ev(r)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(s)

∥∥− 1
∣∣∣

(4.8)
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Next, we consider the hierarchy defined by the role chain R1 ◦R2 v S. In the vector space,
this implies that if class C can be translated to class E by successive application of R1 and
R2, it can also be translated to E directly by the vector for role S while preserving the
direction of role vectors. The following loss function captures this behavior represented by
Equation 4.9.

LR1◦R2⊆S(r1, r2, s) = max
(
0,
∥∥ev(s)− ev(r1)− ev(r2)

∥∥− γ)
+

∣∣∣∣∣ 1− (ev(r1) + ev(r2)).ev(s)∥∥(ev(r1) + ev(r2))
∥∥∥∥ev(s)

∥∥
∣∣∣∣∣

+
∣∣∣∥∥ev(r1)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(r2)

∥∥− 1
∣∣∣+∣∣∣∥∥ev(s)

∥∥− 1
∣∣∣

(4.9)

Often, negative sampling is employed during the training phase to learn better embeddings
as negative samples can be easily generated to enhance the training data available. In
order to incorporate negative samples in the training phase, the following loss function is
employed.

lossC 6v∃R.D(c, d, r) = max
(
0, er(c) + er(d)−

∥∥ev(c) + ev(r)− ev(d)
∥∥+ γ

)
+

∣∣∣∥∥ev(c)
∥∥− 1

∣∣∣+∣∣∣∥∥ev(d)
∥∥− 1

∣∣∣ (4.10)

Thus, the total loss for learning the embedding function is the sum of all the loss functions
given by Equations 4.1- 4.10. Further, we also add the constraint that radius of the
satisfiable classes are non-negative and penalize the total loss for learning negative radius
for classes.

4.3 Training and Implementation

Given an EL++ ontology, we first normalize the ontology to generate the normal forms.
These normal forms then constitute as a set of TBox statements wherein each axiom is
treated as a positive sample. This normalization is performed using the OWL APIs and
the APIs provided by the jCel reasoner which implements the normalization rules [22].
We then introduce negative samples using the third normal form (refer to Equation 4.3).
We randomly generate corrupted axioms following C v ∃R.D, by replacing C or D with
C ′ or D′ such that neither C ′ v ∃R.D nor C v ∃R.D′ are asserted axioms in the ontology.
Therefore, based on the facts the training process learns ontology embedding such that
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the facts hold true.

Algorithm 1: Algorithm for generating Ontology Embeddings with EL++ profile
Input: Ontology O = (C,R, I) in OWL format with axioms ax ; Margin γ;

Dimensions n; Epochs epochs; batchsize bs;
Output: Embeddings (ev(c), er(c) for classes and ev(r) for relations
/* Apply EL++ normalization rules */

1 (axnf1, axnf2, axnf3, axnf4, axdis, axri, axrc) = normalize(ax)
/* Generate negative samples with third normal form */

2 negnf3 = negatives(axnf3)
3 D ← axnf1 ∪ axnf2 ∪ axnf3 ∪ axnf4 ∪ axdis ∪ axri ∪ axrc

/* Initialize embeddings with given dimension */
4 ev(c) = uniform(0, 1) for each c ∈ C
5 er(c) = uniform(0, 1) for each c ∈ C
6 ev(r) = uniform(0, 1) for each r ∈ R
7 for ( i = 0; i < epochs; i = i+ 1 ) {

/* sample mini batches of size bs */
8 (snf1, snf2, snf3, snf4, sdis, sri, src) = samples(D, bs)

/* Update embeddings */
9

∑∇loss(snf1, snf2, snf3, snf4, sdis, sri, src)

The code for training of embeddings and optimization is implemented using Python
and Tensorflow library, and Adam optimizer [16] is used for updating the embeddings.
Algorithm 1 details out the training process to generate embeddings. The training is
divided into two phases, in the first phase the ontology in OWL format is reduced to the
EL++ normal forms. This normalization is performed using the OWL API and the APIs
provided by the jCel reasoner which implements the EL++ normalization rules [22]. The
ontology with the normal forms is parsed to identify the axioms representing the different
normal forms defined in EL++ ontology denoted as axnf1, axnf2 , axnf3, axnf4 etc. in
algorithm 1 where axnf∗ represents normal forms for concepts and axdis for disjoint cases.
Moreover, axri and axrc represents for role inclusions and role chains. In the second phase,
the training of embeddings and optimization is performed. The classes and relations are
encoded as integer values. Thus, the normal forms are also encoded into integer values
accordingly with respect to the classes and relation. We define our linear model which
takes the identified normal forms as input. The model uses two parallel embedding layers,
one for the classes and another for the relations to map them to n-dimensional vector space.
The dimensions defined in embedding layers for relation vectors is n and for classes is (n+1)
where the last dimension represents the radius of the class. The weights in the embedding
layer finally determines the generated embedding for classes and relations. These weights
form the parameters of the neural network which are adjusted during training to minimize
the loss on the task. These embedding layers are then followed by another layer that
computes the total loss i.e. the sum of the losses incurred by each of the normal forms
described above (Eq.4.1-Eq.4.10). In order to compute the total loss we define functions
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for each of the losses defined for normal forms and the parameters to these functions
are defined in their respective equations. Therefore, overall we start the learning process
by initializing the embedding weights for classes and relations by random values. After
which, we process the training samples in mini-batches for each of the losses defined for
the normal forms described above (Eq.4.1-Eq.4.10) and update the embeddings depending
upon the total loss i.e. the sum of all the loss functions. The update process is carried
till saturation or for a fixed number of epochs. Finally, the resulting embedding weights
determine the embedding vectors associated with each of the classes and relations.
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Chapter 5

Experiments,Results and
Observations

We evaluate the effectiveness and performance of EmEL++ on different ontologies. Further,
we describe the datasets used, followed by experimental setup, evaluation metrics and
analysis of results.

5.1 Datasets

We use following six different ontologies of varying size and different characteristics.

1. SNOMED CT: SNOMED Clinical Terms [9] ontology conceptualizes the medical
terms used for clinical documentation and reporting. The primary purpose of
SNOMED CT is to encode the meanings that are used in health information and to
support the effective clinical recording of data. Further, it consists of 989k TBox
statements with 307k classes and 60 relations.

2. Anatomy: It is a reference ontology for domain of anatomy [26]. It focuses on the
representation of phenotypic diversity and linking phenotypes to genes. It consists
of 278k TBox statements along with 106k classes and 218 relations.

3. Foundational Model of Anatomy (FMA): FMA [31] is a domain ontology that
represents a coherent body of explicit declarative knowledge about human anatomy.It
consists of 211k TBox statements along with 84k classes and 87 relations.

4. Gene Ontology(GO): Gene Ontology [7] unifies the representation of gene and
gene product attributes across all species. It consists of 130k TBox statements that
conceptualize the domain. These statements introduce 45k classes and 16 relations
that belong to GO.
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Table 5.1: Different ontologies used in this work and count of different types of axioms. NFi
represents the ith normal form as described in Chapter 4

Ontology NF1 NF2 NF3 NF4 Disjoint Role
Inclusion

Role
Chain

NCI 32909 0 13961 70 0 0 0
GALEN 28890 13595 28118 13597 0 958 58
GO 85480 12131 20324 12129 30 3 6
FMA 84444 0 126796 22 0 15 0
ANATOMY 122142 2121 152289 2143 184 89 31
SNOMED CT 446628 27779 482330 32449 0 11 1

5. GALEN: Galen [28] also represents clinical information. It consists of 84k TBox
statements with 24353 classes and 1010 relations.

6. National Cancer Institute (NCI): NCI [11] ontology includes broad coverage
of the cancer domain, including cancer related diseases, findings and associated
abnormalities.It consists of 46k TBox statements with 27k classes and 71 relations.

Table 5.1 presents the six chosen ontologies in the increasing order of their size (number of
axioms) and highlights the differences between them in terms of the coverage of different
types of axioms. For instance, we note that SNOMED has 0 disjoint axioms and only 1
role chain axiom, despite being the largest amongst the six ontologies. On the other hand,
GALEN, being one of the smaller ontologies, has the highest number of role inclusion
(958) and role chain (58) axioms. Also, observe that ANATOMY is the only ontology
considered that has the representation of all EL constructs considered in this work.

5.2 Baselines

The standard knowledge graph embedding (KGEs) models have been majorly used for
KG completion or link prediction tasks. We consider some commonly used KGEs for
comparison in order to understand their limitations for reasoning tasks. Also, since
the underlying relational model in our proposed EmEL++ embedding model is similar
to distance-based KGEs. Further, we draw close comparison of EmEL++ with an EL
embedding model [17] which is the most recent state-of-the-art for ontology embedding
with EL++ profile. Thus, the baselines chosen are described as below:

1. TransE [5], one of the most frequently used embedding model for knowledge graph,
introduced the idea of translation based embeddings where the relations between
entities is interpreted as a translation operation between the entities.

2. TransH [35], is an extension of TransE that better handles reflexive, one-to-many,
many-to-one, and many-to-many relations. Unlike TransE, where relations are repre-
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sented as vectors in the embedding space, TransH considers relations as hyperplanes
in the embedding space. The translation operation is then performed over the
projections of entities on the hyperplane.

3. DistMult [36], a matrix factorization based embedding model, has been found
empirically to perform well at compositional reasoning tasks.

4. EL Embeddings (ElEm) [17] is one of the first embedding models for the EL++

description logic based model. Our proposed model is also an extension of ElEm
embeddings and enhances ElEm by introducing additional constraints for a more
comprehensive coverage of EL++ description logic.

We use the pykeen framework [1] for implementations of TransE, TransH, and DistMult
embedding models. For ElEm embeddings, we used the source code provided by the
authors 1. Our implementation of EmEL++ is available on research group’s GitHub page2.

5.3 Experimental Protocol

For learning the embeddings by different models, we first normalize the ontologies as
described in Chapter 4. Next, we remove 30% of the subclass relation pairs from the
normalized ontology to be used for validation (20%) and testing (10%). The remaining
ontology along with 70% sub-class relation pairs is used as the training set for learning
the embedding functions. The training is carried out for 1000 epochs or till a saturation
is reached. We perform hyper-parameter tuning using the 20% validation set and report
the performance of fine-tuned models on the test set. The hyper-parameters to tune for
all the models are the dimensions of the embedding vectors, and the margin parameter γ.
We consider n = {50, 100, 200} and γ = {−0.1, 0.0.1} yielding nine different settings. The
best performing hyper-parameters for each of the models are reported in Table 5.2.

5.4 Results and Observations

We chose subsumption as the main task to evaluate the effectiveness of the proposed
EmEL++ embeddings. Baader et al. [2] have shown that all the other standard reasoning
tasks (such as concept satisfiability, ABox consistency, and instance problem) can be
reduced to the subsumption task in EL++ ontologies.
Note that once we have embedded the ontologies in a vector space, we have to reduce all the
tasks we want to accomplish to operations that can be performed in an n-dimensional space.

1https://github.com/bio-ontology-research-group/el-embeddings
2https://github.com/kracr/EmELpp
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Table 5.2: Best performing Hyper-parameters for each model. n indicates the dimension of
embedding vectors and γ is the margin loss parameter.

EmEL++ ElEm TransE TransH DistMult

n γ n γ n γ n γ n γ

NCI 200 -0.1 50 0.1 100 -0.1 100 0.1 200 -0.1
GALEN 50 0.0 50 0.0 100 -0.1 100 -0.1 100 -0.1

GO 100 -0.1 100 -0.1 100 -0.1 100 -0.1 100 0.1
FMA 200 0.1 50 -0.1 100 0.1 100 -0.1 100 0.0

ANATOMY 200 -0.1 200 -0.1 100 -0.1 100 -0.1 100 -0.1
SNOMED CT 100 -0.1 100 -0.1 50 -0.1 50 -0.1 50 -0.1

Typically, distance-based metrics (such as Euclidean distance) are employed to perform
various tasks in the embeddings space. For example, in the case of word embeddings, the
task of finding similar words and related concepts is accomplished by finding the input
word’s nearest words (or concepts). Similarly, the missing links in knowledge bases are
predicted by ranking the nodes in the graph based on their distance with the source node.
We also reduce the task of subsumption in the embedding vector space as a distance-based
operation. Given a test instance of the form C v D, we take D as our source class and
rank all the other classes in the ontology in increasing order of their distance from D in the
vector space. We then compare the effectiveness of different embedding models based on
the rank at which C is present in the ranked list. An embedding model that successfully
captures the subclass relation between the two classes should be able to assign vector
representations to the two classes that are very close to each other, hence, producing a
lower rank for C.
Table 5.3 summarizes the performance of different embedding models for the subsumption
task for the six datasets. We evaluate the performance using five metrics. Hits at ranks 10
and 100 report the fraction of test cases for which the expected class was found within top
10 and 100 ranks, respectively. A median rank of m means that for 50% of the test cases,
the correct answer was found below rank m. 90th percentile rank denotes the rank value
below which the correct class was found for 90% of the test cases.
The first observation that we make from Table 5.3 is that ElEm and EmEL++ embeddings
perform better than the three commonly used knowledge graph embeddings (TransE,
TransH, and DistMult). This observation highlights the inadequacy of traditional knowl-
edge graph embeddings that do not consider the ontological constructs and rely only on
the structural properties of the underlying graph. Both ElEm and EmEL++ embeddings
incorporate specific constraints and charactersitics of EL++ description logic, and hence,
the embeddings produced by these models are better at retaining the properties of the
underlying ontologies in the vector space.
Next, we note from Table 5.3 that there is no clear winner among ElEm and EmEL++

23



Table 5.3: Embedding Models Ranking based Performance

Dataset Metric DistMult TransE TransH ELEm EmEL++

NCI

Hits@10 0.00 0.00 0.00 0.10 0.17
Hits@100 0.00 0.03 0.00 0.24 0.34
AUC 0.50 0.68 0.50 0.89 0.90
Median Rank 10818 4934 10533 672 388
90th Percentile Rank 19437 16663 18882 10200 9169

GALEN

Hits@10 0.00 0.00 0.00 0.05 0.00
Hits@100 0.00 0.03 0.00 0.42 0.24
AUC 0.50 0.77 0.53 0.91 0.92
Median Rank 10900 2829 10724 169 193
90th Percentile Rank 19966 14201 19122 8605 6804

GO

Hits@10 0.00 0.01 0.00 0.01 0.01
Hits@100 0.01 0.08 0.00 0.05 0.05
AUC 0.53 0.72 0.47 0.93 0.92
Median Rank 10084 3664 14260 657 874
90th Percentile Rank 19268 16688 19137 8710 8930

FMA

Hits@10 0.00 0.00 0.00 0.01 0.03
Hits@100 0.00 0.00 0.00 0.1 0.30
AUC 0.50 0.57 0.51 0.85 0.90
Median Rank 29350 23618 29123 2330 256
90th Percentile Rank 51856 50232 52353 47705 16605

ANATOMY

Hits@10 0.00 0.00 0.00 0.04 0.02
Hits@100 0.00 0.01 0.00 0.25 0.29
AUC 0.50 0.64 0.49 0.85 0.91
Median Rank 29214 16774 29640 481 206
90th Percentile Rank 52403 47263 53205 40909 15525

SNOMED CT

Hits@10 0.00 0.00 0.00 0.01 0.00
Hits@100 0.00 0.05 0.01 0.14 0.03
AUC 0.51 0.57 0.54 0.90 0.85
Median Rank 13228 9571 9574 1300 1002
90th Percentile Rank 24634 19248 19605 14140 12604

embeddings. For NCI and FMA ontologies, EmEL++ outperforms ElEm across all the
metrics. Also, note that ANATOMY which comprises of all the forms in sufficient number
outperforms ElEm across almost all the metrics. For GALEN,GO and SNOMED ontologies,
there is no clear winner, and each of the two methods performs better on some metrics and
has a lower performance on other metrics. This observation is consistent with previous
empirical studies comparing different link prediction methods that found that no single
method outperforms across a variety of datasets [19, 21]. We speculate that this divergence
in performance could be attributed to the different distributions of different types of axioms
in the ontology (ref. Table 5.1). Over (or under) representation of certain types of axioms
may lead to the optimization process giving more (or less) weight to the corresponding
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loss functions during the training phase. Understanding the exact mechanism behind
the performance characteristics of different ontologies is a crucial and challenging area of
future research.

Table 5.4: Accuracies achieved by the ElEm and EmEL++ embeddings in terms of geomteric
interpretation of the classes in different ontologies.

Training Validation Testing
ElEm EmEL++ ElEm EmEL++ ElEm EmEL++

NCI 0.1878 0.3345 0.1873 0.3218 0.1059 0.1348
GALEN 0.2734 0.6431 0.2687 0.6420 0.2030 0.5337
GO 0.4527 0.5925 0.4484 0.5956 0.3476 0.4438
FMA 0.0204 0.1213 0.0212 0.1209 0.0041 0.0136
ANATOMY 0.0865 0.4780 0.0892 0.4795 0.0692 0.2156
SNOMED CT 0.2455 0.5547 0.2447 0.5534 0.1835 0.3410

Next, we compare the ElEm and EmEL++ embedding models in terms of their capability
to retain the underlying characteristics of the ontology in the vector space. Recall that
both the models map the classes in an ontology to n-balls in the vector space. Further,
the mapping is such that the n-ball of a super-class subsumes the n-balls of its sub-classes.
Thus, for a test instance C v D, we check that the n-ball of class C lies inside the
n-ball of class D in the vector space. Note that since we have the centers and radii of the
corresponding n-balls, this can be checked easily. Table 5.4 presents the training, validation,
and testing accuracy obtained for the two embedding models for this task. We report
accuracy values, i.e., the fraction of instances where the subsumption relation between
the classes was maintained in the vector space. Note that accuracy is a much stricter
criterion for even if the sub-class n-ball is slightly outside the n-ball of the superclass, it
will be considered a failure. We observe from Table 5.4 that EmEL++ outperforms the
ElEm embeddings for all the datasets and across all settings. This indicates that EmEL++

embeddings are better at preserving the class relationships in the mapped vector space than
ElEm embeddings. Also, the difference in accuracy values obtained with EmEL++ and
ElEm embeddings indicate that EmEL++ is superior in terms of geometric representation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We proposed EmEL++, an ontology embedding model for EL++ ontologies. EmEL++ builds
upon and extends the previously proposed ElEm embeddings by incorporating constructs
focusing on role inclusions and role chains and offers a more complete coverage of EL++

constructs. Experiments with six different ontologies showed that EmEL++ outperforms
traditional knowledge base embeddings on the subsumption reasoning task. Further, when
compared with ElEm embeddings, it is able to better preserve the underlying semantics
of the ontologies in the vector space along with maintaining the geometric properties
associated with classes. We have also shown how to perform the subsumption reasoning
task in a vector space, which is an O(n) operation in the worst case. We believe this
is an important capability and it offers exciting directions for future work. Developing
models for embedding more complex ontologies, and non-tractable description logics in
the vector space can allow us to build more efficient reasoners. Moreover, the work can
be oriented towards checking inconsistencies in an ontology. Further, as part of future
directions exploring different relational models as the basis of our loss functions might give
new insights into impact on geometric properties of classes and relations in vector space.
Moreover, evaluating the embeddings on the basis of inferences drawn from reasoners can
help evaluate their quality better.
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