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Abstract

Nowadays error-correcting codes are widely used in communication systems, re-

turning pictures from deep space, designing registration numbers, and storage of

data in memory systems. An important family of error-correcting codes is that

of linear codes, which contain many well-known codes such as Hamming codes,

Hadamard codes, cyclic codes and quasi-cyclic codes. Recently, Aydin and Halilović

[5] introduced and studied multi-twisted (MT) codes over the finite field Fq, whose

block lengths are coprime to q. These codes are generalizations of well-known classes

of linear codes, such as constacyclic codes and generalized quasi-cyclic codes, hav-

ing rich algebraic structures and containing record-breaker codes. In the same work,

they obtained subcodes of MT codes with best-known parameters [33, 12, 12] over

F3, [53, 18, 21] over F5, [23, 7, 13] over F7 and optimal parameters [54, 4, 44] over

F7. Apart from this, they proved that the code parameters [53, 18, 21] over F5 and

[33, 12, 12] over F3 can not be attained by constacyclic and quasi-cyclic codes, which

suggests that this larger class of MT codes is more promising to find codes with

better parameters than the current best known linear codes.

In this thesis, we first investigate algebraic structures of MT codes over Fq,

whose block lengths are coprime to q. We also study their dual codes with respect

to Euclidean and Hermitian inner products, and derive necessary and sufficient

conditions for a MT code to be (i) self-dual, (iii) self-orthogonal and (iii) linear

v
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with complementary-dual (LCD). Applying these results, we provide enumeration

formulae for all Euclidean and Hermitian self-dual, self-orthogonal and LCD MT

codes over Fq. We also derive some sufficient conditions under which a MT code is

either Euclidean LCD or Hermitian LCD. We further develop generator theory for

these codes and determine their parity-check polynomials. We also obtain a BCH

type bound on their minimum Hamming distances, and express generating sets of

Euclidean and Hermitian dual codes of some MT codes in terms of their generating

sets. Besides this, we provide a trace description for all MT codes by viewing these

codes as direct sums of certain concatenated codes, which leads to a method to

construct these codes. We also obtain a lower bound on their minimum Hamming

distances using their multilevel concatenated structure. Besides this, we explicitly

determine all non-zero Hamming weights of codewords of several classes of MT codes

over Fq. Using these results, we explicitly determine Hamming weight distributions

of several classes of MT codes with a few weights. Among these classes of MT codes

with a few weights, we identify two classes of optimal equidistant MT codes that

attain the Griesmer as well as Plotkin bounds, and several other classes of MT codes

that are useful in constructing secret sharing schemes with nice access structures.

We further extend the family of MT codes and study algebraic structures of MT

codes over Fq, whose block lengths are arbitrary positive integers, not necessarily

coprime to q. We study their dual codes with respect to the Galois inner product

and derive necessary and sufficient conditions under which a MT code is (i) Ga-

lois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD. We also provide a

trace description for all MT codes over finite fields by using the generalized discrete

Fourier transform (GDFT), which gives rise to a method to construct these codes.

We further provide necessary and sufficient conditions under which a Euclidean self-

dual MT code over a finite field of even characteristic is a Type II code. We also

show that each MT code has a unique normalized generating set. With the help
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of a normalized generating set, we explicitly determine the dimension and the cor-

responding generating set of the Galois dual code of each MT code. Besides this,

we identify several classes of MT codes over finite fields with a few weights and

explicitly determine their Hamming weight distributions.

We next study skew analogues of MT codes over finite fields, viz. skew multi-

twisted (MT) codes, which are linear codes and are generalizations of MT codes. We

thoroughly investigate algebraic structures of skew MT codes over finite fields and

their Galois duals. Besides this, we view skew MT codes as direct sums of certain

concatenated codes and provide a method to construct these codes. We also develop

generator theory for these codes, and obtain two lower bounds on their minimum

Hamming distances.

Finally, we apply our results to obtain many linear codes with best known and

optimal parameters from MT and skew MT codes over finite fields.
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1
Introduction

The object of this thesis is

• to investigate algebraic structures of multi-twisted codes over finite fields and

their dual codes.

• to develop generator theory and to provide a construction method for multi-

twisted codes over finite fields.

• to determine Hamming weight distributions of several classes of multi-twisted

codes over finite fields.

• to study skew analogues of multi-twisted codes over finite fields and their

Galois duals, and to develop generator theory for these codes.

1



2 Introduction

Now we proceed to describe the problems that we have explored in this thesis.

1.1 Multi-twisted codes over finite fields and their

dual codes

Prange [66] introduced and studied cyclic codes over finite fields, which form the

most-studied class of linear codes containing many important codes such as BCH

codes, Reed-Solomon codes and quadratic residue codes. These codes can be effec-

tively encoded and decoded using linear feedback shift registers and can be viewed

as ideals of a certain quotient ring of polynomial rings. Later, Townsend and Wel-

don [77] introduced and studied quasi-cyclic (QC) codes over finite fields, which are

generalizations of cyclic codes. Kasami [49] and Weldon [79] further showed that

these codes are asymptotically good due to their abundant population. Solomon

and Tilborg [75] established a link between these codes and convolutional codes.

Using this, they deduced many interesting properties of linear codes, which have

applications in coding theory and modulation. Ling and Solé [53] viewed QC codes

over finite fields as linear codes over a certain auxiliary ring and studied their dual

codes with respect to the Euclidean inner product. They also explored the existence

of some Euclidean self-dual QC codes and provided enumeration formulae for this

class of codes in certain special cases. Later, Ling et al. [52] studied QC codes

over rings of characteristic not coprime with the co-index. In the same work, they

provided a trace description for these codes using the generalized discrete Fourier

transform (GDFT) and studied their dual codes with respect to the Euclidean inner

product. They also derived a characterization of Type II QC codes of singly even

co-index over finite fields of even characteristic. Siap and Kulhan [73] further gen-

eralized these codes to generalized quasi-cyclic (GQC) codes over finite fields. They

studied algebraic properties of 1-generator GQC codes and obtained a BCH type

bound on their minimum Hamming distances. By applying the Chinese Remainder
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Theorem and the results derived in Ling and Solé [55], Esmaeili and Yari [34] de-

composed GQC codes into linear codes, and provided an improved lower bound on

their minimum Hamming distances. Güneri et al. [41] decomposed GQC codes as

direct sums of concatenated codes, which leads to a trace formula and a minimum

distance bound for GQC codes. Jia [47] further generalized QC codes to quasi-

twisted (QT) codes, and decomposed these codes into direct sums of linear codes

over rings. She also studied their dual codes with respect to the Euclidean inner

product and provided a method to construct QT codes using the inverse generalized

discrete Fourier transform. Later, Saleh and Esmaeili [68] provided some sufficient

conditions under which a QT code is linear with complementary dual (LCD) with

respect to the Euclidean inner product. A large number of record-breaking QC and

QT codes have been obtained [6, 7, 25–27] by using the search algorithm proposed

in [8].

In a recent work, Aydin and Halilović [5] introduced multi-twisted (MT) codes

of block lengths (m1,m2, · · · ,m`) and length n = m1 + m2 + · · · + m` over Fq,

where m1,m2, · · · ,m` are positive integers coprime to q. These codes form an im-

portant class of linear codes and are generalizations of constacyclic and generalized

quasi-cyclic (GQC) codes. They studied some basic properties of 1-generator MT

codes. They also presented several methods to construct 1-generator MT codes

and obtained several bounds on their minimum Hamming distances. In the same

work, they obtained linear codes with best known parameters [33, 12, 12] over F3,

[53, 18, 21] over F5, [23, 7, 13] over F7 and optimal parameters [54, 4, 44] over F7 from

subcodes of MT codes. Apart from this, they proved that the code parameters

[53, 18, 21] over F5 and [33, 12, 12] over F3 can not be attained by constacyclic or QC

codes, which suggests that this larger class of MT codes is more promising to find

codes with better parameters than the current best linear codes.

From now on, throughout this thesis, let Fq denote the finite field of order q = pr,

where p is a prime and r is a positive integer. Let ` be a positive integer, and let
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n = m1 +m2 + · · ·+m`, where m1,m2, · · · ,m` are positive integers. Let Fnq denote

the vector space consisting of all n-tuples over Fq. Let Λ = (λ1, λ2, · · · , λ`), where

λ1, λ2, · · · , λ` are non-zero elements of Fq.

In Chapter 2, we state some preliminaries that are needed to derive our main

results.

In Chapter 3, we study the algebraic structure of Λ-multi-twisted (Λ-MT) codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq and their dual codes with re-

spect to the Euclidean and Hermitian inner products on Fnq , where m1,m2, · · · ,m`

are positive integers satisfying gcd(mi, q) = 1 for 1 ≤ i ≤ `. We also provide

necessary and sufficient conditions under which a Λ-MT code of block lengths

(m1,m2, · · · ,m`) and length n over Fq is (i) Euclidean self-dual, (ii) Euclidean

self-orthogonal, (iii) Euclidean LCD, (iv) Hermitian self-dual, (v) Hermitian self-

orthogonal and (vi) Hermitian LCD. We also derive some sufficient conditions under

which a Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n over Fq is either

Euclidean LCD or Hermitian LCD. We determine the parity-check polynomial of all

Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq and obtain a

BCH type bound on their minimum Hamming distances. We also express generating

sets of Euclidean and Hermitian dual codes of some Λ-MT codes of block lengths

(m1,m2, · · · ,m`) and length n over Fq in terms of their generating sets. Besides this,

we provide a trace description for all Λ-MT codes of block lengths (m1,m2, · · · ,m`)

and length n over Fq by viewing these codes as direct sums of certain concatenated

codes, which leads to a method to construct these codes. We also obtain a lower

bound on their minimum Hamming distances using their multilevel concatenated

structure.

In Chapter 4, we provide enumeration formulae for all Euclidean and Hermitian

self-dual and self-orthogonal Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq, wherem1,m2, · · · ,m` are positive integers satisfying gcd(mi, q) = 1

for 1 ≤ i ≤ `. We also enumerate all Euclidean and Hermitian LCD Λ-MT codes
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of block lengths (m1,m2, · · · ,m`) and length n over Fq when λi ∈ {1,−1} and

gcd(mi, q) = 1 for 1 ≤ i ≤ `.

The Hamming distance of a code is a measure of its error-detecting and error-

correcting capabilities, and hence is an important parameter of the code. The greater

is the Hamming distance of a code, higher are its error-detecting and error-correcting

capabilities. A linear code C of length n over Fq is defined as an Fq-linear subspace of

Fnq . The Hamming distance of the code C is defined as the smallest of the Hamming

weights of its non-zero codewords. Given a linear code C of length n, dimension

k and Hamming distance d over Fq, the Griesmer bound is a lower bound on the

length n of the code C in terms of q, d and k, while the Plotkin bound is an upper

bound on the size qk of the code C in terms of q, n and d, provided qd > n(q − 1).

Linear codes attaining either the Griesmer bound or the Plotkin bound are optimal

codes, and have attracted the attention of many coding theorists [44, 48, 50, 64].

Besides the length n, dimension k and Hamming distance d, another important

parameter of the code C is its Hamming weight distribution, which is defined as the

list A0 = 1, A1, A2, · · · , An, where Aj denotes the number of codewords in C having

the Hamming weight j for 0 ≤ j ≤ n. The Hamming weight distribution of a code

is useful in studying its error-performance with respect to various communication

channels [14, 24, 62]. Thus the problem of determination of the Hamming weight

distribution of a code is of great interest [28, 30, 33, 48, 50, 56, 58, 64]. Despite

all the efforts, this is considered as a very difficult problem in coding theory and

is still an open problem for most of the linear codes [28, 33, 58]. Furthermore,

if t denotes the number of integers j satisfying 1 ≤ j ≤ n and Aj 6= 0, then

the code C is called a t-weight code. In general, the code with a smaller value

of τ is called a few weight code. Nowadays, a lot of progress has been made by

many coding theorists to construct various classes of linear codes with a few weights

[42, 48, 56], as few weight codes have recently found applications in constructing

authentication codes [29] and in designing secret sharing schemes with nice access
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structures [23, 54, 60, 80]. In particular, codes with t = 1 are called equidistant

or constant weight codes, which are useful in constructing combinatorial designs

[35, 76] and generating goodsets of frequency hopping lists in radio networks [74].

Bonisoli [15] showed that each equidistant linear code of a given length over a finite

field can be obtained by replicating a simplex code, possibly by appending zero

coordinates and by applying a monomial linear transformation.

The support of a vector v = (v0, v1, · · · , vn−1) ∈ Fnq , denoted by supp(v), is

defined as the set supp(v) = {i : 0 ≤ i ≤ n − 1, vi 6= 0}. Further, a vector u ∈ Fnq
is said to cover another vector v ∈ Fnq if supp(v) ⊆ supp(u). A codeword c ∈ C

is said to be minimal if c covers only the codewords ac ∈ C for all a ∈ Fq, and

c does not cover any other codeword of the code C. The linear code C is said to

be minimal if every codeword of C is minimal. Minimal linear codes have recently

found interesting applications in designing secret sharing schemes with nice access

structures [19, 59, 80] and in secure two-party computation [2, 22], and these codes

can be effectively decoded with a minimum distance decoding algorithm [1]. Thus

the problem of finding minimal linear codes has been an interesting research direction

in Coding Theory and Cryptography, and has recently attracted the attention of

several researchers [1, 2, 22, 43, 58–60].

In Chapter 5, we explicitly determine all non-zero Hamming weights of codewords

of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n

over Fq, where m1,m2, · · · ,m` are positive integers satisfying gcd(mi, q) = 1 for

1 ≤ i ≤ `. We also explicitly determine Hamming weight distributions of several

classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq with a

few weights. Among these classes of few weight Λ-MT codes, we identify two classes

of optimal equidistant Λ-MT codes meeting both Griesmer and Plotkin bounds,

which have nice connections with combinatorial designs and projective geometry and

are also useful in designing distributed storage systems. Besides this, we identify

three other classes of few weight Λ-MT codes, which are useful in constructing secret
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sharing schemes with nice access structures.

In Chapter 6, we extend the family of MT codes and study all Λ-MT codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq, where the block lengths

m1,m2, · · · ,m` are arbitrary positive integers not necessarily coprime to q.More pre-

cisely, we investigate algebraic structures of Λ-MT codes of block lengths (m1,m2, · · ·

· · · ,m`) and length n over Fq and their Galois duals (i.e., orthogonal complements

with respect to the Galois inner product on Fnq ). We derive necessary and suffi-

cient conditions under which a Λ-MT code of block lengths (m1,m2, · · · ,m`) and

length n over Fq is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois

LCD. We further provide a trace description for all Λ-MT codes of block lengths

(m1,m2, · · · ,m`) and length n over Fq by using the generalized discrete Fourier

transform (GDFT), which gives rise to a method to construct these codes. We also

provide necessary and sufficient conditions under which a Euclidean self-dual Λ-MT

code of block lengths (m1,m2, · · · ,m`) and length n over F2r is a Type II code when

λi = 1 and mi = ni2
a for 1 ≤ i ≤ `, where a ≥ 0 is an integer and n1, n2, · · · , n`

are odd positive integers satisfying n1 ≡ n2 ≡ · · · ≡ n` (mod 4). Moreover, we

develop generator theory for Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq and show that each Λ-MT code of block lengths (m1,m2, · · · ,m`)

and length n over Fq has a unique normalized generating set. With the help of a

normalized generating set, we explicitly determine the dimension and a generating

set of the Galois dual of each Λ-MT code of block lengths (m1,m2, · · · ,m`) and

length n over Fq. Besides this, we obtain several linear codes with best-known and

optimal parameters from 1-generator Λ-MT codes over Fq, where 2 ≤ q ≤ 7. It is

worth mentioning that these code parameters can not be attained by any of their

subclasses (such as constacyclic and quasi-twisted codes) containing record breaker

codes. This shows that this generalized family of MT codes over finite fields is more

promising to find codes with better parameters than the current best-known codes.

In Chapter 7, we explicitly determine Hamming weights of all non-zero codewords
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of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over

Fq, where m1,m2, · · · ,m` are arbitrary positive integers not necessarily coprime to q.

Using these results, we explicitly determine Hamming weight distributions of several

classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq with a

few weights. Among these classes of few weight Λ-MT codes, we identify two classes

of optimal equidistant Λ-MT codes that attain the Griesmer as well as Plotkin

bounds, and several other classes of Λ-MT codes that are useful in constructing

secret sharing schemes with nice access structures.

1.2 Skew multi-twisted codes over finite fields and

their Galois duals

Ore [63] generalized polynomial rings to skew-polynomial rings, which are non-

commutative rings and have recently found applications in coding theory and cryp-

tography [3, 16, 18, 81]. Algebraic codes that are defined as ideals (resp. modules) in

a certain quotient ring (resp. quotient module) of skew polynomial rings are called

skew constacyclic codes (resp. module skew codes). Since a skew polynomial ring

is not a unique factorization domain, there are many more skew codes as compared

to the corresponding commutative cases. This motivated many coding theorists to

study various classes of skew codes [3, 13, 17, 18, 31, 48]. Towards this, Boucher et al.

[17] introduced and studied skew cyclic codes over finite fields, which are generaliza-

tions of cyclic codes. Within this class, they obtained many linear codes with better

parameters as compared to the previously best known linear codes. Abualrub et al.

[3] studied skew quasi-cyclic (QC) codes and showed that parity-check polynomials

for skew QC codes are unique up to similarity. In the same work, they obtained

new codes with Hamming distances exceeding Hamming distances of the previously

best known linear codes with comparable parameters. Later, Gao et al. [38] studied

skew generalized quasi-cyclic (GQC) codes and derived an analogue of the Chinese
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Remainder Theorem for skew polynomial rings using the factorization theory of ide-

als, which leads to a canonical decomposition of skew GQC codes. They also defined

the parity-check polynomial, determined the dimension and obtained a lower bound

on minimum Hamming distances of 1-generator skew GQC codes. Abualrub et al.

[4] further studied skew GQC codes and derived some good classical and quantum

codes from these codes.

In Chapter 8, we study skew analogues of MT codes over finite fields. More

precisely, we introduce a new class of linear codes over finite fields, viz. skew MT

codes over finite fields. We thoroughly investigate algebraic structures of skew MT

codes and their Galois duals. We further view skew MT codes as direct sums of

certain concatenated codes, and provide a method to construct these codes. We

also determine a lower bound on their minimum Hamming distances using their

multilevel concatenated structure. Moreover, we derive necessary and sufficient

conditions under which a skew MT code is (i) Galois self-dual, (ii) Galois self-

orthogonal and (iii) Galois LCD. We also develop generator theory for skew MT

codes over finite fields, and obtain two lower bounds on their minimum Hamming

distances. Besides this, we obtain many linear codes with best known and optimal

parameters from 1-generator skew MT codes over F8 and F9.

1.3 Conclusion and future work

In Chapter 9, we mention a brief conclusion and discuss some interesting open

problems in this direction.
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2
Some Preliminaries

In this chapter, we shall state some basic definitions and results that are needed

to derive our main results.

To begin with, in the following section, we will present some basic results from

groups and geometry, which are useful in the enumeration of all Euclidean and Her-

mitian self-dual, self-orthogonal and linear with complementary dual (LCD) multi-

twisted (MT) codes over finite fields. For this, we assume, throughout this chapter,

that Fq is the finite field of order q = pr, where p is a prime number and r is a

positive integer.

11
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2.1 Some basic results from groups and geometry

Let V be a finite-dimensional vector space over the finite field F. Let B be a

σ-sesquilinear form on V, where σ is an automorphism of F. Then the pair (V,B) is

called a formed space. From now on, throughout this section, we suppose that B is

a reflexive and non-degenerate σ-sesquilinear form on V. The formed space (V,B) is

called (i) a symplectic space if B is an alternating form on V, (ii) a unitary space if

B is a Hermitian form on V, and (iii) an orthogonal space (or a finite geometry) if B

is a symmetric form on V. Further, a subspace of the formed space (V,B) is defined

as a pair (U,BU), where U is a subspace of V and BU = B �U×U . For a subspace U

of the formed space (V,B), let us define U⊥ = {v ∈ V : B(u, v) = 0 for all u ∈ U}.

Theorem 2.1.1. [40, 78] If (V,B) is a finite-dimensional reflexive and non-degenerate

space over the field F and U is a subspace of V, then U⊥ is a subspace of V and

dimFU
⊥ = dimFV − dimFU.

A subspace U of V is said to be (i) self-dual if it satisfies U = U⊥, (ii) self-

orthogonal (or totally isotropic) if it satisfies U ⊆ U⊥, (iii) linear with comple-

mentary dual (or LCD or non-degenerate) if it satisfies U ∩ U⊥ = {0}, and (iv)

dual-containing if it satisfies U⊥ ⊆ U. The Witt index of V is defined as the dimen-

sion of a maximal self-orthogonal subspace of V.

Next let Fµq be the µ-dimensional vector space consisting of all µ-tuples over the

finite field Fq. Then with respect to the standard inner product on Fµq , the following

hold.

Theorem 2.1.2. (a) [44, Th. 9.1.3] There exists a self-dual subspace (or equiv-

alently, a linear code) of even length µ over Fq if and only if (−1)µ/2 is a

square in Fq. Furthermore, if µ is an even integer and (−1)µ/2 is not a square

in Fq, then the dimension of a maximal self-orthogonal subspace of length µ

over Fq is (µ− 2)/2. If µ is an odd integer, then the dimension of a maximal

self-orthogonal subspace of length µ over Fq is (µ− 1)/2.
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(b) [65, p. 217] Let µ ≥ 2 be an even integer, and let (−1)µ/2 be a square in Fq.

Then the number of distinct self-dual subspaces of even length µ over Fq is

given by

•
µ
2
−1∏

a=1

(qa + 1) when q is even.

•
µ
2
−1∏

a=0

(qa + 1) when q is odd.

In the following theorem, we state some basic properties of finite-dimensional

symplectic spaces over finite fields.

Theorem 2.1.3. [78] Let (V,B) be a µ-dimensional symplectic space over Fq. Then

the dimension µ of V is even and the following hold.

(a) The Witt index of V is µ
2
.

(b) For 0 ≤ k ≤ µ
2
, the number of distinct k-dimensional self-orthogonal subspaces

of V is given by

k−1∏
a=0

(qµ−2a − 1)

(qa+1 − 1)
=

[
µ/2

k

]
q

k−1∏
a=0

(q
µ
2
−a + 1),

where
[
µ/2
k

]
q

=
k−1∏
d=0

(qµ/2−qd)
(qk−qd)

is the q-binomial coefficient.

In the following theorem, we state some basic properties of finite-dimensional

unitary spaces over finite fields.

Theorem 2.1.4. [78] Let (V,B) be a µ-dimensional unitary space over Fq2 . Let ν

be the Witt index of (V,B). Then we have the following:

(a) The Witt index ν of V is given by ν =


µ
2

if µ is even;

µ−1
2

if µ is odd.
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(b) For 0 ≤ k ≤ ν, the number of distinct k-dimensional self-orthogonal subspaces

of V is given by
µ∏

a=µ+1−2k

(qa − (−1)a)

k∏
j=1

(q2j − 1)

.

To study orthogonal spaces, let q be an odd prime power, and let V be a finite-

dimensional vector space over Fq. Then the map ϕ : V → Fq is called a quadratic

map on V if it satisfies

(i) ϕ(av1) = a2ϕ(v1) for all a ∈ Fq and v1 ∈ V, and

(ii) the map Bϕ : V × V → Fq, defined by Bϕ(v1, v2) = ϕ(v1 + v2)−ϕ(v1)−ϕ(v2)

for all v1, v2 ∈ V, is a symmetric bilinear form on V.

The pair (V, ϕ) is called a quadratic space over Fq. The quadratic space (V, ϕ) over

Fq is called non-degenerate if it satisfies ϕ−1(0) ∩ V ⊥ = {0}, where V ⊥ = {v ∈ V :

Bϕ(v, u) = 0 for all u ∈ V }. If the quadratic space (V, ϕ) is non-degenerate, then

the associated orthogonal space (V,Bϕ) is called a finite geometry over Fq. On the

other hand, with every symmetric bilinear form B on a vector space V over Fq, one

can associate the following quadratic map:

QB(v) =
1

2
B(v, v) for each v ∈ V.

In the following theorem, we state some basic properties of non-degenerate quadratic

spaces over a finite field of odd characteristic.

Theorem 2.1.5. [65, 78] Let (V, ϕ) be a µ-dimensional non-degenerate quadratic

space over the finite field Fq having an odd characteristic. Let ν be the Witt index

of (V, ϕ). Then we have the following:
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(a) The Witt index ν of V is given by

ν =


µ−1

2
if µ is odd;

µ
2

if µ is even and q ≡ 1 (mod 4) or µ ≡ 0 (mod 4) and q ≡ 3 (mod 4);

µ−2
2

if µ ≡ 2 (mod 4) and q ≡ 3 (mod 4).

(b) For 0 ≤ k ≤ ν, the number of distinct k-dimensional self-orthogonal (or totally

singular) subspaces of V is given by

[
ν

k

]
q

k−1∏
a=0

(qν−ς−a + 1),

where
[
ν
k

]
q

=
k−1∏
d=0

(qν − qd)/(qk − qd) is the q-binomial coefficient and ς =

2ν−µ+1. (Note that ς = 1 if ν = µ
2
, ς = −1 if ν = µ−2

2
and ς = 0 if ν = µ−1

2
.)

Next we recall the following well-known result:

Lemma 2.1.6. If n, k are integers satisfying 0 ≤ k ≤ n and q is a prime power,

then the number of distinct k-dimensional subspaces of an n-dimensional vector space

over Fq is given by the q-binomial coefficient

[
n

k

]
q

=
k−1∏
i=0

(
qn − qi

qk − qi

)
.

In the next section, we will state some basic results on character sums over

finite fields, which are useful in the determination of Hamming weights of non-zero

codewords of multi-twisted (MT) codes over finite fields.



16 Some Preliminaries

2.2 Some basic results on character sums over fi-

nite fields

An additive character of Fq is defined as a group homomorphism from the ad-

ditive group of the finite field Fq into the multiplicative group C∗ of the field of

complex numbers. The canonical additive character χ of Fq is defined as

χ(y) = e
2πιTrFq/Fp (y)

p for all y ∈ Fq.

Note that χ(0) = 1. It is well-known that

∑
y∈Fq

χ(ay) =

 q if a = 0;

0 if a 6= 0.
(2.1)

Let E be a finite field extension of Fq, and let µ be the canonical additive character

of E, defined as

µ(z) = e
2πιTrE/Fp (z)

p for all z ∈ E.

One can easily observe that

µ(z) = χ(TrE/Fq(z)) for all z ∈ E. (2.2)

A multiplicative character of Fq is defined as a group homomorphism from the mul-

tiplicative group F∗q of the finite field Fq into C∗. The trivial multiplicative character

ψ0 of Fq is defined as ψ0(y) = 1 for all y ∈ F∗q. It is well-known [51, p. 192] that

∑
y∈F∗q

ψ(y) =

 q − 1 if ψ = ψ0;

0 otherwise.
(2.3)



2.2 Some basic results on character sums over finite fields 17

Further, if ψ1 and ψ2 are multiplicative characters of Fq, then the mapping ψ1ψ2 :

F∗q → C∗, defined as

(ψ1ψ2)(y) = ψ1(y)ψ2(y) for all y ∈ F∗q,

is also a multiplicative character of Fq. If ψ is a multiplicative character of Fq, then

the conjugate character ψ of ψ is defined as ψ(y) = ψ(y) for y ∈ F∗q, where denotes

the complex conjugation. Further, it is easy to see that ψ = ψ−1. If β is a primitive

element of Fq, then the map φ : F∗q → C∗, defined as

φ(βj) = e
2πιj
q−1 for 0 ≤ j ≤ q − 2,

is a multiplicative character of Fq. It is well-known [51, p. 191] that the set F̂∗q of

multiplicative characters of Fq is a cyclic group of order q − 1, generated by φ.

For an additive character χ and a multiplicative character ψ of Fq, the Gauss

sum over the finite field Fq is defined as

G(ψ, χ) =
∑
y∈F∗q

ψ(y)χ(y).

It is easy to see that

G(ψ, χ) = ψ(−1)G(ψ, χ) and G(ψ0, χ) = −1. (2.4)

Further, it is well-known that

χ(y) =
1

q − 1

∑
ψ∈F̂∗q

G(ψ, χ)ψ(y) for each y ∈ F∗q, (2.5)

which may be interpreted as the Fourier expansion of the restriction of χ to F∗q
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in terms of the multiplicative characters of Fq with Gauss sums as Fourier coeffi-

cients. Now the following theorem determines the Gauss sum G(ψ, χ) when ψ is the

quadratic character of Fq.

Theorem 2.2.1. [11] Let q = pr, where p is a prime and r is a positive integer. If

ψ is the quadratic character of Fq and χ is the canonical additive character of Fq,

then we have

G(ψ, χ) = (−1)r−1ι
r(p−1)2

4
√
q =

 (−1)r−1√q if p ≡ 1 (mod 4);

(−1)r−1ιr
√
q if p ≡ 3 (mod 4).

The following theorem determines the Gauss sum G(ψ, χ) in the semi-primitive

case, i.e., when there exists a positive integer t satisfying pt ≡ −1 (mod M), where

M is the multiplicative order of ψ.

Theorem 2.2.2. [11] Let q = pr, where p is a prime and r is a positive integer. Let

χ be the canonical additive character of Fq, and let ψ be a multiplicative character of

Fq having order M > 2. Suppose that there exists a least positive integer t satisfying

pt ≡ −1 (mod M). Then we have r = 2tγ for some positive integer γ. Furthermore,

for 1 ≤ i ≤M − 1, we have

G(ψi, χ) =

 (−1)i
√
q if M is even and pγ(pt+1)

M
is odd;

(−1)γ−1√q otherwise.
(2.6)



3
Multi-twisted codes over finite

fields and their dual codes

3.1 Introduction

Let Fq denote the finite field of order q, and let m1,m2, · · · ,m` be positive in-

tegers satisfying gcd(mi, q) = 1 for 1 ≤ i ≤ `. Let n = m1 + m2 + · · · + m`. Let

Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq. In this chap-

ter, we shall thoroughly investigate algebraic structures of Λ-multi-twisted codes

(Λ-MT) of block lengths (m1,m2, · · · ,m`) and length n over Fq by writing a canon-

ical form decomposition for these codes. We shall also study their dual codes and

19
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derive necessary and sufficient conditions under which a Λ-MT code of block lengths

(m1,m2, · · · ,m`) and length n over Fq is (i) self-dual, (ii) self-orthogonal and (iii)

linear with complementary dual (LCD) by placing Euclidean and Hermitian inner

products on Fnq . We shall also develop generator theory for these codes and explic-

itly determine generating sets of Euclidean and Hermitian dual codes of some Λ-MT

codes of block lengths (m1,m2, · · · ,m`) and length n over Fq from their generating

sets. We shall also provide a trace description for these codes, which gives rise to

a construction method for these codes. We shall also obtain two lower bounds on

their minimum Hamming distances.

This chapter is structured as follows: In Section 3.2, we study algebraic structures

of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq. In Section 3.3,

we study their dual codes with respect to Euclidean and Hermitian inner products on

Fnq , and derive necessary and sufficient conditions for a Λ-MT code of block lengths

(m1,m2, · · · ,m`) and length n over Fq to be Euclidean or Hermitian (i) self-dual,

(ii) self-orthogonal and (iii) linear with complementary dual (LCD) (Theorems 3.3.3

and 3.3.4). In Section 3.4, we determine the parity-check polynomial of each Λ-MT

code of block lengths (m1,m2, · · · ,m`) and length n over Fq, and obtain a BCH

type bound on their minimum Hamming distances (Theorems 3.4.1 and 3.4.3). We

express generating sets of Euclidean and Hermitian dual codes of some Λ-MT codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq in terms of their generating

sets (Theorem 3.4.2). We also obtain a lower bound on the dimension of a Λ-MT code

of block lengths (m1,m2, · · · ,m`) and length n over Fq, which is also invariant under

the Ω-MT shift operator on Fnq , where Λ 6= Ω (Theorem 3.4.4). We also derive some

sufficient conditions under which a Λ-MT code of block lengths (m1,m2, · · · ,m`)

and length n over Fq is either Euclidean or Hermitian LCD (Theorems 3.4.5 and

3.4.6). In Section 3.5, we provide a trace description for all Λ-MT codes of block

lengths (m1,m2, · · · ,m`) and length n over Fq by viewing these codes as direct

sums of certain concatenated codes, which leads to a method to construct these
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codes (Theorem 3.5.2). We also obtain a lower bound on their minimum Hamming

distances using their multilevel concatenated structure (Theorem 3.5.3).

3.2 Algebraic structures of MT codes over finite

fields

In this section, we shall thoroughly investigate algebraic structures of MT codes

over Fq, whose block lengths are positive integers coprime to q. For this, we assume,

throughout this chapter, that Fq is the finite field of order q = pr, where p is a prime

number and r is a positive integer. Let m1,m2, · · · ,m` be positive integers coprime

to q, and let n = m1 + m2 + · · · + m`. Let Fnq denote the vector space consisting

of all n-tuples over Fq. Let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero

elements of Fq. Then a Λ-multi-twisted (MT) module V is an Fq[x]-module of the

form

V =
∏̀
i=1

Vi,

where Vi = Fq [x]

〈xmi−λi〉 for 1 ≤ i ≤ `. We further note that there exists an Fq-linear vec-

tor space isomorphism from Fnq onto V. From this point on, we shall represent each el-

ement a ∈ Fnq as a = (a1,0, a1,1, · · · , a1,m1−1; a2,0, a2,1, · · · , a2,m2−1; · · · ; a`,0, a`,1, · · · ,

a`,m`−1) and the corresponding element a(x) ∈ V as a(x) = (a1(x), a2(x), · · · , a`(x)),

where ai(x) =
mi−1∑
j=0

ai,jx
j ∈ Vi for 1 ≤ i ≤ `.

Definition 3.2.1. [5] A Λ-multi-twisted (MT) code of block lengths (m1,m2, · · · ,m`)

and length n over Fq is defined as an Fq[x]-submodule of the Λ-MT module V. Equiva-

lently, a linear code C of block lengths (m1,m2, · · · ,m`) and length n over Fq is called

a Λ-MT code if c = (c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1, · · · , c2,m2−1; · · · ; c`,0, c`,1, · · · · · · ,

c`,m`−1) ∈ C, then its Λ-MT shift TΛ(c) = (λ1c1,m1−1, c1,0, · · · , c1,m1−2;λ2c2,m2−1, c2,0,

· · · , c2,m2−2; · · · ;λ`c`,m`−1, c`,0, · · · , c`,m`−2) is also a codeword of C.
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In particular, when m1 = m2 = · · · = m` and λ1 = λ2 = · · · = λ`, Λ-MT codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq are permutation-equivalent

to quasi-twisted (QT) codes of length m1` over Fq. When λi = 1 for 1 ≤ i ≤ `,

Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq coincide with

generalized quasi-cyclic (GQC) codes, which are first defined and studied by Siap

and Kulhan [73]. Furthermore, when m1 = m2 = · · · = m` and λi = 1 for 1 ≤ i ≤ `,

Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq are permutation-

equivalent to quasi-cyclic (QC) codes of length m1` and index ` over Fq. Besides this,

when ` = 1, Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq are

λ1-constacyclic codes of length m1 over Fq.

Now we shall express Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n

over Fq as direct sums of certain linear codes of length ` over finite field extensions

of Fq. To do this, let g1(x), g2(x), · · · , gρ(x) be all the distinct irreducible factors

of the polynomials xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` over Fq. For 1 ≤ w ≤ ρ and

1 ≤ i ≤ `, let us define

εw,i =

 1 if gw(x) divides xmi − λi in Fq[x];

0 otherwise.

Then for 1 ≤ i ≤ `, we note that xmi − λi =
ρ∏

w=1

gw(x)εw,i is the irreducible fac-

torization of xmi − λi over Fq. Now for each i, by applying the Chinese Remainder

Theorem, we get

Vi '
ρ⊕

w=1

εw,iFw

with Fw = Fq [x]

〈gw(x)〉 for 1 ≤ w ≤ ρ; the corresponding ring isomorphism from Vi onto
ρ⊕

w=1

εw,iFw is given by ai(x) 7→
ρ∑

w=1

(
εw,i(ai(x) + 〈gw(x)〉)

)
for each ai(x) ∈ Vi. This
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further implies that

V '
ρ⊕

w=1

(
εw,1Fw, εw,2Fw, · · · , εw,`Fw︸ ︷︷ ︸

Gw

)
,

where the ring isomorphism from V onto
ρ⊕

w=1

Gw is given by

a(x) 7→
ρ∑

w=1

(
εw,1(a1(x) + 〈gw(x)〉), εw,2(a2(x) + 〈gw(x)〉), · · · , εw,`(a`(x) + 〈gw(x)〉)

)

for each a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ V. If dw = deg gw(x), then we see that

Fw ' Fqdw for 1 ≤ w ≤ ρ. Next let εw =
∑̀
i=1

εw,i for each w. It is easy to see that for

1 ≤ w ≤ ρ, the set Gw =
(
εw,1Fw, εw,2Fw, · · · , εw,`Fw

)
is an εw-dimensional vector

space over Fw. From the above discussion, we deduce the following:

Theorem 3.2.2. Let C be a Λ-MT code of length n over Fq, which is finitely-

generated as an Fq[x]-submodule of V by {(ad,1(x), ad,2(x), · · · , ad,`(x)) : 1 ≤ d ≤

µ} ⊆ C. Then the code C can be uniquely expressed as C =
ρ⊕

w=1

Cw, where for

1 ≤ w ≤ ρ, the code Cw is an Fw-subspace of Gw, given by

Cw = SpanFw{(εw,1ad,1(δw), εw,2ad,2(δw), · · · , εw,`ad,`(δw)) : 1 ≤ d ≤ µ}

with δw as a zero of gw(x) in Fw, (the codes C1, C2, · · · , Cρ are called the constituents

of C). Furthermore, we have

dimFqC =

ρ∑
w=1

dimFwCwdeg gw(x).

Conversely, if Dw is an Fw-subspace of Gw for 1 ≤ w ≤ ρ, then D =
ρ⊕

w=1

Dw is a

Λ-MT code of length n over Fq.

We shall illustrate the above theorem in the following example:
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Example 3.2.1. Let q = 7, ` = 3, m1 = 2, m2 = 3, m3 = 4, Λ = (2, 6, 4) and

F7 = Z7. Here we have V = V1 × V2 × V3 = F7[x]
〈x2−2〉 ×

F7[x]
〈x3−6〉 ×

F7[x]
〈x4−4〉 . Further, we

see that the irreducible factorizations of the polynomials x2 − 2, x3 − 6 and x4 − 4

over F7 are given by x2 − 2 = (x + 3)(x + 4), x3 − 6 = (x + 1)(x + 2)(x + 4)

and x4 − 4 = (x + 3)(x + 4)(x2 + 2), respectively. Now let g1(x) = x + 1, g2(x) =

x + 2, g3(x) = x + 3, g4(x) = x + 4 and g5(x) = x2 + 2. Then we have F1 ' F2 '

F3 ' F4 ' F7 and F5 ' F49. From this and by applying the Chinese remainder

theorem, we get V1 ' {0} ⊕ {0} ⊕ F3 ⊕ F4 ⊕ {0}, V2 ' F1 ⊕ F2 ⊕ {0} ⊕ F4 ⊕ {0},

V3 ' {0}⊕{0}⊕F3⊕F4⊕F5, which implies that V ' ({0}, F1, {0})⊕({0}, F2, {0})⊕

(F3, {0}, F3)⊕ (F4, F4, F4)⊕ ({0}, {0}, F5). Now if C ⊆ V is a Λ-MT code of length

9 over F7 generated by
{

(ad,1(x), ad,2(x), ad,3(x)) : 1 ≤ d ≤ µ
}
⊆ V, then we have

C =
5⊕

w=1

Cw,

where the constituents Cw’s of C are given by

C1 = SpanF1
{(0, ad,2(6), 0) : 1 ≤ d ≤ µ},

C2 = SpanF2
{(0, ad,2(5), 0) : 1 ≤ d ≤ µ},

C3 = SpanF3
{(ad,1(4), 0, ad,3(4)) : 1 ≤ d ≤ µ},

C4 = SpanF4
{(ad,1(3), ad,2(3), ad,3(3)) : 1 ≤ d ≤ µ}

and

C5 = SpanF5
{(0, 0, ad,3(δ5)) : 1 ≤ d ≤ µ}

with δ5 as a zero of the polynomial g5(x) = x2 + 2 in F5 ' F49.

Next in the following theorem, we enumerate all Λ-MT codes of length n over

Fq.
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Theorem 3.2.3. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where λ1, λ2, · · · , λ` are non-zero

elements of Fq. Then the total number of distinct Λ-MT codes of length n over Fq is

given by

NΛ =

ρ∏
w=1

(
1 +

εw∑
b=1

[
εw
b

]
qdw

)
,

where dw = deg gw(x) for each w.

Proof. By Theorem 3.2.2, we see that all the distinct Λ-MT codes of length n over

Fq are given by
ρ⊕

w=1

Cw, where Cw runs over Fw-subspaces of Gw for 1 ≤ w ≤ ρ. Now

by using the fact that Fw ' Fqdw and by applying Lemma 2.1.6, the desired result

follows immediately.

Remark 3.2.4. It is easy to see that some Λ-MT codes can also be viewed as Ω-MT

codes, where Ω 6= Λ. For example, when q = 7, m1 = 2 and m2 = 1, the linear code

C with the basis set {(1, 0; 0), (0, 1; 0)} is a (2, 1)-MT as well as (4, 1)-MT code of

length 3 over F7. Thus the total number of distinct MT codes of length n over Fq is

not equal to (q − 1)`NΛ.

3.3 Euclidean and Hermitian dual codes of MT

codes

In this section, we shall study Euclidean and Hermitian dual codes of Λ-MT

codes of length n over Fq. To do this, we first recall the definitions of Euclidean and

Hermitian inner products on Fnq as follows:

The Euclidean inner product on Fnq is a mapping 〈·, ·〉0 : Fnq × Fnq → Fq, defined

as

〈a, b〉0 =
∑̀
i=1

mi−1∑
j=0

ai,jbi,j for all a, b ∈ Fnq .

Note that the Euclidean inner product 〈·, ·〉0 is a non-degenerate and symmetric bilin-

ear form on Fnq . If C is a Λ-MT code of length n over Fq, then its Euclidean dual code
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C⊥0 is defined as C⊥0 = {a ∈ Fnq : 〈a, c〉0 = 0 for all c ∈ C}. One can easily observe

that C⊥0 is a Λ−1-MT code of length n over Fq, where Λ−1 = (λ−1
1 , λ−1

2 , · · · , λ−1
` ).

The Hermitian inner product on Fnq is defined only when r is an even integer and

is a mapping 〈·, ·〉 r
2

: Fnq × Fnq → Fq, defined as

〈a, b〉 r
2

=
∑̀
i=1

mi−1∑
j=0

ai,jb
p
r
2

i,j for all a, b ∈ Fnq .

Note that the Hermitian inner product 〈·, ·〉 r
2

is a non-degenerate and reflexive σ r
2
-

sesquilinear form on Fnq , where σ r
2

is an automorphism of Fq, defined as σ(b) = bp
r
2 for

each b ∈ Fq. If C is a Λ-MT code of length n over Fq, then its Hermitian dual code C⊥ r2

is defined as C⊥ r2 = {a ∈ Fnq : 〈a, c〉 r
2

= 0 for all c ∈ C}. One can easily observe that

C⊥ r2 is a Λ−p
r
2 -MT code of length n over Fq, where Λ−p

r
2 = (λ−p

r
2

1 , λ−p
r
2

2 , · · · , λ−p
r
2

` ).

From this point on, throughout this chapter, let k be an integer satisfying either

k = 0 or k = r
2

when r is even, and let us define Λ−p
k

= (λ−p
k

1 , λ−p
k

2 , · · · , λ−p
k

` ).

Next to study Euclidean and Hermitian dual codes of MT codes in more de-

tail, let m be the order of the polynomial lcm[xm1 − λ1, x
m2 − λ2, · · · , xm` − λ`] in

Fq[x], i.e., m is the smallest positive integer such that the polynomial lcm[xm1 −

λ1, x
m2 − λ2, · · · , xm` − λ`] divides xm − 1 in Fq[x]. It is easy to observe that

m = lcm[m1O(λ1),m2O(λ2), · · · ,m`O(λ`)] and that TmΛ = Tm
Λ−pk

= I, where I

is the identity operator on Fnq and O(λi) denotes the multiplicative order of λi for

each i.

Recall that the dual code C⊥k is a Λ−p
k
-MT code of length n over Fq, i.e., C⊥k is a

linear code of length n over Fq satisfying the following: if d = (d1,0, d1,1, · · · , d1,m1−1;

d2,0, d2,1, · · · , d2,m2−1; · · · ; d`,0, d`,1, · · · , d`,m`−1) ∈ C⊥k , then its Λ−p
k
-MT shift T

Λ−pk (d)

= (λ−p
k

1 d1,m1−1, d1,0, · · · , d1,m1−2;λ−p
k

2 d2,m2−1, d2,0, · · · · · · , d2,m2−2; · · · ;λ−p
k

` d`,m`−1,

d`,0, · · · , d`,m`−2) ∈ C⊥k . Equivalently, C⊥k is an Fq[x]-submodule of the Λ−p
k
-MT

module V ′ =
∏̀
i=1

V ′i , where V ′i = Fq [x]

〈xmi−λ−p
k

i 〉
for 1 ≤ i ≤ `. Next let us define a
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conjugation map Tk : Fq [x]

〈xm−1〉 →
Fq [x]

〈xm−1〉 as

Tk(d(x)) =
m−1∑
j=0

dp
k

j x
−j for each d(x) =

m−1∑
j=0

djx
j ∈ Fq[x]

〈xm − 1〉
.

(Here we have x−1 = xm−1 ∈ Fq [x]

〈xm−1〉). Further, for 1 ≤ i ≤ `, define a conjugation

map T (i)
k : V ′i → Vi as

T (i)
k (bi(x)) =

mi−1∑
j=1

bp
k

i,jx
−j

for each bi(x) =
mi−1∑
j=1

bi,jx
j ∈ V ′i , where x−1 = λ−1

i xmi−1 ∈ Vi.

Next we define a mapping (·, ·)k : V × V ′ −→ Fq [x]

〈xm−1〉 as

(a(x), b(x))k :=
∑̀
i=1

λiai(x)T (i)
k (bi(x))

( xm − 1

xmi − λi

)

for a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ V and b(x) = (b1(x), b2(x), · · · , b`(x)) ∈ V ′,

where V and V ′ are viewed as Fq [x]

〈xm−1〉 -modules. Now the following lemma relates the

map (a(x), b(x))k with Euclidean and Hermitian inner products on Fnq .

Lemma 3.3.1. (a) For a(x) ∈ V and b(x) ∈ V ′, we have

(a(x), b(x))k = 〈a, b〉k +
〈
a, T

Λ−pk (b)
〉
k
x+ · · ·+

〈
a, Tm−1

Λ−pk
(b)
〉
k
xm−1

= 〈a, b〉k +
〈
Tm−1

Λ (a), b
〉
k
x+ · · ·+

〈
TΛ(a), b

〉
k
xm−1 in Fq [x]

〈xm−1〉 .

(b) The mapping (·, ·)k is a non-degenerate and Hermitian Tk-sesquilinear form

on V × V ′.

Proof. (a) To prove this, we first write a(x) = (a1(x), a2(x), · · · , a`(x)) and b(x) =

(b1(x), b2(x), · · · , b`(x)), where ai(x) =
mi−1∑
j=0

ai,jx
j ∈ Vi and bi(x) =

mi−1∑
j=0

bi,jx
j ∈

V ′i for each i. For 1 ≤ i ≤ `, we observe that λi(x
m−1)

xmi−λi = 1+λ−1
i xmi +λ−2

i x2mi +

· · ·+λ
−( m

mi
−2)

i x
( m
mi
−2)mi+λix

( m
mi
−1)mi . Using this, we get (a(x), b(x))k = 〈a, b〉k+
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〈
a, T

Λ−pk (b)
〉
k
x+ · · ·+

〈
a, Tm−1

Λ−pk
(b)
〉
k
xm−1. As

〈
a, T j

Λ−pk
(b)
〉
k

=
〈
Tm−jΛ (a), b

〉
k

for 0 ≤ j ≤ m − 1, we get (a(x), b(x))k = 〈a, b〉k +
〈
Tm−1

Λ (a), b
〉
k
x + · · · +

〈TΛ(a), b〉k xm−1.

(b) It is easy to observe that (·, ·)k is a Hermitian Tk-sesquilinear form on V × V ′.

To prove the non-degeneracy of (·, ·)k , suppose that (a(x), b(x))k = 0 for all

b(x) ∈ V ′. Here we need to show that a(x) = 0. For this, by part (a), we see

that (a(x), b(x))k = 〈a, b〉k+
〈
a, T

Λ−pk (b)
〉
k
x+ · · ·+

〈
a, Tm−1

Λ−pk
(b)
〉
k
xm−1 = 0 for

all b ∈ Fnq . This implies that 〈a, b〉k =
〈
a, T

Λ−pk (b)
〉
k

= · · · =
〈
a, Tm−1

Λ−pk
(b)
〉
k

= 0

for all b ∈ Fnq . As 〈·, ·〉k is a non-degenerate bilinear form on Fnq , we get a = 0,

which gives a(x) = 0. This proves (b).

From the above lemma, we deduce the following:

Proposition 3.3.2. If C ⊆ V is a Λ-MT code of length n over Fq, then the dual

code C⊥k ⊆ V ′ is a Λ−p
k
-MT code of length n over Fq and is given by

C⊥k = {b(x) ∈ V ′ : (a(x), b(x))k = 0 for all a(x) ∈ C}.

Further, a Λ-MT code C of length n over Fq is said to be

(i) Euclidean (resp. Hermitian) self-dual if it satisfies C = C⊥0 (resp. C = C⊥ r2 ).

(ii) Euclidean (resp. Hermitian) self-orthogonal if it satisfies C ⊆ C⊥0 (resp. C ⊆

C⊥ r2 ).

(iii) Euclidean (resp. Hermitian) linear with complementary dual (LCD) code if it

satisfies C ∩ C⊥0 = {0} (resp. C ∩ C⊥ r2 = {0}).

These classes of Λ-MT codes have nice algebraic structures and are useful in

constructing modular forms. Now we proceed to study algebraic structures of Eu-

clidean and Hermitian self-dual, self-orthogonal and LCD Λ-MT codes of length
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n over Fq. To do this, if f(x) = a0 + a1x + · · · + atx
t is a non-zero polyno-

mial over Fq, then its Tk-conjugate polynomial is defined as Tk(f(x)) = ap
k

0 x
t +

ap
k

1 x
t−1 + · · · + ap

k

t−1x + ap
k

t . Further, the polynomial f(x)(6= 0) ∈ Fq[x] is said

to be Tk-self-conjugate if it satisfies 〈f(x)〉 = 〈Tk(f(x))〉 in Fq[x]. Two non-zero

polynomials f(x), g(x) ∈ Fq[x] are said to form a Tk-conjugate pair if they sat-

isfy 〈g(x)〉 = 〈Tk(f(x))〉 in Fq[x]. Now we recall that g1(x), g2(x), · · · , gρ(x) are all

the distinct irreducible factors of xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` in Fq[x] with

deg gw(x) = dw for 1 ≤ w ≤ ρ. As gw(x) is irreducible over Fq, we see that

deg Tk(gw(x)) = deg gw(x) = dw for each w. Further, suppose (by relabelling gw(x)’s

if required) that g1(x), g2(x), · · · , ge1(x) are all the distinct Tk-self-conjugate polyno-

mials, ge1+1(x),Tk(ge1+1(x)), · · · , ge2(x),Tk(ge2(x)) are all the polynomials forming

Tk-conjugate pairs, and that ge2+1(x), ge2+2(x), · · · , ge3(x) are the remaining poly-

nomials (that are neither Tk-self-conjugate nor do they form Tk-conjugate pairs),

which appear in the irreducible factorizations of xm1−λ1, x
m2−λ2, · · · , xm`−λ` over

Fq. Here ρ = e3 + e2 − e1. Next for 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2 and e2 + 1 ≤ u ≤ e3,

we note that Ft = Fq [x]

〈gt(x)〉 ' Fqdt , Fµ = Fq [x]

〈gµ(x)〉 ' Fqdµ , F ′µ = Fq [x]

〈Tk(gµ(x))〉 ' Fqdµ ,

Fu = Fq [x]

〈gu(x)〉 ' Fqdu and F ′u = Fq [x]

〈Tk(gu(x))〉 ' Fqdu . Therefore by applying the Chinese

Remainder Theorem, we get

V '
( e1⊕

t=1

(
εt,1Ft, εt,2Ft, · · · , εt,`Ft︸ ︷︷ ︸

Gt

))
⊕
( e2⊕
µ=e1+1

{(
εµ,1Fµ, εµ,2Fµ, · · · , εµ,`Fµ︸ ︷︷ ︸

Gµ

)
⊕

(
ε′µ,1F

′
µ, ε
′
µ,2F

′
µ, · · · , ε′µ,`F ′µ︸ ︷︷ ︸
G′µ

)})
⊕
( e3⊕
u=e2+1

(
εu,1Fu, εu,2Fu, · · · , εu,`Fu︸ ︷︷ ︸

Gu

))
(3.1)

and

V ′ '
( e1⊕

t=1

(
εt,1Ft, εt,2Ft, · · · , εt,`Ft︸ ︷︷ ︸

Gt

))
⊕
( e2⊕
µ=e1+1

{(
ε′µ,1Fµ, ε

′
µ,2Fµ, · · · , ε′µ,`Fµ︸ ︷︷ ︸
Hµ

)
⊕
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(
εµ,1F

′
µ, εµ,2F

′
µ, · · · , εµ,`F ′µ︸ ︷︷ ︸
H′µ

)})
⊕
( e3⊕
u=e2+1

(
εu,1F

′
u, εu,2F

′
u, · · · , εu,`F ′u︸ ︷︷ ︸
G′u

))
,(3.2)

where for 1 ≤ α ≤ e3, e1 + 1 ≤ µ ≤ e2 and 1 ≤ i ≤ `,

εα,i =

 1 if gα(x) divides xmi − λi in Fq[x];

0 otherwise

and

ε′µ,i =

 1 if Tk(gµ(x)) divides xmi − λi in Fq[x];

0 otherwise.

Note that dimF ′µH′µ = εµ for each µ. Further, if ε′µ =
∑̀
i=1

ε′µ,i, then dimF ′µG ′µ =

dimFµHµ = ε′µ for each µ. We also recall that dimFαGα = εα =
∑̀
i=1

εα,i for 1 ≤ α ≤ e3.

In view of this, from now on, we will identify each element a(x) = (a1(x), a2(x), · · · ,

a`(x)) ∈ V as

A = (A1, A2, · · · , Ae1 , Ae1+1, A
′
e1+1, · · · , Ae2 , A′e2 , Ae2+1, · · · , Ae3),

where At = (At,1, At,2, · · · , At,`) ∈ Gt, Aµ = (Aµ,1, Aµ,2, · · · , Aµ,`) ∈ Gµ, A′µ =

(A′µ,1, A
′
µ,2, · · · , A′µ,`) ∈ G ′µ andAu = (Au,1, Au,2, · · · , Au,`) ∈ Gu withAt,i := εt,i(ai(x)+

〈gt(x)〉), Aµ,i := εµ,i(ai(x) + 〈gµ(x)〉), A′µ,i := ε′µ,i(ai(x) + 〈Tk(gµ(x))〉) and Au,i =

εu,i(ai(x) + 〈gu(x)〉) for 1 ≤ i ≤ `, 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2 and e2 + 1 ≤ u ≤ e3.

Analogously, we will identify each element b(x) = (b1(x), b2(x), · · · , b`(x)) ∈ V ′ as

B = (B1, B2, · · · , Be1 , Be1+1, B
′
e1+1, · · · , Be2 , B

′
e2
, Be2+1, · · · , Be3),

where Bt = (Bt,1, Bt,2, · · · , Bt,`) ∈ Gt, Bµ = (Bµ,1, Bµ,2, · · · , Bµ,`) ∈ Hµ, B
′
µ =

(B′µ,1, B
′
µ,2, · · · , B′µ,`) ∈ H′µ and Bu = (Bu,1, Bu,2, · · · , Bu,`) ∈ G ′u with Bt,i :=

εt,i(bi(x) + 〈gt(x)〉), Bµ,i := ε′µ,i(bi(x) + 〈gµ(x)〉), B′µ,i := εµ,i(bi(x) + 〈Tk(gµ(x))〉)
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and Bu,i = εu,i(bi(x) + 〈Tk(gu(x))〉) for each i, t, µ and u.

For 1 ≤ t ≤ e1, let Tk : εt,iFt → εt,iFt be the conjugation map, defined as

Tk(ht(x)) =


dt−1∑
b=0

hp
k

tb x
−b if εt,i = 1;

0 if εt,i = 0

for all ht(x) =
dt−1∑
b=0

htbx
b ∈ εt,iFt. For e1 + 1 ≤ µ ≤ e2, the conjugation map Tk :

ε′µ,iFµ → ε′µ,iF
′
µ is defined as

Tk(hµ(x)) =


dµ−1∑
b=0

hp
k

µbx
−b if ε′µ,i = 1;

0 if ε′µ,i = 0

for all hµ(x) =
dµ−1∑
b=0

hµbx
b ∈ ε′µ,iFµ, while the conjugation map Tk : εµ,iF

′
µ → εµ,iFµ is

defined as

Tk(ĥµ(x)) =


dµ−1∑
b=0

ĥp
k

µbx
−b if εµ,i = 1;

0 if εµ,i = 0

for all ĥµ(x) =
dµ−1∑
b=0

ĥµbx
b ∈ εµ,iF

′
µ. For e2 + 1 ≤ u ≤ e3, the conjugation map

Tk : εu,iF
′
u → εu,iFu is defined as

Tk(hu(x)) =


du−1∑
b=0

hp
k

ubx
−b if εu,i = 1;

0 if εu,i = 0

for all hu(x) =
du−1∑
b=0

hubx
b ∈ εu,iF ′u. For 1 ≤ i ≤ ` and 1 ≤ t ≤ e1 satisfying εt,i = 1,

we observe that the conjugation map Tk is the identity map when k = 0 and dt = 1,

while it is an automorphism of Ft when either dt = 1 and k = r
2

with r even or

dt > 1. From this, we see that for each b(x) = (b1(x), b2(x), · · · , b`(x)) ∈ V ′, the
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element Tk(b(x)) ∈ V is given by

(Tk(B1), Tk(B2), · · · , Tk(Be1), Tk(B′e1+1), Tk(Be1+1), · · · , Tk(B′e2), Tk(Be2),

Tk(Be2+1), · · · , Tk(Be3)),

where

Tk(Bt) = (Tk(Bt,1), Tk(Bt,2), · · · , Tk(Bt,`)) ∈ Gt,

Tk(Bµ) = (Tk(Bµ,1), Tk(Bµ,2), · · · , Tk(Bµ,`)) ∈ G ′µ,

Tk(B′µ) = (Tk(B′µ,1), Tk(B′µ,2), · · · , Tk(B′µ,`)) ∈ Gµ

Tk(Bu) = (Tk(Bu,1), Tk(Bu,2), · · · , Tk(Bu,`)) ∈ Gu

with Tk(Bt,i) = εt,i(Tk(bi(x)) + 〈gt(x)〉), Tk(Bµ,i) = ε′µ,i(Tk(bi(x)) + 〈Tk(gµ(x))〉),

Tk(B′µ,i) = εµ,i(Tk(bi(x)) + 〈gµ(x)〉) and Tk(Bu,i) = εu,i(Tk(bi(x)) + 〈gu(x)〉) for each

i, t, µ and u.

In view of this, a Λ-MT code C of length n over Fq can be uniquely expressed as

C =
( e1⊕

t=1

Ct
)
⊕
( e2⊕
µ=e1+1

(
Cµ ⊕ C ′µ

))
⊕
( e3⊕
u=e2+1

Cu
)
, (3.3)

where Ct (resp. Cµ, C ′µ and Cu) is a subspace of Gt (resp. Gµ, G ′µ and Gu) over the field

Ft (resp. Fµ, F
′
µ and Fu) for each t (resp. µ and u). To study their dual codes, we

see that if for some α and i, εα,i = 1, then xmi = λi in Fα, which implies that λi(x
m−

1)/(xmi−λi) = m/mi in Fα. In view of the above, the sesquilinear form correspond-

ing to (·, ·)k is a map [·, ·]k from

{( e1⊕
t=1

Gt
)
⊕
( e2⊕
µ=e1+1

(Gµ ⊕ G ′µ)
)
⊕
( e3⊕
u=e2+1

Gu
)}
×{( e1⊕

t=1

Gt
)
⊕
( e2⊕
µ=e1+1

(Hµ ⊕H′µ)
)
⊕
( e3⊕
u=e2+1

G ′u
)}

into
( e1⊕
t=1

Ft

)
⊕
( e2⊕
µ=e1+1

(Fµ⊕F ′µ)
)
⊕



3.3 Euclidean and Hermitian dual codes of MT codes 33

( e3⊕
u=e2+1

Fu

)
, which is defined as

[A,B]k =

(∑̀
i=1

m

mi
ε1,iA1,iTk(B1,i),

∑̀
i=1

m

mi
ε2,iA2,iTk(B2,i), · · · ,

∑̀
i=1

m

mi
εe1,iAe1,iTk(Be1,i),

∑̀
i=1

m

mi
εe1+1,iAe1+1,iTk(B′e1+1,i),

∑̀
i=1

m

mi
ε′e1+1,iA

′
e1+1,iTk(Be1+1,i), · · · · · · ,

∑̀
i=1

m

mi
εe2,iAe2,iTk(B′e2,i),

∑̀
i=1

m

mi
ε′e2,iA

′
e2,iTk(Be2,i),

∑̀
i=1

m

mi
εe2+1,iAe2+1,iTk(Be2+1,i),

∑̀
i=1

m

mi
εe2+2,iAe2+2,iTk(Be2+2,i), · · · ,

∑̀
i=1

m

mi
εe3,iAe3,iTk(Be3,i)

)
(3.4)

for each A ∈ V and B ∈ V ′. Furthermore, with respect to the sesquilinear form

defined by (3.4), it is easy to see that the dual code C⊥k of C is given by

C⊥k =
( e1⊕

t=1

C⊥kt
)
⊕
( e2⊕
µ=e1+1

(C ′µ
⊥k ⊕ C⊥kµ )

)
⊕
( e3⊕
u=e2+1

C⊥ku
)
, (3.5)

where C⊥kt (⊆ Gt) is the orthogonal complement of Ct with respect to [·, ·]k �Gt×Gt

for 1 ≤ t ≤ e1; C⊥kµ (⊆ H′µ) is the orthogonal complement of Cµ with respect

to [·, ·]k �Gµ×H′µ , C ′⊥kµ (⊆ Hµ) is the orthogonal complement of C ′µ with respect to

[·, ·]k �G′µ×Hµ for e1 + 1 ≤ µ ≤ e2; and C⊥ku (⊆ G ′u) is the orthogonal complement of Cu
with respect to [·, ·]k �Gu×G′u for e2 +1 ≤ u ≤ e3. Here [·, ·]k �Gt×Gt (resp. [·, ·]k �Gµ×H′µ ,

[·, ·]k �G′µ×Hµ and [·, ·]k �Gu×G′u) is the restriction of the sesquilinear form [·, ·]k (defined

by (3.4)) to Gt × Gt (resp. Gµ ×H′µ, G ′µ ×Hµ and Gu × G ′u) for each t (resp. µ and

u).

To study all Euclidean and Hermitian self-dual, self-orthogonal and LCD Λ-MT

codes, let Kµ = Gµ ∩Hµ, K′µ = G ′µ ∩H′µ, and let τµ denote the number of integers i

satisfying 1 ≤ i ≤ ` and εµ,i = ε′µ,i = 1 for e1 + 1 ≤ µ ≤ e2. Note that τµ =
∑̀
i=1

εµ,iε
′
µ,i

for each µ. One can easily observe that dimFµKµ = dimF ′µK′µ = τµ for each µ. In the

following theorem, we characterize all Euclidean self-dual, self-orthogonal and LCD
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Λ-MT codes of length n over Fq.

Theorem 3.3.3. Let Λ = (λ1, λ2, · · · , λ`) be fixed. Let C =
( e1⊕
t=1

Ct
)
⊕
( e2⊕
µ=e1+1

(Cµ⊕

C ′µ)
)
⊕
( e3⊕
u=e2+1

Cu
)

be a Λ-MT code of length n over Fq, where Ct (resp. Cµ, C ′µ and

Cu) is a subspace of Gt (resp. Gµ, G ′µ and Gu) over Ft (resp. Fµ, F
′
µ and Fu) for each

t (µ and u). Then the following hold.

(a) The code C is Euclidean self-dual if and only if all the irreducible factors of the

polynomials xm1−λ1, x
m2−λ2, · · · xm`−λ` in Fq[x] are either T0-self-conjugate

or form T0-conjugate pairs (i.e., e3 ≤ e2), Ct = C⊥0
t , Cµ (resp. C ′µ) is a subspace

of Kµ (resp. K′µ) satisfying C ′µ = C⊥0
µ ∩K′µ for 1 ≤ t ≤ e1 and e1 + 1 ≤ µ ≤ e2.

As a consequence, when all the irreducible factors of the polynomials xm1−λ1,

xm2−λ2, · · ·xm`−λ` in Fq[x] are either T0-self-conjugate or form T0-conjugate

pairs (i.e., e3 ≤ e2), the total number of distinct Euclidean self-dual Λ-MT

codes of length n over Fq is given by N0 =
e1∏
t=1

Dt

e2∏
µ=e1+1

Dµ, where Dt equals

the number of distinct Ft-subspaces Ct of Gt satisfying Ct = C⊥0
t for 1 ≤ t ≤ e1

and Dµ equals the number of distinct Fµ-subspaces of Kµ for e1 + 1 ≤ µ ≤ e2.

(b) The code C is Euclidean self-orthogonal if and only if Ct ⊆ C⊥0
t , Cµ (resp.

C ′µ) is a subspace of Kµ (resp. K′µ) satisfying C ′µ ⊆ C⊥0
µ ∩ K′µ and Cu = {0}

for 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2 and e2 + 1 ≤ u ≤ e3. As a consequence, the

total number of distinct Euclidean self-orthogonal Λ-MT codes of length n over

Fq is given by N1 =
e1∏
t=1

Et
e2∏

µ=e1+1

Eµ, where Et equals the number of distinct

Euclidean self-orthogonal Ft-subspaces of Gt for 1 ≤ t ≤ e1 and Eµ equals the

number of pairs (Cµ, C ′µ) with Cµ (resp. C ′µ) as a subspace of Kµ (resp. K′µ)

over Fµ (resp. F ′µ) satisfying C ′µ ⊆ C⊥0
µ ∩ K′µ for e1 + 1 ≤ µ ≤ e2.

(c) The code C is Euclidean LCD if and only if Ct ∩ C⊥0
t = {0}, Cµ ∩ C ′⊥0

µ =

C ′µ ∩ C⊥0
µ = {0} for 1 ≤ t ≤ e1 and e1 + 1 ≤ µ ≤ e2. As a consequence, the

total number of distinct Euclidean LCD Λ-MT codes of length n over Fq is
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given by N2 =
e1∏
t=1

Ft
e2∏

µ=e1+1

Fµ
e3∏

u=e2+1

Fu, where Ft equals the number of distinct

Ft-subspaces of Gt satisfying Ct ∩ C⊥0
t = {0} for 1 ≤ t ≤ e1, Fµ equals the

number of distinct pairs (Cµ, C ′µ) with Cµ (resp. C ′µ) as a subspace of Gµ (resp.

G ′µ) over Fµ (resp. F ′µ) satisfying Cµ ∩ C ′⊥0
µ = {0} and C ′µ ∩ C⊥0

µ = {0} for

e1 + 1 ≤ µ ≤ e2, and Fu equals the number of distinct subspaces of Gu over Fu

for e2 + 1 ≤ u ≤ e3.

Proof. (a) In view of (3.3) and (3.5), we see that the code C is Euclidean self-dual

if and only if the set {ge2+1(x), ge2+2(x), · · · , ge3(x)} is empty, Ct = C⊥0
t , Cµ is

a subspace of Kµ and C ′µ is a subspace of K′µ satisfying Cµ = C ′⊥0
µ ∩ Kµ and

C ′µ = C⊥0
µ ∩K′µ for each t and µ. Further, for e1 + 1 ≤ µ ≤ e2, Cµ is a subspace

of Kµ and C ′µ is a subspace of K′µ, then we observe that Cµ = C ′⊥0
µ ∩ Kµ and

C ′µ = C⊥0
µ ∩ K′µ hold if and only if C ′µ = C⊥0

µ ∩ K′µ holds. From this, part (a)

follows immediately.

(b) By (3.3) and (3.5), we see that the code C is Euclidean self-orthogonal if and

only if Ct ⊆ C⊥0
t , Cµ (resp. C ′µ) is a subspace of Kµ (resp. K′µ) satisfying

C ′µ ⊆ C⊥0
µ ∩K′µ and Cµ ⊆ C ′⊥0

µ ∩Kµ, and Cu ⊆ {0}, {0} ⊆ C⊥0
u for each t, µ and

u. Further, for e1 + 1 ≤ µ ≤ e2, we see that if Cµ (resp. C ′µ) is a subspace of

Kµ (resp. K′µ), then C ′µ ⊆ C⊥0
µ ∩ K′µ and Cµ ⊆ C ′⊥0

µ ∩ Kµ hold if and only if

C ′µ ⊆ C⊥0
µ ∩ K′µ holds. From this, part (b) follows.

(c) By (3.3) and (3.5), we see that the code C is Euclidean LCD if and only

if Ct ∩ C⊥0
t = {0}, Cµ (resp. C ′µ) is a subspace of Gµ (resp. G ′µ) satisfying

Cµ ∩ C ′⊥0
µ = {0} and C ′µ ∩ C⊥0

µ = {0}, and Cu ∩ {0} = {0} and {0} ∩ C⊥0
u = {0}

for each t, µ and u. From this, part (c) follows.

In the following theorem, we characterize all Hermitian self-dual, self-orthogonal

and LCD Λ-MT codes of length n over Fq.
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Theorem 3.3.4. Let r be even and k = r
2
. Let Λ = (λ1, λ2, · · · , λ`) be fixed. Let

C =
( e1⊕
t=1

Ct
)
⊕
( e2⊕
µ=e1+1

(Cµ ⊕ C ′µ)
)
⊕
( e3⊕
u=e2+1

Cu
)

be a Λ-MT code of length n over

Fq, where Ct (resp. Cµ, C ′µ and Cu) is a subspace of Gt (resp. Gµ, G ′µ and Gu) over Ft

(resp. Fµ, F
′
µ and Fu) for each t (µ and u). Then the following hold.

(a) The code is C is Hermitian self-dual if and only if all the irreducible factors

of the polynomials xm1 − λ1, x
m2 − λ2, · · ·xm` − λ` in Fq[x] are either T r

2
-

self-conjugate or form T r
2
-conjugate pairs (i.e., e3 ≤ e2), Ct = C

⊥ r
2

t , Cµ (resp.

C ′µ) is a subspace of Kµ (resp. K′µ) satisfying C ′µ = C
⊥ r

2
µ ∩ K′µ for 1 ≤ t ≤

e1 and e1 + 1 ≤ µ ≤ e2. As a consequence, when all the irreducible factors

of the polynomials xm1 − λ1, x
m2 − λ2, · · ·xm` − λ` in Fq[x] are either T r

2
-

self-conjugate or form T r
2
-conjugate pairs (i.e., e3 ≤ e2), the total number

of distinct Hermitian self-dual Λ-MT codes of length n over Fq is given by

M0 =
e1∏
t=1

Nt
e2∏

µ=e1+1

Nµ, where Nt equals the number of distinct Ft-subspaces Ct

of Gt satisfying Ct = C
⊥ r

2
t for 1 ≤ t ≤ e1 and Nµ equals the number of distinct

Fµ-subspaces of Kµ for e1 + 1 ≤ µ ≤ e2.

(b) The code C is Hermitian self-orthogonal if and only if Ct ⊆ C
⊥ r

2
t , Cµ (resp. C ′µ)

is a subspace of Kµ (resp. K′µ) satisfying C ′µ ⊆ C
⊥ r

2
µ ∩ K′µ and Cu = {0} for

1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2 and e2 + 1 ≤ u ≤ e3. As a consequence, the total

number of distinct Hermitian self-orthogonal Λ-MT codes of length n over Fq
is given by M1 =

e1∏
t=1

Mt

e2∏
µ=e1+1

Mµ, where Mt equals the number of distinct

Hermitian self-orthogonal Ft-subspaces of Gt for 1 ≤ t ≤ e1 and Mµ equals

the number of pairs (Cµ, C ′µ) with Cµ (resp. C ′µ) as a subspace of Kµ (resp. K′µ)

over Fµ (resp. F ′µ) satisfying C ′µ ⊆ C
⊥ r

2
µ ∩ K′µ for e1 + 1 ≤ µ ≤ e2.

(c) The code C is Hermitian LCD if and only if Ct ∩ C
⊥ r

2
t = {0}, Cµ ∩ C

′⊥ r
2

µ =

C ′µ ∩ C
⊥ r

2
µ = {0} for 1 ≤ t ≤ e1 and e1 + 1 ≤ µ ≤ e2. As a consequence,

the total number of distinct Hermitian LCD Λ-MT codes of length n over Fq
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is given by M2 =
e1∏
t=1

Dt
e2∏

µ=e1+1

Dµ
e3∏

u=e2+1

Du, where Dt equals the number of

distinct Ft-subspaces of Gt satisfying Ct ∩ C
⊥ r

2
t = {0} for 1 ≤ t ≤ e1, Dµ equals

the number of distinct pairs (Cµ, C ′µ) with Cµ (resp. C ′µ) as a subspace of Gµ
(resp. G ′µ) over Fµ (resp. F ′µ) satisfying Cµ ∩ C

′⊥ r
2

µ = {0} and C ′µ ∩ C
⊥ r

2
µ = {0}

for e1 + 1 ≤ µ ≤ e2, and Du equals the number of distinct subspaces of Gu over

Fu for e2 + 1 ≤ u ≤ e3.

Proof. Working in a similar manner as in Theorem 3.3.3, the desired result follows

immediately by (3.3) and (3.5).

3.4 Generator theory for MT codes

In this section, we shall develop generator theory for Λ-MT codes of length n

over Fq. For this, we proceed as follows:

A Λ-MT C of length n over Fq is called a %-generator code if % is the small-

est positive integer with the property that there exist % number of codewords

a1(x), a2(x), · · · , a%(x) ∈ C such that every c(x) ∈ C can be expressed as c(x) =

f1(x)a1(x) + f2(x)a2(x) + · · · + f%(x)a%(x) for some f1(x), f2(x), · · · , f%(x) ∈ Fq[x],

and we denote C =
〈
a1(x), a2(x), · · · , a%(x)

〉
. Now we shall study some basic prop-

erties of %-generator Λ-MT codes over finite fields.

Let C =
〈
a1(x), a2(x), · · · , a%(x)

〉
be a %-generator Λ-MT code of length n over

Fq, where aς(x) = (aς,1(x), aς,2(x), · · · , aς,`(x)) for 1 ≤ ς ≤ %. For 1 ≤ i ≤ `,

if πi is the projection of V onto Vi = Fq [x]

〈xmi−λi〉 , then it is easy to observe that

πi(C) is a λi-constacyclic code of length mi over Fq with the generator polynomial

gcd(a1,i(x), a2,i(x), · · · , a%,i(x), xmi − λi). Further, the annihilator of C is defined as

Ann(C) = {f(x) ∈ Fq[x] : f(x)aς(x) = 0 in V for 1 ≤ ς ≤ %}.

It is easy to see that Ann(C) is an ideal of the principal ideal ring Fq[x]. Note
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that
∏̀
i=1

(xmi − λi) ∈ Ann(C). Therefore there exists a unique smallest degree monic

polynomial h(x) ∈ Fq[x], which generates Ann(C); the polynomial h(x) is called the

parity-check polynomial of C. In the following theorem, we determine the parity-

check polynomial of a %-generator Λ-MT code of length n over Fq.

Theorem 3.4.1. Let C =
〈
a1(x), a2(x), · · · , a%(x)

〉
be a %-generator Λ-MT code of

length n over Fq, where aς(x) = (aς,1(x), aς,2(x), · · · , aς,`(x)) for 1 ≤ ς ≤ %. Let

wi(x) = gcd(a1,i(x), a2,i(x), · · · , a%,i(x), xmi − λi) for 1 ≤ i ≤ `. Then the following

hold.

(a) The parity-check polynomial h(x) of C is given by h(x) = lcm
1≤i≤`

[
xmi−λi
wi(x)

]
.

(b) When % = 1, we have dimFqC = deg h(x).

Proof. To prove the first part, for 1 ≤ i ≤ `, let πi be the projection of V onto the

ring Vi. Then for each i, we see that πi(C) is a λi-constacyclic code of length mi over

Fq having the generator polynomial wi(x). From this, we observe that lcm
1≤i≤`

[
xmi−λi
wi(x)

]
is an annihilating polynomial of the code C, so h(x) divides lcm

1≤i≤`

[
xmi−λi
wi(x)

]
. On

the other hand, since h(x) is the parity-check polynomial of C, we must have

aς,i(x)h(x) = 0 in the ring Vi for 1 ≤ ς ≤ % and 1 ≤ i ≤ `. This implies that

xmi − λi divides h(x)gcd(a1,i(x), a2,i(x), · · · , a%,i(x)) in Fq[x], which further implies

that xmi−λi
wi(x)

divides h(x) for each i. This shows that lcm
1≤i≤`

[
xmi−λi
wi(x)

]
divides h(x) in

Fq[x]. From this, we get h(x) = lcm
1≤i≤`

[
xmi−λi
wi(x)

]
.

To prove the second part, let % = 1 so that C = 〈a1(x)〉. Now define a map

Ξ : Fq[x] → V as Ξ(α(x)) = α(x)a1(x) for each α(x) ∈ Fq[x]. We see that Ξ is

an Fq[x]-module homomorphism with kernal 〈h(x)〉 and image C. From this, we get

Fq [x]

〈h(x)〉 ' C, which implies that dimFqC = deg h(x).

In the following example, we show that Theorem 3.4.1(b) does not hold for a

%-generator Λ-MT code with % ≥ 2.
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Example 3.4.1. Let q = 2, ` = 3, m1 = 3, m2 = 5, m3 = 7 and λ1 = λ2 = λ3 = 1,

so that Λ = (1, 1, 1). Let C be a 2-generator Λ-MT code length 15 over F2, whose

generating set is {(x2 +1, x3 +x, x3 +x+1), (x2 +x, x4 +x3 +x2 +x+1, x3 +x2 +1)}.

Here V = V1 × V2 × V3, where V1 = F2[x]
〈x3−1〉 , V2 = F2[x]

〈x5−1〉 and V3 = F2[x]
〈x7−1〉 . In order

to write down the decomposition of V, we see that x3 − 1 = (x + 1)(x2 + x + 1),

x5− 1 = (x+ 1)(x4 + x3 + x2 + x+ 1) and x7− 1 = (x+ 1)(x3 + x2 + 1)(x3 + x+ 1)

are irreducible factorizations of x3 − 1, x5 − 1 and x7 − 1 over F2. Let us take

g1(x) = x− 1, g2(x) = x2 + x+ 1, g3(x) = x4 + x3 + x2 + x+ 1, g4(x) = x3 + x2 + 1

and g5(x) = x3 + x + 1, so that Fw = F2[x]/〈gw(x)〉 for 1 ≤ w ≤ 5. Note that

F1 ' F2, F2 ' F4, F3 ' F16 and F4 ' F5 ' F8. By applying Chinese remainder

Theorem, we get V '
(
F1, F1, F1

)
⊕ (F2, 0, 0

)
⊕
(
0, F3, 0

)
⊕
(
0, 0, F4

)
⊕
(
0, 0, F5

)
.

From this and applying Theorem 3.2.2, we see that the constituents of C are given

by C1 = 〈(0, 0, 1), (0, 1, 1)〉 , C2 = 〈(δ2, 0, 0), (1, 0, 0)〉 with δ2
2 + δ2 + 1 = 0, C3 =

〈(0, δ3
3 + δ3, 0), (0, 0, 0)〉 with δ4

3 + δ3
3 + δ2

3 + δ3 + 1 = 0, C4 = 〈(0, 0, δ4 + δ2
4), (0, 0, 0)〉

with δ3
4 +δ2

4 +1 = 0 and C5 = 〈(0, 0, 0), (0, 0, δ5 + δ2
5)〉 with δ3

5 +δ5+1 = 0. We observe

that dimF1C1 = 2 and dimF2C2 = dimF3C3 = dimF4C4 = dimF5C5 = 1. Using this and

by applying Theorem 3.2.2 again, we get dimF2C =
5∑

w=1

dimFwCw deg gw(x) = 14. On

the other hand, by applying Theorem 3.4.1(a), we get h(x) = (x+ 1)(x4 + x3 + x2 +

x+ 1)(x3 + x2 + 1)(x3 + x+ 1)(x2 + x+ 1), which implies that deg h(x) = 13. This

shows that dimF2C 6= deg h(x) in this case.

In the following theorem, we determine generating sets of Euclidean and Hermi-

tian dual codes of some %-generator MT codes of length n over Fq.

Theorem 3.4.2. Let xm1−λ1, x
m2−λ2, · · · , xm`−λ` be pairwise coprime polynomials

in Fq[x]. Let C =
〈
a1(x), a2(x), · · · , a%(x)

〉
be a %-generator Λ-MT code of length n

over Fq, where aς(x) = (aς,1(x), aς,2(x), · · · , aς,`(x)) for 1 ≤ ς ≤ %. Let wi(x) =

gcd(a1,i(x), a2,i(x), · · · , a%,i(x), xmi − λi) for 1 ≤ i ≤ `. When k is either 0 or r
2
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(provided r is even), we have

C⊥k = 〈H1(x), H2(x), · · · , H`(x)〉 ,

where Hi(x) = (0, · · · , 0, T (i)
k

(xmi − λi
wi(x)

)
︸ ︷︷ ︸

ith

, 0, · · · , 0) for 1 ≤ i ≤ `.

Proof. In order to prove the result, we see, for 1 ≤ ς ≤ % and 1 ≤ i ≤ `, that

(aς(x), Hi(x))k = aς,i(x)T (i)
k

(
T (i)
k

(xmi − λi
wi(x)

))
λi

( xm − 1

xmi − λi

)
=

aς,i(x)λi(x
m − 1)

wi(x)
= 0 in

Fq[x]

〈xm − 1〉
.

This implies that Hi(x) ∈ C⊥k for each i. Now let b(x) = (b1(x), b2(x), · · · , b`(x)) ∈

C⊥k . Then we have (aς(x), b(x))k = 0 in Fq [x]

〈xm−1〉 for 1 ≤ ς ≤ %. From this, we see that

xm − 1 divides
∑̀
i=1

aς,i(x)T (i)
k (bi(x))λi

(
xm−1
xmi−λi

)
, which implies that xmj − λj divides∑̀

i=1

aς,i(x)T (i)
k (bi(x))λi

(
xm−1
xmi−λi

)
for 1 ≤ ς ≤ % and 1 ≤ j ≤ `. As (xmi−λi, xmj−λj) =

1 for all j 6= i, xmj − λj divides aς,j(x)T (j)
k (bj(x)) for each ς. This implies that

T (j)
k

(
xmj−λj
wj(x)

)
divides bj(x) for each j. This gives b(x) ∈ 〈H1(x), H2(x), · · · , H`(x)〉 ,

from which the desired result follows.

In the following theorem, we obtain a BCH type lower bound on minimum Ham-

ming distances of %-generator Λ-MT codes of length n over Fq.

Theorem 3.4.3. Let C =
〈
a1(x), a2(x), · · · , a%(x)

〉
be a %-generator Λ-MT code of

length n over Fq, where aς(x) = (aς,1(x), aς,2(x), · · · , aς,`(x)) for 1 ≤ ς ≤ %. Then

the minimum Hamming distance dmin(C) of the code C satisfies

dmin(C) ≥ min
1≤i≤`

(bi + 1),

where for each i, bi is the maximum number of consecutive exponents of zeros of
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gcd(a1,i(x), a2,i(x), · · · , a%,i(x), xmi−λi) over Fq. (Here dmin(C) denotes the minimum

Hamming distance of the code C.)

Proof. To prove the result, let Bi(x) = (0, · · · , 0, wi(x)︸ ︷︷ ︸
ith

, 0, · · · , 0) ∈ V, where wi(x) =

gcd(a1,i(x), a2,i(x), · · · , a%,i(x), xmi−λi) for 1 ≤ i ≤ `.Now let C ′ = 〈B1(x), B2(x), · · · ,

B`(x)〉 be a Λ-MT code of length n over Fq. Here for 1 ≤ ς ≤ %, we observe

that aς(x) =
∑̀
i=1

aς,i(x)

wi(x)
Bi(x), which implies that C ⊆ C ′. From this, we obtain

dmin(C) ≥ dmin(C ′). Next for 1 ≤ i ≤ `, if πi is the projection of V onto Fq [x]

〈xmi−λi〉 , then

πi(C ′) is a λi-constacyclic code of length mi over Fq having the generator polyno-

mial wi(x). Now if bi is the maximum number of consecutive exponents of zeros of

wi(x), then working in a similar manner as in Theorem 8 of [57, Ch. 7], we see that

dmin(πi(C ′)) ≥ bi+1. Further, we observe that if the ith block ci ∈ Fmiq of a codeword

c = (c1, c2, · · · , c`) ∈ C ′ is non-zero, then the Hamming weight wH(ci) of ci satisfies

wH(ci) ≥ bi + 1. This implies that wH(c) ≥ min
1≤i≤`

(bi + 1) for each c( 6= 0) ∈ C ′. From

this, we obtain the desired result.

Next for Λ = (λ1, λ2, · · · , λ`), Ω = (ω1, ω2, · · · , ω`) ∈ F`q, let us define IΛ,Ω = {i :

1 ≤ i ≤ `, λi 6= ωi} and Λ − Ω = (λ1 − ω1, λ2 − ω2, · · · , λ` − ω`). For 1 ≤ i ≤ `,

let πi be the projection of V onto Vi. If C is a Λ-MT code of length n over Fq, then

one can easily observe that πi(C) is a λi-constacyclic code of length mi over Fq for

1 ≤ i ≤ `. In the following theorem, we obtain a lower bound on the dimension of

some [Λ,Ω]-MT codes of length n over Fq, where Λ 6= Ω.

Theorem 3.4.4. Let Λ = (λ1, λ2, · · · , λ`) and Ω = (ω1, ω2, · · · , ω`), where λi, ωi’s

are non-zero elements of Fq. Let C be a Λ-MT and an Ω-MT code of length n over

Fq. Let JC = {i : 1 ≤ i ≤ `, πi(C) 6= {0}}. If IΛ,Ω ∩ JC is a non-empty set, then we

have dimFqC ≥ max
i∈IΛ,Ω∩JC

{mi}.

As a consequence, if λi 6= ωi and πi(C) 6= {0} for 1 ≤ i ≤ `, then we have

dimFqC ≥ max{m1,m2, · · · ,m`}.
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Proof. For each i ∈ IΛ,Ω ∩ JC, as πi(C) 6= {0}, there exists a codeword c =

(c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1, · · · , c2,m2−1; · · · ; c`,0, c`,1, · · · , c`,m`−1) ∈ C such that

ci,mi−1 6= 0. As C is a both Λ-MT and Ω-MT code, we note that TΛ(c), TΩ(c) ∈ C,

which implies that TΛ−Ω(c) = TΛ(c) − TΩ(c) = ((λ1 − ω1)c1,m1−1, 0, · · · , 0; (λ2 −

ω2)c2,m2−1, 0, · · · , 0; · · · ; (λ` − ω`)c`,m`−1, 0, · · · , 0) ∈ C. Further, for each i ∈ IΛ,Ω ∩

JC, we see that (λi−ωi)ci,mi−1 is non-zero, which implies that TΛ−Ω(c), T 2
Λ−Ω(c), · · · · · · ,

TmiΛ−Ω(c) ∈ C are linearly independent over Fq, and hence dimFqC ≥ mi. From this,

it follows that dimFqC ≥ max
i∈IΛ,Ω∩JC

{mi}.

In the next two theorems, we derive sufficient conditions under which a Λ-MT

code is Euclidean (or Hermitian) LCD. However, these conditions are not necessary

for a Λ-MT code to be Euclidean (or Hermitian) LCD, which we will illustrate in

Examples 3.4.3 and 3.4.4.

Theorem 3.4.5. Let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero ele-

ments of Fq satisfying λi 6= λ−p
k

i for 1 ≤ i ≤ `. Let C be a Λ-MT code of length n

over Fq. Then according as k is either 0 or r
2

with r even, the following hold.

(a) If either dimFqC < min
1≤i≤`
{mi} or dimFqC⊥k < min

1≤i≤`
{mi}, then C is a Euclidean

(or Hermitian) LCD code.

(b) If dimFqC = min
1≤i≤`
{mi}, then C is either a Euclidean (or Hermitian) LCD or a

Euclidean (or Hermitian) self-orthogonal code.

(c) If dimFqC⊥k = min
1≤i≤`
{mi}, then C is either a Euclidean (or Hermitian) LCD or

a Euclidean (or Hermitian) dual-containing code (i.e., C⊥k ⊆ C).

(d) If dimFqC = dimFqC⊥k = min
1≤i≤`
{mi}, then C is either a Euclidean (or Hermi-

tian) LCD or a Euclidean (or Hermitian) self-dual code.

Proof. (a) Note that C ∩ C⊥k is both a Λ-MT and a Λ−p
k
-MT code of length

n over Fq. We assert that C ∩ C⊥k = {0}. Then by Theorem 3.4.4, we get
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dimFq(C ∩ C⊥k) ≥ min
1≤i≤`
{mi}. Since C ∩ C⊥k is a subspace of both C and C⊥k ,

we get dimFqC ≥ min
1≤i≤`
{mi} and dimFqC⊥k ≥ min

1≤i≤`
{mi}, which contradicts our

hypothesis. So we must have C ∩ C⊥k = {0}.

(b) If C ∩ C⊥k 6= {0}, then working as in part (a), we see that dimFq(C ∩ C⊥k) ≥

min
1≤i≤`
{mi}. Now as dimFqC = min

1≤i≤`
{mi}, we get C ∩ C⊥k = C, which implies

that C ⊆ C⊥k . This proves (b).

(c) Its proof is similar to that of part (b).

(d) It follows immediately from parts (b) and (c).

Theorem 3.4.6. Let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero ele-

ments of Fq satisfying λi 6= λ−p
k

i for 1 ≤ i ≤ `. Let C be a %-generator Λ-MT code

of length n over Fq such that either πi(C) 6=< 1 > or πi(C⊥k) 6=< 1 > for 1 ≤ i ≤ `.

Then C is either a Euclidean or a Hermitian LCD code, according as k is either 0

or r
2

with r even.

Proof. For 1 ≤ i ≤ `, we see that the linear code πi(C) ∩ πi(C⊥k) is both λi-

constacyclic and λ−p
k

i -constacyclic code of length mi over Fq. Further, for each i, as

λi 6= λ−p
k

i , by Corollary 2.7 of Dinh [32], we see that either πi(C) ∩ π(C⊥k) = {0}

or πi(C) ∩ π(C⊥k) = 〈1〉. Now since either πi(C) 6= 〈1〉 or πi(C⊥k) 6= 〈1〉, we get

πi(C) ∩ π(C⊥k) = {0} for each i. As πi(C ∩ C⊥k) is a subspace of πi(C) ∩ πi(C⊥k),

we get πi(C ∩ C⊥k) = 0 for 1 ≤ i ≤ `. This implies that C ∩ C⊥k = {0} i.e., C is a

Euclidean (resp. Hermitian) LCD code when k = 0 (resp. k = r
2

with r even).

From Theorems 3.4.2 and 3.4.6, we deduce the following:

Corollary 3.4.7. Let k be either 0 or r
2

with r even. Let λ1, λ2, · · · , λ` ∈ Fq \{0} be

such that λi 6= λ−p
k

i for 1 ≤ i ≤ ` and the polynomials xm1−λ1, x
m2−λ2, · · · , xm`−λ`

are pairwise coprime in Fq[x]. Then any Λ-MT code of length n over Fq is either a

Euclidean or a Hermitian LCD code, according as k is either 0 or r
2

with r even.
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In the following example, we illustrate Theorems 3.4.5(a) and 3.4.6.

Example 3.4.2. Let q = 5, ` = 2, m1 = m2 = 3, Λ = (3, 2) and F5 = Z5. Here we

have V = V1×V2 = F5[x]
〈x3−3〉 ×

F5[x]
〈x3−2〉 . Now we see that the irreducible factorizations of

the polynomials x3− 3 and x3− 2 over F5 are given by x3− 3 = (x+ 3)(x2 + 2x+ 4)

and x3 − 2 = (x + 2)(x2 + 3x + 4), respectively. Let C be a 1-generator Λ-MT code

of length 6 over F5 with the generating set {(x+ 3, x+ 2)}. It is easy to observe that

π1(C) =
〈

gcd(x + 3, x3 − 3)
〉

=
〈
x + 3

〉
6=
〈
1
〉

and π2(C) =
〈

gcd(x + 2, x3 − 2)
〉

=〈
x+2

〉
6=
〈
1
〉
. So by Theorem 3.4.6, we see that C is a Euclidean LCD code. On the

other hand, we note that V ′ = V ′1×V ′2 = F5[x]
〈x3−2〉×

F5[x]
〈x3−3〉 . By Theorem 3.4.2, we obtain

C⊥0 =
〈
(x2 + 3x+ 4, 0), (0, x2 + 2x+ 4)

〉
. It is easy to see that C⊥0

1 = SpanF1
{(2, 0)},

C⊥0
2 = SpanF2

{(0, 2)} and C⊥0
3 = C⊥0

4 = {0}, where F1 ' F2 ' F5. Using Theorem

3.2.2, we get dimF5C⊥0 = 2. By applying Theorem 3.4.5(a) also, we see that C is a

Euclidean LCD code.

In the following example, we show that the sufficient conditions derived in The-

orems 3.4.5(a) are not necessary for a Λ-MT code to be Euclidean (or Hermitian)

LCD.

Example 3.4.3. Let q = 7, ` = 2, m1 = m2 = 2, Λ = (2, 5) and F7 = Z7. Here we

have r = 1, V = V1 × V2 = F7[x]
〈x2−2〉 ×

F7[x]
〈x2−5〉 and V ′ = V ′1 × V ′2 = F7[x]

〈x2−4〉 ×
F7[x]
〈x2−3〉 . It is

easy to see that the polynomials x2−3 and x2−5 are irreducible over F7, and that the

irreducible factorizations of the polynomials x2 − 3 and x2 − 5 over F7 are given by

x2−2 = (x+3)(x+4) and x2−4 = (x+2)(x+5), respectively. Let C be a 1-generator

Λ-MT code of length 4 over F7 with the generating set {(x+1, 0)}. It is easy to observe

that π1(C) =
〈

gcd(x+1, x2−2)
〉

=
〈
1
〉

and π2(C) =
〈

gcd(0, x2−5)
〉

= {0}. Further,

as the polynomials x2−2 and x2−5 are coprime over F7, by applying Theorem 3.4.2,

we obtain C⊥0 =
〈
(0, 0), (0, 1)

〉
. From this, we get π1(C⊥0) =

〈
gcd(0, 0, x2−4)

〉
= {0}

and π2(C⊥0) =
〈

gcd(0, 1, x2 − 3)
〉

=
〈
1
〉
. Therefore by Theorem 3.4.6, we see that

C is a Euclidean LCD code. On the other hand, by applying Theorem 3.4.1(a), we
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get h(x) = x2 − 2. Using Theorem 3.4.1(b), we get dimF7C = 2. Further, it is easy

to see that C⊥0
1 = C⊥0

2 = {0} and C⊥0
3 = SpanF3

{(0, 1)}, where F3 = F7[x]
〈x2−3〉 ' F49.

By Theorem 3.2.2, we get dimF7C⊥0 = 2. This shows that the code C does not satisfy

hypotheses of Theorem 3.4.5(a).

In the following example, we show that the sufficient conditions derived in Theo-

rems 3.4.6 are not necessary for a Λ-MT code to be Euclidean (or Hermitian) LCD.

Example 3.4.4. Let q = 5, ` = 2, m1 = m2 = 3, Λ = (3, 3) and F5 = Z5. Here we

have r = 1, V = V1×V2 = F5[x]
〈x3−3〉×

F5[x]
〈x3−3〉 and V ′ = V ′1×V ′2 = F5[x]

〈x3−2〉×
F5[x]
〈x3−2〉 . It is easy

to see that the irreducible factorizations of the polynomials x3−3 and x3−2 over F5

are given by x3−3 = (x−2)(x2+2x+4) and x3−2 = (x−3)(x2+3x+4), respectively.

Now let g1(x) = x− 2, g2(x) = x2 + 2x+ 4, h1(x) = x− 3 and h2(x) = x2 + 3x+ 4.

Here we can easily observe that T0(g1(x)) = h1(x) and T0(g2(x)) = h2(x). Let C be

a 1-generator Λ-MT code of length 6 over F5 with the generating set {(1, x + 1)}.

By applying Chinese Remainder Theorem, we get V =
(
F1, F1

)
⊕ (F2, F2

)
and V ′ =(

H1, H1

)
⊕ (H2, H2

)
, where Fw = F5[x]

〈gw(x)〉 and Hw = F5[x]
〈hw(x)〉 for 1 ≤ w ≤ 2. From

this and applying Theorem 3.2.2, we see that the constituents of C are given by

C1 = 〈(1, 3)〉 and C2 = 〈(1, x+ 1)〉 . Further, in view of (3.4), we obtain C⊥0
1 =

〈(−3, 1)〉 and C⊥0
2 = 〈(1, 2x+ 3)〉 . Now by applying Chinese Remainder Theorem,

we get C⊥0 is generated by (−2x2 − x + 3, x2 + 2). Moreover, it is easy to see that

π1(C) =
〈

gcd(1, x3 − 3)
〉

=
〈
1
〉
, π2(C) =

〈
gcd(x + 1, x3 − 3)

〉
=
〈
1
〉
, π1(C⊥0) =〈

gcd(−2x2 − x + 3, x3 − 2)
〉

=
〈
1
〉

and π2(C⊥0) =
〈

gcd(x2 + 2, x3 − 2)
〉

=
〈
1
〉
,

which shows that the code C does not satisfy the hypotheses of Theorem 3.4.6. On

the other hand, by Theorem 3.2.2, we have dimF5C = 3 and dimF5C⊥0 = 3. It is

easy to observe that C 6= C⊥0 . Therefore by Theorem 3.4.5(d), we see that C is a

Euclidean LCD code.
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3.5 Trace description of MT codes

In this section, we shall provide a trace description for Λ-MT codes of length

n over Fq by extending the work of Güneri et al. [41] to Λ-MT codes. Towards

this, for 1 ≤ w ≤ ρ and 1 ≤ i ≤ `, we recall that if εw,i = 1, then gw(x) divides

xmi − λi in Fq[x], and the ideal
〈
xmi−λi
gw(x)

〉
is a minimal λi-constacyclic code of length

mi over Fq, whose generating idempotent is denoted by Θw,i. If εw,i = 0 for some

w and i, then we shall denote the zero codeword of length mi by Θw,i. Now by

Theorem 3.1 of Sharma and Rani [72], we see that there exist ring isomorphisms

φw,i : 〈Θw,i〉 → εw,iFw and ψw,i : εw,iFw → 〈Θw,i〉, defined as

φw,i(a(x)) = εw,ia(δw) for all a(x) ∈ 〈Θw,i〉

and

ψw,i(γ) =
1

mi

(
TrFw/Fq(γ), T rFw/Fq(γδ

−1
w ), · · · , T rFw/Fq(γδ−(mi−1)

w )
)

for all γ ∈ εw,iFw,

(3.6)

where TrFw/Fq is the trace map from Fw onto Fq and δw is a zero of gw(x) in Fw.

Further, note that the ring isomorphisms φw,i and ψw,i are inverses of each other,

and that ψw,i(εw,i1w) = Θw,i, where 1w is the multiplicative identity of Fw. We

shall view V =
∏̀
i=1

Vi and Gw =
(
εw,1Fw, εw,2Fw, · · · , εw,`Fw

)
as rings with respect to

the coordinate-wise addition + and coordinate-wise multiplication � for each w. In

view of this, 1V := (1, 1, · · · , 1) and 1Gw := (εw,11w, · · · , εw,`1w) respectively are the

multiplicative identities of V and Gw for each w. Now for 1 ≤ w ≤ ρ, let us define

the maps Φw : V → Gw and Ψw : Gw → V as

Φw(a1(x), a2(x), · · · , a`(x)) = (εw,1a1(δw), εw,2a2(δw), · · · , εw,`a`(δw))
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for each (a1(x), a2(x), · · · , a`(x)) ∈ V and

Ψw(γ1, γ2, · · · , γ`) = (ψw,1(γ1), ψw,2(γ2), · · · , ψw,`(γ`)) for each (γ1, γ2, · · · , γ`) ∈ Gw.

Note that both Φw and Ψw are Fq-linear maps and are ring homomorphisms. More-

over, for each w, the restriction map Φw �(〈Θw,1〉,〈Θw,2〉,··· ,〈Θw,`〉) and the map Ψw are

inverses of each other. For 1 ≤ w ≤ ρ, let us define Θw = (Θw,1,Θw,2, · · · ,Θw,`). It

is easy to see that V =
ρ⊕

w=1

〈Θw〉,
ρ∑

w=1

Θw = 1V , 〈Θw〉 = (〈Θw,1〉, 〈Θw,2〉, · · · , 〈Θw,`〉),

Θw �Θw = Θw, Θw′ �Θw = 0 for each w 6= w′.

Next the concatenation of 〈Θw〉 = (〈Θw,1〉, 〈Θw,2〉, · · · , 〈Θw,`〉) and a linear code

D of length ` over Fw ' Fqdw is defined as

〈Θw〉2D =
{

(ψw,1(xw,1), ψw,2(xw,2), · · · , ψw,`(xw,`)) : xw = (xw,1, xw,2, · · · , xw,`) ∈ D
}
.

In the following theorem, we shall view Λ-MT codes as direct sums of certain con-

catenated codes.

Theorem 3.5.1. (a) Let C be a Λ-MT code of length n over Fq with the con-

stituents C1, C2, · · · , Cρ. If C̃w := C � Θw for 1 ≤ w ≤ ρ, then we have

C =
ρ⊕

w=1

〈Θw〉2Φw(C̃w). Moreover, Cw = Φw(C̃w) holds for 1 ≤ w ≤ ρ. As

a consequence, we have C =
ρ⊕

w=1

〈Θw〉2Cw.

(b) Conversely, let Cw(⊆ Gw) be a linear code of length ` over Fw for 1 ≤ w ≤ ρ.

Then C =
ρ⊕

w=1

〈Θw〉2Cw is a Λ-MT code of length n over Fq.

Proof. (a) To prove the result, we note that

C = C � 1V = C �
( ρ∑
w=1

Θw

)
=

ρ⊕
w=1

C �Θw =

ρ⊕
w=1

C̃w.
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For 1 ≤ w ≤ ρ, we see that

C̃w =
{(
c1(x)Θw,1, c2(x)Θw,2, · · · , c`(x)Θw,`

)
:
(
c1(x), c2(x), · · · , c`(x)

)
∈ C
}
,

which implies that

Φw(C̃w) =
{(
φw,1(c1(x)Θw,1), φw,2(c2(x)Θw,2), · · · , φw,`(c`(x)Θw,`)

)
: (c1(x), c2(x), · · · , c`(x)) ∈ C

}
=
{(
εw,1c1(δw), εw,2c2(δw), · · · , εw,`c`(δw)

)
:
(
c1(x), c2(x), · · · , c`(x)

)
∈ C
}

= Cw,

as φw,i(Θw,i) = εw,i1w for each i and w. Further, since the restriction map

Φw �〈Θw〉 and the map Ψw are inverses of each other, we see that 〈Θw〉2Φw(C̃w) =

C̃w for each w. From this, part (a) follows.

(b) To prove this, it is enough to prove that 〈Θw〉2Cw is a Λ-MT code of length n

over Fq for 1 ≤ w ≤ ρ. For this, we observe that 〈Θw〉2Cw = {Ψw

(
xw
)

: xw ∈

Cw}. It is easy to see that Ψw

(
xw
)

+ Ψw

(
yw
)

= Ψw

(
xw + yw

)
∈ 〈Θw〉2Cw for

each xw, yw ∈ Cw. Further, for each f(x) ∈ Fq[x], we note that f(δw) ∈ Fw

and that f(δw)xw ∈ Cw for each xw =
(
xw,1, xw,2, · · · , xw,`

)
∈ Cw. This implies

that

Ψw

(
f(δw)xw

)
=
(
ψw,1(f(δw))ψw,1(xw,1), ψw,2(f(δw))ψw,2(xw,2), · · · , ψw,`(f(δw))ψw,`(xw,`)

)
=
(
f(x)Θw,1ψw,1(xw,1), f(x)Θw,2ψw,2(xw,2), · · · , f(x)Θw,`ψw,`(xw,`)

)
=
(
f(x)ψw,1(xw,1), f(x)ψw,2(xw,2), · · · , f(x)ψw,`(xw,`)

)
=f(x)Ψw(xw),

as ψw,i(xw,i) ∈ 〈Θw,i〉 and Θw,i is the unity of 〈Θw,i〉 for 1 ≤ i ≤ `. This shows
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that f(x)Ψw(xw) ∈ 〈Θw〉2Cw for each f(x) ∈ Fq[x] and xw ∈ Cw. From this,

it follows that 〈Θw〉2Cw is an Fq[x]-submodule of V for each w, which proves

(b).

In the following theorem, we provide a trace description for Λ-MT codes of length

n over Fq using their concatenated structure.

Theorem 3.5.2. Let C be a Λ-MT code of length n over Fq with the constituents

C1, C2, · · · , Cρ. For xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw with 1 ≤ w ≤ ρ, let us define

ci(x1, x2, · · · , xρ) =
1

mi

( ρ∑
w=1

TrFw/Fq(xw,i),

ρ∑
w=1

TrFw/Fq(xw,iδ
−1
w ), · · · ,

ρ∑
w=1

TrFw/Fq(xw,iδ
−(mi−1)
w )

)
for 1 ≤ i ≤ `. Then we have

C =
{(
c1(x1, x2, · · · , xρ), c2(x1, x2, · · · , xρ), · · · , c`(x1, x2, · · · , xρ)

)
: xw ∈ Cw for 1 ≤ w ≤ ρ

}
.

Proof. By Theorem 3.5.1, we see that the code C has the concatenated structure

C =
ρ⊕

w=1

〈Θw〉2Cw, where 〈Θw〉2Cw =
{

(ψw,1(xw,1), ψw,2(xw,2), · · · , ψw,`(xw,`)) : xw =

(xw,1, xw,2, · · · , xw,`) ∈ Cw
}
. From this, we get

C =
{

(

ρ∑
w=1

ψw,1(xw,1),

ρ∑
w=1

ψw,2(xw,2), · · · ,
ρ∑

w=1

ψw,`(xw,`)) :

xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw
}
.

Further, for 1 ≤ i ≤ `, we see, by (3.6), that

ρ∑
w=1

ψw,i(xw,i) =
1

mi

( ρ∑
w=1

TrFw/Fq(xw,i),

ρ∑
w=1

TrFw/Fq(xw,iδ
−1
w ), · · · ,
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ρ∑
w=1

TrFw/Fq(xw,iδ
−(mi−1)
w )

)
.

From this, the desired result follows immediately.

We shall illustrate the above theorem in the following example:

Example 3.5.1. Let q = 7, ` = 2, m1 = 2, m2 = 4, Λ = (2, 4) and F7 = Z7.

Here we have V = V1 × V2, where V1 = F7[x]
〈x2−2〉 and V2 = F7[x]

〈x4−4〉 . Further, we see

that the irreducible factorizations of the polynomials x2 − 2 and x4 − 4 over F7 are

given by x2 − 2 = (x + 3)(x + 4), x4 − 4 = (x + 3)(x + 4)(x2 + 2). If we take

g1(x) = x + 3, g2(x) = x + 4 and g3(x) = x2 + 2, then we have F1 ' F2 ' F7

and F3 ' F49. From this and by applying Chinese Remainder Theorem, we get

V ' (F1, F1)⊕ (F2, F2)⊕ ({0}, F3). Now if C is a (2, 4)-MT code of length 6 over F7

with the constituents C1, C2 and C3, then by Theorem 3.5.2, the code C is given by

{(
c1,0, c1,1; c2,0, c2,1, c2,2, c2,3

)
: (a, b) ∈ C1, (c, d) ∈ C2, (0, e+ δ3f) ∈ C3

}
,

where c1,0 = a+c
2
, c1,1 = 2a+5c

2
, c2,0 = b+d+2e

4
, c2,1 = 2b+5d+2f

4
, c2,2 =

4b+4d+2eδ−2
3

4
, c2,3 =

b−d+2fδ−2
3

4
and δ3 is a root of the polynomial g3(x) in F3.

In the following theorem, we obtain a minimum distance bound for Λ-MT codes

of length n over Fq using their multilevel concatenated structure.

Theorem 3.5.3. Let C be a Λ-MT code of length n over Fq with the non-zero

constituents Cw1 , Cw2 , · · · , Cwt , where 1 ≤ w1, w2, · · · , wt ≤ ρ. Let dj be the minimum

Hamming distance of the code Cwj for 1 ≤ j ≤ t. Let us assume that d1 ≤ d2 ≤

· · · ≤ dt. Let us define Kv = min
I⊆{1,2,··· ,`}
|I|=dv

{∑
g∈I

dmin(〈Θw1,g〉 ⊕ 〈Θw2,g〉 ⊕ · · · ⊕ 〈Θwt,g〉)
}

for v ∈ {1, 2, · · · , t}. Then the minimum Hamming distance dmin(C) of the code C

satisfies

dmin(C) ≥ min{K1,K2, · · · ,Kt}.
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Proof. Working in a similar manner as in Theorem 4.2 of Güneri et al. [41], the

desired result follows.
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4
Enumeration of Euclidean and

Hermitian self-dual,

self-orthogonal and LCD

multi-twisted codes

4.1 Introduction

In this chapter, we shall enumerate all Euclidean and Hermitian self-dual, self-

orthogonal and LCD multi-twisted (MT) codes of block lengths (m1,m2, · · · ,m`)

53
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and length n over Fq, where m1,m2, · · · ,m` are positive integers coprime to q, and

n = m1 + m2 + · · · + m`. For this, we assume that q = pr, where p is a prime

number and r is a positive integer. Let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ`
are non-zero elements of Fq.

This chapter is organized as follows: In Section 4.2, we enumerate all Euclidean

self-dual and self-orthogonal Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq (Theorems 4.2.2 and 4.2.4). We also count all Euclidean linear

with complementary dual (LCD) Λ-MT codes of block lengths (m1,m2, · · · ,m`)

and length n over Fq when λi ∈ {1,−1} for 1 ≤ i ≤ ` (Theorem 4.2.5). In Section

4.3, we enumerate all Hermitian self-dual and self-orthogonal Λ-MT codes of block

lengths (m1,m2, · · · ,m`) and length n over Fq (Theorems 4.3.2 and 4.3.3). We also

obtain the enumeration formula for all Hermitian LCD Λ-MT codes of block lengths

(m1,m2, · · · ,m`) and length n over Fq when λi ∈ {1,−1} for 1 ≤ i ≤ ` (Theorem

4.3.4).

From now on, throughout this chapter, we shall follow the same notations as in

Chapters 2 and 3. We also assume, throughout this chapter, that k is an integer

satisfying either k = 0 or k = r
2

when r is even.

4.2 Determination of the number of Euclidean

self-dual, self-orthogonal and LCD MT codes

In this section, we will study and count all Euclidean self-dual, self-orthogonal

and LCD Λ-MT codes of length n over Fq by applying the Witt decomposition

Theory. For this, let us define I1 = {t : 1 ≤ t ≤ e1, dt = 1} and I2 = {t : 1 ≤ t ≤

e1, dt > 1}. Note that the integer dt is even for each t ∈ I2. Then we observe the

following:

Lemma 4.2.1. (a) For 1 ≤ t ≤ e1, [·, ·]0 �Gt×Gt is a non-degenerate and reflex-

ive form on Gt. Furthermore, [·, ·]0 �Gt×Gt is symmetric when t ∈ I1 and is
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Hermitian when t ∈ I2.

(b) When t ∈ I1 and q is odd, (Gt, Qt) is a non-degenerate quadratic space having

dimension εt over Ft, where the quadratic map Qt : Gt → Ft is defined as

Qt(At) = 1
2
[At, At]0 for all At ∈ Gt.

Proof. Proof is trivial.

In the following theorem, we derive necessary and sufficient conditions for the

existence of a Euclidean self-dual Λ-MT code of length n over Fq. We also count all

Euclidean self-dual Λ-MT codes of length n over Fq.

Theorem 4.2.2. Let Λ = (λ1, λ2, · · · , λ`) be fixed. For e1 + 1 ≤ µ ≤ e2, let τµ

denote the number of integers i satisfying 1 ≤ i ≤ ` and εµ,i = ε′µ,i = 1.

(a) There exists a Euclidean self-dual Λ-MT code of length n over Fq if and only

if all the irreducible factors of the polynomials xm1 − λ1, x
m2 −λ2, · · · xm` − λ`

in Fq[x] are either T0-self-conjugate or they form T0-conjugate pairs (i.e.,

e3 ≤ e2), εt is even for 1 ≤ t ≤ e1 and (−1)εt/2 is a square in Fq for all t ∈ I1.

(b) When all the irreducible factors of the polynomials xm1−λ1, x
m2−λ2, · · ·xm`−

λ` in Fq[x] are either T0-self-conjugate or they form T0-conjugate pairs (i.e.,

e3 ≤ e2), εt is even for 1 ≤ t ≤ e1 and (−1)εt/2 is a square in Fq for all t ∈ I1,

the number N0 of distinct Euclidean self-dual Λ-MT codes of length n over Fq
is given by

N0 =

e1∏
t=1

Dt

e2∏
µ=e1+1

(
τµ∑
b=0

[
τµ
b

]
qdµ

)
,

where for 1 ≤ t ≤ e1,

Dt =



εt/2−1∏
a=0

(
qa + 1

)
if t ∈ I1 & q is odd;

εt/2−1∏
a=1

(
qa + 1

)
if t ∈ I1 & q is even;

εt/2−1∏
a=0

(
q(2a+1)dt/2 + 1

)
if t ∈ I2.
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In order to prove this theorem, we need to prove the following lemma:

Lemma 4.2.3. Let 1 ≤ t ≤ e1 be fixed. There exists an Ft-subspace Ct of Gt
satisfying Ct = C⊥0

t if and only if the following two conditions are satisfied: (i) εt is

an even integer, and (ii) (−1)εt/2 is a square in Fq for all t ∈ I1. (Here C⊥0
t (⊆ Gt)

is the orthogonal complement of Ct with respect to [·, ·]0 �Gt×Gt .)

Proof. To prove the result, we see, by Lemma 4.2.1(a), that (Gt, [·, ·]0 �Gt×Gt) is an

orthogonal space having dimension εt over Ft when t ∈ I1 and that (Gt, [·, ·]0 �Gt×Gt) is

a unitary space having dimension εt over Ft when t ∈ I2. Now if Ct is an Ft-subspace

of Gt, then by Theorem 2.1.1, we see that dimFtC⊥0
t = εt − dimFtCt. Further, if Ct

satisfies Ct = C⊥0
t , then we get εt = 2 dimFtCt, which implies that εt is an even

integer.

On the other hand, when t ∈ I2 and εt is even, by Theorem 2.1.4(a), we see that

the Witt index of (Gt, [·, ·]0 �Gt×Gt) is εt/2, so there exists an Ft-subspace Ct of Gt
satisfying Ct = C⊥0

t . When t ∈ I1 and εt is even, by Theorem 2.1.2(a), we see that

the Witt index of (Gt, [·, ·]0 �Gt×Gt) is εt/2 if and only if (−1)εt/2 is a square in Fq.

That is, when t ∈ I1 and εt is even, there exists an Ft-subspace Ct of Gt satisfying

Ct = C⊥0
t if and only if (−1)εt/2 is a square in Fq. This proves the lemma.

Proof of Theorem 4.2.2. Part (a) follows immediately by Theorem 3.3.3(a) and

Lemma 4.2.3. To prove (b), we see, by Theorem 3.3.3(a) again, that it is enough to

determine the numbers Dt for all t ∈ I1 ∪ I2 and Dµ for e1 + 1 ≤ µ ≤ e2.

To do this, we see, by Lemma 2.1.6, that for each µ (e1+1 ≤ µ ≤ e2), the number

Dµ of distinct Fµ-subspaces of Kµ equals Dµ =
τµ∑
b=0

[
τµ
b

]
qdµ
. Moreover, for t ∈ I1, by

Lemma 4.2.1(a) and Theorem 2.1.2(b), we see that the number Dt of distinct εt/2-

dimensional self-orthogonal subspaces of Gt over Ft is given by Dt =
εt/2−1∏
a=0

(
qa + 1

)
when q is odd, while the number Dt of such subspaces is given by Dt =

εt/2−1∏
a=1

(
qa+1

)
when q is even. For t ∈ I2, by Lemma 4.2.1(a) and Theorem 2.1.4(b), we see that

the number Dt of distinct εt/2-dimensional self-orthogonal subspaces of Gt over Ft
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is given by Dt =
εt/2−1∏
a=0

(
q(2a+1)dt/2 +1

)
. From this and using Theorem 3.3.3(a) again,

part (b) follows immediately. 2

In the following theorem, we enumerate all Euclidean self-orthogonal Λ-MT codes

of length n over Fq.

Theorem 4.2.4. Let Λ = (λ1, λ2, · · · , λ`) be fixed. For e1 + 1 ≤ µ ≤ e2, let τµ

denote the number of integers i satisfying 1 ≤ i ≤ ` and εµ,i = ε′µ,i = 1. The number

N1 of distinct Euclidean self-orthogonal Λ-MT codes of length n over Fq is given by

N1 =

e1∏
t=1

Et

e2∏
µ=e1+1

(
τµ∑
k1=0

[
τµ
k1

]
qdµ

( τµ−k1∑
k2=0

[
τµ − k1

k2

]
qdµ

))
,

where for 1 ≤ t ≤ e1, Et equals

•
εt/2∑
b=0

([
εt/2
b

]
q

b−1∏
a=0

(
qεt/2−a−1 + 1

))
when t ∈ I1 and either q ≡ 1 (mod 4), εt is

even or εt ≡ 0 (mod 4), q ≡ 3 (mod 4);

•
(εt−2)/2∑
b=0

([
(εt−2)/2

b

]
q

b−1∏
a=0

(
qεt/2−a + 1

))
when t ∈ I1, q ≡ 3 (mod 4) and εt ≡

2 (mod 4);

•
(εt−1)/2∑
b=0

([
(εt−1)/2

b

]
q

b−1∏
a=0

(
q(εt−1)/2−a + 1

))
if t ∈ I1 & both q, εt are odd;

•
(εt−1)/2∑
b=0

([
(εt−1)/2

b

]
q

b−1∏
a=0

(
q(εt−2a−1)/2 + 1

))
if t ∈ I1, q is even & εt is odd;

•
(εt−2)/2∑
b=0

[
(εt−2)/2

b

]
q

b−1∏
a=0

(
q(εt−2a−2)/2 + 1

)
+

εt/2∑
k′=1

qεt−2k′
[

(εt−2)/2
k′−1

]
q

k′−2∏
a′=0

(
q(εt−2a′−2)/2 +

1
)
if t ∈ I1 & both q, εt are even;

•
εt/2∑
b=0

( b∏
a=εt+1−2b

(q
adt
2 − (−1)a)

)
/
( b∏
j=1

(qjdt − 1)
)
if t ∈ I2 & εt is even;

•
(εt−1)/2∑
b=0

( b∏
a=εt+1−2b

(q
adt
2 − (−1)a)

)
/
( b∏
j=1

(qjdt − 1)
)
if t ∈ I2 & εt is odd.
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Proof. By Theorem 3.3.3(b), we see that to determine the number N1, it is enough

to determine the numbers Et for all t ∈ I1 ∪ I2 and Eµ for e1 + 1 ≤ µ ≤ e2.

I. First let t ∈ I1. Here we see, by Lemma 4.2.1(a), that for t ∈ I1, (Gt, [·, ·]0 �Gt×Gt)

is an εt-dimensional orthogonal space over Ft ' Fq. Now we shall distinguish the

following two cases: (i) q is odd and (ii) q is even.

(i) When q is odd, one can view Gt as a non-degenerate quadratic space over Ft with

respect to the quadratic map Qt : Gt → Ft, defined as Qt(a(x)) = 1
2

[a(x), a(x)]0 for

all a(x) ∈ Gt. In view of this, we see, by Theorem 2.1.5(a), that the Witt index of

Gt is given by

wt =


εt
2

if either εt is even and q ≡ 1 (mod 4) or εt ≡ 0 (mod 4) and q ≡ 3 (mod 4);

εt−2
2

if εt ≡ 2 (mod 4) and q ≡ 3 (mod 4);

εt−1
2

if εt is odd.

(4.1)

Further, by Theorem 2.1.5(b), we see that the number Et of distinct self-orthogonal

subspaces of Gt over Ft is given by Et =
wt∑
b=0

([
wt
b

]
q

b−1∏
a=0

(
qwt−ς−a + 1

))
, where wt (the

Witt index of Gt) is given by (4.1) and

ς =


1 if wt = εt

2
;

−1 if wt = εt−2
2

;

0 if wt = εt−1
2
.

(ii) Next let q be even. Let us define Vt = {(εt,1ct,1, εt,2ct,2, · · · , εt,`ct,`) ∈ Gt :∑̀
i=1

εt,ict,i = 0}. Note that Vt is an Ft-subspace of Gt and dimFtVt = εt − 1. Let

θt = (εt,1, εt,2, · · · , εt,`) ∈ Gt. Since
∑̀
i=1

εt,i = εt, we see that θt ∈ Vt if and only if εt is

even.

When εt is odd, we see that θt /∈ Vt, which implies that Gt = Vt ⊕ 〈θt〉 . Next it

is easy to observe that any self-orthogonal Ft-subspace of Gt is contained in Vt and

that [c, θt]0 = 0 for each c ∈ Vt. Further, we note that as q is even, all mi’s are odd.
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This implies that m is odd, which further implies that m
mi

= 1 in Ft. Moreover, as

t ∈ I1, the conjugation T0 is the identity map on Ft. This implies that for each ct =

(εt,1ct,1, εt,2ct,2, · · · , εt,`ct,`) ∈ Vt, we have [ct, ct]0 =
∑̀
i=1

εt,ic
2
t,i

m
mi

= (
∑̀
i=1

εt,ict,i)
2 = 0.

From this, it follows that [·, ·]0 �Vt×Vt is a non-degenerate, reflexive and alternating

bilinear form on Vt, i.e., (Vt, [·, ·]0 �Vt×Vt) is a symplectic space over Ft having the

dimension εt − 1 and the Witt index εt−1
2
. Now by Theorem 2.1.3(b), we see that

for 0 ≤ b ≤ εb−1
2
, the number of distinct b-dimensional self-orthogonal subspaces of

Vt (and hence of Gt) is given by
[

(εt−1)/2
b

]
q

b−1∏
a=0

(
q
εt−2a−1

2 + 1
)
. This implies that the

number Et of distinct self-orthogonal subspaces of Gt over Ft is given by

Et =

εt−1
2∑
b=0

([
(εt − 1)/2

b

]
q

b−1∏
a=0

(
q
εt−2a−1

2 + 1
))

.

On the other hand, when εt is even, we see that θt ∈ Vt. Let V̂t be an (εt − 2)-

dimensional Ft-subspace of Vt such that θt /∈ V̂t. Then we have Vt = V̂t ⊕ 〈θt〉 .

Next we observe that there exists zt ∈ V̂⊥0
t \ Vt. From this, it follows that Gt =

V̂t ⊕ 〈zt〉 ⊕ 〈θt〉 . It is easy to see that any self-orthogonal Ft-subspace of Gt is

contained in Vt = V̂t ⊕ 〈θt〉 , which implies that any self-orthogonal subspace of

Gt is either (i) contained in V̂t, or (ii) contained in V̂t ⊕ 〈θt〉 but not in V̂t. Fur-

ther, we observe that (V̂t, [·, ·]0 �V̂t×V̂t) is a symplectic space over Ft having the

dimension εt − 2 and the Witt index (εt − 2)/2. Now by Theorem 2.1.3(b), we see

that for 0 ≤ b ≤ εt−2
2
, the number Et of distinct b-dimensional totally isotropic

subspaces of Gt is given by Et =
[

(εt−2)/2
b

]
q

b−1∏
a=0

(
q
εt−2a−2

2 + 1
)
. Next we proceed to

count all b-dimensional Ft-subspaces that are contained in V̂t ⊕ 〈θt〉 but not in

V̂t. To do this, we observe that for 1 ≤ b ≤ εt/2, any such b-dimensional Ft-

subspace of Gt is of the type 〈y1, y2, · · · , yb−1, θt + yb〉 , where yh ∈ V̂t \ {0} for

1 ≤ h ≤ b − 1 and yb ∈ V̂t. We further observe that the b-dimensional Ft-subspace

〈y1, y2, · · · , yb−1, θt + yb〉 of Gt is self-orthogonal if and only if 〈y1, y2, · · · , yb−1〉 is

a self-orthogonal Ft-subspace of V̂t and yb ∈ 〈y1, y2, · · · , yb−1〉⊥0 . Now by Theorem
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2.1.3(b), for 1 ≤ b ≤ εt/2, we see that the number of distinct (b−1)-dimensional self-

orthogonal Ft-subspaces of V̂t is given by
[

(εt−2)/2
b−1

]
q

b−2∏
a=0

(
q
εt−2a−2

2 +1
)
. Next we observe

that for yb, y
′
b ∈ 〈y1, y2, · · · , yb−1〉⊥0 \ 〈y1, y2, · · · , yb−1〉 , 〈y1, y2 · · · , yb−1, θt + yb〉 =

〈y1, y2 · · · , yb−1, θt + y′b〉 if and only if yb − y′b ∈ 〈y1, y2 · · · , yb−1〉 , i.e., all yb’s ly-

ing in different cosets of 〈y1, y2 · · · , yb−1〉⊥0 / 〈y1, y2, · · · , yb−1〉 give rise to distinct

self-orthogonal spaces of the type 〈y1, y2, · · · , yb−1, θt + yb〉 . We also observe that

the Ft-dimension of 〈y1, y2, · · · , yb−1〉⊥0 is εt − 2 − (b − 1), which implies that yb

has qεt−2b relevant choices. Therefore for 1 ≤ b ≤ εt/2, the number of distinct

b-dimensional Ft-subspaces of Gt that are contained in V̂t ⊕ 〈θt〉 but not in V̂t, is

given by qεt−2b
[

(εt−2)/2
b−1

]
q

b−2∏
a=0

(
q
εt−2a−2

2 + 1
)
. On combining both the cases, we see

that the number Et of distinct self-orthogonal Ft-subspaces of Gt is given by Et =
εt−2

2∑
b=0

[
(εt−2)/2

b

]
q

b−1∏
a=0

(
q
εt−2a−2

2 + 1
)

+
εt/2∑
k′=1

qεt−2k′
[

(εt−2)/2
k′−1

]
q

k′−2∏
a′=0

(
q
εt−2a′−2

2 + 1
)

when εt is

even.

II. Next let t ∈ I2. Here we observe, from Lemma 4.2.1 (a), that (Gt, [·, ·]0 �Gt×Gt)

is a unitary space over Ft having dimension εt. Further, by Theorem 2.1.4(a), the

Witt index wt of Gt is given by

wt =

 εt/2 if εt is even;

(εt − 1)/2 if εt is odd.

Now by Theorem 2.1.4(b), we see that the number Et of distinct self-orthogonal

Ft-subspaces of Gt is given by Et =
wt∑
b=0

( b∏
a=εt+1−2b

(q
adt
2 − (−1)a)

)
/
( b∏
j=1

(qjdt − 1)
)
.

III. Finally, for e1 + 1 ≤ µ ≤ e2, we shall count the number of pairs (Cµ, C ′µ) with Cµ
as an Fµ-subspace of Kµ and C ′µ as an F ′µ-subspace of K′µ satisfying C ′µ ⊆ C⊥0

µ ∩ K′µ.

In order to do this, we note that (Kµ×K′µ, [·, ·]0 �Kµ×K′µ) is non-degenerate. So if the

dimension of Cµ is k1, then one can observe that the dimension of C⊥0
µ ∩K′µ is τµ−k1,

where 0 ≤ k1 ≤ τµ. As C ′µ has to be a subspace of C⊥0
µ ∩K′µ, by Lemma 2.1.6, C ′µ has

τµ−k1∑
k2=0

[
τµ−k1

k2

]
qdµ

choices if dimFµCµ = k1. Further, we see that the number of distinct



4.2 Determination of the number of Euclidean self-dual,
self-orthogonal and LCD MT codes 61

k1-dimensional Fµ-subspaces of Gµ is given by
[
τµ
k1

]
qdµ
. From this, it follows the num-

ber Eµ of pairs (Cµ, C ′µ) with Cµ as an Fµ-subspace of Kµ and C ′µ as an F ′µ-subspace

of K′µ satisfying C ′µ ⊆ C⊥0
µ ∩ K′µ is given by Eµ =

τµ∑
k1=0

[
τµ
k1

]
qdµ

( τµ−k1∑
k2=0

[
τµ−k1

k2

]
qdµ

)
. Now

using Theorem 3.3.3(b) again, the desired result follows immediately.

Now in the following theorem, we enumerate all Euclidean LCD Λ-MT codes of

length n over Fq when λi ∈ {1,−1} for 1 ≤ i ≤ `.

Theorem 4.2.5. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where λi ∈ {1,−1} for 1 ≤ i ≤ `.

For e1 + 1 ≤ µ ≤ e2, let τµ denote the number of integers i satisfying 1 ≤ i ≤ ` and

εµ,i = ε′µ,i = 1. The total number of distinct Euclidean LCD Λ-MT codes of length n

over Fq is given by

N2 =

e1∏
t=1

Ft

e2∏
µ=e1+1

(
2 +

τµ−1∑
ι=1

qι(τµ−ι)dµ
[
τu
ι

]
qdµ

)
e3∏

u=e2+1

(
εu∑
b=0

[
εu
b

]
qdu

)
,

where for 1 ≤ t ≤ e1, Ft equals

• 2 +
εt−1∑
ϑ=1

ϑ≡0(mod 2)

q
ϑ(εt−ϑ+1)

2

[
(εt−1)/2
ϑ/2

]
q2

+
εt−1∑
ϑ=1

ϑ≡1(mod 2)

q
(εt−ϑ)(ϑ+1)

2

[
(εt−1)/2
(ϑ−1)/2

]
q2

when t ∈ I1

and εt is odd;

• 2 +
εt−1∑
ϑ=1

ϑ≡0(mod 2)

q
ϑ(εt−ϑ)

2

[
εt/2
ϑ/2

]
q2

+
εt−1∑
ϑ=1

ϑ≡1(mod 2)

q
(εtϑ−ϑ

2−1)
2 (q

εt
2 + 1)

[
(εt−2)/2
(ϑ−1)/2

]
q2

when t ∈

I1, εt ≡ 2 (mod 4) and q ≡ 3 (mod 4);

• 2 +
εt−1∑
ϑ=1

ϑ≡0(mod 2)

q
ϑ(εt−ϑ)

2

[
εt/2
ϑ/2

]
q2

+
εt−1∑
ϑ=1

ϑ≡1(mod 2)

q
(εtϑ−ϑ

2−1)
2 (q

εt
2 − 1)

[
(εt−2)/2
(ϑ−1)/2

]
q2

when t ∈

I1, either εt is even and q ≡ 1 (mod 4) or εt ≡ 0 (mod 4) and q ≡ 3 (mod 4);

• 2+
εt−1∑
ϑ=1

ϑ≡0(mod 2)

q
εtϑ−ϑ

2−2
2

{
(qϑ+q−1)

[
(εt−2)/2

(ϑ)/2

]
q2

+(qεt−ϑ+1−qεt−ϑ+1)
[

(εt−2)/2
(ϑ−2)/2

]
q2

}
+

εt−1∑
ϑ=1

ϑ≡1(mod 2)

q
εtϑ−ϑ

2+εt−1
2

[
(εt−2)/2
(ϑ−1)/2

]
q2

when t ∈ I1 and both εt, q are even;
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• 2 +
εt−1∑
ϑ=1

q
ϑ(εt−ϑ)dt

2

ϑ−1∏
τ=0

(
q

(εt−τ)dt
2 −(−1)εt−τ

q
(ϑ−τ)dt

2 −(−1)ϑ−τ

)
when t ∈ I2.

Proof. By Theorem 3.3.3(c), we see that to determine the number N2, it is enough

to determine the numbers Ft for all t ∈ I1 ∪ I2, Fµ for e1 + 1 ≤ µ ≤ e2 and Fu for

e2 + 1 ≤ µ ≤ e3.

To do this, when t ∈ I2, working in a similar manner as in Proposition 3.5 of

Sharma and Kaur [71], we get

Ft = 2 +
εt−1∑
ϑ=1

q
ϑ(εt−ϑ)dt

2

ϑ−1∏
τ=0

(
q

(εt−τ)dt
2 − (−1)εt−τ

q
(ϑ−τ)dt

2 − (−1)ϑ−τ

)
.

When t ∈ I1, working in a similar manner as in Propositions 3.6 and 3.7 of Sharma

and Kaur [71], we obtain the number Ft. Further, for e1 + 1 ≤ µ ≤ e2, working

in a similar manner as in Proposition 3.8 of Sharma and Kaur [71], we obtain

Fµ = 2 +
τµ−1∑
ι=1

qι(τµ−ι)dµ
[
τµ
ι

]
qdµ
.

Moreover, by applying Lemma 2.1.6, we see that Fu =
εu∑
b=0

[
εu
b

]
qdu

for e2 +1 ≤ u ≤

e3. Now using Theorem 3.3.3(c) again, the desired result follows immediately.

4.3 Determination of the number of Hermitian

self-dual, self-orthogonal and LCD MT codes

In this section, we will study and count all Hermitian self-dual, Hermitian self-

orthogonal and Hermitian LCD Λ-MT codes of length n over Fq by applying the

Witt’s decomposition Theory. Now we make the following observation:

Lemma 4.3.1. (a) For 1 ≤ t ≤ e1, [·, ·] r
2
�Gt×Gt is a non-degenerate, reflexive and

Hermitian form on Gt. That is, the formed space
(
Gt, [·, ·] r

2
�Gt×Gt

)
is a unitary

space of dimension εt over Ft.

(b) For e1 + 1 ≤ µ ≤ e2, [·, ·] r
2
�Kµ×K′µ is a non-degenerate form on Kµ ×K′µ.
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Proof. Proof is trivial.

In the following theorem, we derive necessary and sufficient conditions for the

existence of a Hermitian self-dual Λ-MT code of length n over Fq. We also provide

the enumeration formula for all Hermitian self-dual Λ-MT codes of length n over

Fq.

Theorem 4.3.2. Let r be even and k = r
2
. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where

λ1, λ2, · · · , λ` are non-zero elements of Fq.

(a) There exists a Hermitian self-dual Λ-MT code of length n over Fq if and only

if irreducible factors of the polynomials xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` in

Fq[x] are either T r
2
-self-conjugate or they form T r

2
-conjugate pairs, and εt is

even for 1 ≤ t ≤ e1.

(b) Suppose that irreducible factors of the polynomials xm1−λ1, x
m2−λ2, · · · , xm`−

λ` in Fq[x] are either T r
2
-self-conjugate or they form T r

2
-conjugate pairs, and

εt is even for 1 ≤ t ≤ e1. Then the total number of distinct Hermitian self-dual

Λ-MT codes of length n over Fq is given by

M0 =

e1∏
t=1

εt/2−1∏
a=0

(
q(2a+1)dt/2 + 1

) e2∏
µ=e1+1

(
τµ∑
b=0

[
τµ
b

]
qdµ

)
.

Proof. (a) To prove the result, by Theorem 3.3.4(a), we see that the code C is

Hermitian self-dual if and only if the following three conditions are satisfied:

• All the irreducible factors of the polynomials xm1−λ1, x
m2−λ2, · · · xm`−λ`

in Fq[x] are either T r
2
-self-conjugate or form T r

2
-conjugate pairs (i.e.,

e3 ≤ e2).

• For 1 ≤ t ≤ e1, Ct = C
⊥ r

2
t ⊆ Gt, which, by Theorem 2.1.1, holds if and

only if εt is even and Ct is an εt/2-dimensional self-orthogonal Ft-subspace

of Gt.
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• For e1+1 ≤ µ ≤ e2, Cµ (resp. C ′µ) is a subspace of Kµ (resp. K′µ) satisfying

C ′µ = C
⊥ r

2
µ ∩ K′µ.

From this and by applying Lemma 4.3.1(a) and Theorem 2.1.4(a), part (a)

follows immediately.

(b) By Theorem 3.3.4(a), we see that to determine the number M0, it is enough

to determine the numbers Nt for 1 ≤ t ≤ e1 and Nµ for e1 + 1 ≤ µ ≤ e2.

To do this, for 1 ≤ t ≤ e1, by Lemma 4.3.1(a) and Theorem 2.1.4(b), we obtain

Nt =
εt/2−1∏
a=0

(
q(2a+1)dt/2 + 1

)
. Further, by Lemma 2.1.6, we get Nµ =

τµ∑
b=0

[
τµ
b

]
qdµ

for e1 + 1 ≤ µ ≤ e2. Now using Theorem 3.3.4(a) again, the desired result

follows immediately.

In the following theorem, we enumerate all Hermitian self-orthogonal Λ-MT

codes of length n over Fq.

Theorem 4.3.3. Let r be even and k = r
2
. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where

λ1, λ2, · · · , λ` are non-zero elements of Fq. Then the total number of distinct Her-

mitian self-orthogonal Λ-MT codes of length n over Fq is given by

M1 =

e1∏
t=1

Mt

e2∏
µ=e1+1

(
τµ∑
k0=0

[
τµ
k0

]
qdµ

( τµ−k0∑
k1=0

[
τµ − k0

k1

]
qdµ

))
,

where for 1 ≤ t ≤ e1,

Mt =


εt/2∑
s=0

( εt∏
a=εt+1−2s

(q
adt
2 − (−1)a)

)
/
( s∏
j=1

(qjdt − 1)
)

if εt is even;

(εt−1)/2∑
s=0

( εt∏
a=εt+1−2s

(q
adt
2 − (−1)a)

)
/
( s∏
j=1

(qjdt − 1)
)

if εt is odd.

Proof. By Theorem 3.3.4(b), we see that to determine the number M1, it is enough

to determine the numbers Mt for 1 ≤ t ≤ e1 and Mµ for e1 + 1 ≤ µ ≤ e2.
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To do this, for 1 ≤ t ≤ e1, by Lemma 4.3.1(a), we see that
(
Gt, [·, ·] r

2
�Gt×Gt

)
is a

unitary space of dimension εt over Ft. Further, by Theorem 2.1.4(a), the Witt index

of Gt is given by εt/2 if εt is even, and by (εt − 1)/2 if εt is odd. For 1 ≤ t ≤ e1,

using this and by applying Theorem 2.1.4(b), we obtain

Mt =


εt/2∑
s=0

( εt∏
a=εt+1−2s

(q
adt
2 − (−1)a)

)
/
( s∏
j=1

(qjdt − 1)
)

if εt is even;

(εt−1)/2∑
s=0

( εt∏
a=εt+1−2s

(q
adt
2 − (−1)a)

)
/
( s∏
j=1

(qjdt − 1)
)

if εt is odd.

To determine the number Mµ for e1 + 1 ≤ µ ≤ e2, let Cµ be an Fµ-subspace

of Kµ having dimension k0, where 0 ≤ k0 ≤ τµ. Now by applying Lemma 4.3.1(b)

and Theorem 2.1.1, we see that the F ′µ-dimension of C
⊥ r

2
µ ∩ K′µ is τµ − k0. As C ′µ ⊆

C
⊥ r

2
µ ∩ K′µ, by Lemma 2.1.6, the subspace C ′µ of K′µ has

τµ−k0∑
k1=0

[
τµ−k0

k1

]
qdµ

choices if

the Fµ-dimension of Cµ is k0. Further, by applying Lemma 2.1.6, we see that for

0 ≤ k0 ≤ τµ, the number of distinct k0-dimensional Fµ-subspaces of Kµ is given by[
τµ
k0

]
qdµ
. From this, we obtainMµ =

τµ∑
k0=0

[
τµ
k0

]
qdµ

( τµ−k0∑
k1=0

[
τµ−k0

k1

]
qdµ

)
for e1 +1 ≤ µ ≤ e2.

Now using Theorem 3.3.4(b) again, the desired result follows immediately.

In the following theorem, we enumerate all Hermitian LCD Λ-MT codes of length

n over Fq when λi ∈ {1,−1} for 1 ≤ i ≤ `.

Theorem 4.3.4. Let r be even and k = r
2
. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where

λi ∈ {1,−1} for 1 ≤ i ≤ `. Then the total number of distinct Hermitian LCD Λ-MT

codes of length n over Fq is given by

M2 =

e1∏
t=1

Dt
e2∏

µ=e1+1

(
2 +

τµ−1∑
ι=1

qι(τµ−ι)dµ
[
τµ
ι

]
qdµ

)
e3∏

u=e2+1

(
εu∑
b=0

[
εu
b

]
qdu

)
,

where Dt = 2 +
εt−1∑
ϑ=1

q
ϑ(εt−ϑ)ηt

2

ϑ−1∏
τ=0

(
q

(εt−τ)ηt
2 −(−1)εt−τ

q
(ϑ−τ)ηt

2 −(−1)ϑ−τ

)
for 1 ≤ t ≤ e1.

Proof. By Theorem 3.3.4(c), we see that to determine the number M2, it is enough
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to determine the numbers Dt for 1 ≤ t ≤ e1, Dµ for e1 + 1 ≤ µ ≤ e2 and Du for

e2 + 1 ≤ u ≤ e3.

To do this, for 1 ≤ t ≤ e1, working in a similar manner as in Proposition 3.5 of

Sharma and Kaur [71], we get

Dt = 2 +
εt−1∑
ϑ=1

q
ϑ(εt−ϑ)dt

2

ϑ−1∏
τ=0

(
q

(εt−τ)dt
2 − (−1)εt−τ

q
(ϑ−τ)dt

2 − (−1)ϑ−τ

)
.

Further, for e1 + 1 ≤ µ ≤ e2, working in a similar manner as in Proposition 3.8 of

Sharma and Kaur [71], we obtain Dµ = 2 +
τµ−1∑
ι=1

qι(τµ−ι)dµ
[
τµ
ι

]
qdµ
.

Moreover, by Lemma 2.1.6, we get Du =
εu∑
b=0

[
εu
b

]
qdu

for e2 + 1 ≤ u ≤ e3. Now

using Theorem 3.3.4(c) again, the desired result follows immediately.



5
Hamming weights in multi-twisted

codes over finite fields

5.1 Introduction

Let Fq denote the finite field of order q. Let ` be a positive integer, and let

m1,m2, · · · ,m` be positive integers satisfying gcd(mi, q) = 1 for 1 ≤ i ≤ `. Let

n = m1 + m2 + · · · + m`, and let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are

non-zero elements of Fq. In this chapter, we shall explicitly determine all non-zero

Hamming weights of codewords of several classes of Λ-multi-twisted (Λ-MT) codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq. Using these results, we

67
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shall explicitly determine Hamming weight distributions of several classes of Λ-MT

codes of block lengths (m1,m2, · · · ,m`) and length n over Fq with a few weights,

which have applications in constructing association schemes, strongly regular graphs

and authentication codes. Among these classes of few weight Λ-MT codes, we

shall identify two classes of optimal equidistant Λ-MT codes meeting the Griesmer

and Plotkin bounds, which have strong connections with combinatorial designs and

projective geometry and are also useful in designing distributed storage systems.

Besides this, we identify three other classes of few weight Λ-MT codes, which are

useful in constructing secret sharing schemes with nice access structures.

Now let q = ` = 2, Λ = (1, 1), and let m1,m2 be odd positive integers such that

the irreducible factorization of xmi − 1 over F2 is given by

xmi − 1 = (x− 1)fi(x) for i ∈ {1, 2}. (5.1)

Further, let αi ∈ F2mi−1 be a root of the polynomial fi(x), θi be a primitive element of

F2mi−1 , and let us write α−1
i = θ`ii for some integer `i satisfying 0 ≤ `i ≤ 2mi−1−2 for

each i. Patanker and Singh [64] recently determined Hamming weight distributions

of (1, 1)-MT codes of block lengths (m1,m2) over F2 (i.e., F2-double cyclic codes

with block lengths (m1,m2)) under the assumption that there exists a least positive

integer ti satisfying

2ti ≡ −1 (mod gcd(`i, 2
mi−1 − 1)) for i ∈ {1, 2}. (5.2)

Here under the conditions (5.1) and (5.2), we assert that mi ∈ {3, 5} for i ∈ {1, 2}.

To prove this assertion, let i ∈ {1, 2} be fixed. Now by (5.1), we observe that mi−1

is the least positive integer satisfying 2mi−1 ≡ 1 (mod mi), which further implies that

mi is a prime number. Since αmii = 1 and αi 6= 1, we note that αi is a primitive mith

root of unity. Without any loss of generality, we can assume that α−1
i = θ

2mi−1−1
mi

i ,

i.e., we can take `i = 2mi−1−1
mi

so that gcd(`i, 2
mi−1 − 1) = 2mi−1−1

mi
. Now one can
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easily see that conditions (5.1) and (5.2) hold for mi = 3 or 5. Further, we see that

mi = 7 does not satisfy the condition (5.1). Furthermore, for mi ≥ 11, we note that

2mi−1−1
mi

≥ 3 and the condition (5.2) implies that ti divides mi−1
2
, which further implies

that 2ti +1 ≤ 2
mi−1

2 +1 < 2mi−1−1
mi

. From this, it follows that the condition (5.2) does

not hold for any prime mi ≥ 11. This shows that conditions (5.1) and (5.2) are very

heavy constraints and hold only when mi ∈ {3, 5}. In the light of this, Patanker and

Singh [64] essentially determined Hamming weight distributions of some (1, 1)-MT

codes over F2 (i.e., F2-double cyclic codes) of block lengths (3, 3), (3, 5) and (5, 5)

only, which one can easily determine by direct computations and without applying

deeper results on Gauss sums.

The main goal of this chapter is to determine all non-zero Hamming weights of

codewords of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq, and to determine their Hamming weight distributions. As appli-

cations, several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length

n over Fq with few weights and two classes of optimal equidistant (or equivalently,

constant weight) Λ-MT codes meeting the Griesmer bound and the Plotkin bound

are also identified.

This chapter is organized as follows: In Section 5.2, we explicitly determine

Hamming weights of all the blocks of non-zero codewords of several classes of MT

codes with at most two non-zero constituents (Theorems 5.2.2-5.2.10). Applying

these results, one can determine all non-zero Hamming weights in these MT codes

and their Hamming weight distributions. In Section 5.3, we determine Hamming

weight distributions of several classes of few weights MT codes (Theorems 5.3.3-

5.3.11). Among these classes of few weights MT codes, we identify two classes

of optimal equidistant MT codes that attain both Griesmer and Plotkin bounds

(Theorems 5.3.3-5.3.4). Besides this, we identify three different classes of few weight

MT codes, which are useful in constructing secret sharing schemes with nice access

structures (Theorems 5.3.3-5.3.5). Working in a similar manner as in Sections 5.2,
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one can determine Hamming weight distributions of several other classes of MT

codes with more than two non-zero constituents (see Remark 5.3.12 and Theorem

5.3.13).

From now on, throughout this chapter, let q = pr, where p is a prime number

and r is a positive integer. Here we shall follow the same notations as in Chapters

2 and 3.

5.2 Hamming weights of codewords of MT codes

with at most two non-zero constituents

In this section, we shall determine Hamming weights of non-zero codewords of

several classes of Λ-MT codes with at most two non-zero constituents. To do this,

we recall that Fw ' Fqdw for 1 ≤ w ≤ ρ. Without any loss of generality, we assume,

throughout this chapter, that the constituents of Λ-MT codes corresponding to the

irreducible factors g3(x), g4(x), · · · , gρ(x) are zero. Then by Theorems 3.2.2 and

3.5.2, each Λ-MT code of length n over Fq is given by

C =
{(
c1(x1, x2), c2(x1, x2), · · · , c`(x1, x2)

)
: xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw

for 1 ≤ w ≤ 2} ,

where C1 and C2 are subspaces of G1 and G2 over Fqd1 and Fqd2 respectively, and

ci(x1, x2) =
1

mi

( 2∑
w=1

TrF
qdw

/Fq(xw,i),
2∑

w=1

TrF
qdw

/Fq(xw,iδ
−1
w ), · · · ,

2∑
w=1

TrF
qdw

/Fq(xw,iδ
−(mi−1)
w )

)
(5.3)

is the ith block of the codeword c(x1, x2) =
(
c1(x1, x2), c2(x1, x2), · · · , c`(x1, x2)

)
of the code C for 1 ≤ i ≤ `. In view of this, we see that the Hamming weight
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WH(c(x1, x2)) of the codeword c(x1, x2) ∈ C is given by

WH(c(x1, x2)) = WH(c1(x1, x2)) +WH(c2(x1, x2)) + · · ·+WH(c`(x1, x2)), (5.4)

where WH(ci(x1, x2)) denotes the Hamming weight of the ith block ci(x1, x2) of

the codeword c(x1, x2) ∈ C for 1 ≤ i ≤ `. Therefore to determine the Hamming

weight of the codeword c(x1, x2) ∈ C, it is enough to determine Hamming weights

WH(c1(x1, x2)),WH(c2(x1, x2)), · · · ,WH(c`(x1, x2)) of each of its ` blocks. For this,

we shall first express Hamming weights WH(ci(x1, x2)) of the blocks ci(x1, x2), 1 ≤

i ≤ `, in terms of certain character sums over finite fields. We assume, throughout

this chapter, that χ, χ1 and χ2 are canonical additive characters of Fq, Fqd1 and

Fqd2 , respectively.

From this point on, let x1 = (x1,1, x1,2, · · · , x1,`) ∈ C1, x2 = (x2,1, x2,2, · · · , x2,`) ∈

C2 and let 1 ≤ i ≤ ` be fixed. Then we see, by (5.3), that

WH(ci(x1, x2)) = |{0 ≤ j ≤ mi − 1 : TrF
qd1

/Fq(x1,iδ
−j
1 ) + TrF

qd2
/Fq(x2,iδ

−j
2 ) 6= 0}|

= mi − |{0 ≤ j ≤ mi − 1 : TrF
qd1

/Fq(x1,iδ
−j
1 ) + TrF

qd2
/Fq(x2,iδ

−j
2 ) = 0}|.

This, by (2.1), can be rewritten as

WH(ci(x1, x2)) = mi −
1

q

mi−1∑
j=0

∑
y∈Fq

χ
(
y(TrF

qd1
/Fq(x1,iδ

−j
1 ) + TrF

qd2
/Fq(x2,iδ

−j
2 ))

)

= mi −
1

q

∑
y∈Fq

mi−1∑
j=0

χ
(
yTrF

qd1
/Fq(x1,iδ

−j
1 )
)
χ
(
yTrF

qd2
/Fq(x2,iδ

−j
2 )
)
.

Now by using the fact that TrF
qdw

/Fq is an Fq-linear map for 1 ≤ w ≤ 2 and by

(2.2), we observe that

WH(ci(x1, x2)) = mi −
1

q

∑
y∈Fq

mi−1∑
j=0

χ1(yx1,iδ
−j
1 )χ2(yx2,iδ

−j
2 ).
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From this, we obtain

WH(ci(x1, x2)) =



0 if x1,i = x2,i = 0;

mi − mi
q
− 1

q

∑
y∈F∗q

mi−1∑
j=0

χ1(yx1,iδ
−j
1 ) if x1,i 6= 0 and x2,i = 0;

mi − mi
q
− 1

q

∑
y∈F∗q

mi−1∑
j=0

χ2(yx2,iδ
−j
2 ) if x1,i = 0 and x2,i 6= 0;

mi − mi
q
− 1

q

∑
y∈F∗q

mi−1∑
j=0

χ1(yx1,iδ
−j
1 )χ2(yx2,iδ

−j
2 )

if x1,i 6= 0 and x2,i 6= 0.

(5.5)

Now we proceed to determine the explicit value of the Hamming weightWH(ci(x1, x2))

by further expressing these character sums in terms of Gauss sums, whose explicit

values are known only in certain special cases [11, 51]. To do this, we shall distin-

guish the following two cases: (i) either x1,i or x2,i is zero and (ii) both x1,i and x2,i

are non-zero. From now on, throughout this chapter, we assume that ξ1 and ξ2 are

primitive elements of Fqd1 and Fqd2 , respectively. It is easy to see that ξ
qd1−1
q−1

1 and

ξ
qd2−1
q−1

2 are primitive elements of Fq. Now for 1 ≤ w ≤ 2, since δw ∈ F∗
qdw
, we can

write δ−1
w = ξ`ww , where 0 ≤ `w ≤ qdw − 2. Further, let τw = gcd

(
qdw−1
q−1

, `w
)

and let

φw be a generator of the multiplicative character group F̂∗
qdw

of Fqdw for each w.

5.2.1 Determination of WH(ci(x1, x2)) when either x1,i or x2,i

is zero

When x1,i = x2,i = 0, by (5.5), we have WH(ci(x1, x2)) = 0. So we assume,

throughout this section, that xw,i 6= 0 and xw′,i = 0, where {w,w′} = {1, 2}. In the

following lemma, we express the Hamming weight WH(ci(x1, x2)) in terms of certain

Gauss sums.
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Lemma 5.2.1. We have

WH(ci(x1, x2)) = mi −
mi

q
− mi(q − 1)

q(qdw − 1)

τw−1∑
b=0

φ
(qdw−1)b

τw
w (xw,i)G(φ

(qdw−1)b
τw

w , χw).

Proof. To prove the result, we first note, by (5.5), that

WH(ci(x1, x2)) = mi −
mi

q
− 1

q

∑
y∈F∗q

mi−1∑
j=0

χw(yxw,iδ
−j
w ). (5.6)

Now by (2.5) and by using the fact that F̂∗
qdw

= 〈φw〉, we see that

∑
y∈F∗q

mi−1∑
j=0

χw(yxw,iδ
−j
w ) =

1

qdw − 1

∑
y∈F∗q

qdw−2∑
u=0

mi−1∑
j=0

G(φ
u

w, χw)φuw(yxw,iδ
−j
w )

=
1

qdw − 1

mi−1∑
j=0

qdw−2∑
u=0

G(φ
u

w, χw)φuw(xw,iδ
−j
w )

(∑
y∈F∗q

φuw(y)

)
.

Further, for 0 ≤ u ≤ qdw − 2, one can easily observe that

∑
y∈F∗q

φuw(y) =

q−2∑
k=0

φuw(ξ
(qdw−1)k

q−1
w ) =

q−2∑
k=0

e
2πι(qdw−1)uk

(qdw−1)(q−1)

=

q−2∑
k=0

e
2πιuk
q−1 =

 q − 1 if u ≡ 0 (mod q − 1);

0 otherwise.

In view of this, we get

∑
y∈F∗q

mi−1∑
j=0

χw(yxw,iδ
−j
w ) =

q − 1

qdw − 1

qdw−1
q−1

−1∑
a=0

G(φ
(q−1)a

w , χw)φ(q−1)a
w (xw,i)

(mi−1∑
j=0

φ(q−1)a
w (δ−jw )

)
.

Further, if φ
(q−1)a
w (δ−1

w ) 6= 1 for some integer a satisfying 0 ≤ a < qdw−1
q−1

, then we see
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that

mi−1∑
j=0

φ(q−1)a
w (δ−jw ) =

mi−1∑
j=0

φ(q−1)a
w (δ−1

w )j =
φ

(q−1)a
w (δ−miw )− 1

φ
(q−1)a
w (δ−1

w )− 1
=
φ

(q−1)a
w (λ−1

i )− 1

φ
(q−1)a
w (δ−1

w )− 1
= 0,

as δmiw = λi and λq−1
i = 1. Therefore for 0 ≤ a < qdw−1

q−1
, we have

mi−1∑
j=0

φ(q−1)a
w (δ−jw ) =

 mi if φ
(q−1)a
w (δ−1

w ) = 1;

0 otherwise.

Further, for an integer a satisfying 0 ≤ a < qdw−1
q−1

, we note that φ
(q−1)a
w (δ−1

w ) =

φ
(q−1)a
w (ξ`ww ) = e

2πι(q−1)a`w
qdw−1 = 1 if and only if (q − 1)a`w ≡ 0 (mod qdw − 1), which

holds if and only if a ≡ 0
(
mod (qdw−1)

τw(q−1)

)
. From this, we obtain

∑
y∈F∗q

mi−1∑
j=0

χw(yxw,iδ
−j
w ) =

mi(q − 1)

qdw − 1

τw−1∑
b=0

φ
(qdw−1)b

τw
w (xw,i)G(φ

(qdw−1)b
τw

w , χw).

Now on substituting the above value of the sum
∑
y∈F∗q

mi−1∑
j=0

χw(yxw,iδ
−j
w ) in equation

(5.6), we get the desired result.

In the following theorem, we explicitly determine the Hamming weightWH(ci(x1, x2)).

Theorem 5.2.2. Let xw,i = ξ
sw,i
w ∈ F∗

qdw
and xw′,i = 0, where 0 ≤ sw,i ≤ qdw − 2.

(a) When τw = 1, we have WH(ci(x1, x2)) = mi − mi
q

+ mi(q−1)
q(qdw−1)

.

(b) When τw = 2, the integer dw is even, q is an odd prime power and

WH(ci(x1, x2)) = mi −
mi

q
+
mi(q − 1)

(
1 + ι

rdw(p−1)2

4 q
dw
2 (−1)sw,i

)
q(qdw − 1)

.

(c) Let τw ≥ 3. Suppose that there exists a positive integer uw satisfying puw ≡

−1 (mod τw). If sw is the least positive integer satisfying psw ≡ −1 (mod τw),
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then we have rdw = 2swνw for some positive integer νw.

• If τw is even and pνw(psw+1)
τw

is odd, then we have

WH(ci(x1, x2)) =

 mi − mi
q
− mi(q−1)(−1+q

dw
2 (τw−1))

q(qdw−1)
if τw | τw2 + sw,i;

mi − mi
q

+ mi(q−1)(1+q
dw
2 )

q(qdw−1)
if τw - τw

2
+ sw,i.

• If either τw is odd or pνw(psw+1)
τw

is even, then we have

WH(ci(x1, x2)) =

 mi − mi
q
− mi(q−1)(−1+(−1)νw−1q

dw
2 (τw−1))

q(qdw−1)
if τw | sw,i;

mi − mi
q

+ mi(q−1)(1+(−1)νw−1q
dw
2 )

q(qdw−1)
if τw - sw,i.

Proof. To prove the result, we see, by Lemma 5.2.1, that

WH(ci(x1, x2)) = mi −
mi

q
− mi(q − 1)Θ′i(xw,i)

q(qdw − 1)
, (5.7)

where Θ′i(xw,i) =
τw−1∑
b=0

φ
(qdw−1)b

τw
w (xw,i)G(φ

(qdw−1)b
τw

w , χw). So to determine the Hamming

weight WH(ci(x1, x2)), it is enough to determine the explicit value of the sum

Θ′i(xw,i). For this, we observe that O(φ
qdw−1
τw

w ) = τw. Now we shall distinguish the

following three cases: (a) τw = 1, (b) τw = 2, and (c) τw ≥ 3.

(a) When τw = 1, by (2.4), we get Θ′i(xw,i) = −1.

(b) When τw = 2, we note that φ
qdw−1
τw

w is the quadratic character of F∗
qdw
. In this

case, we see that τw = 2 divides qdw−1
q−1

= 1 + q + · · · + qdw−1, which implies

that q is odd and dw is even. Hence by Theorem 2.2.1, we obtain

Θ′i(xw,i) = −1 + φ
qdw−1
τw

w (xw,i)G(φ
qdw−1
τw

w , χw) = −1− ι
rdw(p−1)2

4 q
dw
2 (−1)sw,i .
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(c) Next let τw ≥ 3. Here by Theorem 2.2.2, for 1 ≤ b ≤ τw − 1, we see that

G(φ
(qdw−1)b

τw
w , χw) =

 (−1)bq
dw
2 if τw is even and pνw(psw+1)

τw
is odd;

(−1)νw−1q
dw
2 otherwise.

(5.8)

When τw is even and pνw(psw+1)
τw

is odd, we see, by (5.8), that

Θ′i(xw,i) = −1 + q
dw
2

τw−1∑
b=1

(−1)bφ
(qdw−1)b

τw
w (xw,i)

= −1 + q
dw
2

τw−1∑
b=1

e

(
2πιb(qdw−1)sw,i

τw(qdw−1)
+ 2πιbτw

2τw

)

= −1 + q
dw
2

τw−1∑
b=1

e
2πιb
τw

(sw,i+
τw
2

)

=

 −1 + q
dw
2 (τw − 1) if τw | τw2 + sw,i;

−1− q dw2 otherwise.

On the other hand, when either τw is odd or pνw(psw+1)
τw

is even, we see, by

(5.8), that

Θ′i(xw,i) = −1 + (−1)νw−1q
dw
2

τw−1∑
b=1

φ
(qdw−1)b

τw
w (xw,i)

=

 −1 + (−1)νw−1q
dw
2 (τw − 1) if τw | sw,i;

−1− (−1)νw−1q
dw
2 otherwise.

Now on substituting the values of Θ′i(xw,i) in equation (5.7) in the respective cases,

we get the desired result.
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5.2.2 Determination of WH(ci(x1, x2)) when x1,i 6= 0 and x2,i 6=

0

Throughout this section, we assume that x1,i 6= 0 and x2,i 6= 0. To determine

the Hamming weight WH(ci(x1, x2)), throughout this chapter, let us first fix the

following notations:

d = gcd(d1, d2) τ is the least positive integer satisfying

τ`1
g1G
≡ 1

(
mod qd−1

G

)
gw = gcd

(
qdw−1
qd−1

, `w
)
for 1 ≤ w ≤ 2 τ ′ is the least positive integer satisfying

τ ′(qd−1)∆1

Gλ
≡ 1

(
mod q−1

λ

)
∆w= qdw−1

(qd−1)gw
for 1 ≤ w ≤ 2 L is the least positive integer satisfying

ξ
qd1−1
q−1

1 = ξ
(qd2−1)L
q−1

2

G = gcd
(
`1
g1
, qd − 1

)
λ′ = gcd(λ, ∆2GL

H
− ∆1τ`2

g2H
)

H = gcd
(
`1
g1
, `2
g2
, qd − 1

)
K1 = (qd−1)(q−1)

Gλ

λ = gcd
(∆1(qd−1)

G
, q − 1

)
K2 = − λτ`2

λ′g2H

(
1− (qd−1)τ ′∆1

Gλ

)
− τ ′(qd2−1)L

λ′Hg2

M1 = Gλg1

q−1
M2 = (qd−1)λ′g2H

Gλ

Note that K2 = − τ`2λ
g2Hλ′

− τ ′(qd−1)
Gλ′

(
∆2GL
H
− τ`2∆1

g2H

)
and M2 = (qd−1)λ′g2H

Gλ
are integers,

and gcd(L, q − 1) = 1.

In the following lemma, we first express the Hamming weight WH(ci(x1, x2)) in

terms of certain Gauss sums.

Lemma 5.2.3. We have

WH(ci(x1, x2)) = mi −
mi

q
− mi(q − 1)Θi(x1,i, x2,i)

q(qd1 − 1)(qd2 − 1)
, (5.9)

where

Θi(x1,i, x2,i) =

M2−1∑
z2=0

M1−1∑
z1=0

(
G(φ

∆1(K2z2+K1z1)

1 , χ1)φ
∆1(K2z2+K1z1)
1 (x1,i)
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G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i)
)
. (5.10)

Proof. To prove the result, we note, by (5.5), that

WH(ci(x1, x2)) = mi −
mi

q
− 1

q
Ωi(x1,i, x2,i), (5.11)

where Ωi(x1,i, x2,i) =
∑
y∈F∗q

mi−1∑
j=0

χ1(yx1,iδ
−j
1 )χ2(yx2,iδ

−j
2 ). Further, as F̂∗

qd1
= 〈φ1〉 and

F̂∗
qd2

= 〈φ2〉, we see, by (2.5), that

Ωi(x1,i, x2,i)

=
1

(qd1 − 1)(qd2 − 1)

∑
y∈F∗q

qd1−2∑
u1=0

qd2−2∑
u2=0

mi−1∑
j=0

G(φ
u1

1 , χ1)φu1
1 (yx1,iδ

−j
1 )G(φ

u2

2 , χ2)φu2
2 (yx2,iδ

−j
2 )

=
1

(qd1 − 1)(qd2 − 1)

mi−1∑
j=0

qd1−2∑
u1=0

qd2−2∑
u2=0

G(φ
u1

1 , χ1)φu1
1 (x1,iδ

−j
1 )G(φ

u2

2 , χ2)φu2
2 (x2,iδ

−j
2 )
(

∑
y∈F∗q

φu1
1 (y)φu2

2 (y)
)
.

Further, for 0 ≤ u1 ≤ qd1 − 2 and 0 ≤ u2 ≤ qd2 − 2, one can easily observe that

∑
y∈F∗q

φu1
1 (y)φu2

2 (y) =

q−2∑
k=0

φu1
1 (ξ

(qd1−1)k
q−1

1 )φu2
2 (ξ

(qd2−1)kL
q−1

2 )

=

q−2∑
k=0

e
2πι(u1+u2L)k

q−1 =

 q − 1 if u1 + u2L ≡ 0 (mod q − 1);

0 otherwise.

In view of this, we obtain

Ωi(x1,i, x2,i) =
q − 1

(qd1 − 1)(qd2 − 1)

∑
u1,u2

G(φ
u1

1 , χ1)φu1
1 (x1,i)G(φ

u2

2 , χ2)φu2
2 (x2,i)

(
mi−1∑
j=0

φu1
1 (δ−j1 )φu2

2 (δ−j2 )
)
.
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where the summation
∑
u1,u2

runs over integers u1 and u2 satisfying 0 ≤ u1 ≤ qd1 − 2,

0 ≤ u2 ≤ qd2 − 2, and u1 + u2L ≡ 0 (mod q − 1).

Further, for 0 ≤ u1 ≤ qd1 − 2 and 0 ≤ u2 ≤ qd2 − 2 satisfying u1 + u2L ≡

0 (mod q − 1), we assert that

mi−1∑
j=0

φu1
1 (δ−j1 )φu2

2 (δ−j2 ) =

 mi if φu1
1 (δ−1

1 )φu2
2 (δ−1

2 ) = 1;

0 otherwise.
(5.12)

To prove the above assertion, we see that if φu1
1 (δ−1

1 )φu2
2 (δ−1

2 ) 6= 1, then

mi−1∑
j=0

φu1
1 (δ−j1 )φu2

2 (δ−j2 ) =

mi−1∑
j=0

(φu1
1 (δ−1

1 )φu2
2 (δ−1

2 ))j

=
φu1

1 (δ−mi1 )φu2
2 (δ−mi2 )− 1

φu1
1 (δ−1

1 )φu2
2 (δ−1

2 )− 1
=
φu1

1 (λ−1
i )φu2

2 (λ−1
i )− 1

φu1
1 (δ−1

1 )φu2
2 (δ−1

2 )− 1
,

as δmi1 = δmi2 = λi. Since λ−1
i ∈ F∗q and ξ

qd1−1
q−1

1 = ξ
(qd2−1)L
q−1

2 is a primitive element of Fq,

we can write λ−1
i = ξ

(qd1−1)T
q−1

1 = ξ
(qd2−1)TL

q−1

2 for some integer T satisfying 0 ≤ T ≤ q−2.

From this, we observe that φu1
1 (λ−1

i )φu2
2 (λ−1

i ) = e
2πιT (u1+u2L)

q−1 = 1, which further

implies that
mi−1∑
j=0

φu1
1 (δ−j1 )φu2

2 (δ−j2 ) = 0. On the other hand, when φu1
1 (δ−1

1 )φu2
2 (δ−1

2 ) =

1, it is easy to see that
mi−1∑
j=0

φu1
1 (δ−j1 )φu2

2 (δ−j2 ) = mi, which proves (5.12).

We further note that φu1
1 (δ−1

1 )φu2
2 (δ−1

2 ) = e
2πιu1`1

qd1−1
+

2πιu2`2

qd2−1 = 1 if and only if (qd2 −

1)u1`1 + (qd1 − 1)u2`2 ≡ 0 (mod (qd1 − 1)(qd2 − 1)). From this, we obtain

Ωi(x1,i, x2,i) =
mi(q − 1)

(qd1 − 1)(qd2 − 1)

∑
u1,u2

G(φ
u1

1 , χ1)φu1
1 (x1,i)G(φ

u2

2 , χ2)φu2
2 (x2,i), (5.13)

where the summation
∑
u1,u2

runs over integers u1 and u2 satisfying

0 ≤ u1 ≤ qd1 − 2, 0 ≤ u2 ≤ qd2 − 2,

(qd2 − 1)u1`1 + (qd1 − 1)u2`2 ≡ 0 (mod (qd1 − 1)(qd2 − 1)) and
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u1 + u2L ≡ 0 (mod q − 1). (5.14)

Further, one can observe that all the distinct integers u1, u2 satisfying (5.14) are

given by

u1 = ∆1(K2z2 +K1z1) and u2 =
∆2Gλz2

Hλ′
,

where z1, z2 are integers satisfying 0 ≤ z1 < M1 and 0 ≤ z2 < M2. This, by (5.13),

gives Ωi(x1,i, x2,i) =
mi(q−1)Θi(x1,i,x2,i)

(qd1−1)(qd2−1)
. From this and by equation (5.11), the desired

result follows immediately.

Next to determine the explicit value of WH(ci(x1, x2)), we note that O(φ∆1K1
1 ) =

M1 and O(φ
∆2Gλ

Hλ′
2 ) = M2. Now we shall consider the following three cases separately:

(i) M2 = 1, (ii) M2 = 2, and (iii) M2 ≥ 3. Further, in each of these three cases,

we shall distinguish the following three subcases: (i) M1 = 1, (ii) M1 = 2, and (iii)

M1 ≥ 3.

In the following theorem, we consider the case M2 = 1 and we determine the

explicit value of WH(ci(x1, x2)).

Theorem 5.2.4. Let M2 = 1, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
, where

0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2.

(a) When M1 = 1, we have WH(ci(x1, x2)) = mi − mi
q
− mi(q−1)

q(qd2−1)(qd1−1)
.

(b) When M1 = 2, the integer d1 is even, q is an odd prime power and

WH(ci(x1, x2)) = mi −
mi

q
−
mi(q − 1)

(
1 + ι

rd1(p−1)2

4 q
d1
2 (−1)s1,i

)
q(qd1 − 1)(qd2 − 1)

.

(c) Let M1 ≥ 3. Suppose that there exists a positive integer u satisfying pu ≡

−1 (mod M1). If t is the least positive integer satisfying pt ≡ −1 (mod M1),

then we have rd1 = 2tγ for some positive integer γ.
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• If M1 is even and pγ(pt+1)
M1

is odd, then we have

WH(ci(x1, x2)) =


mi − mi

q
− mi(q−1)

(
1−q

d1
2 (M1−1)

)
q(qd2−1)(qd1−1)

if M1 | M1

2
+ s1,i;

mi − mi
q
− mi(q−1)

(
1+q

d1
2

)
q(qd2−1)(qd1−1)

if M1 - M1

2
+ s1,i.

• If either M1 is odd or pγ(pt+1)
M1

is even, then we have

WH(ci(x1, x2)) =

 mi − mi
q
− mi(q−1)

(
1−(−1)γ−1q

d1
2 (M1−1)

)
q(qd2−1)(qd1−1)

if M1 | s1,i;

mi − mi
q
− mi(q−1)

(
1+(−1)γ−1q

d1
2

)
q(qd2−1)(qd1−1)

if M1 - s1,i.

Proof. To prove this, we see, by Lemma 5.2.3, that to determine the Hamming

weight WH(ci(x1, x2)), it is enough to determine the explicit value of

Θi(x1,i, x2,i) = −
M1−1∑
z1=0

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i). (5.15)

To do this, we shall distinguish the following three cases: (a) M1 = 1, (b) M1 = 2,

and (c) M3 ≥ 3.

(a) When M1 = 1, by (5.15) and (2.4), clearly we have Θi(x1,i, x2,i) = 1.

(b) When M1 = 2, φ
∆1K1

1 is a quadratic character of Fqd1 and q is odd. Further,

we note that M1 = 2 = gcd( q
d1−1
q−1

, Gg1), which implies that d1 is even. Hence

equation (5.15) can be rewritten as

Θi(x1,i, x2,i) = 1−G(φ
∆1K1

1 , χ1)φ∆1K1
1 (x1,i). (5.16)

From this and by Theorem 2.2.1, we obtain Θi(x1,i, x2,i) = 1+ι
rd1(p−1)2

4 q
d1
2 (−1)s1,i .
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(c) Next let M1 ≥ 3. Here by Theorem 2.2.2, for 1 ≤ z1 ≤M1 − 1, we see that

G(φ
∆1K1z1
1 , χ1) =

 (−1)z1q
d1
2 if M1 is even and pγ(pt+1)

M1
is odd;

(−1)γ−1q
d1
2 otherwise.

(5.17)

When M1 is even and pγ(pt+1)
M1

is odd, we see, by (5.17), that

Θi(x1,i, x2,i) = 1−
M1−1∑
z1=1

φ∆1K1z1
1 (x1,i)G(φ

∆1K1z1
1 , χ1)

= 1− q
d1
2

M1−1∑
z1=1

(−1)z1φ∆1K1z1
1 (x1,i)

= 1− q
d1
2

M1−1∑
z1=1

e

(
2πιz1s1,i

M1
+πιz1

)

= 1− q
d1
2

M1−1∑
z1=1

e

(
2πιz1
M1

(s1,i+
M1
2

)
)

=

 1− q
d1
2 (M1 − 1

)
if M1 | M1

2
+ s1,i;

1 + q
d1
2 otherwise.

On the other hand, when either M1 is odd or pγ(pt+1)
M1

is even, we see, by (5.15)

and (5.17), that

Θi(x1,i, x2,i) = 1− (−1)γ−1q
d1
2

M1−1∑
z1=1

e

(
2πιz1s1,i

M1

)

=

1− (−1)γ−1q
d1
2 (M1 − 1) if M1 | s1,i;

1 + (−1)γ−1p
rd1
2 otherwise.

Now on substituting the values of Θi(x1,i, x2,i) in equation (5.15) in the respective

cases, we get the desired result.

In the following theorem, we determine the explicit value of WH(ci(x1, x2)) when

M1 = 1 and M2 = 2.
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Theorem 5.2.5. Let M1 = 1, M2 = 2, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
,

where 0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2.

(a) When d2 is even, we have WH(ci(x1, x2)) = mi(q−1)
q
−mi(q−1)

(
1+ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i

)
q(qd1−1)(qd2−1)

.

(b) When d2 is odd, the integer d1 is also odd and we have

WH(ci(x1, x2)) =
mi(q − 1)

q
−
mi(q − 1)

(
1 + ι

r(d1+d2)(p−1)2

4 q
d1+d2

2 (−1)s1,i+s2,i
)

q(qd1 − 1)(qd2 − 1)
.

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) = 1 +G(φ
∆2Gλ

Hλ′
2 , χ2)G(φ

∆1K2

1 , χ1)φ
∆2Gλ

Hλ′
2 (x2,i)φ

∆1K2
1 (x1,i).

To do this, we note that O(φ
∆2Gλ

Hλ′
2 ) = M2 = 2, so the character φ

∆2Gλ

Hλ′
2 is the quadratic

character of Fqd2 and q is odd. Since gcd(L, q − 1) = 1, we see that L is odd.

Further, M1 = 1 implies that g1 = 1 and Gλ = q − 1. From this, it follows that

(qd−1)λ′g2H
q−1

= M2 = 2. This gives d = 1 and λ′g2H = 2. Further, it is easy to see that

∆1K2 =
qd1 − 1

q − 1

(
− λτ`2(1− τ ′∆1)

2
− τ ′(qd2 − 1)L

2

)
=

qd1 − 1

2

(
− τ`2(1− τ ′∆1)

G
− τ ′(qd2 − 1)L

q − 1

)
(5.18)

and

λ′g2H = 2 = gcd
(
λg2H,

(qd2 − 1)GL

q − 1
−∆1`2τ

)
. (5.19)

Now we shall distinguish the following two cases: (a) d2 is even and (b) d2 is odd.

(a) Let d2 be even. Here as d = 1, the integer d1 must be odd. From this, we observe

that the integer qd2−1
q−1

is even and the integer ∆1 is odd. This, by (5.19), clearly

implies that the integer τ`2 is even. Further, since G divides 1−τ ′∆1, by (5.18),
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one can easily observe that φ∆1K2
1 is the trivial multiplicative character of Fqd1

in this case. From this and by Theorem 2.2.1, we obtain

Θi(x1,i, x2,i) = 1−G(φ
∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i) = 1 + ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i .

(b) When d2 is odd, we see that the integer qd2−1
q−1

is odd and g2 = 1. Next as

Gλ
q−1

= gcd(∆1, G) = 1, by (5.19), one can easily see that the integer ∆1 must

be odd. From this, we note that the integer d1 is odd.

Now when G is even, we see, by (5.19), that the integer τ`2 is even. Further,

as G divides 1− τ ′∆1, we observe that the integer τ ′ is odd. This, by (5.18),

implies that φ∆1K2
1 is the quadratic character of Fqd1 .

On the other hand, when G is odd, we observe, by (5.19), that the integer τ`2

is odd. We further note that the integer τ ′ must be odd if the integer 1−τ ′∆1

G
is

even, while the integer τ ′ is even if the integer 1−τ ′∆1

G
is odd. Now since both

the integers (qd2−1)L
q−1

, τ`2 are odd, we see, by (5.18), that φ∆1K2
1 is the quadratic

character of Fqd1 .

From this and by applying Theorem 2.2.1, we obtain

Θi(x1,i, x2,i) = 1 + ι
r(d1+d2)(p−1)2

4 q
d1+d2

2 (−1)s1,i+s2,i .

In the following theorem, we determine the explicit value of WH(ci(x1, x2)) when

M1 = M2 = 2.

Theorem 5.2.6. Let M1 = M2 = 2, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
, where

0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2. Here the integer g1 ∈ {1, 2} and p is an

odd prime.
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(a) When g1 = 1, we have q = 3, G = λ = d = 2 and

WH(ci(x1, x2)) =


2mi

3
− 2mi

(
1−3

d1
2 +2(−1)

2s2,i+s1,i+d2
2 3

d1+d2
2

)
3(3d1−1)(3d2−1)

if 2 | s1,i;

2mi
3
− 2mi(1+3

d1
2 )

3(3d1−1)(3d2−1)
if 2 - s1,i.

(b) Let g1 = 2.

• If p ≡ 3 (mod 4), then we have

WH(ci(x1, x2))=


(q−1)mi

q
− mi(q−1)

(
1+q

d1
2 +2(−1)

2s2,i+rd2+s1,i
2 q

d1+d2
2

)
q(qd1−1)(qd2−1)

if 2 | s1,i;

(q−1)mi
q
− mi(q−1)(1−q

d1
2 )

q(qd1−1)(qd2−1)
if 2 - s1,i.

• If p ≡ 1 (mod 4), then we have

WH(ci(x1, x2)) =



(q−1)mi
q
− mi(q−1)

(
1+q

d1
2 +2q

d1+2d2
4 (−1)

2(rd2+s2,i)+s1,i
2 Ri

)
q(qd1−1)(qd2−1)

if 2 | s1,i;

(q−1)mi
q
− mi(q−1)

(
1−q

d1
2 +2q

d1+2d2
4 (−1)

2(rd2+s2,i)+1+s1,i
2 Ii

)
q(qd1−1)(qd2−1)

if 2 - s1,i,

where Ri = Re (a + ιb)
rd1
2 and Ii = Im (a + ιb)

rd1
2 denote the real

and imaginary parts of the complex number (a+ ιb)
rd1
2 , respectively (Here

a and b are the integers determined uniquely by p = a2+b2, a ≡ −1 (mod 4)

and b ≡ aξ
qd1−1

4
1 (mod p)).

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) = 1−G(φ
∆1K1

1 , χ1)φ∆1K1
1 (x1,i) +G(φ

∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i)F (x1,i),

where F (x1,i) = φ∆1K2
1 (x1,i)

(
G(φ

∆1K2

1 , χ1)+G(φ
∆1(K1+K2)

1 , χ1)φ∆1K1
1 (x1,i)

)
. As M1 =
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M2 = 2, we note that φ∆1K1
1 and φ

∆2Gλ

Hλ′
2 are the quadratic characters of Fqd1 and Fqd2

respectively and q is odd. Since gcd(L, q − 1) = 1, the integer L must be odd.

Further, since M1 = 2 and q− 1 divides Gλ, we see that the integer g1 divides 2. So

we shall distinguish the following two cases: (a) g1 = 1, and (b) g1 = 2.

(a) Let g1 = 1. Here we have Gλ
q−1

= 2 = gcd
(
qd1−1
q−1

, G
)
, which implies that both

the integers d1 and G are even. Since G = gcd(`1, q
d − 1) is even and g1 =

gcd
(
qd1−1
qd−1

, `1

)
= 1, one can easily see that the integer d1

d
is odd, which implies

that the integer d is even. Further, as Gλ
q−1

= 2 and M2 = 2, we see that

(qd−1)λ′g2H
q−1

= 4. Next we note that qd−1
q−1

= 1 + q + q2 + · · · + qd−1 ≥ 4. This

implies that λ′g2H = 1 and qd−1
q−1

= 4, which further implies that q = 3 and

d = 2. From this, we obtain Gλ = 4. Since λ = gcd(2, 3d1−1
G

) and the integer

3d−1
G

is even, we note that λ = 2, which gives G = 2. Further, it is easy to

observe that

∆1K2 =
(qd1 − 1)(−2τ`2(1− 2τ ′∆1)− τ ′(qd2 − 1)L)

8

=
(qd1 − 1)(−τ`2(1− 2τ ′∆1))

4
− τ ′(qd1 − 1)(qd2 − 1)L

8
.

This implies that φ∆1K2
1 = φ

τ`2(qd1−1)(1−2τ ′∆1)
4

1 . Since G = 2 and λ′ = 1 =

gcd(2,∆2GL−∆1τ`2), we note that the integer τ`2 is odd, which further im-

plies thatO(φ∆1K2
1 ) = 4. Further, we note that ∆1K1 = qd1−1

2
, and φ

∆1(K1+K2)
1 =

φ
(qd1−1)(−τ`2(1−2τ ′∆1)+2)

4
1 . This gives O(φ

∆1(K1+K2)
1 ) = 4. Next since p ≡ 3 ≡

−1 (mod 4), r = 1 and d1

2
is odd, by Theorem 2.2.2, we see that G(φ

∆1K2

1 , χ1) =

G(φ
∆1(K1+K2)

1 ) = −p
d1
2 . This implies that the sum

F (x1,i) = −p
d1
2 φ∆1K2

1 (x1,i)(1 + φ∆1K1
1 (x1,i))

= −p
d1
2 e

(
−2πιτ`2(1−2τ ′∆1)s1,i

4

)
(1 + eπιs1,i)
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=

 −2 p
d1
2 (−1)

s1,i
2 if 2 | s1,i;

0 if 2 - s1,i.

From this and by Theorem 2.2.1, we obtain

Θi(x1,i, x2,i) =

 1− 3
d1
2 + 2(−1)

s1,i+d2+2s2,i
2 3

d1+d2
2 if 2 | s1,i;

1 + 3
d1
2 if 2 - s1,i.

(b) When g1 = 2 = gcd
(
qd1−1
qd−1

, `1

)
, we see that Gλ

q−1
= 1 and both the integers

d1, `1 are even. Now as M2 = 2, we observe that λ′g2H = 2 and qd−1
q−1

= 1,

i.e., d = 1. Since d = 1 and d1 is even, the integer d2 must be odd and

g2 = 1 = gcd
(
qd2−1
q−1

, `2

)
. This implies that the integer ∆2 is odd and

λ′H = 2 = gcd(λH,∆2GL−∆1τ`2). (5.20)

Further, since g1

2
= gcd

(
∆1,

`1
2

)
= 1 and G = gcd

(
`1
2
, q − 1

)
, by (5.20), one

can easily observe that the integer ∆1 is odd in this case. Next we see that

∆1K2 =
qd1 − 1

2(q − 1)

(−λτ`2(1− τ ′∆1)

2
− τ ′(qd2 − 1)L

2

)
=

(qd1 − 1)A

4
, (5.21)

where A = −τ`2(1−τ ′∆1)
G

− τ ′∆2L. Further, as ∆1,∆2, L all are odd integers, we

observe, by (5.20), that the integers G and τ`2 are of the same parity.

When G is even, the integer τ`2 is even. Since G divides 1− τ ′∆1, we see that

the integer τ ′ is odd. From this, it is easy to see that the integer A is odd.

This, by (5.21), gives O(φ
∆1K2

1 ) = 4.

On the other hand, when G is odd, we note that the integer τ`2 is odd. Next

we observe that the integer τ ′ is odd if the integer 1−τ ′∆1

G
is even, while the

integer τ ′ is even if the integer 1−τ ′∆1

G
is odd. That is, the integers 1−τ ′∆1

G

and τ ′ are of the opposite parity. Now as both the integers ∆2L and τ`2 are
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odd, we see that the integer A is odd. This, by (5.21), gives O(φ
∆1K2

1 ) = 4.

Next we see that φ
∆1(K1+K2)

1 = φ
(qd1−1)(A+2)

4
1 . In view of this, we observe that

the characters φ
∆1K2

1 and φ
∆1(K1+K2)

1 are inverses of each other, which implies

that O(φ
∆1K2

1 ) = O(φ
∆1(K1+K2)

1 ) = 4. Since ∆1 = qd1−1
2(q−1)

is odd, we note that

q ≡ 1 (mod 4) and d1

2
is odd. So we shall distinguish the following two cases:

(i) p ≡ 3 (mod 4), and (ii) p ≡ 1 (mod 4).

(i) When p ≡ 3 (mod 4), the integer r must be even. That is, p ≡ −1 (mod 4)

and the integer rd1

2
is even. Now by Theorem 2.2.2, we get G(φ

∆1K2

1 , χ1) =

G(φ
∆1(K1+K2)

1 , χ1) = (−1)
rd1
2
−1q

d1
2 = −q

d1
2 .

This implies that

F (x1,i) = −q
d1
2 φ∆1K2

1 (x1,i)(1 + φ∆1K1
1 (x1,i))

= −q
d1
2 e

(
πιs1,iA

2

)
(1 + (−1)s1,i) =

 −2 q
d1
2 (−1)

s1,i
2 if 2 | s1,i;

0 if 2 - s1,i.

From this and by Theorem 2.2.1, we obtain

Θi(x1,i, x2,i) =

 1 + q
d1
2 + 2(−1)

rd2+s1,i+2s2,i
2 q

d1+d2
2 if 2 | s1,i;

1− q
d1
2 if 2 - s1,i.

(ii) Let p ≡ 1 (mod 4). Since O(φ
∆1(K1+K2)

1 ) = O(φ
∆1K2

1 ) = 4 divides p−1, by The-

orem 11.4.4 of [11, p. 356], we see that there exists a multiplicative character

φ of Fp having order 4 such that

φ
∆1(K1+K2)

1 (α) = φ(NF
qd1

/Fp(α)) and φ
∆1K2

1 (α) = φ(NF
qd1

/Fp(α)) for all α ∈ Fqd1 ,

(5.22)

where NF
qd1

/Fp denotes the norm function from Fqd1 onto Fp. Further, by

Davenport-Hasse’s Theorem (see Theorem 11.5.2 of [11, p. 360]) and by using
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the fact that the integer rd1 is even, we get

G(φ
∆1(K1+K2)

1 , χ1) = −G(φ, χ′)rd1 and G(φ
∆1K2

1 , χ1) = −G(φ, χ′)rd1 ,

where χ′ is the canonical additive character of Fp. This implies that

F (x1,i) = −φ∆1K2
1 (x1,i)

(
G(φ, χ′)rd1 +G(φ, χ′)rd1(−1)s1,i

)
.

Since ξ = ξ
qd1−1
p−1

1 is a primitive element of Fp, we see, by (5.22), that

φ
∆1K2

1 (ξ1) = e
2πι(qd1−1)A

(qd1−1)4 = ιA = φ(NF
qd1

/Fp(ξ1)) = φ(ξ
qd1−1
p−1

1 ) = φ(ξ)

and

φ
∆1(K1+K2)

1 (ξ1) = e
2πι(qd1−1)(A+2)

(qd1−1)4 = ι(A+2) = φ(NF
qd1

/Fp(ξ1)) = φ(ξ
qd1−1
p−1

1 ) = φ(ξ).

As the integer rd1 is even and ξ
p−1

2 = −1, by (2.4), we get

G(φ, χ′)rd1 = φrd1(−1)G(φ, χ′)
rd1

= ι
(A+2)(p−1)rd1

2 G(φ, χ′)
rd1

= (−1)
(A+2)(p−1)rd1

4 G(φ, χ′)
rd1

= G(φ, χ′)
rd1
. (5.23)

We further assert that

F (x1,i) = −ιs1,ip
rd1
4

(
(a+ ιb)

rd1
2 + (a− ιb)

rd1
2 (−1)s1,i

)
.

To prove this assertion, we first note that φ∆1K2
1 (x1,i) = e

2πι(qd1−1)As1,i

(qd1−1)4 = ιAs1,i ,

and we shall distinguish the following two cases: A ≡ 1 (mod 4) and A ≡

3 (mod 4).

When A ≡ 1 (mod 4), we have φ(ξ) = ι. By Theorem 4.2.3 of [11, p. 163], we
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see that G(φ, χ′)rd1 = p
rd1
4 (a+ ιb)

rd1
2 . Now by (5.23), we obtain

F (x1,i) = −ιs1,ip
rd1
4

(
(a+ ιb)

rd1
2 + (a− ιb)

rd1
2 (−1)s1,i

)
.

When A ≡ 3 (mod 4), we have φ(ξ) = ι. By Theorem 4.2.3 of [11, p. 163], we

note that G(φ, χ′)rd1 = p
rd1
4 (a+ ιb)

rd1
2 . Now by (5.23), we get

F (x1,i) = −(−ι)s1,ip
rd1
4

(
(a− ιb)

rd1
2 + (a+ ιb)

rd1
2 (−1)s1,i

)
= −ιs1,ip

rd1
4

(
(a+ ιb)

rd1
2 + (a− ιb)

rd1
2 (−1)s1,i

)
,

which proves the assertion. This, by Theorem 2.2.1, implies that

Θi(x1,i, x2,i) =

 1 + q
d1
2 + 2 q

d1+2d2
4 (−1)

2(rd2+s2,i)+s1,i
2 Re (a+ ιb)

rd1
2 if 2 | s1,i;

1− q
d1
2 + 2 q

d1+2d2
4 (−1)

2(rd2+s2,i)+1+s1,i
2 Im (a+ ιb)

rd1
2 if 2 - s1,i.

In the following theorem, we determine the explicit value of WH(ci(x1, x2)) when

M1 ≥ 3 and M2 = 2.

Theorem 5.2.7. Let M1 ≥ 3, M2 = 2, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
,

where 0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2. Let S = − τ`2λ
q−1

(
1 − (qd−1)τ ′∆1

Gλ

)
−

τ ′(qd2−1)L
q−1

. Here S is an integer, the integer rd2 is even and p is an odd prime.

(a) Let S be even. Suppose that there exists a positive integer u satisfying pu ≡

−1 (mod M1). If t is the least positive integer satisfying pt ≡ −1 (mod M1),

then we have rd1 = 2tγ for some positive integer γ.
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• If M1 is even and γ(pt+1)
M1

is odd, then we have

WH(ci(x1, x2)) =



mi(q−1)
q

+
mi(q−1)

(
−1+q

d1
2 (M1−1)

)(
1+(−1)s2,i ι

rd2(p−1)2

4 q
d2
2

)
q(qd1−1)(qd2−1)

if M1 | s1,i + M1

2
;

mi(q−1)
q
− mi(q−1)

(
1+q

d1
2

)(
1+(−1)s2,i ι

rd2(p−1)2

4 q
d2
2

)
q(qd1−1)(qd2−1)

if M1 - s1,i + M1

2
.

• If either M1 is odd or γ(pt+1)
M1

is even, then we have

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)

(
1+(−1)γq

d1
2 (M1−1)

)(
1+ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i

)
q(qd1−1)(qd2−1)

)
if M1 | s1,i;

mi(q−1)
q
− mi(q−1)

(
1−(−1)γq

d1
2

)(
1+ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i

)
q(qd1−1)(qd2−1)

if M1 - s1,i.

(b) Let S be odd. Suppose that there exists a positive integer u′ satisfying pu
′ ≡

−1 (mod 2M1). If t and t′ are the least positive integers satisfying pt ≡ −1 (mod M1)

and pt
′ ≡ −1 (mod 2M1), then we have rd1 = 2tγ = 2t′γ′ for some positive

integers γ and γ′.

• If M1 is even and γγ′(pt+1)(pt
′
+1)

2M2
1

is odd, then we have

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)

(
1+q

d1
2 +(−1)

(
s1,i
M1

+s2,i

)
ι
rd2(p−1)2

4 q
d1+d2

2 M1

)
q(qd1−1)(qd2−1)

if M1 | s1,i;

mi(q−1)
q
− mi(q−1)

(
1−q

d1
2 (M1−1)

)
q(qd1−1)(qd2−1)

if M1 - s1,i & M1 | s1,i + M1

2
;

mi(q−1)
q
− mi(q−1)(1+q

d1
2 )

q(qd1−1)(qd2−1)
if M1 - s1,i & M1 - s1,i + M1

2
.

• If both the integers M1,
γ′(pt

′
+1)

2M1
are even and the integer γ(pt+1)

M1
is odd,
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then we have

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)

(
1+q

d1
2 +(−1)

(
s1,i
M1

+γ′+s2,i

)
ι
rd2(p−1)2

4 q
d1+d2

2 M1

)
q(qd1−1)(qd2−1)

if M1 | s1,i;

mi(q−1)
q
− mi(q−1)

(
1−q

d1
2 (M1−1)

)
q(qd1−1)(qd2−1)

if M1 - s1,i & M1 | s1,i + M1

2
;

mi(q−1)
q
− mi(q−1)(1+q

d1
2 )

q(qd1−1)(qd2−1)
if M1 - s1,i & M1 - s1,i + M1

2
.

• If either M1 is odd or γ(pt+1)
M1

is even and γ′(pt
′
+1)

2M1
is odd, then we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1−(−1)γ−1q

d1
2 (M1−1)+XiM1

)
q(qd1−1)(qd2−1)

if M1 | s1,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ−1q

d1
2

)
q(qd1−1)(qd2−1)

if M1 - s1,i,

where Xi = (−1)

(
s1,i
M1

+s2,i

)
ι
rd2(p−1)2

4 q
d1+d2

2 .

• If γ′(pt
′
+1)

2M1
is even and either M1 is odd or the integer γ(pt+1)

M1
is even, then

we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1−(−1)γ−1q

d1
2 (M1−1)+YiM1

)
q(qd1−1)(qd2−1)

if M1 | s1,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ−1q

d1
2

)
q(qd1−1)(qd2−1)

if M1 - s1,i,

where Yi = (−1)

(
s1,i
M1

+γ′+s2,i

)
ι
rd2(p−1)2

4 q
d1+d2

2 .

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) = 1 +G(φ
∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i)

(M1−1∑
z1=0

G(φ
∆1(K2+z1K1)

1 , χ1)

φ
∆1(K2+z1K1)
1 (x1,i)

)
−

M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i). (5.24)
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For this, since M2 = 2, we note that φ
∆2Gλ

Hλ′
2 is the quadratic character of Fqd2 and q is

odd. Since gcd(L, q−1) = 1, the integer Lmust be odd. Further, for 0 ≤ z1 ≤M1−1,

we see that

∆1(K2+z1K1) =
qd1 − 1

g1(qd − 1)λ′g2H

(
−λτ`2

(
1−(qd − 1)τ ′∆1

Gλ

)
−τ ′(qd2−1)L+z1(q−1)M2

)
.

Now as M2 = 2, for 0 ≤ z1 ≤M1 − 1, we obtain

∆1(K2 + z1K1) =
qd1 − 1

2Gλg1

(
− λτ`2

(
1− (qd − 1)τ ′∆1

Gλ

)
− τ ′(qd2 − 1)L+ 2z1(q − 1)

)
=

(qd1 − 1)(S + 2z1)

2M1

. (5.25)

Note that S is an integer. Now we shall distinguish the following two cases: (a) S

is even and (b) S is odd.

(a) Let S be even. Since O(φ∆1K1
1 ) = O(φ

qd1−1
M1

1 ) = M1, we note that φ
(qd1−1)S

2M1
1 ∈

〈φ∆1K1
1 〉. This, by (5.25), implies that {φ∆1(K2+z1K1)

1 : 0 ≤ z1 ≤ M1 − 1} =

〈φ∆1K1
1 〉. Therefore equation (5.24) can be rewritten as

Θi(x1,i, x2,i) =
(
− 1 +

M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i)
)
×
(
− 1 +

G(φ
∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i)

)
(5.26)

We next assert that the integer d2 is even in this case.

To prove this assertion, we suppose, on the contrary, that the integer d2 is odd.

This implies that both the integers d and ∆2 are odd. As M2 = 2, we see that

g2 | 2. Since d2 is odd, we must have g2 = 1. This implies that (qd−1)λ′H
Gλ

= 2,

which gives (qd−1)λ′H
q−1

= 2
(
Gλ
q−1

)
. From this, we see that 2 | (qd−1)λ′H

q−1
, which

implies that 2 | λ′H = gcd(λH,∆2GL−∆1τ`2). Further, it is easy to observe

that the integer ∆1 must be odd, which implies that the integers G and τ`2
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are of the same parity. Further, since both ∆1 and d are odd, one can see that

the integer Gλ
q−1

= gcd
(∆1(qd−1)

(q−1)
, G
)

is odd.

When G is even, both the integers q−1
λ

and τ`2 are even. Since τ ′∆1(qd−1)
Gλ

≡

1
(
mod q−1

λ

)
, the integer τ ′ must be odd, which implies that the integer S is

odd. This is a contradiction.

On the other hand, when G is odd, we note that both the integers q−1
λ
, τ`2 are

odd. Further, since τ ′∆1(qd−1)
Gλ

≡ 1
(
mod q−1

λ

)
and ∆1(qd−1)

Gλ
is odd, we observe

that τ ′ is odd if λ
q−1

(
1− τ ′∆1(qd−1)

Gλ

)
is even, while τ ′ is even if λ

q−1

(
1− τ ′∆1(qd−1)

Gλ

)
is odd. Now as both the integers (qd2−1)L

q−1
and τ`2 are odd, we see that the

integer S is odd, which is a contradiction.

This proves the assertion that the integer d2 is even. Next by Theorem 2.2.1,

we note that

G(φ
∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i) = −ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i . (5.27)

Further, for 1 ≤ z1 ≤M1 − 1, by Theorem 2.2.2, we see that

G(φ
∆1K1z1
1 , χ1) =

 (−1)z1q
d1
2 if M1 is even and pγ(pt+1)

M1
is odd;

(−1)γ−1q
d1
2 otherwise.

(5.28)

When M1 is even and pγ(pt+1)
M1

is odd, we see, by (5.28), that

M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i) = q
d1
2

M1−1∑
z1=1

(−1)z1φ∆1K1z1
1 (x1,i)

= q
d1
2

M1−1∑
z1

eπιz1e
2πιz1s1,i

M1

= q
rd1
2

M1−1∑
z1=1

e
2πιz1
M1

(s1,i+M1
2 )
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=

q
d1
2 (M1 − 1) if M1 | s1,i + M1

2
;

−q
d1
2 if M1 - s1,i + M1

2
.

This, by (5.26) and (5.27), implies that

Θi(x1,i, x2,i) =


(−1 + q

d1
2 (M1 − 1))(−1− ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i)

if M1 | s1,i + M1

2
;

(−1− q
d1
2 )(−1− ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i) if M1 - s1,i + M1

2
.

On the other hand, when either M1 is odd or γ(pt+1)
M1

is even, we see, by (5.28),

that

M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i) = (−1)γ−1q
d1
2

M1−1∑
z1=1

φ∆1K1z1
1 (x1,i)

= (−1)γ−1q
d1
2

M1−1∑
z1=1

e
2πιz1s1,i

M1

=

(−1)γ−1q
d1
2 (M1 − 1) if M1 | s1,i;

−(−1)γ−1q
d1
2 if M1 - s1,i.

This, by (5.26) and (5.27), further implies that

Θi(x1,i, x2,i) =


(−1 + (−1)γ−1q

d1
2 (M1 − 1))(−1− ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i)

if M1 | s1,i;

(−1− (−1)γ−1q
d1
2 )(−1− ι

rd2(p−1)2

4 q
d2
2 (−1)s2,i) if M1 - s1,i.

(b) Next let S be odd. Here as O(φ
qd1−1
2M1

1 ) = 2M1, we note that φ
(qd1−1)S

2M1
1 ∈ 〈φ

qd1−1
2M1

1 〉.

Further, by (5.25), one can easily observe that
{
φ

∆1(K2+z1K1)
1 : 0 ≤ z1 ≤

M1− 1
}

=
{
φ

(qd1−1)(1+2z1)
2M1

1 : 0 ≤ z1 ≤M1− 1
}
. In view of this, equation (5.24)
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can be rewritten as

Θi(x1,i, x2,i) = 1−
M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i) +G(φ
∆2Gλ

Hλ′
2 , χ2)φ

∆2Gλ

Hλ′
2 (x2,i)

×
(M1−1∑

z1=0

G(φ
(qd1−1)(1+2z1)

2M1
1 , χ1)φ

(qd1−1)(1+2z1)
2M1

1 (x1,i)
)
. (5.29)

Here we assert that the integer rd2 is even.

To prove this assertion, we suppose, on the contrary, that rd2 is odd. Since

d2 is odd, the integer d is odd. Now working in a similar manner as in part

(a), we see that the integer ∆1 is odd. Further, as the integer rd1 is even, we

note that g1 is even. Now since pt
′ ≡ −1 (mod 2M1) and g1 | M1, we observe

that p ≡ 3 (mod 4). Further, as rd1 = 2t′γ′ and 2M1 | pt
′
+ 1, we see that the

integer qd1−1
2M1

is even. On the other hand, let s be the positive integer such

that 2s || g1, i.e., 2s | g1 but 2s+1 - g1. Since both r, d are odd, we note that

2 || q − 1 and 2 || qd − 1. Further, as ∆1 is odd, one can easily observe that

2s+1 || qd1 − 1 and the integer Gλ
q−1

= gcd(∆1(qd−1)
(q−1)

, G) is odd. From this, it

follows that the integer qd1−1
2M1

is odd, which is a contradiction.

This proves the assertion that the integer rd2 is even. Further, for 1 ≤ k ≤

2M1 − 1, by Theorem 2.2.2, we see that

G(φ
(qd1−1)k

2M1
1 , χ1) =

 (−1)kq
d1
2 if pγ′(pt

′
+1)

2M1
is odd;

(−1)γ
′−1q

d1
2 otherwise.

(5.30)

Now on substituting the values of Gauss sums from (5.27), (5.28) and (5.30)

in equation (5.29) and after an easy computation, we obtain the desired values

of the sum Θi(x1,i, x2,i) in the respective cases.

Next we proceed to determine the explicit value of the Hamming weightWH(ci(x1,
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x2)) when M2 ≥ 3. From now on, throughout this section, suppose that there exists

a positive integer u2 satisfying pu2 ≡ −1 (mod M2). Further, let t2 be the least

positive integer satisfying pt2 ≡ −1 (mod M2). Then by Theorem 2.2.2, we have

rd2 = 2t2γ2 for some positive integer γ2, and for 1 ≤ z2 ≤M2 − 1, we have

G(φ
∆2Gλz2
Hλ′

2 , χ2) =

 (−1)z2q
d2
2 if M2 is even and pγ2(pt2+1)

M2
is odd;

(−1)γ2−1q
d2
2 otherwise.

(5.31)

In the following theorem, we determine the explicit value of WH(ci(x1, x2)) when

M1 = 1 and M2 ≥ 3.

Theorem 5.2.8. Let M1 = 1, M2 ≥ 3, B = − λτ`2
Gλg2

(
1− (qd−1)τ ′∆1

Gλ

)
− τ ′(qd2−1)L

g2Gλ
, x1,i =

ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
, where 0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2.

Further, let us define the integers T = gcd
(
B, (qd−1)λ′H

Gλ

)
and N = (qd−1)λ′H

GλT
, (note

that N |M2).

(a) Let N = 1.

• If Tg2 is even and pγ2(pt2+1)
Tg2

is odd, then we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1−q

d2
2 (Tg2−1)

)
q(qd1−1)(qd2−1)

if Tg2 | s2,i + Tg2

2
;

mi(q−1)
q
− mi(q−1)(1+q

d2
2 )

q(qd1−1)(qd2−1)
if Tg2 - s2,i + Tg2

2
.

• If either Tg2 is odd or pγ2(pt2+1)
Tg2

is even, then we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1−(−1)γ2−1q

d2
2 (Tg2−1)

)
q(qd1−1)(qd2−1)

if Tg2 | s2,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2−1q

d2
2

)
q(qd1−1)(qd2−1)

if Tg2 - s2,i.

(b) When N = 2, the integer rd1 is even and p is an odd prime.
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• If γ2(pt2+1)
2Tg2

is odd, then we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1−q

d2
2 (Tg2−1)+UiTg2

)
q(qd1−1)(qd2−1)

if Tg2 | s2,i;

mi(q−1)
q
− mi(q−1)(1+q

d2
2 )

q(qd1−1)(qd2−1)
if Tg2 - s2,i,

where Ui = ι
rd1(p−1)2

4 (−1)

(
s2,i
Tg2

+s1,i

)
q
d1+d2

2 .

• If γ2(pt2+1)
2Tg2

is even, then we have

WH(ci(x1, x2)) =


mi(q−1)

q
− mi(q−1)

(
1+(−1)γ2q

d2
2

(
Tg2−1+ViTg2

))
q(qd1−1)(qd2−1)

if Tg2 | s2,i;

mi(q−1)
q
− mi(q−1)

(
1−(−1)γ2q

d2
2

)
q(qd1−1)(qd2−1)

if Tg2 - s2,i,

where Vi = ι
rd1(p−1)2

4 q
d1
2 (−1)

(
s2,i
Tg2

+s1,i

)
.

(c) Let N ≥ 3. There exists a least positive integer s′ satisfying ps
′ ≡ −1 (mod N).

Here we have rd1 = 2s′ν ′ for some positive integer ν ′.

• If either the integer TNg2 is odd or both the integers TNg2,
pγ2(pt2+1)
TNg2

are

even and N is odd or both the integers pν′(ps
′
+1)

N
, pγ2(pt2+1)

TNg2
are of the same

parity and N is even, then we have

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)(1−(−1)γ2q

d2
2 )

q(qd1−1)(qd2−1)
if Tg2 - s2,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2q

d2
2 (Tg2−1+(−1)ν

′
Tg2(N−1)q

d1
2 )
)

q(qd1−1)(qd2−1)

if Tg2 | s2,i & N | s2,i
Tg2

+
Bs1,i
T

;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2q

d2
2 (Tg2−1−(−1)ν

′
Tg2q

d1
2 )
)

q(qd1−1)(qd2−1)

if Tg2 | s2,i & N - s2,i
Tg2

+
Bs1,i
T
.

• If TNg2 is even, pγ2(pt2+1)
TNg2

is odd and either N is odd or pν′(ps
′
+1)

N
is even,
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then we have

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)(1+q

d2
2 )

q(qd1−1)(qd2−1)
if Tg2 - M2+2s2,i

2
;

mi(q−1)
q
− mi(q−1)

(
1−q

d2
2 (Tg2(1+(N−1)(−1)ν

′
q
d1
2 )−1)

)
q(qd1−1)(qd2−1)

if Tg2 | M2+2s2,i
2

& N | M2+2s2,i
2Tg2

+
Bs1,i
T

;

mi(q−1)
q
− mi(q−1)

(
1−q

d2
2 (Tg2(1−q

d1
2 (−1)ν

′
)−1)
)

q(qd1−1)(qd2−1)

if Tg2 | M2+2s2,i
2

& N - M2+2s2,i
2Tg2

+
Bs1,i
T
.

• If pν′(ps
′
+1)

N
is odd and both N, pγ2(pt2+1)

TNg2
are even, then we have

WH(ci(x1, x2))=



mi(q−1)
q
− mi(q−1)

(
1−(−1)γ2q

d2
2

)
q(qd1−1)(qd2−1)

if Tg2 - s2,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2q

d2
2 (Tg2−1−q

d1
2 (N−1)Tg2)

)
q(qd1−1)(qd2−1)

if Tg2 | s2,i & N | s2,i
Tg2

+
Bs1,i
T

+ N
2

;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2q

d2
2 (Tg2−1+q

d1
2 Tg2)

)
q(qd1−1)(qd2−1)

if Tg2 | s2,i & N - s2,i
Tg2

+
Bs1,i
T

+ N
2
.

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) = 1 +

M2−1∑
z2=1

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i)G(φ
∆1K2z2
1 , χ1)φ∆1K2z2

1 (x1,i).

(5.32)

For this, we note that as M1 = 1, we must have g1 = 1 and Gλ = q − 1. Further, it

is easy to see that

∆1K2 =
(qd1 − 1)Gλ

(qd − 1)λ′g2H

(
−λτ`2

Gλ

(
1−(qd − 1)τ ′∆1

Gλ

)
−τ
′(qd2 − 1)L

Gλ

)
=

(qd1 − 1)GλB

(qd − 1)λ′H
.

(5.33)

Note that B is an integer. Next by (5.33), we see that O(φ∆1K2
1 ) = (qd−1)λ′H

GλT
= N.

Now we shall distinguish the following three cases: (a) N = 1, (b) N = 2, and (c)
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N ≥ 3.

(a) Let N = 1. Here by (2.4) and (5.32), we note that

Θi(x1,i, x2,i) = 1−
Tg2−1∑
z2=1

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i).

When Tg2 is even and pγ2(pt2+1)
Tg2

is odd, we see, by (5.31), that

Θi(x1,i, x2,i) = 1− q
d2
2

Tg2−1∑
z2=1

(−1)z2φ
∆2Gλz2
Hλ′

2 (x2,i)

= 1− q
d2
2

Tg2−1∑
z2=1

eπιz2e
2πιz2s2,i
Tg2

= 1− q
d2
2

Tg2−1∑
z2=1

e
2πιz2
Tg2

(
s2,i+

Tg2
2

)

=

1− q
d2
2 (Tg2 − 1) if Tg2 | s2,i + Tg2

2
;

1 + q
d2
2 if Tg2 - s2,i + Tg2

2
.

On the other hand, when either Tg2 is odd or pγ2(pt2+1)
Tg2

is even, we see, by

(5.31), that

Θi(x1,i, x2,i) = 1− (−1)γ2−1q
d2
2

Tg2−1∑
z2=1

φ
∆2Gλz2
Hλ′

2 (x2,i)

=

 1− (−1)γ2−1q
d2
2 (Tg2 − 1) if Tg2 | s2,i;

1 + (−1)γ2−1q
d2
2 if Tg2 - s2,i.

(b) Let N = 2. Here we note that φ∆1K2
1 is the quadratic character of Fqd1 and q is

odd. Further, each integer z2 satisfying 1 ≤ z2 < M2 = 2Tg2 can be uniquely

expressed as z2 = 2Q+ R, where 0 ≤ Q < Tg2 when R = 1 and 0 < Q < Tg2
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when R = 0. Hence equation (5.32) can be rewritten as

Θi(x1,i, x2,i) =1−
Tg2−1∑
Q=1

G(φ
∆2Gλ2Q

Hλ′
2 , χ2)φ

∆2Gλ2Q

Hλ′
2 (x2,i) +G(φ

∆1K2

1 , χ1)φ∆1K2
1 (x1,i)

×
( Tg2−1∑

Q=0

G(φ
∆2Gλ(2Q+1)

Hλ′
2 , χ2)φ

∆2Gλ(2Q+1)

Hλ′
2 (x2,i)

)
. (5.34)

Now we assert that the integer rd1 is even.

To prove this assertion, we suppose, on the contrary, that the integer rd1 is

odd. This implies that both the integers d and ∆1 are odd. Since rd2 is

even, we note that the integer d2 is even. Further, as N = (qd−1)λ′H
GλT

= 2

and Gλ = q − 1, we observe that 2 | λ′H = gcd(λH,∆2GL − ∆1τ`2
g2

). We

note that gcd(∆2,
`2
g2

) = 1. Further, it is easy to show that the integer ∆2 is

odd, which implies that the integer g2 is even. Next since rd2 = 2t2γ2 and

pt2 ≡ −1 (mod 2Tg2), we see that the integer qd2−1
2Tg2

is even. On the other

hand, as g2 is even, there exists a positive integer s such that 2s || g2. Further,

as pt2 ≡ −1 (mod 2Tg2), we note that p ≡ 3 (mod 4). Since both r, d are odd,

we see that 2 || q − 1 and 2 || qd − 1. Now as ∆2 = qd2−1
(qd−1)g2

is odd, it is easy

to observe that 2s+1 || qd2 − 1. Since λ′H | Gλ = q − 1, we note that 2 || λ′H.

From this, it follows that the integer T = (qd−1)λ′H
(q−1)2

is odd, which implies that

the integer qd2−1
2Tg2

is odd. This is a contradiction.

This proves the assertion that the integer rd1 is even.

(i) Now when γ2(pt2+1)
2Tg2

is odd, by (5.31), we see that

Tg2−1∑
Q=0

G(φ
∆2Gλ(2Q+1)

Hλ′
2 , χ2)φ

∆2Gλ(2Q+1)

Hλ′
2 (x2,i) = −q

d2
2

Tg2−1∑
Q=0

φ
∆2Gλ(2Q+1)

Hλ′
2 (x2,i)

= −q
d2
2

Tg2−1∑
Q=0

e
πιs2,i
Tg2

+
2πιs2,iQ

Tg2
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=

−Tg2q
d2
2 (−1)

s2,i
Tg2 if Tg2 | s2,i;

0 if Tg2 - s2,i

and

Tg2−1∑
Q=1

G(φ
∆2Gλ2Q

Hλ′
2 , χ2)φ

∆2Gλ2Q

Hλ′
2 (x2,i) = q

rd2
2

Tg2−1∑
Q=1

φ
∆2Gλ2Q

Hλ′
2 (x2,i)

=

 q
d2
2 (Tg2 − 1) if Tg2 | s2,i;

−q
d2
2 if Tg2 - s2,i.

This, by (5.34) and by Theorem 2.2.1, implies that

Θi(x1,i, x2,i)=


1− q

d2
2 (Tg2 − 1) + ι

rd1(p−1)2

4 (−1)

(
s2,i
Tg2

+s1,i

)
q
d1+d2

2 Tg2

if Tg2 | s2,i;

1 + q
d2
2 if Tg2 - s2,i.

(ii) When γ2(pt2+1)
2Tg2

is even, working in a similar manner as in part (i), we

obtain

Θi(x1,i, x2,i)=


1− (−1)γ2−1q

d2
2

(
Tg2 − 1 + ι

rd1(p−1)2

4 q
d1
2 (−1)

(
s2,i
Tg2

+s1,i

)
Tg2

)
if Tg2 | s2,i;

1 + (−1)γ2−1q
d2
2 if Tg2 - s2,i.

(c) Let N ≥ 3. Here for 1 ≤ u ≤ N − 1, we see, by Theorem 2.2.2, that

G(φ
∆1K2u

1 , χ1) =

 (−1)uq
d1
2 if N is even and pν′(ps

′
+1)

N
is odd;

(−1)ν
′−1q

d1
2 otherwise.

(5.35)

In this case, it is easy to see that each integer z1 satisfying 1 ≤ z1 < M2 =

TNg2 can be uniquely written as z1 = NQ + R, where 0 ≤ Q < Tg2 when

1 ≤ R < N and 1 ≤ Q < Tg2 when R = 0. Therefore equation (5.32) can be
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rewritten as

Θi(x1,i, x2,i) = 1−
Tg2−1∑
Q=1

G(φ
∆2GλNQ

Hλ′
2 , χ2)φ

∆2GλNQ

Hλ′
2 (x2,i) +

Tg2−1∑
Q=0

N−1∑
R=1

(
G(φ

∆1K2R

1 , χ1)

φ∆1K2R
1 (x1,i)G(φ

∆2Gλ(NQ+R)

Hλ′
2 , χ2)φ

∆2Gλ(NQ+R)

Hλ′
2 (x2,i)

)
. (5.36)

Here we shall consider the case when N is even and both the integers pγ2(pt2+1)
TNg2

,

pν′(ps
′
+1)

N
are odd. In this case, by (5.31), (5.35) and (5.36), we obtain

Θi(x1,i, x2,i) = 1− q
d2
2 U(x2,i) + q

d1+d2
2 V (x1,i, x2,i), (5.37)

where

U(x2,i) =

Tg2−1∑
Q=1

φ
∆2GλNQ

Hλ′
2 (x2,i)

and

V (x1,i, x2,i) =
(

1 + U(x2,i)
)(N−1∑

R=1

φ
∆2GλR

Hλ′
2 (x2,i)φ

∆1K2R
1 (x1,i)

)
.

Next we observe that

U(x2,i) =

Tg2−1∑
Q=1

e
2πι(qd2−1)GλNQs2,i

(qd−1)(qd2−1)g2Hλ
′ =

Tg2−1∑
Q=1

e
2πιQs2,i
Tg2 =

 Tg2 − 1 if Tg2 | s2,i;

−1 otherwise.

and

N−1∑
R=1

φ
∆2GλR

Hλ′
2 (x2,i)φ

∆1K2R
1 (x1,i) =

N−1∑
R=1

e
2πιRs2,i
TNg2

+
2πιBRs1,i

TN

=

 N − 1 if Tg2 | s2,i and N | s2,i
Tg2

+
Bs1,i
T

;

−1 if Tg2 | s2,i and N - s2,i
Tg2

+
Bs1,i
T
.



104 Hamming weights in multi-twisted codes over finite fields

From this, it follows that

V (x1,i, x2,i) =


Tg2(N − 1) if Tg2 | s2,i and N | s2,i

Tg2
+

Bs1,i
T

;

−Tg2 if Tg2 | s2,i and N - s2,i
Tg2

+
Bs1,i
T

;

0 if Tg2 - s2,i.

This, by (5.37), further implies that

Θi(x1,i, x2,i)=


1 + q

d2
2 if Tg2 - s2,i;

1− q
d2
2 (Tg2 − 1− Tg2q

d1
2 (N − 1)) if Tg2 | s2,i & N | s2,i

Tg2
+

Bs1,i
T

;

1− q
d2
2 (Tg2 − 1 + Tg2q

d1
2 ) if Tg2 | s2,i & N - s2,i

Tg2
+

Bs1,i
T

when N is even and both the integers pγ2(pt2+1)
TNg2

, pν
′(ps
′
+1)

N
are odd. Working in

a similar manner as above, one can also determine explicit values of the sum

Θi(x1,i, x2,i) in the remaining cases.

In the following theorem, we determine the Hamming weightWH(ci(x1, x2)) when

M1 = 2 and M2 ≥ 3 with either O(φ∆1K2
1 ) = 1 or O(φ∆1K2

1 ) = 2.

Theorem 5.2.9. Let M1 = 2, M2 ≥ 3, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
,

where 0 ≤ s1,i ≤ qd1 − 2 and 0 ≤ s2,i ≤ qd2 − 2. Suppose that either O(φ∆1K2
1 ) = 1

or O(φ∆1K2
1 ) = 2. Then p is an odd prime, the integer rd1 is even and the following

hold.

• If M2 is even and γ2(pt2+1)
M2

is odd, then we have

WH(ci(x1, x2)) =



mi(q−1)
q

+
mi(q−1)

(
−1+q

d2
2 (M2−1)

)(
1+ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
q(qd1−1)(qd2−1)

if M2 | s2,i + M2

2
;

mi(q−1)
q
− mi(q−1)(1+q

d2
2 )
(

1+ι
rd1(p−1)2

4 (−1)s1,iq
d1
2

)
q(qd1−1)(qd2−1)

if M2 - s2,i + M2

2
.
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• If either M2 is odd or γ2(pt2+1)
M2

is even, then we have

WH(ci(x1, x2)) =



mi(q−1)
q

+
mi(q−1)

(
−1+(−1)γ2−1q

d2
2 (M2−1)

)(
1+ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
q(qd1−1)(qd2−1)

if M2 | s2,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ2−1q

d2
2

)(
1+ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
q(qd1−1)(qd2−1)

if M2 - s2,i.

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) =

M2−1∑
z2=0

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i)
(
G(φ

∆1z2K2

1 , χ1)φ∆1z2K2
1 (x1,i)

+ G(φ
∆1(z2K2+K1)

1 , χ1)φ
∆1(z2K2+K1)
1 (x1,i)

)
(5.38)

Since O(φ∆1K1
1 ) = M1 = 2, we note that φ∆1K1

1 is a quadratic character of Fqd1 , q is

odd and the integer d1 is even. Further, by Theorem 2.2.1, equation (5.38) can be

rewritten as

Θi(x1,i, x2,i) =
(
−1+

M2−1∑
z2=1

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i)
)
×
(
−1−ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
.

(5.39)

Next when M2 is even and pγ2(pt2+1)
M2

is odd, by (5.31), we see that

M2−1∑
z2=1

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i) = q
d2
2

M2−1∑
z2=1

(−1)z2φ
∆2Gλz2
Hλ′

2 (x2,i)

= q
d2
2

M2−1∑
z2=1

e
2πιz2
M2

(
s2,i+

M2
2

)

=

 q
d2
2 (M2 − 1) if M2 | s2,i + M2

2
;

−q
d2
2 if M2 - s2,i + M2

2
.
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This, by (5.39), implies that

Θi(x1,i, x2,i) =

 −(−1 + q
d2
2 (M2 − 1))

(
1 + ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
if M2 | s2,i + M2

2
;

(1 + q
d2
2 )
(
1 + ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
if M2 - s2,i + M2

2
.

On the other hand, when either M2 is odd or pγ2(pt2+1)
M2

is even, we see, by (5.31),

that

M2−1∑
z2=1

G(φ
∆2Gλz2
Hλ′

2 , χ2)φ
∆2Gλz2
Hλ′

2 (x2,i) = (−1)γ2−1q
d2
2

M2−1∑
z2=1

e
2πιz2s2,i

M2

=

 (−1)γ2−1q
d2
2 (M2 − 1) if M2 | s2,i;

−(−1)γ2−1q
d2
2 if M2 - s2,i.

This, by (5.39), implies that

Θi(x1,i, x2,i) =

−(−1 + (−1)γ2−1q
d2
2 (M2 − 1))

(
1 + ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
if M2 | s2,i;

(1 + (−1)γ2−1q
d2
2 )
(
1 + ι

rd1(p−1)2

4 (−1)s1,iq
d1
2

)
if M2 - s2,i.

Now we proceed to determine the Hamming weight WH(ci(δ1, δ2) when both

M1,M2 ≥ 3. To do this, we see, by Lemma 5.2.3, that we need to determine explicit

values of the Gauss sums G(φ∆1j
1 , χ1), where 1 ≤ j < (qd − 1)g1. Towards this,

we note that O(φ∆1
1 ) = (qd − 1)g1 ≥ 3. Now by Theorem 2.2.2, we see that the

explicit values of the Gauss sums G(φ∆1j
1 , χ1), 1 ≤ j < (qd − 1)g1, are known in

the semi-primitive case, i.e., when there exists a least positive integer t1 satisfying

pt1 ≡ −1 (mod (qd−1)g1). In the semi-primitive case, by Theorem 2.2.2, we see that

the integer rd1 must be even. We also recall that there exists a least positive integer

t2 satisfying pt2 ≡ −1 (mod M2), which gives rd2 = 2t2γ2 for some positive integer γ2.

That is, the integer rd2 is also even. This implies that the integer rd = gcd(rd1, rd2)

is even. As qd − 1 = 1 or 2 implies that rd = 1, we must have qd − 1 ≥ 3. Since we
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have pt1 ≡ −1 (mod (qd−1)g1), there exists a least positive integer f satisfying pf ≡

−1 (mod qd−1). This, by Theorem 11.6.2 of [11], implies that rd = 2f. This further

implies that qd−1 = prd−1 = (pf +1)(pf−1), which gives
(
pf+1
qd−1

)
(pf−1) = 1. From

this, we get pf−1 = 1, which holds if and only if f = 1, p = 2 and rd = 2. Therefore

in the semi-primitive case, we must have q = 2 or 4. In the following theorem, we

determine the Hamming weight WH(ci(x1, x2)) when M1 ≥ 3 and M2 ≥ 3 in the

semi-primitive case.

Theorem 5.2.10. Let M1 ≥ 3, M2 ≥ 3, x1,i = ξ
s1,i
1 ∈ F∗

qd1
and x2,i = ξ

s2,i
2 ∈ F∗

qd2
,

where 0 ≤ s1,i ≤ qd1−2 and 0 ≤ s2,i ≤ qd2−2. Suppose that there exist least positive

integers t1 and t2 satisfying pt1 ≡ −1 (mod (qd − 1)g1) and pt2 ≡ −1 (mod M2).

Then we have q = 2 or 4. Furthermore, we have rd1 = 2t1γ1, rd2 = 2t2γ2 for some

positive integers γ1, γ2, and

WH(ci(x1, x2)) =



mi(q−1)
q
− mi(q−1)

(
1−(−1)γ1q

d1
2

)
q(qd1−1)(qd2−1)

if M1 - s1,i;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ1q

d1
2

(
(M1−1)+(−1)γ2q

d2
2 M1(M2−1)

))
q(qd1−1)(qd2−1)

if M1 | s1,i & M2 | s2,i +
λ′g2HK2s1,i

Gλg1
;

mi(q−1)
q
− mi(q−1)

(
1+(−1)γ1q

d1
2

(
(M1−1)−(−1)γ2q

d2
2 M1

))
q(qd1−1)(qd2−1)

if M1 | s1,i & M2 - s2,i +
λ′g2HK2s1,i

Gλg1
.

Proof. To determine the Hamming weight WH(ci(x1, x2)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Θi(x1,i, x2,i) = 1−
M1−1∑
z1=1

G(φ
∆1K1z1
1 , χ1)φ∆1K1z1

1 (x1,i) +

M2−1∑
z2=1

M1−1∑
z1=0

(
G(φ

∆2Gλz2
Hλ′

2 , χ2)

φ
∆2Gλz2
Hλ′

2 (x2,i)G(φ
∆1(K2z2+K1z1)

1 , χ1)φ
∆1(K2z2+K1z1)
1 (x1,i)

)
. (5.40)
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Further, for 1 ≤ v ≤ (qd − 1)g1 − 1, by Theorem 2.2.2, we see that

G(φ
∆1v

1 , χ1) = (−1)γ1−1q
d1
2 .

From this and by (5.31), equation (5.40) can be rewritten as

Θi(x1,i, x2,i) = 1−
M1−1∑
z1=1

(−1)γ1−1q
d1
2 φ∆1K1z1

1 (x1,i)

+

M2−1∑
z2=1

M1−1∑
z1=0

(−1)γ2−1q
d2
2 φ

∆2Gλz2
Hλ′

2 (x2,i)(−1)γ1−1q
d1
2 φ

∆1(K2z2+K1z1)
1 (x1,i)

= 1− q
d1
2 (−1)γ1−1X(x1,i) + (−1)γ1+γ2q

(d1+d2)
2 Y (x1,i, x2,i), (5.41)

where

X(x1,i) =

M1−1∑
z1=1

φ∆1K1z1
1 (x1,i)

and

Y (x1,i, x2,i) =
(

1 +X(x1,i)
)(M2−1∑

z2=1

φ
∆2Gλz2
Hλ′

2 (x2,i)φ
∆1K2z2
1 (x1,i)

)
.

Next we see that

λ′g2HK2 = λ′g2H
(
− λτ`2

λ′g2H

(
1− (qd − 1)τ ′∆1

Gλ

)
− (q − 1)τ ′∆2GL

Gλ′H

)
= −τ`2λ

(
1− (qd − 1)τ ′∆1

Gλ

)
− τ ′(qd2 − 1)L.

Further, since q−1
λ

divides 1− (qd−1)τ ′∆1

Gλ
and q−1 divides qd2−1, we note that λ′g2HK2

q−1

is an integer. Next we observe that

X(x1,i) =

M1−1∑
z1=1

φ∆1K1z1
1 (x1,i) =

M1−1∑
z1=1

e
2πιs1,iz1

M1 =

 M1 − 1 if M1 | s1,i;

−1 otherwise.
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and

M2−1∑
z2=1

φ
∆2Gλz2
Hλ′

2 (x2,i)φ
∆1K2z2
1 (x1,i) =

M2−1∑
z2=1

e
2πιz2s2,i

M2
+

2πι(qd1−1)K2z2s1,i

(qd−1)(qd1−1)g1

=

M2−1∑
z2=1

e
2πιz2
M2

(
s2,i+

λ′g2HK2s1,i
Gλg1

)

=

M2 − 1 if M1 | s1,i and M2 | s2,i +
λ′g2HK2s1,i

Gλg1
;

−1 if M1 | s1,i and M2 - s2,i +
λ′g2HK2s1,i

Gλg1
.

From this, it follows that

Y (x1,i, x2,i) =


M1(M2 − 1) if M1 | s1,i and M2 | s2,i +

λ′g2HK2s1,i
Gλg1

;

−M1 if M1 | s1,i and M2 - s2,i +
λ′g2HK2s1,i

Gλg1
;

0 if M1 - s1,i.

Now on substituting the values of X(x1,i) and Y (x1,i, x2,i) in equation (5.41), we

obtain

Θi(x1,i, x2,i) =



1− (−1)γ1q
d1
2 if M1 - s1,i;

1 + (−1)γ1q
d1
2 (M1 − 1) + (−1)γ1+γ2q

(d1+d2)
2 M1(M2 − 1)

if M1 | s1,i and M2 | s2,i +
λ′g2HK2s1,i

Gλg1
;

1 + (−1)γ1q
d1
2 (M1 − 1)− (−1)γ1+γ2q

(d1+d2)
2 M1

if M1 | s1,i and M2 - s2,i +
λ′g2HK2s1,i

Gλg1
.

Remark 5.2.11. By applying Theorems 5.2.2-5.2.10 and by (5.4), one can deter-

mine all non-zero Hamming weights in some Λ-MT codes with at most two non-zero

constituents, which we demonstrate in the following section by computing Hamming

weight distributions of several classes of MT codes.



110 Hamming weights in multi-twisted codes over finite fields

5.3 Some applications

In this section, we will explicitly determine Hamming weight distributions of

some classes of MT codes with at most two non-zero constituents. Using these

results, we further identify two classes of optimal equidistant linear codes and several

other classes of minimal linear codes within these classes of MT codes. Recall that

the support of a vector v = (v0, v1, · · · , vn−1) ∈ Fnq , denoted by supp(v), is defined

as the set supp(v) = {i : 0 ≤ i ≤ n− 1, vi 6= 0}. Further, a vector u ∈ Fnq is said to

cover another vector v ∈ Fnq if supp(v) ⊆ supp(u). A codeword c ∈ C is said to be

minimal if c covers only the codewords ac ∈ C for all a ∈ Fq, and c does not cover

any other codeword of the code C. The linear code C is said to be minimal if every

codeword of C is minimal.

Next we first state a sufficient condition for a linear code over a finite field to be

minimal, which was derived by Ashikhmin and Barg [1].

Lemma 5.3.1. [1] A linear code C over Fq is minimal if it satisfies

Wmin

Wmax
>
q − 1

q
, (5.42)

where Wmin and Wmax denote the minimum and the maximum among the Hamming

weights of non-zero codewords of the code C, respectively.

In view of the above lemma, we see that all equidistant linear codes over finite

fields satisfy the inequality (5.42), and hence are minimal linear codes. It has been

shown that minimal linear codes are useful in constructing secret sharing schemes

with nice access structures [19, 23, 54, 60, 80] and in secure two-party computation

[2, 22]. In addition, these codes can be effectively decoded with a minimum distance

decoding algorithm [1].

Throughout this section, let C be a Λ-MT code of length n over Fq with the

constituents C1 = 〈F1〉 ⊆ G1, C2 = 〈F2〉 ⊆ G2 and C3 = · · · = Cρ = {0}, where

F1 = (F1,1, F1,2, · · · , F1,`) ∈ G1 and F2 = (F2,1, F2,2, · · · , F2,`) ∈ G2. Further, let us
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define the sets Z1 = {1 ≤ i ≤ ` : F1,i 6= 0}, Z2 = {1 ≤ i ≤ ` : F2,i 6= 0}, Z3 =

{1 ≤ i ≤ ` : F1,i 6= 0 and F2,i = 0}, Z4 = {1 ≤ i ≤ ` : F1,i = 0 and F2,i 6= 0}

and Z5 = {1 ≤ i ≤ ` : F1,i 6= 0 and F2,i 6= 0}. We also recall that M1 = Gλg1

q−1
,

M2 = (qd−1)λ′g2H
Gλ

, gw = gcd
(
qdw−1
qd−1

, `w
)

and τw = gcd
(
qdw−1
q−1

, `w
)

for 1 ≤ w ≤ 2.

In the following result, we state the Griesmer and Plotkin bounds for a linear

code over Fq.

Theorem 5.3.2. [44] Let C be a linear code of length n, dimension k and Hamming

distance d over Fq.

(a) (Griesmer bound) The parameters [n, k, d] of the code C satisfy n ≥
k−1∑
j=0

⌈
d
qj

⌉
.

(b) (Plotkin bound) The parameters [n, k, d] of the code C satisfy qk ≤
⌊

qd
qd−n(q−1)

⌋
provided qd > n(q − 1).

In the following theorem, we obtain a class of equidistant optimal Λ-MT codes

that attain Griesmer and Plotkin bounds.

Theorem 5.3.3. If τ1 = 1, F1 6= 0 and F2 = 0, then the Λ-MT code C is an

equidistant code of length n over Fq with the only non-zero Hamming weight as∑
i∈Z1

mi(q−1)qd1−1

qd1−1
. In particular, if Z1 = {1, 2, · · · , `}, then the code C has parameters[

n, d1,
n(q−1)qd1−1

qd1−1

]
and is an optimal code that attains both the Griesmer and Plotkin

bounds.

Proof. Since τ1 = 1, by (5.4) and by applying Theorem 5.2.2(a), we see that each

non-zero codeword of C has Hamming weight
∑
i∈Z1

mi(q−1)qd1−1

qd1−1
. Further, for each i ∈

Z1, since ξ`1mi1 = δ−mi1 = λ−1
i , we see that ξ

`1mi(q−1)
1 = 1, which implies that qd1−1

q−1
|

mi. Now when Z1 = {1, 2, · · · , `}, one can easily see that the code C has parameters[
n, d1,

n(q−1)qd1−1

qd1−1

]
and attains both the Griesmer and Plotkin bounds.

From this point on, in Tables 5.1-5.9, we assume that A0 = 1 and Aj = 0 for all

other non-zero Hamming weights j’s. In the following theorem, we obtain another

class of equidistant optimal Λ-MT codes, which attain Griesmer and Plotkin bounds.
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Hamming weight j Frequency Aj∑
i∈S1

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈S2

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈S1

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈S2

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2

Table 5.1: Hamming weight distribution of the code C considered in Theorem 5.3.4

Theorem 5.3.4. Let F1 6= 0 and F2 = 0. If S1 = {i ∈ Z1 : F1,i is a square in Fqd1},

S2 = {i ∈ Z1 : F1,i is a non-square in Fqd1} and τ1 = 2, then the Λ-MT code C

has at most two non-zero Hamming weights and its Hamming weight distribution

is given by Table 5.1. In particular, let Z1 = {1, 2, · · · , `} and m1 = m2 = · · · =

m` so that n = m1`. Now if ` is even and |S1| = |S2| = `
2
, then the code C

has parameters
[
n, d1,

n(q−1)qd1−1

qd1−1

]
and is an optimal equidistant code that attains

Griesmer and Plotkin bounds.

Proof. By applying Theorem 5.2.2(b) and working in a similar manner as in Theorem

5.3.3, the desired result follows immediately.

In the following theorems, we identify some more classes of few weight Λ-MT

codes.

Theorem 5.3.5. Let τ1 ≥ 3, F1 = (ε1,1, ε1,2, · · · , ε1,`) and F2 = 0. Suppose that there

exists a least positive integer s1 satisfying ps1 ≡ −1 (mod τ1). Then we have rd1 =

2ν1s1 for some positive integer ν1. The Λ-MT code C is a 2-weight code of length n

over Fq, whose Hamming weight distribution is given by Table 5.2. Furthermore, if

ν1 is odd, then the Λ-MT code C is minimal when q
d1
2 − qτ1 + 1 > 0, while if ν1 is

even, then the Λ-MT code C is minimal when q
d1
2 − qτ1 + τ1 − 1 > 0.

Proof. It follows immediately from (5.4) and by applying Theorem 5.2.2(c).

Theorem 5.3.6. If M1 = M2 = 1, then the Λ-MT code C has at most three non-zero

Hamming weights and its Hamming weight distribution is given by Table 5.3.
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Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)
(
qd1−(−1)ν1−1q

d1
2 (τ1−1)

)
q(qd1−1)

qd1−1
τ1∑

i∈Z1

mi(q−1)
(
qd1+(−1)ν1−1q

d1
2

)
q(qd1−1)

(qd1−1)(τ1−1)
τ1

Table 5.2: Hamming weight distribution of the code C considered in Theorem 5.3.5

Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈Z2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1
+
∑
i∈Z5

mi(q−1)((qd1−1)(qd2−1)−1)

q(qd1−1)(qd2−1)
(qd1 − 1)(qd2 − 1)

Table 5.3: Hamming weight distribution of the code C considered in Theorem 5.3.6

Proof. Here it is easy to see that τ1 = g1 = τ2 = g2 = 1. Now the desired result

follows by equation (5.4) and by applying Theorems 5.2.2(a) and 5.2.4(a).

Theorem 5.3.7. If M1 = 2, M2 = 1, F1 = (ε1,1, ε1,2, · · · , ε1,`) and F2 = (ε2,1, ε2,2, · · · ,

ε2,`), then the Λ-MT code C has at most five non-zero Hamming weights and its

Hamming weight distribution is given by Table 5.4.

Proof. Here one can easily observe that τ1 = g1 = 2 and τ2 = g2 = 1. Now the

desired result follows by equation (5.4) and by applying Theorems 5.2.2(a), 5.2.2(b)

and 5.2.4(b).

Theorem 5.3.8. Let M1 ≥ 3, F1 = (ε1,1, ε1,2, · · · , ε1,`) and F2 = (ε2,1, ε2,2, · · · , ε2,`).

Suppose that there exists a least positive integer t satisfying pt ≡ −1 (mod M1). Then

we have rd1 = 2tγ for some positive integer γ. Furthermore, if τ1 = τ2 = M2 = 1,

then the Λ-MT code C has at most four non-zero Hamming weights and its Hamming

weight distribution is given by Table 5.5.

Proof. The desired result follows by (5.4) and by applying Theorems 5.2.2(a) and

5.2.4(c).
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Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈Z1

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈Z2

mi(q−1)qd2−1

qd2−1
qd2 − 1

∑
i∈Z3

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)(1+ι

rd1(p−1)2

4 q
d1
2 )

q(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)

2

∑
i∈Z3

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)(1−ι

rd1(p−1)2

4 q
d1
2 )

q(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)

2

Table 5.4: Hamming weight distribution of the code C considered in Theorem 5.3.7

Theorem 5.3.9. If M1 = 1, M2 = g2 = 2, F1 = (ε1,1, ε1,2, · · · , ε1,`) and F2 =

(ε2,1, ε2,2, · · · , ε2,`), then the Λ-MT code C has at most five non-zero Hamming

weights and its Hamming weight distribution is given by Table 5.6.

Proof. Here one can easily see that τ2 = g2 = 2 and g1 = τ1 = 1. Now the desired

result follows by (5.4) and by applying Theorems 5.2.2(a), 5.2.2(b) and 5.2.5(a).

Theorem 5.3.10. If M1 = g2 = 1, M2 = 2, F1 = (ε1,1, ε1,2, · · · , ε1,`) and F2 =

(ε2,1, ε2,2, · · · , ε2,`), then the Λ-MT code C has at most four non-zero Hamming

weights and its Hamming weight distribution is given by Table 5.7.

Proof. Here we note that τ2 = g2 = g1 = τ1 = 1. Now the desired result follows by

(5.4) and by applying Theorems 5.2.2(a) and 5.2.5(b).

Theorem 5.3.11. If F1 6= 0, F2 6= 0, τ1 = τ2 = 1 and Z5 is the empty set, then

the Λ-MT code C has at most three non-zero Hamming weights and its Hamming

weight distribution is given by Table 5.8.
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Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈Z2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)

(
1−(M1−1)(−1)γ−1q

d1
2

)
q(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)

M1

∑
i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)(1+(−1)γ−1q

d1
2 )

q(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)(M1−1)

M1

Table 5.5: Hamming weight distribution of the code C considered in Theorem 5.3.8

Proof. It follows immediately by (5.4) and by applying Theorem 5.2.2(a).

Remark 5.3.12. Working in a similar manner as in Sections 5.2 and 5.3, one

can also determine Hamming weight distributions of several classes of MT codes

with more than two non-zero constituents C1, C2, · · · , Cρ, all of whose codewords

(δw,1, δw,2, · · · , δw,`) ∈ Cw satisfy the following condition:

For 1 ≤ i ≤ `, there exist integers ai, bi such that 1 ≤ ai < bi ≤ ρ and xw,i = 0 for

1 ≤ w(6= ai, bi) ≤ ρ. (∗)

In the following theorem, we determine Hamming weight distributions of a class

of MT codes with three non-zero constituents whose codewords satisfy the condition

(∗).

Theorem 5.3.13. Let C be a Λ-MT code of length n over Fq with the constituents

C1 = 〈(1, 1, 0, · · · , 0)〉 ⊆ G1, C2 = 〈(0, 0, 1, 1, 0, · · · , 0)〉 ⊆ G2, C3 = 〈(0, 0, 0, 0, 1, · · ·

· · · , 1)〉 ⊆ G3 and C4 = · · · = Cρ = {0}. Let F∗
qd3

= 〈ξ3〉 and τ3 = gcd
(
qd3−1
q−1

, `3

)
,

where δ−1
3 = ξ`33 for some integer `3 satisfying 0 ≤ `3 ≤ qd3 − 2. If τ1 = τ2 = τ3 =

1, then the Λ-MT code C has at most seven non-zero Hamming weights and its

Hamming weight distribution is given by Table 5.9.
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Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)qd1−1

qd1−1
qd1 − 1

∑
i∈Z2

mi(q−1)
(
qd2+ι

rd2(p−1)2

4 q
d2
2

)
q(qd2−1)

qd2−1
2∑

i∈Z2

mi(q−1)
(
qd2−ι

rd2(p−1)2

4 q
d2
2

)
q(qd2−1)

qd2−1
2∑

i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)
(
qd2+ι

rd2(p−1)2

4 q
d2
2

)
q(qd2−1)

+
∑
i∈Z5

mi(q−1)
q

(
1−

(
1+ι

rd2(p−1)2

4 q
d1
2

)
(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)

2

∑
i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)
(
qd2−ι

rd2(p−1)2

4 q
d2
2

)
q(qd2−1)

+
∑
i∈Z5

mi(q−1)
q

(
1−

(
1−ι

rd2(p−1)2

4 q
d1
2

)
(qd1−1)(qd2−1)

)
(qd1−1)(qd2−1)

2

Table 5.6: Hamming weight distribution of the code C considered in Theorem 5.3.9

Hamming weight j FrequencyAj∑
i∈Z1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈Z2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)

q(qd1−1)(qd2−1)

(
1+ι

r(d1+d2)(p−1)2

4 q
(d1+d2)

2

)) (qd1−1)(qd2−1)
2

∑
i∈Z3

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z4

mi(q−1)qd2−1

qd2−1

+
∑
i∈Z5

(
mi(q−1)

q
− mi(q−1)

q(qd1−1)(qd2−1)

(
1−ι

r(d1+d2)(p−1)2

4 q
(d1+d2)

2

)) (qd1−1)(qd2−1)
2

Table 5.7: Hamming weight distribution of the code C considered in Theorem 5.3.10

Hamming weight j Frequency Aj∑
i∈Z1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈Z2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈Z1

mi(q−1)qd1−1

qd1−1
+
∑
i∈Z2

mi(q−1)qd2−1

qd2−1
(qd1 − 1)(qd2 − 1)

Table 5.8: Hamming weight distribution of the code C considered in Theorem 5.3.11
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Hamming weight j Frequency Aj
(m1+m2)(q−1)qd1−1

qd1−1
qd1 − 1

(m3+m4)(q−1)qd2−1

qd2−1
qd2 − 1

(m5+···+m`)(q−1)qd3−1

qd3−1
qd3 − 1

(m1+m2)(q−1)qd1−1

qd1−1
+ (m3+m4)(q−1)qd2−1

qd2−1
(qd1 − 1)(qd2 − 1)

(m1+m2)(q−1)qd1−1

qd1−1
+ (m5+···+m`)(q−1)qd3−1

qd3−1
(qd1 − 1)(qd3 − 1)

(m3+m4)(q−1)qd2−1

qd2−1
+ (m5+···+m`)(q−1)qd3−1

qd3−1
(qd2 − 1)(qd3 − 1)

(m1+m2)(q−1)qd1−1

qd1−1
+ (m3+m4)(q−1)qd2−1

qd2−1
+ (m5+···+m`)(q−1)qd3−1

qd3−1
(qd1−1)(qd2−1)(qd3−1)

Table 5.9: Hamming weight distribution of the code C considered in Theorem 5.3.13

Proof. By applying Theorem 3.5.2 and by working in a similar manner as in Theorem

5.2.2(a), the desired result follows.
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6
A generalization of multi-twisted

codes over finite fields, their

Galois duals and Type II codes

6.1 Introduction

In Chapters 3-5, we studied MT codes over Fq, whose block lengths are positive

integers coprime to q. In this chapter, we shall extend this family of codes and study

MT codes over Fq, whose block lengths are arbitrary positive integers not necessarily

coprime to q. To do this, we assume, throughout this chapter, that q = pr, where

119
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p is a prime number and r is a positive integer. Let m1,m2, · · · ,m` be arbitrary

positive integers (not necessarily coprime to q), and let n = m1 +m2 + · · ·+m`. Let

Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq.

In this chapter, we shall study algebraic structures of Λ-multi-twisted (MT) codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq and their Galois duals (i.e.,

their orthogonal complements with respect to the Galois inner product on Fnq ). We

shall derive necessary and sufficient conditions under which a Λ-MT code of block

lengths (m1,m2, · · · ,m`) and length n over Fq is (i) Galois self-dual, (ii) Galois self-

orthogonal and (iii) Galois linear with complementary dual (LCD). We shall also

provide a trace description for all Λ-MT codes of block lengths (m1,m2, · · · ,m`)

and length n over Fq by using the generalized discrete Fourier transform (GDFT),

which gives rise to a method to construct these codes. We shall further provide

necessary and sufficient conditions under which a Euclidean self-dual Λ-MT code

of block lengths (m1,m2, · · · ,m`) and length n over F2r is a Type II code when

λi = 1 and mi = ni2
a for 1 ≤ i ≤ `, where a ≥ 0 is an integer and n1, n2, · · · , n` are

odd positive integers satisfying n1 ≡ n2 ≡ · · · ≡ n` (mod 4). We shall also develop

generator theory for Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over

Fq and show that each Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n

over Fq has a unique normalized generating set. With the help of a normalized

generating set, we shall explicitly determine the dimension and a generating set of

the Galois dual of each Λ-MT code of block lengths (m1,m2, · · · ,m`) and length

n over Fq. Besides this, we shall obtain several linear codes with best-known and

optimal parameters from 1-generator Λ-MT codes over Fq, where 2 ≤ q ≤ 7.

This chapter is organized as follows: In Section 6.2, we study Λ-MT codes of block

lengths (m1,m2, · · · ,m`) and length n over Fq and their dual codes with respect to

the Galois inner product on Fnq (Theorems 6.2.2-6.2.6). We also derive necessary

and sufficient conditions for a Λ-MT code of block lengths (m1,m2, · · · ,m`) and

length n over Fq to be (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois
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linear with complementary-dual (LCD) (Theorem 6.2.8). In Section 6.3, we provide

a trace description for all Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length

n over Fq by using the generalized discrete Fourier transform (GDFT), which gives

rise to a construction method for these codes (Theorem 6.3.2). In Section 6.4, we

derive necessary and sufficient conditions for a Euclidean self-dual Λ-MT code of

block lengths (m1,m2, · · · ,m`) and length n over F2r to be a Type II code when

λi = 1 and mi = ni2
a for 1 ≤ i ≤ `, where a ≥ 0 is an integer and n1, n2, · · · , n`

are odd positive integers satisfying n1 ≡ n2 ≡ · · · ≡ n` (mod 4) (Theorem 6.4.4). In

Section 6.5, we show that each Λ-MT code of block lengths (m1,m2, · · · ,m`) and

length n over Fq has a unique normalized generating set (Theorem 6.5.3). We also

explicitly determine the dimension and a generating set of the Galois dual of each

Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n over Fq (Corollary 6.5.4

and Theorem 6.5.6). Besides this, we identify several linear codes with best-known

and optimal parameters from 1-generator Λ-MT codes over Fq, where 2 ≤ q ≤ 7

(Tables 6.1 and 6.2). It is worth mentioning that these code parameters can not be

attained by any of their subclasses (such as constacyclic and quasi-twisted codes)

containing record breaker codes. This shows that this generalized family of MT

codes over finite fields is more promising to find codes with better parameters than

the current best-known codes.

6.2 MT codes over finite fields and their Galois

duals

In Chapters 3-5, we studied MT codes over Fq whose block lengths are coprime

to q. In this section, we shall extend the definition of MT codes, and we shall study

MT codes over Fq whose block lengths are arbitrary positive integers (not necessarily

coprime to q). To do this, we recall that Fq is the finite field of order q = pr, where

p is a prime and r is a positive integer. Here we have n = m1 + m2 + · · · + m`,
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where m1,m2, · · · ,m` are arbitrary positive integers, not necessarily coprime to q.

For 1 ≤ i ≤ `, let us write

mi = nip
ai , (6.1)

where ai ≥ 0 is an integer and ni is a positive integer coprime to q. Let Fnq
denote the vector space consisting of all n-tuples over Fq. We also recall that

Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq. For 1 ≤ i ≤ `,

one can show that there exists a non-zero element αi ∈ Fq such that λi = αp
ai

i ,

which implies that xmi − λi = (xni − αi)p
ai in Fq[x]. Now a Λ-multi-twisted (MT)

module V is an Fq[x]-module of the form V =
∏̀
i=1

Vi, where Vi = Fq [x]

〈xmi−λi〉 =

Fq [x]

〈(xni−αi)p
ai 〉 for 1 ≤ i ≤ `. From this point on, we shall represent each element

c ∈ Fnq as c = (c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1, · · · , c2,m2−1; · · · ; c`,0, c`,1, · · · , c`,m`−1)

and the corresponding element c(x) ∈ V as c(x) = (c1(x), c2(x), · · · , c`(x)), where

ci(x) =
mi−1∑
j=0

ci,jx
j ∈ Vi for 1 ≤ i ≤ `. Note that the map c 7→ c(x) is an Fq-linear

vector space isomorphism from Fnq onto V.

Definition 6.2.1. [5] A Λ-multi-twisted (Λ-MT) code C of length n over Fq is de-

fined as an Fq[x]-submodule of the Λ-MT module V. Equivalently, a linear code C of

length n over Fq is called a Λ-MT code if c = (c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1, · · · · · · ,

c2,m2−1; · · · ; c`,0, c`,1, · · · , c`,m`−1) is a codeword of C, then its Λ-MT shift TΛ(c) =

(λ1c1,m1−1, c1,0, · · · , c1,m1−2;λ2c2,m2−1, c2,0, · · · , c2,m2−2; · · · ;λ`c`,m`−1, c`,0, · · · , c`,m`−2)

is also a codeword of C.

Now let g1(x), g2(x), · · · , gρ(x) be all the distinct irreducible factors of the poly-

nomials xn1−α1, x
n2−α2, · · · , xn`−α` over Fq. Further, for 1 ≤ i ≤ ` and 1 ≤ w ≤ ρ,

let us define

εw,i =

 1 if gw(x) divides xni − αi in Fq[x];

0 otherwise.

Therefore for 1 ≤ i ≤ `, the irreducible factorization of the polynomial xni −αi over
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Fq is given by

xni − αi = g1(x)ε1,ig2(x)ε2,i · · · gρ(x)ερ,i , (6.2)

which further implies that the irreducible factorization of the polynomial xmi − λi
over Fq is given by

xmi − λi = (xni − αi)p
ai = g1(x)ε1,ip

aig2(x)ε2,ip
ai · · · gρ(x)ερ,ip

ai .

Next for each i, we see, by applying the Chinese Remainder Theorem, that

Vi '
ρ⊕

w=1

εw,i
Fq[x]

〈gw(x)p
ai 〉
,

where the ring isomorphism is given by ai(x) 7→
ρ∑

w=1

εw,i
(
ai(x) + 〈gw(x)p

ai 〉
)

for each

ai(x) ∈ Vi. This implies that

V =
∏̀
i=1

Vi '
ρ⊕

w=1

(
εw,1

Fq[x]

〈gw(x)p
a1 〉
, εw,2

Fq[x]

〈gw(x)p
a2 〉
, · · · , εw,`

Fq[x]

〈gw(x)p
a` 〉︸ ︷︷ ︸

Gw

)
, (6.3)

and the corresponding ring isomorphism from V onto
ρ⊕

w=1

Gw is given by

c(x) 7→
ρ∑

w=1

(
εw,1
(
c1(x)+〈gw(x)p

a1 〉
)
, εw,2

(
c2(x)+〈gw(x)p

a2 〉
)
, · · · , εw,`

(
c`(x)+〈gw(x)p

a` 〉
))

for each c(x) = (c1(x), c2(x), · · · , c`(x)) ∈ V. Furthermore, for 1 ≤ w ≤ ρ, let us

define

Sw =
{(
α(x) + 〈gw(x)p

a1 〉, α(x) + 〈gw(x)p
a2 〉, · · · , α(x) + 〈gw(x)p

a` 〉
)

: α(x) ∈ Fq[x]
}
.

Here for each w, one can observe that the set Sw is a commutative ring with unity

with respect to the component wise addition and the component wise multiplication,
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and we shall view the set Gw =
(
εw,1

Fq [x]

〈gw(x)p
a1 〉 , εw,2

Fq [x]

〈gw(x)p
a2 〉 , · · · , εw,`

Fq [x]

〈gw(x)p
a` 〉

)
as an

Sw-module. In particular, when a1 = a2 = · · · = a`, the set Gw can also be viewed as

a Fq [x]

〈gw(x)p
a1 〉 -module for each w. From the above discussion, we deduce the following:

Theorem 6.2.2. (a) Each Λ-MT code C of length n over Fq can be uniquely ex-

pressed as

C =

ρ⊕
w=1

Cw,

where Cw =
{(
εw,1(c1(x) + 〈gw(x)p

a1 〉), · · · , εw,`(c`(x) + 〈gw(x)p
a` 〉)
)
∈ Gw :

(c1(x), c2(x), · · · , c`(x)) ∈ C} is an Sw-submodule of Gw for each w. (The codes

C1, C2, · · · , Cρ are called the constituents of C corresponding to the polynomials

g1(x), g2(x), · · · , gρ(x), respectively.)

(b) Conversely, if Dw is an Sw-submodule of Gw for 1 ≤ w ≤ ρ, then the direct

sum D =
ρ⊕

w=1

Dw is a Λ-MT code of length n over Fq.

Next we proceed to study dual codes of Λ-MT codes of length n over Fq with

respect to the Galois inner product on Fnq , which is first defined and studied by Fan

and Zhang [36]. For this, let k be a fixed integer satisfying 0 ≤ k < r. Then the

k-Galois inner product on Fnq is a map 〈·, ·〉k : Fnq × Fnq −→ Fq, defined as

〈d, c〉k =
∑̀
i=1

mi−1∑
j=0

di,jc
pk

i,j for all d, c ∈ Fnq .

Note that the map 〈·, ·〉k is a non-degenerate σk-sesquilinear form on Fnq , where σk

is an automorphism of Fq, defined as σk(b) = bp
k

for each b ∈ Fq. In particular,

the k-Galois inner product coincides with the Euclidean inner product on Fnq when

k = 0, while the k-Galois inner product matches with the Hermitian inner product

on Fnq when r is even and k = r
2
.

Now for a Λ-MT code C of length n over Fq, the k-Galois dual C⊥k of the code
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C is defined as

C⊥k = {d ∈ Fnq : 〈d, c〉k = 0 for all c ∈ C}.

Next let m = lcm[m1O(λ1),m2O(λ2), · · · ,m`O(λ`)], where O(λi) denotes the

multiplicative order of λi for each i. It is easy to see that TmΛ = I, where I

is the identity operator on Fnq . From this, we see that the k-Galois dual C⊥k of

the code C is a linear code of length n over Fq satisfying the following: if d =

(d1,0, d1,1, · · · , d1,m1−1; d2,0, d2,1, · · · , d2,m2−1; · · · ; d`,0, d`,1, · · · , d`,m`−1) is a codeword

of C⊥k , then its Λ−p
k
-MT shift T

Λ−pk (d)=(λ−p
k

1 d1,m1−1, d1,0, · · · , d1,m1−2;λ−p
k

2 d2,m2−1,

d2,0, · · · , d2,m2−2; · · · ;λ−p
k

` d`,m`−1, d`,0, · · · , d`,m`−2) is also a codeword of C⊥k , where

Λ−p
k

= (λ−p
k

1 , λ−p
k

2 , · · · , λ−p
k

` ). Therefore C⊥k is a Λ−p
k
-MT code of length n over

Fq. Equivalently, C⊥k is an Fq[x]-submodule of the Λ−p
k
-MT module V ′ =

∏̀
i=1

V ′i ,

where V ′i = Fq [x]

〈xmi−λ−p
k

i 〉
= Fq [x]

〈(xni−α−p
k

i )p
ai 〉

for 1 ≤ i ≤ `.

In order to further study algebraic structures of k-Galois duals of Λ-MT codes,

let us define a map Tk : Fq[x]→ Fq[x] as

Tk(f(x)) = ap
k

0 x
t + ap

k

1 x
t−1 + · · ·+ ap

k

t−1x+ ap
k

t

for each f(x) = a0 + a1x + · · · + atx
t ∈ Fq[x] with at 6= 0. Then we observe the

following:

Lemma 6.2.3. Let a(x) = a0 +a1x+ · · ·+atxt, d(x) = d0 +d1x+ · · ·+dµxµ ∈ Fq[x],

where a0, at, dµ are non-zero elements of Fq and t, µ ≥ 0 are integers. Then for

0 ≤ k < r, we have the following:

(a) (Tk ◦Tr−k) (a(x)) = (Tr−k ◦Tk) (a(x)) = a(x).

(b) Tk(a(x)d(x)) = Tk(a(x))Tk(d(x)).

Proof. Proof is trivial.

Now we make the following observation.
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Lemma 6.2.4. For 0 ≤ k < r, the map Tk : Fq [x]

〈xm−1〉 →
Fq [x]

〈xm−1〉 , defined as

Tk(d(x)) =
m−1∑
j=0

dp
k

j x
−j for each d(x) =

m−1∑
j=0

djx
j ∈ Fq[x]

〈xm − 1〉
,

is a ring automorphism. (Here we have x−1 = xm−1 ∈ Fq [x]

〈xm−1〉 .)

Proof. Its proof is straightforward.

Next for 0 ≤ k < r and 1 ≤ i ≤ `, let us define the map T (i)
k : Vi → V ′i as

T (i)
k (ci(x)) =

mi−1∑
j=0

cp
k

i,jx
−j for each ci(x) =

mi−1∑
j=0

ci,jx
j ∈ Vi, where x−1 = λp

k

i x
mi−1 ∈

V ′i . We see that the map T (i)
k is a ring isomorphism, and its inverse is a map S(i)

k :

V ′i → Vi, defined as S(i)
k (di(x)) =

mi−1∑
j=0

dp
r−k

i,j x−j for each di(x) =
mi−1∑
j=0

di,jx
j ∈ V ′i ,

where x−1 = λ−1
i xmi−1 ∈ Vi. One can easily show that the map S(i)

k is also a ring

isomorphism. Now let us define the maps (·, ·)k : V ′ × V −→ Fq [x]

〈xm−1〉 and {·, ·}k :

V × V ′ −→ Fq [x]

〈xm−1〉 as

(d(x), c(x))k =
∑̀
i=1

λ−p
k

i

(
xm − 1

xmi − λ−pki

)
di(x)T (i)

k (ci(x))

and

{c(x), d(x)}k :=
∑̀
i=1

λi

(
xm − 1

xmi − λi

)
ci(x)S(i)

k (di(x))

for d(x) = (d1(x), d2(x), · · · , d`(x)) ∈ V ′ and c(x) = (c1(x), c2(x), · · · , c`(x)) ∈ V,

where V and V ′ are viewed as Fq [x]

〈xm−1〉 -modules. From this, we make the following

observation.

Lemma 6.2.5. For 0 ≤ k < r, the following hold.

(a) If d(x) ∈ V ′ and c(x) ∈ V, then we have

(d(x), c(x))k = 〈d, c〉k+〈d, TΛ(c)〉k x+
〈
d, T 2

Λ(c)
〉
k
x2 + · · ·+

〈
d, Tm−1

Λ (c)
〉
k
xm−1
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and

{c(x), d(x)}k = 〈c, d〉r−k+
〈
c, T

Λ−pk (d)
〉
r−k x+· · ·+

〈
c, Tm−1

Λ−pk
(d)
〉
r−kx

m−1 in
Fq[x]

〈xm − 1〉
.

(b) For d(x) ∈ V ′ and c(x) ∈ V, (d(x), c(x))k = 0 if and only if {c(x), d(x)}k = 0.

(c) The mapping (·, ·)k is a non-degenerate Tk-sesquilinear form on V ′ × V, and

the mapping {·, ·}k is a non-degenerate Tr−k-sesquilinear form on V × V ′.

Proof. Proof is trivial.

In the following theorem, we show that the k-Galois dual of a Λ-MT code of

length n over Fq can also be viewed as the orthogonal complement of the code with

respect to the Tk-sesquilinear form (·, ·)k .

Theorem 6.2.6. If C (⊆ V ) is a Λ-MT code of length n over Fq, then its k-Galois

dual C⊥k(⊆ V ′) is a Λ−p
k
-MT code of length n over Fq and is given by

C⊥k = {d(x) ∈ V ′ : (d(x), c(x))k = 0 for all c(x) ∈ C}.

Proof. It follows immediately from Lemma 6.2.5(a).

Further, a Λ-MT code C of length n over Fq is said to be

(i) k-Galois self-dual if it satisfies C = C⊥k .

(ii) k-Galois self-orthogonal if it satisfies C ⊆ C⊥k .

(iii) k-Galois linear with complementary-dual (LCD) if it satisfies C ∩ C⊥k = {0}.

We now proceed to study algebraic structures of k-Galois self-dual, k-Galois self-

orthogonal and k-Galois LCD Λ-MT codes of length n over Fq. Towards this, we

first recall that g1(x), g2(x), · · · , gρ(x) are all the distinct irreducible factors of the

polynomials xn1 − α1, x
n2 − α2, · · · , xn` − α` in Fq[x]. Further, by Lemma 6.2.3,
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one can easily observe that Tk(g1(x)),Tk(g2(x)), · · · ,Tk(gρ(x)) are all the distinct

irreducible factors appearing in the factorizations of the polynomials xn1−α−p
k

1 , xn2−

α−p
k

2 , · · · , xn`−α−p
k

` in Fq[x]. Next for 1 ≤ w ≤ ρ, we note that there exists a largest

non-negative integer tw satisfying the following two conditions:

(i) gw(x),Tk(gw(x)), · · · ,T tw
k (gw(x)) ∈ Fq[x] are distinct irreducible factors of

the polynomials xn1 − α1, x
n2 − α2, · · · , xn` − α` in Fq[x].

(ii) Either 〈T tw+1
k (gw(x))〉 6= 〈gw′(x)〉 for 1 ≤ w′ ≤ ρ or 〈T tw+1

k (gw(x))〉 = 〈gw(x)〉

holds.

Accordingly, we classify the irreducible polynomials g1(x), g2(x), · · · , gρ(x) as fol-

lows:

Definition 6.2.7. For 1 ≤ w ≤ ρ, we say that an irreducible factor gw(x) of the

polynomials xn1 − α1, x
n2 − α2, · · · , xn` − α` in Fq[x] is of the

• Type I if tw = 0 and 〈Tk(gw(x))〉 = 〈gw(x)〉.

• Type II if tw = 0 and 〈Tk(gw(x))〉 6= 〈gw(x)〉.

• Type III if tw ≥ 1 and 〈T tw+1
k (gw(x))〉 = 〈gw(x)〉.

• Type IV if tw ≥ 1 and 〈T tw+1
k (gw(x))〉 6= 〈gw(x)〉.

Now we assume, by relabelling gw(x)’s if required, that g1(x), g2(x), · · · , gs1(x)

are all the distinct Type I irreducible factors, gs1+1(x), gs1+2(x), · · · , gs2(x) are all the

distinct Type II irreducible factors, gs2+1(x), gs2+2(x), · · · , gs3(x) are all the distinct

Type III irreducible factors and gs3+1(x), gs3+2(x), · · · , gs4(x) are all the distinct

Type IV irreducible factors of the polynomials xn1 − α1, x
n2 − α2, · · · , xn` − α` in

Fq[x]. Here we note that ρ = s2+
s4∑

ϑ=s2+1

(tϑ+1). Further, for 1 ≤ α ≤ s4, 0 ≤ b ≤ tα+1

and 1 ≤ i ≤ `, let us define

R
(b)
α,i =

Fq[x]

〈T b
k (gα(x))pa

i 〉
and ε

(b)
α,i =

 1 if T b
k (gα(x)) divides xni − αi in Fq[x];

0 otherwise,
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(note that R
(tα+1)
α,i = R

(0)
α,i for α ∈ {1, 2, · · · , s1} ∪ {s2 + 1, s2 + 2, · · · , s3} and 1 ≤

i ≤ `).

For 1 ≤ α ≤ s4, 0 ≤ b ≤ tα and 1 ≤ i ≤ `, we observe that if ε
(b)
α,i = 1, then

T b+1
k (gα(x)) divides xni − α−p

k

i in Fq[x]. Now by applying the Chinese Remainder

Theorem again, we obtain

V '
( s1⊕

t=1

G(0)
t

)
⊕
( s2⊕
µ=s1+1

G(0)
µ

)
⊕
( s3⊕
z=s2+1

(
G(0)
z ⊕ G(1)

z ⊕ · · · ⊕ G(tz)
z︸ ︷︷ ︸

Gz

))
⊕

( s4⊕
v=s3+1

(
G(0)
v ⊕ G(1)

v ⊕ · · · ⊕ G(tv)
v︸ ︷︷ ︸

Gv

))
,

and

V ′ '
( s1⊕

t=1

G(0)
t

)
⊕
( s2⊕
µ=s1+1

H(1)
µ

)
⊕
( s3⊕
z=s2+1

(
H(0)
z ⊕H(1)

z ⊕ · · ·⊕ H(tz)
z︸ ︷︷ ︸

Hz

))
⊕

( s4⊕
v=s3+1

(
H(tv+1)
v ⊕H(1)

v ⊕ · · · ⊕ H(tv)
v︸ ︷︷ ︸

Hv

))
,

where

G(b)
α =

(
ε

(b)
α,1R

(b)
α,1, ε

(b)
α,2R

(b)
α,2, · · · , ε

(b)
α,`R

(b)
α,`

)
for 1 ≤ α ≤ s4 and 0 ≤ b ≤ tα,

H(1)
µ =

(
ε

(0)
µ,1R

(1)
µ,1, ε

(0)
µ,2R

(1)
µ,2, · · · , ε

(0)
µ,`R

(1)
µ,`

)
for s1 + 1 ≤ µ ≤ s2,

H(0)
z =

(
ε

(tz)
z,1 R

(0)
z,1, ε

(tz)
z,2 R

(0)
z,2, · · · , ε

(tz)
z,` R

(0)
z,`

)
for s2 + 1 ≤ z ≤ s3,

H(s)
ω =

(
ε

(s−1)
ω,1 R

(s)
ω,1, ε

(s−1)
ω,2 R

(s)
ω,2, · · · , ε

(s−1)
ω,` R

(s)
ω,`

)
for s2 + 1 ≤ ω ≤ s4 and 1 ≤ s ≤ tω + 1,

(note that H(tz+1)
z = H(0)

z , as R
(tz+1)
z,i = R

(0)
z,i for s2 + 1 ≤ z ≤ s3 and 1 ≤ i ≤ `).

In view of this, from now on, we shall identify each element c(x) = (c1(x), c2(x), · · · ,

c`(x)) ∈ V as C = (C1, C2, · · · , Cs1 , Cs1+1, Cs1+2, · · · , Cs2 , Cs2+1, Cs2+2, · · · , Cs3 , Cs3+1,
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Cs3+2, · · · , Cs4), where

Ct = (C
(0)
t,1 , C

(0)
t,2 , · · · , C

(0)
t,` ) ∈ G(0)

t , Cµ = (C
(0)
µ,1, C

(0)
µ,2, · · · , C

(0)
µ,`) ∈ G

(0)
µ and

Cω = (C
(0)
ω,1, C

(0)
ω,2, · · · , C

(0)
ω,`, C

(1)
ω,1, C

(1)
ω,2, · · · , C

(1)
ω,`, · · · , C

(tω)
ω,1 , C

(tω)
ω,2 , · · · , C

(tω)
ω,` ) ∈ Gω

for 1 ≤ t ≤ s1, s1 + 1 ≤ µ ≤ s2 and s2 + 1 ≤ ω ≤ s4 with

C
(b)
α,i := ε

(b)
α,i

(
ci(x) +

〈
T b
k (gα(x))p

ai
〉)
∈ ε(b)α,iR

(b)
α,i

for 1 ≤ α ≤ s4, 0 ≤ b ≤ tα and 1 ≤ i ≤ `.

Analogously, we shall identify each element d(x) = (d1(x), d2(x), · · · , d`(x)) ∈ V ′

asD = (D1, D2, · · · , Ds1 , Ds1+1, Ds1+2, · · · , Ds2 , Ds2+1, Ds2+2, · · · , Ds3 , Ds3+1, Ds3+2,

· · · , Ds4), where

Dt = (D
(0)
t,1 , D

(0)
t,2 , · · · , D

(0)
t,` ) ∈ G(0)

t , Dµ = (D
(1)
µ,1, D

(1)
µ,2, · · · , D

(1)
µ,`) ∈ H

(1)
µ ,

Dz = (D
(0)
z,1, D

(0)
z,2, · · · , D

(0)
z,` , D

(1)
z,1, D

(1)
z,2, · · · , D

(1)
z,` , · · · , D

(tz)
z,1 , D

(tz)
z,2 , · · · , D

(tz)
z,` ) ∈ Hz and

Dv = (D
(tv+1)
v,1 , D

(tv+1)
v,2 , · · · , D(tv+1)

v,` , D
(1)
v,1, D

(1)
v,2, · · · , D

(1)
v,` , · · · , D

(tv)
v,1 , D

(tv)
v,2 , · · · , D

(tv)
v,` ) ∈ Hv

with

D
(0)
t,i := ε

(0)
t,i

(
di(x) +

〈
gt(x)p

ai
〉)
, D

(1)
µ,i := ε

(0)
µ,i

(
di(x) +

〈
Tk(gµ(x))p

ai
〉)
,

D
(0)
z,i := ε

(tz)
z,i

(
di(x) +

〈
gz(x)p

ai
〉)
, D

(j)
z,i := ε

(j−1)
z,i

(
di(x) +

〈
T j
k (gz(x))p

ai
〉)

and

D
(j′)
v,i := ε

(j′−1)
v,i

(
di(x) +

〈
T j′

k (gv(x))p
ai
〉)

for 1 ≤ j ≤ tz, 1 ≤ j′ ≤ tv + 1, 1 ≤ t ≤ s1, s1 + 1 ≤ µ ≤ s2, s2 + 1 ≤ z ≤ s3,

s3 + 1 ≤ v ≤ s4 and 1 ≤ i ≤ `.

Next for 1 ≤ α ≤ s4 and 0 ≤ b ≤ tα + 1, we note that the set S(b)
α =

{(
f(x) +〈

T b
k (gα(x))p

a1
〉
, f(x) +

〈
T b
k (gα(x))p

a2
〉
, · · · , f(x) +

〈
T b
k (gα(x))p

a`
〉)

: f(x) ∈ Fq[x]
}

is a finite commutative ring with unity with respect to the component wise addition
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and the component wise multiplication. Further, since V and V ′ are Fq[x]-modules,

we shall view the set G(b)
α (resp. H(1)

µ , H(0)
z and H(s)

ω ) as an S(b)
α -module (resp. S(1)

µ -

module, S(0)
z -module and S(s)

ω -module) for 1 ≤ α ≤ s4 and 0 ≤ b ≤ tα (resp. for

s1 + 1 ≤ µ ≤ s2, s2 + 1 ≤ z ≤ s3, s2 + 1 ≤ ω ≤ s4 and 1 ≤ s ≤ tω + 1). From this,

one can observe that a Λ-MT code C of length n over Fq can be uniquely expressed

as

C =

( s1⊕
t=1

C(0)
t

)
⊕
( s2⊕
µ=s1+1

C(0)
µ

)
⊕

(
s3⊕

z=s2+1

(
C(0)
z ⊕ C(1)

z ⊕ · · · ⊕ C(tz)
z

))
⊕(

s4⊕
v=s3+1

(
C(0)
v ⊕ C(1)

v ⊕ · · · ⊕ C(tv)
v

))
, (6.4)

where C(0)
t (resp. C(0)

µ , C(j)
z and C(j′)

v ) is an S(0)
t -submodule of G(0)

t (resp. S(0)
µ -

submodule of G(0)
µ , S(j)

z -submodule of G(j)
z and S(j′)

v -submodule of G(j′)
v ) for 1 ≤ t ≤ s1

(resp. for s1 + 1 ≤ µ ≤ s2, s2 + 1 ≤ z ≤ s3, 0 ≤ j ≤ tz, s3 + 1 ≤ v ≤ s4 and

0 ≤ j′ ≤ tv).

Now for 1 ≤ w ≤ ρ, let deg gw(x) = dw. Further, note that deg Tk(gw(x)) = dw,

as gw(x) is an irreducible polynomial over Fq.

For 1 ≤ α ≤ s4, 0 ≤ b ≤ tα and 1 ≤ i ≤ `, let : ε
(b)
α,iR

(b)
α,i → ε

(b)
α,iR

(b+1)
α,i be the

map, defined as

h
(b)
α,i(x) =


dαpai−1∑
ϑ=0

hp
k

ϑ x
−ϑ if ε

(b)
α,i = 1;

0 if ε
(b)
α,i = 0

(6.5)

for all h
(b)
α,i(x) =

dαpai−1∑
ϑ=0

hϑx
ϑ ∈ R(b)

α,i(⊆ Vi) when ε
(b)
α,i = 1, (note that R

(tα+1)
α,i = R

(0)
α,i

for α ∈ {1, 2, · · · , s1} ∪ {s2 + 1, s2 + 2, · · · , s3} and 1 ≤ i ≤ `).

For 1 ≤ t ≤ s1 and 1 ≤ i ≤ ` satisfying ε
(0)
t,i = 1, we observe that the conjugation

map is the identity map when dt = 1, k = 0 and pai = 1, while it is an automor-

phism of R
(0)
t,i when either dt > 1 or 0 < k < r or pai > 1. In view of this, we note

that for each c(x) = (c1(x), c2(x), · · · , c`(x)) ∈ V, the element c(x) ∈ V ′ is identified
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as

(C1, C2, · · · , Cs1 , Cs1+1, Cs1+2, · · · , Cs2 , Cs2+1, Cs2+2, · · · , Cs3 , Cs3+1, Cs3+2, · · · , Cs4),

where

Ct = (C
(0)
t,1 , C

(0)
t,2 , · · · , C

(0)
t,` ) ∈ G(0)

t , Cµ = (C
(0)
µ,1, C

(0)
µ,2, · · · , C

(0)
µ,`) ∈ H

(1)
µ ,

Cz = (C
(tz)
z,1 , C

(tz)
z,2 , · · · , C

(tz)
z,` , C

(0)
z,1 , C

(0)
z,2 , · · · , C

(0)
z,` , · · · , C

(tz−1)
z,1 , C

(tz−1)
z,2 , · · · , C(tz−1)

z,` ) ∈ Hz,

Cv = (C
(tv)
v,1 , C

(tv)
v,2 , · · · , C

(tv)
v,` , C

(0)
v,1 , C

(0)
v,2 , · · · , C

(0)
v,` , · · · , C

(tv−1)
v,1 , C

(tv−1)
v,2 , · · · , C(tv−1)

v,` ) ∈ Hv

for 1 ≤ t ≤ s1, s1 + 1 ≤ µ ≤ s2, s2 + 1 ≤ z ≤ s3 and s3 + 1 ≤ v ≤ s4 with

C
(b)
α,i := ε

(b)
α,i

(
ci(x) +

〈
T b+1
k (gα(x))p

ai
〉)
∈ ε(b)α,iR

(b+1)
α,i

for all 1 ≤ α ≤ s4, 0 ≤ b ≤ tα and 1 ≤ i ≤ `.

From this point on, let a = max{a1, a2, · · · , a`}. Then it is easy to see that if

ε
(b)
α,i = 1 for some 1 ≤ α ≤ s4, 0 ≤ b ≤ tα and 1 ≤ i ≤ `, then xmi = λ−p

k

i in

R
(b+1)
α,i , which implies that λ−p

k

i (xm − 1)/(xmi − λ−p
k

i ) = m/mi = 0 in R
(b+1)
α,i when

ai 6= a, while λ−p
k

i (xm − 1)/(xmi − λ−p
k

i ) = m/mi 6= 0 in R
(b+1)
α,i when ai = a.

In view of this, one can easily observe that the sesquilinear form corresponding to

(·, ·)k is a mapping [·, ·]k from V ′ × V into

(
s1⊕
t=1

Fq [x]

〈gt(x)pa 〉

)
⊕
(

s2⊕
µ=s1+1

Fq [x]

〈Tk(gµ(x))pa 〉

)
⊕(

s3⊕
z=s2+1

(
Fq [x]

〈gz(x)pa 〉 ⊕
Fq [x]

〈Tk(gz(x))pa 〉 ⊕ · · · ⊕
Fq [x]

〈T tz
k (gz(x))pa 〉

))
⊕
(

s4⊕
v=s3+1

(
Fq [x]

〈T tv+1
k (gv(x))pa 〉 ⊕

Fq [x]

〈Tk(gv(x))pa 〉 ⊕ · · · ⊕
Fq [x]

〈T tv
k (gv(x))pa 〉

))
, defined as

[D,C]k =

(∑̀
i=1

m

mi
ε
(0)
1,iD

(0)
1,iC

(0)
1,i ,
∑̀
i=1

m

mi
ε
(0)
2,iD

(0)
2,iC

(0)
2,i , · · · ,

∑̀
i=1

m

mi
ε
(0)
s1,i
D

(0)
s1,i
C

(0)
s1,i
,

∑̀
i=1

m

mi
ε
(0)
s1+1,iD

(1)
s1+1,iC

(0)
s1+1,i,

∑̀
i=1

m

mi
ε
(0)
s1+2,iD

(1)
s1+2,iC

(0)
s1+2,i, · · · ,
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∑̀
i=1

m

mi
ε
(0)
s2,i
D

(1)
s2,i
C

(0)
s2,i
,
∑̀
i=1

m

mi
ε
(ts2+1)
s2+1,i D

(0)
s2+1,iC

(ts2+1)
s2+1,i ,

∑̀
i=1

m

mi
ε
(0)
s2+1,iD

(1)
s2+1,iC

(0)
s2+1,i,

· · · ,
∑̀
i=1

m

mi
ε
(ts2+1−1)
s2+1,i D

(ts2+1)
s2+1,i C

(ts2+1−1)
s2+1,i , · · · ,

∑̀
i=1

m

mi
ε
(ts3 )
s3,i

D
(0)
s3,i
C

(ts3 )
s3,i

,

∑̀
i=1

m

mi
ε
(0)
s3,i
D

(1)
s3,i
C

(0)
s3,i
, · · · ,

∑̀
i=1

m

mi
ε
(ts3−1)
s3,i

D
(ts3 )
s3,i

C
(ts3−1)
s3,i

,
∑̀
i=1

m

mi
ε
ts3+1

s3+1,iD
ts3+1+1
s3+1,i C

ts3+1

s3+1,i,

∑̀
i=1

m

mi
ε
(0)
s3+1,iD

(1)
s3+1,iC

(0)
s3+1,i, · · · ,

∑̀
i=1

m

mi
ε
(ts3+1−1)
s3+1,i D

(ts3+1)
s3+1,i C

(ts3+1−1)
s3+1,i , · · · ,

∑̀
i=1

m

mi
ε
(ts4 )
s4,i

D
(ts4+1)
s4,i

C
(ts4 )
s4,i

,
∑̀
i=1

m

mi
ε
(0)
s4,i
D

(1)
s4,i
C

(0)
s4,i
, · · · ,

∑̀
i=1

m

mi
ε
(ts4−1)
s4,i

D
(ts4 )
s4,i

C
(ts4−1)
s4,i

)
.

(6.6)

for each C ∈ V and D ∈ V ′. Furthermore, with respect to the sesquilinear form

[·, ·]k (as defined by (6.6)), we observe that the k-Galois dual C⊥k of the code C is

given by

C⊥k =

( s1⊕
t=1

C(0)⊥k
t

)
⊕
( s2⊕
µ=s1+1

C(0)⊥k
µ

)
⊕
( s3⊕
z=s2+1

Cz(tz)⊥k⊕Cz(0)⊥k⊕· · ·⊕Cz(tz−1)⊥k
)

⊕
( s4⊕
v=s3+1

Cv(tv)⊥k ⊕ Cv(0)⊥k ⊕ · · · ⊕ Cv(tv−1)⊥k
)
, (6.7)

where

• C(0)⊥k
t (⊆ G(0)

t ) is the orthogonal complement of C(0)
t with respect to [·, ·]k �G(0)

t ×G
(0)
t

for 1 ≤ t ≤ s1;

• C(0)⊥k
µ (⊆ H(1)

µ ) is the orthogonal complement of C(0)
µ with respect to [·, ·]k �H(1)

µ ×G
(0)
µ

for s1 + 1 ≤ µ ≤ s2;

• C(tz)⊥k
z (⊆ H(0)

z ) is the orthogonal complement of C(tz)
z with respect to [·, ·]k �H(0)

z ×G
(tz)
z

and C(j)⊥k
z (⊆ H(j+1)

z ) is the orthogonal complement of C(j)
z with respect to

[·, ·]k �H(j+1)
z ×G(j)

z
for 0 ≤ j ≤ tz − 1 and s2 + 1 ≤ z ≤ s3;
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• C(j′)⊥k
v (⊆ H(j′+1)

v ) is the orthogonal complement of C(j′)
v with respect to

[·, ·]k �H(j′+1)
v ×G(j′)

v
for s3 + 1 ≤ v ≤ s4 and 0 ≤ j′ ≤ tv.

Here [·, ·]k �G(0)
t ×G

(0)
t

(resp. [·, ·]k �H(1)
µ ×G

(0)
µ
, [·, ·]k �H(j+1)

z ×G(j)
z
, [·, ·]k �H(0)

z ×G
(tz)
z

and

[·, ·]k �H(j′+1)
v ×G(j′)

v
) is the restriction of the sesquilinear form [·, ·]k (as defined by

(6.6)) to G(0)
t ×G

(0)
t (resp. H(1)

µ ×G(0)
µ , H(j+1)

z ×G(j)
z , H(0)

z ×G(tz)
z and H(j′+1)

v ×G(j′)
v )

for each t (resp. µ, z, v, j and j′). Further, for s2 + 1 ≤ z ≤ s3 and s3 + 1 ≤ v ≤ s4,

let us define K(j)
z = G(j)

z ∩ H(j)
z and K(j′)

v = G(j′)
v ∩ H(j′)

v , where 0 ≤ j ≤ tz and

1 ≤ j′ ≤ tv.

Now as a consequence of the above discussion, we have the following theorem,

which provides necessary and sufficient conditions under which a Λ-MT code is (i)

k-Galois self-dual, (ii) k-Galois self-orthogonal and (iii) k-Galois LCD.

Theorem 6.2.8. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where λ1, λ2, · · · , λ` are non-zero

elements of Fq. Let

C =

( s1⊕
t=1

C(0)
t

)
⊕
( s2⊕
µ=s1+1

C(0)
µ

)
⊕
( s3⊕
z=s2+1

(
C(0)
z ⊕ C(1)

z ⊕ · · · ⊕ C(tz)
z

))

⊕
( s4⊕
v=s3+1

(
C(0)
v ⊕ C(1)

v ⊕ · · · ⊕ C(tv)
v

))

be a Λ-MT code of length n over Fq, where C(0)
t (resp. C(0)

µ , C(j)
z and C(j′)

ν ) is an

S(0)
t -submodule of G(0)

t (resp. S(0)
µ -submodule of G(0)

µ , S(j)
z -submodule of G(j)

z and

S(j′)
v -submodule of G(j′)

v ) for 1 ≤ t ≤ s1 (resp. for s1 + 1 ≤ µ ≤ s2, s2 + 1 ≤ z ≤

s3, 0 ≤ j ≤ tz, s3 + 1 ≤ v ≤ s4 and 0 ≤ j′ ≤ tv). Then for 0 ≤ k < r, the following

hold.

(a) The code C is k-Galois self-dual if and only if the following conditions are

satisfied:

• None of the polynomials xn1−α1, x
n2−α2, · · · , xn`−α` has an irreducible

factor of the Type II in Fq[x].
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• C(0)
t = C(0)⊥k

t for 1 ≤ t ≤ s1.

• For s2 + 1 ≤ z ≤ s3 and 0 ≤ j ≤ tz, C(j)
z is an S(j)

z -submodule of

K(j)
z satisfying C(0)

z = C(tz)⊥k
z , C(1)

z = C(0)⊥k
z , C(2)

z = C(1)⊥k
z , · · · , C(tz)

z =

C(tz−1)⊥k
z .

• For s3+1 ≤ v ≤ s4, C(0)
v = {0}, C(1)

v = K(1)
v and C(j′)

v is an S(j′)
v -submodule

of K(j′)
v satisfying C(j′)

v = C(j′−1)⊥k
v and C(tv)⊥k

v = {0}, where 2 ≤ j′ ≤ tv.

(b) The code C is k-Galois self-orthogonal if and only if the following conditions

are satisfied:

• C(0)
t ⊆ C

(0)⊥k
t for 1 ≤ t ≤ s1.

• C(0)
µ = {0} for s1 + 1 ≤ µ ≤ s2.

• For s2 + 1 ≤ z ≤ s3 and 0 ≤ j ≤ tz, C(j)
z is an S(j)

z -submodule of K(j)
z

satisfying C(0)
z ⊆ C(tz)⊥k

z , C(1)
z ⊆ C(0)⊥k

z , C(2)
z ⊆ C(1)⊥k

z , · · · , C(tz)
z ⊆ C(tz−1)⊥k

z .

• For s3 + 1 ≤ v ≤ s4, C(0)
v = {0}, C(1)

v is any S(1)
v -submodule of K(1)

v

and C(j′)
v is an S(j′)

v -submodule of K(j′)
v satisfying C(j′)

v ⊆ C(j′−1)⊥k
v , where

2 ≤ j′ ≤ tv.

(c) The code C is k-Galois LCD if and only if the following conditions are satisfied:

• C(0)
t ∩ C

(0)⊥k
t = {0} for 1 ≤ t ≤ s1.

• C(0)
µ is any S(0)

µ -submodule of G(0)
µ for s1 + 1 ≤ µ ≤ s2.

• For s2 + 1 ≤ z ≤ s3 and 0 ≤ j ≤ tz, C(0)
z ∩ C(tz)⊥k

z = {0}, C(1)
z ∩ C(0)⊥k

z =

{0}, · · · , C(tz)
z ∩ C(tz−1)⊥k

z = {0}.

• For s3 + 1 ≤ v ≤ s4, C(0)
v is any S(0)

v -submodule of G(0)
v and C(j′)

v ∩

C(j′−1)⊥k
v = {0}, where 1 ≤ j′ ≤ tv.

When either k = 0 or r is even and k = r/2, we see that T 2
k (gw(x)) = gw(x),

which implies that tw ≤ 1 for 1 ≤ w ≤ ρ. This further implies that the polynomials
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xn1 − α1, x
n2 − α2, · · · , xn` − α` do not have an irreducible factor of the Type IV in

Fq[x]. From this and by (6.4), we note that a Λ-MT code C of length n over Fq can

be uniquely expressed as

C =
( s1⊕

t=1

C(0)
t

)
⊕
( s2⊕
µ=s1+1

C(0)
µ

)
⊕
( s3⊕
z=s2+1

(
C(0)
z ⊕ C(1)

z

))
, (6.8)

where C(0)
t (resp. C(0)

µ and C(j)
z ) is an S(0)

t -submodule of G(0)
t (resp. S(0)

µ -submodule

of G(0)
µ and S(j)

z -submodule of G(j)
z ) for 1 ≤ t ≤ s1 (resp. for s1 + 1 ≤ µ ≤ s2 and

s2 + 1 ≤ z ≤ s3 with 0 ≤ j ≤ 1).

6.3 Trace description of MT codes

In this section, we will provide a trace description for all Λ-MT codes of length n

over Fq. For this, we first recall the definition of the Hasse derivative of a polynomial

in Fq[x].

Definition 6.3.1. [51] For an integer j ≥ 0, the j-th Hasse derivative (or the j-th

hyperderivative) of the polynomial g(x) =
h∑
i=0

gix
i ∈ Fq[x] is defined as

g[j](x) =
h∑
i=j

(
i

j

)
gix

i−j.

We next recall the definition of the classical discrete Fourier transform (DFT).

For this, let θ be a positive integer satisfying gcd(θ, p) = 1, and let λ be a non-zero

element of Fq. Further, let ξ be a primitive θ-th root of unity in some field extension

of Fq, and let β be an element in some field extension of Fq satisfying βθ = λ.

One can easily observe that all the distinct roots of xθ − λ over Fq are given by

β, βξ, βξ2, · · · , βξθ−1. Now the classical DFT maps the element c(x) =
θ−1∑
ν=0

cνx
ν ∈
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Fq [x]

〈xθ−λ〉 to the sequence (ĉ0, ĉ1, · · · , ĉθ−1), where

ĉν = c(βξν) =
θ−1∑
j=0

cj(βξ
ν)j for 0 ≤ ν ≤ θ − 1.

On the other hand, the inverse DFT is given by

cκ =
β−κ

θ

θ−1∑
h=0

ĉh(ξ
−κ)h for 0 ≤ κ ≤ θ − 1.

We refer to [57, p. 239] for more details.

Next let M = lcm [n1O(α1), n2O(α2), · · · , n`O(α`)], where O(αi) denotes the

multiplicative order of αi in Fq for 1 ≤ i ≤ `. We note that gcd(M, q) = 1, and

hence there exists a field extension FQ of Fq, which contains a primitive M -th root

of unity. From this, we observe that there exist elements β1, β2, · · · , β`, ξ1, ξ2, · · · , ξ`
in FQ such that

βnii = αi and O(ξi) = ni for 1 ≤ i ≤ `.

Therefore for 1 ≤ i ≤ `, we have

xni − αi = (x− βi)(x− βiξi) · · · (x− βiξni−1
i ) in FQ[x],

which gives

xmi − λi = (xni − αi)p
ai

= (x− βi)p
ai (x− βiξi)p

ai · · · (x− βiξni−1
i )p

ai in FQ[x].

Further, recall that g1(x), g2(x), · · · , gρ(x) are all the distinct irreducible factors

of the polynomials xn1−α1, x
n2−α2, · · · , xn`−α` in Fq[x]. For 1 ≤ w ≤ ρ, if dw is the

degree of the irreducible polynomial gw(x), then we have Fq [x]

〈gw(x)〉 ' Fqdw . Next let δw

be a root of gw(x) in Fqdw for 1 ≤ w ≤ ρ. Now for 1 ≤ i ≤ ` and 1 ≤ w ≤ ρ satisfying
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εw,i = 1, we note that there exists an integer τ
(i)
w satisfying 0 ≤ τ

(i)
w ≤ ni − 1 and

βiξ
τ

(i)
w
i = δw.

Furthermore, for 1 ≤ i ≤ `, we note that βnii = αi, which implies that β
(q−1)ni
i = 1.

This further implies that βq−1
i = ξεii for some integer εi satisfying 0 ≤ εi ≤ ni − 1.

Next if εw,i = 1 and βiξ
ti
i is a root of gw(x) for some integer ti satisfying 0 ≤ ti ≤

ni − 1, then one can observe that βiξ
tiq+εi
i is also a root of gw(x) for 1 ≤ i ≤ `

and 1 ≤ w ≤ ρ. Further, for 1 ≤ i ≤ `, let us define a map χi : Z/niZ −→ Z/niZ

as h 7→ qh + εi for each h ∈ Z/niZ. Here for each i, we see that the map χi is

a bijection and induces an equivalence relation ∼ on Z/niZ, which is given by

h1 ∼ h2 if and only if h1 = χdi (h2) for some integer d. Therefore for each i, there is

a 1-1 correspondence between the equivalence classes of Z/niZ with respect to the

relation ∼ and the irreducible factors of xni − αi in Fq[x]. These equivalence classes

are called orbits of χi for each i. Further, if εw,i = 1 for some w and i, then we choose

the integer τ
(i)
w as a representative of the orbit corresponding to the irreducible factor

gw(x) of xni − αi. Now let us define the sets

Ti = {w : 1 ≤ w ≤ ρ and εw,i = 1} for 1 ≤ i ≤ `

and

Uw = {i : 1 ≤ i ≤ ` and εw,i = 1} for 1 ≤ w ≤ ρ.

In order to provide a trace description for Λ-MT codes, we will use the concept

of the generalized discrete Fourier transform (GDFT) in a manner similar to that of

Theorem 6.2 of Ling et al. [52] and Theorem 7 of Jia [47]. To do this, we see that

for 1 ≤ i ≤ `, the generalized discrete Fourier transform (GDFT) of the element
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ci(x) =
mi−1∑
j=0

ci,jx
j ∈ Vi is given by the following matrix

ĉi =


ĉ

(i)
0,0 ĉ

(i)
0,1 · · · ĉ

(i)
0,ni−1

ĉ
(i)
1,0 ĉ

(i)
1,1 · · · ĉ

(i)
1,ni−1

...
...

...
...

ĉ
(i)
pai−1,0 ĉ

(i)
pai−1,1 · · · ĉ

(i)
pai−1,ni−1

 ,

where

ĉ
(i)
gi,hi

= c
[gi]
i (βiξ

hi
i ) =

mi−1∑
j=0

(
j

gi

)
ci,j(βiξ

hi
i )j−gi

for 0 ≤ gi ≤ pai − 1 and 0 ≤ hi ≤ ni − 1.

Further, for 1 ≤ i ≤ `, 0 ≤ gi ≤ pai − 1 and 0 ≤ hi ≤ ni − 1, we observe that

(ĉ
(i)
gi,hi

)q =

mi−1∑
j=0

(
j

gi

)
ci,j(βiξ

hi
i )q(i−j) =

mi−1∑
j=0

(
j

gi

)
ci,j(βiξ

qhi+εi
i )i−j = ĉ

(i)
gi,qhi+εi

, (6.9)

where εi is an integer satisfying 0 ≤ εi ≤ ni − 1 and βq−1
i = ξεii . Now if f(x) is an

irreducible polynomial of degree d in Fq[x] and b ≥ 0 is an integer, then one can

show that the quotient ring Fq [x]

〈f(x)pb 〉
is isomorphic to the finite commutative chain

ring
F
qd

[u]

〈upb 〉
' Fqd + uFqd + · · ·+ up

b−1Fqd with up
b

= 0. In fact, the ring isomorphism

from Fq [x]

〈f(x)pb 〉
onto

F
qd

[u]

〈upb 〉
is given by r(x) 7→ r(α(1−u)) for each r(x) ∈ Fq [x]

〈f(x)pb 〉
, where

up
b

= 0 and α is a root of f(x) in Fqd . In view of this, for 1 ≤ w ≤ ρ and 1 ≤ i ≤ `,

we observe that

εw,i
Fq[x]

〈gw(x)p
ai 〉
' εw,i

Fqdw [ui]

〈up
ai

i 〉
' εw,i

(
Fqdw + uiFqdw + · · ·+ up

ai−1
i Fqdw

)
with up

ai

i = 0.

In view of this, for 1 ≤ w ≤ ρ, we see that

Gw '
(
εw,1

Fqdw [u1]

〈up
a1

1 〉
, εw,2

Fqdw [u2]

〈up
a2

2 〉
, · · · , εw,`

Fqdw [u`]

〈up
a`

` 〉

)
= Lw,
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where up
ai

i = 0 for 1 ≤ i ≤ `. Further, let us define a map ψ : V →
ρ⊕

w=1

Lw as

ψ
(
c1(x), c2(x), · · · , c`(x)

)
=

ρ∑
w=1

(
pa1−1∑
j1=0

uj11 ĉ
(1)

j1,τ
(1)
w

,

pa2−1∑
j2=0

uj22 ĉ
(2)

j2,τ
(2)
w

, · · · ,
pa`−1∑
j`=0

uj`` ĉ
(`)

j`,τ
(`)
w

)

for all (c1(x), c2(x), · · · , c`(x)) ∈ V, where for 1 ≤ w ≤ ρ, 1 ≤ i ≤ ` and 0 ≤ ji ≤

pai − 1,

ĉ
(i)

ji,τ
(i)
w

=

 c
[ji]
i (δw) = c

[ji]
i (βiξ

τ
(i)
w
i ) if εw,i = 1;

0 if εw,i = 0.

One can easily show that the map Ψ is the ring isomorphism from V onto
ρ⊕

w=1

Lw.

Now for 1 ≤ w ≤ ρ, let us define

Fw =

{( pa1−1∑
j1=0

uj11 α
[j1](δw),

pa2−1∑
j2=0

uj22 α
[j2](δw), · · · ,

pa`−1∑
j`=0

uj`` α
[j`](δw)

)
: α(x) ∈ Fq[x]

}
,

where up
ai

i = 0 for 1 ≤ i ≤ `. Here for each w, we see that the set Fw is a finite

commutative ring with unity with respect to the component wise addition and the

component wise multiplication, and we shall view the set Lw as an Fw-module.

From the above discussion and by Theorem 6.2.2, we observe that a Λ-MT code C

of length n over Fq can be uniquely expressed as C =
ρ⊕

w=1

Cw, where Cw is an Fw-

submodule of Lw for each w. The codes C1, C2, · · · , Cρ are called the constituents of

C corresponding to the polynomials g1(x), g2(x), · · · , gρ(x), respectively. Conversely,

if Dw is an Fw-submodule of Lw for 1 ≤ w ≤ ρ, then the direct sum D =
ρ⊕

w=1

Dw is

a Λ-MT code of length n over Fq.

Now to explicitly derive the inverse transform of the GDFT, let us define c(i,ti)(x) =

ci,ti + ci,ti+paix+ · · ·+ ci,ti+(ni−1)paix
ni−1 for 0 ≤ ti ≤ pai − 1 and 1 ≤ i ≤ `. Further,

for each i, we note that there exists a positive integer ki satisfying kir − ai > 0.

Now for 1 ≤ i ≤ ` and 0 ≤ ti ≤ pai − 1, let us define d(i,ti)(x) = cp
kir−ai
i,ti

+
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cp
kir−ai
i,ti+pai

x + · · · + cp
kir−ai

i,ti+(ni−1)paix
ni−1. Then for each i, by using the DFT, we see that

d̂(i,ti)(x) = ĉp
kir−ai
i,ti

+ ĉp
kir−ai
i,ti+pai

x+ · · ·+ ĉp
kir−ai

i,ti+(ni−1)paix
ni−1, where ĉp

kir−ai
i,ti+vipai

= d(i,ti)(βiξ
vi
i )

with 0 ≤ ti ≤ pai − 1 and 0 ≤ vi ≤ ni − 1. Further, for each i, by using the inverse

DFT, one can easily observe that cp
kir−ai
i,ti+vipai

=
β
−vi
i

ni
d̂(i,ti)(ξ

−vi
i ), where 0 ≤ vi ≤ ni− 1.

This implies that

ci,ti+vipai =
β−vip

ai

i

ni

ni−1∑
hi=0

c(i,ti)

(
(βiξ

hi
i )p

ai
) (
ξ−vip

ai

i

)hi
for each relevant i, vi and ti.

(6.10)

Now for 1 ≤ i ≤ `, let Hi(x) be the pai × pai matrix whose (si, µi)-th entry is(
µi
si

)
xµi−si , where the rows and columns of Hi(x) are indexed from 0 to pai − 1. It is

easy to see that the matrix Hi(x) is invertible and its inverse is given by Hi(−x) for

each i. Further, for each i, we observe that

Hi(βiξ
hi
i )


c(i,0)((βiξ

hi
i )p

ai )

c(i,1)((βiξ
hi
i )p

ai )
...

c(i,pai−1)((βiξ
hi
i )p

ai )

 =


ĉ

(i)
0,hi

ĉ
(i)
1,hi
...

ĉ
(i)
pai−1,hi

 , where 0 ≤ hi ≤ ni − 1. (6.11)

Now for each vi, ti and i, by (6.9)-(6.11), we get

ci,ti+vipai =
β−vip

ai

i

ni

ni−1∑
hi=0

(
pai−1∑
ji=0

(
ji
ti

)(
−βiξhii

)ji−ti
ĉ

(i)
ji,hi

)(
ξ−vip

ai

i

)hi
=

1

ni

pai−1∑
ji=0

(
ji
ti

)
(−1)ji−ti

(
ni−1∑
hi=0

(
βiξ

hi
i

)ji−ti−vipai
ĉ

(i)
ji,hi

)

=
1

ni

pai−1∑
ji=0

(
ji
ti

)
(−1)ji−ti

(∑
w∈Ti

TrF
qdw

/Fq

((
βiξ

τ
(i)
w
i

)ji−ti−vipai
ĉ

(i)

ji,τ
(i)
w

))
,

where TrF
qdw

/Fq is the trace function from Fqdw onto Fq for each w.

From the above discussion, we have the following theorem, which provides a

trace description for all Λ-MT codes of length n over Fq using the GDFT.
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Theorem 6.3.2. (a) For 1 ≤ w ≤ ρ, let Cw be an Fw-submodule of Lw, and let

us write each word xw ∈ Cw as xw = (xw,1, xw,2, · · · , xw,`), where

xw,i =

 x
(i)
0,w + x

(i)
1,wui + · · ·+ x

(i)
pai−1,wu

pai−1
i if εw,i = 1;

0 otherwise,

with x
(i)
ji,w
∈ Fqdw for 1 ≤ w ≤ ρ, 1 ≤ i ≤ ` and 0 ≤ ji ≤ pai − 1. Further, for

1 ≤ i ≤ `, let us define

ci(x1, x2, · · · , xρ) =
(
ci,0(x1, x2, · · · , xρ), ci,1(x1, x2, · · · , xρ), · · ·

· · · , ci,mi−1(x1, x2, · · · , xρ)
)
,

where for 0 ≤ ti ≤ pai − 1 and 0 ≤ vi ≤ ni − 1,

ci,ti+vipai (x1, x2, · · · , xρ)=
1

ni

( pai−1∑
ji=0

(
ji
ti

)
(−1)ji−ti

∑
w∈Ti

TrF
qdw

/Fq

(
x

(i)
ji,w

(δw)ji−ti−vip
ai
))

(6.12)

with δw = βiξ
τ

(i)
w
i . Then the code

C =
{

(c1(x1, x2, · · · , xρ); c2(x1, x2, · · · , xρ); · · · ; c`(x1, x2, · · · , xρ)) :

xw ∈ Cw for 1 ≤ w ≤ ρ
}

is a Λ-MT code of length n over Fq.

(b) Conversely, each Λ-MT code of length n over Fq can be obtained from its

constituents (that are Fw-submodules of Lw) through this construction.

Remark 6.3.3. (a) The above theorem also provides a method to construct all

Λ-MT codes of length n over Fq.

(b) Theorem 3.5.2 follows, as a special case, on taking a1 = a2 = · · · = a` = 0 in

Theorem 6.3.2.
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6.4 Type II MT codes

Type II codes over finite fields form an interesting class of linear codes. These

codes are useful in constructing unimodular lattices and in the determination of

modular forms [37, 44]. In this section, we shall also study Type II codes within the

family of Λ-MT codes over finite fields. For this, we assume, throughout this section,

that q = 2r and a1 = a2 = · · · = a` = a. Here n1, n2, · · · , n` are odd positive integers.

We also recall that U1 = {i : 1 ≤ i ≤ `, ε1,i = 1}. Moreover, for all i ∈ U1, we assume

that ni ≡ n′ (mod 4) for some odd integer n′. We also note that there exists a

trace-orthogonal basis of F2r over F2 ([51, p. 75]). Now let B = {b1, b2, · · · , br} be

a trace-orthogonal basis of F2r over F2. That is, for 1 ≤ u, v ≤ r, we have

TrF2r/F2(bubv) =

 1 if u = v;

0 otherwise,

where TrF2r/F2 is the trace function from F2r onto F2. Since B is a trace-orthogonal

basis of F2r over F2, each element y ∈ F2r can be uniquely written as y =
r∑
j=1

yjbj,

where yj ∈ F2 = {0, 1} for 1 ≤ j ≤ r. Now the Lee weight of the element y ∈ F2r

with respect to the basis B is defined as the sum wtBL (y) =
r∑
j=1

yj. Further, the Lee

weight of a vector c = (c0, c1, · · · , cn−1) ∈ Fn2r with respect to the basis B is defined

as the sum wtBL (c) =
n−1∑
i=0

wtBL (ci), i.e., the sum of the Lee weights of its individual

components. Now a Euclidean self-dual code of length n over F2r is said to be a Type

II code if the Lee weight of each of its codewords is a multiple of 4. This definition

of Type II codes is shown to be independent of the choice of the trace-orthogonal

basis [12].

In order to study Type II Λ-MT codes of length n over F2r , we see, by Theorem

6.2.2, that a Λ-MT code of length n over F2r can be uniquely expressed as C =
ρ⊕

w=1

Cw,

where Cw(⊆ Gw) is a linear code of length ` over the finite commutative chain ring

F2r [x]

〈gw(x)2a 〉 for 1 ≤ w ≤ ρ. Further, we know that the GDFT gives rise to the ring
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isomorphism from F2r [x]

〈(x−1)2a 〉 onto F2r [u]

〈u2a 〉 ' F2r + uF2r + · · · + u2a−1F2r with u2a = 0,

given by b(x) 7→ b(1) + ub[1](1) + · · · + u2a−1b[2a−1](1) for each b(x) = b0 + b1x +

· · · + b2a−1x
2a−1 ∈ F2r [x]

〈(x−1)2a 〉 . Further, the inverse map from F2r [u]

〈u2a 〉 onto F2r [x]

〈(x−1)2a 〉 is

given by A0 + uA1 + · · · + u2a−1A2a−1 7→ B0 + B1x + · · · + B2a−1x
2a−1 for each

A0 +uA1 + · · ·+u2a−1A2a−1 ∈ F2r [u]

〈u2a 〉 , where Bς = Aς +
(
ς+1
ς

)
Aς+1 + · · ·+

(
2a−1
ς

)
A2a−1

for 0 ≤ ς ≤ 2a − 1. This gives rise to a Gray map φ : F2r [u]

〈u2a 〉 → F2a

2r , which is defined

as

φ(A0 + uA1 + · · ·+ u2a−1A2a−1) = (B0, B1, · · · , B2a−1) (6.13)

for each A0 + uA1 + · · · + u2a−1A2a−1 ∈ F2r [u]

〈u2a 〉 . Therefore with respect to the trace-

orthogonal basis B of F2r over F2, the Lee weight of the element A0 + uA1 + · · · +

u2a−1A2a−1 ∈ F2r [u]

〈u2a 〉 is defined as the Lee weight of its Gray image φ(A0 +uA1 + · · ·+

u2a−1A2a−1) = (B0, B1, · · · , B2a−1), where Bς = Aς +
(
ς+1
ς

)
Aς+1 + · · · +

(
2a−1
ς

)
A2a−1

for 0 ≤ ς ≤ 2a − 1.

Now we make the following observation.

Lemma 6.4.1. Let C be a Λ-MT code of length n over F2r . Let λi = 1 for some

integer i satisfying 1 ≤ i ≤ `, and let C1 be the constituent of C corresponding to

the irreducible factor g1(x) = x − 1 of xmi − λi = xmi − 1 in F2r [x]. Suppose that

there is an (odd) integer n′ such that ni ≡ n′ (mod 4) for all i ∈ U1. If the Lee

weight of every codeword of C is a multiple of 4, then the Lee weight of every word

of the constituent C1 is a multiple of 4. Conversely, if the Lee weight of every word

of the constituent C1 is a multiple of 4, then the Lee weight of every codeword of C

corresponding to the direct sum C1 ⊕ {0} ⊕ · · · ⊕ {0} is a multiple of 4.

Proof. Let x1 = (x1,1, x1,2, · · · , x1,`) ∈ C1 be fixed. Let us write

x1,i =

 x
(i)
0,1 + x

(i)
1,1u+ · · ·+ x

(i)
2a−1,1u

2a−1 if ε1,i = 1;

0 otherwise,

where x
(i)
j,1 ∈ F2r for 1 ≤ i ≤ ` and 0 ≤ j ≤ 2a − 1. As U1 = {i : 1 ≤ i ≤ ` and ε1,i =
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1}, we see that wtBL (x1) =
∑̀
i=1

wtBL (φ(x1,i)) =
∑
i∈U1

wtBL (φ(x1,i)).

Now by applying Theorem 6.3.2, the codeword c ∈ C corresponding to the ele-

ment (x1, 0, · · · , 0) ∈ C1⊕{0}⊕· · ·⊕{0} is given by c = (c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1,

· · · , c2,m2−1; · · · ; c`,0, c`,1, · · · , c`,m`−1), where for 0 ≤ t ≤ 2a − 1, 1 ≤ i ≤ ` and

0 ≤ vi ≤ ni − 1,

ci,t+vi2a =

 x
(1)
t,1 +

(
t+1
t

)
x

(1)
t+1,1 + · · ·+

(
2a−1
t

)
x

(1)
2a−1,1 if i ∈ U1;

0 otherwise.

We further observe that

wtBL (c) =
∑
i∈U1

wtBL (ci,0, ci,1, · · · , ci,mi−1) =
∑
i∈U1

ni−1∑
vi=0

wtBL (ci,vi2a , ci,1+vi2a , · · · , ci,2a−1+vi2a)

=
∑
i∈U1

ni−1∑
vi=0

wtBL (φ(x1,i)) =
∑
i∈U1

niwt
B
L (φ(x1,i))

≡ n′
∑
i∈U1

wtBL (φ(x1,i)) ≡ n′wtBL (x1) (mod 4).

From this, the desired result follows immediately.

Now we state Lemma 7.1 of Ling et al. [52] on the Lee weight of vectors over

F2r with respect to the basis B.

Lemma 6.4.2. [52] Let B be a trace-orthogonal basis of F2r over F2, and let

wtBL denote the Lee weight function with respect to the basis B. Then for y =

(y0, y1, · · · , yn−1), y′ = (y′0, y
′
1, · · · , y′n−1) ∈ Fn2r , we have

wtBL (y + y′) ≡ wtBL (y) + wtBL (y′)− 2wtBL (y ∗ y′) (mod 4),

where y ∗ y′ = (y0y
′
0, y1y

′
1, · · · , yn−1y

′
n−1). Furthermore, if 〈y, y′〉0 = 0, then wtBL (y +

y′) ≡ wtBL (y) + wtBL (y′) (mod 4).

The following lemma generalizes Lemma 7.3 of Ling et al. [52].
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Lemma 6.4.3. Let λi = 1 for 1 ≤ i ≤ `. Let C =
ρ⊕

w′=1

Cw′ be a Euclidean self-

orthogonal Λ-MT code (i.e., a GQC code) of length n over F2r , where C1, C2, · · · , Cρ
are the respective constituents of the code C corresponding to the irreducible factors

g1(x), g2(x), · · · , gρ(x) of the polynomials xm1−1, xm2−1, · · · , xm`−1 in F2r [x]. Let

w be an integer satisfying 1 ≤ w ≤ ρ and gw(x) 6= x − 1. Then the Lee weights of

all the codewords of C corresponding to the elements of the direct sum {0} ⊕ · · · ⊕

{0} ⊕ Cw ⊕ {0} ⊕ · · · ⊕ {0} are multiples of 4.

Proof. To prove the result, let xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw be fixed. Let us write

xw,i =

 x
(i)
0,w + x

(i)
1,wu+ · · ·+ x

(i)
2a−1,wu

2a−1 if εw,i = 1;

0 otherwise,

where x
(i)
j,w ∈ F2rdw for 1 ≤ i ≤ ` and 0 ≤ j ≤ 2a − 1. Next by Theorem 6.3.2, we

see that the codeword c ∈ C corresponding to the element (0, · · · , 0, xw, 0, · · · , 0) ∈

{0}⊕· · ·⊕{0}⊕Cw⊕{0}⊕· · ·⊕{0} is given by c = (c1,0, c1,1, · · · , c1,m1−1; c2,0, c2,1, · · · ,

c2,m2−1; · · · ; c`,0, c`,1, · · · , c`,m`−1), where for 0 ≤ t ≤ 2a − 1, 1 ≤ i ≤ ` and 0 ≤ vi ≤

ni − 1,

ci,t+vi2a = 0 if i 6∈ Uw (6.14)

and

ci,t+vi2a =
2a−1∑
j=t

(
j

t

)
TrF

qdw
/Fq(x

(i)
j,wδ

j−t−vi2a
w ) if i ∈ Uw. (6.15)

Further, consider the minimal polynomial P (x) of δ−2a

w over F2. Now as δ−2a

w 6= 1,

we note that the minimal polynomial P (x) of δ−2a

w must have an odd number of

non-zero monomials. Let us write P (x) = 1 + xj1 + xj2 + · · ·+ xjd−1 , where d is an

odd integer. From this, we have

1 + δ−j12a

w + δ−j22a

w + · · ·+ δ−jd−12a

w = 0. (6.16)
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Next for i ∈ Uw, 0 ≤ vi ≤ ni − 1 and 0 ≤ t ≤ 2a − 1, we see, by (6.15) and (6.16),

that

ci,t+vi2a + ci,t+(vi+j1)2a + · · ·+ ci,t+(vi+jd−1)2a = 0.

Further, for i ∈ Uw, 0 ≤ vi ≤ ni − 1 and 0 ≤ t ≤ 2a − 1, let us define

A
(0)
t,vi = ci,t+vi2a ,

A
(1)
t,vi = ci,t+vi2a + ci,t+(vi+j1)2a ,

A
(2)
t,vi = ci,t+vi2a + ci,t+(vi+j1)2a + ci,t+(vi+j2)2a ,

...

A
(d−2)
t,vi = ci,t+vi2a + ci,t+(vi+j1)2a + · · ·+ ci,t+(vi+jd−2)2a .

From this, it follows that

ci,t+vi2a = A
(0)
t,vi ,

ci,t+(vi+j1)2a = A
(1)
t,vi + A

(0)
t,vi ,

ci,t+(vi+j2)2a = A
(2)
t,vi + A

(1)
t,vi ,

...

ci,t+(vi+jd−2)2a = A
(d−2)
t,vi + A

(d−3)
t,vi ,

ci,t+(vi+jd−1)2a = A
(d−2)
t,vi .

Next we observe that

d wtBL (c) =
∑
i∈Uw

d wtBL (ci,0, ci,1, · · · , ci,mi−1)

=
∑
i∈Uw

ni−1∑
vi=0

2a−1∑
t=0

wtBL (ci,t+vi2a , ci,t+(vi+j1)2a , · · · , ci,t+(vi+jd−1)2a)

=
∑
i∈Uw

ni−1∑
vi=0

2a−1∑
t=0

wtBL

(
A

(0)
t,vi , A

(1)
t,vi + A

(0)
t,vi , · · · , A

(d−2)
t,vi + A

(d−3)
t,vi , A

(d−2)
t,vi

)
.
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Further, by applying Lemma 6.4.2, we get

d wtBL (c) ≡ 2
∑
i∈Uw

ni−1∑
vi=0

2a−1∑
t=0

( d−2∑
b1=0

wtBL
(
A

(b1)
t,vi

)
−

d−3∑
b2=0

wtBL
(
A

(b2)
t,vi ∗ A

(b2+1)
t,vi

))
(mod 4)

≡ 2
d−2∑
b1=0

(∑
i∈Uw

ni−1∑
vi=0

2a−1∑
t=0

wtBL
(
A

(b1)
t,vi

))
− 2

d−3∑
b2=0

(∑
i∈Uw

ni−1∑
vi=0

2a−1∑
t=0

wtBL
(
A

(b2)
t,vi ∗ A

(b2+1)
t,vi

))
(mod 4).

From this, we obtain

d wtBL (c) ≡ 2
(
wtBL (c) + wtBL

(
c+ T−j12a

Λ (c)
)

+ · · ·+ wtBL
(
c+ T−j12a

Λ (c) + · · ·+

T
−jd−22a

Λ (c)
))
− 2
(
wtBL

(
c ∗
(
c+ T−j12a

Λ (c)
)

+ wtBL
((
c+ T−j12a

Λ (c)
)
∗(

c+ T−j12a

Λ (c) + T−j22a

Λ (c)
)

+ · · ·+ wtBL
((
c+ T−j12a

Λ (c) + · · ·+ T
−jd−32a

Λ (c)
)

∗
(
c+ T−j12a

Λ (c) + · · ·+ T
−jd−22a

Λ (c)
))

(mod 4). (6.17)

Since C is a Euclidean self-orthogonal Λ-MT code, by applying Lemma 6.4.2, we

note that 2 wtBL (c′) ≡ 0 (mod 4) for all c′ ∈ C. From this and by (6.17), one can

easily observe that d wtBL (c) ≡ 0 (mod 4), which implies that wtBL (c) ≡ 0 (mod 4).

From this, the desired result follows.

In the following example, we show that Lemma 6.4.3 does not hold for Euclidean

self-orthogonal Λ-MT codes of length n over F2r when λi 6= 1 for some integer i

satisfying 1 ≤ i ≤ `.

Example 6.4.1. Let q = 4, ` = 2, m1 = m2 = 5, and let Λ = (b2, b2), where b is a

primitive element of F4 satisfying 1 + b+ b2 = 0. Here we have V = F4[x]
〈x5−b2〉 ×

F4[x]
〈x5−b2〉 .

It is easy to see that the set B = {b, b2} is a trace-orthogonal basis of F4 over F2.

From this, we get wtBL (0) = 0, wtBL (1) = 2 and wtBL (b) = wtBL (b2) = 1. Now let C

be a 1-generator Euclidean self-orthogonal Λ-MT code of length 10 over F4 with the

generating set {(b + bx + b2x2 + x3, b + bx + b2x2 + x3)}. Further, we observe that
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x5−b2 = (x−b)(x2+x+b2)(x2+b2x+b2) is the irreducible factorization of x5−b2 over

F4. Let us take g1(x) = x− b, g2(x) = x2 + x+ b2 and g3(x) = x2 + b2x+ b2. Now by

applying Theorem 6.2.2, we get C =
3⊕

w=1

Cw, where C1 = 〈(b, b)〉 is a F4[x]
〈g1(x)〉-submodule

of G1, C2 = 〈(b2 +b2δ2, b
2 +b2δ2)〉 is a F4[x]

〈g2(x)〉-submodule of G2 with δ2
2 +δ2 +b2 = 0 and

C3 = 〈(b+δ3, b+δ3)〉 is a F4[x]
〈g3(x)〉-submodule of G3 with δ2

3+b2δ3+b2 = 0. Next let us take

x1 = (b, b) ∈ C1, x2 = (b2 + b2δ2, b
2 + b2δ2) ∈ C2 and x3 = (b+ δ3, b+ δ3) ∈ C3. Now by

Theorem 6.3.2, we see that the codewords c1, c2, c3 ∈ C corresponding to the elements

(x1, 0, 0) ∈ C1⊕{0}⊕ {0}, (0, x2, 0) ∈ {0}⊕ C2⊕{0}, (0, 0, x3) ∈ {0}⊕ {0}⊕ C3 are

given by c1 = (b+x+b2x2+bx3+x4, b+x+b2x2+bx3+x4), c2 = (b2+x+b2x2+b2x3, b2+

x+b2x2 +b2x3) and c3 = (b2 +bx+b2x2 +x4, b2 +bx+b2x2 +x4), respectively. Here it

easy to see that wtBL (c1) = 14 6≡ 0 (mod 4) and wtBL (c2) = wtBL (c3) = 10 6≡ 0 (mod 4).

This shows that the Lee weights (with respect to the basis B) of the codewords of C

corresponding to the elements of C1 ⊕ {0} ⊕ {0}, {0} ⊕ C2 ⊕ {0} and {0} ⊕ {0} ⊕ C3

need not be multiples of 4. This shows that Lemma 6.4.3 does not hold when λi 6= 1

for some integer i satisfying 1 ≤ i ≤ `.

Now in the following theorem, we assume that λi = 1 for 1 ≤ i ≤ `, and we

derive necessary and sufficient conditions under which a Euclidean self-dual Λ-MT

code of length n over F2r is a Type II code.

Theorem 6.4.4. Let C be a Euclidean self-dual Λ-MT code of length n over F2r .

Let λi = 1 for 1 ≤ i ≤ `, and let C1 be the constituent of C corresponding to the

irreducible factor g1(x) = x − 1. Suppose that there is an odd integer n′ satisfying

ni ≡ n′ (mod 4) for all i ∈ U1. Then the code C is a Type II code over F2r if and

only if the Lee weight of each word in the constituent C1 is a multiple of 4.

Proof. To prove the result, it suffices to show that wtBL (c) ≡ 0 (mod 4) for all c ∈ C

if and only if wtBL (x1) ≡ 0 (mod 4) for all x1 ∈ C1.

To do this, let c ∈ C be fixed arbitrarily. As C '
ρ⊕

w=1

Cw, in view of Theorem 6.3.2,

we see that there exist x1 ∈ C1, x2 ∈ C2, · · · , xρ ∈ Cρ such that c is the codeword
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corresponding to the element (x1, x2, · · · , xρ) ∈
ρ⊕

w=1

Cw. We further note that

(x1, x2, · · · , xρ) = (x1, 0, · · · , 0) + (0, x2, 0, · · · , 0) + · · ·+ (0, 0, · · · , 0, xρ).

Now for 1 ≤ w ≤ ρ, by Theorem 6.3.2 again, let cw ∈ C be the codeword correspond-

ing to the element (0, · · · , 0, xw, 0, · · · , 0) ∈ {0} ⊕ · · · ⊕ {0} ⊕ Cw ⊕ {0} ⊕ · · · ⊕ {0}.

Since C '
ρ⊕

w=1

Cw, we must have c = c1 + c2 + · · · + cρ. Next as C is a Euclidean

self-dual Λ-MT code, by Lemma 6.4.2, we see that wtBL (c) ≡
ρ∑

w=1

wtBL (cw) (mod 4).

Further, by Lemma 6.4.3, we note that wtBL (cw) ≡ 0 (mod 4) for 2 ≤ w ≤ ρ. From

this, we obtain

wtBL (c) ≡ wtBL (c1) (mod 4),

where c1 is the codeword of C corresponding to the element (x1, 0, · · · , 0) of the

direct sum C1 ⊕ {0} ⊕ · · · ⊕ {0}. Now by applying Lemma 6.4.1, the desired result

follows immediately.

In the following example, we illustrate the above theorem to find a Type II MT

code over F2.

Example 6.4.2. Let q = 2, ` = 2, m1 = 20, m2 = 4, and let Λ = (1, 1). Here we

have V = F2[x]
〈x20−1〉 ×

F2[x]
〈x4−1〉 . Let us take g1(x) = x−1 and g2(x) = 1+x+x2 +x3 +x4.

Now let C be a 1-generator Λ-MT code of length 24 over F2 with the generating set

{(x3 +x4 +x7 +x8 +x10 +x12 +x13 +x16 +x17, 1+x2 +x3)}. Let C1 be the constituent

of C corresponding to the irreducible factor g1(x) = x− 1 of the polynomials x20− 1

and x4 − 1 in F2[x]. It is easy to see that C1 = 〈(1 + u2, 1 + u+ u3)〉 is a linear code

of length 2 over F2 + uF2 + u2F2 + u3F2, where u4 = 0. Since q = 2, we note that

B = {1} is the trace-orthogonal basis of F2 over F2, which implies that wtBL (0) = 0

and wtBL (1) = 1, (i.e., the Lee weight is the same as the Hamming weight here).

By using the Magma Computational Algebra System, we see that the code C is a

self-dual Λ-MT code of length 24 over F2 and that the Lee weight of each word of
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the constituent C1 is a multiple of 4. Now by applying Theorem 6.4.4, we see that

the code C is a Type II code over F2.

6.5 Generating sets of MT codes and their Galois

duals

Let C(⊆ V ) be a Λ-MT code of length n over Fq.A set S = {y1(x), y2(x), · · · , y%(x)}

consisting of the codewords of C is called a generating set of the code C if each code-

word c(x) ∈ C can be expressed as c(x) = f1(x)y1(x) + f2(x)y2(x) + · · ·+ f%(x)y%(x)

for some f1(x), f2(x), · · · , f%(x) ∈ Fq[x], and we write C = 〈y1(x), y2(x), · · · , y%(x)〉.

The code C is called a %-generator code if % is the cardinality of a minimal generating

set of the code C.

Furthermore, a generating set {b1(x), b2(x), · · · , b`(x)} of the code C is called a

normalized generating set of the code C if it satisfies exactly one of the following

two conditions for each integer i satisfying 1 ≤ i ≤ ` :

I. bi(x) = (0, 0, · · · , 0) ∈ V when there does not exist a codeword c(x) =

(ci,1(x), · · · , ci,i(x), 0, · · · , 0) in C with ci,i(x)(6= 0) ∈ Vi.

II. bi(x) = (Fi,1(x), Fi,2(x), · · · , Fi,i(x), 0, · · · , 0), where Fi,i(x)(6= 0) ∈ Vi is a

monic polynomial satisfying deg Fi,i(x) ≤ deg ci,i(x) for all the codewords

c(x) = (ci,1(x), · · · , ci,i(x), 0, · · · , 0) of C with ci,i(x)(6= 0) ∈ Vi.

Now in the following theorem, we will show that each Λ-MT code of length n

over Fq has a normalized generating set. It also extends Theorem 2.1 of Bae et al.

[9].

Theorem 6.5.1. Every Λ-MT code of length n over Fq has a normalized generating

set.
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Proof. To prove the result, let C(⊆ V ) be a Λ-MT code of length n over Fq. Now

for 1 ≤ i ≤ `, let us take bi(x) = (0, 0, · · · , 0) ∈ C if there does not exist a codeword

in C of the form ci(x) = (ci,1(x), ci,2(x), · · · , ci,i(x), 0, · · · , 0) with ci,i(x) 6= 0, oth-

erwise take bi(x) = (Fi,1(x), Fi,2(x), · · · , Fi,i(x), 0, · · · , 0), where Fi,i(x)(6= 0) ∈ Vi

is a monic polynomial satisfying deg Fi,i(x) ≤ deg ci,i(x) for all the codewords

ci(x) = (ci,1(x), · · · , ci,i(x), 0, · · · , 0) ∈ C with ci,i(x)(6= 0) ∈ Vi. We will show that

C = 〈b1(x), b2(x), · · · , b`(x)〉.

For this, let 1 ≤ i ≤ ` be fixed, and let di(x) = (di,1(x), di,2(x), · · · , di,i(x), 0, · · · , 0)

be an arbitrary codeword of C with di,i(x)(6= 0) ∈ Vi. Here we assert that Fi,i(x) di-

vides di,i(x) in Fq[x]. To prove the assertion, by the division algorithm in Fq[x], there

exist unique polynomials qi(x), ri(x) ∈ Fq[x] satisfying di,i(x) = qi(x)Fi,i(x) + ri(x),

where either ri(x) = 0 or deg ri(x) < deg Fi,i(x). If ri(x) 6= 0, then there exists a

codeword di(x)−qi(x)bi(x) = (di,1(x)−qi(x)Fi,1(x), di,2(x)−qi(x)Fi,2(x), · · · , di,i−1(x)−

qi(x)Fi,i−1(x), ri(x), 0, · · · , 0) in C with deg ri(x) < deg Fi,i(x), which is a contra-

diction. So we must have ri(x) = 0, from which the assertion follows immediately.

Now let c(x) = (c1(x), c2(x), · · · , c`(x)) ∈ C be an arbitrary non-zero codeword.

Let j be the largest integer satisfying 1 ≤ j ≤ ` and cj(x)(6= 0) ∈ Vj. Then we have

c(x) = (c1(x), c2(x), · · · , cj(x), 0, · · · , 0). Here we will show that

c(x) = f1(x)b1(x) + f2(x)b2(x) + · · ·+ fj(x)bj(x) (6.18)

for some f1(x), f2(x), · · · , fj(x) ∈ Fq[x]. To prove this, we will apply induction on

j ≥ 1. When j = 1, we have c(x) = (c1(x), 0, · · · , 0) ∈ C, where c1(x)(6= 0) ∈

V1. By the above assertion, we see that F1,1(x) divides c1(x) in Fq[x], which im-

plies that c1(x) = f1(x)F1,1(x), where f1(x) ∈ Fq[x]. This implies that c(x) =

(f1(x)F1,1(x), 0, · · · , 0) = f1(x)b1(x). Hence equation (6.18) holds when j = 1.

Now let h ≥ 2 be an integer, and let us suppose that equation (6.18) holds for

1 ≤ j ≤ h − 1. We will now show that the equation (6.18) holds when j = h.
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For this, let c(x) = (c1(x), c2(x), · · · , ch(x), 0, · · · , 0) ∈ C, where ch(x)(6= 0) ∈ Vh.

By the above assertion again, we see that Fh,h(x) divides ch(x) in Fq[x], which

implies that ch(x) = fh(x)Fh,h(x) for some fh(x) ∈ Fq[x]. Further, we observe

that c(x) − fh(x)bh(x) = (c1(x) − fh(x)Fh,1(x), c2(x) − fh(x)Fh,2(x), · · · , ch−1(x) −

fh(x)Fh,h−1(x), 0, · · · , 0) = d(x)(say) ∈ C. If d(x) = 0, then we have c(x) =

fh(x)bh(x). On the other hand, if d(x)(6= 0) ∈ C, then by the induction hypothesis,

we see that there exist f1(x), f2(x), · · · , fh−1(x) ∈ Fq[x] such that c(x)−fh(x)bh(x) =

d(x) = f1(x)b1(x)+f2(x)b2(x)+· · ·+fh−1(x)bh−1(x), where f1(x), f2(x), · · · , fh−1(x) ∈

Fq[x]. From this, we get c(x) = f1(x)b1(x) + f2(x)b2(x) + · · · + fh(x)bh(x), which

proves equation (6.18) when j = h.

Now by (6.18), the desired result follows immediately.

We further observe the following:

Lemma 6.5.2. Let C be a Λ-MT code of length n over Fq having a normalized

generating set {b1(x), b2(x), · · · , b`(x)} satisfying conditions I and II. If bi(x) is non-

zero for some integer i satisfying 1 ≤ i ≤ `, then Fi,i(x) divides xmi − λi in Fq[x].

Proof. To prove the result, let 1 ≤ i ≤ ` be fixed. By the division algorithm

in Fq[x], there exist unique polynomials Qi(x), Ri(x) ∈ Fq[x] such that xmi − λi =

Qi(x)Fi,i(x)+Ri(x), where either Ri(x) = 0 or deg Ri(x) < deg Fi,i(x). From this, it

follows that Qi(x)Fi,i(x) = −Ri(x) in Vi. Now we see that Qi(x)bi(x) is a codeword of

C and thatQi(x)bi(x) = (Qi(x)Fi,1(x), Qi(x)Fi,2(x), · · · , Qi(x)Fi,i−1(x), Qi(x)Fi,i(x),

0, · · · , 0) = (Qi(x)Fi,1(x), Qi(x)Fi,2(x), · · · , Qi(x)Fi,i−1(x),−Ri(x), 0, · · · , 0) . IfRi(x)

is a non-zero polynomial in Vi, then deg Ri(x) < deg Fi,i(x) and Qi(x)bi(x) =

(Qi(x)Fi,1(x), Qi(x)Fi,2(x), · · · , Qi(x)Fi,i−1(x),−Ri(x), 0, · · · , 0) ∈ C, which contra-

dicts our choice of Fi,i(x). Therefore we must have Ri(x) = 0, which implies that

Fi,i(x) divides xmi − λi in Fq[x].

Further, a normalized generating set {b1(x), b2(x), · · · , b`(x)} (satisfying condi-

tions I and II) of the Λ-MT code C is said to be nice if for i + 1 ≤ j ≤ `, either
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Fj,i(x) = 0 or deg Fj,i(x) < deg Fi,i(x), where 1 ≤ i ≤ `.

In the following theorem, we show that each Λ-MT code of length n over Fq has

a unique nice normalized generating set.

Theorem 6.5.3. Every Λ-MT code C of length n over Fq has a unique nice nor-

malized generating set.

Proof. By Theorem 6.5.1, we see that the code C has a normalized generating set

{b1(x), b2(x), · · · , b`(x)} satisfying conditions I and II. Now to produce a nice normal-

ized generating set for the code C, let us take d1(x) = b1(x). Further, if b1(x)(6= 0) ∈

V1, then by applying the division algorithm in Fq[x], we see that there exist unique

polynomials Q2,1(x), R2,1(x) ∈ Fq[x] such that F2,1(x) = Q2,1(x)F1,1(x) + R2,1(x),

where either R2,1(x) = 0 or deg R2,1(x) < deg F1,1(x).

Now let us define

d2(x) = b2(x)−Q2,1(x)b1(x) = (R2,1(x), F2,2(x), 0, · · · , 0).

Further, if b2(x)(6= 0) ∈ V2, then by applying the division algorithm in Fq[x], there

exist unique polynomialsQ3,2(x), R3,2(x) ∈ Fq[x] such that F3,2(x) = Q3,2(x)F2,2(x)+

R3,2(x), where either R3,2(x) = 0 or deg R3,2(x) < deg F2,2(x). Moreover, if b1(x) 6=

0, then for F3,1(x)−Q3,2(x)F2,1(x) ∈ Fq[x], by the division algorithm in Fq[x], there

exist unique polynomials Q3,1(x), R3,1(x) ∈ Fq[x] such that F3,1(x)−Q3,2(x)F2,1(x) =

Q3,1(x)F1,1(x) +R3,1(x), where either R3,1(x) = 0 or deg R3,1(x) < deg F1,1(x).

Now let

d3(x) = b3(x)−Q3,2(x)b2(x)−Q3,1(x)b1(x) = (R3,1(x), R3,2(x), F3,3(x), 0, · · · , 0).

Further, proceeding like this for 2 ≤ i ≤ ` and 1 ≤ j ≤ i − 1, and by apply-

ing the division algorithm again, we can recursively choose unique polynomials
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Qi,j(x), Ri,j(x) ∈ Fq[x] such that

Fi,j(x)−Qi,i−1(x)Fi−1,j(x)− · · · −Qi,j+1(x)Fj+1,j(x) = Qi,j(x)Fj,j(x) +Ri,j(x),

where either Ri,j(x) = 0 or degRi,j(x) < deg Fj,j(x).

Furthermore, for 3 ≤ i ≤ `, let us define

di(x) = bi(x)−Qi,i−1(x)bi−1(x)− · · · −Qi,1(x)b1(x)

= (Ri,1(x), Ri,2(x), · · · , Ri,i−1(x), Fi,i(x), 0, · · · , 0).

Now it is easy to observe that the set {d1(x), d2(x), · · · , d`(x)} is a nice normalized

generating set of the code C.

Next let {t1(x), t2(x), · · · , t`(x)} be another nice normalized generating set of

the code C satisfying exactly one of the following two conditions:

A. ti(x) = (0, 0, · · · , 0) ∈ V when there does not exist a codeword ci(x) =

(ci,1(x), · · · , ci,i(x), 0, · · · , 0) in C with ci,i(x)(6= 0) ∈ Vi.

B. ti(x) = (Hi,1(x), Hi,2(x), · · · , Hi,i(x), 0, · · · , 0), where Hi,i(x)(6= 0) ∈ Vi is a

monic polynomial satisfying deg Hi,i(x) ≤ deg ci,i(x) for all the codewords

ci(x) = (ci,1(x), · · · , ci,i(x), 0, · · · , 0) of C with ci,i(x)(6= 0) ∈ Vi, and for i+1 ≤

j ≤ `, either Hj,i(x) = 0 or deg Hj,i(x) < deg Hi,i(x), where 1 ≤ i ≤ `.

Now we will show that di(x) = ti(x) for 1 ≤ i ≤ `. Towards this, let 1 ≤ i ≤ ` be

fixed.

If there does not exist any codeword ci(x) = (ci,1(x), · · · , ci,i(x), 0, · · · , 0) in C

with ci,i(x)(6= 0) ∈ Vi, then we have di(x) = (0, 0, · · · , 0) = ti(x).

Now suppose that there exists a codeword ci(x) = (ci,1(x), · · · , ci,i(x), 0, · · · , 0)

in C with ci,i(x)(6= 0) ∈ Vi. In this case, we note that di(x) = (Ri,1(x), Ri,2(x), · · · ,

Ri,i−1(x), Fi,i(x), 0, · · · , 0) and ti(x) = (Hi,1(x), Hi,2(x), · · · , Hi,i−1(x), Hi,i(x), 0, · · ·
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· · · , 0). We also note that both Fi,i(x), Hi,i(x) are monic polynomials in Fq[x] of the

same degree.

If Fi,i(x)−Hi,i(x)(6= 0) ∈ Vi, then deg (Fi,i(x)−Hi,i(x)) < deg Fi,i(x). This im-

plies that there exists a non-zero codeword di(x)−ti(x) = (Ri,1(x)−Hi,1(x), Ri,2(x)−

Hi,2(x), · · · , Ri,i−1(x)−Hi,i−1(x), Fi,i(x)−Hi,i(x), 0, · · · , 0) in the code C satisfying

deg (Fi,i(x)−Hi,i(x)) < deg Fi,i(x), which contradicts our choice of Fi,i(x).

Therefore we must have Fi,i(x) = Hi,i(x), which gives di(x)− ti(x) = (Ri,1(x)−

Hi,1(x), Ri,2(x) − Hi,2(x), · · · , Ri,i−1(x) − Hi,i−1(x), 0, 0, · · · , 0) ∈ C. Here we assert

that

Ri,j(x) = Hi,j(x) for 1 ≤ j ≤ i− 1. (6.19)

Suppose, on the contrary, that the assertion (6.19) is not true. Let 1 ≤ k ≤ i−1

be the largest integer such that Ri,k(x) − Hi,k(x) 6= 0. Then we note that di(x) −

ti(x) = (Ri,1(x) − Hi,1(x), Ri,2(x) − Hi,2(x), · · · , Ri,k(x) − Hi,k(x), 0, 0, · · · , 0) ∈ C

and deg (Ri,k(x)−Hi,k(x)) < deg Fk,k(x), which contradicts our choice of Fk,k(x).

Now by the assertion (6.19), we get di(x) = ti(x) for 1 ≤ i ≤ `, which completes

the proof of the theorem.

In the following corollary, we explicitly determine the dimension of each Λ-MT

code of length n over Fq.

Corollary 6.5.4. If C is a Λ-MT code of length n over Fq with a normalized gen-

erating set {b1(x), b2(x), · · · , b`(x)} satisfying conditions I and II, then we have

dimFqC =
∑̀
i=1

(mi − deg Fi,i(x)) .

(Here we take Fi,i(x) = xmi − λi if Fi,i(x) = 0 ∈ Vi for 1 ≤ i ≤ `.)

Proof. One can easily show that the set {xjbi(x) : 0 ≤ j < mi− deg Fi,i(x) and 1 ≤

i ≤ `} is a basis set of C over Fq. From this, the desired result follows immediately.
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Now we proceed to explicitly determine a generating set of the k-Galois dual

code of each Λ-MT code of length n over Fq from its normalized generating set. For

this, let C be a Λ-MT code of length n over Fq, and let {b1(x), b2(x), · · · , b`(x)} be

a normalized generating set of the code C satisfying conditions I and II. From this

point on, we shall take Fi,i(x) = xmi − λi when Fi,i(x) = 0 in Vi for 1 ≤ i ≤ `. Now

for 1 ≤ η ≤ `, let us define

A(0)
η,η(x) = F (0)

η,η (x) = Fη,η(x), B(0)
η,η(x) = 0 and

b(0)
η (x) = (F

(0)
η,1 (x), F

(0)
η,2 (x), · · · , F (0)

η,η (x), 0, · · · , 0) = bη(x).

Further, for 2 ≤ η ≤ ` and 1 ≤ i ≤ η − 1, let us define

b(i)
η (x) = A

(i)
η,η−i(x)b(i−1)

η (x)−B(i)
η,η−i(x)bη−i(x) = (F

(i)
η,1(x), F

(i)
η,2(x), · · · , F (i)

η,η(x), 0, · · · , 0),

whereA
(i)
η,η−i(x) =

F
(0)
η−i,η−i(x)

gcd(F
(0)
η−i,η−i(x),F

(i−1)
η,η−i(x))

and B
(i)
η,η−i(x) =

F
(i−1)
η,η−i(x)

gcd(F
(0)
η−i,η−i(x),F

(i−1)
η,η−i(x))

.

Next it is easy to observe that

F (i)
η,η(x) = A(0)

η,η(x)A
(1)
η,η−1(x) · · ·A(i)

η,η−i(x) divides xmi − λi in Fq[x]

and

F
(i)
η,j(x) = 0

for 2 ≤ η ≤ `, 1 ≤ i ≤ η − 1 and η − i ≤ j ≤ η − 1. Then we make the following

observation.

Lemma 6.5.5. For 1 ≤ i ≤ `, let us take Fi,i(x) = xmi − λi when Fi,i(x) = 0 in Vi.

For 2 ≤ η ≤ ` and 1 ≤ i ≤ η − 1, the following hold.

(a)
B

(η−i)
η,i (x)

A
(η−i)
η,i (x)A

(η−i−1)
η,i+1 (x)···A(1)

η,η−1(x)
=

Fη,i(x)
Fi,i(x) −

Fη−1,i(x)B
(1)
η,η−1(x)

Fi,i(x)A
(1)
η,η−1(x)

−

· · ·− Fi+1,i(x)B
(η−i−1)
η,i+1 (x)

Fi,i(x)A
(η−i−1)
η,i+1 (x)A

(η−i−2)
η,i+2 (x)···A(1)

η,η−1(x)
.
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(b)
B

(η−i)
η,i (x)

A
(η−i)
η,i (x)A

(η−i−1)
η,i+1 (x)···A(1)

η,η−1(x)
=

Fη,i(x)
Fi,i(x)−

Fη,i+1(x)B
(1)
i+1,i(x)

F
(1)
i+1,i+1(x)

−· · ·−Fη,η−1(x)B
(η−i−1)
η−1,i (x)

F
(η−i−1)
η−1,η−1(x)

.

Proof. (a) To prove this, for 2 ≤ η ≤ `, we see that

b(η−2)
η (x) = (F

(η−2)
η,1 (x), 0, · · · , 0, F (η−2)

η,η (x), 0, · · · , 0)

= A
(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·A(1)

η,η−1(x)bη(x)− A(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·

A
(2)
η,η−2(x)B

(1)
η,η−1(x)bη−1(x)− · · · − A(η−2)

η,2 (x)A
(η−3)
η,3 (x)B

(η−4)
η,4 (x)b4(x)

−A(η−2)
η,2 (x)B

(η−3)
η,3 (x)b3(x)−B(η−2)

η,2 (x)b2(x).

This further implies that

F
(η−2)
η,1 (x) = A

(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·A(1)

η,η−1(x)Fη,1(x)− A(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·

A
(2)
η,η−2(x)B

(1)
η,η−1(x)Fη−1,1(x)− · · · − A(η−2)

η,2 (x)B
(η−3)
η,3 (x)F3,1(x)−

B
(η−2)
η,2 (x)F2,1(x)

and

F
(η−2)
η,i (x)= 0 =A

(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·A(1)

η,η−1(x)Fη,i(x)− A(η−2)
η,2 (x)A

(η−3)
η,3 (x) · · ·

A
(2)
η,η−2(x)B

(1)
η,η−1(x)Fη−1,i(x)− · · · − A(η−2)

η,2 (x) · · ·A(η−i)
η,i (x)

B
(η−i−1)
η,i+1 (x)Fi+1,i(x)− A(η−2)

η,2 (x) · · ·A(η−i+1)
η,i−1 (x)B

(η−i)
η,i (x)Fi,i(x)

for 2 ≤ i ≤ η − 1. From this, the desired result follows immediately.

(b) To prove (b), let 2 ≤ η ≤ ` be fixed. Here we will apply the strong mathe-

matical induction on η − i, where 1 ≤ i ≤ η − 1. Towards this, by part (a),

we see that
B

(1)
η,η−1(x)

A
(1)
η,η−1(x)

= Fη,η−1(x)

Fη−1,η−1(x)
, and hence the result holds when η − i = 1.

Further, let 2 ≤ η ≤ ` and 1 ≤ i ≤ η − 1 be fixed integers, and let us assume
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that the result holds for 1 ≤ j ≤ η − i− 1, i.e., we have

B
(j)
η,η−j(x)

A
(j)
η,η−j(x)A

(j−1)
η,η−j+1(x) · · ·A(1)

η,η−1(x)
=

Fη,η−j(x)

Fη−j,η−j(x)
−
Fη,η−j+1(x)B

(1)
η−j+1,η−j(x)

F
(1)
η−j+1,η−j+1(x)

−

· · · −
Fη,η−1(x)B

(j−1)
η−1,η−j(x)

F
(j−1)
η−1,η−1(x)

(6.20)

for 1 ≤ j ≤ η − i− 1. Now we shall prove the result for j = η − i, i.e.,

B
(η−i)
η,i (x)

A
(η−i)
η,i (x)A

(η−i−1)
η,i+1 (x) · · ·A(1)

η,η−1(x)
=

Fη,i(x)

Fi,i(x)
−
Fη,i+1(x)B

(1)
i+1,i(x)

F
(1)
i+1,i+1(x)

− · · ·

· · · −
Fη,η−1(x)B

(η−i−1)
η−1,i (x)

F
(η−i−1)
η−1,η−1(x)

.

For this, we see, by part (a) and by (6.20), that

Fη,i(x)

Fi,i(x)
−
Fη,i+1(x)B

(1)
i+1,i(x)

F
(1)
i+1,i+1(x)

− · · · −
Fη,η−1(x)B

(η−i−1)
η−1,i (x)

F
(η−i−1)
η−1,η−1(x)

=
Fη,i(x)

Fi,i(x)
− Fη,i+1(x)Fi+1,i(x)

Fi+1,i+1(x)Fi,i(x)
− · · · − Fη,η−1(x)

Fη−1,η−1(x)

(
Fη−1,i(x)

Fi,i(x)
−
Fη−2,i(x)B

(1)
η−1,η−2(x)

Fi,i(x)A
(1)
η−1,η−2(x)

− · · · −
Fi+1,i(x)B

(η−i−2)
η−1,i+1(x)

Fi,i(x)A
(η−i−2)
η−1,i+1(x)A

(η−i−3)
η−1,i+2(x) · · ·A(1)

η−1,η−2(x)

)

=
Fη,i(x)

Fi,i(x)
− Fη−1,i(x)Fη,η−1(x)

Fi,i(x)Fη−1,η−1(x)
− · · · − Fi+1,i(x)

Fi,i(x)

(
Fη,i(x)

Fi,i(x)
−

Fη,i+1(x)B
(1)
i+1,i(x)

Fi+1,i+1(x)A
(1)
i+1,i(x)

−

· · · −
Fη,η−1(x)B

(η−i−1)
η−1,i (x)

Fη−1,η−1(x)A
(η−i−1)
η−1,i (x)A

(η−i−2)
η−1,i+1(x) · · ·A(1)

η−1,η−2(x)

)

=
Fη,i(x)

Fi,i(x)
−
Fη−1,i(x)B

(1)
η,η−1(x)

Fi,i(x)A
(1)
η,η−1(x)

− · · · −
Fi+1,i(x)B

(η−i−1)
η,i+1 (x)

Fi,i(x)A
(η−i−1)
η,i+1 (x)A

(η−i−2)
η,i+2 (x) · · ·A(1)

η,η−1(x)

=
B

(η−i)
η,i (x)

A
(η−i)
η,i (x)A

(η−i−1)
η,i+1 (x) · · ·A(1)

η,η−1(x)
.

Hence the result follows by strong mathematical induction.
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Bae et al. [9, Th. 3.11] tried to determine a normalized generating set of the

Euclidean dual code of a binary GQC code from the normalized generating set of

the code. However, we noticed an error in Theorem 3.11 of Bae et al. [9], which we

illustrate in the following example.

Example 6.5.1. Let q = 2, ` = 3 and m1 = m2 = m3 = 3. Here we have V =

V1 × V2 × V3 = F2[x]
〈x3−1〉 ×

F2[x]
〈x3−1〉 ×

F2[x]
〈x3−1〉 . Let C be a GQC code of length 9 over F2

with a normalized generating set {b1(x), b2(x), b3(x)}, where b1(x) = (1, 0, 0), b2(x) =

(1, 1 + x + x2, 0) and b3(x) = (1, x + 1, x + 1). Now by Lemma 3.7, Theorem 3.11

and Example 3.12 of Bae et al. [9], we see that the Euclidean dual code C⊥0 of

the code C is a GQC code of length 9 over F2 with a normalized generating set

{e1(x), e2(x), e3(x)}, where e1(x) = e2(x) = (0, 0, 0) and e3(x) = (0, (x+1)λ3,2(x), 1)

with λ3,2(x) ≡ x−1 (mod 1). This implies that C⊥0 = 〈(0, (x+ 1)λ3,2(x), 1)〉 for any

λ3,2(x) ∈ F2[x]
〈x3−1〉 . However, one can easily observe that (0, (x + 1)λ3,2(x), 1) 6∈ C⊥0

whenever λ3,2(x) 6≡ x (mod 1+x+x2). This shows that there is an error in Theorem

3.11 of Bae et al. [9], and hence in the method provided by Bae et al. [9] to

determine generating sets of the Euclidean dual codes of GQC codes over F2 from

their normalized generating sets.

Now in the following theorem, we explicitly determine generating sets of the

k-Galois duals of all Λ-MT codes over Fq from normalized generating sets of these

codes. It also rectifies errors in Theorem 3.11 of Bae et al. [9] for binary GQC codes.

Theorem 6.5.6. If C is a Λ-MT code of length n over Fq with a normalized gen-

erating set {b1(x), b2(x), · · · , b`(x)} satisfying conditions I and II, then a generating

set of the k-Galois dual code C⊥k of the code C is given by {a1(x), a2(x), · · · , a`(x)},

where

ai(x) = (0, · · · , 0, T (i)
k (Ei,i(x)), T (i+1)

k (Ei,i+1(x)), · · · , T (`)
k (Ei,`(x))) (6.21)

with Ei,i(x) =
λ−1
i (xmi−λi)
Fi,i(x)

and Ei,j = −λ−1
j (xmj−λj)B

(j−i)
j,i (x)

F
(j−i)
j,j (x)

for 1 ≤ i ≤ ` and
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i < j ≤ `. (Here we take Fi,i(x) = xmi − λi if Fi,i(x) = 0 ∈ Vi for 1 ≤ i ≤ `.)

Proof. In order to prove this, we will first show that a1(x), a2(x), · · · , a`(x) ∈ C⊥k ,

i.e., (aj(x), bi(x))k = 0 for all 1 ≤ i, j ≤ `. To do this, let 1 ≤ i, j ≤ ` be fixed.

First of all, for i ≤ j, one can easily observe that {bi(x), aj(x)}k = 0.

Next for j < i, we consider

{bi(x), aj(x)}k = Ej,j(x)Fi,j(x)λj

( xm − 1

xmj − λj

)
+ Ej,j+1(x)Fi,j+1(x)λj+1

( xm − 1

xmj+1 − λj+1

)
+

· · ·+ Ej,i(x)Fi,i(x)λi

( xm − 1

xmi − λi

)
=

(
Fi,j(x)

Fj,j(x)
−
Fi,j+1(x)B

(1)
j+1,j(x)

F
(1)
j+1,j+1(x)

− · · · −
Fi,i−1(x)B

(i−j−1)
i−1,j (x)

F
(i−j−1)
i−1,i−1 (x)

−
B

(i−j)
i,j (x)

A
(1)
i,i−1(x) · · ·A(i−j)

i,j (x)

)
(xm − 1).

This, by Lemma 6.5.5(b), implies that {bi(x), aj(x)}k = 0 for j < i. Further, by

Lemma 6.2.5(b), we get a1(x), a2(x), · · · , a`(x) ∈ C⊥k , which further implies that

〈a1(x), a2(x), · · · · · · , a`(x)〉 ⊆ C⊥k . (6.22)

On the other hand, let (d1(x), d2(x), · · · , d`(x)) ∈ C⊥k . This, by Theorem 8.3.2 and

Lemma 6.2.5(b), implies that

F1,1(x)S(1)
k (d1(x))λ1

(
xm − 1

xm1 − λ1

)
≡ 0 (mod xm − 1),

F2,1(x)S(1)
k (d1(x))λ1

(
xm − 1

xm1 − λ1

)
+ F2,2(x)S(2)

k (d2(x))λ2

(
xm − 1

xm2 − λ2

)
≡ 0 (mod xm − 1),

...

F`,1(x)S(1)
k (d1(x))λ1

(
xm − 1

xm1 − λ1

)
+ F`,2(x)S(2)

k (d2(x))λ2

(
xm − 1

xm2 − λ2

)
+

· · ·+ F`,`(x)S(`)
k (d`(x))λ`

(
xm − 1

xm` − λ`

)
≡ 0 (mod xm − 1).
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From this, we observe that

S(1)
k (d1(x)) = y1(x)E1,1(x),

S(2)
k (d2(x)) = y1(x)E1,2(x) + y2(x)E2,2(x),

S(3)
k (d3(x)) = y1(x)E1,3(x) + y2(x)E2,3(x) + y3(x)E3,3(x),

...

S(`)
k (d`(x)) = y1(x)E1,`(x) + y2(x)E2,`(x) + · · ·+ y`(x)E`,`(x),

where y1(x), y2(x), · · · , y`(x) ∈ Fq[x]. This implies that (S(1)
k (d1(x)),S(2)

k (d2(x)), · · ·

· · · ,S(`)
k (d`(x))) ∈ 〈(E1,1(x), E1,2(x), · · · , E1,`(x)), (0, E2,2(x), · · · , E2,`(x)), · · · , (0, 0,

· · · , 0, E`,`(x))〉 ⊆ V. As T (i)
k is the inverse of S(i)

k for 1 ≤ i ≤ `, we see that

(d1(x), d2(x), · · · , d`(x)) ∈ 〈a1(x), a2(x), · · · , a`(x)〉(⊆ V ′). From this, we obtain

C⊥k ⊆ 〈a1(x), a2(x), · · · , a`(x)〉 . (6.23)

Now by (6.22) and (6.23), the desired result follows immediately.

Now we provide an example to illustrate Theorem 6.5.6.

Example 6.5.2. Let C be the GQC code of length 9 over F2 (as considered in

Example 6.5.1) with a normalized generating set {b1(x), b2(x), b3(x)}, where b1(x) =

(1, 0, 0), b2(x) = (1, 1 + x + x2, 0) and b3(x) = (1, x + 1, x + 1). Now by applying

Theorem 6.5.6, we see that a generating set of the Euclidean dual code C⊥0 of the

code C is given by {a1(x), a2(x), a3(x)}, where a1(x) = (0, 1 + x2, x), a2(x) = (0, 1 +

x2, 1 + x2) and a3(x) = (0, 0, 1 + x + x2). Since a1(x) = a2(x) + a3(x), we see that

C⊥0 = 〈a2(x), a3(x)〉.

Remark 6.5.7. (a) Let C be a Λ-MT code of length n over Fq with a normalized

generating set {b1(x), b2(x), · · · , b`(x)} satisfying conditions I and II. By ap-

plying Theorem 6.5.6 and by working in a similar manner as in Theorem 6.5.3,
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one can determine a unique generating set S = {R1(x), R2(x), · · · , R`(x)} for

the dual code C⊥k with Ri(x) = (0, · · · , 0, Ri,i(x), Ri,i+1(x), · · · , Ri,`(x)), where

Ri,i(x) = κi

(
T (i)
k

(
λ−1
i (xmi−λi)
Fi,i(x)

))
is a monic polynomial for some κi ∈ Fq and

either Rj,i(x) = 0 or deg Rj,i(x) < deg Ri,i(x) for 1 ≤ j < i ≤ `.

(b) The results derived in Section 3.4 can be similarly extended to this generalized

family of MT codes over Fq, whose block lengths m1,m2, · · · ,m` are arbitrary

positive integers, not necessarily coprime to q.

In the database maintained by Grassl [39], many linear codes with best-known

and optimal parameters [n, k, dmin] have been listed over Fq when 2 ≤ q ≤ 9. In Ta-

bles 6.1 and 6.2, we also identify several linear codes with best-known and optimal

parameters [n, k, dmin] from 1-generator Λ-MT codes over Fq with the generating

set {(b1(x), b2(x), · · · , b`(x))} by carrying out computations in the Magma Com-

putational Algebra System, where 2 ≤ q ≤ 7. It is worth noting that these code

parameters cannot be attained by constacyclic and QT codes. In Tables 6.1 and

6.2, the element bi(x) = bi,0 + bi,1x + bi,2x
2 + · · · + bi,mi−1x

mi−1 ∈ Vi is represented

by the sequence bi,0bi,1 · · · bi,mi−1 for 1 ≤ i ≤ `, and b is a primitive element of F4.
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q (m1,m2, · · · ,m`) Λ (b1(x), b2(x), · · · , b`(x)) [n, k, dmin]

2 (21, 1, 1) (1, 1, 1) (101011010101010110010, 1, 0) [23, 16, 4]

2 (21, 1, 1) (1, 1, 1) (101110011110110100110, 1, 1) [23, 15, 4]

2 (15, 5, 3) (1, 1, 1) (010011110111011, 10111, 011) [23, 10, 8]

2 (14, 7, 2) (1, 1, 1) (10011010000110, 0010001, 00) [23, 9, 8]

2 (14, 7, 2) (1, 1, 1) (10111010111111, 1010011, 10) [23, 8, 8]

2 (24, 4, 1) (1, 1, 1) (100111110011110011111100, 1000, 1) [29, 20, 4]

2 (21, 7, 1) (1, 1, 1) (001111000001110010011, 1001101, 0) [29, 12, 8]

2 (24, 3, 2) (1, 1, 1) (001111110110111100011011, 00110) [29, 21, 4]

2 (28, 2, 1) (1, 1, 1) (1110001010111101100110000100, 11, 0) [31, 22, 4]

2 (28, 2, 1) (1, 1, 1) (0010110101010110111101101111, 10, 1) [31, 23, 4]

2 (28, 2, 1) (1, 1, 1) (1110100111010010010111011100, 10, 1) [31, 24, 4]

2 (20, 10, 1) (1, 1, 1) (00101110101000101110, 0111111010, 1) [31, 14, 8]

2 (30, 1) (1, 1) (001101100111011101011101010100, 1) [31, 18, 6]

2 (35, 2) (1, 1) (11010010000100000110001100010011110,
00)

[37, 27, 4]

2 (40, 1) (1, 1) (10101110111100010010100010001010011
00100, 0)

[41, 31, 4]

2 (35, 5, 1) (1, 1, 1) (01000011011100010100110010101011000,
01100, 0)

[41, 32, 4]

2 (42, 1) (1, 1) (11100111010011101011100011000010101
1010100, 0)

[43, 33, 4]

2 (42, 1) (1, 1) (00000111000010101110011111110000110
1110011, 0)

[43, 34, 4]

2 (42, 1) (1, 1) (01101011001100101110000101111111010
1011111, 0)

[43, 35, 4]

2 (21, 21, 1) (1, 1, 1) (101010100011011000010, 0110110000101
00101101, 1)

[43, 21, 10]

2 (42, 4, 1) (1, 1, 1) (01101010110100001100000100011010000
0110011, 1100, 1)

[47, 37, 4]

2 (42, 4, 1) (1, 1, 1) (01110111101110000000111101000001011
0001000, 1100, 0)

[47, 38, 4]

2 (42, 3, 2) (1, 1, 1) (00111111000110111101010010011010111
0110110, 001, 10)

[47, 39, 4]

3 (11, 11, 1) (2, 2, 1) (11012110120, 00022201121, 0) [23, 10, 9]

3 (11, 11, 1) (2, 2, 2) (22012201200, 11122121102, 2) [23, 11, 9]

3 (26, 2, 1) (1, 1, 2) (01221102101102211211100210, 10, 2) [29, 20, 6]

3 (24, 3, 2) (1, 1, 2) (121221120202111212100112, 211, 11) [29, 19, 6]

5 (24, 5) (1, 3) (322143404240332412004122, 24224) [29, 5, 3]

5 (30, 1) (4, 2) (400032102243414411401230334141, 1) [31, 26, 4]

7 (16, 1) (2, 2) (3365356202240515, 6) [17, 13, 4]

7 (8, 8, 1) (4, 4, 5) (13460303, 36344311, 2) [17, 8, 8]

Table 6.1: Linear codes with optimal parameters [n, k, dmin] over Fq obtained as
1-generator Λ-MT codes
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q (m1,m2, · · · ,m`) Λ (b1(x), b2(x), · · · , b`(x)) [n, k, dmin]

2 (33, 2, 2) (1, 1, 1) (001010111011100100010010110101110,
11, 11)

[37, 23, 6]

2 (30, 5, 2) (1, 1, 1) (110010001011011010000010110100,
00110, 10)

[37, 18, 8]

2 (18, 18, 1) (1, 1, 1) (100000001101110110,
011011001111000110, 1)

[37, 15, 10]

2 (20, 20, 1) (1, 1, 1) (10000000111001000111,
11000010001111010011, 0)

[41, 19, 10]

2 (28, 14, 1) (1, 1, 1) (1000110101100100101000010110,
10110011001010, 1)

[43, 23, 8]

2 (21, 21, 1) (1, 1, 1) (000001010000100111111,
101111100100101000000, 1)

[43, 16, 12]

2 (30, 15, 2) (1, 1, 1) (100101001011111111001011001001,
111000000101111, 10)

[47, 26, 8]

2 (42, 8, 3) (1, 1, 1) (100011101100101000011101111100111
110110000, 01111000, 101)

[53, 42, 4]

3 (14, 14, 1) (2, 2, 1) (22020002020202, 00001022110010, 0) [29, 14, 9]

3 (24, 4, 1) (1, 2, 1) (102020210002112000202102, 0201, 1) [29, 22, 4]

3 (20, 5, 4) (1, 2, 1) (11211020200200001200, 11222, 2022) [29, 15, 8]

3 (24, 4, 1) (1, 1, 2) (200121101020220121012120, 2021, 2) [29, 18, 6]

3 (14, 14, 1) (1, 1, 2) (21121011001201, 12221202100101, 1) [29, 14, 9]

3 (24, 4, 3) (1, 2, 1) (211220112021102210221110, 0012, 200) [31, 20, 6]

3 (24, 4, 3) (1, 2, 1) (021122222212210211220122, 0202, 212) [31, 24, 4]

4 (9, 9, 1) (1, 1, b2) (b21b20b11b1, 010b2b20100, 1) [19, 8, 8]

4 (7, 7, 7, 2) (1, 1, 1, 1) (bb10000, 10b1b1b2, 1b2bb2b2b2b2, b2b2) [23, 7, 12]

4 (20, 2, 1) (b, b, b2) (b2b2001b2bb01b21b210b2bbb21, 10, b2) [23, 17, 4]

4 (18, 18, 1) (1, 1, b2) (011bb2b2bb1b11b11b00,
000bbb2bb11b0b1bbb2b, b2)

[37, 17, 12]

5 (11, 11, 1) (3, 3, 2) (41013412110, 34442312433, 3) [23, 11, 9]

5 (20, 5, 4) (1, 1, 1) (20410204030400122031, 40023, 3414) [29, 17, 8]

7 (16, 2, 1) (1, 6, 1) (5332356045155140, 63, 5) [19, 14, 4]

7 (21, 1, 1) (1, 2, 4) (632622252145661023230, 5, 5) [23, 18, 4]

Table 6.2: Linear codes with best-known parameters [n, k, dmin] over Fq obtained as
1-generator Λ-MT codes
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7
Hamming weight distributions of

multi-twisted codes over finite

fields

7.1 Introduction

Let Fq denote the finite field of order q, and let n = m1 +m2 + · · ·+m`, where

m1,m2, · · · ,m` are arbitrary positive integers (not necessarily coprime to q). Let

167
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Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq. In this chap-

ter, we shall explicitly determine Hamming weights of all non-zero codewords of sev-

eral classes of Λ-multi-twisted (Λ-MT) codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq. Using these results, we shall explicitly determine Hamming weight

distributions of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq with a few weights, which have applications in constructing strongly

regular graphs, association schemes and authentication codes. We shall also identify

two classes of optimal equidistant Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq meeting the Griesmer as well as Plotkin bounds, which have nice

connections with projective geometry and combinatorial designs and are useful in

constructing distributed storage systems. Besides this, we shall obtain three differ-

ent classes of few weight Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length

n over Fq, which are useful in constructing secret sharing schemes with nice access

structures.

This chapter is organized as follows: In Section 7.2, we explicitly determine Ham-

ming weights of all the blocks of non-zero codewords of several classes of Λ-MT codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq (Theorems 7.2.2-7.2.10).

Using these results, one can explicitly determine Hamming weights of all non-zero

codewords in these Λ-MT codes and their Hamming weight distributions. In Section

7.3, we explicitly determine Hamming weight distributions of several classes of Λ-

MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq with a few weights

(Theorems 7.3.1-7.3.9). Among these classes of few weight MT codes, we obtain two

classes of optimal equidistant Λ-MT codes that attain both Griesmer and Plotkin

bounds (Theorems 7.3.1-7.3.2). Besides this, we identify three different classes of

few weight Λ-MT codes, which are useful in designing secret sharing schemes with

nice access structures (Theorems 7.3.1-7.3.3).

From now on, throughout this chapter, let Fq denote the finite field of order

q = pr, where p is a prime number and r is a positive integer. Let m1,m2, · · · ,m` be
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arbitrary positive integers, not necessarily coprime to q. Let n = m1 +m2 + · · ·+m`,

and let Λ = (λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq. Here

we shall follow the same notations as in Chapters 2 and 6.

7.2 Hamming weights of codewords of MT codes

In this section, we shall determine Hamming weights of non-zero codewords of

several classes of Λ-MT codes over finite fields. To do this, let C be a Λ-MT code of

length n = m1 + m2 + · · · + m` over Fq with the constituents C1, C2, · · · , Cρ, whose

codewords xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw satisfy the following condition:

For 1 ≤ i ≤ `, there exist integers i1, i2 such that 1 ≤ i1 < i2 ≤ ρ and xw,i = 0

for 1 ≤ w( 6= i1, i2) ≤ ρ, (7.1)

(note that the integers i1 and i2 depend upon i). Now let us write each word xw ∈ Cw
as xw = (xw,1, xw,2, · · · , xw,`), where

xw,i =

 x
(i)
0,w + x

(i)
1,wui + · · ·+ x

(i)
pai−1,wu

pai−1
i if εw,i = 1;

0 otherwise,

with x
(i)
ji,w
∈ Fqdw for 1 ≤ w ≤ ρ, 1 ≤ i ≤ ` and 0 ≤ ji ≤ pai − 1. Next we see, by

Theorem 6.3.2, that the codeword of C corresponding to the words x1 ∈ C1, x2 ∈

C2, · · · , xρ ∈ Cρ is given by

c(x1, x2, · · · , xρ) =
(
c1(x1, x2, · · · , xρ); c2(x1, x2, · · · , xρ); · · · ; c`(x1, x2, · · · , xρ)

)
with xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw for 1 ≤ w ≤ ρ, where

ci(x1, x2, · · · , xρ) = (ci,0(x1, x2, · · · , xρ), ci,1(x1, x2, · · · , xρ), · · · , ci,mi−1(x1, x2, · · · , xρ))
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is the ith block of the codeword c(x1, x2, · · · , xρ) of the code C with

ci,ti+vipai (x1, x2, · · · , xρ) =
1

ni

(
pai−1∑
ji=0

(
ji
ti

)
(−1)ji−ti

ρ∑
w=1

TrF
qdw

/Fq

(
x

(i)
ji,w

δji−ti−vip
ai

w

))
(7.2)

for 1 ≤ i ≤ `, 0 ≤ ti ≤ pai − 1 and 0 ≤ vi ≤ ni − 1.

From now on, for 1 ≤ w ≤ ρ, let xw = (xw,1, xw,2, · · · , xw,`) ∈ Cw be fixed. In

view of this, we see that the Hamming weight WH(c(x1, x2, · · · , xρ)) of the codeword

c(x1, x2, · · · , xρ) ∈ C is given by

WH(c(x1, x2, · · · , xρ)) =
∑̀
i=1

WH(ci(x1, x2, · · · , xρ)), (7.3)

where WH(ci(x1, x2, · · · , xρ)) denotes the Hamming weight of the ith block ci(x1, x2,

· · · , xρ) of the codeword c(x1, x2, · · · , xρ) ∈ C for 1 ≤ i ≤ `. Therefore to determine

the Hamming weight of the codeword c(x1, x2, · · · , xρ) ∈ C, it is enough to determine

the Hamming weightsWH(c1(x1, x2, · · · , xρ)),WH(c2(x1, x2, · · · , xρ)), · · · ,WH(c`(x1,

x2, · · · , xρ)) of each of its ` blocks. Towards this, we note that

WH(ci(x1, x2, · · · , xρ)) =

pai−1∑
ti=0

ni−1∑
vi=0

WH(ci,ti+vipai (x1, x2, · · · , xρ))

=

pai−1∑
ti=0

∆
(ti)
i (x1, x2 · · · , xρ), (7.4)

where ∆
(ti)
i (x1, x2 · · · , xρ) =

ni−1∑
vi=0

WH(ci,ti+vipai (x1, x2, · · · , xρ)) for 0 ≤ ti ≤ pai − 1

and 1 ≤ i ≤ `. In order to determine the Hamming weight WH(ci(x1, x2, · · · , xρ)) of

the ith block ci(x1, x2, · · · , xρ) of the codeword c(x1, x2, · · · , xρ) ∈ C for 1 ≤ i ≤ `,

it is enough to determine the number ∆
(ti)
i (x1, x2, · · · , xρ) for 0 ≤ ti ≤ pai − 1.

From this point on, let 1 ≤ i ≤ ` and 0 ≤ ti ≤ pai−1 be fixed. Further, by (7.1),

there exist integers i1, i2 satisfying 1 ≤ i1 < i2 ≤ ρ and xw,i = 0 for 1 ≤ w ≤ ρ and
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w 6∈ {i1, i2}. In view of this and by (7.2), we see that

∆
(ti)
i (x1, x2 · · · , xρ) = ni −

∣∣{0 ≤ vi ≤ ni − 1 : TrF
q
di1

/Fq(y
(i)
ti,i1

δ−vip
ai

i1
) +

TrF
q
di2

/Fq(y
(i)
ti,i2

δ−vip
ai

i2
) = 0}

∣∣,
where

y
(i)
ti,i1

=

pai−1∑
ji=ti

(
ji
ti

)
x

(i)
ji,i1

(−δi1)ji−ti ∈ F
q
di1

and y
(i)
ti,i2

=

pai−1∑
ji=ti

(
ji
ti

)
x

(i)
ji,i2

(−δi2)ji−ti ∈ F
q
di2
.

From this point on, let us define

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = ∆
(ti)
i (x1, x2 · · · , xρ). (7.5)

Now we shall first express the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) in terms of certain character

sums over finite fields. For this, we assume, throughout this chapter, that χ and χw

are canonical additive characters of Fq and Fqdw for 1 ≤ w ≤ ρ, respectively. Then

by (2.1), the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) can be rewritten as

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)

= ni −
1

q

ni−1∑
vi=0

∑
z∈Fq

χ
(
z(TrF

q
di1

/Fq(y
(i)
ti,i1

δ−vip
ai

i1
) + TrF

q
di2

/Fq(y
(i)
ti,i2

δ−vip
ai

i2
))
)

= ni −
ni
q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χ
(
zTrF

q
di1

/Fq(y
(i)
ti,i1

δ−vip
ai

i1
)
)
χ
(
zTrF

q
di2

/Fq(y
(i)
ti,i2

δ−vip
ai

i2
)
)
.

Further, by using the fact that TrF
qdw

/Fq is an Fq-linear map for 1 ≤ w ≤ ρ and by

(2.2), we observe that

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = ni −
ni
q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χi1(zy
(i)
ti,i1

δ−vip
ai

i1
)χi2(zy

(i)
ti,i2

δ−vip
ai

i2
).
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From this, we obtain

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



0 if y
(i)
ti,i1

= y
(i)
ti,i2

= 0;

ni(q−1)
q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χi1(zy
(i)
ti,i1

δ−vip
ai

i1
) if y

(i)
ti,i1
6= 0 & y

(i)
ti,i2

= 0;

ni(q−1)
q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χi2(zy
(i)
ti,i2

δ−vip
ai

i2
) if y

(i)
ti,i1

= 0 & y
(i)
ti,i2
6= 0;

ni(q−1)
q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χi1(zy
(i)
ti,i1

δ−vip
ai

i1
)χi2(zy

(i)
ti,i2

δ−vip
ai

i2
)

if y
(i)
ti,i1
6= 0 & y

(i)
ti,i2
6= 0.

(7.6)

In order to explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we further proceed

to express the above character sums in terms of Gauss sums, whose explicit values

are known only in certain special cases [11, 51]. For this, we shall distinguish the

following two cases: (i) either y
(i)
ti,i1

or y
(i)
ti,i2

is zero and (ii) both y
(i)
ti,i1

and y
(i)
ti,i2

are non-

zero. From this point on, throughout this chapter, we assume that ζw is a primitive

element of Fqdw for 1 ≤ w ≤ ρ. It is easy to observe that ζ
qdw−1
q−1

w is a primitive element

of Fq for each w. Now for 1 ≤ w ≤ ρ, since δw ∈ F∗
qdw
, we can write δ−1

w = ζ`ww for

some integer `w satisfying 0 ≤ `w ≤ qdw − 2. Further, let τw = gcd
(
qdw−1
q−1

, `w
)
, and

let φw be a generator of the multiplicative character group F̂∗
qdw

of Fqdw for each w.

7.2.1 Determination of the number D
(ti)
i (y

(i)
ti,i1
, y

(i)
ti,i2

) when ei-

ther y
(i)
ti,i1

or y
(i)
ti,i2

is zero

When y
(i)
ti,i1

= y
(i)
ti,i2

= 0, by (7.6), we have D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = 0. So we assume,

throughout this section, that y
(i)
ti,si 6= 0 and y

(i)

ti,s′i
= 0, where {si, s′i} = {i1, i2}. In the

following lemma, we express the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) in terms of certain Gauss

sums.
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Lemma 7.2.1. We have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
− ni(q − 1)

q(qdsi − 1)

τsi−1∑
bi=0

G(φ
(q
dsi−1)bi
τsi

si , χsi)φ
(q
dsi−1)bi
τsi

si (y
(i)
ti,si).

Proof. To prove this, we see, by (7.6), that

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
− 1

q

∑
z∈F∗q

ni−1∑
vi=0

χsi(zy
(i)
ti,siδ

−vipai
si

). (7.7)

Next by (2.5) and by using the fact that F̂∗
qdsi

= 〈φsi〉, we note that

∑
z∈F∗q

ni−1∑
vi=0

χsi(zy
(i)
ti,siδ

−vipai
si

) =
1

qdsi − 1

∑
z∈F∗q

qdsi−2∑
hi=0

ni−1∑
vi=0

G(φ
hi
si
, χsi)φ

hi
si

(zy
(i)
ti,siδ

−vipai
si

)

Furthermore, for 0 ≤ hi ≤ qdsi − 2, one can observe that

∑
z∈F∗q

φhisi (z) =

q−2∑
k=0

φhisi (ζ
(q
dsi−1)k
q−1

si ) =

q−2∑
k=0

e
2πι(q

dsi−1)hik

(q
dsi−1)(q−1)

=

q−2∑
k=0

e
2πιhik

q−1 =

 q − 1 if hi ≡ 0 (mod q − 1);

0 otherwise.

From this, we get

∑
z∈F∗q

ni−1∑
vi=0

χsi(zy
(i)
ti,siδ

−vipai
si

)

=
q − 1

qdsi − 1

( q
dsi−1
q−1

−1∑
zi=0

G(φ
(q−1)zi
si

, χsi)φ
(q−1)zi
si

(y
(i)
ti,si)

( ni−1∑
vi=0

φ(q−1)zi
si

(δ−vip
ai

si
)

))
.

Next if φ
(q−1)zi
si (δ−p

ai

si
) 6= 1 for some integer zi satisfying 0 ≤ zi <

qdsi−1
q−1

, then we
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observe that

ni−1∑
vi=0

φ(q−1)zi
si

(δ−vip
ai

si
) =

ni−1∑
vi=0

φ(q−1)zi
si

(δ−p
ai

si
)vi =

φ
(q−1)zi
si (δ−misi

)− 1

φ
(q−1)zi
si (δ−p

ai

si )− 1

=
φ

(q−1)zi
si (λ−1

i )− 1

φ
(q−1)zi
si (δ−p

ai

si )− 1
= 0,

as δmisi = λi and λq−1
i = 1. Therefore for 0 ≤ zi <

qdsi−1
q−1

, we get

ni−1∑
vi=0

φ(q−1)zi
si

(δ−vip
ai

si
) =

 ni if φ
(q−1)zi
si (δ−p

ai

si
) = 1;

0 otherwise.

Further, for an integer zi satisfying 0 ≤ zi <
qdsi−1
q−1

, we note that φ
(q−1)zi
si (δ−p

ai

si
) =

φ
(q−1)zi
si (ζ

`sip
ai

si ) = e
2πι(q−1)zip

ai `si

q
dsi−1 = 1 if and only if (q − 1)zip

ai`si ≡ 0 (mod qdsi − 1),

which holds if and only if zi ≡ 0
(
mod (qdsi−1)

τsi (q−1)

)
. From this, we obtain

∑
z∈F∗q

ni−1∑
vi=0

χsi(zy
(i)
ti,siδ

−vipai
si

) =
ni(q − 1)

qdsi − 1

τsi−1∑
bi=0

G(φ
(q
dsi−1)bi
τsi

si , χsi)φ
(q
dsi−1)bi
τsi

si (y
(i)
ti,si).

Now on substituting the above value of the sum
∑
z∈F∗q

ni−1∑
vi=0

χsi(zy
(i)
ti,siδ

−vipai
si

) in equation

(7.7), the desired result follows immediately.

In the following theorem, we explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

).

Theorem 7.2.2. Let y
(i)
ti,si = ζ

b
(i)
ti,si
si ∈ F∗

qdsi
and y

(i)

ti,s′i
= 0, where 0 ≤ b

(i)
ti,si ≤ qdsi − 2.

(a) If τsi = 1, then we have D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = ni(q−1)
q

+ ni(q−1)

q(qdsi−1)
.

(b) If τsi = 2, then the integer dsi is even and

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
+
ni(q − 1)

(
1 + ι

rdsi (p−1)2

4 q
dsi
2 (−1)b

(i)
ti,si

)
q(qdsi − 1)

.
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(c) Let τsi ≥ 3. Suppose that there exists a positive integer ν ′si satisfying pν
′
si ≡

−1 (mod τsi). If zsi is the least positive integer satisfying pzsi ≡ −1 (mod τsi),

then we have rdsi = 2zsiνsi for some positive integer νsi .

• When τsi is even and
pνsi (p

zsi+1)

τsi
is odd, we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)(−1+q

dsi
2 (τsi−1))

q(qdsi−1)
if τsi |

τsi
2

+ b
(i)
ti,si ;

ni(q−1)
q

+ ni(q−1)(1+q
dsi
2 )

q(qdsi−1)
if τsi -

τsi
2

+ b
(i)
ti,si .

• When either τsi is odd or
pνsi (p

zsi+1)

τsi
is even, we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)(−1+(−1)νsi−1q

dsi
2 (τsi−1))

q(qdsi−1)
if τsi | b

(i)
ti,si ;

ni(q−1)
q

+ ni(q−1)(1+(−1)νsi−1q
dsi
2 )

q(qdsi−1)
if τsi - b

(i)
ti,si .

Proof. To prove the result, we first note, by Lemma 7.2.1, that

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
−
ni(q − 1)Θ′i(y

(i)
ti,si)

q(qdsi − 1)
, (7.8)

where Θ′i(y
(i)
ti,si) =

τsi−1∑
bi=0

φ
(q
dsi−1)bi
τsi

si (y
(i)
ti,si)G(φ

(q
dsi−1)bi
τsi

si , χsi). So to determine the number

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), it is enough to determine the explicit value of the sum Θ′i(y
(i)
ti,si).

To do this, we note that O(φ
q
dsi−1
τsi

si ) = τsi . Now we shall consider the following three

cases separately: (a) τsi = 1, (b) τsi = 2, and (c) τsi ≥ 3.

(a) When τsi = 1, by (2.4), we note that Θ′i(y
(i)
ti,si) = −1.

(b) When τsi = 2, we note that φ
q
dsi−1
τsi

si is the quadratic character of F∗
qdsi

. We also

observe that τsi = 2 divides qdsi−1
q−1

= 1 + q + · · ·+ qdsi−1, which implies that q
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is odd and dsi is even. Now by Theorem 2.2.1, we get

Θ′i(y
(i)
ti,si) = −1 + φ

q
dsi−1
τsi

si (y
(i)
ti,si)G(φ

q
dsi−1
τsi

si , χsi) = −1− ι
rdsi (p−1)2

4 q
dsi
2 (−1)b

(i)
ti,si .

(c) Next let τsi ≥ 3. Here by Theorem 2.2.2, for 1 ≤ bi ≤ τsi − 1, we note that

G(φ
(q
dsi−1)bi
τsi

si , χsi) =

 (−1)biq
dsi
2 if τsi is even and

pνsi (p
zsi+1)

τsi
is odd;

(−1)νsi−1q
dsi
2 otherwise.

(7.9)

When τsi is even and
pνsi (p

zsi+1)

τsi
is odd, we observe, by (7.9), that

Θ′i(y
(i)
ti,si) = −1 + q

dsi
2

τsi−1∑
bi=1

(−1)biφ
(q
dsi−1)bi
τsi

si (y
(i)
ti,si)

= −1 + q
dsi
2

τsi−1∑
bi=1

e

(
2πιbi(q

dsi−1)b
(i)
ti,si

τsi (q
dsi−1)

+
2πιbiτsi

2τsi

)

= −1 + q
dsi
2

τsi−1∑
bi=1

e
2πιbi
τsi

(b
(i)
ti,si

+
τsi
2

)

=

 −1 + q
dsi
2 (τsi − 1) if τsi |

τsi
2

+ b
(i)
ti,si ;

−1− q
dsi
2 otherwise.

On the other hand, when either τsi is odd or
pνsi (p

zsi+1)

τsi
is even, we observe,

by (7.9), that

Θ′i(y
(i)
ti,si) = −1 + (−1)νsi−1q

dsi
2

τsi−1∑
bi=1

φ
(q
dsi−1)bi
τsi

si (y
(i)
ti,si)

=

 −1 + (−1)νsi−1q
dsi
2 (τsi − 1) if τsi | b

(i)
ti,si ;

−1− (−1)νsi−1q
dsi
2 otherwise.

Now on substituting the values of Θ′i(y
(i)
ti,si) in equation (7.8) in the respective cases,
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we get the desired result.

7.2.2 Determination of D
(ti)
i (y

(i)
ti,i1
, y

(i)
ti,i2

) when y
(i)
ti,i1
6= 0 and

y
(i)
ti,i2
6= 0

Throughout this section, we assume that y
(i)
ti,i1
6= 0 and y

(i)
ti,i2
6= 0. To determine

the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we shall first fix the following notations:

ηi = gcd(di1 , di2) gsi = gcd
(
qdsi−1
qηi−1

, `si
)

for si ∈ {i1, i2}

∆si=
qdsi−1

(qηi−1)gsi
for si ∈ {i1, i2} τi is the least positive integer satisfying

τi`i1
gi1Gi

≡ 1
(

mod q
ηi−1
Gi

)
Gi = gcd

( `i1
gi1
, qηi − 1

)
τ ′i is the least positive integer satisfying

τ ′i(q
ηi−1)∆i1

GiΛi
≡ 1

(
mod q−1

Λi

)
Hi = gcd

( `i1
gi1
,
`i2
gi2
, qηi − 1

)
Li is the least positive integer satisfying

ζ
q
di1−1
q−1

i1
= ζ

(q
di2−1)Li
q−1

i2

Λi = gcd
(∆i1

(qηi−1)

Gi
, q − 1

)
Λ′i = gcd(Λi,

∆i2
GiLi
Hi

− ∆i1
τi`i2

gi2Hi
)

Ki = (qηi−1)(q−1)
GiΛi

K ′i = − Λiτi`i2
Λ′igi2Hi

(
1− (qηi−1)τ ′i∆i1

GiΛi

)
− τ ′i(q

di2−1)Li
Λ′iHigi2

Mi =
GiΛigi1
q−1

M ′
i =

(qηi−1)Λ′igi2Hi
GiΛi

Note that K ′i = − τi`i2Λi
gi2HiΛ

′
i
− τ ′i(q

ηi−1)

GiΛ′i

(∆i2
GiLi
Hi

− τi`i2∆i1

gi2Hi

)
and M ′

i =
(qηi−1)Λ′igi2Hi

GiΛi
are

integers, and gcd(Li, q − 1) = 1.

In the following lemma, we first express the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) in terms of

certain Gauss sums.

Lemma 7.2.3. We have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
−
ni(q − 1)Θi(y

(i)
ti,i1

, y
(i)
ti,i2

)

q(qdi1 − 1)(qdi2 − 1)
,
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where

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =

M ′i−1∑
z2=0

Mi−1∑
z1=0

(
G(φ

∆i1
(K′iz2+Kiz1)

i1
, χi1)φ

∆i1
(K′iz2+Kiz1)

i1
(y

(i)
ti,i1

)G(φ

∆i2
GiΛiz2

HiΛ
′
i

i2
, χi2)

φ

∆i2
GiΛiz2

HiΛ
′
i

i2
(y

(i)
ti,i2

)

)
.

Proof. To prove the result, we see, by (7.6), that

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
− 1

q
Ωi(y

(i)
ti,i1

, y
(i)
ti,i2

), (7.10)

where Ωi(y
(i)
ti,i1

, y
(i)
ti,i2

) =
∑
z∈F∗q

ni−1∑
vi=0

χi1(zy
(i)
ti,i1

δ−vip
ai

i1
)χi2(zy

(i)
ti,i2

δ−vip
ai

i2
). Now since F̂∗

q
di1

=

〈φi1〉 and F̂∗
q
di2

= 〈φi2〉, we note, by (2.5), that

Ωi(y
(i)
ti,i1

, y
(i)
ti,i2

) =
1

(qdi1 − 1)(qdi2 − 1)

∑
z∈F∗q

q
di1−2∑
µ1=0

q
di2−2∑
µ2=0

ni−1∑
vi=0

(
G(φ

µ1

i1
, χi1)φµ1

i1
(zy

(i)
ti,i1

δ−vip
ai

i1
)

G(φ
µ2

i2
, χi2)φµ2

i2
(zy

(i)
ti,i2

δ−vip
ai

i2
)
)
.

Further, for 0 ≤ µ1 ≤ qdi1 − 2 and 0 ≤ µ2 ≤ qdi2 − 2, one can easily observe that

∑
z∈F∗q

φµ1

i1
(z)φµ2

i2
(z) =

q−2∑
k=0

φµ1

i1
(ζ

(q
di1−1)k
q−1

i1
)φµ2

i2
(ζ

(q
di2−1)kLi
q−1

i2
)

=

q−2∑
k=0

e
2πι(µ1+µ2Li)k

q−1 =

 q − 1 if µ1 + µ2Li ≡ 0 (mod q − 1);

0 otherwise.

From this, we obtain

Ωi(y
(i)
ti,i1

, y
(i)
ti,i2

) =
q − 1

(qdi1 − 1)(qdi2 − 1)

∑
µ1,µ2

G(φ
µ1

i1
, χi1)φµ1

i1
(y

(i)
ti,i1

)G(φ
µ2

i2
, χi2)φµ2

i2
(y

(i)
ti,i2

)

×
( ni−1∑
vi=0

φµ1

i1
(δ−vip

ai

i1
)φµ2

i2
(δ−vip

ai

i2
)
)
,
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where the summation
∑
µ1,µ2

runs over the integers µ1 and µ2 satisfying 0 ≤ µ1 ≤

qdi1 −2, 0 ≤ µ2 ≤ qdi2 −2 and µ1 +µ2Li ≡ 0 (mod q−1). Next for 0 ≤ µ1 ≤ qdi1 −2

and 0 ≤ µ2 ≤ qdi2 − 2 satisfying µ1 + µ2Li ≡ 0 (mod q − 1), we assert that

ni−1∑
vi=0

φµ1

i1
(δ−vip

ai

i1
)φµ2

i2
(δ−vip

ai

i2
) =

 ni if φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
) = 1;

0 otherwise.
(7.11)

To prove this, we note that if φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
) 6= 1, then

ni−1∑
vi=0

φµ1

i1
(δ−vip

ai

i1
)φµ2

i2
(δ−vip

ai

i2
) =

φµ1

i1
(δ−mii1

)φµ2

i2
(δ−mii2

)− 1

φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
)− 1

=
φµ1

i1
(λ−1

i )φµ2

i2
(λ−1

i )− 1

φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
)− 1

,

as δmii1 = δmii2 = λi. Since λ−1
i ∈ F∗q and ζ

q
di1−1
q−1

i1
= ζ

(q
di2−1)Li
q−1

i2
is a primitive element

of Fq, one can write λ−1
i = ζ

(q
di1−1)J
q−1

i1
= ζ

(q
di2−1)JLi
q−1

i2
for some integer J satisfying

0 ≤ J ≤ q − 2. In view of this, we obtain φµ1

i1
(λ−1

i )φµ2

i2
(λ−1

i ) = e
2πιJ(µ1+µ2Li)

q−1 = 1,

which further implies that
ni−1∑
vi=0

φµ1

i1
(δ−vip

ai

i1
)φµ2

i2
(δ−vip

ai

i2
) = 0. On the other hand, when

φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
) = 1, we have

ni−1∑
vi=0

φµ1

i1
(δ−vip

ai

i1
)φµ2

i2
(δ−vip

ai

i2
) = ni, which proves

(7.11).

We further note that φµ1

i1
(δ−p

ai

i1
)φµ2

i2
(δ−p

ai

i2
) = e

2πιµ1`i1
pai

q
di1−1

+
2πιµ2`i2

pai

q
di2−1 = 1 if and only

if (qdi2 − 1)µ1`i1 + (qdi1 − 1)µ2`i2 ≡ 0 (mod (qdi1 − 1)(qdi2 − 1)). From this, we get

Ωi(y
(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

(qdi1 − 1)(qdi2 − 1)

∑
µ1,µ2

G(φ
µ1

i1
, χi1)φµ1

i1
(y

(i)
ti,i1

)G(φ
µ2

i2
, χi2)φµ2

i2
(y

(i)
ti,i2

),

(7.12)

where the summation
∑
µ1,µ2

runs over the integers µ1 and µ2 satisfying

0 ≤ µ1 ≤ qdi1 − 2, 0 ≤ µ2 ≤ qdi2 − 2,

(qdi2 − 1)µ1`i1 + (qdi1 − 1)µ2`i2 ≡ 0 (mod (qdi1 − 1)(qdi2 − 1)) and

µ1 + µ2Li ≡ 0 (mod q − 1). (7.13)
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Furthermore, one can observe that all the distinct integers µ1, µ2 satisfying (7.13)

are given by

µ1 = ∆i1(K ′iz2 +Kiz1) and µ2 =
∆i2GiΛiz2

HiΛ′i
,

where z1, z2 are integers satisfying 0 ≤ z1 < Mi and 0 ≤ z2 < M ′
i . This, by (7.12),

gives Ωi(y
(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q−1)Θi(y

(i)
ti,i1

,y
(i)
ti,i2

)

(q
di1−1)(q

di2−1)
. From this and by equation (7.10), the

desired result follows immediately.

Next to determine the explicit value ofD
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we note thatO(φ
∆i1

Ki
i1

) =

Mi and O(φ

∆i2
GiΛi

HiΛ
′
i

i2
) = M ′

i . Now we shall distinguish the following three cases: (i)

M ′
i = 1, (ii) M ′

i = 2, and (iii) M ′
i ≥ 3. Further, in each of these three cases, we shall

consider the following three subcases separately: (i) Mi = 1, (ii) Mi = 2, and (iii)

Mi ≥ 3.

In the following theorem, we consider the case M ′
i = 1, and we explicitly deter-

mine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

).

Theorem 7.2.4. Let M ′
i = 1, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2
∈ F∗

q
di2
, where 0 ≤

b
(i)
ti,i1
≤ qdi1 − 2.

(a) If Mi = 1, then we have D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = ni(q−1)
q
− ni(q−1)

q(q
di1−1)(q

di2−1)
.

(b) If Mi = 2, then the integer di1 is even and

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q
−
ni(q − 1)

(
1 + ι

rdi1
(p−1)2

4 q
di1
2 (−1)b

(i)
ti,i1

)
q(qdi1 − 1)(qdi2 − 1)

.

(c) Let Mi ≥ 3. Suppose that there exists a positive integer µ′i satisfying pµ
′
i ≡

−1 (mod Mi). If θi is the least positive integer satisfying pθi ≡ −1 (mod Mi),

then we have rdi1 = 2θiγi for some positive integer γi.
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• When Mi is even and pγi(p
θi+1)
Mi

is odd, we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)

(
1−q

di1
2 (Mi−1)

)
q(q

di1−1)(q
di2−1)

if Mi | Mi

2
+ b

(i)
ti,i1

;

ni(q−1)
q
− ni(q−1)

(
1+q

di1
2

)
q(q

di1−1)(q
di2−1)

if Mi - Mi

2
+ b

(i)
ti,i1

.

• When either Mi is odd or pγi(p
θi+1)
Mi

is even, we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)

(
1−(−1)γi−1q

di1
2 (Mi−1)

)
q(q

di1−1)(q
di2−1)

if Mi | b(i)
ti,i1

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)γi−1q

di1
2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

.

Proof. By applying Lemma 7.2.3 and working in a similar manner as in Theorem

7.2.2, the desired result follows immediately.

In the following theorem, we explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)

when Mi = 1 and M ′
i = 2.

Theorem 7.2.5. Let Mi = 1, M ′
i = 2, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈

F∗
q
di2
, where 0 ≤ b

(i)
ti,i1
≤ qdi1 − 2 and 0 ≤ b

(i)
ti,i2
≤ qdi2 − 2.

(a) When di2 is even, we have D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) = ni(q−1)
q

(
1−1+ι

rdi2
(p−1)2

4 q
di2
2 (−1)

b
(i)
ti,i2

(q
di1−1)(q

di2−1)

)
.

(b) When di2 is odd, the integer di1 is odd and

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =
ni(q − 1)

q

(
1− 1 + ι

r(di1
+di2

)(p−1)2

4 q
di1

+di2
2 (−1)b

(i)
ti,i1

+b
(i)
ti,i2

(qdi1 − 1)(qdi2 − 1)

)
.

Proof. To determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1 +G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)G(φ

∆i1
K′i

i1
, χi1)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

)φ
∆i1

K′i
i1

(y
(i)
ti,i1

).
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Towards this, we see that O(φ

∆i2
GiΛi

HiΛ
′
i

i2
) = M ′

i = 2, so the character φ

∆i2
GiΛi

HiΛ
′
i

i2
is the

quadratic character of F
q
di2

and q is odd. Since gcd(Li, q − 1) = 1, we see that Li

is odd. Further, Mi = 1 implies that gi1 = 1 and GiΛi = q − 1. From this, we

obtain
(qηi−1)Λ′igi2Hi

q−1
= M ′

i = 2, which further implies that ηi = 1 and Λ′igi2Hi = 2.

Furthermore, it is easy to see that

∆i1K
′
i =

qdi1 − 1

q − 1

(
− Λiτi`i2(1− τ ′i∆i1)

2
− τ ′i(q

di2 − 1)Li
2

)
=

qdi1 − 1

2

(
− τi`i2(1− τ ′i∆i1)

Gi

− τ ′i(q
di2 − 1)Li
q − 1

)
(7.14)

and

Λ′igi2Hi = 2 = gcd
(

Λigi2Hi,
(qdi2 − 1)GiLi

q − 1
−∆i1`i2τi

)
. (7.15)

Now we shall consider the following two cases separately: (a) di2 is even and (b) di2

is odd.

(a) When di2 is even, we note that the integer di1 is odd, as ηi = 1. From this, we

see that the integer q
di2−1
q−1

is even and the integer ∆i1 is odd. This, by (7.15),

clearly implies that the integer τi`i2 is even. Further, since Gi divides 1−τ ′i∆i1 ,

by (7.14), we observe that φ
∆i1

K′i
i1

is the trivial multiplicative character of F
q
di1
.

This, by Theorem 2.2.1, implies that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1−G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

) = 1+ι
rdi2

(p−1)2

4 q
di2
2 (−1)b

(i)
ti,i2 .

(b) When di2 is odd, we note that the integer q
di2−1
q−1

is odd and gi2 = 1. Now as

GiΛi
q−1

= gcd(∆i1 , Gi) = 1, by (7.15), one can observe that the integer ∆i1 must

be odd, which further implies that the integer di1 is odd.

Now when Gi is even, we note, by (7.15), that the integer τi`i2 is even. Further,
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as Gi divides 1− τ ′i∆i1 , we observe that the integer τ ′i is odd. This, by (7.14),

implies that φ
∆i1

K′i
i1

is the quadratic character of F
q
di1
.

On the other hand, when Gi is odd, we see, by (7.15), that the integer τi`i2

is odd. Further, one can easily observe that the integer τ ′i must be odd if the

integer
1−τ ′i∆i1

Gi
is even, while the integer τ ′i is even if the integer

1−τ ′i∆i1

Gi
is odd.

Now since both the integers (q
di2−1)Li
q−1

, τi`i2 are odd, we note, by (7.14), that

φ
∆i1

K′i
i1

is the quadratic character of F
q
di1
.

This, by Theorem 2.2.1, implies that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1 + ι
r(di1

+di2
)(p−1)2

4 q
di1

+di2
2 (−1)b

(i)
ti,i1

+b
(i)
ti,i2 .

In the following theorem, we explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)

when Mi = M ′
i = 2.

Theorem 7.2.6. Let Mi = M ′
i = 2, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈ F∗
q
di2
,

where 0 ≤ b
(i)
ti,i1
≤ qdi1 − 2 and 0 ≤ b

(i)
ti,i2
≤ qdi2 − 2. Here the integer gi1 ∈ {1, 2} and

p is an odd prime.

(a) When gi1 = 1, we have q = 3, Gi = λi = ηi = 2 and

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


2ni
3
− 2ni

(
1−3

di1
2 +2(−1)

2b
(i)
ti,i2

+b
(i)
ti,i1

+di2
2 3

di1
+di2
2

)
3(3

di1−1)(3
di2−1)

if 2 | b(i)
ti,i1

;

2ni
3
− 2ni(1+3

di1
2 )

3(3
di1−1)(3

di2−1)
if 2 - b(i)

ti,i1
.

(b) Let gi1 = 2.

• If p ≡ 3 (mod 4), then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q

(
1− 1+q

di1
2 +2(−1)

2b
(i)
ti,i2

+rdi2
+b

(i)
ti,i1

2 q
di1

+di2
2

(q
di1−1)(q

di2−1)

)
if 2 | b(i)

ti,i1
;

ni(q−1)
q

(
1− 1−q

di1
2

(q
di1−1)(q

di2−1)

)
if 2 - b(i)

ti,i1
.
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• If p ≡ 1 (mod 4), then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q

(
1− 1+q

di1
2 +2q

di1
+2di2
4 (−1)

2(rdi2
+b

(i)
ti,i2

)+b
(i)
ti,i1

2 Ri
(q
di1−1)(q

di2−1)

)
if 2 | b(i)

ti,i1
;

ni(q−1)
q

(
1− 1−q

di1
2 +2q

di1
+2di2
4 (−1)

2(rdi2
+b

(i)
ti,i2

)+1+b
(i)
ti,i1

2 Ii
(q
di1−1)(q

di2−1)

)
if 2 - b(i)

ti,i1
,

where Ri = Re (ei + ιfi)
rdi1

2 and Ii = Im (ei + ιfi)
rdi1

2 denote the real

and imaginary parts of the complex number (ei + ιfi)
rdi1

2 , respectively

(Here ei and fi are the integers determined uniquely by p = e2
i + f 2

i , ei ≡

−1 (mod 4) and fi ≡ eiζ
q
di1−1

4
i1

(mod p)).

Proof. To determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1−G(φ
∆i1

Ki
i1

, χi1)φ
∆i1

Ki
i1

(y
(i)
ti,i1

)

+G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

)Fi(y
(i)
ti,i1

),

where Fi(y
(i)
ti,i1

) = φ
∆i1

K′i
i1

(y
(i)
ti,i1

)
(
G(φ

∆i1
K′i

i1
, χi1) + G(φ

∆i1
(Ki+K

′
i)

i1
, χi1)φ

∆i1
Ki

i1
(y

(i)
ti,i1

)
)
.

Since Mi = M ′
i = 2, we see that φ

∆i1
Ki

i1
and φ

∆i2
GiΛi

HiΛ
′
i

i2
are the quadratic characters

of F
q
di1

and F
q
di2

respectively, and q is odd. As gcd(Li, q − 1) = 1, the integer Li

must be odd. Further, since Mi = 2 and q − 1 divides GiΛi, one can observe that

the integer gi1 divides 2. So we shall consider the following two cases separately: (a)

gi1 = 1, and (b) gi1 = 2.

(a) When gi1 = 1, we see that GiΛi
q−1

= 2 = gcd
(
q
di1−1
q−1

, Gi

)
, which implies that both

the integers di1 and Gi are even. As Gi = gcd(`i1 , q
ηi − 1) is even and gi1 =

gcd
(
q
di1−1
qηi−1

, `i1
)

= 1, one can easily observe that the integer
di1
ηi

is odd, which



7.2 Hamming weights of codewords of MT codes 185

implies that the integer ηi is even. Further, since GiΛi
q−1

= 2 and M ′
i = 2, we

note that
(qηi−1)Λ′igi2Hi

q−1
= 4. Next we see that qηi−1

q−1
= 1+q+q2 +· · ·+qηi−1 ≥ 4.

From this, we obtain Λ′igi2Hi = 1 and qηi−1
q−1

= 4, which further implies that

q = 3 and ηi = 2. This gives GiΛi = 4. Since Λi = gcd(2, 3
di1−1
Gi

) and the

integer 3ηi−1
Gi

is even, we see that Λi = 2, which implies that Gi = 2. Further,

it is easy to see that

∆i1K
′
i =

(qdi1 − 1)(−2τi`i2(1− 2τ ′i∆i1)− τ ′i(qdi2 − 1)Li)

8
.

This further implies that φ
∆i1

K′i
i1

= φ
τi`i2

(q
di1−1)(1−2τ ′i∆i1 )

4
i1

. As Gi = 2 and Λ′i =

1 = gcd(2,∆i2GiLi − ∆i1τi`i2), we see that the integer τi`i2 is odd, which

further implies that O(φ
∆i1

K′i
i1

) = 4. Next we observe that ∆i1Ki = q
di1−1

2
and

φ
∆i1

(Ki+K
′
i)

i1
= φ

(q
di1−1)(−τi`i2 (1−2τ ′i∆i1 )+2)

4
i1

. This implies that O(φ
∆i1

(Ki+K
′
i)

i1
) = 4.

Now since p ≡ 3 ≡ −1 (mod 4), r = 1 and
di1
2

is odd, by Theorem 2.2.2, we

note that G(φ
∆i1

K′i
i1

, χi1) = G(φ
∆i1

(Ki+K
′
i)

i1
) = −p

di1
2 . From this, we obtain

Fi(y
(i)
ti,i1

) = −p
di1
2 φ

∆i1
K′i

i1
(y

(i)
ti,i1

)(1 + φ
∆i1

Ki
i1

(y
(i)
ti,i1

))

= −p
di1
2 e

(−2πιτi`i2
(1−2τ ′i∆i1 )b

(i)
ti,i1

4

)
(1 + eπιb

(i)
ti,i1 )

=

 −2 p
di1
2 (−1)

b
(i)
ti,i1

2 if 2 | b(i)
ti,i1

;

0 if 2 - b(i)
ti,i1

.

This, by Theorem 2.2.1, implies that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =

 1− 3
di1
2 + 2(−1)

b
(i)
ti,i1

+di2
+2b

(i)
ti,i2

2 3
di1

+di2
2 if 2 | b(i)

ti,i1
;

1 + 3
di1
2 if 2 - b(i)

ti,i1
.

(b) Let gi1 = 2 = gcd
(
q
di1−1
qηi−1

, `i1
)
. Here we see that GiΛi

q−1
= 1 and both the integers

di1 , `i1 are even. Since M ′
i = 2, we observe that Λ′igi2Hi = 2 and qηi−1

q−1
= 1,
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i.e., ηi = 1. Now as ηi = 1 and di1 is even, the integer di2 must be odd and

gi2 = 1 = gcd
(
q
di2−1
q−1

, `i2
)
. This implies that the integer ∆i2 is odd and

Λ′iHi = 2 = gcd(ΛiHi,∆i2GiLi −∆i1τi`i2). (7.16)

Further, as
gi1
2

= gcd
(
∆i1 ,

`i1
2

)
= 1 and Gi = gcd

( `i1
2
, q − 1

)
, by (7.16), we

observe that the integer ∆i1 is odd in this case. Next we note that

∆i1K
′
i =

qdi1 − 1

2(q − 1)

(−Λiτi`i2(1− τ ′i∆i1)

2
− τ ′i(q

di2 − 1)Li
2

)
=

(qdi1 − 1)Ai
4

,

(7.17)

where Ai =
−τi`i2 (1−τ ′i∆i1

)

Gi
− τ ′i∆i2Li. Further, since ∆i1 ,∆i2 , Li all are odd

integers, one can easily observe, by (7.16), that the integers Gi and τi`i2 are

of the same parity.

When Gi is even, we observe that the integer τi`i2 is even. Since Gi divides

1 − τ ′i∆i1 , we note that the integer τ ′i is odd. From this, one can easily see

that the integer Ai is odd. This, by (7.17), gives O(φ
∆i1

K′i
i1

) = 4.

On the other hand, when Gi is odd, we see that the integer τi`i2 is odd. Next

we note that the integer τ ′i is odd if the integer
1−τ ′i∆i1

Gi
is even, while the integer

τ ′i is even if the integer
1−τ ′i∆i1

Gi
is odd. That is, the integers

1−τ ′i∆i1

Gi
and τ ′i are of

the opposite parity. Now as both the integers ∆i2Li and τi`i2 are odd, we note

that the integer Ai is odd. This, by (7.17), implies that O(φ
∆i1

K′i
i1

) = 4. Next

we note that φ
∆i1

(Ki+K
′
i)

i1
= φ

(q
di1−1)(Ai+2)

4
i1

. From this, one can easily observe

that the characters φ
∆i1

K′i
i1

and φ
∆i1

(Ki+K
′
i)

i1
are inverses of each other, which

implies that O(φ
∆i1

K′i
i1

) = O(φ
∆i1

(Ki+K
′
i)

i1
) = 4. As ∆i1 = q

di1−1
2(q−1)

is odd, we see

that q ≡ 1 (mod 4) and
di1
2

is odd. So we shall consider the following two

cases separately: (i) p ≡ 3 (mod 4), and (ii) p ≡ 1 (mod 4).

(i) When p ≡ 3 (mod 4), we note that the integer r must be even. That is, p ≡

−1 (mod 4) and the integer
rdi1

2
is even. Further, by Theorem 2.2.2, we get
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G(φ
∆i1

K′i
i1

, χi1) = G(φ
∆i1

(Ki+K
′
i)

i1
, χi1) = (−1)

rdi1
2
−1q

di1
2 = −q

di1
2 . Now working

in a similar manner as in part (a), we get

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =

 1 + q
di1
2 + 2(−1)

rdi2
+b

(i)
ti,i1

+2b
(i)
ti,i2

2 q
di1

+di2
2 if 2 | b(i)

ti,i1
;

1− q
di1
2 if 2 - b(i)

ti,i1
.

(ii) Let p ≡ 1 (mod 4). As O(φ
∆i1

(Ki+K
′
i)

i1
) = O(φ

∆i1
K′i

i1
) = 4 divides p − 1, by

Theorem 11.4.4 of [11, p. 356], we note that there exists a multiplicative

character φ of Fp having order 4 such that

φ
∆i1

(Ki+K
′
i)

i1
(α) = φ(NF

q
di1

/Fp(α)) and φ
∆i1

K′i
i1

(α) = φ(NF
q
di1

/Fp(α)) (7.18)

for all α ∈ F
q
di1
, where NF

q
di1

/Fp denotes the norm function from F
q
di1

onto Fp.

Further, by Davenport-Hasse’s Theorem (see Theorem 11.5.2 of [11, p. 360])

and by using the fact that the integer rdi1 is even, we obtain

G(φ
∆i1

(Ki+K
′
i)

i1
, χi1) = −G(φ, χ′)rdi1 and G(φ

∆i1
K′i

i1
, χi1) = −G(φ, χ′)rdi1 ,

where χ′ is the canonical additive character of Fp. This gives

Fi(y
(i)
ti,i1

) = −φ∆i1
K′i

i1
(y

(i)
ti,i1

)
(
G(φ, χ′)rdi1 +G(φ, χ′)rdi1 (−1)b

(i)
ti,i1

)
.

As ζ = ζ
q
di1−1
p−1

i1
is a primitive element of Fp, we note, by (7.18), that

φ
∆i1

K′i
i1

(ζi1) = e
2πι(q

di1−1)Ai

(q
di1−1)4 = ιAi = φ(NF

q
di1

/Fp(ζi1)) = φ(ζ
q
di1−1
p−1

i1
) = φ(ζ)

and

φ
∆i1

(Ki+K
′
i)

i1
(ζi1) = e

2πι(q
di1−1)(Ai+2)

(q
di1−1)4 = ιAi+2 = φ(NF

q
di1

/Fp(ζi1)) = φ(ζ
q
di1−1
p−1

i1
) = φ(ζ).
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Since the integer rdi1 is even and ζ
p−1

2 = −1, by (2.4), we see that

G(φ, χ′)rdi1 = φrdi1 (−1)G(φ, χ′)
rdi1 = ι

(Ai+2)(p−1)rdi1
2 G(φ, χ′)

rdi1 = G(φ, χ′)
rdi1 .

(7.19)

Next we assert that

Fi(y
(i)
ti,i1

) = −ιb
(i)
ti,i1p

rdi1
4

(
(ei + ιfi)

rdi1
2 + (ei − ιfi)

rdi1
2 (−1)b

(i)
ti,i1

)
.

To prove this assertion, we first see that φ
∆i1

K′i
i1

(y
(i)
ti,i1

) = e

2πι(q
di1−1)Aib

(i)
ti,i1

(q
di1−1)4 =

ιAib
(i)
ti,i1 , and we shall consider the following two cases separately: Ai ≡ 1 (mod 4)

and Ai ≡ 3 (mod 4).

When Ai ≡ 1 (mod 4), we see that φ(ζ) = ι. By Theorem 4.2.3 of [11, p. 163],

we note that G(φ, χ′)rdi1 = p
rdi1

4 (ei + ιfi)
rdi1

2 . This, by (7.19), implies that

Fi(y
(i)
ti,i1

) = −ιb
(i)
ti,i1p

rdi1
4

(
(ei + ιfi)

rdi1
2 + (ei − ιfi)

rdi1
2 (−1)b

(i)
ti,i1

)
.

When Ai ≡ 3 (mod 4), we note that φ(ζ) = ι. By Theorem 4.2.3 of [11, p.

163], we see that G(φ, χ′)rdi1 = p
rdi1

4 (ei + ιfi)
rdi1

2 . This, by (7.19), implies that

Fi(y
(i)
ti,i1

) = −(−ι)b
(i)
ti,i1p

rdi1
4

(
(ei − ιfi)

rdi1
2 + (ei + ιfi)

rdi1
2 (−1)b

(i)
ti,i1

)
= −ιb

(i)
ti,i1p

rdi1
4

(
(ei + ιfi)

rdi1
2 + (ei − ιfi)

rdi1
2 (−1)b

(i)
ti,i1

)
,

which proves the assertion. From this and by Theorem 2.2.1, we obtain

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

)=



1 + q
di1
2 + 2 q

di1
+2di2
4 (−1)

2(rdi2
+b

(i)
ti,i2

)+b
(i)
ti,i1

2 Re (ei + ιfi)
rdi1

2

if 2 | b(i)
ti,i1

;

1− q
di1
2 + 2 q

di1
+2di2
4 (−1)

2(rdi2
+b

(i)
ti,i2

)+1+b
(i)
ti,i1

2 Im (ei + ιfi)
rdi1

2

if 2 - b(i)
ti,i1

.
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In the following theorem, we explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)

when Mi ≥ 3 and M ′
i = 2.

Theorem 7.2.7. Let Mi ≥ 3, M ′
i = 2, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈

F∗
q
di2
, where 0 ≤ b

(i)
ti,i1
≤ qdi1 − 2 and 0 ≤ b

(i)
ti,i2
≤ qdi2 − 2. Let Si = − τi`i2Λi

q−1

(
1 −

(qηi−1)τ ′i∆i1

GiΛi

)
− τ ′i(q

di2−1)Li
q−1

. Here Si is an integer, the integer rdi2 is even and p is an

odd prime.

(a) Let Si be even. Suppose that there exists a positive integer µ′i satisfying pµ
′
i ≡

−1 (mod Mi). If θi is the least positive integer satisfying pθi ≡ −1 (mod Mi),

then we have rdi1 = 2θiγi for some positive integer γi.

• If Mi is even and γi(p
θi+1)
Mi

is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



ni(q−1)
q

+
ni(q−1)

(
−1+q

di1
2 (Mi−1)

)(
1+(−1)

b
(i)
ti,i2 ι

rdi2
(p−1)2

4 q
di2
2

)
q(q

di1−1)(q
di2−1)

if Mi | b(i)
ti,i1

+ Mi

2
;

ni(q−1)
q
− ni(q−1)

(
1+q

di1
2

)(
1+(−1)

b
(i)
ti,i2 ι

rdi2
(p−1)2

4 q
di2
2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

+ Mi

2
.

• If either Mi is odd or γi(p
θi+1)
Mi

is even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



ni(q−1)
q
− ni(q−1)

(
1+(−1)γiq

di1
2 (Mi−1)

)(
1+ι

rdi2
(p−1)2

4 q
di2
2 (−1)

b
(i)
ti,i2

)
q(q

di1−1)(q
di2−1)

)
if Mi | b(i)

ti,i1
;

ni(q−1)
q
− ni(q−1)

(
1−(−1)γiq

di1
2

)(
1+ι

rdi2
(p−1)2

4 q
di2
2 (−1)

b
(i)
ti,i2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

.

(b) Let Si be odd. Suppose that there exists a positive integer µi satisfying pµi ≡

−1 (mod 2Mi). If θi and θ′i are the least positive integers satisfying pθi ≡
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−1 (mod Mi) and pθ
′
i ≡ −1 (mod 2Mi), then we have rdi1 = 2θiγi = 2θ′iγ

′
i for

some positive integers γi and γ′i.

• If Mi is even and
γiγ
′
i(p

θi+1)(pθ
′
i+1)

2M2
i

is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q

(
1−

(
1+q

di1
2 +(−1)

( b(i)
ti,i1
Mi

+b
(i)
ti,i2

)
ι
rdi2

(p−1)2

4 q
di1

+di2
2 Mi

)
(q
di1−1)(q

di2−1)

)
if Mi | b(i)

ti,i1
;

ni(q−1)
q

(
1− 1−q

di1
2 (Mi−1)

(q
di1−1)(q

di2−1)

)
if Mi - b(i)

ti,i1
& Mi |

2b
(i)
ti,i1

+Mi

2
;

ni(q−1)
q
− ni(q−1)(1+q

di1
2 )

q(q
di1−1)(q

di2−1)
if Mi - b(i)

ti,i1
& Mi -

2b
(i)
ti,i1

+Mi

2
.

• If both the integers Mi,
γ′i(p

θ′i+1)

2Mi
are even and the integer γi(p

θi+1)
Mi

is odd,

then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q

(
1−

(
1+q

di1
2 +(−1)

( b(i)
ti,i1
Mi

+γ′i+b
(i)
ti,i2

)
ι
rdi2

(p−1)2

4 q
di1

+di2
2 Mi

)
(q
di1−1)(q

di2−1)

)
if Mi | b(i)

ti,i1
;

ni(q−1)
q

(
1− 1−q

di1
2 (Mi−1)

(q
di1−1)(q

di2−1)

)
if Mi - b(i)

ti,i1
& Mi |

2b
(i)
ti,i1

+Mi

2
;

ni(q−1)
q
− ni(q−1)(1+q

di1
2 )

q(q
di1−1)(q

di2−1)
if Mi - b(i)

ti,i1
& Mi -

2b
(i)
ti,i1

+Mi

2
.

• If either Mi is odd or γi(p
θi+1)
Mi

is even and
γ′i(p

θ′i+1)

2Mi
is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q

(
1−

(
1−(−1)γi−1q

di1
2 (Mi−1)+XiMi

)
(q
di1−1)(q

di2−1)

)
if Mi | b(i)

ti,i1
;

ni(q−1)
q
− ni(q−1)

(
1+(−1)γi−1q

di1
2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

,

where Xi = (−1)

( b(i)
ti,i1
Mi

+b
(i)
ti,i2

)
ι
rdi2

(p−1)2

4 q
di1

+di2
2 .

• If
γ′i(p

θ′i+1)

2Mi
is even and either Mi is odd or the integer γi(p

θi+1)
Mi

is even,
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then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q

(
1−

(
1−(−1)γi−1q

di1
2 (Mi−1)+YiMi

)
(q
di1−1)(q

di2−1)

)
if Mi | b(i)

ti,i1
;

ni(q−1)
q
− ni(q−1)

(
1+(−1)γi−1q

di1
2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

,

where Yi = (−1)

( b(i)
ti,i1
Mi

+γ′i+b
(i)
ti,i2

)
ι
rdi2

(p−1)2

4 q
di1

+di2
2 .

Proof. To determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1−
Mi−1∑
z1=1

G(φ
∆i1

Kiz1
i1

, χi1)φ
∆i1

Kiz1
i1

(y
(i)
ti,i1

)

+G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

)

(Mi−1∑
z1=0

G(φ
∆i1

(K′i+z1Ki)

i1
, χi1)

×φ∆i1
(K′i+z1Ki)

i1
(y

(i)
ti,i1

)

)
.

(7.20)

Towards this, as M ′
i = 2, we see that φ

∆i2
GiΛi

HiΛ
′
i

i2
is the quadratic character of F

q
di2

and

q is odd. Since gcd(Li, q− 1) = 1, one can easily observe that the integer Li is odd.

Further, for 0 ≤ z1 ≤Mi − 1, we note that

∆i1(K ′i + z1Ki) =
qdi1 − 1

gi1(qηi − 1)Λ′igi2Hi

(
− Λiτi`i2

(
1− (qηi − 1)τ ′i∆i1

GiΛi

)
−τ ′i(qdi2 − 1)Li +

z1(qηi − 1)(q − 1)Λ′igi2Hi

GiΛi

)
.

Now as M ′
i = 2, for 0 ≤ z1 ≤Mi − 1, we get

∆i1(K ′i + z1Ki) =
(qdi1 − 1)(Si + 2z1)

2Mi

. (7.21)
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Note that Si is an integer. Now we shall distinguish the following two cases: (a) Si

is even and (b) Si is odd.

(a) Let Si be even. As O(φ
∆i1

Ki
i1

) = O(φ
q
di1−1
Mi

i1
) = Mi, we see that φ

(q
di1−1)Si

2Mi
i1

∈

〈φ∆i1
Ki

i1
〉. This, by (7.21), gives {φ∆i1

(K′i+z1Ki)
i1

: 0 ≤ z1 ≤ Mi − 1} = 〈φ∆i1
Ki

i1
〉.

Therefore equation (7.20) can be rewritten as

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =

(
− 1 +

Mi−1∑
z1=1

G(φ
∆i1

Kiz1
i1

, χi1)φ
∆i1

Kiz1
i1

(y
(i)
ti,i1

)

)

×
(
− 1 +G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

)

)
(7.22)

Next we assert that the integer di2 is even in this case.

To prove this, we suppose, on the contrary, that the integer di2 is odd. This

implies that both the integers ηi and ∆i2 are odd. Since M ′
i = 2, we note that

gi2 | 2. As di2 is odd, we must have gi2 = 1. This gives
(qηi−1)Λ′iHi

GiΛi
= 2, which

implies that
(qηi−1)Λ′iHi

q−1
= 2
(
GiΛi
q−1

)
. From this, we note that 2 | (qηi−1)Λ′iHi

q−1
, which

implies that 2 | Λ′iHi = gcd(ΛiHi,∆i2GiLi − ∆i1τi`i2). Further, it is easy to

see that the integer ∆i1 must be odd, which implies that the integers Gi and

τi`i2 are of the same parity. Further, since both ∆i1 and ηi are odd, one can

observe that the integer GiΛi
q−1

= gcd
(∆i1

(qηi−1)

q−1
, Gi

)
is odd.

When Gi is even, both the integers q−1
Λi

and τi`i2 are even. As
τ ′i∆i1

(qηi−1)

GiΛi
≡

1
(
mod q−1

Λi

)
, the integer τ ′i must be odd, which implies that the integer Si is

odd. This is a contradiction.

On the other hand, when Gi is odd, we see that both the integers q−1
Λi
, τi`i2

are odd. Further, since
τ ′i∆i1

(qηi−1)

GiΛi
≡ 1

(
mod q−1

Λi

)
and

∆i1
(qηi−1)

GiΛi
is odd, we

note that τ ′i is odd if Λi
q−1

(
1 − τ ′i∆i1

(qηi−1)

GiΛi

)
is even, while τ ′i is even if Λi

q−1

(
1 −

τ ′i∆i1
(qηi−1)

GiΛi

)
is odd. Now as both the integers (q

di2−1)Li
q−1

and τi`i2 are odd, we

note that the integer Si is odd, which is a contradiction.
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This proves the assertion that the integer di2 is even. Now by Theorem 2.2.1,

we see that

G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

) = −ι
rdi2

(p−1)2

4 q
di2
2 (−1)b

(i)
ti,i2 . (7.23)

Further, for 1 ≤ z1 ≤Mi − 1, by Theorem 2.2.2, we note that

G(φ
∆i1

Kiz1
i1

, χi1) =

 (−1)z1q
di1
2 if Mi is even and pγi(p

θi+1)
Mi

is odd;

(−1)γi−1q
di1
2 otherwise.

(7.24)

Now on substituting the values of Gauss sums from (7.23) and (7.24) in equa-

tion (7.22) and after an easy computation, we obtain the desired values of

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) in the respective cases.

(b) Next let Si be odd. Since O(φ
q
di1−1
2Mi

i1
) = 2Mi, we see that φ

(q
di1−1)Si

2Mi
i1

∈ 〈φ
q
di1−1
2Mi

1 〉.

Further, by (7.21), we note that
{
φ

∆i1
(K′i+z1Ki)

i1
: 0 ≤ z1 ≤ Mi − 1

}
={

φ
(q
di1−1)(1+2z1)

2Mi
i1

: 0 ≤ z1 ≤ Mi − 1
}
. In view of this, equation (7.20) can

be rewritten as

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =1−
Mi−1∑
z1=1

G(φ
∆i1

Kiz1
i1

, χi1)φ
∆i1

Kiz1
i1

(y
(i)
ti,i1

)

+G(φ

∆i2
GiΛi

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi

HiΛ
′
i

i2
(y

(i)
ti,i2

)

(Mi−1∑
z1=0

G(φ
(q
di1−1)(1+2z1)

2Mi
i1

, χi1)

×φ
(q
di1−1)(1+2z1)

2Mi
i1

(y
(i)
ti,i1

)

)
.

(7.25)

We next assert that the integer rdi2 is even.

To prove this assertion, we suppose, on the contrary, that rdi2 is odd. As di2

is odd, the integer ηi is odd. Now working in a similar manner as in part (a),
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one can easily observe that the integer ∆i1 is odd. Further, since the integer

rdi1 is even, we see that the integer gi1 is even. Now as pθ
′
i ≡ −1 (mod 2Mi)

and gi1 | Mi, we note that p ≡ 3 (mod 4). Further, since rdi1 = 2θ′iγ
′
i and

2Mi | pθ
′
i + 1, we observe that the integer q

di1−1
2Mi

is even. On the other hand,

let κi be the positive integer such that 2κi || gi1 , i.e., 2κi | gi1 but 2κi+1 - gi1 .

Since both r, ηi are odd, we see that 2 || q − 1 and 2 || qηi − 1. Further,

since ∆i1 is odd, one can easily observe that 2κi+1 || qdi1 − 1 and the integer

GiΛi
q−1

= gcd(
∆i1

(qηi−1)

q−1
, Gi) is odd. From this, it follows that the integer q

di1−1
2Mi

is odd, which is a contradiction.

This proves the assertion that the integer rdi2 is even. Further, for 1 ≤ κ ≤

2Mi − 1, by Theorem 2.2.2, we note that

G(φ
(q
di1−1)κ
2Mi

i1
, χi1) =

 (−1)κq
di1
2 if

pγ′i(p
θ′i+1)

2Mi
is odd;

(−1)γ
′
i−1q

di1
2 otherwise.

(7.26)

Now on substituting the values of Gauss sums from (7.23), (7.24) and (7.26)

in equation (7.25) and after an easy computation, we obtain the desired values

of the sum Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) in the respective cases.

Now we proceed to explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) when M ′
i ≥

3. From this point on, throughout this section, suppose that there exists a positive

integer e′i satisfying pe
′
i ≡ −1 (mod M ′

i). Further, let ei be the least positive integer

satisfying pei ≡ −1 (mod M ′
i). Then by Theorem 2.2.2, we have rdi2 = 2ei%i for

some positive integer %i, and for 1 ≤ z2 ≤M ′
i − 1, we have

G(φ

∆i2
GiΛiz2

HiΛ
′
i

i2
, χi2) =

 (−1)z2q
di2
2 if M ′

i is even and p%i(p
ei+1)
M ′i

is odd;

(−1)%i−1q
di2
2 otherwise.

(7.27)

In the following theorem, we explicitly determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)
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when Mi = 1 and M ′
i ≥ 3.

Theorem 7.2.8. Let Mi = 1, M ′
i ≥ 3, Bi = − Λiτi`i2

GiΛigi2

(
1− (qηi−1)τ ′i∆i1

GiΛi

)
− τ ′i(q

di2−1)Li
gi2GiΛi

,

y
(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈ F∗
q
di2
, where 0 ≤ b

(i)
ti,i1
≤ qdi1 − 2 and

0 ≤ b
(i)
ti,i2
≤ qdi2 − 2. Further, let us define the integers Ti = gcd

(
Bi,

(qηi−1)Λ′iHi
GiΛi

)
and

Ni =
(qηi−1)Λ′iHi
GiΛiTi

, (note that Ni |M ′
i).

(a) Let Ni = 1.

• If Tigi2 is even and p%i(p
ei+1)

Tigi2
is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)

(
1−q

di2
2 (Tigi2−1)

)
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

+
Tigi2

2
;

ni(q−1)
q
− ni(q−1)(1+q

di2
2 )

q(q
di1−1)(q

di2−1)
if Tigi2 - b

(i)
ti,i2

+
Tigi2

2
.

• If either Tigi2 is odd or p%i(p
ei+1)

Tigi2
is even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =


ni(q−1)

q
− ni(q−1)

(
1−(−1)%i−1q

di2
2 (Tigi2−1)

)
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%i−1q

di2
2

)
q(q

di1−1)(q
di2−1)

if Tigi2 - b
(i)
ti,i2

.

(b) When Ni = 2, the integer rdi1 is even and p is an odd prime.

• If %i(p
ei+1)

2Tigi2
is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=


ni(q−1)

q
− ni(q−1)

(
1−q

di2
2 (Tigi2−1)+UiTigi2

)
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)(1+q

di2
2 )

q(q
di1−1)(q

di2−1)
if Tigi2 - b

(i)
ti,i2

,

where Ui = ι
rdi1

(p−1)2

4 (−1)

( b(i)
ti,i2
Tigi2

+b
(i)
ti,i1

)
q
di1

+di2
2 .
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• If %i(p
ei+1)

2Tigi2
is even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=


ni(q−1)

q
− ni(q−1)

(
1+(−1)%iq

di2
2

(
Tigi2−1+ViTigi2

))
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)

(
1−(−1)%iq

di2
2

)
q(q

di1−1)(q
di2−1)

if Tigi2 - b
(i)
ti,i2

,

where Vi = ι
rdi1

(p−1)2

4 q
di1
2 (−1)

( b(i)
ti,i2
Tigi2

+b
(i)
ti,i1

)
.

(c) Let Ni ≥ 3. There exists a least positive integer ωi satisfying pωi ≡ −1 (mod Ni).

Here we have rdi1 = 2ωiϑi for some positive integer ϑi.

• If either the integer TiNigi2 is odd or both the integers TiNigi2 ,
p%i(p

ei+1)
TiNigi2

are even and Ni is odd or both the integers pϑi(p
ωi+1)
Ni

, p%i(p
ei+1)

TiNigi2
are of the

same parity and Ni is even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



ni(q−1)
q
− ni(q−1)(1−(−1)%iq

di2
2 )

q(q
di1−1)(q

di2−1)
if Tigi2 - b

(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%iq

di2
2 (Tigi2−1+(−1)ϑiTigi2 (Ni−1)q

di1
2 )
)

q(q
di1−1)(q

di2−1)

if Tigi2 | b
(i)
ti,i2

& Ni |
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%iq

di2
2 (Tigi2−1−(−1)ϑiTigi2q

di1
2 )
)

q(q
di1−1)(q

di2−1)

if Tigi2 | b
(i)
ti,i2

& Ni -
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
.

• If TiNigi2 is even, p%i(p
ei+1)

TiNigi2
is odd and either Ni is odd or pϑi(p

ωi+1)
Ni

is
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even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q
− ni(q−1)(1+q

di2
2 )

q(q
di1−1)(q

di2−1)
if Tigi2 -

M ′i+2b
(i)
ti,i2

2
;

ni(q−1)
q
− ni(q−1)

(
1−q

di2
2 (Tigi2 (1+(Ni−1)(−1)ϑiq

di1
2 )−1)

)
q(q

di1−1)(q
di2−1)

if Tigi2 |
M ′i+2b

(i)
ti,i2

2
& Ni |

M ′i+2b
(i)
ti,i2

2Tigi2
+

Bib
(i)
ti,i1

Ti
;

ni(q−1)
q
− ni(q−1)

(
1−q

di2
2 (Tigi2 (1−q

di1
2 (−1)ϑi )−1)

)
q(q

di1−1)(q
di2−1)

if Tigi2 |
M ′i+2b

(i)
ti,i2

2
& Ni -

M ′i+2b
(i)
ti,i2

2Tigi2
+

Bib
(i)
ti,i1

Ti
.

• If pϑi(p
ωi+1)
Ni

is odd and both Ni,
p%i(p

ei+1)
TiNigi2

are even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



ni(q−1)
q
− ni(q−1)

(
1−(−1)%iq

di2
2

)
q(q

di1−1)(q
di2−1)

if Tigi2 - b
(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%iq

di2
2 (Tigi2−1−q

di1
2 (Ni−1)Tigi2 )

)
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

& Ni |
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
+ Ni

2
;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%iq

di2
2 (Tigi2−1+q

di1
2 Tigi2 )

)
q(q

di1−1)(q
di2−1)

if Tigi2 | b
(i)
ti,i2

& Ni -
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
+ Ni

2
.

Proof. To determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1 +

M ′i−1∑
z2=1

(
G(φ

∆i2
GiΛiz2

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛiz2

HiΛ
′
i

i2
(y

(i)
ti,i2

)G(φ
∆i1

K′iz2
i1

, χi1)

φ
∆i1

K′iz2
i1

(y
(i)
ti,i1

)
)
. (7.28)

Towards this, we note that as Mi = 1, we must have gi1 = 1 and GiΛi = q − 1.
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Further, it is easy to observe that

∆i1K
′
i =

(qdi1 − 1)GiΛi

(qηi − 1)Λ′igi2Hi

(
− Λiτi`i2

GiΛi

(
1− (qηi − 1)τ ′i∆i1

GiΛi

)
− τ ′i(q

di2 − 1)Li
GiΛi

)
=

(qdi1 − 1)GiΛiBi

(qηi − 1)Λ′iHi

. (7.29)

Note that Bi is an integer. Next by (7.29), we note that O(φ
∆i1

K′i
i1

) =
(qηi−1)Λ′iHi
GiΛiTi

=

Ni. Now we shall consider the following three cases separately: (a) Ni = 1, (b)

Ni = 2, and (c) Ni ≥ 3.

(a) Let Ni = 1. Here by (2.4) and (7.28), we see that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1−
Tigi2−1∑
z2=1

G(φ

∆i2
GiΛiz2

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛiz2

HiΛ
′
i

i2
(y

(i)
ti,i2

).

When Tigi2 is even and p%i(p
ei+1)

Tigi2
is odd, we observe, by (7.27), that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1− q
di2
2

Tigi2−1∑
z2=1

(−1)z2φ

∆i2
GiΛiz2

HiΛ
′
i

i2
(y

(i)
ti,i2

)

= 1− q
di2
2

Tigi2−1∑
z2=1

eπιz2e

2πιz2b
(i)
ti,i2

Tigi2

= 1− q
di2
2

Tigi2−1∑
z2=1

e
2πιz2
Tigi2

(
b
(i)
ti,i2

+
Tigi2

2

)

=

 1− q
di2
2 (Tigi2 − 1) if Tigi2 | b

(i)
ti,i2

+
Tigi2

2
;

1 + q
di2
2 if Tigi2 - b

(i)
ti,i2

+
Tigi2

2
.

On the other hand, when either Tigi2 is odd or p%i(p
ei+1)

Tigi2
is even, we observe,

by (7.27), that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1− (−1)%i−1q
di2
2

Tigi2−1∑
z2=1

φ

∆i2
GiΛiz2

HiΛ
′
i

i2
(y

(i)
ti,i2

)
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=

 1− (−1)%i−1q
di2
2 (Tigi2 − 1) if Tigi2 | b

(i)
ti,i2

;

1 + (−1)%i−1q
di2
2 if Tigi2 - b

(i)
ti,i2

.

(b) Let Ni = 2. Here we see that φ
∆i1

K′i
i1

is the quadratic character of F
q
di1

and q is

odd. Further, each integer z2 satisfying 1 ≤ z2 < M ′
i = 2Tigi2 can be uniquely

expressed as z2 = 2Q+R, where 0 ≤ Q < Tigi2 when R = 1 and 0 < Q < Tigi2

when R = 0. In view of this, equation (7.28) can be rewritten as

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1−
Tigi2−1∑
Q=1

G(φ

∆i2
GiΛi2Q

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi2Q

HiΛ
′
i

i2
(y

(i)
ti,i2

)

+G(φ
∆i1

K′i
i1

, χi1)φ
∆i1

K′i
i1

(y
(i)
ti,i1

)

( Tigi2−1∑
Q=0

G(φ

∆i2
GiΛi(2Q+1)

HiΛ
′
i

i2
, χi2)

×φ
∆i2

GiΛi(2Q+1)

HiΛ
′
i

i2
(y

(i)
ti,i2

)

)
.

(7.30)

We further assert that the integer rdi1 is even.

To prove this assertion, we suppose, on the contrary, that the integer rdi1 is

odd. From this, it follows that both the integers ηi and ∆i1 are odd. As rdi2 is

even, we see that the integer di2 is even. Further, since Ni =
(qηi−1)Λ′iHi
GiΛiTi

= 2 and

GiΛi = q − 1, we observe that 2 | Λ′iHi = gcd(ΛiHi,∆i2GiLi −
∆i1

τi`i2
gi2

). Now

we see that gcd(∆i2 ,
`i2
gi2

) = 1. Further, it is easy to observe that the integer

∆i2 is odd, which implies that the integer gi2 is even. Next as rdi2 = 2ei%i and

pei ≡ −1 (mod 2Tigi2), we note that the integer q
di2−1

2Tigi2
is even. On the other

hand, since gi2 is even, there exists a positive integer ςi such that 2ςi || gi2 .

Further, since pei ≡ −1 (mod 2Tigi2), we note that p ≡ 3 (mod 4). As both

r, ηi are odd, we observe that 2 || q− 1 and 2 || qηi − 1. Now as ∆i2 = q
di2−1

(qηi−1)gi2

is odd, it is easy to see that 2ςi+1 || qdi2 − 1. Since Λ′iHi | GiΛi = q − 1, we

get 2 || Λ′iHi. From this, we see that the integer Ti =
(qηi−1)Λ′iHi

(q−1)2
is odd, which
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further implies that the integer q
di2−1

2Tigi2
is odd. This is a contradiction.

This proves the assertion that the integer rdi1 is even.

(i) Now when %i(p
ei+1)

2Tigi2
is odd, by (7.27), we note that

Tigi2−1∑
Q=0

G(φ

∆i2
GiΛi(2Q+1)

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi(2Q+1)

HiΛ
′
i

i2
(y

(i)
ti,i2

)

= −q
di2
2

Tigi2−1∑
Q=0

e

πιb
(i)
ti,i2

Tigi2
+

2πιb
(i)
ti,i2

Q

Tigi2

=

 −Tigi2q
di2
2 (−1)

b
(i)
ti,i2
Tigi2 if Tigi2 | b

(i)
ti,i2

;

0 if Tigi2 - b
(i)
ti,i2

and

Tigi2−1∑
Q=1

G(φ

∆i2
GiΛi2Q

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi2Q

HiΛ
′
i

i2
(y

(i)
ti,i2

) =

 q
di2
2 (Tigi2 − 1) if Tigi2 | b

(i)
ti,i2

;

−q
di2
2 if Tigi2 - b

(i)
ti,i2

.

From this and by (7.30) and by Theorem 2.2.1, we obtain

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

)=


1− q

di2
2 (Tigi2 − 1) + ι

rdi1
(p−1)2

4 (−1)

( b(i)
ti,i2
Tigi2

+b
(i)
ti,i1

)
q
di1

+di2
2 Tigi2

if Tigi2 | b
(i)
ti,i2

;

1 + q
di2
2 if Tigi2 - b

(i)
ti,i2

.

(ii) When %i(p
ei+1)

2Tigi2
is even, working in a similar manner as in case (i), we

obtain

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

)=


1 + (−1)%iq

di2
2

(
Tigi2 − 1 + ι

rdi1
(p−1)2

4 q
di1
2 (−1)

( b(i)
ti,i2
Tigi2

+b
(i)
ti,i1

)
Tigi2

)
if Tigi2 | b

(i)
ti,i2

;

1− (−1)%iq
di2
2 if Tigi2 - b

(i)
ti,i2

.
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(c) Let Ni ≥ 3. Here for 1 ≤ u ≤ Ni − 1, we see, by Theorem 2.2.2, that

G(φ
∆i1

K′iu

i1
, χi1) =

 (−1)uq
di1
2 if Ni is even and pϑi(p

ωi+1)
Ni

is odd;

(−1)ϑi−1q
di1
2 otherwise.

(7.31)

Further, we note that each integer z1 satisfying 1 ≤ z1 < M ′
i = TiNigi2 can be

uniquely written as z1 = NiQ + R, where 0 ≤ Q < Tigi2 when 1 ≤ R < Ni,

while 1 ≤ Q < Tigi2 when R = 0. In view of this, equation (7.28) can be

rewritten as

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =1 +

Tigi2−1∑
Q=0

Ni−1∑
R=1

(
G(φ

∆i2
GiΛi(NiQ+R)

HiΛ
′
i

i2
, χi2)φ

∆i2
GiΛi(NiQ+R)

HiΛ
′
i

i2
(y

(i)
ti,i2

)

G(φ
∆i1

K′iR

i1
, χi1)φ

∆i1
K′iR

i1
(y

(i)
ti,i1

)
)
−

Tigi2−1∑
Q=1

(
G(φ

∆i2
GiΛiNiQ

HiΛ
′
i

i2
, χi2)

φ

∆i2
GiΛiNiQ

HiΛ
′
i

i2
(y

(i)
ti,i2

)
)
. (7.32)

Here we shall consider the case when Ni is even and both the integers p%i(p
ei+1)

TiNigi2
,

pϑi(p
ωi+1)
Ni

are odd. In this case, by (7.27), (7.31) and (7.32), we observe that

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) = 1− q
di2
2 U(y

(i)
ti,i2

) + q
di1

+di2
2 V (y

(i)
ti,i1

, y
(i)
ti,i2

), (7.33)

where

U(y
(i)
ti,i2

) =

Tigi2−1∑
Q=1

φ

∆i2
GiΛiNiQ

HiΛ
′
i

i2
(y

(i)
ti,i2

)

and

V (y
(i)
ti,i1

, y
(i)
ti,i2

) =
(
1 + U(y

(i)
ti,i2

)
)
V ′(y

(i)
ti,i1

, y
(i)
ti,i2

)
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with V ′(y
(i)
ti,i1

, y
(i)
ti,i2

) =
Ni−1∑
R=1

φ

∆i2
GiΛiR

HiΛ
′
i

i2
(y

(i)
ti,i2

)φ
∆i1

K′iR
i1

(y
(i)
ti,i1

). Next we see that

U(y
(i)
ti,i2

) =

Tigi2−1∑
Q=1

e

2πι(q
di2−1)GiΛiNiQb

(i)
ti,i2

(qηi−1)(q
di2−1)gi2

HiΛ
′
i

=

Tigi2−1∑
Q=1

e

2πιQb
(i)
ti,i2

Tigi2

=

 Tigi2 − 1 if Tigi2 | b
(i)
ti,i2

;

−1 otherwise

and

V ′(y
(i)
ti,i1

, y
(i)
ti,i2

) =

Ni−1∑
R=1

e

2πιRb
(i)
ti,i2

TiNigi2
+

2πιBiRb
(i)
ti,i1

TiNi

=

Ni − 1 if Tigi2 | b
(i)
ti,i2

and Ni |
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
;

−1 if Tigi2 | b
(i)
ti,i2

and Ni -
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
.

This implies that

V (y
(i)
ti,i1

, y
(i)
ti,i2

) =


Tigi2(Ni − 1) if Tigi2 | b

(i)
ti,i2

and Ni |
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
;

−Tigi2 if Tigi2 | b
(i)
ti,i2

and Ni -
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
;

0 if Tigi2 - b
(i)
ti,i2

.

From this and by (7.33), we obtain

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) =



1 + q
di2
2 if Tigi2 - b

(i)
ti,i2

;

1− q
di2
2 (Tigi2 − 1− Tigi2q

di1
2 (Ni − 1))

if Tigi2 | b
(i)
ti,i2

and Ni |
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
;

1− q
di2
2 (Tigi2 − 1 + Tigi2q

di1
2 )

if Tigi2 | b
(i)
ti,i2

and Ni -
b
(i)
ti,i2

Tigi2
+

Bib
(i)
ti,i1

Ti
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when Ni is even and both the integers p%i(p
ei+1)

TiNigi2
, pϑi(p

ωi+1)
Ni

are odd. Working in

a similar manner as above, one can also determine explicit values of the sum

Θi(y
(i)
ti,i1

, y
(i)
ti,i2

) in the remaining cases.

In the following theorem, we determine the numberD
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) whenMi = 2

and M ′
i ≥ 3 with either O(φ

∆i1
K′i

i1
) = 1 or O(φ

∆i1
K′i

i1
) = 2.

Theorem 7.2.9. Let Mi = 2, M ′
i ≥ 3, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈

F∗
q
di2
, where 0 ≤ b

(i)
ti,i1
≤ qdi1 − 2 and 0 ≤ b

(i)
ti,i2
≤ qdi2 − 2. Suppose that either

O(φ
∆i1

K′i
i1

) = 1 or O(φ
∆i1

K′i
i1

) = 2. Then p is an odd prime, the integer rdi1 is even

and the following hold.

• If M ′
i is even and %i(p

ei+1)
M ′i

is odd, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q

+
ni(q−1)

(
−1+q

di2
2 (M ′i−1)

)(
1+ι

rdi1
(p−1)2

4 (−1)
b
(i)
ti,i1 q

di1
2

)
q(q

di1−1)(q
di2−1)

if M ′
i | b

(i)
ti,i2

+
M ′i
2

;

ni(q−1)
q
− ni(q−1)(1+q

di2
2 )
(

1+ι
rdi1

(p−1)2

4 (−1)
b
(i)
ti,i1 q

di1
2

)
q(q

di1−1)(q
di2−1)

if M ′
i - b

(i)
ti,i2

+
M ′i
2
.

• If either M ′
i is odd or %i(p

ei+1)
M ′i

is even, then we have

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)=



ni(q−1)
q

+
ni(q−1)

(
−1+(−1)%i−1q

di2
2 (M ′i−1)

)(
1+ι

rdi1
(p−1)2

4 (−1)
b
(i)
ti,i1 q

di1
2

)
q(q

di1−1)(q
di2−1)

if M ′
i | b

(i)
ti,i2

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%i−1q

di2
2

)(
1+ι

rdi1
(p−1)2

4 (−1)
b
(i)
ti,i1 q

di1
2

)
q(q

di1−1)(q
di2−1)

if M ′
i - b

(i)
ti,i2

.

Proof. As Mi = 2, we note that φ
∆i1

Ki
i1

is the quadratic character of F
q
di1

and q
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is odd. Now by applying Theorem 2.2.1 and working in a similar manner as in

Theorem 7.2.8(a), the desired result follows immediately.

Next we proceed to determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) when both Mi,M
′
i ≥

3. Towards this, we see, by Lemma 7.2.3, that we need to determine explicit values

of the Gauss sums G(φ
∆i1

j

i1
, χi1), where 1 ≤ j < (qηi − 1)gi1 . To do this, we observe

that O(φ
∆i1
i1

) = (qηi − 1)gi1 ≥ 3. Now by Theorem 2.2.2, we note that the explicit

values of the Gauss sums G(φ
∆i1

j

i1
, χi1), 1 ≤ j < (qηi − 1)gi1 , are known in the

semi-primitive case, i.e., when there exists a least positive integer εi satisfying pεi ≡

−1 (mod (qηi − 1)gi1). In the semi-primitive case, by Theorem 2.2.2, we note that

the integer rdi1 must be even. We also recall that there exists a least positive integer

ei satisfying pei ≡ −1 (mod M ′
i), which implies that rdi2 = 2ei%i for some positive

integer %i. That is, the integer rdi2 is also even. From this, it follows that the integer

rηi = gcd(rdi1 , rdi2) is even. Since qηi − 1 = 1 or 2 implies that rηi = 1, we must

have qηi − 1 ≥ 3. As we have pεi ≡ −1 (mod (qηi − 1)gi1), there exists a least

positive integer fi satisfying pfi ≡ −1 (mod qηi − 1). This, by Theorem 11.6.2 of

[11], gives rηi = 2fi. From this, we obtain qηi − 1 = prηi − 1 = (pfi + 1)(pfi − 1),

which implies that
(
pfi+1
qηi−1

)
(pfi − 1) = 1. This gives pfi − 1 = 1, which holds if and

only if fi = 1, p = 2 and rηi = 2. Therefore in the semi-primitive case, we must

have q = 2 or 4. In the following theorem, we determine the number D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

)

when Mi ≥ 3 and M ′
i ≥ 3 in the semi-primitive case.

Theorem 7.2.10. Let Mi ≥ 3, M ′
i ≥ 3, y

(i)
ti,i1

= ζ
b
(i)
ti,i1
i1

∈ F∗
q
di1

and y
(i)
ti,i2

= ζ
b
(i)
ti,i2
i2

∈

F∗
q
di2
, where 0 ≤ b

(i)
ti,i1
≤ qdi1 − 2 and 0 ≤ b

(i)
ti,i2
≤ qdi2 − 2. Suppose that there

exist least positive integers εi and ei satisfying pεi ≡ −1 (mod (qηi − 1)gi1) and

pei ≡ −1 (mod M ′
i). Then we have q = 2 or 4. Furthermore, we have rdi1 = 2εi%

′
i,
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rdi2 = 2ei%i for some positive integers %i, %
′
i, and

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =



ni(q−1)
q
− ni(q−1)

(
1−(−1)%

′
iq
di1
2

)
q(q

di1−1)(q
di2−1)

if Mi - b(i)
ti,i1

;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%

′
iq
di1
2

(
(Mi−1)+(−1)%iq

di2
2 Mi(M

′
i−1)
))

q(q
di1−1)(q

di2−1)

if Mi | b(i)
ti,i1

& M ′
i | b

(i)
ti,i2

+
Λ′igi2HiK

′
ib

(i)
ti,i1

GiΛigi1
;

ni(q−1)
q
− ni(q−1)

(
1+(−1)%

′
iq
di1
2

(
(Mi−1)−(−1)%iq

di2
2 Mi

))
q(q

di1−1)(q
di2−1)

if Mi | b(i)
ti,i1

& M ′
i - b

(i)
ti,i2

+
Λ′igi2HiK

′
ib

(i)
ti,i1

GiΛigi1
.

Proof. As p = 2, by Theorem 2.2.2, we see that G(φ
∆i1

v

i1
, χi1) = (−1)%

′
i−1q

di1
2 for

1 ≤ v < (qηi − 1)gi1 . Further, one can easily observe that
Λ′igi2HiK

′
i

q−1
is an integer.

Now working in a similar manner as in Theorem 7.2.8(c), the desired result follows

immediately.

Remark 7.2.11. By applying Theorems 7.2.2-7.2.10 and by (7.3)-(7.5), one can

determine Hamming weights of all non-zero codewords of several classes of Λ-MT

codes and their Hamming weight distributions, which we demonstrate in the following

section by computing Hamming weight distributions of several classes of MT codes.

7.3 Hamming weight distributions of MT codes

In this section, we will explicitly determine Hamming weight distributions of

several classes of MT codes with the constituents C1, C2, · · · , Cρ, whose codewords

satisfy the condition (7.1). Using these results, we further identify two classes of

optimal equidistant linear codes meeting the Griesmer bound and the Plotkin bound

and several other classes of minimal linear codes within these classes of MT codes.

Recall that the support of a vector v = (v0, v1, · · · , vn−1) ∈ Fnq , denoted by

supp(v), is defined as the set supp(v) = {i : 0 ≤ i ≤ n−1, vi 6= 0}. Further, a vector

u ∈ Fnq is said to cover another vector v ∈ Fnq if supp(v) ⊆ supp(u). A codeword
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c ∈ C is said to be minimal if c covers only the codewords ac ∈ C for all a ∈ Fq, and

c does not cover any other codeword of the code C. The linear code C is said to be

minimal if every codeword of C is minimal. It has been shown that minimal linear

codes are useful in constructing secret sharing schemes with nice access structures

[19, 23, 54, 60, 80] and in secure two-party computation [2, 22]. In addition, these

codes can be effectively decoded with a minimum distance decoding algorithm [1].

Throughout this section, let C be a Λ-MT code of length n over Fq with the

constituents C1,C2, · · · ,Cρ such that Cw = 〈Fw〉 is an Fw-submodule of Lw. Further,

let us assume that Fw = (Fw,1, Fw,2, · · · , Fw,`), where

Fw,i =

 F
(i)
0,w + F

(i)
1,wui · · ·+ F

(i)
pai−1,wu

pai−1
i if εw,i = 1;

0 otherwise,

with F
(i)
ji,w
∈ Fqdw for 1 ≤ w ≤ ρ, 1 ≤ i ≤ ` and 0 ≤ ji ≤ pai − 1. Further, for each

w, let us define Ew = {1 ≤ i ≤ ` : Fw,i 6= 0}.

In the following theorem, we identify a class of optimal equidistant linear codes

over finite fields within the family of Λ-MT codes.

Theorem 7.3.1. Let F1 = (b1,1u
pa1−1
1 , b1,2u

pa2−1
2 , · · · , b1,`u

pa`−1
` ) 6= 0 and F2 = F3 =

· · · = Fρ = 0, where b1,i ∈ Fqd1 for 1 ≤ i ≤ `. If τ1 = 1, then the Λ-MT code C

is an equidistant linear
[
n, d1,

∑
i∈E1

mi(q−1)qd1−1

qd1−1

]
-code over Fq. In particular, if E1 =

{1, 2, · · · , `}, then the code C has parameters
[
n, d1,

n(q−1)qd1−1

qd1−1

]
and is an optimal

code that attains both the Griesmer and Plotkin bounds.

Proof. Since C1 = 〈F1〉, we have C1 = {(νb1,1u
pa1−1
1 , νb1,2u

pa2−1
2 , · · · , νb1,`u

pa`−1
` ) :

ν ∈ Fqd1}, which implies that |C | = qd1 . Note that the code C satisfies the condition

(7.1) with i1 = 1 and i2 to be any integer satisfying 1 < i2 ≤ ρ for 1 ≤ i ≤ `.

Further, for 1 ≤ i ≤ ` and 0 ≤ ti ≤ pai − 1, it is easy to see that
(
pai−1
ti

)
6= 0.

From this, for each ti, we see that y
(i)
ti,1

=
(
pai−1
ti

)
νb1,i(−δ1)p

ai−1−ti 6= 0 for i ∈ E1 and

x1 = (νb1,1u
pa1−1
1 , νb1,2u

pa2−1
2 , · · · , νb1,`u

pa`−1
` )(6= 0) ∈ C1. Now for each i ∈ E1, by
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equations (7.1), (7.4) and (7.5) and by Theorem 7.2.2(a), we see that the Hamming

weight of the ith block ci(x1, x2, · · · , xρ) of the codeword c(x1, x2, · · · , xρ) ∈ C is

given by

WH(ci(x1, x2, · · · , xρ)) =

pai−1∑
ti=0

D
(ti)
i (y

(i)
ti,i1

, y
(i)
ti,i2

) =

 0 if x1 = 0;

paini(q−1)qd1−1

qd1−1
otherwise,

where xw ∈ Cw for 1 ≤ w ≤ ρ. Further, by (7.3), we note that each non-zero

codeword of C has Hamming weight
∑
i∈E1

mi(q−1)qd1−1

qd1−1
. Furthermore, for i ∈ E1, since

ζ`1mi1 = δ−mi1 = λ−1
i , we see that ζ

`1mi(q−1)
1 = 1, which implies that qd1−1

q−1
| mi. Now

when E1 = {1, 2, · · · , `}, one can easily observe that the code C has parameters[
n, d1,

n(q−1)qd1−1

qd1−1

]
and attains both the Griesmer and Plotkin bounds.

From this point on, in Tables 7.5-7.8, we assume that A0 = 1 and Aj = 0 for

all other non-zero Hamming weights j’. In the following theorem, we explicitly

determine Hamming weight distributions of the codes belonging to a class of Λ-MT

codes having at most two non-zero Hamming weights. We also identify two different

classes of optimal equidistant linear codes and 2-weight minimal linear codes within

these classes of MT codes.

Theorem 7.3.2. Let F1 = (b1,1u
pa1−1
1 , b1,2u

pa2−1
2 , · · · , b1,`u

pa`−1
` ) 6= 0 and F2 =

F3 = · · · = Fρ = 0, where b1,i ∈ Fqd1 for 1 ≤ i ≤ `. If S1 = {i ∈ E1 :

b1,i is a square in Fqd1}, S2 = {i ∈ E1 : b1,i is a non-square in Fqd1} and τ1 = 2,

then d1 is an even integer, q is an odd prime power, and the Λ-MT code C is a lin-

ear code of length n and dimension d1 over Fq having at most two non-zero Hamming

weights and its Hamming weight distribution is given by Table 7.1. Furthermore,

the code C is a 2-weight code over Fq if
∑
i∈S1

mi 6=
∑
i∈S2

mi, while the code C is an

equidistant code if
∑
i∈S1

mi =
∑
i∈S2

mi.

In particular, let E1 = {1, 2, · · · , `} and m1 = m2 = · · · = m` so that n = m1`.

Now if ` is even and |S1| = |S2| = `
2
, then the code C is an optimal equidistant
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Hamming weight j Frequency Aj∑
i∈S1

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈S2

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈S1

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑
i∈S2

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2

Table 7.1: Hamming weight distribution of the code C considered in Theorem 7.3.2

linear
[
n, d1,

n(q−1)qd1−1

qd1−1

]
-code over Fq that attains both the Griesmer and Plotkin

bounds. On the other hand, if either S1 = {1, 2, · · · , `} or S2 = {1, 2, · · · , `}, then

the code C is a 2-weight linear
[
n, d1,

n(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

]
-code over Fq, which

is a minimal linear code when either 2 || rd1(p−1)2

4
or 4 | rd1(p−1)2

4
and d1 ≥ 4, (note

that 2 | rd1(p−1)2

4
).

Proof. Since F∗
qd1

= 〈ζ1〉, it is easy to see that ζ
qd1−1
p−1

1 is a primitive element of

Fp. Also for 1 ≤ i ≤ ` and 0 ≤ ti ≤ pai − 1, we note that
(
pai−1
ti

)
= ζ

(qd1−1)ri
p−1

1

for some integer ri satisfying 0 ≤ ri ≤ p − 2, which implies that 2 | (qd1−1)ri
p−1

,

as τ1 = 2 = gcd
(
qd1−1
q−1

, `1

)
. Further, for i ∈ E1, 0 ≤ ti ≤ pai − 1 and x1 =

(ζh1 b1,1u
pa1−1
1 , ζh1 b1,2u

pa2−1
2 , · · · , ζh1 b1,`u

pa`−1
` ) ∈ C1 with 0 ≤ h ≤ qd1 − 2, one can

observe that

y
(i)
ti,1

=

(
pai − 1

ti

)
ζh1 b1,i(−δ1)p

ai−1−ti =

(
pai − 1

ti

)
ζh1 b1,iζ

(qd1−1)(pai−1−ti)
2

1 ζ
−`1(pai−1−ti)
1

is a square in Fd1
q when ζh1 b1,i is a square in Fd1

q , as 2 | `1 and 2 | qd1−1
2
. Now by

applying Theorem 7.2.2(b) and working in a similar manner as in Theorem 7.3.1,

the desired result follows immediately.

In the following theorem, we explicitly determine the Hamming weight distri-

bution of the code C when τ1 ≥ 3, F1 = (ε1,1u
pa1−1
1 , ε1,2u

pa2−1
2 , · · · , ε1,`up

a`−1
` ) and

F2 = F3 = · · · = Fκ = 0 in the semi-primitive case. We also derive sufficient

conditions under which the code C is minimal.
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Hamming weight j Frequency Aj∑
i∈E1

mi(q−1)
(
qd1−(−1)ν1−1q

d1
2 (τ1−1)

)
q(qd1−1)

qd1−1
τ1∑

i∈E1

mi(q−1)
(
qd1+(−1)ν1−1q

d1
2

)
q(qd1−1)

(qd1−1)(τ1−1)
τ1

Table 7.2: Hamming weight distribution of the code C considered in Theorem 7.3.3

Theorem 7.3.3. Let τ1 ≥ 3, F1 = (ε1,1u
pa1−1
1 , ε1,2u

pa2−1
2 , · · · , ε1,`up

a`−1
` ) and F2 =

F3 = · · · = Fρ = 0. Suppose that there exists a least positive integer z1 satisfying

pz1 ≡ −1 (mod τ1). Then we have rd1 = 2z1ν1 for some positive integer ν1.

(a) When ν1 is even, the Λ-MT code C is a 2-weight linear
[
n, d1,

∑
i∈E1

mi(q−1)(qd1−q
d1
2 )

q(qd1−1)

]
-

code over Fq, whose Hamming weight distribution is given by Table 7.2. Fur-

ther, the code C is minimal when q
d1
2 − qτ1 + τ1 − 1 > 0.

(b) When ν1 is odd, the Λ-MT code C is a 2-weight linear
[
n, d1,

∑
i∈E1

mi(q−1)(qd1−(R1−1)q
d1
2 )

q(qd1−1)

]
-

code over Fq, whose Hamming weight distribution is given by Table 7.2. The

code C is minimal when q
d1
2 − qτ1 + 1 > 0.

Proof. By applying Theorem 7.2.2(c) and working in a similar manner as in Theo-

rems 7.3.1 and 7.3.2, the desired result follows immediately.

In the following two theorems, we identify several 2-weight and 3-weight codes

within the family of MT codes, and explicitly determine their Hamming weight

distributions.

Theorem 7.3.4. Let q = 2r, a1 = a2 = · · · = a` = 1, F1 = (ε1,1, ε1,2, · · · , ε1,`)

and F2 = F3 = · · · = Fρ = 0. If τ1 = 1, then the Λ-MT code C has parameters[
n, 2d1,

∑
i∈E1

ni(q−1)qd1−1

qd1−1

]
and is a 2-weight code, whose Hamming weight distribution

is given by Table 7.3.

Proof. The desired result follows by equations (7.1), (7.3)-(7.5) and by applying

Theorem 7.2.2(a).
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Hamming weight j Frequency Aj Hamming weight j Frequency Aj∑
i∈E1

ni(q−1)qd1−1

qd1−1
2(qd1 − 1)

∑
i∈E1

mi(q−1)qd1−1

qd1−1
(qd1 − 1)2

Table 7.3: Hamming weight distribution of the code C considered in Theorem 7.3.4

Hamming weight j Frequency Aj∑
i∈E1

ni(q−1)qd1−1

qd1−1
3(qd1 − 1)∑

i∈E1

2ni(q−1)qd1−1

qd1−1
2(qd1 − 1) + 2(qd1 − 1)(qd1 − 2) + (qd1 − 1)2∑

i∈E1

mi(q−1)qd1−1

qd1−1
qd1−1+2(qd1−1)(qd1−2)+(qd1−1)(qd1−2)2

Table 7.4: Hamming weight distribution of the code C considered in Theorem 7.3.5

Theorem 7.3.5. Let q = 3r, a1 = a2 = · · · = a` = 1, F1 = (ε1,1, ε1,2, · · · , ε1,`)

and F2 = F3 = · · · = Fρ = 0. If τ1 = 1, then the Λ-MT code C has parameters[
n, 3d1,

∑
i∈E1

ni(q−1)qd1−1

qd1−1

]
and is a 3-weight code, whose Hamming weight distribution

is given by Table 7.4.

Proof. The desired result follows by equations (7.1), (7.3)-(7.5) and by applying

Theorem 7.2.2(a).

In the following theorem, we explicitly determine Hamming weight distributions

of the codes belonging to a class of Λ-MT codes having at most three non-zero

Hamming weights. We also identify a class of 3-weight minimal linear codes within

this class of MT codes.

Theorem 7.3.6. Suppose that F1 = (b1,1u
pa1−1
1 , b1,2u

pa2−1
2 , · · · , b1,`u

pa`−1
` ) 6= 0, F2 =

(b2,1u
pa1−1
1 , b2,2u

pa2−1
2 , · · · , b2,`u

pa`−1
` ) 6= 0 and F3 = F4 = · · · = Fρ = 0, where

b1,i ∈ Fqd1 and b2,i ∈ Fqd2 for 1 ≤ i ≤ `. Then we have i1 = 1 and i2 = 2 for

1 ≤ i ≤ `. Furthermore, if E1 ∩E2 is a non-empty set and Mi = M ′
i = 1 for some i

satisfying 1 ≤ i ≤ `, then the Λ-MT code C is a linear code of length n and dimension

d1 + d2 over Fq having at most three non-zero Hamming weights and its Hamming

weight distribution is given by Table 7.5. In particular, if E1 = E2 = {1, 2, · · · , `},
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Hamming weight j Frequency Aj∑
i∈E1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈E2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈E1\E2

mi(q−1)qd1−1

qd1−1
+

∑
i∈E2\E1

mi(q−1)qd2−1

qd2−1

+
∑

i∈E1∩E2

mi(q−1)((qd1−1)(qd2−1)−1)

q(qd1−1)(qd2−1)

(qd1 − 1)(qd2 − 1)

Table 7.5: Hamming weight distribution of the code C considered in Theorem 7.3.6

then the Λ-MT code C is a 3-weight linear
[
n, d1 + d2,

n(q−1)
(

(qd1−1)(qd2−1)−1
)

q(qd1−1)(qd2−1)

]
-code

over Fq, which is minimal when both d1, d2 ≥ 2 and gcd(d1, d2) = 1.

Proof. Since i1 = 1 and i2 = 2 for 1 ≤ i ≤ `, we note that M1 = M2 = · · · = M` and

M ′
1 = M ′

2 = · · · = M ′
`. Further, one can easily observe that τ1 = g1 = τ2 = g2 = 1, as

M1 = M2 = · · · = M` = M ′
1 = M ′

2 = · · · = M ′
` = 1. Now the desired result follows

by equations (7.1), (7.3)-(7.5) and by applying Theorems 7.2.2(a) and 7.2.4(a).

In the following theorem, we explicitly determine the Hamming weight distribu-

tion of the code C when F1 = (ε1,1u
pa1−1
1 , ε1,2u

pa2−1
2 , · · · , ε1,`up

a`−1
` ), F2 = (ε2,1u

pa1−1
1 ,

ε2,2u
pa2−1
2 , · · · , ε2,`up

a`−1
` ), F3 = F4 = · · · = Fρ = 0, and Mi = 2 and M ′

i = 1 for some

integer i satisfying 1 ≤ i ≤ `. We also derive sufficient conditions under which the

code C is minimal.

Theorem 7.3.7. Suppose that F1 = (ε1,1u
pa1−1
1 , ε1,2u

pa2−1
2 , · · · , ε1,`up

a`−1
` ), F2 =

(ε2,1u
pa1−1
1 , ε2,2u

pa2−1
2 , · · · , ε2,`up

a`−1
` ) and F3 = F4 = · · · = Fρ = 0. Then we have

i1 = 1 and i2 = 2 for 1 ≤ i ≤ `. Furthermore, if Mi = 2 and M ′
i = 1 for some i

satisfying 1 ≤ i ≤ `, then d1 is an even integer, q is an odd prime power, and the

Λ-MT code C is a linear code of length n and dimension d1 + d2 over Fq having at

most five non-zero Hamming weights and its Hamming weight distribution is given

by Table 7.6. In particular, if E1 = E2 = {1, 2, · · · , `}, d1 6= 2d2 and gcd(d1, d2) = 1,

then the code C is a 5-weight linear
[
n, d1 + d2,

n(q−1)(qd1−q
d1
2 )

q(qd1−1)

]
-code over Fq, which
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Hamming weight j Frequency Aj∑
i∈E1

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈E1

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈E2

mi(q−1)qd2−1

qd2−1
qd2 − 1

∑
i∈E1\E2

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑

i∈E2\E1

mi(q−1)qd2−1

qd2−1

+
∑

i∈E1∩E2

(
mi(q−1)

q
−mi(q−1)(1+ι

rd1(p−1)2

4 q
d1
2

q(qd1−1)(qd2+2)

)
(qd1−1)(qd2−1)

2

∑
i∈E1\E2

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑

i∈E2\E1

mi(q−1)qd2−1

qd2−1

+
∑

i∈E1∩E2

(
mi(q−1)

q
−mi(q−1)(1−ι

rd1(p−1)2

4 q
d1
2

q(qd1−1)(qd2+2)

)
(qd1−1)(qd2−1)

2

Table 7.6: Hamming weight distribution of the code C considered in Theorem 7.3.7

is minimal when either d1 > 2d2 and qd2−1(q
d1
2 + 1) > q

d1
2 + qd2 or d1 < 2d2 and

d1 ≥ 4.

Proof. Here it is easy to see that M1 = M2 = · · · = M` and M ′
1 = M ′

2 = · · · = M ′
`.

Since M1 = 2 and M ′
1 = 1, we note that τ1 = g1 = 2 and τ2 = g2 = 1. The desired

result follows by equations (7.1), (7.3)-(7.5) and by applying Theorems 7.2.2(a),

7.2.2(b) and 7.2.4(b).

In the following two theorems, we identify two more classes with few weights

within the family of MT codes, and explicitly determine their Hamming weight

distributions.

Theorem 7.3.8. Suppose that F1 = (b1,1u
pa1−1
1 , b1,2u

pa2−1
2 , · · · , b1,`u

pa`−1
` ) 6= 0, F2 =

(b2,1u
pa1−1
1 , b2,2u

pa2−1
2 , · · · , b2,`u

pa`−1
` ) 6= 0 and F3 = F4 = · · · = Fρ = 0, where

b1,i ∈ Fqd1 and b2,i ∈ Fqd2 for 1 ≤ i ≤ `. Then we have i1 = 1 and i2 = 2 for

1 ≤ i ≤ `. Furthermore, if E1 ∩E2 is the empty set and τ1 = τ2 = 1, then the Λ-MT

code C is a linear code of length n and dimension d1 + d2 over Fq having at most
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Hamming weight j Frequency Aj∑
i∈E1

mi(q−1)qd1−1

qd1−1
qd1 − 1∑

i∈E2

mi(q−1)qd2−1

qd2−1
qd2 − 1∑

i∈E1\E2

mi(q−1)qd1−1

qd1−1
+

∑
i∈E2\E1

mi(q−1)qd2−1

qd2−1
(qd1 − 1)(qd2 − 1)

Table 7.7: Hamming weight distribution of the code C considered in Theorem 7.3.8

three non-zero Hamming weights and its Hamming weight distribution is given by

Table 7.7.

Proof. The desired result follows immediately by equations (7.1), (7.3)-(7.5) and by

Theorem 7.2.2(a).

Theorem 7.3.9. Suppose that F1 = (ε1,1u
pa1−1
1 , ε1,2u

pa2−1
2 , · · · , ε1,`up

a`−1
` ), F2 =

(ε2,1u
pa1−1
1 , ε2,2u

pa2−1
2 , · · · , ε2,`up

a`−1
` ) and F3 = F4 = · · · = Fρ = 0. Then we have

i1 = 1 and i2 = 2 for 1 ≤ i ≤ `. Furthermore, if E1 ∩ E2 is the empty set and

τ1 = 2 and τ2 = 1, then the Λ-MT code C is a linear code of length n and dimension

d1 + d2 over Fq having at most five non-zero Hamming weights and its Hamming

weight distribution is given by Table 7.8.

Proof. It follows immediately by equations (7.1), (7.3)-(7.5) and by applying Theo-

rems 7.2.2(a) and 7.2.2(b).
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Hamming weight j Frequency Aj∑
i∈E1

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈E1

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

qd1−1
2∑

i∈E2

mi(q−1)qd2−1

qd2−1
qd2 − 1

∑
i∈E1\E2

mi(q−1)
(
qd1+ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑

i∈E2\E1

mi(q−1)qd2−1

qd2−1

(qd1−1)(qd2−1)
2

∑
i∈E1\E2

mi(q−1)
(
qd1−ι

rd1(p−1)2

4 q
d1
2

)
q(qd1−1)

+
∑

i∈E2\E1

mi(q−1)qd2−1

qd2−1

(qd1−1)(qd2−1)
2

Table 7.8: Hamming weight distribution of the code C considered in Theorem 7.3.9



8
Skew multi-twisted codes over

finite fields and their Galois duals

8.1 Introduction

In this chapter, we shall introduce a new class of linear codes over finite fields,

viz. skew multi-twisted (skew MT) codes (or skew generalized quasi-twisted codes),

which is a generalization of some well-known classes of linear codes such as cyclic

codes, generalized quasi-cyclic codes and MT codes. We shall also study algebraic

structures of skew multi-twisted codes and their Galois duals (i.e., orthogonal com-

plements with respect to the Galois inner product). We shall view skew multi-twisted

215
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codes as direct sums of certain concatenated codes, which gives rise to a method to

construct these codes. We shall obtain a lower bound on their minimum Hamming

distances using their multilevel concatenated structure. Besides this, we shall deter-

mine the parity-check polynomial of each skew multi-twisted code, and obtain BCH

type bounds on their minimum Hamming distances. We shall determine generating

sets of Galois duals of some skew multi-twisted codes from generating sets of these

codes. We shall also derive necessary and sufficient conditions under which a skew

multi-twisted code is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois

LCD (linear with complementary dual). We shall also obtain many linear codes with

best known and optimal parameters from 1-generator skew multi-twisted codes over

finite fields F8 and F9.

This chapter is organized as follows: In Section 8.2, we state some basic defi-

nitions and results that are needed to derive our main results. In Section 8.3, we

introduce a new class of linear codes over finite fields, viz. skew multi-twisted (MT)

codes and study their algebraic structures (Theorem 8.3.3). In Section 8.4, we show

that each skew MT code is a direct sum of certain concatenated codes (Theorem

8.4.2). We also determine a lower bound on their minimum Hamming distances us-

ing their multilevel concatenated structure (Theorems 8.4.3 and 8.4.4). In Section

8.5, we study their dual codes with respect to the Galois inner product (Theorem

8.5.5). We also derive necessary and sufficient conditions under which a skew MT

code is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD (Theorem

8.5.7). In Section 8.6, we obtain the parity-check polynomial of each skew MT code,

determine generating sets of Galois duals of some skew MT codes from generating

sets of the corresponding skew MT codes, and derive BCH type lower bounds on

their minimum Hamming distances (Theorem 8.6.2). We list several linear codes

with best known and optimal parameters obtained from 1-generator skew MT codes

(Tables 8.1 and 8.2).
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8.2 Preliminaries

In this section, we shall state some basic results on skew polynomial rings that

we need to derive our main results. For this, throughout this chapter, let Fq be the

finite field of order q = pr, where p is a prime and r is a positive integer. Let σ be

an automorphism of Fq having the order as α, and let Fσq be the fixed field of σ. Let

R = {a0 + a1x+ a2x
2 + · · ·+ anx

n : a0, a1, · · · , an ∈ Fq and n ≥ 0}

be the set of all formal polynomials in the indeterminate x over Fq, where the

coefficients are written on the left of the indeterminate x and its higher powers.

One can easily observe that the set R forms a ring with unity under the usual

addition of polynomials and under the multiplication defined using the distributive

law and the rule

(axi)(bxj) = aσi(b)xi+j for each a, b ∈ Fq and integers i, j ≥ 0.

The ring R is called a skew polynomial ring over Fq and elements of R are called

skew polynomials. Note that the ring R is non-commutative unless σ is the identity

automorphism. Now the following result is well-known.

Theorem 8.2.1. [18, 31] In the skew polynomial ring R, the following hold.

(a) The ring R has no non-zero zero divisors.

(b) The units of R are the units of Fq.

(c) The center of R is given by Z(R) = Fσq [xα] = {a0 + a1x
α + · · · + adx

dα :

a0, a1, · · · , ad ∈ Fσq and d ≥ 0}.

(d) If f(x), g(x) ∈ R are such that f(x)g(x) ∈ Z(R), then we have f(x)g(x) =

g(x)f(x).
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In the following theorem, we state the right division algorithm in R, and the

corresponding result holds regarding the left division in R.

Theorem 8.2.2. [61, Th. II.11] (Right Division Algorithm) For f(x), g(x) ∈ R

with f(x) 6= 0, there exist unique skew polynomials q(x), r(x) ∈ R such that g(x) =

q(x)f(x) + r(x), where either r(x) = 0 or deg r(x) < deg f(x). When r(x) = 0, we

say that f(x) is a right divisor of g(x) or g(x) is a left multiple of f(x).

Further, by applying the right (left) division algorithm, one can show that the

ringR is a left (right) principal ideal ring, i.e., each left (right) ideal ofR is principal.

That is, for each left ideal I of R, there exists an element a(x) ∈ I such that

I = {f(x)a(x) : f(x) ∈ R}, and we shall write I = 〈a(x)〉L. Similarly, for each right

ideal J of R, there exists an element b(x) ∈ J such that J = {b(x)f(x) : f(x) ∈ R},

and we shall write J = 〈b(x)〉R .

Let f(x), g(x) ∈ R be such that either f(x) or g(x) is non-zero. Then a monic

skew polynomial d(x) ∈ R is called the greatest common right divisor (gcrd) of

f(x) and g(x), written as d(x) = gcrd(f(x), g(x)), if it satisfies the following two

conditions:

(i) d(x) is a right divisor of both f(x) and g(x).

(ii) If e(x) is another right divisor of both f(x) and g(x), then e(x) is a right

divisor of d(x).

We say that the skew polynomials f(x), g(x) ∈ R are right coprime if they satisfy

gcrd(f(x), g(x)) = 1.

Theorem 8.2.3. [3, Th. 7] Let f(x), g(x) ∈ R be such that either f(x) or g(x) is

non-zero. If gcrd(f(x), g(x)) = d(x), then there exist skew polynomials a(x), b(x) ∈

R such that d(x) = a(x)f(x) + b(x)g(x).

Further, let f(x), g(x) be non-zero skew polynomials in R. Then a monic skew

polynomial `(x) ∈ R is called the least common right multiple (lcrm) of f(x) and

g(x), written as `(x) = lcrm [f(x), g(x)] , if it satisfies the following two conditions:



8.2 Preliminaries 219

(i) `(x) is a right multiple of both f(x) and g(x).

(ii) If k(x) is another right multiple of both f(x) and g(x), then k(x) is a right

multiple of `(x).

The greatest common left divisor (gcld) and the least common left multiple (lclm) are

defined in an analogous manner. Further, if f(x), g(x) ∈ R are such that either f(x)

or g(x) is non-zero and gcld(f(x), g(x)) = h(x), then there exist skew polynomials

A(x), B(x) ∈ R such that h(x) = f(x)A(x) + g(x)B(x).

An element f(x) ∈ R is called a 2-sided element of R if it satisfies 〈f(x)〉L =

〈f(x)〉R = 〈f(x)〉 . It is easy to see that a 2-sided ideal of R is generated by a 2-sided

element of R. Further, a 2-sided element f(x) ∈ R is called a maximal element of

R if the 2-sided ideal 〈f(x)〉 is a maximal ideal of R.

Theorem 8.2.4. [46, Th. 1.1.22] Each 2-sided element of R is of the form c
(
1 +

a1x
α + · · ·+ adx

dα
)
xe, where c ∈ Fq, a1, · · · , ad ∈ Fσq and d, e ≥ 0 are integers.

The following theorem states that each non-zero non-unit 2-sided element of R

can be expressed as a product of 2-sided maximal elements of R.

Theorem 8.2.5. [46, Th. 1.2.17′] Let f(x) be a non-zero, non-unit and a 2-sided

element of R. Then f(x) can be expressed as f(x) = g1(x)g2(x) · · · gt(x), where

g1(x), g2(x), · · · , gt(x) are 2-sided maximal elements of R. Such a factorization is

unique up to the order and up to unit multipliers.

Further, for each 2-sided element f(x) ∈ R, the set R
〈f(x)〉 = {r(x) + 〈f(x)〉 :

r(x) ∈ R} can be viewed as a ring. From now on, we shall represent elements of the

quotient ring R
〈f(x)〉 by skew polynomials in R of degree less than deg f(x).
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8.3 Algebraic structures of skew multi-twisted codes

over finite fields

In this section, we will introduce a new class of linear codes over finite fields, viz.

skew multi-twisted codes, which is a generalization of MT codes. To do this, through-

out this chapter, let n = m1 + m2 + · · · + m`, where m1,m2, · · · ,m` are positive

integers such that gcd(mi, q) = 1 and α divides mi for 1 ≤ i ≤ `. Let Fnq denote the

vector space consisting of all n-tuples over Fq. Let Λ = (λ1, λ2, · · · , λ`) and Λ−p
k

=

(λ−p
k

1 , λ−p
k

2 , · · · , λ−p
k

` ) for each integer k satisfying 0 ≤ k < r, where λ1, λ2, · · · , λ`
are non-zero elements of Fσq . Under these conditions, by Theorem 8.2.1(c), we see

that the skew polynomial xmi − λi ∈ Z(R), which implies that 〈xmi − λi〉 is a 2-

sided ideal of R for 1 ≤ i ≤ `. This further implies that Vi = R
〈xmi−λi〉 is a quotient

ring for each i. Then a skew Λ-multi-twisted (MT) module V is a left R-module of

the form V =
∏̀
i=1

Vi. We further observe that there exists an Fq-linear vector space

isomorphism from Fnq onto V. From now on, we shall represent each element b ∈ Fnq
as b = (b1,0, b1,1, · · · , b1,m1−1; b2,0, b2,1, · · · , b2,m2−1; · · · ; b`,0, b`,1, · · · , b`,m`−1) and the

corresponding element b(x) ∈ V as b(x) = (b1(x), b2(x), · · · , b`(x)), where bi(x) =
mi−1∑
j=0

bi,jx
j ∈ Vi for 1 ≤ i ≤ `. Further, the skew Λ-MT shift operator TΛ,σ on Fnq is

defined as TΛ,σ(b) = (σ(λ1b1,m1−1), σ(b1,0), · · · , σ(b1,m1−2);σ(λ2b2,m2−1), σ(b2,0), · · · ,

σ(b2,m2−2); · · · ;σ(λ`b`,m`−1), σ(b`,0), · · · , σ(b`,m`−2)) for each b ∈ Fnq . Next let

m = lcm [m1O(λ1),m2O(λ2), · · · ,m`O(λ`)] ,

where O(λi) denotes the multiplicative order of λi in Fq for 1 ≤ i ≤ `. One can show

that TmΛ,σ = I, where I is the identity operator on Fnq .

Definition 8.3.1. A skew Λ-multi-twisted (MT) code (or a skew generalized Λ-

quasi-twisted code) of length n over Fq is defined as a left R-submodule of the skew

Λ-MT module V. Equivalently, a linear code C of length n over Fq is called a skew
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Λ-MT (or a skew Λ-GQT) code if TΛ,σ(c) ∈ C for each codeword c ∈ C, (i.e., if the

skew Λ-multi-twisted shift of each codeword of C is also a codeword of C).

In particular, skew Λ-MT (or skew Λ-GQT) codes of length n = m1+m2+· · ·+m`

over Fq are

• Λ-MT (or Λ-GQT) codes of length n over Fq when σ = I (the identity auto-

morphism on Fq) [5, 69].

• permutation-equivalent to QT codes of length m1` over Fq when λ1 = λ2 =

· · · = λ`, σ = I and m1 = m2 = · · · = m` [47].

• skew GQC codes of length n over Fq when λi = 1 for 1 ≤ i ≤ ` [48].

• permutation-equivalent to QC codes of length m1` over Fq when σ = I, m1 =

m2 = · · · = m` and λ1 = λ2 = · · · = λ` = 1 [77].

• skew λ1-constacyclic codes of length m1 over Fq when ` = 1 [31].

• λ1-constacyclic codes of length m1 over Fq when ` = 1 and σ = I [10].

Now to study algebraic structures of skew Λ-MT codes, we first prove the fol-

lowing:

Proposition 8.3.2. Let t be a positive integer such that α divides t and gcd(t, q) = 1,

and let λ be a non-zero element of Fσq . Then the following hold.

(a) The skew polynomial xt − λ ∈ Z(R) can be uniquely expressed (up to order)

as

xt − λ = f1(x)f2(x) · · · fs(x), (8.1)

where f1(x), f2(x), · · · , fs(x) are monic, pairwise coprime and irreducible poly-

nomials in Z(R). Furthermore, equation (8.1) also gives the factorization of

xt − λ into 2-sided maximal elements of R.
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(b) There exist ε1(x), ε2(x), · · · , εs(x) ∈ Z(R) satisfying εj(x)εu(x) = δj,uεj(x) for

1 ≤ j, u ≤ s and ε1(x) + ε2(x) + · · · + εs(x) = 1 in R
〈xt−λ〉 , where δj,u is the

Kronecker δ-function. Furthermore, for 1 ≤ j ≤ s, 〈εj(x)〉 is a 2-sided ideal of

R
〈xt−λ〉 with the unity as εj(x). As a consequence, we have R

〈xt−λ〉 '
s⊕
j=1

〈εj(x)〉.

(c) For 1 ≤ j ≤ s, the map ψj : R
〈fj(x)〉 → 〈εj(x)〉, defined as ψj(gj(x)) = gj(x)εj(x)

for each gj(x) ∈ R
〈fj(x)〉 , is a ring isomorphism.

(d) R
〈xt−λ〉 '

s⊕
j=1

R
〈fj(x)〉 .

Proof. Here by Theorem 8.2.1(c), we see that xt − λ ∈ Z(R) = Fσq [xα], which is a

unique factorization domain. Now using the fact that gcd(t, q) = 1, we can write

xt − λ = f1(x)f2(x) · · · fs(x), (8.2)

where f1(x), f2(x), · · · , fs(x) are monic, pairwise coprime and irreducible polynomi-

als in Z(R). Next we assert that f1(x), f2(x), · · · , fs(x) are also 2-sided maximal

elements of R.

To prove this assertion, we see that xt− λ ∈ Z(R) is a 2-sided element of R. So

by Theorem 8.2.5, we can write

xt − λ = h1(x)h2(x) · · ·hv(x), (8.3)

where h1(x), h2(x), · · · , hv(x) are 2-sided maximal elements of R. Further, for 1 ≤

i ≤ v, by Theorem 8.2.4, we note that hi(x) = ciĥi(x)xei , where ci ∈ Fq, ei ≥ 0, and

ĥi(x) = hi,0+hi,1x
α+hi,2x

2α+· · ·+hi,ηi−1x
(ηi−1)α+xηiα with hi,0, hi,1, · · · , hi,ηi−1 ∈ Fσq

and ηi ≥ 1. On comparing coefficients in (8.3), we get ei = 0 for each i, and

c1c2 · · · cv = 1. This gives

xt − λ =
v∏
i=1

ĥi(x). (8.4)

Note that ĥi(x) belongs to Z(R) for each i. Furthermore, since hi(x) is a maximal
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element ofR, we see that ĥi(x) is an irreducible polynomial in Z(R). Hence equation

(8.4) also gives the factorization of xt−λ into monic, pairwise coprime and irreducible

polynomials in Z(R). By (8.2) and (8.4) and by uniqueness of such a factorization,

we have s = v and fi(x) = ĥi(x) for 1 ≤ i ≤ s (on relabelling ĥi(x)’s if required).

For each i, as hi(x) = ciĥi(x) is a maximal element of R and ĥi(x) ∈ Z(R), we see

that fi(x) = ĥi(x) is a 2-sided maximal element of R, which proves the assertion.

Next we define f̂j(x) =
s∏
u=1
u6=j

fu(x) for 1 ≤ j ≤ s. We observe that the skew

polynomials fj(x) and f̂j(x) are coprime in Z(R) = Fσq [xα] for 1 ≤ j ≤ s. So

for each j, by Euclidean algorithm in Z(R) = Fσq [x], there exist skew polynomials

Aj(x), Bj(x) ∈ Z(R) satisfying Aj(x)fj(x)+Bj(x)f̂j(x) = 1. Now on taking εj(x) =

Bj(x)f̂j(x) for 1 ≤ j ≤ s and working in a similar manner as in Theorem 2.11 of

Gao et al. [48], the desired result follows.

Now we recall that gcd(mi, q) = 1, α divides mi and σ(λi) = λi for 1 ≤ i ≤ `.

By Proposition 8.3.2(a), we see that each skew polynomial xmi − λi ∈ Z(R) can

be uniquely expressed (up to order) as a product of monic, pairwise coprime and

irreducible polynomials in Z(R). Let g1(x), g2(x), · · · , gρ(x) ∈ Z(R) be all such

distinct irreducible factors of the skew polynomials xm1−λ1, x
m2−λ2, · · · , xm`−λ`

in Z(R). Further, for 1 ≤ w ≤ ρ and 1 ≤ i ≤ `, let us define

εw,i =

 1 if gw(x) divides xmi − λi in Z(R);

0 otherwise.

Then for 1 ≤ i ≤ `, we observe that

xmi − λi = g1(x)ε1,ig2(x)ε2,i · · · gρ(x)ερ,i . (8.5)



224 Skew multi-twisted codes over finite fields and their Galois duals

Now for each i, by applying Proposition 8.3.2, we see that

Vi '
ρ⊕

w=1

R
〈gw(x)εw,i〉

'
ρ⊕

w=1

εw,iFw

with Fw = R
〈gw(x)〉 for 1 ≤ w ≤ ρ, and the corresponding ring isomorphism is given

by

ai(x) 7→
ρ∑

w=1

aw,i for each ai(x) ∈ Vi,

where aw,i := εw,i
(
ai(x) + 〈gw(x)〉

)
for 1 ≤ w ≤ ρ. From this, it follows that

V =
∏̀
i=1

Vi '
ρ⊕

w=1

(
εw,1Fw, εw,2Fw, · · · , εw,`Fw︸ ︷︷ ︸

Gw

)
, (8.6)

and the corresponding ring isomorphism is given by

a(x) 7→
ρ∑

w=1

(
aw,1, aw,2, · · · , aw,`

)

for each a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ V, where aw,i = εw,i(ai(x) + 〈gw(x)〉) for

1 ≤ w ≤ ρ and 1 ≤ i ≤ `. Further, since V is a left R-module, we shall view

Gw = (εw,1Fw, εw,2Fw, · · · , εw,`Fw) as a left Fw-module for each w. In view of the

above, we have the following:

Theorem 8.3.3. Each skew Λ-MT code C of length n over Fq can be uniquely

expressed as

C =

ρ⊕
w=1

Cw,

where Cw = {(aw,1, aw,2, · · · , aw,`) ∈ Gw : (a1(x), a2(x), · · · , a`(x)) ∈ C} is a left Fw-

submodule of Gw for each w. (The left modules C1, C2, · · · , Cρ are called constituents

of the skew Λ-MT code C.)

Gao et al. [48, p.60] remarked that each constituent of a 1-generator skew GQC



8.4 Concatenated structure of skew MT codes 225

code is either {0} or 1-dimensional, and hence a free module. However, this is not

true in general, which we illustrate in the following example.

Example 8.3.1. Let q = 32,m1 = 4,m2 = 2, Λ = (1, 1), and let σ = σ1 be

the Frobenius automorphism of F32 , (i.e., σ(b) = b3 for all b ∈ F32). Here we

have V = V1 × V2 = R
〈x4−1〉 ×

R
〈x2−1〉 . We first note that Fσ32 = F3 and O(σ) = 2,

which, by Theorem 8.2.1(c), gives Z(R) = F3[x2]. Further, we observe that x4−1 =

(x2− 1)(x2 + 1) = (x2 + 1)(x2− 1) is the factorization of the skew polynomial x4− 1

into 2-sided maximal elements of R. Let us take g1(x) = x2 − 1 and g2(x) = x2 + 1,

so that we have Fw = R
〈gw(x)〉 for 1 ≤ w ≤ 2. By applying Proposition 8.3.2, we

get V ' (F1, F1)︸ ︷︷ ︸
G1

⊕ (F2, {0})︸ ︷︷ ︸
G2

. Now let C be a skew Λ-MT code of length 6 = 4 + 2

over F32 with the generating set {(x + x2, x + 1)}. By Theorem 8.3.3, we see that

the constituents of C are given by C1 = 〈(x+ 1, x+ 1)〉 and C2 = 〈(x− 1, 0)〉 . One

can easily observe that any other generator of the constituent C1 is of the form

B(x + 1, x + 1), where B(6= 0) ∈ F32 . Further, there exists (x − 1)B−1(6= 0) ∈ F1

such that (x − 1)B−1B(x + 1, x + 1) = 0 in G1, which implies that the constituent

C1 is not a free left F1-submodule of G1. One can show that the constituent C2 is a

free left F2-submodule of G2 with the free basis as {(x− 1, 0)}. This shows that each

constituent of a 1-generator skew GQC code need not be a free module.

8.4 Concatenated structure of skew MT codes

In this section, we will view skew Λ-MT codes of length n over Fq as direct sums

of certain concatenated codes. Using their multilevel concatenated structure, we will

also determine a lower bound on their minimum Hamming distances. To do this,

by (8.5), we see that xmi − λi =
ρ∏

w=1

gw(x)εw,i , where for 1 ≤ w ≤ ρ and 1 ≤ i ≤ `,

εw,i = 1 if gw(x) divides xmi − λi, and εw,i = 0 otherwise.

Now let 1 ≤ w ≤ ρ and 1 ≤ i ≤ ` be fixed. If εw,i = 1, then we see that

gw(x) and xmi−λi
gw(x)

are coprime in Z(R), and hence there exist skew polynomials
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Aw,i(x), Bw,i(x) ∈ Z(R) such that Aw,i(x)gw(x)+Bw,i(x)
(
xmi−λi
gw(x)

)
= 1. Let us define

ew,i(x) = Bw,i(x)
(
xmi−λi
gw(x)

)
. Further, we observe that ew,i(x) + 〈gw(x)〉 = 1 + 〈gw(x)〉

in R
〈gw(x)〉 . On the other hand, if εw,i = 0, then we define ew,i(x) = 0. One can show

that 〈ew,i(x)〉 =
〈
εw,i

(
xmi−λi
gw(x)

)〉
for 1 ≤ w ≤ ρ and 1 ≤ i ≤ `. Further, for each

i, working as in Proposition 8.3.2, we observe that the following hold in the ring

R
〈xmi−λi〉 :

(i) For 1 ≤ w,w′ ≤ ρ, we have ew,i(x)ew′,i(x) = δw,w′ew,i(x).

(ii) e1,i(x) + e2,i(x) + · · ·+ er,i(x) = 1.

(iii) R
〈xmi−λi〉 =

ρ⊕
w=1

〈ew,i(x)〉.

(iv) 〈ew,i(x)〉 ' εw,iFw for each w and i.

Now let ψw,i be the ring isomorphism from εw,iFw onto 〈ew,i(x)〉, which is given by

εw,iδw(x) 7→ δw(x)ew,i(x) for each δw(x) ∈ R
〈gw(x)〉 . The inverse of ψw,i is the ring iso-

morphism φw,i from 〈ew,i(x)〉 onto εw,iFw, defined as a(x) 7→ εw,i(a(x) + 〈gw(x)〉) for

each a(x) ∈ 〈ew,i(x)〉. Further, for each w, we recall that Gw = (εw,1Fw, εw,2Fw, · · · · · · ,

εw,`Fw) is a left Fw-module, where Fw = R
〈gw(x)〉 . We shall view both V and Gw

(1 ≤ w ≤ ρ) as rings with respect to the component wise addition, denoted by +,

and the component wise multiplication, denoted by �. If 1w is the unity of Fw, then

1Gw := (εw,11w, εw,21w, · · · , εw,`1w) and 1V := (1, 1, · · · , 1) are the unities of Gw and

V respectively.

Next we define the maps Φw : V → Gw and Ψw : Gw → V as

Φw

(
a1(x), a2(x), · · · , a`(x)

)
=

(
εw,1(a1(x) + 〈gw(x)〉), εw,2(a2(x) + 〈gw(x)〉), · · · ,

εw,`(a`(x) + 〈gw(x)〉)
)

for all
(
a1(x), a2(x), · · · , a`(x)

)
∈ V, and

Ψw

(
δ1(x), δ2(x), · · · , δ`(x)

)
=
(
ψw,1(δ1(x)), ψw,2(δ2(x)), · · · , ψw,`(δ`(x))

)
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for all
(
δ1(x), δ2(x), · · · , δ`(x)

)
∈ Gw.

For 1 ≤ w ≤ ρ, let Ew =
(
ew,1(x), ew,2(x), · · · , ew,`(x)

)
∈ V. One can show that

Ψw(1Gw) = Ew and 〈Ew〉 = 〈ew,1(x)〉 × 〈ew,2(x)〉 × · · · × 〈ew,`(x)〉. We further note

that the restriction map Φw �〈Ew〉 and Ψw are inverses of each other for each w. From

the above discussion, we deduce the following:

Lemma 8.4.1. (a) Ψw(Gw) = 〈Ew〉 for 1 ≤ w ≤ ρ.

(b) For 1 ≤ w,w′ ≤ ρ, we have Ew � Ew′ = δw,w′Ew.

(c)
ρ∑

w=1

Ew = 1V and V =
ρ⊕

w=1

〈Ew〉.

Proof. For each w ∈ {1, 2, · · · , ρ}, clearly we have Ψw(Gw) ⊆ 〈Ew〉. For the converse

let a(x) ∈ 〈Ew〉, where a(x) = r(x)�Ew for some r(x) = (r1(x), r2(x), · · · , r`(x)) ∈

V. Thus we get, a(x) = (r1(x)ew,1(x), r2(x)ew,2(x), · · · , r`(x)ew,`(x)) = Ψw(εw,1r1(x),

εw,2r2(x), · · · , εw,`r`(x)) for (εw,1r1(x), εw,2r2(x), · · · , εw,`r`(x)) ∈ Gw as Ψw is onto,

which further implies that 〈Ew〉 ⊆ Ψw(Gw). Other two identities follows immediately

by the defination. Now to prove V =
ρ⊕

w=1

〈Ew〉, firstly we prove that sum is direct.

Now for 1 ≤ w ≤ ρ, let us suppose that yw(x) ∈ 〈Ew〉 such that y1(x)+y2(x)+ · · ·+

yρ(x) = 0. On right multiplication by Ew, we get yw(x) = 0 for each 1 ≤ w ≤ ρ. Thus

the sum is direct. Also for each r(x) ∈ V, we have r(x) =
ρ∑

w=1

r(x)�Ew ∈
ρ⊕

w=1

〈Ew〉,

which implies that V ⊆
ρ⊕

w=1

〈Ew〉. Hence we get V =
ρ⊕

w=1

〈Ew〉.

Now for 1 ≤ w ≤ ρ, the concatenation of 〈Ew〉 and a left Fw-submodule D of Gw
is defined as

〈Ew〉2D=
{(
ψw,1(δ1(x)), ψw,1(δ2(x)), · · · , ψw,1(δ`(x))

)
:
(
δ1(x), δ2(x), · · · , δ`(x)

)
∈ D

}
.

In the following theorem, we show that each skew Λ-MT code of length n over Fq
can be expressed as a direct sum of certain concatenated codes.



228 Skew multi-twisted codes over finite fields and their Galois duals

Theorem 8.4.2. (a) Let C be a skew Λ-MT code of length n over Fq with the

constituents C1, C2, · · · , Cρ. Then the code C has a concatenated structure

C =

ρ⊕
w=1

〈Ew〉2Φw

(
C � Ew

)
,

where Φw

(
C�Ew

)
= Cw for each w. As a consequence, we have C =

ρ⊕
w=1

〈Ew〉2 Cw.

(b) Conversely, let Cw be a left Fw-submodule of Gw for 1 ≤ w ≤ ρ. Then the direct

sum C =
ρ⊕

w=1

〈Ew〉2Cw is a skew Λ-MT code of length n over Fq.

Proof. (a) To prove the result, we note that

C = C � 1V = C �
( ρ∑
w=1

Ew

)
=

ρ⊕
w=1

C � Ew.

For 1 ≤ w ≤ ρ, we see that C�Ew =
{(
c1(x)ew,1(x), c2(x)ew,2(x), · · · , c`(x)ew,`(x)

)
:(

c1(x), c2(x), · · · , c`(x)
)
∈ C
}
, which implies that

Φw(C � Ew) =
{(
φw,1(c1(x)ew,1(x)), φw,2(c2(x)ew,2(x)), · · · , φw,`(c`(x)ew,`(x))

)
: (c1(x), c2(x), · · · , c`(x)) ∈ C

}
=

{(
εw,1(c1(x) + 〈gw(x)〉), εw,2(c2(x) + 〈gw(x)〉), · · · , εw,`(c`(x)

+〈gw(x)〉)
)

:
(
c1(x), c2(x), · · · , c`(x)

)
∈ C
}

= Cw,

as φw,i(ew,i(x)) = εw,i(1 + 〈gw(x)〉) for each i and w. Further, since the restric-

tion map Φw �〈Ew〉 and the map Ψw are inverses of each other, we see that

〈Ew〉2Φw(C � Ew) = C � Ew for each w. From this, part (a) follows.

(b) To prove this, it is enough to prove that 〈Ew〉2Cw is a skew Λ-MT code

of length n over Fq for 1 ≤ w ≤ ρ. For this, we observe that 〈Ew〉2Cw =

{Ψw

(
δw(x)

)
: δw(x) ∈ Cw}. It is easy to see that Ψw

(
δw(x)

)
+ Ψw

(
cw(x)

)
=
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Ψw

(
δw(x) + cw(x)

)
∈ 〈Ew〉2Cw for each δw(x), cw(x) ∈ Cw. Further, for each

f(x) ∈ R, we note that fw(x) = f(x)+〈gw(x)〉 ∈ Fw and that fw(x)δw(x) ∈ Cw

for each δw(x) =
(
δw,1(x), δw,2(x), · · · , δw,`(x)

)
∈ Cw. This implies that

Ψw

(
fw(x)δw(x)

)
=
(
ψw,1(fw(x))ψw,1(δw,1(x)), ψw,2(fw(x))ψw,2(δw,2(x)), · · ·

· · · , ψw,`(fw(x))ψw,`(δw,`(x))
)

=
(
f(x)ew,1(x)ψw,1(δw,1(x)), f(x)ew,2(x)ψw,2(δw,2(x)), · · ·

· · · , f(x)ew,`(x)ψw,`(δw,`(x))
)

=
(
f(x)ψw,1(δw,1(x)), f(x)ψw,2(δw,2(x)), · · · , f(x)ψw,`(δw,`(x))

)
=f(x)Ψw(δw(x)),

as ψw,i(δw,i(x)) ∈ 〈ew,i(x)〉 and ew,i(x) is the unity of 〈ew,i(x)〉 for 1 ≤ i ≤ `.

This shows that f(x)Ψw(δw(x)) ∈ 〈Ew〉2Cw for each f(x) ∈ R and δw(x) ∈

Cw. Therefore 〈Ew〉2Cw is a left R-submodule of V for each w. From this,

part (b) follows immediately.

Next we will show that each skew Λ-MT code of length n over Fq has a multilevel

concatenated structure. To do this, let C be a skew Λ-MT code of length n over Fq
with the constituents C1, C2, · · · , Cρ. Let us define

BC =




c1,1 c1,2 · · · c1,`

c2,1 c2,2 · · · c2,`

...
...

...
...

cρ,1 cρ,2 · · · cρ,`

 : (cw,1, cw,2, · · · , cw,`) ∈ Cw for 1 ≤ w ≤ ρ


.

Note that |BC| =
∏̀
i=1

|Cw|. From now on, we shall write each element c ∈ BC as c =

(c(1), c(2), · · · , c(`)), where c(i) = (c1,i, c2,i, · · · , cρ,i)T denotes the ith column of c for
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1 ≤ i ≤ `. We further note that the ith column c(i) of c ∈ BC belongs to the mixed al-

phabet set (ε1,iF1, ε2,iF2, · · · , ερ,iFρ)T for each i. In view of this, one can view BC as an

Fq-linear code of length ` over the mixed alphabet set (ε1,1F1, ε2,1F2, · · · , ερ,1Fρ)T ×

(ε1,2F1, ε2,2F2, · · · , ερ,2Fρ)T × · · · × (ε1,`F1, ε2,`F2, · · · , ερ,`Fρ)T .

Now for 1 ≤ i ≤ `, define a map Υi : (ε1,iF1, ε2,iF2, · · · , ερ,iFρ) → 〈e1,i(x)〉 ⊕

〈e2,i(x)〉 ⊕ · · · ⊕ 〈eρ,i(x)〉 as

Υi(c1,i, c2,i, · · · , cρ,i) = ψ1,i(c1,i) + ψ2,i(c2,i) + · · ·+ ψρ,i(cρ,i)

for each (c1,i, c2,i, · · · , cρ,i) ∈ (ε1,iF1, ε2,iF2, · · · , ερ,iFρ).

For each i, we see that Υi is a left Fq-module isomorphism, as ψw,i is a ring

isomorphism for 1 ≤ w ≤ ρ. Further, considering BC as an outer code, we define

multilevel concatenation of BC with
∏̀
i=1

〈e1,i(x)〉 ⊕ 〈e2,i(x)〉 ⊕ · · · ⊕ 〈eρ,i(x)〉 as

Υ(BC) :=
{(

Υ1(c(1)),Υ2(c(2)), · · · ,Υ`(c
(`))
)

: (c(1), c(2), · · · , c(`)) ∈ BC
}
.

In the following theorem, we show that each skew Λ-MT code of length n over Fq
has a multilevel concatenated structure.

Theorem 8.4.3. For a skew Λ-MT code C of length n over Fq, we have C = Υ(BC).

Proof. Let C1, C2, · · · , Cρ be the constituents of the code C. Here in view of Theorem

8.4.2(a), it suffices to show that Υ(BC) =
ρ⊕

w=1

〈Ew〉2 Cw. To prove this, we consider

Υ(BC) =
{

Υ(b(1), b(2), · · · , b(`)) : (b(1), b(2), · · · , b(`)) ∈ BC
}

=
{

(Υ1(b(1)),Υ2(b(2)), · · · ,Υ`(b
(`))) : (b(1), b(2), · · · , b(`)) ∈ BC

}
=

{
ρ∑

w=1

(ψw,1(bw,1), ψw,2(bw,2), · · · , ψw,`(bw,`)) : (b(1), b(2), · · · , b(`)) ∈ BC

}

=

ρ⊕
w=1

〈Ew〉2 Cw.
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This proves the theorem.

Now using the multilevel concatenated structure of skew Λ-MT codes of length

n over Fq, we also determine a lower bound on their minimum Hamming distances

in the following theorem.

Theorem 8.4.4. Let C be a skew Λ-MT code of length n over Fq with the non-

zero constituents as Cw1 , Cw2 , · · · , Cwt , where 1 ≤ w1, w2, · · · , wt ≤ ρ. Let dj be the

minimum Hamming distance of the code Cwj for 1 ≤ j ≤ t. Let us assume that

d1 ≤ d2 ≤ · · · ≤ dt. Let us define Kv = min
I⊆{1,2,··· ,`}
|I|=dv

{∑
g∈I

dmin(〈ew1,g(x)〉 ⊕ 〈ew2,g(x)〉 ⊕

· · ·⊕〈ewt,g(x)〉)
}

for v ∈ {1, 2, · · · , t}. Then the minimum Hamming distance dmin(C)

of the code C satisfies

dmin(C) ≥ min{K1,K2, · · · ,Kt}.

Proof. Working in a similar manner as in Theorem 4.2 of Güneri et al. [41] and by

applying Theorem 8.4.3, the desired result follows.

8.5 Galois duals of skew MT codes over finite

fields

Next we proceed to study dual codes of skew Λ-MT codes over finite fields

with respect to the Galois inner product on Fnq . To do this, let k be a fixed integer

satisfying 0 ≤ k < r. Let σk be an automorphism of Fq, defined as σk(b) = bp
k

for each

b ∈ Fq. Recall that the k-Galois inner product on Fnq is a map 〈·, ·〉k : Fnq ×Fnq −→ Fq,

defined as

〈a, b〉k =
∑̀
i=1

mi−1∑
j=0

ai,jb
pk

i,j for all a, b ∈ Fnq .
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Here we observe that 〈·, ·〉k is a non-degenerate σk-sesquilinear form on Fnq . In par-

ticular, the k-Galois inner product coincides with the Euclidean inner product on

Fnq when k = 0, while the k-Galois inner product matches with the Hermitian inner

product on Fnq when r is even and k = r
2
.

Now if C is a linear code of length n over Fq, then its k-Galois dual is defined as

C⊥k = {a ∈ Fnq : 〈a, b〉k = 0 for all b ∈ C}.

In order to study the k-Galois dual C⊥k of the code C, let us define Cpk =
{(
bp
k

1,0, b
pk

1,1,

· · · , bp
k

1,m1−1; bp
k

2,0, b
pk

2,1, · · · , b
pk

2,m2−1; · · · ; bp
k

`,0, b
pk

`,1, · · · , b
pk

`,m`−1

)
: (b1,0, b1,1, · · · , b1,m1−1;

b2,0, b2,1, · · · , b2,m2−1; · · · ; b`,0, b`,1, · · · , b`,m`−1) ∈ C
}
, which is also a linear code of

length n over Fq. It is easy to see that C⊥k = (Cpk)⊥0 . Furthermore, if C is a skew Λ-

MT code, then one can show that the code Cpk is a skew Λpk-MT code, where Λpk =

(λp
k

1 , λ
pk

2 , · · · , λ
pk

` ). Now using the fact that TmΛ,σ = I, we see that C⊥k is a skew Λ−p
k
-

MT code of length n over Fq, i.e., C⊥k is a linear code of length n over Fq satisfying

the following: if a = (a1,0, a1,1, · · · , a1,m1−1; a2,0, a2,1, · · · , a2,m2−1; · · · ; a`,0, a`,1, · · · ,

a`,m`−1) ∈ C⊥k , then its Λ−p
k
-multi-twisted shift T

Λ−pk ,σ(a) = (λ−p
k

1 σ(a1,m1−1), σ(a1,0),

· · · , σ(a1,m1−2);λ−p
k

2 σ(a2,m2−1), σ(a2,0), · · · , σ(a2,m2−2); · · · ;λ−p
k

` σ(a`,m`−1), σ(a`,0),

· · · , σ(a`,m`−2)) ∈ C⊥k . Equivalently, C⊥k is a leftR-submodule of the skew Λ−p
k
-MT

module V ′ =
∏̀
i=1

V ′i , where V ′i = R
〈xmi−λ−p

k

i 〉
for 1 ≤ i ≤ `.

Now we make the following observation.

Lemma 8.5.1. For 0 ≤ k < r and a, b ∈ Fnq , we have

(a) 〈a, b〉k = 〈b, a〉p
k

r−k.

(b) 〈T j
Λ−pk ,σ

(a), b〉k = σj
(
〈a, Tm−jΛ,σ (b)〉k

)
, where 0 ≤ j ≤ m− 1.

Proof. Proof is trivial.
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For 0 ≤ k < r, define a map Tk : R → R as

Tk(f(x)) = σt(ap
k

0 )xt + σt−1(ap
k

1 )xt−1 + · · ·+ σ(ap
k

t−1)x+ ap
k

t

for each f(x) = a0 + a1x+ · · ·+ atx
t ∈ R with at 6= 0.

Then we observe the following:

Lemma 8.5.2. Let a(x) = a0 +a1x
α+a2x

2α+ · · ·+atx
tα be an element of R, where

t ≥ 0 is an integer and a0, at are non-zero elements of Fq. Then for 0 ≤ k < r, we

have the following:

(a) (Tk ◦Tr−k) (a(x)) = (Tr−k ◦Tk) (a(x)) = a(x).

(b) If d(x) = d0 + d1x + · · · + dµx
µ ∈ R and a(x) ∈ Z(R), then Tk(a(x)d(x)) =

Tk(a(x))Tk(d(x)).

Proof. Its proof is straightforward.

Next we say that the skew polynomial f(x) ∈ Z(R) is

(i) Tk-self-conjugate if it satisfies 〈f(x)〉 = 〈Tk(f(x))〉 in R.

(ii) Tk-conjugate to the skew polynomial g(x) ∈ Z(R) if 〈f(x)〉 6= 〈g(x)〉 and

〈f(x)〉 = 〈Tk(g(x))〉.

In particular, when r is even and k = r
2
, by using Lemma 8.5.2, we note that

f(x) ∈ Z(R) is T r
2
-conjugate to g(x) ∈ Z(R) if and only if g(x) ∈ Z(R) is T r

2
-

conjugate to f(x) ∈ Z(R). In view of this, we say that two skew polynomials

f(x), g(x) ∈ Z(R) form a T r
2
-conjugate pair if they satisfy 〈f(x)〉 6= 〈g(x)〉 and

〈f(x)〉 = 〈T r
2
(g(x))〉.

Lemma 8.5.3. For 0 ≤ k < r, the map Tk : R
〈xm−1〉 →

R
〈xm−1〉 , defined as

Tk(d(x)) =
m−1∑
j=0

σ−j(dp
k

j )x−j for each d(x) =
m−1∑
j=0

djx
j ∈ R
〈xm − 1〉

,
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is a ring anti-automorphism. (Here we have x−1 = xm−1 ∈ R
〈xm−1〉 .)

Proof. First of all, we will show that Tk is a well-defined map. For this, let f(x), h(x) ∈
R

〈xm−1〉 be such that f(x) = h(x) in R
〈xm−1〉 , which implies that f(x) − h(x) =

(xm − 1)r(x) for some r(x) = r0 + r1x + r2x
2 + · · · + rtx

t ∈ R with rt 6= 0.

Since xm − 1 ∈ Z(R), by Lemma 8.5.2(b), we get Tk(f(x) − h(x)) = Tk(x
m −

1)Tk(r(x)) = −(xm − 1)Tk(r(x)), which further implies that Tk(f(x) − h(x)) =

xdeg(f(x)−h(x))Tk(f(x) − h(x)) = 0 in R
〈xm−1〉 . From this, it follows that Tk(f(x)) −

Tk(h(x)) = Tk(f(x)−h(x)) = 0 in R
〈xm−1〉 . This shows that Tk is a well-defined map.

Further, we observe that Tk is a ring anti-homomorphism, and (Tr−k ◦ Tk)(d(x)) =

(Tk ◦ Tr−k)(d(x)) = d(x) for each d(x) ∈ R
〈xm−1〉 . This implies that the ring anti-

homomorphisms Tk and Tr−k of R
〈xm−1〉 are inverses of each other. From this, the

desired result follows.

Next, for 0 ≤ k < r and 1 ≤ i ≤ `, let us define the map T (i)
k : Vi → V ′i

as T (i)
k (bi(x)) =

mi−1∑
j=0

σ−j(bp
k

i,j)x
−j for each bi(x) =

mi−1∑
j=0

bi,jx
j ∈ Vi, where x−1 =

λp
k

i x
mi−1 ∈ V ′i . We see that the map T (i)

k is a ring anti-isomorphism, and its inverse

is a map S(i)
k : V ′i → Vi, defined as S(i)

k (ai(x)) =
mi−1∑
j=0

σ−j(ap
r−k

i,j )x−j for each ai(x) =

mi−1∑
j=0

ai,jx
j ∈ V ′i , where x−1 = λ−1

i xmi−1 ∈ Vi. One can easily show that the map S(i)
k

is also a ring anti-isomorphism.

Now let us define the maps (·, ·)k : V ′ × V −→ R
〈xm−1〉 and {·, ·}k : V × V ′ −→

R
〈xm−1〉 as

(a(x), b(x))k =
∑̀
i=1

λ−p
k

i

(
xm − 1

xmi − λ−pki

)
ai(x)T (i)

k (bi(x))

and

{b(x), a(x)}k :=
∑̀
i=1

λi

(
xm − 1

xmi − λi

)
bi(x)S(i)

k (ai(x))

for a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ V ′ and b(x) = (b1(x), b2(x), · · · , b`(x)) ∈ V,

where V and V ′ are viewed as left R
〈xm−1〉 -modules. Now we make the following
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observation.

Lemma 8.5.4. Let a(x) ∈ V ′ and b(x) ∈ V.

(a) We have

(a(x), b(x))k = 〈a, b〉k + 〈a, TΛ,σ(b)〉k x+
〈
a, T 2

Λ,σ(b)
〉
k
x2 + · · ·+

〈
a, Tm−1

Λ,σ (b)
〉
k
xm−1

and

{b(x), a(x)}k = 〈b, a〉r−k+
〈
b, T

Λ−pk ,σ
(a)
〉
r−kx+· · ·+

〈
b, Tm−1

Λ−pk ,σ
(a)
〉
r−kx

m−1 in
R

〈xm − 1〉
.

(b) (a(x), b(x))k = 0 if and only if {b(x), a(x)}k = 0.

(c) The mapping (·, ·)k is a non-degenerate Tk-sesquilinear form on V ′ × V, and

the mapping {·, ·}k is a non-degenerate Tr−k-sesquilinear form on V × V ′.

Proof. To prove the result, let us write a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ V ′ and

b(x) = (b1(x), b2(x), · · · , b`(x)) ∈ V, where ai(x) =
mi−1∑
j=0

ai,jx
j ∈ V ′i and bi(x) =

mi−1∑
j=0

bi,jx
j ∈ Vi for 1 ≤ i ≤ `.

(a) Here we observe that

ai(x)T (i)
k (bi(x)) = 〈ai, bi〉k + 〈ai, Tλi,σ(bi)〉k x+ · · ·+

〈
ai, T

mi−1
λi,σ

(bi)
〉
k
xmi−1

and λ−p
k

i

(
xm−1

xmi−λ−p
k

i

)
= 1+λp

k

i x
mi+λ2pk

i x2mi+· · ·+λ
(
m
mi
−1
)
pk

i x

(
m
mi
−1
)
mi , where

Tλi,σ(bi) = (λiσ(bi,mi−1), σ(bi,0), · · · , σ(bi,mi−2)) is the skew λi-constacyclic shift

of bi for each i. From this, we get (a(x), b(x))k = 〈a, b〉k + 〈a, TΛ,σ(b)〉k x +〈
a, T 2

Λ,σ(b)
〉
k
x2 + · · ·+

〈
a, Tm−1

Λ,σ (b)
〉
k
xm−1 in R

〈xm−1〉 . Working in a similar man-

ner, one can show that {b(x), a(x)}k = 〈b, a〉r−k +
〈
b, T

Λ−pk ,σ(a)
〉
r−kx+ · · ·+〈

b, Tm−1

Λ−pk ,σ
(a)
〉
r−kx

m−1 in R
〈xm−1〉 .
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(b) By part (a), we note that (a(x), b(x))k = 0 if and only if
〈
a, T jΛ,σ(b)

〉
k

= 0 for

0 ≤ j ≤ m − 1. Further, for 0 ≤ j ≤ m − 1, by Lemma 8.5.1(a) and (b), we

see that
〈
a, T jΛ,σ(b)

〉
k

= 0 if and only if
〈
Tm−j

Λ−pk ,σ
(a), b

〉
k

= 0, which holds if

and only if
〈
b, Tm−j

Λ−pk ,σ
(a)
〉
r−k = 0. From this and by part (a) again, part (b)

follows immediately.

(c) For this, we first observe that (a(x), b(x) + d(x))k = (a(x), b(x))k+(a(x), d(x))k

and (a(x) + e(x), b(x))k = (a(x), b(x))k + (e(x), b(x))k for all a(x), e(x) ∈ V ′

and b(x), d(x) ∈ V. Further, by part (a), we see that

(a(x), xb(x))k = 〈a, TΛ,σ(b)〉k +
〈
a, T 2

Λ,σ(b)
〉
k
x+ · · ·+ 〈a, b〉k x

m−1

= (a(x), b(x))k x
m−1

and

(a(x), ub(x))k = 〈a, b〉k u
pk + 〈a, TΛ,σ(b)〉k σ(up

k

)x+ · · ·

· · ·+
〈
a, Tm−1

Λ,σ (b)
〉
k
σm−1(up

k

)xm−1

= (a(x), b(x))k u
pk

for each u ∈ Fq. This implies that (a(x), r(x)b(x))k = (a(x), b(x))k Tk(r(x)) for

each r(x) ∈ R
〈xm−1〉 . On the other hand, since λ−p

k

i

(
xm−1

xmi−λ−p
k

i

)
∈ Z(R) for 1 ≤

i ≤ `, we have (r(x)a(x), b(x))k = r(x) (a(x), b(x)))k for each r(x) ∈ R
〈xm−1〉 .

This shows that the map (·, ·)k is a Tk-sesquilinear form on V ′ × V.

Next to show that the sesquilinear form (·, ·)k is non-degenerate, suppose that

(a(x), b(x))k = 0 for all a(x) ∈ V ′, which, by part (a), implies that 〈a, b〉k = 0

for all a ∈ Fnq . Now as 〈·, ·〉k is a non-degenerate sesquilinear form on Fnq , we

must have b = 0, and hence b(x) = 0. Working in a similar manner, one can

show that if (a(x), b(x))k = 0 for all b(x) ∈ V, then a(x) = 0.
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Working in a similar way as above, we see that the mapping {·, ·}k is a non-

degenerate Tr−k-sesquilinear form on V × V ′.

From the above discussion, we deduce the following:

Theorem 8.5.5. Let C (⊆ V ) be a skew Λ-MT code of length n over Fq. The k-

Galois dual C⊥k(⊆ V ′) of the code C is a skew Λ−p
k
-MT code of length n over Fq

and is given by

C⊥k = {a(x) ∈ V ′ : (a(x), b(x))k = 0 for all b(x) ∈ C}.

A skew Λ-MT code C of length n over Fq is called (i) a k-Galois self-dual code if it

satisfies C⊥k = C, (ii) a k-Galois self-orthogonal code if it satisfies C ⊆ C⊥k , and (iii)

a k-Galois LCD (linear with complementary dual) code if it satisfies C ∩ C⊥k = 0.

To study these three classes of skew Λ-MT codes, we proceed as follows:

For 1 ≤ i ≤ `, we see that Tk(x
mi − λi) = 1 − λp

k

i x
mi = −λp

k

i (xmi − λ−p
k

i ).

On the other hand, we note, by (8.5) and Lemma 8.5.2(b), that Tk(x
mi − λi) =

Tk(g1(x))ε1,iTk(g2(x))ε2,i · · ·Tk(gρ(x))ερ,i for each i. From this, we obtain xmi −

λ−p
k

i = −λ−p
k

i Tk(g1(x))ε1,iTk(g2(x))ε2,i · · ·Tk(gρ(x))ερ,i for 1 ≤ i ≤ `. By Lemma

8.5.2, one can easily observe that the skew polynomials Tk(g1(x)),Tk(g2(x)), · · · · · · ,

Tk(gρ(x)) are also irreducible elements of Z(R). From this, it follows that Tk(g1(x)),

Tk(g2(x)), · · · ,Tk(gρ(x)) ∈ Z(R) are all the distinct irreducible elements appearing

in the factorizations of the skew polynomials xm1−λ−p
k

1 , xm2−λ−p
k

2 , · · · , xm`−λ−p
k

` ∈

Z(R). Further, for 1 ≤ w ≤ ρ, there exists a largest non-negative integer dw satis-

fying the following two conditions:

(i) gw(x),Tk(gw(x)), · · · ,T dw
k (gw(x)) ∈ Z(R) are distinct irreducible factors of

the skew-polynomials xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` in Z(R).
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(ii) Either 〈T dw+1
k (gw(x))〉 6= 〈gw′(x)〉 for 1 ≤ w′ ≤ ρ or 〈T dw+1

k (gw(x))〉 = 〈gw(x)〉

holds.

Definition 8.5.6. For 1 ≤ w ≤ ρ, we say that an irreducible factor gw(x) of xm1 −

λ1, x
m2 − λ2, · · · , xm` − λ` in Z(R) is of

• Type I if dw = 0 and 〈Tk(gw(x))〉 = 〈gw(x)〉.

• Type II if dw = 0 and 〈Tk(gw(x))〉 6= 〈gw(x)〉.

• Type III if dw ≥ 1 and 〈T dw+1
k (gw(x))〉 = 〈gw(x)〉.

• Type IV if dw ≥ 1 and 〈T dw+1
k (gw(x))〉 6= 〈gw(x)〉.

Now by relabelling gw(x)’s (if required), we assume that g1(x), g2(x), · · · , ge1(x)

are all the distinct Type I irreducible factors, ge1+1(x), ge1+2(x), · · · , ge2(x) are all the

distinct Type II irreducible factors, ge2+1(x), ge2+2(x), · · · , ge3(x) are all the distinct

Type III irreducible factors and ge3+1(x), ge3+2(x), · · · , ge4(x) are all the distinct

Type IV irreducible factors of the skew polynomials xm1−λ1, x
m2−λ2, · · · , xm`−λ`

in Z(R).

Note that

ρ = e2 +

e4∑
s=e2+1

(ds + 1).

For 1 ≤ a ≤ e4, 0 ≤ b ≤ da + 1 and 1 ≤ i ≤ `, let us define

Ra,b =
R

〈T b
k (ga(x))〉

and ε
(b)
a,i =

 1 if T b
k (ga(x)) divides xmi − λi in Z(R);

0 otherwise,

(note that Ra,da+1 = Ra,0 for 1 ≤ a ≤ e1 and e2 + 1 ≤ a ≤ e3). In view of the above,

(8.6) can be rewritten as

V '
( e1⊕

t=1

G(0)
t

)
⊕
( e2⊕
µ=e1+1

G(0)
µ

)
⊕
( e3⊕
u=e2+1

(
G(0)
u ⊕ G(1)

u ⊕ · · · ⊕ G(du)
u︸ ︷︷ ︸

Gu

))
⊕
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( e4⊕
v=e3+1

(
G(0)
v ⊕ G(1)

v ⊕ · · · ⊕ G(dv)
v︸ ︷︷ ︸

Gv

))
,

where G(b)
a =

(
ε

(b)
a,1Ra,b, ε

(b)
a,2Ra,b, · · · , ε(b)a,`Ra,b

)
for 1 ≤ a ≤ e4 and 0 ≤ b ≤ da.

For 1 ≤ a ≤ e4, 0 ≤ b ≤ da and 1 ≤ i ≤ `, we observe that if ε
(b)
a,i = 1, then

T b+1
k (ga(x)) divides xmi − λ−p

k

i in Z(R). Therefore by applying Proposition 8.3.2

and working as above, we see that

V ′ '
( e1⊕

t=1

G(0)
t

)
⊕
( e2⊕
µ=e1+1

H(1)
µ

)
⊕
( e3⊕
u=e2+1

(
H(0)
u ⊕H(1)

u ⊕ · · · ⊕ H(du)
u︸ ︷︷ ︸

Hu

))
⊕

( e4⊕
v=e3+1

(
H(dv+1)
v ⊕H(1)

v ⊕ · · · ⊕ H(dv)
v︸ ︷︷ ︸

Hv

))
,

where G(0)
t =

(
ε

(0)
t,1Rt,0, ε

(0)
t,2Rt,0, · · · , ε(0)

t,`Rt,0

)
,H(1)

µ =
(
ε

(0)
µ,1Rµ,1, ε

(0)
µ,2Rµ,1, · · · , ε(0)

µ,`Rµ,1

)
,

H(0)
u =

(
ε

(du)
u,1 Ru,0, ε

(du)
u,2 Ru,0, · · · , ε(du)

u,` Ru,0

)
,H(ω)

s =
(
ε

(ω−1)
s,1 Rs,ω, ε

(ω−1)
s,2 Rs,ω, · · · , ε(ω−1)

s,` Rs,ω

)
for 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2, e2 + 1 ≤ u ≤ e3, e2 + 1 ≤ s ≤ e4 and 1 ≤ ω ≤ ds + 1,

(note that H(du+1)
u = H(0)

u , as Ru,du+1 = Ru,0 for e2 + 1 ≤ u ≤ e3).

In view of this, from now on, we shall identify each element b(x) = (b1(x), b2(x), · · ·

· · · , b`(x)) ∈ V asB = (B1, B2, · · · , Be1 , Be1+1, Be1+2, · · · , Be2 , Be2+1, Be2+2, · · · , Be3 ,

Be3+1, Be3+2, · · · , Be4), where

Bt = (B
(0)
t,1 , B

(0)
t,2 , · · · , B

(0)
t,` ) ∈ G(0)

t , Bµ = (B
(0)
µ,1, B

(0)
µ,2, · · · , B

(0)
µ,`) ∈ G

(0)
µ

Bs = (B
(0)
s,1 , B

(0)
s,2 , · · · , B

(0)
s,` , B

(1)
s,1 , B

(1)
s,2 , · · · , B

(1)
s,` , · · · , B

(ds)
s,1 , B

(ds)
s,2 , · · · , B

(ds)
s,` ) ∈ Gs

for 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2, e2 + 1 ≤ s ≤ e4 with B
(b)
a,i := ε

(b)
a,i

(
bi(x) +〈

T b
k (ga(x))

〉 )
∈ ε(b)a,iRa,b for 1 ≤ a ≤ e4, 0 ≤ b ≤ da and 1 ≤ i ≤ `.

Apart from this, we shall identify each element a(x) = (a1(x), a2(x), · · · , a`(x)) ∈

V ′ asA = (A1, A2, · · · , Ae1 , Ae1+1, Ae1+2, · · · , Ae2 , Ae2+1, Ae2+2, · · · , Ae3 , Ae3+1, Ae3+2,
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· · · , Ae4), where

At = (A
(0)
t,1 , A

(0)
t,2 , · · · , A

(0)
t,` ) ∈ G(0)

t , Aµ = (A
(1)
µ,1, A

(1)
µ,2, · · · , A

(1)
µ,`) ∈ H

(1)
µ ,

Au = (A
(0)
u,1, A

(0)
u,2, · · · , A

(0)
u,`, A

(1)
u,1, A

(1)
u,2, · · · , A

(1)
u,`, · · · , A

(du)
u,1 , A

(du)
u,2 , · · · , A

(du)
u,` ) ∈ Hu and

Av = (A
(dv+1)
v,1 , A

(dv+1)
v,2 , · · · , A(dv+1)

v,` , A
(1)
v,1, A

(1)
v,2, · · · , A

(1)
v,` , · · · , A

(dv)
v,1 , A

(dv)
v,2 , · · · , A

(dv)
v,` ) ∈ Hv

withA
(0)
t,i := ε

(0)
t,i

(
ai(x)+〈gt(x)〉

)
, A

(1)
µ,i := ε

(0)
µ,i

(
ai(x)+〈Tk(gµ(x))〉

)
, A

(0)
u,i := ε

(du)
u,i

(
ai(x)+

〈gu(x)〉
)
, A

(j)
u,i := ε

(j−1)
u,i

(
ai(x) +

〈
T j
k (gu(x))

〉)
with 1 ≤ j ≤ du and A

(j′)
v,i :=

ε
(j′−1)
v,i

(
ai(x) +

〈
T j′

k (gv(x))
〉)

for 1 ≤ j′ ≤ dv + 1, 1 ≤ t ≤ e1, e1 + 1 ≤ µ ≤ e2,

e2 + 1 ≤ u ≤ e3, e3 + 1 ≤ v ≤ e4 and 1 ≤ i ≤ `.

Now for 1 ≤ w ≤ ρ, let deg gw(x) = ηw. Further, note that deg Tk(gw(x)) = ηw,

as gw(x) is an irreducible element of Z(R). For 1 ≤ a ≤ e4, 0 ≤ b ≤ da and 1 ≤ i ≤ `,

let : ε
(b)
a,iRa,b → ε

(b)
a,iRa,b+1 be the map, defined as

ha(x) =


ηa−1∑
s=0

σ−s(hp
k

as)x
−s if ε

(b)
a,i = 1;

0 if ε
(b)
a,i = 0

(8.7)

for all ha(x) =
ηa−1∑
s=0

hasx
s ∈ ε(b)a,iRa,b(⊆ Vi), (note that Ra,da+1 = Ra,0 when 1 ≤ a ≤ e1

and e2 + 1 ≤ a ≤ e3).

We further observe that for each B ∈ V, the corresponding element B ∈ V ′ is

identified as

(B1, B2, · · · , Be1 , Be1+1, Be1+2, · · · , Be2 , Be2+1, Be2+2, · · · , Be3 , Be3+1, Be3+2, · · · , Be4),

where Bt = (B
(0)
t,1 , B

(0)
t,2 , · · · , B

(0)
t,` ) ∈ G(0)

t for 1 ≤ t ≤ e1, Bµ = (B
(0)
µ,1, B

(0)
µ,2, · · · , B

(0)
µ,`) ∈

H(1)
µ for e1+1 ≤ µ ≤ e2, Bu = (B

(du)
u,1 , B

(du)
u,2 , · · · , B

(du)
u,` , B

(0)
u,1, B

(0)
u,2, · · · , B

(0)
u,` , · · · , B

(du−1)
u,1 ,

B
(du−1)
u,2 , · · · , B(du−1)

u,` ) ∈ Hu for e2+1 ≤ u ≤ e3 andBv = (B
(dv)
v,1 , B

(dv)
v,2 , · · · , B

(dv)
v,` , B

(0)
v,1,

B
(0)
v,2, · · · , B

(0)
v,` , · · · , B

(dv−1)
v,1 , B

(dv−1)
v,2 , · · · , B(dv−1)

v,` ) ∈ Hv for e3 + 1 ≤ v ≤ e4 with
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B
(b)
a,i := ε

(b)
a,i

(
bi(x) +

〈
T b+1
k (ga(x))

〉 )
∈ ε(b)a,iRa,b+1 for all 1 ≤ a ≤ e4, 0 ≤ b ≤ da and

1 ≤ i ≤ `.

In view of this, a skew Λ-MT code C of length n over Fq can be uniquely written

as

C =

( e1⊕
t=1

C(0)
t

)
⊕
( e2⊕
µ=e1+1

C(0)
µ

)
⊕

(
e3⊕

u=e2+1

(
C(0)
u ⊕ C(1)

u ⊕ · · · ⊕ C(du)
u

))
⊕(

e4⊕
v=e3+1

(
C(0)
v ⊕ C(1)

v ⊕ · · · ⊕ C(dv)
v

))
, (8.8)

where C(0)
t (resp. C(0)

µ , C(j)
u and C(j′)

v ) is a left Rt,0-submodule of G(0)
t for 1 ≤ t ≤

e1 (resp. left Rµ,0-submodule of G(0)
µ , left Ru,j-submodule of G(j)

u and left Rv,j′-

submodule of G(j′)
v for e1 + 1 ≤ µ ≤ e2, e2 + 1 ≤ u ≤ e3, e3 + 1 ≤ v ≤ e4, 0 ≤ j ≤ du

and 0 ≤ j′ ≤ dv).

Next we see that if for some a, b and i, ε
(b)
a,i = 1, then xmi = λ−p

k

i in Ra,b+1,

which implies that λ−p
k

i

(
xm−1

xmi−λ−p
k

i

)
= m

mi
in Ra,b+1. Further, the sesquilinear form

corresponding to (·, ·)k is the map [·, ·]k from V ′×V into the direct sum
{( e1⊕

t=1

Rt,0

)
⊕( e2⊕

µ=e1+1

Rµ,1

)
⊕
( e3⊕
u=e2+1

(
Ru,0⊕Ru,1⊕· · ·⊕Ru,du

))
⊕
( e4⊕
v=e3+1

(
Rv,dv+1⊕Rv,1⊕· · ·⊕

Rv,dv

))}
, which is defined as

[A,B]k =

(∑̀
i=1

m

mi
ε
(0)
1,iA

(0)
1,iB

(0)
1,i ,
∑̀
i=1

m

mi
ε
(0)
2,iA

(0)
2,iB

(0)
2,i , · · · ,

∑̀
i=1

m

mi
ε
(0)
e1,i
A

(0)
e1,i
B

(0)
e1,i
,

∑̀
i=1

m

mi
ε
(0)
e1+1,iA

(1)
e1+1,iB

(0)
e1+1,i,

∑̀
i=1

m

mi
ε
(0)
e1+2,iA

(1)
e1+2,iB

(0)
e1+2,i, · · · ,

∑̀
i=1

m

mi
ε
(0)
e2,i
A

(1)
e2,i
B

(0)
e2,i
,

∑̀
i=1

m

mi
ε
(de2+1)
e2+1,i A

(0)
e2+1,iB

(de2+1)
e2+1,i ,

∑̀
i=1

m

mi
ε
(0)
e2+1,iA

(1)
e2+1,iB

(0)
e2+1,i, · · · ,

∑̀
i=1

m

mi
ε
(de2+1−1)
e2+1,i A

(de2+1)
e2+1,i B

(de2+1−1)
e2+1,i , · · · ,

∑̀
i=1

m

mi
ε
(de3 )
e3,i

A
(0)
e3,i
B

(de3 )
e3,i

,
∑̀
i=1

m

mi
ε
(0)
e3,i
A

(1)
e3,i
B

(0)
e3,i
,

· · · ,
∑̀
i=1

m

mi
ε
(de3−1)
e3,i

A
(de3 )
e3,i

B
(de3−1)
e3,i

,
∑̀
i=1

m

mi
ε
de3+1

e3+1,iA
de3+1+1
e3+1,i B

de3+1

e3+1,i,



242 Skew multi-twisted codes over finite fields and their Galois duals

∑̀
i=1

m

mi
ε
(0)
e3+1,iA

(1)
e3+1,iB

(0)
e3+1,i, · · · ,

∑̀
i=1

m

mi
ε
(de3+1−1)
e3+1,i A

(de3+1)
e3+1,i B

(de3+1−1)
e3+1,i , · · · ,

∑̀
i=1

m

mi
ε
(de4 )
e4,i

A
(de4+1)
e4,i

B
(de4 )
e4,i

,
∑̀
i=1

m

mi
ε
(0)
e4,i
A

(1)
e4,i
B

(0)
e4,i
, · · · ,

∑̀
i=1

m

mi
ε
(de4−1)
e4,i

A
(de4 )
e4,i

B
(de4−1)
e4,i

)
. (∗)

Moreover, with respect to form defined by (∗), we observe that the k-Galois dual

C⊥k of C is given by

C⊥k =

( e1⊕
t=1

C(0)⊥k
t

)
⊕
( e2⊕
µ=e1+1

C(0)⊥k
µ

)
⊕
( e3⊕
u=e2+1

(
Cu(du)⊥k⊕Cu(0)⊥k⊕· · ·⊕Cu(du−1)⊥k

))

⊕
( e4⊕
v=e3+1

(
Cv(dv)⊥k ⊕ Cv(0)⊥k ⊕ · · · ⊕ Cv(dv−1)⊥k

))
, (8.9)

where

• C(0)⊥k
t (⊆ G(0)

t ) is the orthogonal complement of C(0)
t with respect to [·, ·]k �G(0)

t ×G
(0)
t

for 1 ≤ t ≤ e1;

• C(0)⊥k
µ (⊆ H(1)

µ ) is the orthogonal complement of C(0)
µ with respect to [·, ·]k �H(1)

µ ×G
(0)
µ

for e1 + 1 ≤ µ ≤ e2;

• C(j)⊥k
u (⊆ H(j+1)

u ) is the orthogonal complement of C(j)
u with respect to

[·, ·]k �H(j+1)
u ×G(j)

u
for 0 ≤ j ≤ du − 1 and C(du)⊥k

u (⊆ H(0)
u ) is the orthogonal

complement of C(du)
u with respect to [·, ·]k �H(0)

u ×G
(du)
u

for e2 + 1 ≤ u ≤ e3; and

• C(j′)⊥k
v (⊆ H(j′+1)

v ) is the orthogonal complement of C(j′)
v with respect to

[·, ·]k �H(j′+1)
v ×G(j′)

v
for e3 + 1 ≤ v ≤ e4 and 1 ≤ j′ ≤ dv.

Here [·, ·]k �G(0)
t ×G

(0)
t

(resp. [·, ·]k �H(1)
µ ×G

(0)
µ
, [·, ·]k �H(j+1)

u ×G(j)
u
, [·, ·]k �H(0)

u ×G
(du)
u

and

[·, ·]k �H(j′+1)
v ×G(j′)

v
) denotes the restriction of the form [·, ·]k (as defined by (∗)) to

G(0)
t ×G

(0)
t (resp. H(1)

µ ×G(0)
µ , H(j+1)

u ×G(j)
u , H(0)

u ×G(du)
u and H(j′+1)

v ×G(j′)
v ) for each

t (resp. µ, u, j, v and j′).

For e2 + 1 ≤ u ≤ e3 and e3 + 1 ≤ v ≤ e4, let K(j)
u = G(j)

u ∩ H(j)
u and K(j′)

v =

G(j′)
v ∩H(j′)

v , where 0 ≤ j ≤ du and 1 ≤ j′ ≤ dv. In the following theorem, we derive
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necessary and sufficient conditions under which a skew Λ-MT code is (i) k-Galois

self-dual, (ii) k-Galois self-orthogonal and (iii) k-Galois LCD.

Theorem 8.5.7. Let Λ = (λ1, λ2, · · · , λ`) be fixed, where λ1, λ2, · · · , λ` are non-zero

elements of Fσq . Let

C =

( e1⊕
t=1

C(0)
t

)
⊕
( e2⊕
µ=e1+1

C(0)
µ

)
⊕

(
e3⊕

u=e2+1

(
C(0)
u ⊕ C(1)

u ⊕ · · · ⊕ C(du)
u

))

⊕

(
e4⊕

v=e3+1

(
C(0)
v ⊕ C(1)

v ⊕ · · · ⊕ C(dv)
v

))

be a skew Λ-MT code of length n over Fq, where C(0)
t (resp. C(0)

µ , C(j)
u and C(j′)

v )

is a left Rt,0-submodule of G(0)
t for 1 ≤ t ≤ e1 (resp. left Rµ,0-submodule of G(0)

µ ,

left Ru,j-submodule of G(j)
u and left Rv,j′-submodule of G(j′)

v for e1 + 1 ≤ µ ≤ e2,

e2 + 1 ≤ u ≤ e3, e3 + 1 ≤ v ≤ e4, 0 ≤ j ≤ du and 0 ≤ j′ ≤ dv). Then for 0 ≤ k < r,

the following hold.

(a) The code C is k-Galois self-dual if and only if the following conditions are

satisfied:

• None of the skew polynomials xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` has an

irreducible factor of the Type II in Z(R).

• For 1 ≤ t ≤ e1, C(0)
t is a left Rt,0-submodule of G(0)

t satisfying C(0)
t = C(0)⊥k

t .

• For e2 + 1 ≤ u ≤ e3 and 0 ≤ j ≤ du, C(j)
u is a left Ru,j-submodule of

K(j)
u satisfying C(0)

u = C(du)⊥k
u , C(1)

u = C(0)⊥k
u , C(2)

u = C(1)⊥k
u , · · · , C(du)

u =

C(du−1)⊥k
u .

• For e3 + 1 ≤ v ≤ e4, C(0)
v = {0}, C(1)

v = K(1)
v and C(j′)

v is a left Rv,j′-

submodule of K(j′)
v satisfying C(j′)

v = K(j′)
v ∩ C(j′−1)⊥k

v and C(dv)⊥k
v = {0},

where 2 ≤ j′ ≤ dv.
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(b) The code C is k-Galois self-orthogonal if and only if the following conditions

are satisfied:

• For 1 ≤ t ≤ e1, C(0)
t is a left Rt,0-submodule of G(0)

t satisfying C(0)
t ⊆ C

(0)⊥k
t .

• For e1 + 1 ≤ µ ≤ e2, C(0)
µ = {0}.

• For e2 + 1 ≤ u ≤ e3 and 0 ≤ j ≤ du, C(j)
u is a left Ru,j-submodule of

K(j)
u satisfying C(0)

u ⊆ C(du)⊥k
u , C(1)

u ⊆ C(0)⊥k
u , C(2)

u ⊆ C(1)⊥k
u , · · · , C(du)

u ⊆

C(du−1)⊥k
u .

• For e3 + 1 ≤ v ≤ e4, C(0)
v = {0}, C(1)

v is any left Rv,1-submodule of K(1)
v

and C(j′)
v is a left Rv,j′-submodule of K(j′)

v satisfying C(j′)
v ⊆ C(j′−1)⊥k

v ,

where 2 ≤ j′ ≤ dv.

(c) The code C is k-Galois LCD if and only if the following conditions are satisfied:

• For 1 ≤ t ≤ e1, C(0)
t is a left Rt,0-submodule of G(0)

t satisfying C(0)
t ∩

C(0)⊥k
t = {0}.

• For e1 + 1 ≤ µ ≤ e2, C(0)
µ is any left Rµ,0-submodule of G(0)

µ .

• For e2 + 1 ≤ u ≤ e3 and 0 ≤ j ≤ du, C(j)
u is a left Ru,j-submodule of G(j)

u

satisfying C(0)
u ∩C(du)⊥k

u = {0}, C(1)
u ∩C(0)⊥k

u = {0}, · · · , C(du)
u ∩C(du−1)⊥k

u =

{0}.

• For e3 + 1 ≤ v ≤ e4, C(0)
v is any left Rv,0-submodule of G(0)

v and C(j′)
v

is a left Rv,j′-submodule of G(j′)
v satisfying C(j′)

v ∩ C(j′−1)⊥k
v = {0}, where

1 ≤ j′ ≤ dv.

Proof. By (8.8) and (8.9), the desired result follows.

When either k = 0 or r is even and k = r
2
, we see that T 2

k (gw(x)) = gw(x), which

implies that dw ≤ 1 for 1 ≤ w ≤ ρ. This further implies that the skew polynomials

xm1 − λ1, x
m2 − λ2, · · · , xm` − λ` do not have an irreducible factor of the Type IV
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in Z(R). In view of this and by (8.8), we note that a skew Λ-MT code C of length

n over Fq can be uniquely expressed as

C =
( e1⊕

t=1

C(0)
t

)
⊕
( e2⊕
µ=e1+1

C(0)
µ

)
⊕
( e3⊕
u=e2+1

(
C(0)
u ⊕ C(1)

u

))
, (8.10)

where C(0)
t (resp. C(0)

µ and C(j)
u ) is a left Rt,0-submodule of G(0)

t for 1 ≤ t ≤ e1 (resp.

left Rµ,0-submodule of G(0)
µ and left Ru,j-submodule of G(j)

u for e1 + 1 ≤ µ ≤ e2,

e2 + 1 ≤ u ≤ e3 and 0 ≤ j ≤ 1). Furthermore, when σ = I, we see that each

constituent of a Λ-MT code of length n over Fq is a free module.

8.6 Generator theory for skew MT codes

In this section, we will extend the results derived in Section 3.4 and develop

generator theory for skew Λ-MT codes. We will also derive a BCH type lower

bound on their minimum Hamming distances. The other results derived in Section

3.4 can be similarly extended to skew Λ-MT codes.

A skew Λ-MT code C of length n over Fq is called a %-generator code if % is the

smallest positive integer satisfying the following property: There exist % number

of distinct codewords b1(x), b2(x), · · · , b%(x) ∈ C such that each codeword c(x) ∈ C

can be expressed as c(x) = f1(x)b1(x) + f2(x)b2(x) + · · · + f%(x)b%(x) for some

f1(x), f2(x), · · · , f%(x) ∈ R. The set {b1(x), b2(x), · · · , b%(x)} is called a generating

set of C, and we shall write C = 〈b1(x), b2(x), · · · , b%(x)〉L. The annihilator of C is

defined as Ann(C) = {f(x) ∈ R : bς(x)f(x) = 0 in V for 1 ≤ ς ≤ %}. It is easy to

see that
∏̀
i=1

(xmi − λi) ∈ Ann(C), and that Ann(C) is a non-zero right ideal of R. As

R is a right principal ideal ring, there exists a unique smallest degree monic skew

polynomial h(x) in R such that Ann(C) = 〈h(x)〉R. The skew polynomial h(x) is

called the parity-check polynomial of C.

In Example 8.3.1, we have shown that constituents of a skew Λ-MT code need
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not be free modules, and hence the rank (or dimension) can not be defined for

such constituents. However, by Well-ordering principle, we can choose a minimal

generating set (i.e., a generating set of the smallest cardinality) for each constituent.

In the following theorem, we determine the cardinality of a minimal generating set of

a skew Λ-MT code from cardinalities of minimal generating sets of its constituents,

which generalizes Theorem 3.5 of Gao et al. [48].

Theorem 8.6.1. Let C =
ρ⊕

w=1

Cw be a skew Λ-MT code of length n over Fq, where

each constituent Cw is a left Fw-submodule of Gw for each w. Let K = max{k1, k2, · · · ,

kρ}, where kw is the cardinality of a minimal generating set of Cw for 1 ≤ w ≤ ρ.

Then C is a %-generator skew Λ-MT code if and only if % = K.

Proof. Working in a similar manner as in Theorem 3.5 of Gao et al. [48], the desired

result follows.

Theorem 5.3(i) of Gao et el. [48] states that if C =
ρ⊕

w=1

Cw is a K-generator skew

QC code with each constituent as a free module of rank kw, then its Euclidean dual

C⊥0 is an (` − K′)-generator skew QC code, where K = max{k1, k2, · · · , kρ} and

K′ = min{k1, k2, · · · , kρ}. In the following example, we show that this theorem does

not hold in general.

Example 8.6.1. Let q = 32, ` = 3, m1 = m2 = m3 = 2, Λ = (1, 1, 1), and let

σ = σ1 be the Frobenius automorphism of F32 . Here we have V = V1 × V2 × V3 =

R
〈x2−1〉×

R
〈x2−1〉×

R
〈x2−1〉 . We first note that Fσ32 = F3 and O(σ) = 2, which, by Theorem

8.2.1(c), gives Z(R) = F3[x2]. We next observe that the skew polynomial x2 − 1 is

irreducible in Z(R). Thus we have ρ = 1, which gives K = K′.

(i) Let C be a 1-generator skew QC code of length 6 = 2 + 2 + 2 over F32 with

the generating set {(x + 1, 0, 0)}. Here we have K = K′ = 1 and ` − K′ =

3− 1 = 2. By Theorem 8.5.5, we see that the Euclidean dual of C is given by

C⊥0 = {(a(x + 1), b0 + b1x, c0 + c1x) : a, b0, b1, c0, c1 ∈ F32}. Here we observe
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that C⊥0(⊆ V ) is a 3-generator skew QC code of length 6 over F32 . This shows

that the Euclidean dual of a K-generator skew QC code need not be an (`−K′)-

generator code

(ii) Let a be a primitive element of F32 , let F1 = R
〈x2−1〉 , and let C be a 1-generator

skew QC code of length 6 = 2 + 2 + 2 over F32 with the generating set {(a(x+

1), x + 1, 0)}. Here we have K = K′ = 1 and ` − K′ = 3 − 1 = 2. Note that

C = C1 is a free left F1-submodule of G1 with rank 1. By Theorem 8.5.5, we

see that the Euclidean dual of C is given by C⊥0 = {(−a1a
2 − b0a

−1 − b1a
−1 +

a1x, b0+b1x, c0+c1x) : a1, b0, b1, c0, c1 ∈ F32}. From this, one can easily observe

that |C⊥0| = 95, which implies that C⊥0(⊆ V ) is not a free left F1-submodule

of G1 with rank `−K′ = 2.

In the following theorem, we obtain the parity-check polynomial of a %-generator

skew Λ-MT code of length n over Fq. We also determine the dimension of a 1-

generator skew Λ-MT code of length n over Fq. We also obtain generating sets of

k-Galois duals of some %-generator skew Λ-MT codes. Apart from this, we derive a

BCH type lower bound on minimum Hamming distances of %-generator skew Λ-MT

codes.

Theorem 8.6.2. Let C = 〈b1(x), b2(x), · · · , b%(x)〉L be a %-generator skew Λ-MT

code of length n over Fq, where bς(x) = (bς,1(x), bς,2(x), · · · , bς,`(x)) for 1 ≤ ς ≤ %.

For 1 ≤ i ≤ `, let us define wi(x) = gcrd(b1,i(x), b2,i(x), · · · , b%,i(x), xmi − λi) and

Wi(x) = gcld(b1,i(x), b2,i(x), · · · , b%,i(x), xmi −λi). Let ηi be the maximum number of

consecutive exponents of right zeros of wi(x) over Fq for each i.

(a) For 1 ≤ i ≤ `, if πi is the projection of V onto Vi, then πi(C) is a skew

λi-constacyclic code of length mi over Fq (i.e., πi(C) is a left ideal of Vi).

Furthermore, we have πi(C) = 〈wi(x)〉L for each i.

(b) The parity-check polynomial h(x) of C is given by h(x) = lcrm
1≤i≤`

[
xmi−λi
wi(x)

]
.
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(c) When % = 1, we have dimFqC = deg lclm
1≤i≤`

[
xmi−λi

gcld(b1,i(x),xmi−λi)

]
.

(d) When xm1−λ1, x
m2−λ2, · · · , xm`−λ` ∈ Z(R) are pairwise coprime polynomials

in R, we have

C⊥k = 〈H1(x), H2(x), · · · , H`(x)〉L ,

where Hi(x) = (0, · · · , 0, T (i)
k

(
xmi − λi
wi(x)

)
︸ ︷︷ ︸

ith position

, 0, · · · , 0) for 1 ≤ i ≤ `.

(e) The minimum Hamming distance dmin(C) of the code C satisfies

dmin(C) ≥ min
1≤i≤`

(ηi + 1).

(f) When % = 1, the minimum Hamming distance dmin(C) of the code C satisfies

dmin(C) ≥
∑
i/∈K

(ηi + 1),

where K ⊆ {1, 2, · · · , `} is a set of maximum cardinality such that lclm
i∈K

[
xmi−λi
Wi(x)

]
6=

lclm
1≤i≤`

[
xmi−λi
Wi(x)

]
.

In particular, when xm1−λ1

W1(x)
= xm2−λ2

W2(x)
= · · · = xm`−λ`

W`(x)
, we have

dmin(C) ≥
∑

1≤i≤`

(ηi + 1).

Proof. For 1 ≤ i ≤ `, since wi(x) = gcrd(b1,i(x), b2,i(x), · · · , b%,i(x), xmi − λi), by

Theorem 8.2.3, we see that there exist A1,i(x), A2,i(x), · · · , A%+1,i(x) ∈ R such that

wi(x) = A1,i(x)b1,i(x) + A2,i(x)b2,i(x) + · · ·+ A%,i(x)b%,i(x) + A%+1,i(x)(xmi − λi).

(8.11)
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Further, for each i, we can write

bς,i(x) = ας,i(x)wi(x) (8.12)

for some ας,i(x) ∈ R, where 1 ≤ ς ≤ %.

(a) To prove this, let 1 ≤ i ≤ ` be fixed. It is easy to see that πi(C) is a left

ideal of Vi. Now to prove the second part, we see, by (8.11), that wi(x) =

A1,i(x)b1,i(x)+A2,i(x)b2,i(x)+· · ·+A%,i(x)b%,i(x) = πi(A1,i(x)b1(x)+A2,i(x)b2(x)

+ · · ·+ A%,i(x)b%(x)) ∈ πi(C) in Vi, which implies that

〈wi(x)〉L ⊆ πi(C). (8.13)

On the other hand, for each a(x) ∈ πi(C), there exists c(x) ∈ C such that

πi(c(x)) = a(x). As C = 〈b1(x), b2(x), · · · , b%(x)〉L, there exist f1(x), f2(x), · · · ,

f%(x) ∈ R such that c(x) =
%∑
ς=1

fς(x)bς(x). From this and by (8.12), we obtain

a(x) = πi(c(x)) =
%∑
ς=1

fς(x)bς,i(x) =
%∑
ς=1

fς(x)ας,i(x)wi(x) ∈ 〈wi(x)〉L, which

implies that

πi(C) ⊆ 〈wi(x)〉L. (8.14)

By (8.13) and (8.14), we get πi(C) = 〈wi(x)〉L.

(b) For 1 ≤ i ≤ `, we see that xmi − λi ∈ Z(R) and wi(x) is a right divisor of

xmi − λi in R, so by Theorem 8.2.1(d), there exists pi(x) ∈ R such that

xmi − λi = wi(x)pi(x) = pi(x)wi(x). (8.15)

Further, let us define L(x) = lcrm [p1(x), p2(x), · · · , p`(x)] . Here we will show

that h(x) = L(x).

As Ann(C) = 〈h(x)〉R, we have bς(x)h(x) = 0 for 1 ≤ ς ≤ %. This implies
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that bς,i(x)h(x) = 0 in Vi for each i and ς. From this and by (8.11), it follows

that wi(x)h(x) =
%∑
ς=1

Aς,i(x)bς,i(x)h(x) = 0 in Vi for each i. This implies that

wi(x)h(x) = (xmi−λi)βi(x) = wi(x)pi(x)βi(x) in R for some βi(x) ∈ R, which

further implies, by Theorem 8.2.1(a), that h(x) = pi(x)βi(x) for each i. From

this, we see that

h(x) = L(x)β(x) for some β(x) ∈ R. (8.16)

On the other hand, as L(x) = lcrm [p1(x), p2(x), · · · , p`(x)] , we can write

L(x) = pi(x)αi(x), (8.17)

where αi(x) ∈ R for each i. Now for 1 ≤ ς ≤ %, we observe, by (8.12) and

(8.17), that bς,i(x)L(x) = ας,i(x)wi(x)pi(x)αi(x) = ας,i(x)(xmi − λi)αi(x) = 0

in Vi for each i. This implies that

bς(x)L(x) = (bς,1(x)L(x), bς,2(x)L(x), · · · , bς,`(x)L(x)) = 0

in V for each ς. That is, we have L(x) ∈ Ann(C) = 〈h(x)〉R, which implies

that

L(x) = h(x)K(x) for some K(x) ∈ R. (8.18)

By (8.16) and (8.18), we get h(x) = L(x)β(x) = h(x)K(x)β(x). Now by Theo-

rem 8.2.1(a), we get K(x)β(x) = 1 in R, which implies that both K(x), β(x) ∈

Fq. As both h(x) and L(x) are monic skew polynomials in R, we get h(x) =

L(x).

(c) Here we have % = 1 so that C = 〈b1(x)〉L. Let us define a map φ : R → V

as φ(f(x)) = f(x)b1(x) for each f(x) ∈ R. It is easy to see that φ is a left

R-module homomorphism with the image as φ(R) = C. Further, the kernel of



8.6 Generator theory for skew MT codes 251

φ is given by D = {f(x) ∈ R : f(x)b1(x) = 0}. Note that D is a left ideal of

R, and that RD ' C. Further, working in a similar manner as in part (b), one

can show that D =

〈
lclm
1≤i≤`

[
xmi−λi

gcld(b1,i(x),xmi−λi)

]〉
L

. From this, part (c) follows.

(d) To prove this, we will first show that H1(x), H2(x), · · · , H`(x) ∈ C⊥k , i.e.,

(Hj(x), bς(x))k = 0 for 1 ≤ j ≤ ` and 1 ≤ ς ≤ %.

To do this, for 1 ≤ j ≤ `, we consider {bς(x), Hj(x)}k = λj

(
xm−1
xmj−λj

)
bς,j(x)S(j)

k

(
T (j)
k

(
xmj−λj
wj(x)

))
= λj

(
xm−1
xmj−λj

)
bς,j(x)

(
xmj−λj
wj(x)

)
, as S(j)

k ◦ T
(j)
k is the identity

map on Vj. Further, by (8.12), we see that bς,j(x)
(
xmj−λj
wj(x)

)
= ας,j(x)(xmj−λj)

for each j. From this and using the fact that xmj − λj ∈ Z(R), we get

{bς(x), Hj(x)}k = λj

(
xm−1
xmj−λj

)
ας,j(x)(xmj − λj) = λj(x

m − 1)ας,j(x) = 0 in

R
〈xm−1〉 for each j and ς. Now by Lemma 8.5.4(b), we get (Hj(x), bς(x))k = 0

for each j and ς. This implies that H1(x), H2(x), · · · , H`(x) ∈ C⊥k , which

further implies that

〈H1(x), H2(x), · · · , H`(x)〉L ⊆ C⊥k . (8.19)

On the other hand, let a(x) = (a1(x), a2(x), · · · , a`(x)) ∈ C⊥k , i.e., (a(x), bς(x))k

= 0 in R
〈xm−1〉 for 1 ≤ ς ≤ %. From this and by Lemma 8.5.4(b), we get

{bς(x), a(x)}k =
∑̀
i=1

λi

(
xm−1
xmi−λi

)
bς,i(x)S(i)

k (ai(x)) = 0 in R
〈xm−1〉 for each ς. Fur-

ther, one can observe that

S(i)
k (ai(x)) = x−deg ai(x)Tr−k(ai(x)) = (λ−1

i xmi−1)deg ai(x)Tr−k(ai(x)) in Vi.

Let us denote fi(x) = (λ−1
i xmi−1)deg ai(x)Tr−k(ai(x)) for 1 ≤ i ≤ `. This implies

that xm− 1 divides
∑̀
i=1

λi

(
xm−1
xmi−λi

)
bς,i(x)fi(x) in R, which further implies that

xmj − λj divides
∑̀
i=1

λi

(
xm−1
xmi−λi

)
bς,i(x)fi(x) in R for 1 ≤ j ≤ ` and 1 ≤ ς ≤ %.

From this and using the fact that xm1−λ1, x
m2−λ2, · · · , xm`−λ` are pairwise
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coprime inR, we see that xmj−λj divides λj

(
xm−1
xmj−λj

)
bς,j(x)fj(x) for each ς and

j. As gcd(m, q) = 1, we note that gcd
(

xm−1
xmj−λj , x

mj − λj
)

= 1 in Z(R) for each

j. From this, it follows that xmj−λj divides bς,j(x)fj(x) for each ς and j. Now

by (8.11), we see that xmj − λj divides
%∑
ς=1

Aς,j(x)bς,jfj(x) + Aς+1,j(x)(xmj −

λj)fj(x) = wj(x)fj(x) for each j. This implies that wj(x)fj(x) = (xmj −

λj)Aj(x) for someAj(x) ∈ R, which further implies that fj(x) =
(
xmj−λj
wj(x)

)
Aj(x)

inR and hence in Vj. From this and using the fact that T (j)
k ◦S

(j)
k is the identity

map on V ′j , we get aj(x) = T (j)
k (Aj(x))T (j)

k

(
xmj−λj
wj(x)

)
in V ′j . If deg Aj(x) = tj

for 1 ≤ j ≤ `, then we can write a(x) = λt1p
k

1 xt1(m1−1)Tk(A1(x))H1(x) +

λt2p
k

2 xt2(m2−1)Tk(A2(x))H2(x) + · · ·+ λt`p
k

` xt`(m`−1)Tk(A`(x))H`(x), which im-

plies that

C⊥k ⊆ 〈H1(x), H2(x), · · · , H`(x)〉L. (8.20)

Now by (8.19) and (8.20), part (d) follows immediately.

(e) For 1 ≤ i ≤ `, if πi is the projection of V onto Vi, then πi(C) is a skew

λi-constacyclic code of length mi over Fq having the generator polynomial

wi(x). Further, as ηi is the maximum number of consecutive exponents of

right zeros of wi(x), working as in Theorem 4 of Bhaintwal [13], we obtain

dmin(πi(C)) ≥ ηi + 1 for each i. Next we observe that if the ith block ci ∈ Fmiq
of a codeword c = (c1, c2, · · · , c`) ∈ C is non-zero, then the Hamming weight

wH(ci) of ci satisfies wH(ci) ≥ ηi + 1. This implies that wH(c) ≥ min
1≤i≤`

(ηi + 1)

for each c(6= 0) ∈ C. From this, we obtain the desired result.

(f) For 1 ≤ i ≤ `, working as in part (e), we obtain dmin(πi(C)) ≥ ηi + 1. Now

working in a similar manner as in Theorem 4.3 of Gao et al. [48], the desired

result follows immediately.

In the following example, we show that Theorem 8.6.2(c) does not hold for a
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%-generator skew Λ-MT code of length n over Fq when % ≥ 2.

Example 8.6.2. Let q = 23,m1 = m2 = 3 and Λ = (1, 1). Let σ be an automorphism

of F23 , defined as σ(b) = b4 for all b ∈ F23 . Note that Fσ23 = F2 and O(σ) = 3.

Further, we have V = V1 × V2 = R
〈x3−1〉 ×

R
〈x3−1〉 . Let C(⊆ V ) be a skew Λ-MT

code of length 6 over F23 with the generating set {(x2 + x + 1, 1), (x2, x + 1)}. Here

we observe that dimF23C = 6. Now by applying the left division algorithm, we get

A1(x) = gcld(x2 + x + 1, x2, x3 − 1) = 1 and A2(x) = gcld(x + 1, 1, x3 − 1) = 1,

which further implies that H(x) = lclm [x3 − 1, x3 − 1] = x3 − 1. From this, we get

deg H(x) = 3 6= dimF23C.

In [39], many linear codes with best known and optimal parameters [n, k, dmin]

have been listed over Fq when 2 ≤ q ≤ 9. Here also, by using the Magma Com-

putational Algebra System, we obtain linear codes with best known and optimal

parameters [n, k, dmin] over Fq from 1-generator skew Λ-MT codes with the gener-

ating set {(b1, b2, · · · , b`)}, which are listed in Tables 8.1 and 8.2, respectively. In

Tables 8.1 and 8.2, a is a primitive element of Fq, σ = σ1 is the Frobenius automor-

phism of Fq, and the element a0 + a1x+ a2x
2 + · · ·+ ami−1x

mi−1 ∈ Vi is represented

by the sequence a0a1a2 · · · ami−1 for 1 ≤ i ≤ `.



254 Skew multi-twisted codes over finite fields and their Galois duals

q (m1,m2, · · · ,m`) Λ (b1, b2, · · · , b`) [n, k, dmin]

8 (9, 9, 3) (1, 1, 1) b1 = a4a2a6a1a5a2a2a,
b2 = 0a4a4a2a3a5aa40,
b3 = a3aa6

[21, 9, 10]

8 (15, 15, 3) (1, 1, 1) b1 = a2a2a210aa5a4a61a6a31aa5,
b2 = a5a11a3a4aa5a2a3a5aa510,
b3 = a6a5a5

[33, 15, 13]

8 (21, 21, 3) (1, 1, 1) b1 = aa5a5a60a5a6aa6aa410aa2a3a31a200,
b2 = 0a6a30a50a61aa40a6a3a3a3a4a20a0a,
b3 = aa3a4

[45, 21, 16]

9 (10, 10, 2) (1, 1, 1) b1 = a212a0aa611a3,
b2 = a2a6aa3a6a3a72a3a5,
b3 = a60

[22, 10, 10]

9 (16, 8) (2, 2) b1 = 222a32a5a7210a2012a,
b2 = a2a5a5a62a72

[24, 16, 6]

9 (20, 10) (1, 1) b1 = a7a1a6a22a220a6a2a511a21a3a712,
b2 = 2a12aa2a3a5a3

[30, 20, 7]

9 (16, 16, 2) (1, 1, 1) b1 = a62a30a5a7a0a7a2002a7a5a,
b2 = a22122a300a52a5a2a3a20a,
b3 = a3a2

[34, 16, 13]

9 (22, 22, 2) (1, 1, 1) b1 = a520a5a32a61220a30a3021a5a20a6a3,
b2 = 1a7a00a2a72a6a6a3a22a5a5a3a5a602
a30, b3 = 20

[46, 22, 16]

9 (22, 22, 2) (2, 2, 2) b1 = 0aa71a62a310a3a71a200a2a7a21aa3,
b2 = a5aa601a1a12a3a5a6a72a7a3101a52,
b3 = a3a

[46, 22, 16]

Table 8.1: *Linear codes with best known parameters [n, k, dmin] over Fq obtained
as 1-generator skew Λ-MT codes

q (m1,m2) Λ (b1, b2, · · · , b`) [n, k, dmin]

8 (9, 9) (1, 1) b1 = aa61a1aa41a5, b2 = a0a0a20aa20 [18, 9, 8]

9 (16, 4) (2, 2) b1 = a31a3a5aa6a3a2a6a7aa6a7a5a3a5, b2 = a2a2a3a2 [20, 16, 4]

9 (32, 2) (1, 1) b1 = a5aa3a511a51aa52a3a60022a21a02222a5a6a6a21a2,
b2 = a7a6

[34, 32, 2]

9 (46, 2) (2, 2) b1 = a5a5a3020a6a2a7a10a3a21a3a1aa2210a20aa2a50a0
1a5a6a3a7202a6a2a3a7a3a6a5, b2 = 1a

[48, 46, 2]

9 (50, 2) (2, 2) b1 = 1a6a7a6a6a52a6211a1a2a7a2a2a5aa2aaa0a6a5a6a5

a5a5a3aa2a7a62a5a7aa70a0a31a5a3a300, b2 = 1a5
[52, 50, 2]

Table 8.2: *Linear codes with optimal parameters [n, k, dmin] over Fq obtained as
1-generator skew Λ-MT codes



9
Conclusion and future work

9.1 Introduction

Nowadays error-correcting codes are widely used in communication systems, re-

turning pictures from deep space, designing registration numbers, and storage of

data in memory systems. An important family of error-correcting codes is that

of linear codes, which contains many well-known codes such as Hamming codes,

Hadamard codes, cyclic codes and quasi-cyclic codes. In a recent work, a new

family of linear codes, viz. multi-twisted (MT) codes over Fq with block lengths

coprime to q, has been introduced and studied by Aydin and Halilović [5]. These

codes are generalizations of well-known classes of linear codes (such as constacyclic

255
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codes and generalized quasi-cyclic codes) having rich algebraic structures and con-

taining record-breaker codes. They obtained subcodes of MT codes with best-known

parameters [33, 12, 12] over F3, [53, 18, 21] over F5, [23, 7, 13] over F7 and optimal pa-

rameters [54, 4, 44] over F7, and proved that the code parameters [53, 18, 21] over F5

and [33, 12, 12] over F3 can not be attained by constacyclic and quasi-cyclic codes.

This suggests that the family of MT codes over finite fields is more promising to

find codes with better parameters than the current best known linear codes. This

inspired us to further study MT codes over finite fields.

9.2 Conclusion

Let Fq denote the finite field of order q. Let ` be a positive integer, and let

m1,m2, · · · ,m` be positive integers. Let n = m1 + m2 + · · · + m`, and let Λ =

(λ1, λ2, · · · , λ`), where λ1, λ2, · · · , λ` are non-zero elements of Fq. Below we summa-

rize some of the main results derived in the thesis.

In this thesis, algebraic structures of all Λ-MT codes of block lengths (m1,m2, · · · ,

m`) and length n over Fq and their dual codes with respect to Euclidean and Hermi-

tian inner products are studied, where gcd(mi, q) = 1 for 1 ≤ i ≤ `. Necessary and

sufficient conditions under which a Λ-MT code of block lengths (m1,m2, · · · ,m`)

and length n over Fq is (i) Euclidean self-dual, (ii) Euclidean self-orthogonal, (iii)

Euclidean LCD, (iv) Hermitian self-dual, (v) Hermitian self-orthogonal and (vi)

Hermitian LCD are derived. Some sufficient conditions under which a Λ-MT code

of block lengths (m1,m2, · · · ,m`) and length n over Fq is either Euclidean LCD or

Hermitian LCD are also derived. Besides this, enumeration formulae for all Eu-

clidean and Hermitian self-dual and self-orthogonal Λ-MT codes of block lengths

(m1,m2, · · · ,m`) and length n over Fq are provided. All Euclidean and Hermitian

LCD Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq are also
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enumerated when λi ∈ {1,−1} for 1 ≤ i ≤ `. These enumeration formulae are use-

ful in the determination of complete lists of inequivalent Euclidean and Hermitian

self-dual, self-orthogonal and LCD Λ-MT codes. The parity-check polynomial of

each Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n over Fq is explicitly

determined and a BCH type lower bound on their minimum Hamming distances

is also derived. Generating sets of Euclidean and Hermitian dual codes of some

Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq are expressed

in terms of generating sets of the corresponding Λ-MT codes. Apart from this, a

trace description for all Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length

n over Fq is provided by viewing these codes as direct sums of certain concatenated

codes. Another lower bound on their minimum Hamming distances is obtained by

using their multilevel concatenated structure. All non-zero Hamming weights of

codewords of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and

length n over Fq with at most two non-zero constituents are determined. As appli-

cations, Hamming weight distributions of several classes of few weight Λ-MT codes

of block lengths (m1,m2, · · · ,m`) and length n over Fq are also determined. Among

these classes of Λ-MT codes, two classes of optimal equidistant Λ-MT codes over Fq
meeting both Griesmer and Plotkin bounds and three other classes of few weight

Λ-MT codes that are useful in constructing secret sharing schemes with nice access

structures are identified.

The family of MT codes is further extended and algebraic structures of Λ-MT

codes of block lengths (m1,m2, · · · ,m`) and length n over Fq are studied, where

the block lengths m1,m2, · · · ,m` are arbitrary positive integers, not necessarily

coprime to q. Their dual codes with respect to the Galois inner product are stud-

ied, and necessary and sufficient conditions under which a Λ-MT code of block

lengths (m1,m2, · · · ,m`) and length n over Fq is (i) Galois self-dual, (ii) Galois

self-orthogonal and (iii) Galois LCD are also derived. A trace description for all

Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over Fq is provided
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by using the generalized discrete Fourier transform (GDFT), which gives rise to a

method to construct these codes. Necessary and sufficient conditions under which a

Euclidean self-dual Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n over

F2r is a Type II code are derived when λi = 1 and mi = 2ani for 1 ≤ i ≤ `, where

n1, n2, · · · , n` are odd positive integers satisfying n1 ≡ n2 ≡ · · · ≡ n` (mod 4). It

is also shown that each Λ-MT code of block lengths (m1,m2, · · · ,m`) and length

n over Fq has a unique normalized generating set. With the help of a normalized

generating set, the dimension and the corresponding generating set of the Galois

dual code of each Λ-MT code of block lengths (m1,m2, · · · ,m`) and length n over

Fq are explicitly determined. Besides this, several linear codes with best-known

and optimal parameters from 1-generator Λ-MT codes over Fq are obtained, where

2 ≤ q ≤ 7. It is worth mentioning that these code parameters can not be attained

by any of their subclasses (such as constacyclic and quasi-twisted codes) containing

record breaker codes. This shows that this generalized family of MT codes over

finite fields is more promising to find codes with better parameters than the current

best-known codes. Moreover, explicit Hamming weights of all non-zero codewords

of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n

over Fq are determined, where m1,m2, · · · ,m` are arbitrary positive integers, not

necessarily coprime to q. Using these results, explicit Hamming weight distributions

of several classes of Λ-MT codes of block lengths (m1,m2, · · · ,m`) and length n over

Fq with a few weights are determined. Among these classes of few weight Λ-MT

codes, two classes of optimal equidistant Λ-MT codes that attain the Griesmer as

well as Plotkin bounds are obtained. Three other classes of Λ-MT codes of length

n over Fq that are useful in constructing secret sharing schemes with nice access

structures are also identified.

Finally, skew analogues of MT codes over finite fields, viz. skew multi-twisted

(MT) codes, are studied. These codes are linear codes and are generalizations of

MT codes. Algebraic structures of these codes and their Galois duals are thoroughly
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investigated. Necessary and sufficient conditions under which a skew MT code is

(i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD are also derived.

A method to construct skew MT codes is also provided by viewing these codes as

direct sums of certain concatenated codes. A generator theory for these codes is

also developed, and two lower bounds on their minimum Hamming distances are

obtained. Many linear codes with best known and optimal parameters are obtained

from 1-generator skew MT codes over F8 and F9.

9.3 Future work

It would be interesting to study MT codes over chain rings and to determine their

Hamming weight distributions. Another interesting problem would be to further

extend the class of MT codes over finite chain rings to skew MT codes over chain

rings.
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quasi-cyclic codes, TWMS J. Pure Appl. Math. 9(2), pp. 123-134, 2018.
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