
SWaP : Meta Analysis of Static Analyzer
Reports for Accurate Warning Prioritization

By

Khushbu Yadav
IIIT-D-MTech-CS-IS-20-MT18087

Under the Guidance of
Dr. Rahul Purandare

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science & Engineering

To

Indraprastha Institute of Information Technology Delhi
Aug,2020

©2020 IIIT-D-MTech-CS-IS-20-MT18087
All rights reserved

Certificate

This is to certify that the thesis titled "SWaP : Meta Analysis of Static Analyzer
Reports for Accurate Warning Prioritization" submitted by Khushbu Yadav for
the partial fulfillment of the requirements for the degree of Master of Technology in
Computer Science & Engineering is a record of the bonafide work carried out by her under
my guidance and supervision at Indraprastha Institute of Information Technology, Delhi.
This work has not been submitted anywhere else for the reward of any other degree.

Dr. Rahul Purandare

Department of Computer Science

Indraprastha Institute of Information Technology, New Delhi

Abstract

Java being designed in a flexible and user-friendly demeanour, makes it the most accepted

programming language for the development of web applications and platforms. Due to

the immense popularity, there comes the responsibility of validation of the Java software

when the software safety, reliability and quality control is of utmost importance. The

detection of bugs in the software during the early stage helps to prevent the unbearable

cost of human effort and time to fix them when captured at later stages. Hence many

effective tools have been developed over the years to find potential bugs in the software by

analysing the code statically.

The static analysis tools use different techniques to detect a variety of bugs in the software.

As all of these tools follow distinct techniques, the bugs detected hold a minimal overlap,

thereby making it difficult to merge the analysis reports generated by them. In this

thesis, we propose a mechanism of merging the results of the static analysis tools namely

SpotBugs, PMD, SonarScanner and CheckStyle and reporting analysis results in a generic

manner. We have also incorporated the prioritizing policy to increase the overall efficiency

of the final integrated tool. This way, the user can leverage the benefits from various static

analyzers in order to improve the overall quality of the software.

Keywords: Static Analysis Tools, Bugs, Warnings

i

Acknowledgments

It is my privilege to express my sincerest gratitude to my advisor, Dr. Rahul Purandare,

for giving me the opportunity to work on this thesis project and for his valuable inputs,

guidance, and wholehearted support throughout the research. One simply could not wish

for a better or friendlier supervisor. I would like to express my deepest appreciation to

the program analysis group who have supported me throughout with their patience and

knowledge and always showed me the right direction to proceed in order to achieve the

goal. I would like to express my gratefulness to the institute, IIIT-Delhi, for providing me

with all the necessary facilities to carry out my thesis.

Lastly but importantly I would like to express profound gratitude to my parents and to

my friends for their constant encouragement throughout the process of research. This

accomplishment would not have been possible without them.

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Java Static Analysis Tool . 2

1.2.1 SpotBugs . 2

1.2.2 PMD-Project Mess Detector . 3

1.2.3 CheckStyle . 4

1.2.4 SonarScanner . 4

1.3 Research Motivation . 5

1.4 Thesis Outline . 6

2 Literature Review 7

2.1 Evaluation of Multiple Validation Tools . 7

2.2 Warning Classification and Prioritization Techniques 10

3 Methodology 14

3.1 A Small Example . 14

iii

3.2 Approach . 15

3.2.1 Algorithm . 16

3.2.2 Worst-Case Analysis of Result Merger 27

4 Experimental Results 29

5 Conclusion and Future Work 32

Appendix A Source Program 36

Appendix B SpotBugs Report 40

Appendix C PMD Report 44

Appendix D CheckStyle Report 47

Appendix E SWaP Report 51

Appendix F SonarScanner Report 56

iv

List of Figures

2.1 The percentage of errors detected by each tool for 19 Java programs by

Koricherla et al. [9] . 9

2.2 History Based Warning Prioritizing Algorithm by Kim et al. [11] 11

3.1 A sample Java code . 15

3.2 A general architecture to merge multiple static analysis tool's results . . . 16

3.3 SWaP(Meta Tool) Output . 27

4.1 Warning counts Vs Static Analyser . 31

A.1 Source Program 1 . 36

A.2 Source Program 2 . 37

A.3 Source Program 3 . 38

A.4 Source Program 4 . 38

A.5 Source Program 5 . 39

C.1 PMD report generated for program 1 . 44

C.2 PMD report generated for program 2 . 45

v

C.3 PMD report generated for program 3 . 45

C.4 PMD report generated for program 4 . 46

C.5 PMD report generated for program 5 . 46

D.1 CheckStyle report for program 1 . 47

D.2 CheckStyle report for program 2 . 48

D.3 CheckStyle report for program 3 . 49

D.4 CheckStyle report for program 4 . 49

D.5 CheckStyle report for program 5 . 50

F.1 SonarScanner report generated for program 1 56

F.2 SonarScanner report generated for program 2 57

F.3 SonarScanner report generated for program 3 58

F.4 SonarScanner report generated for program 4 59

F.5 SonarScanner report generated for program 5 60

vi

List of Tables

1.1 Summary of the static analysis tools . 5

2.1 Warning count for the categories by Almazan et al. [16] 8

2.2 Warning count per static analyser by Feldt et al. [13] 10

3.1 Ruleset table for SonarScanner . 21

3.2 Ruleset Table for SpotBugs . 24

3.3 Ruleset Table for PMD . 26

3.4 Ruleset Table for CheckStyle . 26

4.1 Statistical information about warning counts of each static analyser 30

4.2 Statistical information about resolved warning counts per static analyser . 30

vii

viii

Chapter 1

Introduction

1.1 Overview

In the development of safety and security-critical applications, it becomes very crucial to

come up with a fail-safe design as even a minor problem or error could lead to catastrophic

failure resulting in human loss. It's the responsibility of the software developers to avoid

such fatal scenarios by preventing the programs from any unexpected failures or errors,

otherwise this would lead to consequences which may not be even possible to take care

of. Hence there arises a need of discovering the bugs or errors during the early stages in

the development phase in order to prevent the additional cost to fix them. Therefore, the

validation of the software applications ensuring the software quality plays a vital role and

should be carried out throughout the development phase.

In recent years, various static analysis tools have been developed which automatically

detect error prone anomalies in the program. All of these tools follow different strategies to

identify the potential bugs that involve abstract interpretation, model checking, syntactic

pattern matching, theorem proving, symbolic execution, data flow analysis, type systems,

1

etc. The static analysis tools analyse the source code using one or more of the above

strategies and produces information regarding the bugs in the warning report. The bugs

identified by multiple analysers cover a wide range of defects with a very little overlap.

Hence due to high volume of warnings, it becomes cumbersome to figure out which warnings

need an immediate fix.

There is a need for a meta tool which integrates the results of various static analysis tools

and provides a way of prioritising the warnings generated by each of them as highlighted

by [16]. In this paper, we propose an approach to combine the results from various static

analysis tools and present the bug report in a generic form and thereby facilitating the user

to leverage the benefits of multiple static analyzers. In our project, we have chosen four

popular, publicly available static analysis tools namely SpotBugs, SonarScanner, PMD

and CheckStyle.

1.2 Java Static Analysis Tool

We have discussed about each of the selected static analysis tools in detail below:

1.2.1 SpotBugs

SpotBugs [5] is the spiritual successor of FindBugs, which is an open source static code

analyser that detects possible bugs in Java programs. It is basically a bug pattern detector

that identifies more than 400 patterns in Java bytecode. Byte Code Engineering Library

and ASM bytecode framework is used to analyse the Java classes and bugs found during

analysis are then matched with source code. In order to balance the precision, accuracy

and reliability, it uses a series of relevant techniques. The strategies adopted in SpotBugs

static analyser can be categorized into the following:

2

(a)Linear Code Scan: The Java bytecode is scanned linearly by the detectors

(b)Control Sensitive: The control flow graph is taken into account for analysing the

procedures.

(c)Analyse over Class Structure: Detectors concentrate over the structure without giving

much importance to the actual code.

(d)Dataflow Analysis: Detectors perform simple interprocedural analysis using control and

data flow graphs.

The potential bugs found after the analysis are classified into four categories based on the

severity as (1) scariest (2) scary (3) troubling (4) of concern. SpotBugs can be further

expanded by writing customised detectors in Java.

1.2.2 PMD-Project Mess Detector

PMD [2] is an open source code analyser that performs static analysis on the Java source

code based on the ruleset selected during the execution. PMD creates Abstract Syntax

Tree while checking the java source code and then applies the ruleset over this labelled

tree to find potential bugs. Unlike SpotBugs, it lacks the knowledge of data flow analysis.

The bugs found during the analysis majorly fall in the following categories: CPD (cut and

paste detector), compliance with coding standards and coding anti patterns. PMD not

only tries to capture the erroneous code but also looks for violation of stylistic conventions

that could possibly lead to suspicious results. PMD incorporates various detectors which

detects issues concerning stylistic rules and also permits us to choose a specific group of

detectors to run. PMD has 22 default rule sets that cover multiple aspects of Java code

and tries to detect bugs around these aspects. These rulesets check for security issues,

performance issues, good practices issues and correctness issues. Programmers can easily

extend the PMD ruleset by writing new bug pattern detectors using Java or XPath.

3

1.2.3 CheckStyle

Similar to PMD and SpotBugs, CheckStyle [1] is also an open source static code analysis

tool for examining the Java source code. CheckStyle helps to ensure that source code

adheres to the coding standards in order to improve the quality, reusability and readability

of the source code. It does not check for the completeness of the code (i.e. the content is

not being analysed). CheckStyle uses the configuration files namely “Google Java Style”

and “Sun Java Code Conventions” by default. It captures the issues related to various

aspects of source code such as class and method design issues. It also checks for code

layout and formatting issues. CheckStyle is highly configurable and allows the programmer

to perform customization by means of using multiple parameters. CheckStyle can be

expanded to define custom rules of coding standards.

1.2.4 SonarScanner

SonarQube [3] is an open source platform, which serves as the central server, developed

for the continuous inspection of the source code. SonarScanner [4] serves as the client

application that helps to run the analysis over the target project and sends the outcome

produced to the server (SonarQube) to process it. SonarQube provides an easier way to

perform automatic reviews by statically analysing the code to detect bugs, code smells

and security issues. SonarScanner, like SpotBugs, relies on syntactic checks and data flow

analysis(interprocedural analysis) to detect bugs. It generates reports with warnings related

to duplicated code, unit tests, coding standards, code coverage, cyclomatic complexity of

the code, comments, potential errors etc. This static analysis tool is not easily expandable.

Table 1.1 briefly summarizes each of the static analysis tools.

4

Static Analysis
Tool Name

Version
Used(Release
Year)

Input
Format

Interface Technique

SpotBugs 4.0.4(2020) Byte
code

CL Syntax,Data Flow

SonarScanner 4.3.0.2101(2020) Source
code

CL Syntax,Data Flow

PMD 6.24.0(2020) Source
code

CL,GUI,Ant,IDE Syntax

CheckStyle 8.33(2020) Source
code

CL,GUI Syntax

Table 1.1: Summary of the static analysis tools

1.3 Research Motivation

Static Analysis Tools helps the programmers to check the source code and discover the

susceptible error prone areas based on the ad hoc techniques used respectively. Moreover,

each analyser follows a distinct pattern in order to detect the bugs lying in the code and

thereby covering a wide range of defects with a very little overlap i.e. minimal correlation.

Different analysers are good at capturing certain defects by checking against specific

aspects of the code. Hence there is no single bug finding tool which gives the best results.

With the large volume of warnings reported by the static analysers, the programmers find

it difficult to look over each bug in order to fix them. Many times, the bugs are found

to be false positives. This problem gives rise to the need of developing a meta tool that

integrates the results of multiple static analyzers intelligently by combining the important

warnings generated by each of the tools (SpotBugs, PMD, SonarScanner and CheckStyle).

Moreover, prioritising the merged warnings would help the programmer to figure out which

of the reported bugs needs immediate action to be performed.

5

1.4 Thesis Outline

Our dissertation embodies five chapters which are listed as (after the Introduction):

Chapter 2 provides a background on the evaluation of various static analysis tools.

Furthermore, multiple techniques have been discussed to prioritize the warnings reported

by static analysers.

Chapter 3 gives the detailed description of the methodology proposed to integrate the

warning detected by multiple static analysis tool and provides a mechanism to assign

priorities to the integrated warnings in the final merged report of the meta tool.

Chapter 4 presents the user study depicting the evaluation of the meta tool against the

existing static analysers (SpotBugs, CheckStyle, PMD and SonarScanner).

Chapter 5 summarizes the entire thesis project in few lines and suggest the future work

that can be done.

6

Chapter 2

Literature Review

The main goal of static analysis tools is to analyse the source code and discover certain

flaw susceptible areas. With the passage of time, different analyzers have been developed

to serve the purpose of detecting the bugs. The techniques to prioritise the warnings

reported by multiple static analysis tools has also been the main concern of researchers.

In addition to that, a lot of research has been done to evaluate the effectiveness of several

analysers which has been discussed in this section.

2.1 Evaluation of Multiple Validation Tools

Almazan et al. [16] tries to compare the outputs generated by different static analyzers.

In the experiment, they have focused on 5 bug finding tools namely Bandera, ESC/Java 2,

FindBugs, JLint and PMD. They have run these tools over various Java programs(variable-

sized) from multiple domains. As each analyser reports a bulk of warnings (see table

2.1), the evaluation process could become tedious and hence to ease up the task they

have cross checked the common warnings and focused mainly on three checking tasks -

concurrency errors, null dereferences and array bounds error. They have proposed two

7

metrics to compare the effectiveness of the static analyser. First metric is the normalized

warning total which can be defined as the summation of the normalized warning count by

each of the tools. Normalized warning count for tools is defined as the ratio of warnings

reported for a class to the maximum number of warnings reported among all the classes.

The second metric is the unique warning total, which gives the information about distinct

warnings reported by each tool.

Warnings ESC/JAVA FindBugs Jlint PMD
Concurrency Warnings 126 122 8883 0
Null Dereferencing 9120 18 449 0
Null Assignment 0 0 0 594

Index out of Bounds 1810 0 264 0
Prefer Zero Length Array 0 36 0 0

Table 2.1: Warning count for the categories by Almazan et al. [16]

Koricherla et al. [9] also tried to compare the outputs generated by several validation tools.

They have chosen four static analysis tools in lieu of the experiment i.e. FindBugs, PMD,

CheckStyle and UCDetector. Their evaluation process involves a way of accumulating

the warnings reported by the tools into two categories namely Important Bugs (Malicious

code, clone, exception handling issue, etc.) and Unimportant Bugs (naming conventions,

program styling, etc.). They calculated the percentage of warnings falling in the important

bug category and based on that checked the efficiency of each static analyser. They

showed that maximum warnings reported by these tools were non overlapping as they

follow different techniques to capture them (see Fig 2.1). Moreover, they showed that

FindBugs discovered 100% of the important warnings. They also concluded that PMD is

more efficient than CheckStyle.

Barr et al. [14] have tried to compare two disparate approaches-statistical defect prediction

and static bug finders with a similar footing of capturing the defect prone areas of the

code. They have used the historical defect data to compare the two approaches and seek

8

Figure 2.1: The percentage of errors detected by each tool for 19 Java programs by Koricherla et
al. [9]

similarities. They have shown that statistical defect prediction performs better than PMD

in most of the cases (partial as well as full credit accounting). Whereas statistical defect

prediction tends to perform worse than FindBugs in full credit accounting. However, they

have shown that when the ordering of warnings (generated by FindBugs) is done using

priorities produced by defect predictors, it significantly improves the static bug finder

priority levels in the majority of the cases.

Feldt et al. [13] have discussed the comparison regarding capabilities of various static

analyzers to detect the Java concurrency bugs. The concurrency bugs in multithreaded

programs are not easily detected compared to the bugs in sequential programs. The

concurrency issues could be broadly classified into two intrinsic properties i.e. safety and

liveness properties. The safety property can be stated as that nothing bad will happen

during the program execution whereas the liveness property states that something good

will eventually happen as execution progresses. The major issues under these properties

are deadlocks, race conditions, livelocks, starvation, etc. They have selected FindBugs,

9

Joint, Coverity Prevent and Jtest for the experiment. They have run these tools on 20

multithreaded Java programs. Based on the defect detection(refer Table 2.2) and ration

and by determining the false positive rates of the tools, they have shown that Jtest is best

suited for capturing the bugs related to data race and atomicity violation, but it has a

high false positive rate compared to other tools. FindBugs also turned out to be a better

one as it checks for a large number of concurrency bug patterns compared to others with

a reduced false positive.

Warning Type Coverity Prevent FindBugs Jtest Jlint
General 5 2 136 0
True 4 8 21 11

False Positive 4 5 16 20
Undetermined 3 1 8 3

Total 16 16 181 34

Table 2.2: Warning count per static analyser by Feldt et al. [13]

Valente et al. [7] have done a study to check on the relevance of warnings reported by

FindBugs and PMD. They have taken into account the number of warnings reported and

its lifetime to perform comparative analysis. They showed that the warning relevance rate

of FindBugs was more than PMD (generating too many false positives).

2.2 Warning Classification and Prioritization Tech-

niques

Ernst et al. [11] have proposed a way of eliminating the false positive warnings from a

program by prioritizing them. They have inspected the warnings generated by three static

analysers in the experiment- FindBugs, Jlint and PMD for three subject programs Columba,

Lucene and Scarab and have found that the majority of the warnings do not indicate real

bugs. They proposed a history-based warning prioritization algorithm (program specific

10

Figure 2.2: History Based Warning Prioritizing Algorithm by Kim et al. [11]

prioritization) by mining the software change history of removed warnings during the bug

fixes (see Fig 2.2). Whenever the developer tries to fix the warning, it clearly shows that

the warning was important. Moreover, when the warning remains unattended for a long

period of time, it shows that the warning does not point to potential bugs. Based on this

intuition, they have assigned weights to each of the warning categories which is directly

proportional to the number of warning instances of the category being eliminated from

the software history by a fixed change. This way they have assigned high priority to the

warnings belonging to the categories with high weights and vice versa. Similarly, Kim et

al. [10] also proposed a prioritizing algorithm based on the lifetime of warnings captured

from the software change history.

Snavely et al. [8] have developed an automated statistical classifier which predicts whether

the alerts generated by a static analyser are true or false positive by means of combining

multiple static analysis tools, features from the alerts, alert fusion, code base metrics and

11

archived audit determination. The data used in the experiment consists of archives for 19

CERT audited codebases. The classification techniques being compared are Classification

and Regression Trees, Lasso Logistic Regression, Extreme Gradient Boosting and Random

Forest. They have developed the classifier using partition of the data and tested its perfor-

mance based on merit measurements like specificity, sensitivity and accuracy. Similarly,

Meirelles et al. [15] have also developed a prediction model that extracts the feature from

the reports generated by different static analysers and are used to train a set of decision

trees using AdaBoost to create a stronger classifier. At last this classifier is being used to

rank the static alarms based on the probability of whether the alarm corresponds to the

actual bug in the source code.

Allier et al. [6] have proposed a framework for comparing the alert ranking algorithms

to check which one is best among them. The algorithms involved in this experiment are

FeedBackRank, RPM, Z-Ranking, AWARE, AlertLifeTime and EFindBugs. Moreover,

the framework uses a benchmark which covers two programming languages- Java and

Smalltalk along with three bug finding tools namely FindBugs, PMD and SmallLint. They

have shown that AWARE works best for ranking the alerts followed by FeedBackRank.

Liang et al. [12] have tried to improve the efficiency for warning prioritization by means of

ranking scores of static analysis tools. In order to do so, they have taken into consideration

three categories of impact factors as input features of the training set and have proposed

a new heuristic for discovering the actionable alerts for labelling the training set. The

training set is built by identifying the generic bug fix revisions, generic bug related lines

then generating static analysis warnings and finally extracting the training set. They

have used machine learning predictors to provide ranking scores for warnings. Bayesian

Network, Logistic Regression, K-nearest Neighbours, Bootstrap Aggregating, Random

Tree, and Decision Table are the algorithms used to train the predictor and 10 folds cross

is used in the validation phase.

12

Ruthruff et al. [17] also provided automated support to meet the challenge of detecting

the bogus false positive warnings and actionable warnings that are not acted on. They

have used a logistic regression model which predicts the foregoing types of warnings from

signals in the warnings and implicated code. In order to predict the actionable static

analysis warning with high accuracy, they have used screening methodology to quickly

discard factors with low predictive power.

As we cannot rely on a single static analysis tool to capture all the actionable alerts,

our methodology tries to address the above problem and provides a way to combine the

important warnings reported by multiple static analysis tools.

13

Chapter 3

Methodology

3.1 A Small Example

The sample code (processing sql statements with jdbc) in the Fig. 3.1 is compiled

successfully by the Java 1.11 compiler without any warning or error. However, when

it was brought to the four static analysers, several defects were detected in the source

code. SpotBugs reported 6 warnings which includes: (1)Hardcoded constant database

password at line 7; (2) main.java.CloseConn.main(String[]) may fail to close Connection

at line 7; (3) main.java.CloseConn.main(String[]) may fail to close Statement at line 9;(4)

main.java.CloseConn.main(String[]) may fail to clean up java.sql.Statement Obligation to

clean up resource created at line 9. (5) main.java.CloseConn.main(String[]) may fail to

clean up java.sql.ResultSet Obligation to clean up resource created at line 10 (6) Exception

is caught when Exception is not thrown at line 17. PMD reported 5 warnings that mentions

“All methods are static. Consider using a utility class instead. Alternatively, you could add

a private constructor or make the class abstract to silence this warning at line 4”, “Ensure

that resources like this Connection object are closed after use at line 7”, “Ensure that

14

Figure 3.1: A sample Java code

resources like this Statement object are closed after use at line 9”,“This statement should

have braces at line 11”, “Ensure that resources like this ResultSet object are closed after

use at line 10”. SonarScanner reported 9 issues which says: “The file should be located

in main/java at line 1”, “Move the array designator from the variable to the type at line

4”, “Remove this Class.forName() as it is useless at line 6”, “Use try-with-resources or

close this "Connection" in a "finally" clause at line 7”, “Use try-with-resources or close this

"Statement" in a "finally" clause at line 9”, “ Use try-with-resources or close this "ResultSet"

in a "finally" clause at line 10” and other warnings related to better programming practices.

CheckStyle produced 36 warnings related to the formatting and class design issues. There

is very little overlap between the errors detected by each of the static analysers.

3.2 Approach

In order to integrate the results generated by the four static analysis tools, we have

proposed the following strategy which is illustrated in the figure 3.2.

15

Figure 3.2: A general architecture to merge multiple static analysis tool's results

3.2.1 Algorithm

SWaP{

List<AnalysisReports> dispatcher(sourceCode, classFile);

List<AnalysedReports> patternMatcher(List<AnalysisReports>);

File finalResult=resultMerger(impSpot,impPmd,impSonar,impCheck);

Sort the finalResult based on lineNumber;

Display finalResult;

}

List<AnalysisReports> dispatcher(sourceCode, classFile){

Runs the script file to generate analysis reports w.r.t each static analyser

return SpotBugs_Analysis_Report,SonarScanner_Analysis_Report,

Pmd_Analysis_Report,CheckStyle_Analysis_Report

}

16

patternMatcher(List<AnalysisReports>){

impSpot=spotbugParser(SpotBugs_Analysis_Report)

impSonar=sonarParser(SonarScanner_Analysis_Report)

impPmd=pmdParser(Pmd_Analysis_Report)

impCheck=checkstyleParser(CheckStyle_Analysis_Report)

return impSpot, impSonar, impPmd, impCheck

}

spotbugParser(spotbugReport){

Scan each warning reported against the ruleset of SpotBugs.

if (warning.matches(ruleset))

then mark warning as important;

else

mark warning as unimportant.

add important warnings by overriding the spotbugReport.

return spotbugReport

}

pmdParser(pmdReport){

Scan each warning reported against the ruleset of Pmd.

if (warning.matches(ruleset))

then mark warning as important;

else

mark warning as unimportant.

add important warnings by overriding the pmdReport.

return pmdReport

}

17

sonarParser(sonarReport){

Scan each warning reported against the ruleset of SonarScanner.

if (warning.matches(ruleset))

then mark warning as important;

else

mark warning as unimportant.

add important warnings by overriding the sonarReport.

return sonarReport

}

checkParser(checkstyleReport){

Scan each warning reported against the ruleset of CheckStyle.

if (warning.matches(ruleset))

then mark warning as important;

else

mark warning as unimportant.

add important warnings by overriding the checkstyleReport.

return checkstyleReport

}

File resultMerger(impSpot,impPmd,impSonar,impCheck){

File finalReport;

Append the warnings of impSpot into the finalReport with default priority(low).

Foreach warning w in impSonar

Foreach warning s in finalReport

if (w.line==s.line)

if(similarity(w.warning,s.warning)<0.5)

add w to finalReport with default priority.

18

else

Set high priority for warning s in finalReport.

else

add w to the finalReport with default priority.

Foreach warning w in impPmd

Foreach warning s in finalReport

if (w.line==s.line)

if(similarity(w.warning,s.warning)<0.5)

add w to finalReport with default priority.

else

Set high priority for warning s in finalReport.

else

add w to the finalReport with default priority.

Foreach warning w in impCheck

Foreach warning s in finalReport

if (w.line==s.line)

if(similarity(w.warning,s.warning)<0.5)

add w to finalReport with default priority.

else

Set high priority for warning s in finalReport.

else

add w to the finalReport with default priority.

return finalReport

}

The target Java source code along with its class file is fed as an input to the dispatcher.

The main task of the dispatcher is to run four static analysis tools namely SpotBugs,

19

CheckStyle, PMD and SonarScanner over this input program. Before the dispatcher tries

to begin the analysis, a connection to SonarQube server is made to capture the results

of SonarScanner static analyser for performing further analysis. Once the connection is

established successfully, the dispatcher runs a script which helps the static analysers to

execute parallelly. When all of the static analysis tools have complete their inspection on

the java program, the dispatcher pipelines the analysis report generated by each of these

tools to their corresponding files.

The pattern matcher uses four parsers corresponding to each static analysis tool which

helps to scan the respective analysis report and classifies the warnings detected in the

target source code into two categories i.e. Important warnings and Unimportant warnings.

The parser compares the analysis report against the ruleset table of the respective static

analyser. The ruleset table is prepared by scanning several bug tracking repositories

like Apache Jira and Oracle Java Bug Repository to figure out which warnings lead

to potential bugs. It is observed that warnings that are immediately fixed when being

reported hold utmost importance. Hence, while scanning through the Oracle Java bug

repositories and issue tracking system-JIRA, the major selection criterias to identify

important warnings were status(closed), resolution(fixed), and the related priority of

the warning.(P1-P3 in case of Oracle Java Bug repository and major-critical in case of

Jira). The warnings falling in the above criteria are considered as important warnings.

The important warnings includes issues related to Cyclomatic Complexity, Improper

Boolean Checks and Complex Expressions, Multithreading and synchronization, Java

Bean, Conditional loops and complex control statements, Abstract and Clone interface

Rules, Null checks and Comparison,Unhandled Exceptions, and Out of Bound conditions.

The ruleset table contains information regarding the important warnings of a particular

static analyser. When the category of the detected warnings matches with the rules in the

ruleset table, it is categorized as Important warning.The ruleset table 3.2 is the subset of

20

source ruleset [5].The ruleset table 3.3 is the subset of the source ruleset [2]. The ruleset

table 3.4 is the subset of the source ruleset [1]. The ruleset table of SonarScanner is shown

in the table 3.1.

Category Level
Bug Blocker
Bug Critical
Bug Major
Bug Minor

Vulnerability Blocker
Vulnerability Critical
Vulnerability Major
Vulnerability Minor
Code Smell Critical
Code Smell Blocker

Table 3.1: Ruleset table for SonarScanner

The defects matched with the ruleset table are accumulated together in the respective

analysis reports and sent for the next step to combine and prioritize the warnings. In the

prioritization technique, warnings detected by more than one static analyser are assigned

higher priority than the ones detected by a single tool. The result merger directs all the

warnings of SpotBugs to meta tool report with priority set to “low”. Then the important

warnings reported by SonarScanner are compared against the warnings of meta tool to

raise the priority level of the warning to “high” when similar warning is detected. Since

every analyser has its own way of reporting warnings with somewhat different message,

we have detected similarity between warnings based on the description of the warning i.e.

if the warning reported by two different static analyser for particular line in the source

code matches with each other with a probability> 0.5, then it is highly likely that both

are pointing to the same issue. If the warnings captured by SonarScanner do not match

with meta tool report then they are simply appended to the SWaP report with priority

set to low. Similar process is followed for adding the PMD and CheckStyle warnings to

21

Ruleset Rule Description
Bad Practices BC Argument type should not be pre assumed by Equals

method.
Bad Practices BIT Bitwise operations check.
Bad Practices CN Class defines clone() but doesn’t implement Cloneable,

clone method does not call super.clone()

Bad Practices DE Exception may be drooped or ignored by the method.
Bad Practices Eq Covariant equals() method defined by abstract class
Bad Practices HE Class defines hashCode() but not equals(), Class inher-

its equals() and uses Object.hashCode(), Class defines
equals() but not hashCode().

Bad Practices NP Possible null return by toString() and Clone method.
Bad Practices OS Method might not close the stream.
Bad Practices RC Suspicious reference comparison of Boolean values.
Bad Practices Se Non-serializable value stored into the instance field of

a serializable class, Non-serializable class has a seri-
alizable inner class, declare Object as return type for
readResolve method.

Bad Practices FI Finalizer nulls out the field.
Bad Practices UI Extension of class may lead to unsafe usage of GetRe-

source.
Bad Practices IMSE Dubious catching of IllegalMonitorStateException.
Bad Practices ES Comparison of String parameter is on;y permitted

using == or !=, Class defines compareTo(. . .) and
uses Object.equals().

Bad Practices It NoSuchElementException cannot be thrown by itera-
tor's next() method.

Bad Practices ME Enum field is public and mutable and unconditionally
enum() sets its field.

Bad Practices RR Method ignores results of InputStream.read().
Bad Practices RV Negating the result of compareTo()/compare().
Bad Practices ODR Method may fail to close database resources.
Correctness BIT Check for signs of bitwise operation involving negative

numbers.
Correctness EC Using pointer equality to compare different types, Call

to equals(null).
Correctness DMI Reversed method arguments.
Correctness Eq Equals method always returns true, equals() method

called doesn’t override Object.equals(Object).
Correctness NP Method with Optional return type returns explicit

null.

22

Ruleset Rule Description
Correctness UR The field method called from superclass's constructor

performs uninitialized read
Correctness NM Class defines hashcode(); should it be hashCode()?,

Apparent method/constructor confusion, Class defines
tostring(); should it be toString()?

Correctness HE Hashed data structure used in class without invoking
hashCode().

Correctness RANGE Array Index is out of bounds.
Correctness SQL Method tries to use a result set field with index 0,

Unnecessary type check done using instanceof operator.
Multithreaded DL Synchronization on Boolean, Synchronization on boxed

primitive.
Multithreaded IS Inconsistent synchronization.
Multithreaded MWN Mismatched wait() or notify()
Multithreaded NP Redundanct check of null value using instanceOf oper-

ator.
Multithreaded TLW Holding two locks waiting for another resource
Multithreaded UG Using synchronized set method and unsynchronized

get method.
Multithreaded UW Unconditional wait.
Multithreaded WS Class’s writeObject() method is synchronized but noth-

ing else is.
Performance DM Explicit garbage collection; extremely dubious ex-

cept in benchmarking code, Method invokes ineffi-
cient Boolean constructor; use Boolean.valueOf(. . .)
instead.

Security DM Hardcoded constant / empty database password.
Security HRS HTTP Response splitting vulnerability.
Security XSS cross site scripting vulnerability is shown by the servlet

in error page.
Dodgy Code BC instanceof will always return true,

Unchecked/unconfirmed cast of return value
from method.

Dodgy Code CD Test for circular dependencies among classes.
Dodgy Code CI Class is final but declares a protected field.
Dodgy Code DM Thread passed where Runnable expected.
Dodgy Code DMI Non serializable object written to ObjectOutput.
Dodgy Code Eq Unusual equals method, Class doesn’t override equals

in superclass.
Dodgy Code NP Dereferencing the readLine()'s result without perform-

ing any null check.

23

Ruleset Rule Description
Dodgy Code QF Improper and unconventional increment in conditional

loop.
Dodgy Code REC Exception is caught when exception is not thrwon.
Dodgy Code Se Private readResolve method not inherited by sub-

classes.
Experimental OBL Over checked exception, method might not close the

resource.

Table 3.2: Ruleset Table for SpotBugs

Ruleset Rule Description
Best
Prac-
tices

AbstractClassWithoutAbstractMethod Abstract class does not con-
tain any abstract method.

Best
Prac-
tices

ASwitchStmtsShouldHaveDefault Add default option to
switch to catch unspecified
values.

Code
Style

AbstractNaming Abstract classes should be
named ‘AbstractXXX’.

Code
Style

ControlStatementBraces Braces are required around
conditional statements.

Code
Style

LocalVariableCouldBeFinal Local variables declared
only once can be declared
as final.

Code
Style

MethodArgumentCouldBeFinal Method arguments never
re-assigned within the
method can be declared as
final.

Code
Style

SuspiciousConstantFieldName Constant fields should be
declared with uppercase
to differentiate them with
other variables.

Design CyclomaticComplexity Concentrating too much de-
cisional logic within a sin-
gle method makes it hard
to read or modify.

Design SimplifyBooleanExpressions Avoid unnecessary compar-
isons in boolean expres-
sions.

24

Ruleset Rule Description
Design SimplifyBooleanReturns Avoid unnecessary condi-

tional tests while returning
a boolean.

Design SimplifyConditional Do not check for null before
an instanceof as it returns
false when argument is null.

Error
Prone

AvoidInstanceofChecksInCatchClause Every exception that is
caught should be handled
in its own catch clause.

Error
Prone

BeanMembersShouldSerialize If a class itself is bean or
being referenced indirectly
by a bean should be serial-
izable.

Error
Prone

CloneMethodMustImplementCloneable Method clone() should only
be defined if the class im-
plements a Cloneable inter-
face.

Error
Prone

CloneReturnTypeMustMatchClassName If the class implements a
Cloneable interface then
its return type of clone()
method should match the
classname.

Error
Prone

CloneThrowsNotSupportedException Clone() method should
throw a CloneNotSupport-
edException.

Error
Prone

CloseResource Ensure that the resources
of any type are closed after
its usage.

Error
Prone

ConstructorCallsOverridableMethod Calling an overridable
method during the con-
struction phase may result
in imposing a risk of
invoking methods on an
incompletely constructed
object and can be difficult
to debug.

Error
Prone

EqualsNull Use == operator instead of
equals method to check for
null.

Error
Prone

MissingBreakInSwitch Switch case without a
break or return for any case
could result in problematic
behaviour.

25

Ruleset Rule Description
Error Prone ProperCloneImplementation Object clone() should

be implemented with
super.clone().

Error Prone SuspiciousEqualsMethodName The method name closely
resembles equals(Object).

Multithreading AvoidsynchronizedAtMethodLevel Method level synchroniza-
tion should be avoided to
prevent the issues when
adding new code to it.

Table 3.3: Ruleset Table for PMD

Rule Description
AbstractClassName Ensures that the names of abstract classes conforming

to some regular expression and check that abstract
modifier exists.

AvoidInlineConditionals Detects inline conditionals.
ClassFanOutComplexity Checks the number of other classes a given class relies

on.
CovariantEquals Checks that classes which define a covariant equals()

method also override method equals(Object).
CyclomaticComplexity Checks cyclomatic complexity against a specified limit.
DesignForExtension Checks that classes are designed for extension.
EqualAvoidsNull Checks that any combination of String literals is on

the left side of an equals() comparison.
EqualsHashCode Checks that classes that either override equals() or

hashCode() also overrides the other.
FallThrough Checks for a switch case that lacks break, return, throw

or continue statement.
FinalParameters Checks that parameters for methods, constructors,

catch and for-each blocks are final.
MethodLength Long methods and constructors.
MissingSwitchDefault Checks for a default clause in the switch statement.
NeedBraces Checks for braces around code blocks.
NPathComplexity Checks the number of possible execution paths through

a function against a specified limit.
Linelength Checks for long lines.
SimplifyBooleanExpression Checks for over-complicated boolean expressions.
SimplifyBooleanReturn Checks for over-complicated Boolean return state-

ments.

Table 3.4: Ruleset Table for CheckStyle

26

Figure 3.3: SWaP(Meta Tool) Output

the final report. Once the result merger has successfully integrated all of the reports, sort

operation is performed on the warning set to arrange it in the order of line number. The

final output is displayed in triplet form representing the line number, priority and detailed

description of the warnings. The figure below shows the final output of the meta tool for

the Sample Java code shown in Fig 3.3.

3.2.2 Worst-Case Analysis of Result Merger

Consider a scenario where each analyser reports n important warnings with no correlation.

The important warnings reported by SpotBugs are directed to the SWaP report.Hence

no comaprisons were made for merging SpotBugs warnings. Now, we have ‘n’ warnings

in the merged report. The n number of important warnings reported by SonarScanner

are compared against each warning in the merged report. The number of comparisons

made for merging SonarScanner warnings are n2 resulting in ‘2n’ warnings in the SWaP

report. Now, the n number of important warnings reported by PMD are compared against

each warning in merged report.Therefore, the number of comparisons made for merging

PMD warnings0 are 2n2. which results in ‘3n’ warnings in the merged report. Finally,

the n number of important warnings reported by CheckStyle are compared against each

warning in the merged report. So, the number of comparisons made for merging CheckStyle

27

warnings are 3n2.

Worst Complexity for Result Merger for k analyzers = 0 + n2 + 2n2 + 3n2... + (k − 1)n2

=n2
(

k(k−1)
2

)
=O(n2k2)

But in our thesis, we have combined the results of four static analysers i.e. k=4, therefore

the worst-case complexity for Result Merger can be given as O(n2).

28

Chapter 4

Experimental Results

We have conducted an experiment in order to compare and validate the performance

of the meta tool against the existing static analysers. In this experiment, five Java

developers have participated with a minimum of 2 years of industrial experience in java

programming holding a bachelor degree in computer science and engineering. To carry out

the preliminary study, each developer has been given five java programs(written by java

developers other than the participants) along with five distinct analysis reports respectively

(see Appendix). The analysis reports of five static analyzers namely SpotBugs, CheckStyle,

PMD, SonarScanner and our meta tool have been renamed to Sam, Charlie, Paul, Sophie

and Martha respectively in order to hide the actual identity of the tool from the users

avoiding any kind of biasness.

The programmers were given a fixed time interval of 15 minutes to resolve the warnings

detected in the analysis report of a program. The program lengths vary from 35-50 lines.

The information about the warnings detected by multiple static analysers corresponding

to each program is shown in the table 4.1.

The study is conducted in such a way that each programmer will receive one of the five

renamed analysis report per program. This way, all the analysis reports were distributed

29

Analysis Tool Minimum num-
ber of warnings
reported

Average num-
ber of warnings
reported

Maximum num-
ber of warnings
reported

CheckStyle 21 47 104
PMD 1 5 8
SpotBugs 2 5 10
SonarScanner 9 13 18
SWaP 6 8 11

Table 4.1: Statistical information about warning counts of each static analyser

uniformly among the programmers. To compare the performance of our meta tool, the

programmers were asked to tell about the number of warnings they were able to resolve

per program in the given time frame. Based on the feedback collected from the developers,

we have presented the data in the bar chart which gives a pictorial view of the evaluation

of all the static analysis tools. The Fig. 4.1 displays the information about the number of

warnings resolved in a program corresponding to each analysis report. We calculated the

average and extremum counts of warnings resolved by the developers with respect to each

report as represented in the table 4.2 .

Analysis Tool Minimum num-
ber of warnings
resolved

Average num-
ber of warnings
resolved

Maximum num-
ber of warnings
resolved

CheckStyle 1 3 5
PMD 0 3 6
SpotBugs 0 2 4
SonarScanner 1 3 6
SWaP 4 5 6

Table 4.2: Statistical information about resolved warning counts per static analyser

We can clearly state from the above statistical information that our meta tool (SWaP)

helps the programmer to resolve maximum number of important warnings in a program

with respect to other analysers.

30

Figure 4.1: Warning counts Vs Static Analyser

31

Chapter 5

Conclusion and Future Work

In the thesis, we have presented an approach to integrate the warnings from the analysis

reports of multiple static analysis tools namely SpotBugs, PMD, SonarScanner and

CheckStyle in order to leverage the benefits of each of the static analysers as most of

the times they report distinct warnings related to data flow analysis, syntactic pattern

matching, symbolic execution etc. with a very little overlap. We have also proposed a

mechanism to assign priorities to the warnings detected by the meta tool that facilitates

the programmer to fix the important warnings first.

In the future, we would like to develop meta tools for other programming languages as well.

Also, we would like to work on developing an easy to use GUI or plugin of the meta tool. As

our research goes on, we would like to further improve the categories involving important

and unimportant warnings to achieve a better accuracy for the actionable warnings. We

would like to improve upon the prioritization technique by involving contextual information

of the source code to decide which warning points out to immediate actionable alert along

with introducing multiple levels of severity (range varying from 1 to 5).

32

Bibliography

[1] Checkstyle. https://checkstyle.sourceforge.io/cmdline.html.

[2] Pmd. https://pmd.github.io/latest/pmd_rules_java.html.

[3] Sonarqube. https://www.sonarsource.com/products/sonarqube/.

[4] Sonarscanner.

https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/.

[5] Spotbugs.

https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html.

[6] Simon Allier, Nicolas Anquetil, Andre Hora, and Stephane Ducasse. A framework to

compare alert ranking algorithms. In Proceedings of the 2012 19th Working

Conference on Reverse Engineering, WCRE ’12, page 277–285, USA, 2012. IEEE

Computer Society.

[7] J. E. M. Araújo, S. Souza, and M. T. Valente. Study on the relevance of the

warnings reported by java bug-finding tools. IET Software, 5(4):366–374, 2011.

[8] Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin,

Jennifer Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-Santurio.

Prioritizing alerts from multiple static analysis tools, using classification models. In

33

https://checkstyle.sourceforge.io/cmdline.html
https://pmd.github.io/latest/pmd_rules_java.html
https://www.sonarsource.com/products/sonarqube/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/
https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html

Proceedings of the 1st International Workshop on Software Qualities and Their

Dependencies, SQUADE ’18, page 13–20, New York, NY, USA, 2018. Association for

Computing Machinery.

[9] Agata Gruza, Ramya Krishna Koricherla, and Clemente Izurieta. Evaluation of

validation tools of java.

[10] S. Kim and M. D. Ernst. Prioritizing warning categories by analyzing software

history. In Fourth International Workshop on Mining Software Repositories

(MSR’07:ICSE Workshops 2007), pages 27–27, 2007.

[11] Sunghun Kim and Michael D. Ernst. Which warnings should i fix first? In

Proceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, ESEC-FSE ’07, page 45–54, New York, NY, USA, 2007. Association for

Computing Machinery.

[12] Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, and Hong Mei.

Automatic construction of an effective training set for prioritizing static analysis

warnings. In Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering, ASE ’10, page 93–102, New York, NY, USA, 2010. Association

for Computing Machinery.

[13] Md Abdullah Mamun, Aklima Khanam, Håkan Grahn, and Robert Feldt.

Comparing four static analysis tools for java concurrency bugs. 09 2010.

[14] Foyzur Rahman, Sameer Khatri, Earl T. Barr, and Premkumar Devanbu. Comparing

static bug finders and statistical prediction. In Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, page 424–434, New York, NY, USA,

2014. Association for Computing Machinery.

34

[15] Athos Ribeiro, Paulo Meirelles, Nelson Lago, and Fabio Kon. Ranking warnings from

multiple source code static analyzers via ensemble learning. In Proceedings of the

15th International Symposium on Open Collaboration, OpenSym ’19, New York, NY,

USA, 2019. Association for Computing Machinery.

[16] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug finding tools for

java. In 15th International Symposium on Software Reliability Engineering, pages

245–256, 2004.

[17] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and

Gregg Rothermel. Predicting accurate and actionable static analysis warnings: An

experimental approach. In Proceedings of the 30th International Conference on

Software Engineering, ICSE ’08, page 341–350, New York, NY, USA, 2008.

Association for Computing Machinery.

35

Appendix A

Source Program

The five java programs along with their analysis reports used in the experiment are given

as:

Figure A.1: Source Program 1

36

Figure A.2: Source Program 2

37

Figure A.3: Source Program 3

Figure A.4: Source Program 4

38

Figure A.5: Source Program 5

39

Appendix B

SpotBugs Report

The SpotBugs report generated for program 1 detects the following warnings:

• L D RCN: Redundant nullcheck of bar, which is known to be non-null in

main.java.SimplifyBool.main(String[]) Redundant null check at

SimplifyBool.java:[line 13].

• M S Dm: Hardcoded constant database password in main.java.SimplifyBool.foo(int)

At SimplifyBool.java:[line 26]

• M B ODR: main.java.SimplifyBool.foo(int) may fail to close Connection At

SimplifyBool.java:[line 26]

• M B ODR: main.java.SimplifyBool.foo(int) may fail to close Statement At

SimplifyBool.java:[line 27]

• L C SIO: main.java.SimplifyBool.main(String[]) does an unnecessary type check

using instanceof operator when it can be determined statically At

SimplifyBool.java:[line 13]

40

• L B ISC: main.java.SimplifyBool.main(String[]) needlessly instantiates a class that

only supplies static methods At SimplifyBool.java:[line 12]

• L D REC: Exception is caught when Exception is not thrown in

main.java.SimplifyBool.foo(int) At SimplifyBool.java:[line 32]

• M X OBL: main.java.SimplifyBool.foo(int) may fail to clean up java.sql.Statement

Obligation to clean up resource created at SimplifyBool.java:[line 27] is not

discharged

• M X OBL: main.java.SimplifyBool.foo(int) may fail to clean up java.sql.ResultSet

Obligation to clean up resource created at SimplifyBool.java:[line 28] is not

discharged

• M D BC: instanceof will always return true for all non-null values in

main.java.SimplifyBool.main(String[]), since all main.java.SimplifyBool are

instances of main.java.SimplifyBool At SimplifyBool.java:[line 13]

The SpotBugs report generated for program 2 detects the following warnings:

• M B CN: Class main.java.CycloComplexity implements Cloneable but does not

define or use clone method At CycloComplexity.java:[lines 3-57].

• L D DLS: Dead store to c in main.java.CycloComplexity.example() At

CycloComplexity.java:[line 41].

The SpotBugs report generated for program 3 detects the following warnings:

• M S Dm: Hardcoded constant database password in

main.java.CloseConn.main(String[]) At CloseConn.java:[line 11].

41

• M B ODR: main.java.CloseConn.main(String[]) may fail to close Connection At

CloseConn.java:[line 11].

• M B ODR: main.java.CloseConn.main(String[]) may fail to close Statement At

CloseConn.java:[line 14]

• L D REC: Exception is caught when Exception is not thrown in

main.java.CloseConn.main(String[]) At CloseConn.java:[line 19]

• M X OBL: main.java.CloseConn.main(String[]) may fail to clean up

java.sql.ResultSet Obligation to clean up resource created at CloseConn.java:[line

15] is not discharged.

• M X OBL: main.java.CloseConn.main(String[]) may fail to clean up

java.sql.Statement Obligation to clean up resource created at CloseConn.java:[line

14] is not discharged.

The SpotBugs report generated for program 4 detects the following warnings:

• M D SF: Switch statement found in main.java.NpEx.main(String[]) where default

case is missing At NpEx.java:[lines 12-32].

• M D SF: Switch statement found in main.java.NpEx.main(String[]) where one case

falls through to the next case At NpEx.java:[lines 14-17].

• M C EC: Call to equals(null) in main.java.NpEx.foo() At NpEx.java:[line 51].

The SpotBugs report generated for program 5 detects the following warnings:

• M D UC: Useless object stored in variable y of method

main.java.Erroneous.func(int) At Erroneous.java:[line 25].

42

• M D DLS: Dead store to v in main.java.Erroneous.equals(String) At

Erroneous.java:[line 8].

• L D DLS: Dead store of null to v in main.java.Erroneous.equals(String) At

Erroneous.java:[line 9].

• M D FE: Test for floating point equality in main.java.Erroneous.equals(String) At

Erroneous.java:[line 10].

43

Appendix C

PMD Report

Figure C.1: PMD report generated for program 1

44

Figure C.2: PMD report generated for program 2

Figure C.3: PMD report generated for program 3

45

Figure C.4: PMD report generated for program 4

Figure C.5: PMD report generated for program 5

46

Appendix D

CheckStyle Report

Figure D.1: CheckStyle report for program 1

47

Figure D.2: CheckStyle report for program 2

48

Figure D.3: CheckStyle report for program 3

Figure D.4: CheckStyle report for program 4

49

Figure D.5: CheckStyle report for program 5

50

Appendix E

SWaP Report

The SWaP report generated for program 1 detects the following warnings:

• Line is: 1 Priority: low Warning: This file "SimplifyBool.java" should be located in

"main\java" directory, not in "C:\Users\khush".

• Line is: 11 Priority: low Warning: Parameter args should be final.

• Line is: 13 Priority: high Warning: instanceof will always return true for all

non-null values in main.java.SimplifyBool.main(String[]), since all

main.java.SimplifyBool are instances of main.java.SimplifyBool.

• Line is: 20 Priority: low Warning: Parameter x should be final.

• Line is: 26 Priority: low Warning: Hardcoded constant database password in

main.java.SimplifyBool.foo(int).

• Line is: 26 Priority: high Warning: main.java.SimplifyBool.foo(int) may fail to close

Connection.

51

• Line is: 27 Priority: high Warning: main.java.SimplifyBool.foo(int) may fail to close

Statement.

• Line is: 28 Priority: high Warning: Use try-with-resources or close this "ResultSet"

in a "finally" clause.

• Line is: 29 Priority: high Warning: This statement should have braces.

• Line is: 30 Priority: low Warning: Line is longer than 80 characters (found 90).

• Line is: 32 Priority: low Warning: Exception is caught when Exception is not

thrown in main.java.SimplifyBool.foo(int).

The SWaP report generated for program 2 detects the following warnings:

• Line is: 1 Priority: low Warning: This file "CycloComplexity.java" should be located

in "main\java" directory, not in "C:\Users\khush".

• Line is: 3 Priority: high Warning: Class main.java.CycloComplexity implements

Cloneable but does not define or use clone method.

• Line is: 5 Priority: low Warning: Refactor this method to reduce its Cognitive

Complexity from 30 to the 15 allowed.

• Line is: 11 Priority: low Warning: Remove this conditional structure or edit its code

blocks so that they’re not all the same.

• Line is: 14 Priority: low Warning: Change this condition so that it does not always

evaluate to "false".

• Line is: 55 Priority: low Warning: Parameter args should be final.

The SWaP report generated for program 3 detects the following warnings:

52

• Line is: 1 Priority: low Warning: This file "CloseConn.java" should be located in

"main\java" directory, not in "C:\Users\khush".

• Line is: 8 Priority: low Warning: Parameter args should be final.

• Line is: 11 Priority: low Warning: Hardcoded constant database password in

main.java.CloseConn.main(String[]).

• Line is: 11 Priority: high Warning: main.java.CloseConn.main(String[]) may fail to

close Connection.

• Line is: 15 Priority: high Warning: Use try-with-resources or close this "ResultSet"

in a "finally" clause.

• Line is: 16 Priority: high Warning: This statement should have braces.

• Line is: 17 Priority: low Warning: Line is longer than 80 characters (found 95).

• Line is: 19 Priority: low Warning: Exception is caught when Exception is not

thrown in main.java.CloseConn.main(String[]).

The SWaP report generated for program 4 detects the following warnings:

• Line is: 1 Priority: low Warning: This file "NpEx.java" should be located in

"main\java" directory, not in "C:\Users\khush".

• Line is: 9 Priority: low Warning: Parameter args should be final.

• Line is: 12 Priority: high Warning: Add a default case to this switch.

• Line is: 13 Priority: high Warning: End this switch case with an unconditional

break, return or throw statement.

53

• Line is: 16 Priority: high Warning: End this switch case with an unconditional

break, return or throw statement.

• Line is: 19 Priority: high Warning: End this switch case with an unconditional

break, return or throw statement.

• Line is: 39 Priority: low Warning: Class ’NpEx’ looks like designed for extension

(can be subclassed), but the method ’count’ does not have javadoc that explains

how to do that safely. If class is not designed for extension consider making the

class ’NpEx’ final or making the method ’count’ static/final/abstract/empty, or

adding allowed annotation for the method.

• Line is: 51 Priority: high Warning: Call to equals(null) in main.java.NpEx.foo()

• Line is: 51 Priority: highWarning: ’if’ construct must use ’’s.

The SWaP report generated for program 5 detects the following warnings:

• Line is: 1 Priority: low Warning: This file "Erroneous.java" should be located in

"main\java" directory, not in "C:\Users\khush".

• Line is: 5 Priority: low Warning: Either override Object.equals(Object), or rename

the method to prevent any confusion.

• Line is: 10 Priority: high Warning: Avoid unnecessary if..then..else statements when

returning booleans

• Line is: 19 Priority: low Warning: Class ’Erroneous’ looks like designed for

extension (can be subclassed), but the method ’func’ does not have javadoc that

explains how to do that safely. If class is not designed for extension consider making

the class ’Erroneous’ final or making the method ’func’ static/final/abstract/empty,

or adding allowed annotation for the method.

54

• Line is: 34 Priority: high Warning: An instanceof check is being performed on the

caught exception. Create a separate catch clause for this exception type.

• Line is: 34 Priority: high Warning: ’if’ construct must use ’’s.

• Line is: 36 Priority: high Warning: An instanceof check is being performed on the

caught exception. Create a separate catch clause for this exception type.

• Line is: 36 Priority: high Warning: ’if’ construct must use ’’s.

• Line is: 41 Priority: low Warning: Line is longer than 80 characters (found 116).

55

Appendix F

SonarScanner Report

Figure F.1: SonarScanner report generated for program 1

56

Figure F.2: SonarScanner report generated for program 2

57

Figure F.3: SonarScanner report generated for program 3

58

Figure F.4: SonarScanner report generated for program 4

59

Figure F.5: SonarScanner report generated for program 5

60

	Introduction
	Overview
	Java Static Analysis Tool
	SpotBugs
	PMD-Project Mess Detector
	CheckStyle
	SonarScanner

	Research Motivation
	Thesis Outline

	Literature Review
	Evaluation of Multiple Validation Tools
	Warning Classification and Prioritization Techniques

	Methodology
	A Small Example
	Approach
	Algorithm
	Worst-Case Analysis of Result Merger

	Experimental Results
	Conclusion and Future Work
	Appendix Source Program
	Appendix SpotBugs Report
	Appendix PMD Report
	Appendix CheckStyle Report
	Appendix SWaP Report
	Appendix SonarScanner Report

