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ABSTRACT

Real-time monitoring applications have networks of Internet-of-Things (IoT) devices

sense and communicate information from a scene of interest to a monitor, for ex-

ample, a server in the cloud. Often the sensed information is first communicated by

the sensors, over an access network, to an IoT gateway that aggregates and sends

the sensed information to the monitor. The monitor would like to maximize the

freshness of sensed information at its end. In this work, we use the metric of age of

information to quantify freshness at the monitor.

Earlier work has considered a set of polling policies, named Poll-s, that have

the gateway poll one sensor for fresh information at a time and have the gateway

send the polled information to the monitor after a certain a priori fixed number s of

sensors have been polled. In our work, we (a) analyze a simpler randomized policy

that unlike Poll-s doesn’t require knowledge of the vector of ages of information at

the monitor at every decision instant, (b) derive a lower bound on the achievable

average age at the monitor, (c) propose a heuristic policy that at every decision

instant chooses to poll a sensor or transmit to the monitor such that the average

drift in age at the monitor is minimized, and (d) propose improvements via optimal

ordering of polling of sensors over the best earlier proposed Poll-s policies for when

the random times taken to poll sensors are not identically distributed. We show

empirically over a wide range of assumed distributions of polling times of sensors,

and the time taken to transmit to the monitor, that the randomized policy achieves

an age that is within 2.5× the lower bound. We also provide a detailed comparison

of the different policies.
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Chapter 1

Introduction

Networks of IoT devices generate time sensitive information updates, which are

sent over the internet to monitors (cloud or edge servers) for applications like real-

time monitoring, actuation, and analytics. The updates may contain, for example,

locations of individuals being tracked, locations and speeds of vehicles, and the tem-

perature field of a physical environment being monitored. The updates are processed

for further control and decision making, for example, safe on-road navigation and

ambient temperature control.

These updates are different from typical file data, voice and video, in that for

the aforementioned applications it is paramount that information at the monitor is

‘fresh’. Also, such applications are resilient to lost updates. A new update is more

desirable than a retransmitted or backlogged old update. For example, if an update

packet containing temperature information is backlogged in the network, and by the

time it reaches its destination a new update containing more up to date temperature

information is received by the monitor, the older packet’s information when received

is not fresh and maybe discarded, given the purpose of real-time monitoring.

In this work, we use the metric of age of information (AoI) to measure timeliness.

It measures the freshness of data from the perspective of the monitor (destination of

updates). At any given time, the age of updates at the monitor is the time elapsed

since the generation time of the freshest update available at the monitor. Age at

the monitor increases linearly in absence of reception of fresher updates.

We will consider sensors that communicate their information with the monitor

via a gateway. All sensors can communicate with the gateway, which then aggre-
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gates the sensed information before sending it to the monitor as one transmission.

Our work looks at a constrained setting wherein either exactly one sensor can com-

municate with the gateway or the gateway can send to the monitor. This could,

for example, model a scenario where the gateway has a single wireless interface

communicating with the sensors and the gateway.

Note that such a setting was first looked at in [1]. An interesting takeaway

from [1] was that the sensor polling times and update transmission times to the mon-

itor impact how often the gateway must aggregate sensed information and transmit

to the monitor. As shown in [1], the extremes of sending to the monitor after every

polling and sending to the monitor after all sensors have been polled are in general

detrimental to minimizing age in the gateway based setting. The authors proposed

Poll-s policies that have the gateway poll s sensors for their updates before trans-

mitting the polled updates to the monitor. The Poll-s policy is discussed in detail

in Chapter 5. In this work, we make the following contributions to understanding

timeliness in such network settings.

1. We analyze the randomized policy, which has the gateway either choose to

poll a sensor or transmit to the monitor with a priori fixed probabilities. The

policy is simpler than Poll-s in that it doesn’t require the knowledge of age of

sensors’ updates at the monitor and the gateway for decision making.

2. We propose a policy that instead minimizes the drift for a linear Lyapunov

function. This policy requires knowledge of ages of sensors’ updates at the

monitor and the gateway at decision instants.

3. For when the number n of sensors is an integral multiple of s, where s is the

number of sensors are polled before sending to gateway, we derive the optimal

order in which sensors that have non-identical polling time distributions must

be polled. The ordering of polling is shown to lead to smaller average age in

comparison to the best heuristic Poll-s based policy proposed in [1].

4. We also derive an expression for the lower bound on the age of information

that may be achieved by any causal policy. We compare the bound with the

other policies proposed in this thesis and in [1] and empirically show that the
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worst performing randomized policy leads to AoI that is within 2.5 times the

lower bound.
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Chapter 2

Related Works

One of the first works to analyze Age of Information as a timeliness metric was [2].

Considering the queuing discipline of first-come-first-served (FCFS), their work

showed the existence of an optimal rate at which a source must generate its in-

formation so that the information remains as fresh as possible up on reception at

the destination. Since then AoI has received a lot of attention. Various recent works

have investigated the problem of scheduling of nodes in wireless networks. In [3],

the authors attempt to find policies that minimize AoI in wireless broadcast net-

works with unreliable channels. In [4], the authors develop policies that minimize

AoI subject to minimum throughput requirements. In [5], the authors study link

scheduling using AoI minimization in unreliable networks with stochastic packet

arrivals which operate under different queuing disciplines. Low-complexity policies

like Randomized policy, Age-based Max Weight policy and Whittle’s Index policy

were developed in [3–5]. The latter two policies were shown to perform close to

optimal. The Whittle’s Index policy was also investigated in [6], [7].

The network considered in all of these works is a single-hop network. The authors

in [1] consider a network of status updating sensors whose updates are first collected

by a gateway and then sent to a monitor. The presence of a gateway makes their

network a two-hop network as opposed to a single-hop network in [3–5]. Assuming

the gateway to be fixed, they investigate scheduling policies that minimize AoI, one

for when sensor polling times are iid and another when sensor polling times may be

non-identically distributed. Motivated by the inclusion of gateway in the network

model, we consider their model to further develop some more scheduling policies at

8



the gateway considering different distributions of sensor polling times. A study on

general multi-source, multi-hop wireless network is done in [8] but only for the case

where the packet transmission times are fixed.

There has been a lot of research on using AoI for networks where multiple sources

contend for shared channel in order to transmit their freshly generated updates.

Decentralized update policies, where a node can transmit without having to com-

municate with BS or any other nodes in the network, have been analyzed for large

IoT networks in [9–11]. In [11], a threshold-based age-dependent random access is

proposed. While this policy shows improvement over age-independent random ac-

cess, the analysis is only limited to symmetric network. Random access for queue

based network is studied from the point of AoI in [12]. AoI for ALOHA-like random

access was studied in [13] and was compared with scheduled access. A version of

slotted-ALOHA known as Irregular Repetition Slotted ALOHA showed improved

AoI performance as reported in [14]. When packet arrival rate of M transmitters

increases beyond 1
eM

, age-based threshold policy with CSMA is shown to perform

as well as Max-weight policy which is a centralized scheduling policy and therefore,

collision free [15]. Multi-access using CSMA alone is studied in [16] where closed

form expression for average age is found using a stochastic hybrid system model.

The transmission time of packets was limited to exponential distribution. The au-

thors conclude that even with optimal back-off times, CSMA does not display AoI

performance comparable to other multi-access schemes for some special cases.
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Chapter 3

Optimization Problem

3.1 System Model

1

2

n

Gateway 0

Monitor

Sources

Transmit

Figure 3.1: We have n sensors, a gateway, and a monitor. Sensor i’s polling time is

distributed as fXi(x). Transmission to the monitor is distributed as fX0(x).

We have a network with n sensors generating time sensitive information, a gate-

way which could, for example, be a wireless access point, and a monitor as shown

in Figure 3.1. The sensors are indexed 1, 2, 3, . . . , n and the monitor is indexed 0.

The gateway can either decide to poll a sensor for an update or transmit updates

it has already obtained, via polling one or more sensors earlier, to the monitor.

The gateway makes a decision at the end of the current poll or transmission to the

monitor.

In practice, the act of polling requires the gateway to send a message to the

sensor and for the sensor to revert with transmitting an update. We consider a

simplified abstraction in which polling a sensor i takes a random Xi amount of time

distributed as fXi
. We assume that on being polled the sensor sends back a fresh
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update and the update is aged by the time Xi on reception by the gateway. The

gateway takes time X0 distributed as fX0 to transmit aggregated updates to the

monitor. Note that the random times may capture amongst other things different

update lengths and retransmissions by layer 2 of the OSI stack.

In this work, we will say that the sensors are homogeneous in case the polling

times of all sensors are identically distributed. Otherwise, we will say that the

sensors are heterogeneous. For either case, the time to transmission to the monitor

may be non-identical to polling times. Also, all polling times and the transmission

time to the monitor are assumed to be mutually independent. We assume that the

distributions are time-invariant. Last but not the least, in this work we restrict

ourselves to a static deployment of sensors, gateway, and monitor.

3.2 Problem Formulation

Let ∆i(t) be the age of updates of sensor i at the monitor. If ui(t) is the timestamp

(time of generation at sensor i) of the most recent update of i at the monitor, then

∆i(t) = t−ui(t). The function ui(t) is a step function whose value remains constant

until a fresher update from sensor i is received at the monitor. Correspondingly, let

∆
′
i(t) be the age of status updates from sensor i at the gateway. We assume that

∆i(0) = ∆
′
i(0) for all sensors i. Let bk, k ≥ 1 denote the time instants when the

monitor receives updates from the gateway. At such times the age of all sensors at

the monitor gets reset to the age of the sensors at the gateway. That is

∆i(bk) = ∆
′

i(bk) (3.1)

Suppose sensor j is polled by the gateway at time τj and this results in it receiving

the update at τ
′
j after a random Xj amount of time. At the end of the polling, the

ages of the sensors’ updates at the gateway are given by

∆
′

i(τ
′

j) =

Xj i = j

∆
′
i(τj) +Xj i 6= j

(3.2)

Transmission to the monitor increases all sensors’ ages at the gateway by X0.

In the absence of new updates at the gateway, ∆
′
i(t) increases linearly with rate 1.

Similarly ∆i(t) increases at the gateway in the absence of updates. Note that sensors
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Figure 3.2: Sample function of age of sensor i at the monitor. The empty circles are

time instants when a fresh update from i was received by the gateway. The filled circles

correspond to the same for another sensor j. The empty squares are when the monitor

receives a transmission from the gateway.

that do not get polled by the gateway in (bk−1, bk) will experience no reduction in

age at the monitor at bk.

The time average age ∆̄i of sensor i at the monitor is

∆̄i = lim
t→∞

1

t

t∫
0

∆i(t) (3.3)

Let bi,k, k ≥ 1 denote the time instant when monitor receives kth such trans-

mission from gateway that leads to reduction of age of sensor i at monitor. Let Yi,k

denote the time between k − 1th and kth reset of age of sensor i at monitor. Let

Ti,k be the age of the update from sensor i when it is received by the monitor at

bi,k. The age ∆i(t) resets to Ti,k at t = bi,k. Both Yi,k and Ti,k have been marked in

Figure 3.2. From [1], we can rewrite the average age ∆̄i, given by (3.3), as

∆̄i =
1

E[Yi]

[
E[YiTi] +

E[Y 2
i ]

2

]
(3.4)

We will consider a set of causal policies that do not use knowledge of the future

for decision making. Denote this set of policies by Π and any policy within this set

as π. The age of information (AoI) of the system at the monitor on using policy π

is

∆̄π =
1

n
E

[
n∑
i=1

∆̄i

]
(3.5)

12



We would like to find the policy π∗ ∈ Π that minimizes the AoI ∆̄π.
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Chapter 4

Randomized Policy

Let R denote a class of policies known as Randomized Policy in which the gateway

polls a sensor or transmits updates to the monitor according to a probability mass

function. While following a policy in R, the gateway chooses to poll sensor i with

probability pi ∈ [0, 1] for i ∈ {1, 2, 3 . . . n} and chooses to transmit the sensor updates

to the monitor with probability p0 such that
n∑
i=1

pi + p0 = 1. These probabilities do

not change with time.

Any policy in R is fully characterized by the probabilities p0, p1, . . . , pn and does

not require any other information, for example the ages of the sensors’ updates at the

gateway and the monitor, at any decision instant. We derive the expression of AoI

for a randomized policy. We consider the cases of homogeneous and heterogeneous

sensors. We demonstrate via simulations the sensitivity of average age to the choice

of probabilities close to the age minimizing probability vector. Later in Chapter 7

we compare the randomized policy with others.

4.1 Deriving the Average Age

Figure 4.1 depicts all the random variables involved in the evolution of age at the

monitor of any sensor i, when following a randomized policy. L1 denotes the number

of decisions made up to and including the first time sensor i is polled after its last

age reset at the monitor. Therefore, L1 is geometrically distributed with parameter

pi. The probability mass function (PMF) of L1 is given by

P (L1 = k) = (1− pi)k−1pi, k ≥ 1. (4.1)
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Figure 4.1: Sample function of age of sensor i at the monitor in Randomized policy. The

empty circles are time instants when a fresh update from i was received by the gateway.

The filled circles correspond to the same for another sensor j. The empty squares are

when the monitor receives a transmission from the gateway.

We know from the properties of the geometric distribution that E[L1] = 1/pi

and Var[L1] = (1−pi)/p2
i where E[.] and Var[.] are the expectation and the variance

operators respectively. Let L1−1 decision slots constitute a total transmission length

denoted by Z1. Let sj,k be the number of pollings of sensors 1 ≤ j ≤ n, j 6= i in

the interval of length Z1. We have sj,k ≥ 0. Let s0,k be the number of transmissions

to the monitor by the gateway in the interval Z1. We have s0,k ≥ 0. The length of

interval

Z1 =
n∑
j=1
j 6=i

sj,k∑
l=1

Xj,l +

s0,k∑
l=1

X0,l. (4.2)

Similarly, L2 denotes the number of decisions made after L1 slots, till the instant

age of sensor i undergoes a reset at the monitor again. Therefore, L2 is geometrically

distributed with parameter p0. Its PMF is given by

P (L2 = k) = (1− p0)k−1p0, k ≥ 1. (4.3)

Again, E[L2] = 1/p0 and Var[L2] = (1− p0)/p2
0.

Let L2 − 1 decision slots correspond to a time interval of length Z2. Let s′j,k be

the number of pollings of sensors 1 ≤ j ≤ n in the interval of length Z2. We have
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s′j,k ≥ 0. Note that there can be no transmission to the monitor during Z2.

Z2 =
n∑
j=1

s′j,k∑
l=1

X
′

j,l. (4.4)

We can now express Yi,k in terms of variables defined above.

Yi,k = Z1 +Xi,1 + Z2 +X
′

0,1. (4.5)

To calculate average age (3.4), we must derive E[Y ], E[Y 2], and E[Y T ]. We

provide a summary next. The details can be found in Appendix A. We have

E[Yi,k] =

(
1

p0

+
1

pi

) n∑
j=0

pjE[Xj] (4.6)

E[Y 2
i,k] =

(
1

p0

+
1

pi

)
E2
j +

(
2

p2
0

+
2

p2
i

+
2

p0pi

)
Ejj′−

(
2E[X0]

p0

+
2E[Xi]

pi

)
Ej, (4.7)

where,

E2
j =

n∑
j=0

pjE[X2
j ], (4.8a)

Ejj′ =
n∑
j=0

n∑
j′=0

pjpj′E[Xj]E[Xj′ ], (4.8b)

Ej =
n∑
j=0

pjE[Xj]. (4.8c)

Note that Yi,k and Ti,k−1 are independent random variables. This is simply

because each is a random sum of random variables (polling times and transmission

times to the monitor) that are mutually independent. Given this, we can simplify

and write E[Yi,kTi,k−1] = E[Yi,k]E[Ti,k−1]. Thus, we only need to find E[Ti,k−1] to be

able to calculate average age.

We can write Ti,k−1 as

Ti,k−1 = Xi,1 + Z +X
′

0,1, (4.9)

where Z constitutes the total transmission length in which sensors j 6= i get polled

and there is no transmission to the monitor. The derivation for E[Ti,k−1] can be

found in Appendix A and is equal to

E[Ti,k−1] = E[X0] +
1

p0 + pi

∑
j 6=0
j 6=i

pjE[Xj] + E[Xi] (4.10)
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Substituting (4.6),(4.7),(4.10) in (3.4), the average age equation for sensor i is

obtained as

∆̄R
i =

E2
j

2Ej
+

(
1

p0

+
1

pi
− 1

p0 + pi

)
Ejj′

Ej
+

(
1

p0 + pi

)
Ej. (4.11)

This gives us the time average age the of system as

∆̄R =
E2
j

2Ej
+
Ejj′

Ej

1

n

n∑
i=1

(
1

p0

+
1

pi
− 1

p0 + pi

)
+
Ej
n

n∑
i=1

1

p0 + pi
. (4.12)

We observe that Ejj′ = (Ej)
2. Therefore,

∆̄R =
E2
j

2Ej
+
Ej
n

n∑
i=1

1

pi
+
Ej
p0

. (4.13)

Finally, let us define a network parameter η1 as

η1 =
E[X0]

n∑
i=1

E[Xi]/n
(4.14)

Notice, as the transmission time to monitor becomes larger as compared to polling

times of the sensors, η1 also becomes larger. Figure 4.2 compares the average age

of the network given by the analytical expression in (4.13) with that obtained using

simulations for different values of η1. Simulation value for each η1 was obtained after

averaging the AoI over 10 iterations where each iteration was long enough to ensure

a minimum of 1500 resets in age of every sensor at the monitor.

4.2 Optimal Randomized Policy for Homogeneous

Sensors

Recall that homogeneous sensors have iid polling times. As always, the transmission

time to the monitor is independent of the polling times but maybe non-identical.

In optimal Randomized policy for homogeneous sensors, one would expect that the

gateway does not poll a certain sensor more often than the others. We assume

popti = popt, for all sensors i ∈ {1, 2, 3 . . . n}. We are unable to find a closed form

analytical solution to the optimal probabilities for any selection of expected values

and variances of sensor polling times and transmission time to the monitor. We use

the MATLAB function fmincon to find popt and popt0 .
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Figure 4.2: Average age obtained for n = 10 sensors and pi = 1
n+1 , i ∈ {0, 1, 2, 3 . . . n}.

(a) Heterogeneous sensors where the polling times are uniformly distributed, (b) Heteroge-

neous sensors where the polling times are chosen as non-identical exponentially distributed

random variables. The mean for each sensor is selected uniformly and randomly from

(0, 50).

However, it is instructive to consider the case when Var[X] = 0 (sensor polling

times are deterministic). Minimizing average age (4.13) and using the fact that
n∑
i=0

pi = popt0 + npopt = 1 we obtain

popt0 =
1

√
nη1 + 1

, (4.15a)

popt =

√
nη1

n
popt0 . (4.15b)

where using (4.14) η1 = E[X0]
E[X]

. Interestingly, popt0 only depends on η1, which is

the ratio of expected value of transmission time to the monitor to the expected

value of sensor polling time. popt is independent of individual expected values as

long as their ratio remains the same. Note that the number of slots between two

transmissions to the monitor is geometrically distributed with parameter popt0 . Thus

the average number of such slots is
√
nη1 + 1. Curiously, for the Poll-s policy

proposed in [1], the optimal value was found to be s =
√
nη1, where s is the fixed

number of sensors polled before transmitting to the gateway. Interestingly, for both

the optimal randomized and optimal Poll-s, the average number of polling slots

before sending to the monitor grow as
√
n.
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Figure 4.3: Average age obtained for n = 10 sensors with pi = 1
n+1 , i ∈ {0, 1, 2, 3 . . . n}

and popt. (a) Polling times are uniformly distributed, (b) Polling times are exponentially

distributed. However, non-identical for the sensors. The mean for each sensor is selected

uniformly and randomly from (0, 50).

4.3 Optimal Randomized Policy for Heterogeneous

Sensors

As before, the optimal probability vector popti for i ∈ {0, 1, 2, 3 . . . n}, that minimizes

average age of system among other policies in R, depends on first and second moment

of sensor polling times and monitor transmission time. Note that since the sensors

are heterogeneous we would expect sensors to be polled with different probabilities.

This results in n+1 variables of optimization in contrast to just two variables in the

homogeneous case. We are unable to obtain an analytical solution for the optimal

probabilities. We use MATLAB function fmincon to find popti , for all i.

In both the cases of homogeneous and heterogeneous sensors, as η1 increases, we

observe that probability p0 decreases. This tells us that as cost of sending updates

to monitor increases, we should send updates to monitor less often and instead keep

polling sensors.

Figure 4.3, compares the AoI obtained for a selection of equal probabilities of

polling of any sensor and sending to the monitor with optimal selections of the

probabilities. Not surprisingly, the optimal probability vector results in lower AoI.

In fact, using equal probabilities performs a lot worse.

Lastly, how sensitive AOI is to changes in the optimal probabilities. For this,
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Figure 4.4: Age of the network as a function of p0. (a) Polling times are iid and

uniformly distributed. (b) Polling times uniformly distributed. However, non-identical for

the sensors.

we varied p0 from 0.1 to 0.9 and plotted the corresponding AoI. From Figure 4.4a,

we observe that small displacement in values of p0 around point of minimum AoI

achievable by this policy does not drastically impact performance. In Figure 4.4b

where n = 2, the green curve gives minimum AoI not too far from the optimal

value. These insights maybe useful when such a policy is implemented in real-

life IoT networks where it may not be possible to implement the exact optimal

probabilities.
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Chapter 5

Other Scheduling Policies

5.1 Drift-based policy

Let us define a linear Lyapunov Function for minimizing the drift in gateway age

when gateway polls a sensor as

L({∆′

j,t}nj=1) = L(t) =
1

n

n∑
j=1

∆
′

j,t. (5.1)

The Lyapunov Drift is defined as

δ(St) = E[L(t+ 1)− L(t)|St], (5.2)

where t is the decision instant after the current polling or transmission ends and

t+1 is the next decision instant. Such a drift based policy in a single-hop broadcast

setting has been looked at in [3]. The state of the network is St = {∆′
(t),∆(t)}.

As L(t) is a function of the age vector, it increases as average age of the network at

time t increases. δ(St) represents the conditional expected increase in the average

age that results from a decision. By minimizing the drift at each decision instant,

we tend to keep the average age of the network small. Consider when a sensor i is
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polled. We have

δi(St) =
1

n
E[(

n∑
j=1

∆
′

j,t+1 −
n∑
j=1

∆
′

j,t)|St]

=
1

n
E[(Xi −∆

′

i,t +
∑
j 6=i

Xi)|St]

=
1

n
E[(nXi −∆

′

i,t)|St]

=
1

n
(nE[Xi]−∆

′

i,t)

= E[Xi]−
∆

′
i,t

n
.

(5.3)

Now let us minimize the drift δ0(St) in the average age at the monitor when gateway

transmits updates to the monitor

δ0(St) =
1

n
E[(

n∑
j=1

∆j,t+1 −
n∑
j=1

∆j,t)|St]. (5.4)

At t + 1, when monitor receives a transmission from the gateway, age of sensors at

the monitor gets reset to age of sensors at the gateway. Therefore

∆t+1 = ∆
′

t+1

= ∆
′

t +X0.
(5.5)

Using above evolution of ∆t+1 in (5.4), we obtain

δ0(St) =
1

n
E[

n∑
j=1

(∆j,t+1 −∆j,t)|St]

=
1

n
E[

n∑
j=1

(∆
′

j,t +X0 −∆j,t)|St]

=
1

n
E[(nX0 +

n∑
j=1

(∆
′

j,t −∆j,t))|St]

=
1

n
(nE[X0] +

n∑
j=1

(∆
′

j,t −∆j,t))

= E[X0] +
1

n

n∑
j=1

(∆
′

j,t −∆j,t).

(5.6)

For minimizing drift, at decision instant t the gateway chooses an action given by

min
(
{δj(St)}nj=1, δ0(St)

)
. (5.7)

Before making any observations let us define two policies given in [1]. One, a

policy named ŝ∗,MAF was proposed. In this, the gateway polls a fixed number
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of sensors s before sending updates to the monitor, following Maximum Age First

scheduling which is in fact optimal when sensors are homogeneous. Second, a policy

named ŝ∗,MCA (Minimum Change in Age) is proposed when sensors are heteroge-

neous. This policy also polls s sensors before transmitting polled updates to the

monitor and while not transmitting to the monitor, chooses to poll the sensor that

minimizes the conditional expected change in average age at the gateway.

We observe that the above Drift-based policy is similar to policy ŝ∗,MCA [1]

while determining which sensor to poll. The basic difference is that Drift-based

policy does not poll fixed number of sensors s before transmitting to the monitor.

The decision of transmitting to the monitor is also determined based on the drift

as calculated in (5.6). On the other hand, ŝ∗,MCA doesn’t requires drift to be

calculated for the monitor.

5.2 Scheduling policy based on Sensor Polling Times

The optimal value of s was shown to be ≈ round(
√
η1n) for the policy ŝ∗,MAF,

when the sensors are homogeneous. We propose a novel policy that uses the same

value of s but the polling schedule of sensors is determined by their expected polling

times. Let us call this policy as ŝ∗,Ordered.

In this work we will only consider cases where n is an integer multiple of s. It

means the total number of sensors n can be polled in m groups where m = n
s

is

an integer. Further, as in the case of MAF, we will restrict ourselves to not polling

a sensor again before all other sensors have been polled. This results in m groups

of s unique sensors, wherein a group sees s unique sensors polled followed by a

transmission to the monitor. Also, sensors in different groups are unique too. As a

result, for any sensor i,

E[Yi] = E[Y ] =
n∑
j=1

E[Xj] +mE[X0]. (5.8)

Therefore, AoI for ŝ∗,Ordered only depends on E[Ti] of every sensors i. This policy

attempts to minimize average age by: scheduling s sensors between every two con-

secutive transmissions to the monitor in the decreasing order of their polling times

and keeping the sum
n∑
i=1

E[Ti] minimum. Let (j, k) define the position of a sensor in
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a schedule, where 1 ≤ j ≤ s and 1 ≤ k ≤ m. The sensor at the (j, k)th position is

at the jth position in the kth group of sensors.

Theorem 1. Given n and s for which m ∈ Z>0. Consider the sequence

(1, 1),(2, 1), . . . (s, 1), 0,

...

(1, r),(2, r) . . . (s, r), 0,

...

(1,m),(2,m) . . . (s,m), 0.

that repeats itself. The optimal sequence satisfies E[X(j,k)] ≥ E[X(j′,k′)] when j < j′,

for all 1 ≤ k, k′ ≤ m.

Proof. Let the sequence of polling be denoted as in the theorem. For the purposes

of this proof we will abuse notation and let X(j,k) to be the polling time of the sensor

in position (j, k) of the given schedule. We continue to use 0 to denote the monitor.

We can write

n∑
i=1

E[Ti] =
m∑
k=1

s∑
j=1

jE[X(j,k)] +mE[X0]

= s

(
m∑
k=1

E[X(s,k)]

)
+ · · ·+ j

(
m∑
k=1

E[X(j,k)]

)
+ . . .

· · ·+ 1

(
m∑
k=1

E[X(1,k)]

)
+mE[X0]

(5.9)

Consider the following sets

X1 =
{
E[X(1,1)], E[X(1,2)], . . . E[X(1,m)]

}
,

Xi =
{
E[X(i,1)], E[X(i,2)], . . . E[X(i,m)]

}
,

...

Xs =
{
E[X(s,1)], E[X(s,2)], . . . E[X(s,m)]

}
.

Let us define an operation X+
i which calculates the sum of elements in Xi.

For the given sequence, define the cost

C
∆
= X+

1 + · · ·+ jX+
j + · · ·+ j

′X+

j′
+ · · ·+ sX+

s . (5.11)
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Pick indices j, j′ such that j < j′. Suppose there exist positions (j, k) and (j′, k′)

in the schedule, such that E[X(j,k)] < E[X(j′,k′)], for any k, k′. We claim that the

schedule that is obtained by swapping the sensors at positions (j, k) and (j′, k′) has

a smaller cost C ′ (and thus smaller AoI) than the given schedule.

For the new schedule let the sets corresponding to Xi be denoted by X̃i. We can

now write the cost

C
′ ∆
= X+

1 + · · ·+ jX̃+
j + · · ·+ j

′X̃+

j′
+ · · ·+ sX+

s (5.12)

Subtracting equation (5.12) from equation (5.11), we get

C − C ′
= j(X+

j − X̃+
j ) + j

′
(X+

j′
− X̃+

j′
)

= j(E[Xj,k]− E[Xj′ ,k′ ]) + j
′
(E[Xj′ ,k′ ]− E[Xj,k])

= (j
′ − j)(E[Xj′ ,k′ ]− E[Xj,k])

> 0

(5.13)

For any given scheduling, we can continue to swap and reduce cost till no more

indices satisfy the condition for swapping. The resulting schedule will be the optimal

schedule. �

Now consider the round robin policy. In this policy, gateway polls every sensor

exactly once before the updates are sent to the monitor. The following is true.

Corollary 1.1. Given s = n and E[X1] ≥ E[X2] ≥ . . . · · · ≥ E[Xn], the optimal

sequence for Round Robin is i∗1 = 1, i∗2 = 2, . . . i∗n = n.

In the round robin policy, i∗1 denotes the index of the sensor that is polled soon

after and sensor with index i∗n is polled immediately before transmission to the

monitor.

We simulated the ŝ∗,Ordered for those specific values of η1 for which nmod s = 0

and results are shown in Figure 5.1. As we expected, scheduling sensors on the

basis of their expected polling times leads to a better AoI performance. Note that

the policy outperforms even ŝ∗,MCA which was proposed for heterogeneous sensors.

Another added advantage of ŝ∗,Ordered over other policies is that it does not require

the knowledge of state of the network for making scheduling decisions. Therefore,

computations at the gateway are avoided.
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Figure 5.1: Comparison for ŝ∗,Ordered. Average age obtained for n = 10 sensors. (a)

Polling times are uniformly distributed, (b) Polling times are exponentially distributed

and (c) Polling times are hyper-exponentially distributed. However, non-identical for the

sensors. The mean for each sensor is selected uniformly and randomly from (0, 50).

As of now, we have restricted ourselves in looking at cases where n is an integer

multiple of s or when n is not a prime. When either of these two cases is not true,

finding a policy which minimizes age is a scope for future work where scheduling is

based on expected polling times.
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Chapter 6

Lower Bound on AoI

In this chapter, we derive a lower bound on achievable AoI. Consider a sample

function of the age process ∆i(t) for sensor i (Figure 3.2) over a finite time horizon

T . Let Di(T ) denote the number of times the age of sensor i gets reset at the monitor

over the time interval T . Let γi(T ), i ∈ 1, 2, . . . , n, denote the number of times the

gateway polls sensor i and γ0(T ) be the number of times gateway transmits updates

to the monitor. Yi,k, as defined earlier, is the time between k − 1th and kth reset of

age of sensor i at monitor. The time interval T can be expressed as

T =

Di(T )∑
j=1

Yi,j + τ ≥
n∑
i=1

γi(T )∑
j=1

Xi,j +

γ0(T )∑
j=1

X0,j (6.1)

Here τ ≥ 0 is the time that elapses between the last reset in age of sensor i at the

monitor and the end of the interval T . In order to write the average age of sensor

i for the above sample function over the finite interval, we define the sample mean

and the sample variance operators by M [.], V [.], respectively. We have

M [Xi] =

γi(T )∑
k=1

Xi,k

γi(T )
, (6.2a)

M [Yi] =

Di(T )∑
k=1

Yi,k

Di(T )
, (6.2b)

M [Y 2
i ] =

Di(T )∑
k=1

Y 2
i,k

Di(T )
, (6.2c)
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M [YiTi,k−1] =

Di(T )∑
k=1

Yi,kTi,k−1

Di(T )
. (6.2d)

Using (6.2) to write the AoI ∆π
T for the sample function, we have,

∆π
T =

1

n

n∑
i=1

[
M [YiTi,k−1]

M [Yi]
+
M [Y 2

i ]

2M [Yi]

]
=

1

n

n∑
i=1

[
M [YiTi,k−1]

M [Yi]
+
V [Yi] +M [Yi]

2

2M [Yi]

] (6.3)

Let us now manipulate the expression of average age of the system as follows to

obtain a lower bound.

∆π
T =

1

n

n∑
i=1

[
V [Yi] +M [Yi]

2

2M [Yi]
+
M [YiTi,k−1]

M [Yi]

]
(a)

≥ 1

n

n∑
i=1

[
M [Yi]

2
+
M [YiTi,k−1]

M [Yi]

]
(b)

≥ 1

n

n∑
i=1

[
M [Yi]

2
+M [Xi] +M [X0]

]
(c)
=

1

2n

(
n∑
i=1

M [Yi] + 2
n∑
i=1

(M [Xi] +M [X0])

)
(d)

≥ 1

2n

 n∑
i=1

γi(T )∑
j=1

Xi,j +

γ0(T )∑
j=1

X0,j

 n∑
i=1

1

Di(T )
+

1

n

n∑
i=1

(M [Xi] +M [X0])

(e)
=

1

2n

(
n∑
i=1

M [Xi]γi(T ) +M [X0]γ0(T )

)
n∑
i=1

1

Di(T )
+

1

n

n∑
i=1

(M [Xi] +M [X0])

(f)
=

1

2n

(
n∑
i=1

M [Xi]γi(T )
n∑
i=1

1

Di(T )
+M [X0]γ0(T )

n∑
j=1

1

Dj(T )

)

+
1

n

n∑
i=1

(M [Xi] +M [X0])

(g)

≥ 1

2n

( n∑
i=1

√
M [Xi]γi(T )

Di(T )

)2

+M [X0]

(
γ0(T )

D1(T )
+
γ0(T )

D2(T )
+ · · ·+ γ0(T )

Dn(T )

)
+

1

n

n∑
i=1

(M [Xi] +M [X0])

(6.4)

where (a) uses the Jensen’s inequality to establish that V [Yi] ≥ 0, (d) uses (6.2b)

followed by inequality in (6.1), (e) uses (6.2a) and (g) uses the Cauchy-Schwarz

inequality.
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Inequality (b) is obtained by using the fact that Ti,k−1 ≥ Xi +X0, and therefore

M [YiTi,k−1] ≥M [Yi(Xi +X0)] = M [Yi]M [(Xi +X0)]. Note that we will also obtain

a lower bound by simply ignoring M [YiTi,k−1] ≥ 0. However, empirically we have

observed that this leads to a rather loose bound.

All the above steps except (b) follow the steps used in deriving the lower bound

for a single-hop broadcast network in [3].

Generally, every polling of sensor i will not lead to a reset in its age at the

monitor, that is, γi(T )
Di(T )

≥ 1. Alternatively, we can say that the number of resets

in age of sensor i at the monitor cannot be greater than the number of times the

gateway polls it. Also, γ0(T )
Di(T )

≥ 1 since age of sensor i may not get reset every time

gateway transmits the to monitor. Sensor i may not be polled by the gateway for

fresh updates before transmitting to the monitor. For deriving the lower bound, we

use the lowest value these ratios can take, that is, 1. Finally, taking limit T → ∞

in (6.4) followed by expectation over any policy in π ∈ Π, we get

E
[

lim
T→∞

∆π
T

]
≥ E

[
lim
T→∞

1

2n

( n∑
i=1

√
M [Xi]γi(T )

Di(T )

)2

+M [X0]

(
γ0(T )

D1(T )
+ · · ·+ γ0(T )

Dn(T )

)
+

1

n

n∑
i=1

(M [Xi] +M [X0])

]

≥ 1

2n

( n∑
i=1

√
E[Xi]

)2

+ nE[X0]

+
1

n

n∑
i=1

(E[Xi] + E[X0])

= LB

(6.5)

Along the lines in [3], in which authors use Fatou’s lemma to establish the

lower bound, the expression obtained in (6.5) is the lower bound to our optimiza-

tion problem. Specifically, by Fatou’s lemma, the average age for any policy π,

limT→∞E[∆π
T ] ≥ E [limT→∞∆π

T ] ≥ LB. The first inequalities is valid since ∆π
T > 0.

The second is simply given by (6.5).
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Chapter 7

Results

In this section, we evaluate the performance of the four policies analyzed in this

work: i) Randomized policy; ii) Drift-based policy; iii) ŝ∗,Ordered and iv) Round-

Robin policy in terms of AoI. We simulated these policies for different distributions

like uniform, exponential and hyper-exponential and compared their performance

with ŝ∗,MAF and ŝ∗,MCA proposed in [1].

Since Randomized policy does not leverage the knowledge of state of the network,

it is expected that its performance will be worse than the other policies we have

considered. This is seen in Figure 7.1 for different distributions. That said the

policy doesn’t require any current state information to make a decision.

From Figure 7.2, we observe that for heterogeneous network the drift-based per-

forms worse than ŝ∗,MCA and ŝ∗,MAF. Figure 7.2 also shows that Round-Robin

policy gives lower age when compared to policy such as ŝ∗,MCA and ŝ∗,MAF be-

yond a certain η1 for which s ≤ 10. Therefore, Round Robin is a fair policy to use

when η1 is large for a given n. It should be preferred over ŝ∗,MCA since the former

does not require the current state values of the network and the latter requires the

gateway age and therefore carries out computation every time the gateway has to

make a decision.

Lastly, Figure 7.3 shows the performance of all policies when compared with the

lower bound. The Randomized policy is within about 2.5 times the lower bound

while other policies are well within 2 times the lower bound. Given the simplicity

of the implementation of the randomized policy, it maybe desirable to use it over

proposed policies.
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Figure 7.1: Average age obtained for n = 10 sensors. (a) Polling times are uniformly

distributed, (b) Polling times are exponentially distributed and (c) Polling times are hyper-

exponentially distributed. However, non-identical for the sensors. The mean for each

sensor is selected uniformly and randomly from (0, 50).

1 2 3 4
1

200

250

300

350

400

450

500

550

Ao
I

s = s * , MCA
s = s * , MAF
Round-Robin
Drift-based
Lower Bound

(a)

1 2 3 4
1

150

200

250

300

350

400

Ao
I

s = s * , MCA
s = s * , sMAF
Round-Robin
Drift-based
Lower Bound

(b)

1 2 3 4
1

200

300

400

500

600

Ao
I

s = s * , MCA
s = s * , MAF
Round-Robin
Drift-based
Lower Bound

(c)

Figure 7.2: Comparison of average AoI for all policies obtained for n = 10 sensors. (a)

Polling times are uniformly distributed, (b) Polling times are exponentially distributed

and (c) Polling times are hyper-exponentially distributed. However, non-identical for the

sensors. The mean for each sensor is selected uniformly and randomly from (0, 50).
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Figure 7.3: Policy comparison wrt lower bound. Average age obtained forn = 10 sensors.

(a) Polling times are uniformly distributed, (b) Polling times are exponentially distributed

and (c) Polling times are hyper-exponentially distributed. However, non-identical for the

sensors. The mean for each sensor is selected uniformly and randomly from (0, 50).
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Chapter 8

Summary

In this thesis, we focused on a two-hop network as opposed to analyzing a more

common single-hop network. We addressed the problem of minimizing AoI in a

gateway based network. We developed an optimal Randomized policy whose perfor-

mance was evaluated both analytically and through simulation. We also developed

a novel policy called s,Ordered policy. It showed improvement over existing policies

while using no information about the network state. We developed a drift-based

policy using the concept of Lyapunov drift. This policy in spite of using information

about state of the network showed no improvement over existing policies. Lastly, we

also derived a lower bound to the achievable AoI. In spite of its simplicity, optimal

Randomized policy performed within 2.5× the lower bound. The performances of

all other policies were well within 2× the lower bound. A general s,Ordered policy

is a possible extension to this work.
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Appendix A

Derivation for Randomized policy

A.1 Derivation of E[Yi]

From 4.1, we already know E[Yi] = E[Z1] +E[Xi] +E[Z2] +E[X0]. We need to find

expectation of Z1 and Z2. Now, Z1 is the interval of time before sensor i gets polled

the very first time. Therefore,

Z1 =
n∑
j=0
j 6=i

sj∑
k=1

Xj,k (A.1)

where sj is the number of times sensor j got polled during Z1. Also,
n∑
j=0
j 6=i

sj = L1−1,

where sj has multinomial distribution. Further, taking expectation in (A.1) we have

E[Z1] =
∑
j 6=i

E

[
sj∑
k=1

Xj,k

]
(A.2)

Using the method of iterated expectation to find E[Z1], we can write
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E[Z1] = Esj [E[Z1|sj,j 6=i]]

=
∑
j 6=i

E

[
E

[
sj∑
k=1

Xj,k|sj

]]

=
∑
j 6=i

E

[
sj∑
k=1

E [Xj,k|sj]

]

=
∑
j 6=i

E

[
sj∑
k=1

E [Xj,k]

]

=
∑
j 6=i

E

[
sj∑
k=1

E [Xj]

]

=
∑
j 6=i

E [sjE [Xj,k]]

=
∑
j 6=i

E[sj]E[Xj]

(A.3)

where, the third equality results from the fact that Xj,k is independent of sj and the

fourth equality from the fact that Xj,k ∼ fXj
. Let us find E[sj]. Note that given

L1, random variable sj is a multinomial coefficient with parameter qj =
pj

1−pi .

E[sj] = EL1 [E[sj|L1]]

= E

(L1 − 1)
pj∑

k 6=i
pk


= E

[
(L1 − 1)

pj
1− pi

]
=

pj
1− pi

E[L1 − 1]

=
pj

1− pi
1− pi
pi

=
pj
pi

(A.4)

where, in the first equality the inner conditional expectation is the expected number

of times sensor j, j 6= i is polled given L1 slots. Finally,

E[Z1] =
n∑
j=0
j 6=i

pj
pi
E[Xj] (A.5)

Similarly we can derive E[Z2] to get

E[Z2] =
n∑
j=1

pj
p0

E[Xj] (A.6)
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Using (A.5) and (A.6) to find E[Yi], we get,

E[Yi] =
n∑
j=0

(
1

pi
+

1

p0

)
pjE[Xj]

pj
p0

E[Xj] (A.7)

A.2 Derivation of E[Y 2
i ]

We can write E[Y 2
i ] as

E[Y 2
i ] = E[Z2

1 ] + E[X2
i ] + E[Z2

2 ] + E[X2
0 ]

+ 2(E[Z1] + E[Z2])(E[Xi] + E[X0]) + 2E[Z1]E[Z2] + 2E[Xi]E[X0] (A.8)

Given the similarity between Z1 and Z2, we only show the derivation for E[Z2
1 ].

E[Z2
1 ] =

∑
j 6=i

E

[
sj∑
k=1

X2
j,k

]
+
∑
j 6=i

∑
j
′ 6=i
j
′ 6=j

E

 sj∑
k=1

s
j
′∑

k′=1

Xj,kXj′ ,k′



+
∑
j 6=i

E


sj∑
k=1

sj∑
k
′
=1

k
′ 6=k

Xj,kXj,k′

 (A.9)

Consider E

[
sj∑
k=1

X2
j,k

]

E

[
sj∑
k=1

X2
j,k

]
= Esj

[
E

[
sj∑
k=1

X2
j,k|Lj

]]
= E

[
sjE

[
X2
j

]]
= E [sj]E

[
X2
j

]
=
pj
pi
E[X2

j ]

(A.10)

where the last equality uses similar derivation steps for E[sj] in Appendix A.1.

Consider E

[
sj∑
k=1

s
j
′∑

k′=1

Xj,kXj′ ,k′

]

E

 sj∑
k=1

s
j
′∑

k′=1

Xj,kXj′ ,k′

 = Esj ,sj′

E
 sj∑
k=1

s
j
′∑

k′=1

Xj,kXj′ ,k′ |sj, sj′


= E

[
sjsj′E[Xj]E[Xj′ ]

]
= E

[
sjsj′

]
E[Xj]E[Xj′ ]

(A.11)

38



We can write E
[
sjsj′

]
= EL1

[
E[sjsj′ |L1]

]
. Further,

E[sjsj′ |L1] = E
[
E[sjsj′ |sj, L1]|L1

]
= E

[
sjE[sj′ |sj, L1]|L1

]
= E

[
sj(L1 − sj − 1)

qj′

1− qj
|L1

]
=

qj′

1− qj
(L1E[sj]− E[s2

j ]− E[sj])

= qj′qj(L
2
1 − 3L1 + 2)

(A.12)

where, given L1 and sj, sj′ is a multinomial coefficient with parameter qj′ =
p
j
′

1−pi .

Finally, we get E
[
sjsj′

]
as

E
[
sjsj′

]
= qj′qjE[L2

1 − 3L1 + 2]

= qj′qj
2(1− pi)2

p2
i

(A.13)

Consider E

 sj∑
k=1

sj∑
k
′
=1

k
′ 6=k

Xj,kXj,k′



E


sj∑
k=1

sj∑
k
′
=1

k
′ 6=k

Xj,kXj,k′

 = Esj

E


sj∑
k=1

sj∑
k
′
=1

k
′ 6=k

Xj,kXj,k′ |sj




= E[sj(sj − 1)]E[Xj]
2

= 2
p2
j

p2
i

E[Xj]
2

(A.14)

A.3 Derivation of E[Ti]

Consider the interval Z in which gateway never polls sensor i and does not transmit

to the monitor. Let there be a total of L − 1 pollings in the interval Z. Then L is

geometrically distributed with parameter (pi + p0).

P [L = l] = (1− (pi + p0))l−1(pi + p0) (A.15)

Then E[L] = 1
pi+p0

. Note that,

Z =
∑
j 6=0
j 6=i

sj∑
k=1

Xj,k (A.16)
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where, sj is the number of times sensor j got polled during Z. Also,
∑
j 6=0
j 6=i

sj = L− 1.

Further,

E[Z] =
∑
j 6=0
j 6=i

E

[
sj∑
k=1

Xj,k

]
(A.17)

E[Z] = Esj [E[Z|sj,j 6=i,0]]

=
∑
j 6=0
j 6=i

E

[
E

[
sj∑
k=1

Xj,k|sj

]]

=
∑
j 6=0
j 6=i

E

[
sj∑
k=1

E [Xj,k]

]

=
∑
j 6=0
j 6=i

E

[
sj∑
k=1

E [Xj]

]

=
∑
j 6=0
j 6=i

E[sj]E[Xj]

(A.18)

Let us find E[sj].

E[sj] = EL [E[sj|L]]

= E

(L− 1)
pj∑

k 6=0
k 6=i

pk


= E

[
(L− 1)

pj
1− p0 − pi

]
=

pj
1− p0 − pi

E[L− 1]

=
pj

1− (p0 + pi)

1− (p0 + pi)

p0 + pi

=
pj

p0 + pi

(A.19)

where, in the first equality the inner conditional expectation is the expected number

of times sensor j, j 6= i, 0 is polled given L slots. Finally,

E[Z] =
∑
j 6=0
j 6=i

pj
p0 + pi

E[Xj] (A.20)
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Since Ti,k−1 = Xi,1 + Z +X
′
0,1, therefore,

E[Ti,k−1] = E[Xi] + E[Z] + E[X0]

= E[Xi] + E[X0] +
1

p0 + pi

∑
j 6=0
j 6=i

pjE[Xj]
(A.21)
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