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Abstract

Nowadays error-correcting codes are widely used in communication systems, re-
turning pictures from deep space, designing registration numbers, and storage of
data in memory systems. An important family of error-correcting codes is that
of linear codes, which contain many well-known codes such as Hamming codes,
Hadamard codes, cyclic codes and quasi-cyclic codes. Recently, Aydin and Halilovié
[5] introduced and studied multi-twisted (MT) codes over the finite field F,, whose
block lengths are coprime to g. These codes are generalizations of well-known classes
of linear codes, such as constacyclic codes and generalized quasi-cyclic codes, hav-
ing rich algebraic structures and containing record-breaker codes. In the same work,
they obtained subcodes of MT codes with best-known parameters [33, 12, 12] over
F3, [53,18,21] over F5, [23,7,13] over F; and optimal parameters [54,4,44] over
F,. Apart from this, they proved that the code parameters [53, 18, 21] over F5 and
(33,12, 12] over [F3 can not be attained by constacyclic and quasi-cyclic codes, which
suggests that this larger class of MT codes is more promising to find codes with

better parameters than the current best known linear codes.

In this thesis, we first investigate algebraic structures of MT codes over [,
whose block lengths are coprime to q. We also study their dual codes with respect
to Euclidean and Hermitian inner products, and derive necessary and sufficient

conditions for a MT code to be (i) self-dual, (iii) self-orthogonal and (iii) linear
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with complementary-dual (LCD). Applying these results, we provide enumeration
formulae for all Euclidean and Hermitian self-dual, self-orthogonal and LCD MT
codes over [F,. We also derive some sufficient conditions under which a MT code is
either Euclidean LCD or Hermitian LCD. We further develop generator theory for
these codes and determine their parity-check polynomials. We also obtain a BCH
type bound on their minimum Hamming distances, and express generating sets of
Euclidean and Hermitian dual codes of some MT codes in terms of their generating
sets. Besides this, we provide a trace description for all M'T codes by viewing these
codes as direct sums of certain concatenated codes, which leads to a method to
construct these codes. We also obtain a lower bound on their minimum Hamming
distances using their multilevel concatenated structure. Besides this, we explicitly
determine all non-zero Hamming weights of codewords of several classes of MT codes
over [F,. Using these results, we explicitly determine Hamming weight distributions
of several classes of MT codes with a few weights. Among these classes of MT codes
with a few weights, we identify two classes of optimal equidistant MT codes that
attain the Griesmer as well as Plotkin bounds, and several other classes of MT codes

that are useful in constructing secret sharing schemes with nice access structures.

We further extend the family of MT codes and study algebraic structures of M'T
codes over [F,, whose block lengths are arbitrary positive integers, not necessarily
coprime to q. We study their dual codes with respect to the Galois inner product
and derive necessary and sufficient conditions under which a MT code is (i) Ga-
lois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD. We also provide a
trace description for all MT codes over finite fields by using the generalized discrete
Fourier transform (GDFT), which gives rise to a method to construct these codes.
We further provide necessary and sufficient conditions under which a Fuclidean self-
dual MT code over a finite field of even characteristic is a Type II code. We also

show that each MT code has a unique normalized generating set. With the help
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of a normalized generating set, we explicitly determine the dimension and the cor-
responding generating set of the Galois dual code of each MT code. Besides this,
we identify several classes of MT codes over finite fields with a few weights and
explicitly determine their Hamming weight distributions.

We next study skew analogues of MT codes over finite fields, viz. skew multi-
twisted (MT) codes, which are linear codes and are generalizations of MT codes. We
thoroughly investigate algebraic structures of skew MT codes over finite fields and
their Galois duals. Besides this, we view skew MT codes as direct sums of certain
concatenated codes and provide a method to construct these codes. We also develop
generator theory for these codes, and obtain two lower bounds on their minimum
Hamming distances.

Finally, we apply our results to obtain many linear codes with best known and

optimal parameters from MT and skew MT codes over finite fields.
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Introduction

The object of this thesis is

e to investigate algebraic structures of multi-twisted codes over finite fields and

their dual codes.

e to develop generator theory and to provide a construction method for multi-

twisted codes over finite fields.

e to determine Hamming weight distributions of several classes of multi-twisted

codes over finite fields.

e to study skew analogues of multi-twisted codes over finite fields and their

Galois duals, and to develop generator theory for these codes.



2 Introduction

Now we proceed to describe the problems that we have explored in this thesis.

1.1 Multi-twisted codes over finite fields and their

dual codes

Prange [66] introduced and studied cyclic codes over finite fields, which form the
most-studied class of linear codes containing many important codes such as BCH
codes, Reed-Solomon codes and quadratic residue codes. These codes can be effec-
tively encoded and decoded using linear feedback shift registers and can be viewed
as ideals of a certain quotient ring of polynomial rings. Later, Townsend and Wel-
don [77] introduced and studied quasi-cyclic (QC) codes over finite fields, which are
generalizations of cyclic codes. Kasami [49] and Weldon [79] further showed that
these codes are asymptotically good due to their abundant population. Solomon
and Tilborg [75] established a link between these codes and convolutional codes.
Using this, they deduced many interesting properties of linear codes, which have
applications in coding theory and modulation. Ling and Solé [53] viewed QC codes
over finite fields as linear codes over a certain auxiliary ring and studied their dual
codes with respect to the Euclidean inner product. They also explored the existence
of some Euclidean self-dual QC codes and provided enumeration formulae for this
class of codes in certain special cases. Later, Ling et al. [52] studied QC codes
over rings of characteristic not coprime with the co-index. In the same work, they
provided a trace description for these codes using the generalized discrete Fourier
transform (GDFT) and studied their dual codes with respect to the Euclidean inner
product. They also derived a characterization of Type II QC codes of singly even
co-index over finite fields of even characteristic. Siap and Kulhan [73] further gen-
eralized these codes to generalized quasi-cyclic (GQC) codes over finite fields. They
studied algebraic properties of 1-generator GQC codes and obtained a BCH type

bound on their minimum Hamming distances. By applying the Chinese Remainder
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Theorem and the results derived in Ling and Solé [55], Esmaeili and Yari [34] de-
composed GQC codes into linear codes, and provided an improved lower bound on
their minimum Hamming distances. Giineri et al. [41] decomposed GQC codes as
direct sums of concatenated codes, which leads to a trace formula and a minimum
distance bound for GQC codes. Jia [47] further generalized QC codes to quasi-
twisted (QT) codes, and decomposed these codes into direct sums of linear codes
over rings. She also studied their dual codes with respect to the Euclidean inner
product and provided a method to construct QT codes using the inverse generalized
discrete Fourier transform. Later, Saleh and Esmaeili [68] provided some sufficient
conditions under which a QT code is linear with complementary dual (LCD) with
respect to the Euclidean inner product. A large number of record-breaking QC and
QT codes have been obtained [6, 7, 25-27] by using the search algorithm proposed
in [8].

In a recent work, Aydin and Halilovié [5] introduced multi-twisted (MT) codes
of block lengths (mj,mo,---,my) and length n = m; + mg + --- + my over Fy,
where mq, mo, - - ,my are positive integers coprime to ¢q. These codes form an im-
portant class of linear codes and are generalizations of constacyclic and generalized
quasi-cyclic (GQC) codes. They studied some basic properties of 1-generator MT
codes. They also presented several methods to construct 1-generator MT codes
and obtained several bounds on their minimum Hamming distances. In the same
work, they obtained linear codes with best known parameters [33,12,12] over Fj,
[53, 18, 21] over F5, [23,7,13] over F; and optimal parameters [54, 4, 44] over F; from
subcodes of MT codes. Apart from this, they proved that the code parameters
[53, 18, 21] over 5 and [33, 12, 12] over F3 can not be attained by constacyclic or QC
codes, which suggests that this larger class of MT codes is more promising to find

codes with better parameters than the current best linear codes.

From now on, throughout this thesis, let IF, denote the finite field of order ¢ = p”,

where p is a prime and r is a positive integer. Let ¢ be a positive integer, and let
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n = mqy + mg+ -+ my, where my, mo,--- ,my are positive integers. Let ]FZ denote
the vector space consisting of all n-tuples over F,. Let A = (A1, Ay, -+, \), where
A1, Ag, - -+, Ay are non-zero elements of IF,.

In Chapter 2, we state some preliminaries that are needed to derive our main

results.

In Chapter 3, we study the algebraic structure of A-multi-twisted (A-MT) codes
of block lengths (my, ma, - - - ,my) and length n over F, and their dual codes with re-
spect to the Euclidean and Hermitian inner products on Fy, where my, mg, -+, my
are positive integers satisfying ged(m;,q) = 1 for 1 < i < . We also provide
necessary and sufficient conditions under which a A-MT code of block lengths
(mq1,ma,--- ,my) and length n over F, is (i) Euclidean self-dual, (ii) Euclidean
self-orthogonal, (iii) Euclidean LCD, (iv) Hermitian self-dual, (v) Hermitian self-
orthogonal and (vi) Hermitian LCD. We also derive some sufficient conditions under
which a A-MT code of block lengths (my,mao, - -+, my) and length n over F, is either
Euclidean LCD or Hermitian LCD. We determine the parity-check polynomial of all
A-MT codes of block lengths (mq,mo,---,my) and length n over F, and obtain a
BCH type bound on their minimum Hamming distances. We also express generating
sets of Euclidean and Hermitian dual codes of some A-MT codes of block lengths
(mq, ma, - -+ ,my) and length n over F, in terms of their generating sets. Besides this,
we provide a trace description for all A-MT codes of block lengths (mq, mg, -+, my)
and length n over F, by viewing these codes as direct sums of certain concatenated
codes, which leads to a method to construct these codes. We also obtain a lower
bound on their minimum Hamming distances using their multilevel concatenated

structure.

In Chapter 4, we provide enumeration formulae for all Euclidean and Hermitian
self-dual and self-orthogonal A-MT codes of block lengths (mq,ms,--- ,my) and
length n over F,, where my, mao, - - -, my are positive integers satisfying ged(m;, q) = 1

for 1 < ¢ < ¢. We also enumerate all Euclidean and Hermitian LCD A-MT codes
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of block lengths (mq,mo,---,my) and length n over F, when A\, € {1,—1} and
ged(my,q) =1 for 1 < i < /.

The Hamming distance of a code is a measure of its error-detecting and error-
correcting capabilities, and hence is an important parameter of the code. The greater
is the Hamming distance of a code, higher are its error-detecting and error-correcting
capabilities. A linear code C of length n over F, is defined as an [F-linear subspace of
[Fy. The Hamming distance of the code C is defined as the smallest of the Hamming
weights of its non-zero codewords. Given a linear code C of length n, dimension
k and Hamming distance d over F,, the Griesmer bound is a lower bound on the
length n of the code C in terms of ¢,d and k, while the Plotkin bound is an upper
bound on the size ¢* of the code C in terms of ¢,n and d, provided qd > n(q — 1).
Linear codes attaining either the Griesmer bound or the Plotkin bound are optimal
codes, and have attracted the attention of many coding theorists [44, 48, 50, 64].
Besides the length n, dimension £ and Hamming distance d, another important
parameter of the code C is its Hamming weight distribution, which is defined as the
list Ag =1, A, Ay, -+, A,, where A; denotes the number of codewords in C having
the Hamming weight j for 0 < j < n. The Hamming weight distribution of a code
is useful in studying its error-performance with respect to various communication
channels [14, 24, 62]. Thus the problem of determination of the Hamming weight
distribution of a code is of great interest [28, 30, 33, 48, 50, 56, 58, 64]. Despite
all the efforts, this is considered as a very difficult problem in coding theory and
is still an open problem for most of the linear codes [28, 33, 58]. Furthermore,
if ¢ denotes the number of integers j satisfying 1 < j < n and A; # 0, then
the code C is called a t-weight code. In general, the code with a smaller value
of 7 is called a few weight code. Nowadays, a lot of progress has been made by
many coding theorists to construct various classes of linear codes with a few weights
[42, 48, 56|, as few weight codes have recently found applications in constructing

authentication codes [29] and in designing secret sharing schemes with nice access
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structures [23, 54, 60, 80]. In particular, codes with ¢ = 1 are called equidistant
or constant weight codes, which are useful in constructing combinatorial designs
[35, 76] and generating goodsets of frequency hopping lists in radio networks [74].
Bonisoli [15] showed that each equidistant linear code of a given length over a finite
field can be obtained by replicating a simplex code, possibly by appending zero

coordinates and by applying a monomial linear transformation.

The support of a vector v = (vg,v1, -+ ,v,-1) € Fy, denoted by supp(v), is
defined as the set supp(v) = {i : 0 <i < n — 1,v; # 0}. Further, a vector u € F}
is said to cover another vector v € Fy if supp(v) C supp(u). A codeword ¢ € C
is said to be minimal if ¢ covers only the codewords ac € C for all a € F,, and
¢ does not cover any other codeword of the code C. The linear code C is said to
be minimal if every codeword of C is minimal. Minimal linear codes have recently
found interesting applications in designing secret sharing schemes with nice access
structures [19, 59, 80] and in secure two-party computation [2, 22|, and these codes
can be effectively decoded with a minimum distance decoding algorithm [1]. Thus
the problem of finding minimal linear codes has been an interesting research direction
in Coding Theory and Cryptography, and has recently attracted the attention of
several researchers [1, 2, 22, 43, 58-60).

In Chapter 5, we explicitly determine all non-zero Hamming weights of codewords
of several classes of A-MT codes of block lengths (mq,mg, -+ ,my) and length n
over F,, where my,mo,---,my are positive integers satisfying ged(m;,q) = 1 for
1 <@ < 0. We also explicitly determine Hamming weight distributions of several
classes of A-MT codes of block lengths (my, ma, - - - ,my) and length n over F, with a
few weights. Among these classes of few weight A-MT codes, we identify two classes
of optimal equidistant A-MT codes meeting both Griesmer and Plotkin bounds,
which have nice connections with combinatorial designs and projective geometry and
are also useful in designing distributed storage systems. Besides this, we identify

three other classes of few weight A-MT codes, which are useful in constructing secret
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sharing schemes with nice access structures.

In Chapter 6, we extend the family of MT codes and study all A-MT codes
of block lengths (my,ma,---,my) and length n over F,, where the block lengths
my, Mo, - -+ , My are arbitrary positive integers not necessarily coprime to g. More pre-
cisely, we investigate algebraic structures of A-MT codes of block lengths (mq, ma, - - -

- ,my) and length n over F, and their Galois duals (i.e., orthogonal complements
with respect to the Galois inner product on F}). We derive necessary and suffi-
cient conditions under which a A-MT code of block lengths (mq,ms,--- ,m,) and
length n over I, is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois
LCD. We further provide a trace description for all A-MT codes of block lengths
(mq,ma,--- ,my) and length n over F, by using the generalized discrete Fourier
transform (GDFT), which gives rise to a method to construct these codes. We also
provide necessary and sufficient conditions under which a Euclidean self-dual A-MT
code of block lengths (mq,msg, -+ ,my) and length n over Fyr is a Type IT code when
A = 1 and m; = n;2% for 1 <1 < ¢, where a > 0 is an integer and nq,no, -+, ny
are odd positive integers satisfying ny = ny = -+ = ny (mod 4). Moreover, we
develop generator theory for A-MT codes of block lengths (mq,ms,---,my) and
length n over F, and show that each A-MT code of block lengths (mq, mq, -+, my)
and length n over F, has a unique normalized generating set. With the help of a
normalized generating set, we explicitly determine the dimension and a generating
set of the Galois dual of each A-MT code of block lengths (mq,msg, - ,m,) and
length n over F,. Besides this, we obtain several linear codes with best-known and
optimal parameters from 1-generator A-MT codes over F,, where 2 < ¢ < 7. It is
worth mentioning that these code parameters can not be attained by any of their
subclasses (such as constacyclic and quasi-twisted codes) containing record breaker
codes. This shows that this generalized family of MT codes over finite fields is more

promising to find codes with better parameters than the current best-known codes.

In Chapter 7, we explicitly determine Hamming weights of all non-zero codewords
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of several classes of A-MT codes of block lengths (my, ms, -+, my) and length n over
F,, where my, mg, - - - , my are arbitrary positive integers not necessarily coprime to gq.
Using these results, we explicitly determine Hamming weight distributions of several
classes of A-MT codes of block lengths (mq, ma, - - - ,my) and length n over F, with a
few weights. Among these classes of few weight A-MT codes, we identify two classes
of optimal equidistant A-MT codes that attain the Griesmer as well as Plotkin
bounds, and several other classes of A-MT codes that are useful in constructing

secret sharing schemes with nice access structures.

1.2 Skew multi-twisted codes over finite fields and

their Galois duals

Ore [63] generalized polynomial rings to skew-polynomial rings, which are non-
commutative rings and have recently found applications in coding theory and cryp-
tography [3, 16, 18, 81]. Algebraic codes that are defined as ideals (resp. modules) in
a certain quotient ring (resp. quotient module) of skew polynomial rings are called
skew constacyclic codes (resp. module skew codes). Since a skew polynomial ring
is not a unique factorization domain, there are many more skew codes as compared
to the corresponding commutative cases. This motivated many coding theorists to
study various classes of skew codes [3, 13, 17, 18, 31, 48]. Towards this, Boucher et al.
[17] introduced and studied skew cyclic codes over finite fields, which are generaliza-
tions of cyclic codes. Within this class, they obtained many linear codes with better
parameters as compared to the previously best known linear codes. Abualrub et al.
[3] studied skew quasi-cyclic (QC) codes and showed that parity-check polynomials
for skew QC codes are unique up to similarity. In the same work, they obtained
new codes with Hamming distances exceeding Hamming distances of the previously
best known linear codes with comparable parameters. Later, Gao et al. [38] studied

skew generalized quasi-cyclic (GQC) codes and derived an analogue of the Chinese
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Remainder Theorem for skew polynomial rings using the factorization theory of ide-
als, which leads to a canonical decomposition of skew GQC codes. They also defined
the parity-check polynomial, determined the dimension and obtained a lower bound
on minimum Hamming distances of 1-generator skew GQC codes. Abualrub et al.
[4] further studied skew GQC codes and derived some good classical and quantum
codes from these codes.

In Chapter 8, we study skew analogues of MT codes over finite fields. More
precisely, we introduce a new class of linear codes over finite fields, viz. skew MT
codes over finite fields. We thoroughly investigate algebraic structures of skew MT
codes and their Galois duals. We further view skew MT codes as direct sums of
certain concatenated codes, and provide a method to construct these codes. We
also determine a lower bound on their minimum Hamming distances using their
multilevel concatenated structure. Moreover, we derive necessary and sufficient
conditions under which a skew MT code is (i) Galois self-dual, (ii) Galois self-
orthogonal and (iii) Galois LCD. We also develop generator theory for skew MT
codes over finite fields, and obtain two lower bounds on their minimum Hamming
distances. Besides this, we obtain many linear codes with best known and optimal

parameters from 1-generator skew MT codes over Fg and Fy.

1.3 Conclusion and future work

In Chapter 9, we mention a brief conclusion and discuss some interesting open

problems in this direction.
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Some Preliminaries

In this chapter, we shall state some basic definitions and results that are needed

to derive our main results.

To begin with, in the following section, we will present some basic results from
groups and geometry, which are useful in the enumeration of all Euclidean and Her-
mitian self-dual, self-orthogonal and linear with complementary dual (LCD) multi-
twisted (MT) codes over finite fields. For this, we assume, throughout this chapter,
that F, is the finite field of order ¢ = p", where p is a prime number and r is a

positive integer.

11
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2.1 Some basic results from groups and geometry

Let V' be a finite-dimensional vector space over the finite field F. Let B be a
o-sesquilinear form on V, where ¢ is an automorphism of F. Then the pair (V| B) is
called a formed space. From now on, throughout this section, we suppose that B is
a reflexive and non-degenerate o-sesquilinear form on V. The formed space (V, B) is
called (i) a symplectic space if B is an alternating form on V, (ii) a unitary space if
B is a Hermitian form on V, and (iii) an orthogonal space (or a finite geometry) if B
is a symmetric form on V. Further, a subspace of the formed space (V, B) is defined
as a pair (U, By), where U is a subspace of V' and By = B [y«y . For a subspace U
of the formed space (V, B), let us define U+ = {v € V : B(u,v) =0 for all u € U}.

Theorem 2.1.1. [40, 78] If (V, B) is a finite-dimensional reflexive and non-degenerate
space over the field F and U is a subspace of V, then Ut is a subspace of V and

A subspace U of V is said to be (i) self-dual if it satisfies U = U+, (ii) self-
orthogonal (or totally isotropic) if it satisfies U C U*, (iii) linear with comple-
mentary dual (or LCD or non-degenerate) if it satisfies U N U+ = {0}, and (iv)
dual-containing if it satisfies U+ C U. The Witt index of V is defined as the dimen-
sion of a maximal self-orthogonal subspace of V.

Next let F be the p-dimensional vector space consisting of all u-tuples over the
finite field F,. Then with respect to the standard inner product on F%, the following
hold.

Theorem 2.1.2. (a) [44, Th. 9.1.3] There exists a self-dual subspace (or equiv-
alently, a linear code) of even length p over F, if and only if (—1)*/% is a
square in F,. Furthermore, if (1 is an even integer and (—1)*/2 is not a square
in Iy, then the dimension of a mazimal self-orthogonal subspace of length
over IF, is (i —2)/2. If p is an odd integer, then the dimension of a maximal

self-orthogonal subspace of length u over F, is (u —1)/2.
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(b) [65, p. 217] Let u > 2 be an even integer, and let (—1)*/% be a square in F,.
Then the number of distinct self-dual subspaces of even length p over F, is

given by

SIS

-1

. (q® + 1) when q is even.
=1

NE Q
_

o (¢ + 1) when q is odd.
=0

Q

In the following theorem, we state some basic properties of finite-dimensional

symplectic spaces over finite fields.

Theorem 2.1.3. [78] Let (V, B) be a pi-dimensional symplectic space over F,. Then
the dimension p of V' is even and the following hold.

(a) The Witt index of V is §.

(b) For0 <k < &, the number of distinct k-dimensional self-orthogonal subspaces

of V' 1is given by

k-1 k—1
(¢ —=1) _ [w/2 £ g
Hm—[k] [T+,

a=0

k—1
where [“,ﬂq = 1] ((i';ff_qg? 18 the g-binomial coefficient.
d=0

In the following theorem, we state some basic properties of finite-dimensional

unitary spaces over finite fields.

Theorem 2.1.4. [78] Let (V, B) be a p-dimensional unitary space over Fp2. Let v
be the Witt index of (V, B). Then we have the following:

if 1 ois even;

=

(a) The Witt index v of V is given by v =
’%1 if p is odd.
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(b) For 0 < k < v, the number of distinct k-dimensional self-orthogonal subspaces

of V is given by

@ (-1
a=p+1-2k
.;(q% - 1)

To study orthogonal spaces, let ¢ be an odd prime power, and let V' be a finite-
dimensional vector space over ;. Then the map ¢ : V' — F, is called a quadratic

map on V if it satisfies
(i) ¢(av1) = a?p(vy) for all @ € F, and v; € V, and

(ii) the map B, :V xV — F,, defined by B, (v1,v2) = ¢(v1 +v2) — p(v1) — (v2)

for all vy, vy € V, is a symmetric bilinear form on V.

The pair (V, ¢) is called a quadratic space over F,. The quadratic space (V, ¢) over
FF, is called non-degenerate if it satisfies ¢=*(0) N V+ = {0}, where V+ ={v e V :
B,(v,u) = 0 for all u € V'}. If the quadratic space (V,¢) is non-degenerate, then
the associated orthogonal space (V, B,,) is called a finite geometry over F,. On the
other hand, with every symmetric bilinear form B on a vector space V' over [, one

can associate the following quadratic map:
1
Qpv) = iB(v,v) for each v e V.

In the following theorem, we state some basic properties of non-degenerate quadratic

spaces over a finite field of odd characteristic.

Theorem 2.1.5. [65, 78] Let (V,¢) be a p-dimensional non-degenerate quadratic
space over the finite field F, having an odd characteristic. Let v be the Witt index
of (V, ). Then we have the following:
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(a) The Witt index v of V is given by

Ll if s odd;
if wis even and ¢ =1 (mod 4) or p =0 (mod 4) and g = 3 (mod 4);
if w=2 (mod 4) and g = 3 (mod 4).

(b) For0 <k < v, the number of distinct k-dimensional self-orthogonal (or totally

singular) subspaces of V' is given by

] T

9 a=0

where [Z]q = dl:IO(qV — g9 /(¢* — q%) is the q-binomial coefficient and ¢ =
=3
PR

2v—p+1. (Note_thatgzl ifv=%5¢=-1 ifl/:”T_z ands =0 ifv =41

2

Next we recall the following well-known result:

Lemma 2.1.6. If n,k are integers satisfying 0 < k < n and q is a prime power,
then the number of distinct k-dimensional subspaces of an n-dimensional vector space

over I, is given by the g-binomial coefficient
n k—1 7 —
[kL - 11 (qk - qi) '

In the next section, we will state some basic results on character sums over

finite fields, which are useful in the determination of Hamming weights of non-zero

codewords of multi-twisted (MT) codes over finite fields.
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2.2 Some basic results on character sums over fi-

nite fields

An additive character of F, is defined as a group homomorphism from the ad-
ditive group of the finite field F, into the multiplicative group C* of the field of

complex numbers. The canonical additive character x of F, is defined as

2w T
T TrR /Fy (y)

x(y)=e Z for all y € IF,.

Note that x(0) = 1. It is well-known that

q ifa=0;
> xlay) = . (2.1)
yeF, 0 ifa#0.

Let E be a finite field extension of F;, and let i be the canonical additive character

of E, defined as

27rLT7‘E/Fp (2)

u(z) =e Z for all z € E.

One can easily observe that
w(z) = x(Trgm,(z)) forall z € E. (2.2)

A multiplicative character of I, is defined as a group homomorphism from the mul-
tiplicative group F; of the finite field [, into C*. The trivial multiplicative character
Yo of Fy is defined as ¢ (y) = 1 for all y € F}. It is well-known [51, p. 192] that

Sy =g T (2.3

yeF: 0 otherwise.
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Further, if ¢; and v are multiplicative characters of F,, then the mapping ¥, :
F; — C*, defined as

(1) (y) = i(y)va(y) forall y € Fy,

is also a multiplicative character of IF,. If ¢ is a multiplicative character of F,, then
the conjugate character v of 9 is defined as 1 (y) = ¥ (y) for y € [y, where — denotes
the complex conjugation. Further, it is easy to see that ¢ = ¢, If 8 is a primitive

element of Fy, then the map ¢ : F; — C*, defined as

2mey

p(B)=eat  for 0<j<q-—2,

is a multiplicative character of F,. It is well-known [51, p. 191] that the set E‘E of

multiplicative characters of F, is a cyclic group of order ¢ — 1, generated by ¢.

For an additive character x and a multiplicative character 1 of IF,, the Gauss

sum over the finite field I, is defined as

G, x) = D> v)x(y).

yeF:
It is easy to see that
G, x) = (=1)G(¥,x) and G(Yo,x) = ~1. (2.4)
Further, it is well-known that
X0) = = 3 G ) for cach y € (25

PeF;

which may be interpreted as the Fourier expansion of the restriction of x to F}
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in terms of the multiplicative characters of F, with Gauss sums as Fourier coeffi-
cients. Now the following theorem determines the Gauss sum G(1, x) when 9 is the

quadratic character of F,.

Theorem 2.2.1. [11] Let g = p", where p is a prime and r is a positive integer. If
Y is the quadratic character of Iy and x is the canonical additive character of F,

then we have

G, x) = (—1) " g = (=1)"'Va z:fp =1 (mod 4);
(=D)=""'vq if p=3 (mod 4).

The following theorem determines the Gauss sum G(%, x) in the semi-primitive
case, i.e., when there exists a positive integer ¢ satisfying p' = —1 (mod M), where

M is the multiplicative order of .

Theorem 2.2.2. [11] Let ¢ = p", where p is a prime and r is a positive integer. Let
X be the canonical additive character of F,, and let ¢ be a multiplicative character of
F, having order M > 2. Suppose that there exists a least positive integer t satisfying
p' = —1 (mod M). Then we have r = 2ty for some positive integer . Furthermore,

for1 <i< M —1, we have

Gl ) = (-1)"/q if M is even and I%tﬂ) is odd; (2.6)
(=1)"'/q otherwise.



Multi-twisted codes over finite

fields and their dual codes

3.1 Introduction

Let I, denote the finite field of order ¢, and let m;, ms, -+, m; be positive in-
tegers satisfying ged(m;,q) = 1 for 1 < i < {. Let n = my + mg + - -+ + my. Let
A= (A, Ao, -+, Ap), where A, Ay, - -+, A¢ are non-zero elements of [F,. In this chap-
ter, we shall thoroughly investigate algebraic structures of A-multi-twisted codes
(A-MT) of block lengths (my, mao, -+ ,my) and length n over F, by writing a canon-

ical form decomposition for these codes. We shall also study their dual codes and

19
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derive necessary and sufficient conditions under which a A-MT code of block lengths
(mq,ma,--- ,my) and length n over F, is (i) self-dual, (ii) self-orthogonal and (iii)
linear with complementary dual (LCD) by placing Euclidean and Hermitian inner
products on Fy. We shall also develop generator theory for these codes and explic-
itly determine generating sets of Euclidean and Hermitian dual codes of some A-MT
codes of block lengths (my, ms, -+ ,my) and length n over F, from their generating
sets. We shall also provide a trace description for these codes, which gives rise to
a construction method for these codes. We shall also obtain two lower bounds on

their minimum Hamming distances.

This chapter is structured as follows: In Section 3.2, we study algebraic structures
of A-MT codes of block lengths (my, ms, - - - ,my) and length n over IF,. In Section 3.3,
we study their dual codes with respect to Euclidean and Hermitian inner products on
[y, and derive necessary and sufficient conditions for a A-MT code of block lengths
(my,ma,--- ,my) and length n over F, to be Euclidean or Hermitian (i) self-dual,
(i) self-orthogonal and (iii) linear with complementary dual (LCD) (Theorems 3.3.3
and 3.3.4). In Section 3.4, we determine the parity-check polynomial of each A-MT
code of block lengths (my,ms,---,my) and length n over F,, and obtain a BCH
type bound on their minimum Hamming distances (Theorems 3.4.1 and 3.4.3). We
express generating sets of Euclidean and Hermitian dual codes of some A-MT codes
of block lengths (my,mo,--- ,my) and length n over F, in terms of their generating
sets (Theorem 3.4.2). We also obtain a lower bound on the dimension of a A-MT code
of block lengths (my, mo, - - - ,my) and length n over I, which is also invariant under
the Q-MT shift operator on Iy, where A # ) (Theorem 3.4.4). We also derive some
sufficient conditions under which a A-MT code of block lengths (mq,mg,--- ,my)
and length n over F, is either Euclidean or Hermitian LCD (Theorems 3.4.5 and
3.4.6). In Section 3.5, we provide a trace description for all A-MT codes of block
lengths (mq,ma,--- ,my) and length n over F, by viewing these codes as direct

sums of certain concatenated codes, which leads to a method to construct these
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codes (Theorem 3.5.2). We also obtain a lower bound on their minimum Hamming

distances using their multilevel concatenated structure (Theorem 3.5.3).

3.2 Algebraic structures of MT codes over finite

fields

In this section, we shall thoroughly investigate algebraic structures of MT codes
over [F,, whose block lengths are positive integers coprime to ¢. For this, we assume,
throughout this chapter, that I, is the finite field of order ¢ = p”, where p is a prime
number and r is a positive integer. Let my, mo, -, my be positive integers coprime
to g, and let n = my + mg + -+ + my. Let F denote the vector space consisting
of all n-tuples over F,. Let A = (A1, Ao, -+, Ar), where A\j, Ao, -+, Ay are non-zero
elements of F,. Then a A-multi-twisted (MT) module V' is an F,[z]-module of the

form

where V, = (xff—[f]/\) for 1 <7 < ¢. We further note that there exists an F,-linear vec-

tor space isomorphism from F onto V. From this point on, we shall represent each el-

ement a € Fy as a = (a1,0,01,1," "+ Qlmy—15 02,0, @21, * 5 Q2my—15*** 5 G005, Qo155
agm,—1) and the corresponding element a(x) € V as a(x) = (a1(x), az(x), - - -, as(x)),
m;—1 )
where a;(z) = a; ;07 € Vi for 1 <i </,
=0

Definition 3.2.1. [5] A A-multi-twisted (MT) code of block lengths (my, ma, -+ ,my)
and length n over Fy is defined as an Fy[x]-submodule of the A-MT module V. Equiva-
lently, a linear code C of block lengths (my, ma, -+ ,my) and length n over F, is called
a A-MT code if ¢ = (01,0, C11, " 3 Clm—1:C20,C21, " " s C2mo—15" " 5C20,Cp 1, """ )
Comy—1) € C, then its A-MT shift Ta(c) = (A1C1imy—15C1,05 5 Climy—2; A2C2ma—15 €2.0,

L C2ma—25 3 AClmy—15Co0s s Comg—2) 1S also a codeword of C.
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In particular, when m; = mo = --- =my and \; = Ay = --- = X\;, A-MT codes
of block lengths (my,ma,--- ,my) and length n over F, are permutation-equivalent
to quasi-twisted (QT) codes of length m ¢ over F,. When \; = 1 for 1 < i < ¢,
A-MT codes of block lengths (mq,mg,--- ,my) and length n over F, coincide with
generalized quasi-cyclic (GQC) codes, which are first defined and studied by Siap
and Kulhan [73]. Furthermore, when m; =mgy =---=myand \; =1 for 1 <i </,
A-MT codes of block lengths (my, ma, - - - ,my) and length n over F, are permutation-
equivalent to quasi-cyclic (QC) codes of length m, ¢ and index ¢ over F,. Besides this,
when ¢ =1, A-MT codes of block lengths (my, ma, - - - ,my) and length n over F, are

Ai-constacyclic codes of length m; over F,.

Now we shall express A-MT codes of block lengths (mq,ms, - -+ ,my) and length n
over [F, as direct sums of certain linear codes of length ¢ over finite field extensions
of F,. To do this, let ¢1(z), g2(z), -+, g,(x) be all the distinct irreducible factors
of the polynomials 2™ — Ay, 2™2 — Ag,--- , 2™ — Ay over Fy. For 1 < w < p and

1 <i </, let us define

1 if g, (z) divides 2™ — \; in F,[z];

0 otherwise.

P
Then for 1 < i < ¢, we note that 2™ — \; = [ gw(z)™ is the irreducible fac-

w=1
torization of ™ — \; over F,. Now for each 4, by applying the Chinese Remainder

Theorem, we get
P
‘/z‘ = @ Ew,iFw
w=1

with F, = Jjgﬁ]» for 1 < w < p; the corresponding ring isomorphism from V; onto

p p
D ewiFy is given by a;(z) — > <ew,i(ai(:v) + (gw(x)>)> for each a;(z) € V;. This
= w=1

w=1
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further implies that

p
Vo @ (cwnFoscwaFu - s ewely ).

=1 v
v Guw

p
where the ring isomorphism from V onto € G, is given by
w=1

() = 3 (€wa(@r@) + (Gu(e)), walaale) + {gul@)), - walacz) + (gul@))

w=1

for each a(z) = (a1(x), az(x), -+ ,ae(x)) € V. If d,, = deg g,(z), then we see that
¢

Fy ~ F g, for 1 <w < p. Next let €, = > €y, for each w. It is easy to see that for
i=1

1 <w < p, the set G, = <ew71Fw,ew,2Fw, e ,ew,ng> is an ¢,-dimensional vector

space over Fy,. From the above discussion, we deduce the following:

Theorem 3.2.2. Let C be a A-MT code of length n over F,, which is finitely-

generated as an F,x]-submodule of V' by {(aq1(2),aq2(x), - ,aqs(z)) : 1 < d <
p

u} € C. Then the code C can be uniquely expressed as C = € C,, where for
w=1

1 <w < p, the code Cy, is an F,,-subspace of G,,, given by

Cw = Spaan{(ew,lad,l(dw)> ew,Qad,Z(aw)a e aew,fadl(éw)) 1 S d S ﬂ}

with 0y, as a zero of g, () in Fy,, (the codes Cy, Ca,--- ,C, are called the constituents

of C). Furthermore, we have

p
dimg,C = Z dimp,Cydeg gy ().

w=1

o
Conversely, if D,, is an F,-subspace of G, for 1 <w < p, then D = @ D,, is a

=1
A-MT code of length n over F,.

We shall illustrate the above theorem in the following example:
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Example 3.2.1. Let ¢ = 7,0 =3, my = 2, mg = 3, m3 = 4, A = (2,6,4) and

F; = Zs. Here we have V = V) x Vo x V3 = 527?%) X <;F:§[_xé) X (EZ[_IJQ. Further, we

see that the irreducible factorizations of the polynomials x*> — 2, 3 — 6 and z* — 4
over F; are given by 2> —2 = (x +3)(x +4), 2 —6 = (z + 1)(z + 2)(z + 4)
and x* —4 = (x + 3)(z + 4)(z* + 2), respectively. Now let gi(z) = x + 1, go(x) =
r+2,93(x) =2+ 3,94(x) = 2+ 4 and gs(x) = 2> + 2. Then we have Fy ~ F, ~
F3 ~ Fy ~ F; and Fy ~ Fa9. From this and by applying the Chinese remainder
theorem, we get Vi ~ {0} & {0} & F5® F, & {0}, Vo ~ F} & F, ® {0} & F, ® {0},
Vs >~ {0}@{0}® F3® Fy® F5, which implies that V ~ ({0}, F1,{0}) & ({0}, F5, {0}) &
(F5, {0}, F3) @ (Fy, Fy, Fy) & ({0}, {0}, F5). Now if C CV is a A-MT code of length
9 over F; generated by {(aq1(), ag2(x), aqz(z)) : 1 <d < p} CV, then we have

5
¢ =

w=1

where the constituents Cy,’s of C are given by
C1 = Spang, {(0,aq2(6),0) : 1 < d < p},

Cy = Spang,{(0,a42(5),0) : 1 < d < b,
Cs = Spang,{(aq1(4),0,aq3(4)) : 1 < d < pf,
Cs = Spang, {(aq1(3), aq2(3),aq3(3)) : 1 < d < p}

and

Cs = Spang, {(0,0,a43(d5)) : 1 < d < p}

with 5 as a zero of the polynomial gs(x) = 2* + 2 in F5 ~ Fyy.

Next in the following theorem, we enumerate all A-MT codes of length n over

F,.
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Theorem 3.2.3. Let A = (A1, \a, -+, \p) be fized, where Ay, Aa, -+, Ny are non-zero
elements of F,. Then the total number of distinct A-MT codes of length n over I, is

given by

where d,, = deg g,,(x) for each w.

Proof. By Theorem 3.2.2, we see that all the distinct A-MT codes of length n over
P
[F, are given by €D C,, where C,, runs over F,,-subspaces of G, for 1 <w < p. Now
w=1

by using the fact that F,, ~ Fa, and by applying Lemma 2.1.6, the desired result

follows immediately. O

Remark 3.2.4. [t is easy to see that some A-MT codes can also be viewed as Q2-MT
codes, where 2 # A. For example, when ¢ =7, my = 2 and mo = 1, the linear code
C with the basis set {(1,0;0),(0,1;0)} is a (2,1)-MT as well as (4,1)-MT code of
length 3 over 7. Thus the total number of distinct MT codes of length n over I, is
not equal to (g — 1)*Ny.

3.3 Euclidean and Hermitian dual codes of MT
codes

In this section, we shall study Euclidean and Hermitian dual codes of A-MT
codes of length n over F,. To do this, we first recall the definitions of Euclidean and
Hermitian inner products on Fy as follows:

The Euclidean inner product on Fy is a mapping (-, )0 Fy x Fy — F,, defined

as
L m;—1

<(Z, b>0 = Z Z ai,jbi,j for all a, be FZ

i=1 j=0
Note that the Euclidean inner product (-, -)¢ is a non-degenerate and symmetric bilin-

ear form on . If C is a A-MT code of length n over F,, then its Euclidean dual code
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Cto is defined as C*0 = {a € F} : (a,c)o = 0 for all ¢ € C}. One can easily observe
that C*0 is a A=L-MT code of length n over F,, where A=t = (\7', A\5%, -+, A 1).

The Hermitian inner product on Fy is defined only when 7 is an even integer and

is a mapping (-, )z : Fy x F} — Ty, defined as

L m;—1

(a,8): =3 % i t27 for all a,b e F.

i=1 j=0

Note that the Hermitian inner product (-,-)r is a non-degenerate and reflexive o7-
sesquilinear form on Fy, where o is an automorphism of I, defined as o(b) = w* for
cach b € F,. If C is a A-MT code of length n over F,, then its Hermitian dual code cts
is defined as % = {a € Fy : {a,c)z =0 for all ¢ € C}. One can easily observe that
Ct% is a AP2-MT code of length n over F,, where AP = ()\fp%,AQ_p%, e ,)\Zp%).

From this point on, throughout this chapter, let & be an integer satisfying either

k=0 or k =% when r is even, and let us define AP = (Al_pk,)\;pk, e ,/\;pk).

Next to study Euclidean and Hermitian dual codes of MT codes in more de-
tail, let m be the order of the polynomial lem[z™ — Ay, ™2 — Ao, - -+ , 2™ — )\(] in
F,[z], i.e., m is the smallest positive integer such that the polynomial lem[z™' —
AL, ™ — Ao, oo, a™ — Ag| divides 2™ — 1 in F,[z]. It is easy to observe that
m = lem[mi0(A1),m20(X2), - -+ ,meO(A¢)] and that T§" = T\" , = I, where [
is the identity operator on Fy and O();) denotes the multiplicative order of A; for

each 1.

Recall that the dual code C1* is a A=P"-MT code of length n over F,, i.e., Ct* is a

linear code of length n over F, satisfying the following: if d = (dy o, d1 1, , d1m,—1;

d270, d2717 e, d27m2_1; ety d&o, dg71, Tty dZ,mg—l) S Clk, then its Aipk—MT shift TA_pk (d)
_pk _ .k .k

= ()\1 P dl,m1—17 dl,Oa e >dl,m1—2; >\2p d2,m2—17 d2,07 """ >d2,m2—2; ety )\g P df,mg—la

doo, - o dpm,—2) € C+. Equivalently, C** is an F,[z]-submodule of the A=*-MT

¢
module V' = [[V/, where V/ = — Bl for 1 < i < €. Next let us define a
i=1

<wmi _)\;P >
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conjugation map Ty : <frf’1[f]1> — <f$[f]1> as
m—1 . A m—1 A F [.1']
Te(d(z)) = d? 77 for each d(z) = Z djz! € —L——.
= i=0 = 1)

(Here we have 7! = 2™~ ! € <Fq[””]

xm——n) Further, for 1 < i < ¢, define a conjugation
map ﬁ(i) V=V as

m;—1

TO W) = Y Wa
j=1

m;—1 )
for each b;(x) = bija? € V!, where 27! = A\ la™i~t € V.
j=1

Next we define a mapping (-,-), : V x V' — <f$[f]1>

as

for a(x) = (a1(z),az(x), -+ ,a(x)) € V and b(z) = (by(x),be(x), - ,be(x)) € V',

Fy[z]
@1

where V and V' are viewed as -modules. Now the following lemma relates the

map (a(z),b(z)), with Euclidean and Hermitian inner products on F7.

Lemma 3.3.1. (a) Fora(x) € V and b(xz) € V', we have

(a(2),b(x)), = {a,b), + (@, Ty (b)), @ + -+ (a, T} 5 (b)), 2™

= <aa b>k + <T/7\n_1(a>a b>k$ + -+ <TA(a), b>k$m71 m —<frfl[f]1>.

(b) The mapping (-,-), is a non-degenerate and Hermitian Ty-sesquilinear form

onV x V"

Proof. (a) To prove this, we first write a(z) = (ai(x), az(x), - ,a(z)) and b(z) =
(b1 (), bo(x), -+ ,be(x)), where a;(z) = mfol aijx? € V;and b;(x) = mfol b ja? €
V. for each i. For 1 < i < /¢, we observe ’Zhat = 1—1—)\2-_13:’”1' %i)\i_Qx%“ +
: -—i—)\A_(mﬂi_Q)x(mﬂi_Q)m"+>\ix(mﬂi_1)mi. Using this, we get (a(z),b(z)), = (a,b),+

(2

Ai(z™—1)

z™i—\;
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(@ Ty )>kx+---—|—<a,T1’x"_;,1(b)>k a1 As (a, T A-PF (b)), = {TX"( ( a),b),
for 0 < j < m—1, we get (a(x),b(x)), = (a,b), + (T} '(a),b), x+ - +
(Ta(a), by ™"

(b) It is easy to observe that (-,-), is a Hermitian 7;-sesquilinear form on V' x V.
To prove the non-degeneracy of (-,-), , suppose that (a(z),b(x)), = 0 for all
b(x) € V'. Here we need to show that a(z) = 0. For this, by part (a), we see
that (a(z),b(x)), = (a,b),+(a,T\_x (b)), x4 ~—|—<a,T/’\" %(b)>kxm_1 = 0 for
all b € F?. This implies that (a,b), = (a,T) (b)>k == <a,TX:,1(b)>k =0

for all b € Fy. As (-, ), is a non-degenerate bilinear form on Fy, we get a = 0,

which gives a(z) = 0. This proves (b).

From the above lemma, we deduce the following:
Proposition 3.3.2. If C C V is a A-MT code of length n over F,, then the dual
code C+* C V' is a AP"-MT code of length n over F, and is given by

C = {b(z) € V' : (a(z),b(x)), = 0 for all a(z) € C}.

Further, a A-MT code C of length n over F, is said to be
(i) Euclidean (resp. Hermitian) self-dual if it satisfies C = C*0 (resp. C = C5).

(ii) Euclidean (resp. Hermitian) self-orthogonal if it satisfies C C Ct° (resp. C C
c's).

(iii) Euclidean (resp. Hermitian) linear with complementary dual (LCD) code if it

satisfies C N €0 = {0} (resp. CNCE = {0}).

These classes of A-MT codes have nice algebraic structures and are useful in
constructing modular forms. Now we proceed to study algebraic structures of Eu-

clidean and Hermitian self-dual, self-orthogonal and LCD A-MT codes of length
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n over F,. To do this, if f(x) = a9 + a1z + -+ + @2' is a non-zero polyno-
mial over [, then its Jj-conjugate polynomial is defined as Z(f(x)) = agkxt +
aﬁ’kxt_l + -+ ai’ilm + ai’k. Further, the polynomial f(z)(# 0) € F,lx] is said
to be Jj-self-conjugate if it satisfies (f(x)) = (Z%(f(z))) in Fy[z]. Two non-zero
polynomials f(x),g(x) € F,[z] are said to form a Zj-conjugate pair if they sat-
isfy (g(z)) = (Z%(f(2))) in F,[z]. Now we recall that ¢,(z), g2(x), - -, g,(z) are all
the distinct irreducible factors of ™ — A, 2™ — Ag,--- 2™ — A; in F[z] with
deg gw(z) = dy for 1 < w < p. As g,(z) is irreducible over F,, we see that
deg Zi(gw(x)) = deg gu(x) = d,, for each w. Further, suppose (by relabelling g,,(z)’s
if required) that g1(z), go(), - - , g, () are all the distinct J-self-conjugate polyno-
mials, ge,+1(2); Tk(gey+1(T)), -+ 5 Gey (T), Ti(gey (z)) are all the polynomials forming
T-conjugate pairs, and that ge,+1(), geg12(2), -, ges () are the remaining poly-
nomials (that are neither j-self-conjugate nor do they form .Z;-conjugate pairs),
which appear in the irreducible factorizations of ™ — A, ™2 — Xy, - -+ , ™ — Ay Over

F,. Here p=e3+ey—e;. Nextfor 1 <t <ej,e; +1 < p<eyandes+1 < u < e,

_ Fglz] _ Fglx] r_ Fq 2] ~
we note that F, = <gf(x)> ~ Foa, Fy = <g:(x)> ~ Fo., F, = <%(;M(x))> ~ F a,.,
F, = ({Iif([?» ~ [F e, and F) = #ﬁ]@)) ~ [ a.. Therefore by applying the Chinese

Remainder Theorem, we get

V ~ (@ (Et,lFtaet,ZFta e ’et’EFE)) > ( GB {(fu,lFmeusz s >€u,€F/ﬁ) S¥

t=1 é; p=ei1+1 g‘;
e3
(E;L,lF/fH GL,QF;/U e 7E:L7ZF;; ) }) S¥ ( @ (Eu,lFua Eu,2Fuv e 7€u,€F1j)) (31)
éz u=ez2+1 &;

and

el €2
Vi~ (@ (ft,1Ft,€t,2E7“' ,Gt,eFt)> =) ( EB {(EL,IFM’GLQFIM'” aEL,eF;i) S

t=1 x 7 = 1 ~"~
Gt p=ert Hu
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€3
/ / / / / /
(€uiF), el 7GMF%)}) T ( @ (EuvlFU?EUQFu? ‘o ,eu,gFE)),(?)Q)
7_‘[2 u=ez+1 g‘,z

where for 1 < a<ez,e;+1<pu<esand 1 <i <Y,

1 if go(x) divides ™ — \; in F,[z];

0 otherwise

and
1 if J(gu(x)) divides ™ — \; in Fy[x];

0 otherwise.

¢
Note that dimpH), = ¢, for each p. Further, if €, = ; €, then dimg G, =
0
dimp, H, = ejl for each p. We also recall that dimg, G, = €, = ; €aifor 1 < a <es.
In view of this, from now on, we will identify each element a(z) = (a;(z), az(x), - - -

)

ag(x)) €V as

A - <A17A27"' 7A817A61+17A/ 7A€27A/ Aeg+17"' 7A63)7

e1+1» €2’

where At - (At,17At,27 e 7At,€) € gt; A,u = (Au,hAu,Za e 7A,u,5> S g,LL? AL =
(A:%l, A;Q, e ’A;M) € g/; and A, = (Ay1, Auz, -, Aur) € Gy with Ay = € (a;(z)+
(9e(2))), Api = enilai(z) + (9u(2))), AL = €i(ai(z) + (Ti(gu()))) and Ay, =
€uwilai(z) + (gu(x))) for 1 <i<l1<t<ep,e1+1<pu<erandey+1<u<es.
Analogously, we will identify each element b(x) = (by(x), ba(z), - ,be(z)) € V' as

B = (Bla B27 e 7B617 Be1+17 Bél+17 e 7Bega B/ B€2+17 e aBe3)7

€2’

where B, = (Bt,lvBt,Za"' aBt,Z) € G, Bu = ( u,bBu,Qa"' 7Bu,£) € H;u BL =
(B’ B’ .- 7B//M) € 7-[; and B, = (Bu,l,Bu,z,"' ,BM) € g; with Bt,i =

w1 P2

€i(bi(2) + (91(2))), Bui = €,3(bi(@) + (9u(2))), By, = €ui(bi(2) + (Tk(gu())))
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and B, ; = €,,(b;(z) + (Z(gu(x)))) for each i, ¢, and w.

For 1 <t <ey, let Ty : €,;F; — €;F; be the conjugation map, defined as

di—1
Soohb aTt if e, =1,

Tilho(@) =4 = " t
0 if ¢,; =0

di—1
for all hy(x) = > hypr’ € F;. For e; +1 < pu < ey, the conjugation map Ty, :

il — €., ig:gleﬁned as
dil Wb if e =1,
Telhy(w) =q =0 "
0 ife,, =0
d—1

for all h,(z) = > hya’ € €, while the conjugation map Ty, : €, F), — €,:F), is

b=0
defined as
du—1

. Wt if e ;=1
T = i
0 if €, =0
~ d/»"_l ~
for all hy(z) = 3 huwr’ € €,;F,. For e; +1 < u < e, the conjugation map
=0
Tr : €uiF, — €,,F, is defined as
dy—1
> hZZx_b if €,; = 1;
Telhu(z) = { i
0 if e,; = 0
du—1
for all hy(x) = > hupa® € €, F.. For 1 <i < /{and 1 <t < e; satisfying ¢, = 1,
b=0

we observe that the conjugation map 7y is the identity map when £ = 0 and d; = 1,

r
2

d; > 1. From this, we see that for each b(x) = (by(z),ba(x), - ,be(x)) € V', the

while it is an automorphism of F; when either d; = 1 and k£ = £ with r even or
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element T (b(x)) € V is given by

(E(B1)7 77€(B2)7 T aE(Bel); 779(3:314,-1)’ 77€(Be1+1)7 T 7776(3(/52)7 779(362);
77€<B€2+1)7 e 7776(363))7

where

Te(Bt) = (Te(Bia1), Te(Br2), -+ Te(Bte)) € G,

Te(Bu) = (Te(Bun), Te(Buz), -+ Tu(Bue)) € Gy,
Te(B,) = (T(B1): Te(B2): -+ Te(By)) € Gu
Te(Bu) = (Te(Bun), Te(Buz2), -+ Te(Buye)) € Gu

with Ti(Bri) = ei(Tr(bi(z)) + (9:(2))), Te(Bpui) = €, (Te(bi(x)) + (Tr(gu()))),
Ti(B,.;) = €ui(Te(bi(7)) + (gu(2))) and Te(Bu;i) = €ui(Te(bi(x)) + (gu(z))) for each
i, t, 1 and u.

In view of this, a A-MT code C of length n over F, can be uniquely expressed as

€2

c:(i‘?@)@( P @ac))e( Eé C.). (3.3)

p=e1+1 u=ea+1

where C; (resp. Cy, C, and C,) is a subspace of G; (resp. G,,, G, and G,,) over the field

Fy (vesp. F),, I} and F,) for each ¢ (resp. p and u). To study their dual codes, we
see that if for some o and 7, €,; = 1, then 2™ = ), in F,, which implies that \;(z™ —

1)/(x™ —X\;) = m/m; in F,. In view of the above, the sesquilinear form correspond-

ing to (-,-), is a map [~,~]kfr0m{(§gt>@( Geé (QH@QL))@< é?é gu)}x

p=eij+1 u=eg+1

{(;:élgt)@( & Moo & g;)}mto(éélﬂ)@( & (FoF))o

p=e1+1 u=ez+1 p=e1+1
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( é Fu>, which is defined as

u=ez+1

14 14 14

m m m
[A, B, = <Z EGLz‘ALﬂ%(BLi), > EQ,iAQ,iE(BQ,i)a Ly Eeel,iAel,i’ﬁc(Bel,i)a

i=1 i=1 i=1

¢ ¢
m m , ’
Z M €e1+1, ZA€1+1 1779( e1+1, z)? Z Eeel—&—l,iAel—l—l,i’ﬁC(BelJrl,i)a """ ;
i

1

i—1 i—1
‘om tm fm
/

§ : €ea,i 62,27;6( e, z) Z eg,z 62 z77€( 62,1')7 E f662+1,iA62+1,i77c(Beg+1,i)>
— m; m; — my
=1 =1 =1
¢ ‘

m m
Y —cerr2ilesi2iTh(Beyt2i)s 5 D Geg,iAes,iﬁ(Bes,z‘)> (3.4)
i1 i i i

for each A € V and B € V’. Furthermore, with respect to the sesquilinear form

defined by (3.4), it is easy to see that the dual code C** of C is given by

€1 €2 €3

Cltr = (EBC#) @ ( P «© @Cjk)) @ ( b Cjk), (3.5)

t=1 pn=ei+1 u=ez+1
where C;*(C G,) is the orthogonal complement of C; with respect to [, -], [g,xq
for 1 <t < eq; Cj’“(g 7—[;) is the orthogonal complement of C, with respect
to [, Tguxm, C;fk(g H,) is the orthogonal complement of Cl; with respect to
[Tk Tgrx, for er+1 < p < ey; and C* (S G,) is the orthogonal complement of C,
with respect to ['7 ]k rguxg; for eo+1 < u < e3. Here ['7 ']k fgtxgt (resp. ['7 ]k fguxH;“
[y Ik T, %, and [+, -], Tg,xg, ) is the restriction of the sesquilinear form [+, -] (defined
by (3.4)) to Gi x G; (vesp. G, x H,,, G, x H,, and G, x G, ) for each ¢ (vesp. p and

To study all Euclidean and Hermitian self-dual, self-orthogonal and LCD A-MT
codes, let £\, =G, NH,, K, = QL N#H,,, and let 7, denote the number of integers i
satisfying 1 <7 </ ande¢,; = =1 for e; +1 < pu < ey. Note that 7, = Z i€
for each . One can easily observe that dimg, K, = dimg K}, = 7, for each L. In the

following theorem, we characterize all Euclidean self-dual, self-orthogonal and LCD
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A-MT codes of length n over F,,.

Theorem 3.3.3. Let A = (A, Ao, -, \) be fired. Let C = (galct) o D C.o

p=ei+1

CL)) ® ( Eé 1Cu> be a A-MT code of length n over F,, where C; (resp. Cy, C,, and
u=ez+

C.) is a subspace of G; (resp. G, G, and G,) over Fy (resp. F,, I} and F,) for each
t (u and w). Then the following hold.

(a) The code C is Fuclidean self-dual if and only if all the irreducible factors of the
polynomials x™ — Ay, ™ — Xy, - - - ™ — \g in F[z] are either Tp-self-conjugate
or form Jy-conjugate pairs (i.e., es < es), Cp = Ci°, C,. (resp. C,) is a subspace
of Ky (resp. K,) satisfying C;, = Cj(’ NI, for1 <t <e ande;+1<p < ey
As a consequence, when all the irreducible factors of the polynomials ™ — Ay,
22— Ng, - - ™ =N in F[x] are either Fy-self-conjugate or form Fy-conjugate
pairs (i.e., e3 < ey), the total number of distinct Fuclidean self-dual A-MT
codes of length n over I, is given by Ny = 16_1[ Dy 18—2[ D, where ®; equals
the number of distinct Fy-subspaces Cy of Gy ;a;isfygn;; = CtLO for1 <t <e

and D, equals the number of distinct F),-subspaces of IC,, for e; +1 < pu < es.

(b) The code C is Euclidean self-orthogonal if and only if C; C C;i°, C. (resp.
C,) is a subspace of K, (resp. K,) satisfying C,, € C,;* N K/, and C, = {0}
for1 <t<e,e1+1<pu<eyandes+1<u<es. As a consequence, the
total number of distinct Fuclidean self-orthogonal A-MT codes of length n over

el €2
F, is given by Ny = ¢ I €., where & equals the number of distinct
t=1 p=ei+1
Euclidean self-orthogonal Fi-subspaces of Gy for 1 <t < e; and €, equals the
number of pairs (C,,C,) with C, (resp. C,) as a subspace of K, (resp. K. )

over F, (resp. F} ) satisfying C, C Cjo NK,, forer+1 < p<es.

(¢) The code C is Buclidean LCD if and only if C; N C;® = {0}, C, N Cio =
CL N Cjo ={0} for 1 <t <e and ey +1 < p < ey As a consequence, the

total number of distinct Euclidean LCD A-MT codes of length n over F, is
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given by Ny = ]_1[ St 1_2[ Su ﬁ Su, where §; equals the number of distinct

t=1 p=e1+l  u=ea+1
Fy-subspaces of G; satisfying C; N C;° = {0} for 1 <t < ey, T, equals the
number of distinct pairs (C,,C;,) with C, (resp. C|,) as a subspace of G, (resp.
G) over F, (resp. F)) satisfying C, N C/o = {0} and C, N C;* = {0} for
e1+1<u<es, and §, equals the number of distinct subspaces of G, over F,

foreo+1<u<e;s.

Proof.  (a) In view of (3.3) and (3.5), we see that the code C is Euclidean self-dual

if and only if the set {ge,11(2), Geyi2(x), -, ges ()} is empty, C; = C;°, C, is
a subspace of K, and C}, is a subspace of K}, satisfying C, = Cl’fo N K, and
C;l = Cjo N IC;L for each t and . Further, for e; +1 < pu < ey, C, is a subspace
of K, and C}, is a subspace of K, then we observe that C, = Cl’fo N IC, and
C,, = C;;° N K/, hold if and only if C, = C;;* N K/, holds. From this, part (a)

follows immediately.

By (3.3) and (3.5), we see that the code C is Euclidean self-orthogonal if and
only if ¢, C ¢, C. (resp. C,) is a subspace of K, (resp. K) satisfying
C, CCoNK), and C, € C/*NK,, and C, € {0}, {0} C C;° for each t, u and
u. Further, for e; +1 < pi < ey, we see that if C, (resp. C},) is a subspace of
K, (resp. KI), then C, € C;* N K/, and C, C C;* N K, hold if and only if
C), € C;;° N K/, holds. From this, part (b) follows.

By (3.3) and (3.5), we see that the code C is Euclidean LCD if and only
if C, N ¢ = {0}, C, (resp. C),) is a subspace of G, (resp. §,) satisfying
C.NC; ={0} and C, NC,° = {0}, and C, N {0} = {0} and {0} NC;° = {0}
for each ¢, u and u. From this, part (c) follows.

]

In the following theorem, we characterize all Hermitian self-dual, self-orthogonal

and LCD A-MT codes of length n over F,,.
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Theorem 3.3.4. Let v be even and k = 5. Let A = (A, Ao, -, \y) be fived. Let
C = (Eéct) @ ( 629 (C, @C;)) ® ( Eé Cu> be a A-MT code of length n over
t=1

pn=ei+1 u=eg+1

F,, where C; (resp. C,, C,, and C,) is a subspace of G; (resp. G, G, and G,) over F;
(resp. F,, F), and F,) for each t (1 and u). Then the following hold.

(a) The code is C is Hermitian self-dual if and only if all the irreducible factors
of the polynomials x™ — Ay, 2™ — Ay, -+ 2™ — X\ in Fy[z] are either J:-

Lr
self-conjugate or form ﬂg-conjugate pairs (i.e., e3 < ey), Cyp =C, *

, C, (resp.
or

C,.) is a subspace of IC, (resp. K,) satisfying C,, = Cu,* NK,, for 1 <t <

e; and e; + 1 < p < ey. As a consequence, when all the irreducible factors

of the polynomials x™ — Ay, 2™ — Ay, -+~ 2™ — X\ in Fy[z] are either J:-

self-conjugate or form ﬂg—conjugate pairs (i.e., e3 < eg), the total number

of distinct Hermitian self-dual A-MT codes of length n over F, is given by
el eo
Mo =[N I N, where Ny equals the number of distinct Fy-subspaces Cy

t=1 p=ei+1
1r
of Gi satisfying C;, = C, * for 1 <t <e; and N, equals the number of distinct

F,,-subspaces of K, fore;1 +1 < pu < es.

(b) The code C is Hermitian self-orthogonal if and only if C; C ng, Cy (resp. C,)
is a subspace of K, (resp. K,) satisfying C, C C:% NK, and C, = {0} for
1<t<e,en+1<pu<e andes+1<u<es. Asa consequence, the total
number of distinct Hermitian self-orthogonal A-MT codes of length n over F,

e1 es

is given by My = [[M; [ M,, where M, equals the number of distinct
t=1 p=ei+1

Hermitian self-orthogonal Fy-subspaces of Gy for 1 <t < e; and M, equals

the number of pairs (Cy,C,,) with C, (resp. C,) as a subspace of KC,, (resp. K),)

Ly
over F, (resp. F) ) satisfying C,, C C,.> NI, forer +1 < p < ey

1r 1r
(¢c) The code C is Hermitian LCD if and only if C, N C, * = {0}, C, N C,: 7 =
1y
CL NCy?2 = {0} for 1 <t <e andeg +1 < pu < ey. As a consequence,

the total number of distinct Hermitian LCD A-MT codes of length n over I,
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€1 €2 €3
is given by My = [[ Dy [ D, 1l Du, where Dy equals the number of

t=1 pn=ei1+1 u=ez+1
Lr
distinct Fy-subspaces of Gy satisfying C; N C, * = {0} for 1 <t <ey, D, equals
the number of distinct pairs (C,,C;,) with C, (resp. C;) as a subspace of G,
/11l r 1r
(resp. G,,) over F, (resp. F} ) satisfying C, NCy * = {0} and C, NC,* = {0}
forei+1 < pu < ey, and D, equals the number of distinct subspaces of G, over

F, fores+1 <u < es.

Proof. Working in a similar manner as in Theorem 3.3.3, the desired result follows

immediately by (3.3) and (3.5). O

3.4 Generator theory for MT codes

In this section, we shall develop generator theory for A-MT codes of length n
over [F,. For this, we proceed as follows:

A A-MT C of length n over F, is called a p-generator code if o is the small-
est positive integer with the property that there exist ¢ number of codewords
ai(z),az(x),- - ,a,(x) € C such that every c¢(z) € C can be expressed as c(z) =
fil@)an(@) + fol@)as(@) + -+ fo(@)ay(x) for some fi(x), fola),- -+ , fulw) € Ffal,
and we denote C = (a1(), as(z), -+, a,(x)). Now we shall study some basic prop-
erties of p-generator A-MT codes over finite fields.

Let C = (a1(z),as(z), - ,a,(x)) be a g-generator A-MT code of length n over

F,, where a.(z) = (ac1(z),ac2(x), - ,ace(z)) for 1 < ¢ < p. For 1 < i < ¢,
if m; is the projection of V onto V; = (wf@j[f]ﬂ, then it is easy to observe that

m;i(C) is a \;-constacyclic code of length m; over F, with the generator polynomial

ged(ayi(x), agi(x), -+, a,:(x), 2™ — ;). Further, the annihilator of C is defined as

Ann(C) = {f(x) € F [z] : f(z)ac(z) =01in V for 1 < ¢ < p}.

It is easy to see that Ann(C) is an ideal of the principal ideal ring F,[z]. Note
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¢
that J[ (2™ — \;) € Ann(C). Therefore there exists a unique smallest degree monic
i=1
polynomial h(z) € F,[z], which generates Ann(C); the polynomial h(x) is called the
parity-check polynomial of C. In the following theorem, we determine the parity-

check polynomial of a g-generator A-MT code of length n over F,.

Theorem 3.4.1. Let C = {a;(z), as(z), - ,a,(x)) be a o-generator A-MT code of
length n over F,, where a.(x) = (ac1(x),ac2(z), - ,ace(x)) for 1 < ¢ < p. Let
w;(z) = ged(ar (), azi(x), -+ ,api(x), ™ — N;) for 1 < i < L. Then the following
hold.

(a) The parity-check polynomial h(z) of C is given by h(zx) = lem [%] :

1<i<e | wilz

(b) When o =1, we have dimg,C = deg h(x).

Proof. To prove the first part, for 1 < i < ¢, let m; be the projection of V' onto the

ring V;. Then for each i, we see that m;(C) is a \;-constacyclic code of length m; over

[F, having the generator polynomial w;(x). From this, we observe that 11<CI£l€ [JC;:(; i‘]

is an annihilating polynomial of the code C, so h(z) divides 11<cn<1z [%] . On

the other hand, since h(x) is the parity-check polynomial of C, we must have
ac;(x)h(x) = 0 in the ring V; for 1 < ¢ < p and 1 < ¢ < ¢. This implies that
™ — \; divides h(x)ged(ar (), azi(x),- -+, a,:(x)) in Fylz], which further implies
that ’”ml(; i‘ divides h(z) for each i. This shows that lecm [’”mf_)‘i} divides h(z) in

w 1<i<t w; ()

: _ x™i—\;
[F,[z]. From this, we get h(x) = 11;12( [—wi(m) } :
To prove the second part, let ¢ = 1 so that C = (a;(z)). Now define a map
E: Fyz] = V as E(a(x)) = a(z)ar(x) for each a(r) € F,lz]. We see that = is
an F,[r]-module homomorphism with kernal (h(z)) and image C. From this, we get

—<E;lf1(£§> ~ C, which implies that dimg,C = deg h(z). -

In the following example, we show that Theorem 3.4.1(b) does not hold for a
o-generator A-MT code with ¢ > 2.
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Example 3.4.1. Let g=2,{ =3, m; =3, Mo =5, m3 =7 and \y = Xy = A3 = 1,
so that A = (1,1,1). Let C be a 2-generator A-MT code length 15 over Fay, whose
generating set is {(x? +1, 2% +x, 23+ x4+ 1), (2® +z, 2+ 23+ 2?42+ 1, 28 + 22 +1)}.
Here V.= V) x Vo x V3, where V; = M Vo = 228l ong va = E2l 1y order

x3—1)7? (z>—1) (z7—1)

to write down the decomposition of V, we see that z* — 1 = (x + 1)(2* + x + 1),
P —1=(@+1)(*+2*+22+a+1) anda” — 1= (x+1)(2®+ 22+ 1) (23 + 2+ 1)
are irreducible factorizations of x> — 1, #° — 1 and 27 — 1 over Fy. Let us take
g@)=2-1, gp@)=2>+2+1, gs(x) = + 23+ 22 + o+ 1, g4(x) = 23 + 22 + 1
and gs(r) = 23 +x + 1, so that F,, = Fslx]/{g,(x)) for 1 < w < 5. Note that
Fy ~ Ty, Fy ~ Ty, F3 ~ Fi5 and Fy ~ F5 ~ Fg. By applying Chinese remainder
Theorem, we get V ~ (Fy, Fi, F) @ (F»,0,0) @ (0, F3,0) & (0,0, Fy) & (0,0, F).
From this and applying Theorem 3.2.2, we see that the constituents of C are given
by C1 = ((0,0,1),(0,1,1)), Co = {(62,0,0),(1,0,0)) with 65 + 5 +1 = 0, C3 =
(0,03 4 83,0),(0,0,0)) with &5 + 63 + 054+ 3+ 1 =10, C, = ((0,0,84 + 63), (0,0, 0))
with §3+82+1 =0 and Cs = {(0,0,0), (0,0, 5 + 62)) with 62+d5+1 = 0. We observe
that dimp,Cy = 2 and dimp,Co = dimp,Cs = dimp,Cy = dimp,Cs = 1. Using this and
by applying Theorem 3.2.2 again, we get dimy,C = 25: dimp,Cy, deg g,(z) = 14. On
the other hand, by applying Theorem 3.4.1(a), we gu;lh(x) =(x+1)(z* + 23+ 2% +
v+ 1)(2® + 2%+ 1)(2® + 2 + 1)(2? + x + 1), which implies that deg h(x) = 13. This
shows that dimg,C # deg h(x) in this case.

In the following theorem, we determine generating sets of Euclidean and Hermi-

tian dual codes of some p-generator MT codes of length n over F,.

Theorem 3.4.2. Let ™ — X\, 2™ — )Xo, - -+, 2™ — )\, be pairwise coprime polynomials
in Fylz]. Let C = (a1(x), az(x), -+, an(x)) be a o-generator A-MT code of length n
over F,, where a.(x) = (ac1(x),aca(x), - ,ace(z)) for 1 < ¢ < p. Let wi(z) =

ged(ari(z), agi(x), -+, api(x), 2™ — N;) for 1 < i < L. When k is either 0 or
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(provided r is even), we have

CHr = (Hy(x), Ha(x), - He(x))

w;(x)
—~
Z‘th

. mi_)\i )
where Hy(x) = (0, - - - ,0,7;(1)<$—>,0,--- ,0) for 1 <1< 4.

Proof. In order to prove the result, we see, for 1 < ¢ < pand 1 <7 </, that

(ag(x), Hi(2)), = aci(2)T," <77€(i) <$m—_)">>/\l(ﬁ>

w;(x) M — )\

=0in

This implies that H;(z) € C** for each i. Now let b(z) = (by(x), ba(x),- -+ ,be(z)) €

C*=. Then we have (a.(z),b(z)), = 0 in <Fq[ 2 for 1 < ¢ < p. From this, we sec that

¢ .
2™ — 1 divides )| agyi(:v)ﬁ(z)(bi(x)))\i (ﬂ—:}\), which implies that ™ — \; divides
i=1 ’

¢ ,

> agﬁi(x)ﬁ(z)(bi(a:)))\i(xfn = ) for1 <¢<pandl <j </l As(z™—N\, 2™ —)\;) =
i=1

1 for all j # 4, 2™ — \; divides agj(x)ﬁ(] (b;(z)) for each ¢. This implies that
T(J (M) divides b;(x) for each j. This gives b(x) € (Hy(x), Hy(x), - , Ho(x)) ,

from which the desired result follows. O

In the following theorem, we obtain a BCH type lower bound on minimum Ham-

ming distances of p-generator A-MT codes of length n over FF,.

Theorem 3.4.3. Let C = <a1 x),as(x), -+, a, x)> be a o-generator A-MT code of
length n over F,, where a.(x) = (aci(x),aca(x), - ,ace(x)) for 1 < ¢ < p. Then

the minimum Hamming distance duy;n(C) of the code C satisfies

Apin (C) > min (b; + 1),

1<i<t

where for each i, b; is the maximum number of consecutive exponents of zeros of
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ged(ar (), az,i(x), -+ ,ai(x), 2™ —N\;) over F,. (Here duin(C) denotes the minimum

Hamming distance of the code C.)

Proof. To prove the result, let B;(x) = (0,--- ,0,w;(x),0,---,0) € V, where w;(z) =
~——

ith

ged(ayi(x), agi(x), -+, ap:(z), 2™ —N\;) for 1 <i < . NowletC' = (By(x), By(x),- - -
By(z)) be a A-MT code of length n over F,. Here for 1 < ¢ < p, we observe

¢
that ac(z) = >, ‘z;—((;))BZ(x), which implies that C C C’. From this, we obtain
i=1

Apin (C) > dmin(C'). Next for 1 < i < ¢, if 7; is the projection of V onto Fyz]

T then

m;i(C') is a \;-constacyclic code of length m; over F, having the generator polyno-
mial w;(x). Now if b; is the maximum number of consecutive exponents of zeros of
w;(x), then working in a similar manner as in Theorem 8 of [57, Ch. 7], we see that
Amin(mi(C')) > b;+1. Further, we observe that if the ith block ¢; € Fi* of a codeword
¢ = (c1,¢9,-++ ,¢p) € C'is non-zero, then the Hamming weight wg(c;) of ¢; satisfies
wg(c;) > b; + 1. This implies that wy(c) > 121}21@(131- + 1) for each ¢(# 0) € C'. From

this, we obtain the desired result. O

Next for A = (A, Ag, -+, M), Q= (wr,wa, -+ ,wy) € Fé, let us define Zp g = {i :
1 <i<lNF#wland A—Q = (N —wi, g —wa, -+, Ap —wy). For 1 <7 < ¢
let m; be the projection of V onto V;. If C is a A-MT code of length n over F,, then
one can easily observe that 7;(C) is a A;-constacyclic code of length m; over F, for

1 <17 < /. In the following theorem, we obtain a lower bound on the dimension of

some [A, Q2]-MT codes of length n over F,, where A # €.

Theorem 3.4.4. Let A = (A, Ay, -+, A\g) and Q = (wy,ws, -+ ,wy), where A\j,w;’s
are non-zero elements of F,. Let C be a A-MT and an Q-MT code of length n over
F, Let Jo ={i:1<i </l m(C)#{0}}. If Ixo N Tc is a non-empty set, then we
have dimg,C > max {m;}.

1€Z) oNJe
As a consequence, if \; # w; and m;(C) # {0} for 1 <1 < {, then we have

dimg,C > max{my, ma, -+ ,my}.
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Proof. For each i € Iyqo N Je, as m(C) # {0}, there exists a codeword ¢ =
(€10, €115 CLmi =15 C2,0, €215+ Coyma—15*** $ €00, Ce15 "+ 5 Come—1) € C such that
Cimi—1 7 0. As C is a both A-MT and Q-MT code, we note that T (c),Tq(c) € C,
which implies that Th_q(c) = Tx(c) — Ta(c) = (M — wi1)C1my—1,0,++,0; (Ag —
W2)C2my—1,0, -+, 05+ 5 (Ae — we)Comy—1,0,---,0) € C. Further, for each i € Zy o N
Je, we see that (A;—w;)¢; m, 1 is non-zero, which implies that Ty _q(c), T _o(c), -
T\ (c) € C are linearly independent over F,, and hence dimg,C > m;. From this,

it follows that dimg,C > max {m,}. O
1€Z5 oNJc

In the next two theorems, we derive sufficient conditions under which a A-MT
code is Euclidean (or Hermitian) LCD. However, these conditions are not necessary
for a A-MT code to be Euclidean (or Hermitian) LCD, which we will illustrate in
Examples 3.4.3 and 3.4.4.

Theorem 3.4.5. Let A = (A, Ao, -+, Ag), where Ay, Ao, -+, A\ are non-zero ele-
ments of ¥, satisfying \; # )\;pk for 1 < i </l Let C be a A-MT code of length n

r

over Fy. Then according as k is either O or 3

with r even, the following hold.

(a) If either dimg,C < 1@j£z{mi} or dimg,CH < 1rgj£1£{mi}, then C is a Fuclidean

(or Hermitian) LCD code.

(b) If dimg,C = 1r£1i£1€{mi}, then C is either a Fuclidean (or Hermitian) LCD or a

Fuclidean (or Hermitian) self-orthogonal code.

(¢) If dimg, CH+ = lrglge{mz}, then C is either a Euclidean (or Hermitian) LCD or

a Euclidean (or Hermitian) dual-containing code (i.e., C*+* C C).

(d) If dimy,C = dimp,C* = min {m;}, then C is either a Euclidean (or Hermi-

1<4<8

tian) LCD or a Fuclidean (or Hermitian) self-dual code.

Proof. (a) Note that C N C* is both a A-MT and a A~*"-MT code of length
n over F,. We assert that C N C** = {0}. Then by Theorem 3.4.4, we get
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dimg, (C NCH+) > lrglge{ml} Since C N C** is a subspace of both C and Ct*,
RS
. > . ) . Lk > . . . .
we get dimg,C > 1@}26{77%} and dimg, C* > 1I2ilélg{mz}, which contradicts our

hypothesis. So we must have C N CH+ = {0}.

(b) If C N C*H # {0}, then working as in part (a), we see that dimg, (CNCH+) >
i . 3 — : ) 1y . . .
112%1@{”%}' Now as dimg,C 112%1@{771@}, we get C N C** = C, which implies

that C C Ct*. This proves (b).
(c) Its proof is similar to that of part (b).

(d) It follows immediately from parts (b) and (c).
[

Theorem 3.4.6. Let A = (A1, Ao, -+, \g), where Ay, Ao, -+, A\ are non-zero ele-
ments of F, satisfying \; # )\i_pk for 1 < i < (. Let C be a p-generator A-MT code
of length n over F, such that either ;(C) #< 1> or m;(C**) #< 1> for 1 <i < (.
Then C is either a Fuclidean or a Hermitian LCD code, according as k is either 0

or g with r even.

Proof. For 1 < i < ¢, we see that the linear code m;(C) N m;(C*) is both \;-
constacyclic and A, k—constacyclic code of length m; over IF,. Further, for each i, as
A £ A7 by Corollary 2.7 of Dinh [32], we see that either ;(C) N x(Ct+) = {0}
or m;(C) N w(Ct+) = (1). Now since either m;(C) # (1) or m;(Ct*) # (1), we get
m;(C) N w(Ct+) = {0} for each i. As m;(C N C*t*) is a subspace of 7;(C) N m;(C*),
we get m;(CNCH*) =0 for 1 <4 < ¢. This implies that C N Ct+ = {0} i.e., C is a

Euclidean (resp. Hermitian) LCD code when k = 0 (resp. k = § with 7 even). [

From Theorems 3.4.2 and 3.4.6, we deduce the following:

Corollary 3.4.7. Let k be either 0 or § with r even. Let Ay, Ay, -+, \p € Fg\ {0} be
such that \; # )\i_pk for1 <1 < 0 and the polynomials ™ — Xy, ™2 — )Xo, - -+, 2™ =)y
are pairwise coprime in F,[x]. Then any A-MT code of length n over F, is either a

Euclidean or a Hermitian LCD code, according as k is either O or g with r even.
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In the following example, we illustrate Theorems 3.4.5(a) and 3.4.6.

Example 3.4.2. Let q =5, (=2, m; =me =3, A =(3,2) and F5 = Zs. Here we

have V.=V x V, = <£§ﬂ> X <;F§’ﬂ>. Now we see that the irreducible factorizations of

the polynomials x3 — 3 and z* — 2 over F5 are given by 2° — 3 = (v + 3) (2% + 2z + 4)
and 3 — 2 = (x + 2)(2? + 3x + 4), respectively. Let C be a 1-generator A-MT code
of length 6 over Fy with the generating set {(x+ 3,z +2)}. It is easy to observe that
m(C) = (ged(z + 3,2° = 3)) = (. + 3) # (1) and m(C) = (ged(z + 2,2° — 2)) =
<x—|—2> #* <1> So by Theorem 3.4.6, we see that C is a Fuclidean LCD code. On the
other hand, we note that V' = V/ x V] = <;F§ﬂ> X <£§’[Lﬂg,’>. By Theorem 3.4.2, we obtain

Cro = ((2*+3z+4,0), (0,22 + 2z +4)). It is easy to see that Ci* = Spang {(2,0)},
Cy° = Spang, {(0,2)} and C3° = C;° = {0}, where Fy ~ Fy ~ F5. Using Theorem

3.2.2, we get dimp,C0 = 2. By applying Theorem 3.4.5(a) also, we see that C is a
FEuclidean LCD code.

In the following example, we show that the sufficient conditions derived in The-

orems 3.4.5(a) are not necessary for a A-MT code to be Euclidean (or Hermitian)

LCD.

Example 3.4.3. Let q =7, (=2, m; =my =2, A =(2,5) and F; = Z,. Here we

Frlx Frlx Frlx Frlx .
haver =1, V=V, x Vo = <127[_%> X <127[_é> and V' =V x Vj = <127[_jl> X <127[_:]5>. It is

easy to see that the polynomials x> —3 and x> —5 are irreducible over Fy, and that the
irreducible factorizations of the polynomials 2> — 3 and 2* — 5 over F; are given by
2?2 —2 = (z+3)(x+4) and 2*—4 = (x+2)(z+5), respectively. Let C be a 1-generator
A-MT code of length 4 over F; with the generating set {(x+1,0)}. It is easy to observe
that m (C) = (ged(z+1,22—2)) = (1) and m2(C) = ( ged(0,22—5)) = {0}. Further,
as the polynomials x> —2 and x*> —5 are coprime over F7, by applying Theorem 3.4.2,
we obtain C* = ((0,0), (0,1)). From this, we get m (CH°) = { ged(0,0,2%—4)) = {0}
and my(CH0) = <gcd(0, 1,22 — 3)> = <1> Therefore by Theorem 3.4.6, we see that
C is a Euclidean LCD code. On the other hand, by applying Theorem 3.4.1(a), we
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get h(z) = x* — 2. Using Theorem 3.4.1(b), we get dimp,C = 2. Further, it is easy
to see that Ci* = Cy° = {0} and C3° = Spany, {(0,1)}, where Fy = = 2[:]5> ~ Fyg.
By Theorem 3.2.2, we get dimp,C-° = 2. This shows that the code C does not satisfy

hypotheses of Theorem 3.4.5(a).

In the following example, we show that the sufficient conditions derived in Theo-

rems 3.4.6 are not necessary for a A-MT code to be Euclidean (or Hermitian) LCD.

Example 3.4.4. Let q =5, (=2, m; =mge =3, A =(3,3) and F5 = Zs. Here we
haver =1,V = Vi xV, = <£§EE;’> X <]F§ x:]s and V' = V] x V] = F35 lg> X <£§EC%>. It is easy

to see that the irreducible factorizations of the polynomials 3 —3 and x> —2 over Fy

are given by 3 —3 = (x—2)(x*+2x+4) and 23 —2 = (x—3)(2*+3x+4), respectively.
Now let g1(z) = — 2, g2(x) = 2% + 20 + 4, hy(x) =  — 3 and hy(z) = 2% + 32 + 4.
Here we can easily observe that J5(g1(x)) = hi(z) and F(g2(x)) = he(z). Let C be
a 1-generator A-MT code of length 6 over Fs with the generating set {(1,z + 1)}.
By applying Chinese Remainder Theorem, we get V = (Fl, Fl) @ (F, Fg) and V' =

(HI,HI) o) (HQ,HQ), where F,, = <fj£§)> and H, = <E5£§ for1 < w < 2. From

this and applying Theorem 3.2.2, we see that the constituents of C are given by
Ci = ((1,3)) and Cy = {((1,z +1)). Further, in view of (3.4), we obtain C;® =
((=3,1)) and Cy° = ((1,2z 4 3)) . Now by applying Chinese Remainder Theorem,
we get C1o is generated by (—22% — x + 3,12 + 2). Moreover, it is easy to see that
m(C) = (ged(1,2* — 3)) = (1), m(C) = (ged(z + 1,2° — 3)) = (1), m(CT) =
(ged(—22% — 2 + 3,2% — 2)) = <1> and m(C0) = (ged(x? + 2,2% — 2)) = (1),
which shows that the code C does not satisfy the hypotheses of Theorem 3.4.6. On
the other hand, by Theorem 3.2.2, we have dimz,C = 3 and dimp,C*° = 3. It is
easy to observe that C # C*o. Therefore by Theorem 3.4.5(d), we see that C is a
Fuclidean LCD code.
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3.5 Trace description of MT codes

In this section, we shall provide a trace description for A-MT codes of length
n over F, by extending the work of Giineri et al. [41] to A-MT codes. Towards

this, for 1 < w < p and 1 < i < ¢, we recall that if ¢,; = 1, then g, (z) divides

2™ — \; in Fy[z], and the ideal <I;j(_x 3\1> is a minimal \;-constacyclic code of length
m; over F,, whose generating idempotent is denoted by ©,,;. If €,; = 0 for some
w and ¢, then we shall denote the zero codeword of length m; by ©,,;. Now by
Theorem 3.1 of Sharma and Rani [72], we see that there exist ring isomorphisms

Gwi t (Owi) = €wiFyw and Yy, 1 €, F, — (©y;), defined as
bwila(z)) = €ya(dy) for all a(x) € (Oy;)
and

Yui(7) = m%(T P ey (V) Ty e, (V0 ) -+ Ty e, (70,7 )) for all o € e, F,,

(3.6)
where T'rp, /v, is the trace map from F,, onto F, and d,, is a zero of g, (z) in F,.
Further, note that the ring isomorphisms ¢,,; and v,,; are inverses of each other,
and that 1y ;(€pily) = O, where 1, is the multiplicative identity of F,,. We
shall view V = ﬁ V:and G, = (ew,le, €waly, ,ew,ng) as rings with respect to
the coordinate—\zzv:ilse addition + and coordinate-wise multiplication ® for each w. In
view of this, 1y :=(1,1,---,1) and 1g, = (€p1lw, -, €wsly) respectively are the
multiplicative identities of V' and G, for each w. Now for 1 < w < p, let us define

the maps ¢, :V — G, and ¥, : G, — V as

(I)w(al(73)7 ag(x), HR) af@)) = (ew,lal((sw)a 5w,2a2(5w>7 T, Gw,éaﬁ((sw))
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for each (a1(x),as(x),- - ,a,(x)) € V and

W (v, Y25 -+ %) = (Vwa(), Yw2(2), -+ s Ywe(e)) for each (y1,72,- -, %) € Gu.

Note that both ®,, and ¥,, are F,-linear maps and are ring homomorphisms. More-

over, for each w, the restriction map @y [((©,.1),(Ow.2), (@) and the map ¥, are

w,l

inverses of each other. For 1 < w < p, let us define ©,, = (Oy.1,O,2, - ,Ouye). It
is casy to see that V = €D (0,), 3 Ou = 1y, (Ou) = ((Our), (Oua),++ + (Gu)),
0,00, =06,,0,06 éuzjl: 0 forwg;ch w # w.

Next the concatenation of (0,) = ((04.1), (Ow2), -, (Owy)) and a linear code
D of length ¢ over Fy, ~ F 4, is defined as

<@w>DD = {(ww,l(xw,l)a ww,2(xw,2>a T >¢w,f(xw,€)) Ly = (xw7la L,2," " ° 7xw,€) € D}

In the following theorem, we shall view A-MT codes as direct sums of certain con-

catenated codes.

Theorem 3.5.1. (a) Let C be a A-MT code of length n over F, with the con-
stituents Cy, Co,---,C,. If C, = C0O O, for 1 < w < p, then we have

p . .
C = p(0,)0d,(C,). Moreover, C,, = Dy(Cy) holds for 1 < w < p. As

w=1

p
a consequence, we have C = € (0,,)0C,,.

w=1
(b) Conversely, let €,(C G,) be a linear code of length ¢ over F,, for 1 < w < p.

P
Then C = € (©,,)0C,, is a A-MT code of length n over F,.

w=1

Proof.  (a) To prove the result, we note that

0:0@1V=(2@(Zp:@w):@CQGw:@(fw.

w=1 w=1 w=1



48

Multi-twisted codes over finite fields and their dual codes

For 1 < w < p, we see that

Co = {(c1(2)Ou1, 2(2)Ouya, - -, co(2)Ouy) : (1), ca(x), -+, coz)) € C},

which implies that

(I)w(cw) = {(gbw,l(cl (l‘)@w,l)v ¢w72(02(x)@w72)a T 7¢w7€(cﬁ(x)@w,ﬁ))
t(ci(@), ea(2), - co(x)) €C}
= {(€w11(0uw), €w2ca(0u), -+ s €wece(w)) o (ci(z), ea(x), -+, colx)) €C}
= Cw’

as u,i(Ow;) = €wily for each ¢ and w. Further, since the restriction map
®,, [(e,,) and the map ¥, are inverses of each other, we see that (0,,) O ®,,(C,,) =
C, for each w. From this, part (a) follows.

To prove this, it is enough to prove that (6,,) O &, is a A-MT code of length n
over I, for 1 < w < p. For this, we observe that (6,,) 0, = {V,, (xw) DXy €
¢, }. It is easy to see that W, (xw) + U, (yw) =v, (xw + yw) € (0,)0¢, for
each x,,y, € €,. Further, for each f(z) € FF,[z], we note that f(d,) € F

and that f(d,)x, € €, for each x,, = (:CwJ, Ty 2,y ,xmg) € €,,. This implies
that
v, (f(éw)xw)
= (ww ww l(xw 1) ww,2<f(6w))ww,2($w,2)a e 7ww,€(f<5w>>¢w,é<xw,€))

(f Ou 1¢w 1 Tw 1) f(z)@w,ﬂbwz ($w,2)v e 7f(a7)@w7€1/]w7€(xwl))
(f @Z)w 1\ Tw,1 f(x)¢w,2(xw,2)> ) f(x)@bw,ﬂ(xw,E))
f@) (),

as Yy i(Tw,i) € (On,) and O,,; is the unity of (©,,;) for 1 < i < ¢. This shows
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that f(z)W,(z,) € (©,)O¢, for cach f(z) € F,[z] and z,, € &€,. From this,
it follows that (©,,) O €, is an F,[z]-submodule of V' for each w, which proves

(b).

In the following theorem, we provide a trace description for A-MT codes of length

n over [F, using their concatenated structure.

Theorem 3.5.2. Let C be a A-MT code of length n over F, with the constituents

Ci,Co, -+ ,Cp. For xy = (Tup1, T2, + s Tuwp) € Cyp with 1 < w < p, let us define

Ci(xlax%”' 7xp) =

P p
(Z TTFw/IFq (.Z‘w’i), Z T,r‘Fw/]Fq (J}w’i(sq;l), S

1
m;
w=1 w=1

P
S T, (s ™)

w=1

for1 <1 < /. Then we have
C: {(01(1'1,1:2,"' 7$p)762('r17$27"' amp)a”' ?Cf(‘rlaan”' 7mp)) ) 6C’LU fOT]- S w S P}

Proof. By Theorem 3.5.1, we see that the code C has the concatenated structure
p
C= @ <@w>DCw7 where <@w>DCw = {(¢w,1(xw,1)a ¢w,2(xw,2)7 T a¢w,€(xw,€)) Ly =

w=1
(T 1, T2y " 5 Tuwp) € Cw}. From this, we get

p p P
¢ = (X b (@), D Cuawa) D s ()
w=1 w=1 w=1

o= (1) €

Further, for 1 <i </, we see, by (3.6), that

p

1 P p
w,i\Lw,i = T w,i)s T wi(s_lv"'a

w=1
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P
Z Ter/]Fq (C(]w’i(;;(mi_l) )) .

w=1

From this, the desired result follows immediately. O]

We shall illustrate the above theorem in the following example:

Example 3.5.1. Let ¢ = 7, { =2, my = 2, my = 4, A = (2,4) and F; = Z;.

Here we have V.= Vi x Va, where Vi = 527[_%) and Vo = <£Zﬂ>. Further, we see

that the irreducible factorizations of the polynomials x* — 2 and x* — 4 over F; are
given by 22 — 2 = (z + 3)(z + 4),2* — 4 = (z + 3)(z + 4)(2* + 2). If we take
gi(z) = 2+ 3,g2(x) = v+ 4 and g3(x) = 2% + 2, then we have F| ~ Fy ~ F;
and F3 ~ Fu9. From this and by applying Chinese Remainder Theorem, we get
Vo~ (F1, F) & (Fy, Fy) & ({0}, F5). Now if C is a (2,4)-MT code of length 6 over Fr
with the constituents Cy, Cy and Cs, then by Theorem 3.5.2, the code C is given by

{(01,0, C1,1; C2,0, C2,1, 2,2, 02,3) i (a,b) € C1, (c,d) € Cy,(0,e+03f) € 63};

—2
_ atc __ 2a+5c¢ _ b+d+2e _ 2b+5d+2f _ 4b+4d+2es. o
where Clo= 5,001 = —5 ,C0 = 1 01 = ——F ,02 = T‘S,Cz?) =

b—d+2f55°

1 and 03 is a root of the polynomial gs(x) in Fj.

In the following theorem, we obtain a minimum distance bound for A-MT codes

of length n over F, using their multilevel concatenated structure.

Theorem 3.5.3. Let C be a A-MT code of length n over F, with the non-zero
constituents Cyy,, Cuy, =+ + , Cuy, where 1 < wq,wo, -+ ,wy < p. Let 0, be the minimum

Hamming distance of the code Cw]. for 1 < 5 < t. Let us assume that 0; < 0y <
... <0, Let us define & = min { S diin (O ) @ (Oyg) ® -+ B <@wt,g>)}
£}

IQ|{]1‘,3,.D..7 gel
forv e {1,2,--- ,t}. Then the minimum Hamming distance duyin(C) of the code C
satisfies

dmin(c> 2 min{ﬁlvﬁ27 T 7ﬁt}-
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Proof. Working in a similar manner as in Theorem 4.2 of Giineri et al. [41], the

desired result follows. O
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Enumeration of Euclidean and
Hermitian self-dual,

self-orthogonal and LCD

multi-twisted codes

4.1 Introduction

In this chapter, we shall enumerate all Euclidean and Hermitian self-dual, self-

orthogonal and LCD multi-twisted (MT) codes of block lengths (mq, ma,--- ,my)

93
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and length n over I, where my, mg,--- ,my are positive integers coprime to ¢, and
n = mqy + mo + --- + my. For this, we assume that ¢ = p", where p is a prime
number and r is a positive integer. Let A = (A, Ao, -+, \p), where A\, Ao, -+ | Ny
are non-zero elements of F,.

This chapter is organized as follows: In Section 4.2, we enumerate all Euclidean
self-dual and self-orthogonal A-MT codes of block lengths (mq,mg,--- ,my) and
length n over F, (Theorems 4.2.2 and 4.2.4). We also count all Euclidean linear
with complementary dual (LCD) A-MT codes of block lengths (my,ma,--- ,my)
and length n over F, when \; € {1, —1} for 1 < i < ¢ (Theorem 4.2.5). In Section
4.3, we enumerate all Hermitian self-dual and self-orthogonal A-MT codes of block
lengths (mq, mg, - -+ ,my) and length n over F, (Theorems 4.3.2 and 4.3.3). We also
obtain the enumeration formula for all Hermitian LCD A-MT codes of block lengths
(my,ma,--- ,my) and length n over F, when \; € {1, -1} for 1 < i < ¢ (Theorem
4.3.4).

From now on, throughout this chapter, we shall follow the same notations as in
Chapters 2 and 3. We also assume, throughout this chapter, that k£ is an integer

satisfying either & = 0 or k = § when 7 is even.

4.2 Determination of the number of Euclidean

self-dual, self-orthogonal and LCD MT codes

In this section, we will study and count all Euclidean self-dual, self-orthogonal
and LCD A-MT codes of length n over F, by applying the Witt decomposition
Theory. For this, let us define Zy = {t: 1 <t <ep,dy=1}and L ={t: 1 <t <
e1,d; > 1}. Note that the integer d; is even for each ¢ € Z,. Then we observe the

following:

Lemma 4.2.1. (a) For 1 <t < ey, [,Jo [g.xg. S a non-degenerate and reflex-

ive form on G,. Furthermore, [-,-|o lg,xg, s symmetric when t € I, and is
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Hermitian when t € Z,.

(b) Whent € Iy and q is odd, (G, Q:) is a non-degenerate quadratic space having
dimension €, over Fy, where the quadratic map Q¢ : Gy — Fy is defined as

Qt(At) = %[AtaAt]O fO’f’ all At - Qt.
Proof. Proof is trivial. O

In the following theorem, we derive necessary and sufficient conditions for the
existence of a Euclidean self-dual A-MT code of length n over F,. We also count all

Euclidean self-dual A-MT codes of length n over F,.

Theorem 4.2.2. Let A = (A, Ao, -+, N\¢) be fized. Fore; +1 < p < ey, let 7,

denote the number of integers i satisfying 1 <i < { and €,; = €, ; = 1.

(a) There exists a Euclidean self-dual A-MT code of length n over F, if and only
if all the 1rreducible factors of the polynomials ™ — Xy, ™2 — Ao, - - - 2™ — )y
in F,[z] are either Jy-self-conjugate or they form Jy-conjugate pairs (i.e.,

es < ey), € is even for 1 <t < ey and (—1)/? is a square in F, forallt € 1,.

(b) When all the irreducible factors of the polynomials £ — Ay, ™2 — Ay, - - - "™ —
A in F,lz] are either Fy-self-conjugate or they form F-conjugate pairs (i.e.,
e3 < ey), € is even for 1 <t < ey and (—1)/? is a square in F, forallt € 1,,
the number Ny of distinct Buclidean self-dual A-MT codes of length n over

15 given by

w-flo 01 (S[7,)

p=e1+1 b=0

where for 1 <t < ey,

(e /2-1

i‘[ (¢“+1) ift eI, 6 q is odd;
6:};91

I (qa + 1) ift € Iy € q is even;
et(;gil

[T (%2 1) ift e,

a=0

Dy
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In order to prove this theorem, we need to prove the following lemma:

Lemma 4.2.3. Let 1 < t < ey be fired. There exists an Fy-subspace C; of G;
satisfying Cy = Ctlo if and only if the following two conditions are satisfied: (i) € is
an even integer, and (ii) (—1)/? is a square in ¥, for all t € T,. (Here C;°(C G,)

is the orthogonal complement of C; with respect to [, -], lg.xg, -)

Proof. To prove the result, we see, by Lemma 4.2.1(a), that (G, [, ], lg.xg,) is an
orthogonal space having dimension ¢, over F; when t € Z; and that (G, [-, -], [g,xg,) 18
a unitary space having dimension ¢; over F; when t € Z,. Now if C; is an F;-subspace
of G;, then by Theorem 2.1.1, we see that dimFtCtLO = ¢ — dimp,C;. Further, if C;
satisfies C; = CtLO, then we get ¢, = 2 dimpg,C;, which implies that ¢, is an even
integer.

On the other hand, when ¢ € Z, and ¢, is even, by Theorem 2.1.4(a), we see that
the Witt index of (Gy, [,y [g,x¢g.) s €/2, so there exists an Fi-subspace C; of G,
satisfying C; = C;°. When ¢ € Z; and ¢ is even, by Theorem 2.1.2(a), we see that
the Witt index of (Gy, [, -]y lgixg.) i €/2 if and only if (=1)%/? is a square in F,,.
That is, when t € Z; and ¢, is even, there exists an Fj-subspace C; of G, satisfying

C; = C; if and only if (—1)/? is a square in F,. This proves the lemma. O

Proof of Theorem 4.2.2. Part (a) follows immediately by Theorem 3.3.3(a) and
Lemma 4.2.3. To prove (b), we see, by Theorem 3.3.3(a) again, that it is enough to
determine the numbers ®, for all t € Z; UZy and D, for e; +1 < p < es.

To do this, we see, by Lemma 2.1.6, that for each p (e;4+1 < pu < e3), the number

7
9, of distinct F),-subspaces of IC,, equals ®, = ) Eﬂ o Moreover, for t € Z;, by

Lemma 4.2.1(a) and Theorem 2.1.2(b), we see that the number D, of distinct €/2-

€r/2—1
dimensional self-orthogonal subspaces of G; over F; is given by ©, = [] (qa + 1)
a=0
€r/2—1
when ¢ is odd, while the number ©, of such subspaces is given by ®, = [] (q“+ 1)
a=1

when ¢ is even. For t € Z,, by Lemma 4.2.1(a) and Theorem 2.1.4(b), we see that

the number ©, of distinct €,/2-dimensional self-orthogonal subspaces of G; over F;
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€t/2_1

is given by @y = [] (¢**™M%/241). From this and using Theorem 3.3.3(a) again,
a=0

part (b) follows immediately. O

In the following theorem, we enumerate all Fuclidean self-orthogonal A-MT codes

of length n over F,.

Theorem 4.2.4. Let A = (A, Ay, -+, N\¢) be fized. For ey +1 < p < ey, let 7,

!/

wi = 1. The number

denote the number of integers i satisfying 1 < ¢ < and €,; = €

My of distinct Fuclidean self-orthogonal A-MT codes of length n over Fy is given by

w-fle fi (S0]LE )

= p=ei+1 k1=0 1 ko=0

where for 1 <t < ey, & equals

€t/2 b—1
o > ([etb/z} Ho (qet/z_a_l + 1)) when t € I, and either ¢ = 1 (mod 4), € is
3

b=0 1q
even or ¢ =0 (mod 4),q = 3 (mod 4);
(e¢-2)/2 b—1
e > <[(€t_b2)/2}q IT (g% + 1)) when t € Iy, ¢ = 3 (mod 4) and ¢ =
b=0 a=0
2 (mod 4);

(et=1)/2 b—1
c 3 ([(et—bl)/ﬂq I1 (q(q—l)/Z—a + 1)) if t € Iy € both q, € are odd;

b=0 a=0
(et—1)/2 b—1
e > ([(etbl)/ﬂq [T (gl D2+ 1)> if t € Iy, q is even & ¢ is odd;
b=0 a=0
(et—2)/2 (cr—2)2 b—1 a2 /2 €t/2 ok [(c1—2)/2 k' —2 a2 /2
o X [V I (e ¢ 50 qn [ T (a0

l)ift €I, & both q, € are even;

<t/2 b ady b . . .

> ( [1 (q% - (—1)a))/( [T (g% — 1))th €Iy, & ¢ is even;
b=0 a=e;:+1-2b j=1
(ee—=1)/2 b

b

[ ]
—
—
()

]

= (=1)")/( ]

b=0 a=et+1—2b J

(qjdt — 1))th € IQ & €¢ 18 odd.

1
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Proof. By Theorem 3.3.3(b), we see that to determine the number D, it is enough
to determine the numbers &, for all t € Z, UZ, and €, for e; +1 < p < es.

I. First let t € Z;. Here we see, by Lemma 4.2.1(a), that for ¢t € Zy, (G, [+, ‘o [g.xg.)
is an €;-dimensional orthogonal space over F; ~ F,. Now we shall distinguish the
following two cases: (i) ¢ is odd and (ii) ¢ is even.

(i) When ¢ is odd, one can view G, as a non-degenerate quadratic space over F; with

respect to the quadratic map Q; : G, — Fy, defined as Q;(a(z)) = 3 [a(x), a(x)], for

all a(z) € G;. In view of this, we see, by Theorem 2.1.5(a), that the Witt index of

G, is given by

& if either ¢ is even and ¢ = 1 (mod 4) or ¢ = 0 (mod 4) and ¢ = 3 (mod 4);
%2 if ¢, = 2 (mod 4) and ¢ = 3 (mod 4);

% if € is odd.

Wy =

(4.1)

Further, by Theorem 2.1.5(b), we see that the number &, of distinct self-orthogonal
we b—1

subspaces of G; over F; is given by €, = > ([lzt] . IT (qwt’““ + 1)> , where w, (the

Witt index of G;) is given by (4.1) and

1 ifw =%
c=9q -1 ifw =<2
0 lf Wy = 6;:;1
(ii) Next let ¢ be even. Let us define V; = {(e1¢11,€10Ct0, -, €t0Cte) € Gy -

¢
€ ict; = 0}. Note that V; is an Fj-subspace of G, and dimpV;, = ¢ — 1. Let
i=1

(2

¢

0 = (€11, €2, - ,€0) € Gy Since Y €, = €, we see that 0, € V, if and only if ¢ is
i=1

even.

When ¢, is odd, we see that 0, ¢ V;, which implies that G, = V; @ (0;) . Next it
is easy to observe that any self-orthogonal F;-subspace of G; is contained in V; and

that [c, 0;]o = 0 for each ¢ € V,. Further, we note that as ¢ is even, all m;’s are odd.
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This implies that m is odd, which further implies that - = 11in F;. Moreover, as
t € 1;, the conjugation 7 is the identity map on Fj. ThlS implies that for each ¢; =

(€r1Ce1, €02C2, -+ s €uci) € Vi, we have [cy, ¢i]o = Z‘Et,zcmm (Z Gtzcm) = 0.
i=1

From this, it follows that [-,-]o [y, x), 1S a non-degenerate, reflexive and alternating

bilinear form on V;, i.e., Vi, [, -Jo [wx1,) is a symplectic space over F; having the

dimension ¢, — 1 and the Witt index “>*. Now by Theorem 2.1.3(b), we see that

for 0 < b < 5 L the number of distinct b-dimensional self-orthogonal subspaces of

€t—2a

b1 _
V; (and hence of G,) is given by [“7}/ 2}61 I1(q 2 gt 1). This implies that the
a=0

number &, of distinct self-orthogonal subspaces of G, over F; is given by

eg—1

S ({( —bn/leﬁ (= 1)> |

b=0 a=0

On the other hand, when ¢, is even, we see that 6, € V,. Let l?t be an (¢ — 2)-
dimensional F-subspace of V; such that 6, ¢ ﬁt. Then we have V, = 1775 ® (6;) .
Next we observe that there exists z; € 177}0 \ V;. From this, it follows that G; =
V., @ () ® (6,). Tt is easy to see that any self-orthogonal F,-subspace of G, is
contained in V, = V, @ (0;) , which implies that any self-orthogonal subspace of
G, is either (i) contained in V., or (ii) contained in V@ (0;) but not in V.. Fur-
ther, we observe that (]2, [,-Jo I$,xp,) 18 a symplectic space over F; having the
dimension €; — 2 and the Witt index (¢; — 2)/2. Now by Theorem 2.1.3(b), we see

that for 0 < b < %= the number &; of distinct b-dimensional totally isotropic

2 )

b—1 € —2a—
subspaces of G, is given by &, = [etf)/ 2]q I1 (q =4 1). Next we proceed to

count all b-dimensional Fj-subspaces that are contained in 12 @ (0;) but not in
]7,5. To do this, we observe that for 1 < b < ¢/2, any such b-dimensional Fj-
subspace of G; is of the type (yi,v2, - ,yp—1,0: + yp), where y, € V, \ {0} for
1<h<b—1andy, € lAit. We further observe that the b-dimensional Fi-subspace
(Y1, Y2, s Yp—1, 0 + o) of Gy is self-orthogonal if and only if (y1,y2, - ,yp_1) 18
a self-orthogonal Fj-subspace of V, and U € (Y1, Y2, ,yb_l)LO . Now by Theorem
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2.1.3(b), for 1 < b < €;/2, we see that the number of distinct (b—1)-dimensional self-

€t — 2a

b—2
orthogonal Fj-subspaces of Vt is given by [(et 2/ 2} I (q +1) Next we observe

q

that for vy, y5 € W1,z W-1) " \ Wit U)W Y2 Y1, O + ) =
(1,927 g1, 0 + ) if and only if yy — gy € (Y1, y2--+ ,yp-1), L., all yp's ly-
ing in different cosets of (y1,ys-- - 7yb—1>LO [/ (Y1,y2,+ ,Yp_1) give rise to distinct
self-orthogonal spaces of the type (yi,vs, - ,vyp—1,0: + yp) . We also observe that
the Fi-dimension of (yi, s, - - ,yb_l)Lo is ¢ — 2 — (b — 1), which implies that y,

€t—2b

has q relevant choices. Therefore for 1 < b < ¢,/2, the number of distinct

b-dimensional Fj-subspaces of G, that are contained in V, @ (6;) but not in 17“ is

b—2 .
given by ¢t=2 [(ftb*fl)/?]q 1= S 1). On combining both the cases, we see
a=0

that the number &, of distinct self—orthogonal Fi-subspaces of G, is given by &, =

€er—2

2 b—1
[, I @ )+ 8 e 19, TG
everl.

/

€p— 2a €p— 2a7

+ 1) when ¢ is

I1. Next let ¢ € Z,. Here we observe, from Lemma 4.2.1 (a), that (G, [, o [g,xg.)
is a unitary space over F; having dimension ¢,. Further, by Theorem 2.1.4(a), the

Witt index w; of G; is given by

€/2 if ¢, is even;

(e, —1)/2 if ¢ is odd.

Wy =

Now by Theorem 2.1.4(b), we see that the number &, of distinct self-orthogonal

we b ad b )
Fy-subspaces of G; is given by & = > (] (q% —(=1)")/( T (¢ —1)).
b=0 a=et+1-2b 7j=1
III. Finally, for e; +1 < p1 < ey, we shall count the number of pairs (C,,,C;,) with C,

as an F-subspace of K, and C;, as an F}-subspace of K, satisfying C,, C Cjo nK,.
In order to do this, we note that (K, x KC),, [+, “Jo [k,xxz,) is non-degenerate. So if the
dimension of C, is k1, then one can observe that the dimension of Cjo mICL is 7, — k1,

where 0 < k; < 7,. As C;L has to be a subspace of Cj“ ﬂICL, by Lemma 2.1.6, C;’L has
Tu—k1
kQZ::o [mk_zkl} gln choices if dimp,C,, = k;. Further, we see that the number of distinct
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ki-dimensional F)-subspaces of G, is given by [Zﬂq 4, - From this, it follows the num-

ber €, of pairs (C,,C;,) with C, as an Fj-subspace of I, and C;, as an F}-subspace

k k
gt 1 2

using Theorem 3.3.3(b) again, the desired result follows immedi;tely. ]

of KT, satisfying C;, C leo N K, is given by €, = i [“]qdu (THZI [T“_kl]qdu). Now

Now in the following theorem, we enumerate all Euclidean LCD A-MT codes of

length n over F, when \; € {1,—1} for 1 <i </.

Theorem 4.2.5. Let A = (A, Ao, -+, \p) be fized, where \; € {1, —1} for1 <i < /.
Fore; +1 < < ey, let 7, denote the number of integers i satisfying 1 < ¢ < £ and
€ui = €,; = 1. The total number of distinct Euclidean LCD A-MT codes of length n

over I, is given by

el e2 Tu—1 €3 €u
Ny = tl—[lgt H <2 + Z; q‘(Tu—L)du {TLU:| qdu) H ( |:€::| qdu> )

— n=ei+1 u=ez+1

where for 1 <t < ey, § equals

et—1 (e —9+1) (ei—1)/2 el (eg=9)(W+1) (et.—1)/2
° 2+ ; e ; ¢ [Tyl puhen t €y
9=0(mod 2) 9=1(mod 2)
and €; is odd,
Wl a) e (=2)/2] il
o 2+ 1;1 q~ 2 [19/2}(]2—1— 1;1 q 2 (q2 —}-1)[(1971)/2}(1210 ent €
¥=0(mod 2) 9=1(mod 2)
Zy,6, =2 (mod 4) and ¢ = 3 (mod 4);
5 er—1 9(ep—9) )2 el (eg9=02-1) ¢ 1 (et—2)/2 h
o 2+ ; q 2 [ﬁ/Q}CR + ; g = (q¢% — >[(19—1)/2]q2w ent €
¥=0(mod 2) 9=1(mod 2)

Ty, either € is even and ¢ =1 (mod 4) or ¢, =0 (mod 4) and ¢ = 3 (mod 4);

er—1 e 9—92_2 € _ — €t—
o 21 2 g 9t {(qﬂ+q_1) [( E§)2/)2/2:|q2+(qez 19+1_q6t 19+1> [((1;722))//22}[12}_’_
19501(9%201 2)
Et—l

Et’l97’02+6t71 |:(5t_2)/2

q (19_1)/2] ) when t € I, and both €;,q are even;
I=1 q

9=1(mod 2)
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er—1 9(ep—0)dy 9—1 q(et*T)dt -
2+ > q = IT CErn when t € Ts.
9=1 =0 \¢ 2 —(=1)?°
Proof. By Theorem 3.3.3(c), we see that to determine the number 9y, it is enough
to determine the numbers §; for all ¢t € Z; UZ,, §, for e; +1 < pp < ey and §,, for
s+ 1< pu<es
To do this, when t € Z,, working in a similar manner as in Proposition 3.5 of

Sharma and Kaur [71], we get

et—1 S 9—1 q(et_;')dt ( 1)q77_
et —9)dy — (=
St =2+ E q 2 H( @—1)d; )
v=1

Zo\q o — (=17

When t € 7, working in a similar manner as in Propositions 3.6 and 3.7 of Sharma
and Kaur [71], we obtain the number §;. Further, for e; + 1 < p < ey, working
in a similar manner as in Proposition 3.8 of Sharma and Kaur [71], we obtain

Tu—1
Ba=2+ 3 [T,

L

Moreover, by applying Lemma 2.1.6, we see that §, = Zu [Z‘]qdu fores+1 <u <

b=0
e3. Now using Theorem 3.3.3(c) again, the desired result follows immediately. [

4.3 Determination of the number of Hermitian

self-dual, self-orthogonal and LCD MT codes

In this section, we will study and count all Hermitian self-dual, Hermitian self-
orthogonal and Hermitian LCD A-MT codes of length n over F, by applying the

Witt’s decomposition Theory. Now we make the following observation:

Lemma 4.3.1. (a) For1 <t <ey, [,"]: lgxg, 18 a non-degenerate, reflexive and
Hermitian form on G;. That is, the formed space (Qt, - ']g (G, %G ) s a unitary

space of dimension €, over Fy.

(b) Forei+1<pu<ey, [, ]z [k,xx, is a non-degenerate form on IC,, x K,,.
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Proof. Proof is trivial. O

In the following theorem, we derive necessary and sufficient conditions for the
existence of a Hermitian self-dual A-MT code of length n over F,. We also provide
the enumeration formula for all Hermitian self-dual A-MT codes of length n over

F,.

Theorem 4.3.2. Let r be even and k = 5. Let A = (A1, A, -+, \) be fived, where

A1, Ag, -+, Ag are non-zero elements of F,.

(a) There exists a Hermitian self-dual A-MT code of length n over I, if and only
if irreducible factors of the polynomials x™ — Ay, 2™ — g, -+, 2™ — Xy in
F,[z] are either ﬂg -self-conjugate or they form ,?%—conjugate pairs, and €, s

even for 1 <t < ey.

(b) Suppose that irreducible factors of the polynomials x™ — Xy, 2™ —Xg, - -+, x™ —
A in Fylx] are either %-self-conjugate or they form %-conjugate pairs, and
€ is even for 1 <t < ey. Then the total number of distinct Hermitian self-dual

A-MT codes of length n over Fy is given by

el €r/2—1 e Ty
T[T e ] 11 (S[)

t=1 \ =0 p=e1+1 \b=0

Proof.  (a) To prove the result, by Theorem 3.3.4(a), we see that the code C is

Hermitian self-dual if and only if the following three conditions are satisfied:

e All the irreducible factors of the polynomials ™' — A, 22— Xy, - - - 2™ — )\,
in F,[z] are either Jr-self-conjugate or form Jz-conjugate pairs (i.e.,
ez < eg).

e For 1 <t <e, C = Ctl% C Gy, which, by Theorem 2.1.1, holds if and

only if ¢ is even and C; is an ¢, /2-dimensional self-orthogonal F;-subspace

of gt.
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e Fore +1 < < ey, C, (resp. C),) is asubspace of IC,, (resp. K),) satisfying
Lr
C,=C.?NK,.

From this and by applying Lemma 4.3.1(a) and Theorem 2.1.4(a), part (a)

follows immediately.

By Theorem 3.3.4(a), we see that to determine the number 9, it is enough
to determine the numbers N; for 1 <t < e; and NV, for e; +1 < p < es.

To do this, for 1 <t < ey, by Lemma 4.3.1(a) and Theorem 2.1.4(b), we obtain

et/2—1 um
N, = 1:[0 (q?*tV4/2 4 1). Further, by Lemma 2.1.6, we get N, = szo (] ™

for e; + 1 < p < ey. Now using Theorem 3.3.4(a) again, the desired result
follows immediately.

]

In the following theorem, we enumerate all Hermitian self-orthogonal A-MT

codes of length n over [F,.

Theorem 4.3.3. Let r be even and k = 5. Let A = (A1, A, -+, \) be fived, where

A1, Ag, -+, Ap are non-zero elements of F,. Then the total number of distinct Her-

mitian self-orthogonal A-MT codes of length n over IF, is given by

w11 (S0 1000)

p=e1+1 \ko=0 L0 k1=0

where for 1 <t < ey,

/2 ct adt s : . .
> ( [T (g2 - (‘Ua))/( (7" — 1)) if € 1is even;
M o s=0 a=€+1—2s j=1
! (er=1)/2 2 » A
(g2 — (—1)“))/( IT(F% — 1)) if € is odd.
s=0 a=e+1—2s 7j=1

Proof. By Theorem 3.3.4(b), we see that to determine the number 901y, it is enough

to determine the numbers M; for 1 <t <e; and M, for e; +1 < p < es.
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To do this, for 1 < ¢ < ey, by Lemma 4.3.1(a), we see that (G, [, Iz Tgixa, ) is a
unitary space of dimension ¢, over F;. Further, by Theorem 2.1.4(a), the Witt index
of Gy is given by €,/2 if ¢ is even, and by (¢, — 1)/2 if ¢ is odd. For 1 <t < ey,

using this and by applying Theorem 2.1.4(b), we obtain

Et/2 Ct ad

(I (g7 =(=1)9)/(I1(@" =1))  ifeis even;
M _ s=0 a=€+1—2s j=1
¢ (er=1)/2 €t ad; s . ) )
(g2 — (=1))/([T(¢7* — 1)) if & is odd.
s=0 a=e;+1—2s 7=1

To determine the number M, for e; +1 < pu < ey, let C, be an F),-subspace
of K, having dimension ky, where 0 < ky < 7,. Now by applying Lemma 4.3.1(b)

1y
and Theorem 2.1.1, we see that the Fli—dimension of Cu? N ICL is 7, — ko. As CL -

Lr Th— R0
C.? N K, by Lemma 2.1.6, the subspace C, of K, has }_ [T“k_lko}qdu choices if
1=0

the F),-dimension of C, is ky. Further, by applying Lemma 2.1.6, we see that for

0 < ko < 7, the number of distinct kp-dimensional F),-subspaces of K, is given by
Ty Tu—ko

T . . T Tu—k

[k‘(ﬂ yin From this, we obtain M, = kzl) [k’ﬂ " < kzo [ " O} qdu> fore;+1 < p < es.
0= 1=

Now using Theorem 3.3.4(b) again, the desired result follows immediately. [

In the following theorem, we enumerate all Hermitian LCD A-MT codes of length

n over F, when \; € {1,—1} for 1 <1 < /.

Theorem 4.3.4. Let r be even and k = 5. Let A = (A1, Ao, -+, \¢) be fized, where
Ni € {1,—1} for 1 < i < (. Then the total number of distinct Hermitian LCD A-MT

codes of length n over F, is given by

e1 e Tu—1 o - es €y €y
m2:HDt H <2+;q(u )du|:f:|qdu> H ( |:b:|qdu>’

p=e1+1 u=ea+1 b=0

b oo U (e
where Dy, =2+ % ¢ = |] | fom for1 <t <e.
=1 =0\ (-1

Proof. By Theorem 3.3.4(c), we see that to determine the number 95, it is enough
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to determine the numbers D, for 1 <t < e;, D, for e; +1 < pu < ey and D,, for
es+1 < u<es.
To do this, for 1 <t < ey, working in a similar manner as in Proposition 3.5 of

Sharma and Kaur [71], we get

er—1 Ser—9)a 9—1 q(ét—;)dt ( 1)&77_
€t — t - \
Dy =2+ E q 2 H ( (0—7)dy ) :
9=1 q

=0

Further, for e; + 1 < i < ey, working in a similar manner as in Proposition 3.8 of

Tu—1

“w
Sharma and Kaur [71], we obtain D, =2+ Y ¢"(w=1)du 7] ol
=1

L

€

Moreover, by Lemma 2.1.6, we get D, = i [iﬂ o for e +1 < u < e3. Now
b=0

using Theorem 3.3.4(c) again, the desired result follows immediately. ]



Hamming weights in multi-twisted

codes over finite fields

5.1 Introduction

Let F, denote the finite field of order g. Let ¢ be a positive integer, and let
my,ma, -+ ,my be positive integers satisfying ged(m;,q) = 1 for 1 < ¢ < £. Let
n = my+ms+ -+ m, and let A = (A, Ay, -+, \g), where A, Ay, -+, Ap are
non-zero elements of IF,. In this chapter, we shall explicitly determine all non-zero
Hamming weights of codewords of several classes of A-multi-twisted (A-MT) codes

of block lengths (mq,ma,---,my) and length n over F,. Using these results, we

67
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shall explicitly determine Hamming weight distributions of several classes of A-MT
codes of block lengths (my,ma,---,my) and length n over F, with a few weights,
which have applications in constructing association schemes, strongly regular graphs
and authentication codes. Among these classes of few weight A-MT codes, we
shall identify two classes of optimal equidistant A-MT codes meeting the Griesmer
and Plotkin bounds, which have strong connections with combinatorial designs and
projective geometry and are also useful in designing distributed storage systems.
Besides this, we identify three other classes of few weight A-MT codes, which are

useful in constructing secret sharing schemes with nice access structures.

Now let g =¢ =2, A =(1,1), and let mq, ms be odd positive integers such that

the irreducible factorization of 2™ — 1 over Fy is given by
2™ —1=(r—1)fi(x) for ie{1,2}. (5.1)

Further, let a; € Fym;—1 be a root of the polynomial f;(z), 6; be a primitive element of
Fym,-1, and let us write a; ' = in for some integer ¢; satisfying 0 < ¢; < 2™i~1 —2 for
each i. Patanker and Singh [64] recently determined Hamming weight distributions
of (1,1)-MT codes of block lengths (my,ms) over Fy (i.e., Fo-double cyclic codes
with block lengths (mq,ms)) under the assumption that there exists a least positive

integer t; satisfying
2 = —1 (mod ged(4;, 2™ 1 —1)) for i€ {1,2}. (5.2)

Here under the conditions (5.1) and (5.2), we assert that m; € {3,5} for i € {1,2}.
To prove this assertion, let ¢ € {1,2} be fixed. Now by (5.1), we observe that m; — 1
is the least positive integer satisfying 2~ = 1 (mod m;), which further implies that

m; is a prime number. Since a;" = 1 and «; # 1, we note that «; is a primitive m;th
omi—1_4

m;

root of unity. Without any loss of generality, we can assume that a; ' = 6, ,

. m;—1__ L m;—1__
i.e., we can take ¢; = ¥~ =1 5o that ged((;, 2™ 1 — 1) = =L Now one can
m; Lz
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casily see that conditions (5.1) and (5.2) hold for m; = 3 or 5. Further, we see that

m; = 7 does not satisfy the condition (5.1). Furthermore, for m; > 11, we note that

—2m;,1’1 > 3 and the condition (5.2) implies that ¢; divides ™1 which further implies
m;—1

that 241 <272 4+1< % From this, it follows that the condition (5.2) does

not hold for any prime m; > 11. This shows that conditions (5.1) and (5.2) are very
heavy constraints and hold only when m; € {3,5}. In the light of this, Patanker and
Singh [64] essentially determined Hamming weight distributions of some (1,1)-MT
codes over [y (i.e., Fy-double cyclic codes) of block lengths (3,3),(3,5) and (5,5)
only, which one can easily determine by direct computations and without applying

deeper results on Gauss sums.

The main goal of this chapter is to determine all non-zero Hamming weights of
codewords of several classes of A-MT codes of block lengths (mq,ms,--- ,my) and
length n over F,, and to determine their Hamming weight distributions. As appli-
cations, several classes of A-MT codes of block lengths (mq,ms,- -+ ,m,) and length
n over F, with few weights and two classes of optimal equidistant (or equivalently,
constant weight) A-MT codes meeting the Griesmer bound and the Plotkin bound

are also identified.

This chapter is organized as follows: In Section 5.2, we explicitly determine
Hamming weights of all the blocks of non-zero codewords of several classes of MT
codes with at most two non-zero constituents (Theorems 5.2.2-5.2.10). Applying
these results, one can determine all non-zero Hamming weights in these MT codes
and their Hamming weight distributions. In Section 5.3, we determine Hamming
weight distributions of several classes of few weights MT codes (Theorems 5.3.3-
5.3.11). Among these classes of few weights MT codes, we identify two classes
of optimal equidistant MT codes that attain both Griesmer and Plotkin bounds
(Theorems 5.3.3-5.3.4). Besides this, we identify three different classes of few weight
MT codes, which are useful in constructing secret sharing schemes with nice access

structures (Theorems 5.3.3-5.3.5). Working in a similar manner as in Sections 5.2,
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one can determine Hamming weight distributions of several other classes of MT
codes with more than two non-zero constituents (see Remark 5.3.12 and Theorem
5.3.13).

From now on, throughout this chapter, let ¢ = p”, where p is a prime number
and r is a positive integer. Here we shall follow the same notations as in Chapters

2 and 3.

5.2 Hamming weights of codewords of MT codes

with at most two non-zero constituents

In this section, we shall determine Hamming weights of non-zero codewords of
several classes of A-MT codes with at most two non-zero constituents. To do this,
we recall that F, ~ Fa, for 1 < w < p. Without any loss of generality, we assume,
throughout this chapter, that the constituents of A-MT codes corresponding to the
irreducible factors gs(z), ga(z), -, gy(x) are zero. Then by Theorems 3.2.2 and
3.5.2, each A-MT code of length n over F, is given by

C == {(Cl(x17x2)702(x17$2)7' T 7C€<xlax2>) Py = (xw,lamw,%' T ,.fw,g) S Cw

for 1 <w <2},

where C; and C, are subspaces of G; and Gy over F ¢, and [ a, respectively, and

2 2
1 _
Ci(l'l, :L'Q) = E ( Z Tﬁquw/]Fq(xwyi)’ Z TTquw/qu(xw,i(Swl), cee
v w=1 w=1

2
S Tre, e, (w08, )) (5.3)
w=1

is the ith block of the codeword c¢(zy,zs) = (cl(xl,xQ),cg(ml,xQ), e ,Cg(xl,xg))

of the code C for 1 < ¢ < /. In view of this, we see that the Hamming weight



5.2 HAMMING WEIGHTS OF CODEWORDS OF MT CODES WITH AT MOST TWO
NON-ZERO CONSTITUENTS 71

Wy (c(xq,z2)) of the codeword ¢(xy,xs) € C is given by
Wi (c(w1,22)) = Wh(ei(xr, 22)) + Wh(ea(wr, 22)) + -+« + Wy (co(w1, 22)),  (5.4)

where Wy (c;(x1,22)) denotes the Hamming weight of the ith block ¢;(z1,z9) of
the codeword c¢(z1,x9) € C for 1 < i < {. Therefore to determine the Hamming
weight of the codeword ¢(zq,x2) € C, it is enough to determine Hamming weights
Wy (er(z1, 22)), Wh(ca(z1,22)), - -+, Wi (ce(x1, 22)) of each of its ¢ blocks. For this,
we shall first express Hamming weights Wy (¢;(x1, 22)) of the blocks ¢;(x,2z5), 1 <
i < ¢, in terms of certain character sums over finite fields. We assume, throughout
this chapter, that x, x1 and x» are canonical additive characters of F,, F ¢, and

[F 4, , Tespectively.

From this point on, let 21 = (211,212, -+ ,21¢) € C1, T2 = (T21, %22, -+ ,T2y) €

Cy and let 1 < i < ¢ be fixed. Then we see, by (5.3), that

Wh(ci(z1,22)) = [{0<j <m; —1: TTqul/Fq(%,szfj) + TTquQ/Fq(ﬂfz,i(Sz_j) # 0}

=m; — |{0 S j S m; — 1: TTqul/Fq({L‘Li(Sl_j) + TT]qu2/[Fq(l'2,i52_j> — O}'

This, by (2.1), can be rewritten as

m;—1

1™ » »
Wirlei(or,22)) = mi =~ 37 37 x (0(Trs 5, (@13077) + T, 5, (023057)))
q Jj=0 yecF,
1 mi—1 . A
= m; — 5 Z Z % (yTrqul /Fq<x1,i51_]>> % (yTrqu2 /Fq(xm&;])) )
yeF, =0

Now by using the fact that TT]Fq 4, /F, 18 an Fg-linear map for 1 < w < 2 and by
(2.2), we observe that

m;—1
1 v s .
W (ci(z1,22)) = m; — p E § X1 (Y216, 7 ) X2 (y12,:057).

ye]Fq j=0
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From this, we obtain

0 if X1, = T24 = 0;
o= S (e 6y) £ 0 and = 0
yEF* j:
WH(Ci(l'l,ZEZ)) = m; — % - l Z Z X2(y$2z ) if T1; =0 and L2, 7 0;
yEF* ]:
m;—1 ;
m; — % — l > > xa(yxy 0 )X2(?J$2,i52_])
yGF* Jj=0
if 1, # 0 and x9; # 0.

(5.5)
Now we proceed to determine the explicit value of the Hamming weight Wy (¢;(z1, 2))
by further expressing these character sums in terms of Gauss sums, whose explicit
values are known only in certain special cases [11, 51]. To do this, we shall distin-
guish the following two cases: (i) either x;; or x5, is zero and (ii) both z;,; and x5,
are non-zero. From now on, throughout this chapter, we assume that & arbd & are
11

primitive elements of F 4, and F ,, respectively. It is easy to see that & * and
q%2-1

& "' are primitive elements of F,. Now for 1 < w < 2, since d,, € F*dw, we can
write 6,1 = ¢4, where 0 < /,, < ¢* — 2. Further, let 7, = ged (q “—1 (,) and let

¢w be a generator of the multiplicative character group dew of F a, for each w.

5.2.1 Determination of Wy(c;(x1,22)) when either x;; or zy;

is zero

When z;,; = z3; = 0, by (5.5), we have Wy (c;(21,22)) = 0. So we assume,
throughout this section, that x,,; # 0 and x,s; = 0, where {w,w'} = {1,2}. In the
following lemma, we express the Hamming weight Wy (¢;(x1, 2)) in terms of certain

Gauss sums.
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Lemma 5.2.1. We have

Tw—1 dw _ d
m;  mi(g—1) T T
Wi (ci(z1,22)) = my — — — E dw ™ (20,i)G(Dy ™ Xw)-

¢ qlg™ —1) &=

Proof. To prove the result, we first note, by (5.5), that

Wy (ei(xy,22)) = m; — AU Z Z X (YL,i0y, 7 (5.6)

yE]F* j=0

Now by (2.5) and by using the fact that Iﬁ; = (pw), we see that

mi—1 g —2m;—1
)PP IRRINUIISSEEE b S S LRI
y€eFy j=0 yeFy u=0 j=0
m;—1 qd“’ 2
=P IICCRREERO W)
u= yeFy
Further, for 0 < u < ¢% — 2, one can easily observe that
9-2 (qdw -1k q—2 27rL(qdw —Duk
S = Sae) <SR
y€eFy k=0 k=0
2 ik g—1 ifu=0 (modq-—1);
= e -1 =
k=0 0 otherwise.
In view of this, we get
mi—l q . 1 qc(l;iil_l ( mi—l
53 elrmaiti) = A S GE ol e (X ¢£3-”a<6;3>)-
yeF: j=0 q e o

Further, if ¢~ “(61) # 1 for some integer a satisfying 0 < a < q , then we see
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that

m;—1 o ominl A (a=1)a (5 mi) — (qfl)a()\fl) -1
¢1(1(}1—1)a 5;] — gbg]]—l)a 5;1 J— ~ Pw i _ 0’
Z o Z V= >— DR

as 07 = )\; and A”" = 1. Therefore for 0 < a < qzw_zl, we have

mi—1 o ala=Tlarc 1y 4.
¢(q—1)a(5—j) _ m;  if du (0,7) = 1;
=0 0 otherwise.

Further, for an integer a satisfying 0 < a < qj’:l, we note that ¢\ Da(g=1y =
2mie(g—1)aly

PUVI (e = ¢ w1 = 1 if and only if (¢ — 1)al, = 0 (mod ¢% — 1), which

holds if and only if a = 0 (rnod (g™ — 13 ). From this, we obtain

m;—1 ‘ Tw—1 <qdw 1)b (g% 1)
D D Xulymndy') = dw 1 Z G ™ (Zwi) GOy ™ Xu)
yery j=0
m;—1 )
Now on substituting the above value of the sum > > xu,(yxy;0,7) in equation
y€Fy j=0
(5.6), we get the desired result. O

In the following theorem, we explicitly determine the Hamming weight Wy (c; (21, 22)).
Theorem 5.2.2. Let x,,; = e F*dw and Ty ; = 0, where 0 < s,,; < g — 2.
(a) When 7, =1, we have Wy (ci(x1,32)) = m; — "2 + %

(b) When 7, = 2, the integer d,, is even, q is an odd prime power and

wa(P*DQ dw
m;  mi(g—1)(1+0 7 g2 (=1)™)
Wr(ci(z1,22)) = my — — + )
(@, 22)) . g — 1)

(c) Let T, > 3. Suppose that there exists a positive integer w,, satisfying p** =

—1 (mod 7). If sy is the least positive integer satisfying p* = —1 (mod 1),
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then we have rd,, = 2s,V,, for some positive integer v,,.

Prw (p° +1)
d _

o [fT, is even an s odd, then we have

my  milg=1)(=14¢"% (ru=1))

mi — 7 if Tw | B+ Swis
— q q(qtw—1 2 s
Wy (ci(zy,29)) = ( 1)(1(+ dTH,))
o _omy . Meg—)ETg 2 ) 1 Tw )
m; q T q(qtw—1) if Twt 3 T Sw
. . w Sw 41 .
o If either 1, is odd or w is even, then we have
w

dy
my _ mig=)(Z1+(=D"e g 2 (ry—1))

mz - w — Z T’LU S’LU,Z)
Walez, 22)) = . 0 (q(lq)d Pi% .
m; mi(g—1)(1+(=1)"w— .
m; — q + 1 q(g%w —1) 1 Zf Tw 'f Sw,i-
Proof. To prove the result, we see, by Lemma 5.2.1, that
m;  mi(q —1)0;(2w,)
WH(Ci(l'l,ZL‘Q)) =m; — — — J - s (57)
q q(q* —1)
Tw—1 (@ —1)b (g% —1)

where ©)(2y;) = > dw ™ (Twi)G(dy ™ s Xw)- S0 to determine the Hamming
5=0

weight Wy (c;(z1,x2)), it is enough to determine the explicit value of the sum
dw 4

©!(x, ;). For this, we observe that O(gsz ™ ) = 7,. Now we shall distinguish the

following three cases: (a) 7, = 1, (b) 7, = 2, and (¢) 7, > 3.

(a) When 7, = 1, by (2.4), we got ©(z,.,) = —1.

qdw 1
Tw

(b) When 7,, = 2, we note that ¢, is the quadratic character of F,, . In this
case, we see that 7, = 2 divides % =1+4+¢q+ -+ q¢% 1 which implies

that ¢ is odd and d,, is even. Hence by Theorem 2.2.1, we obtain

qdw71 qdwfl

@g(‘rwﬂ) =-1+ (bw . (xw,i)G(¢w ™ 7Xw> =—1—1

wa(P—1)2
4

dy .
q 2 (_1) wi
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(c) Next let 7, > 3. Here by Theorem 2.2.2, for 1 < b < 7, — 1, we see that

_(a*w o1 (—1)qu7w if 7, is even and w is odd;
G(¢w ™ 7Xw) = b

(—1)”w*1qd7w otherwise.
(5.8)

When 7, is even and ’%:UH) is odd, we see, by (5.8), that

Tw—1 (g% —1)p
S CTrw
Of(wus) = 1447 Y (~1)"00 ™ (zu,)
b=1

. Tw—1 (27rLb(qdl;’—1)Sw,i+27nb7'w)
- 1q% Z e Tw (qdw —1) 27w
b=1

Tw—1

dw 2mLb L Tw
= —1+q2 E € Tw (swvl+2)
b=1

—1+qd7w(rw —1) if 7y | B+ sws

—-1-— daw otherwise.

On the other hand, when either 7, is odd or w is even, we see, by

(5.8), that
i Tw—1 (¢%w —1)p
Olwws) = —1+ (D)"Y b ™ ()
b=1
) A ) (= )i T | s
1= (=1l otherwise.

Now on substituting the values of ©}(x,, ;) in equation (5.7) in the respective cases,

we get the desired result. O]
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5.2.2 Determination of Wy(c;i(z1,22)) when z1; # 0 and zy; #
0

Throughout this section, we assume that x;, # 0 and z2; # 0. To determine
the Hamming weight Wy (c;(z1,x2)), throughout this chapter, let us first fix the

following notations:

d = ged(dy,dy) 7 is the least positive integer satisfying
;1% =1 (mod LGTl)

Ju = gcd( ) =1 ¢, )for 1 <w<2 |7 is the least positive integer satisfying
U 2 1 nod 1)

A,= ((;ziu_l—);w for 1 <w <2 L is thg least po§itive integer satisfying

gl -1 (@®2-1L

&1 o= 3 o

G—gcd( g —1) )\’:gcd(/\,%—%)

H =gcd (ﬁl , f;z gt —1) K, = —(qd_lc))(\q_l)

A= ged (A1L=D g 1) Ky=—rh (1 - W=lran) _ riga-hr

Note that Ky = —g;i?[i, — T,(gi;l) (AfL 7[221) and M, = M_g# are integers,

and ged(L, g — 1) = 1.
In the following lemma, we first express the Hamming weight Wy (¢;(x1, z2)) in

terms of certain Gauss sums.

Lemma 5.2.3. We have

m;  mi(q — 1)0;(z14, x2,)
Wy(ci(zr,22)) = my — — — o
u(ei(@,2)) q q(g™ —1)(g* - 1)

(5.9)

where

Mo—1 M;—1

—A1(K2z2+ K12 z z
@i(xlﬂ.,xm) = Z Z ( ((/51 1(K22z2+K 1)7X1)¢1A1(K2 2+ K1 1)($1,z‘)

20=0 2z1=0
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AgGAzy AgGAzg

Gy ™ xa)oy ™ (23,)). (5.10)

Proof. To prove the result, we note, by (5.5), that

WH(Ci(xla 172)) =m; — 7 - 6Qi($1,ia $2,i)v <5'11)
mifl

where Q;(z14,22:) = >, D, X1(yx1,07 )X2(9$215 ) Further, as F*, @ = (¢1) and
y€ekFy j=0

Iﬁ; = (¢9), we see, by (2.5), that

Qi(z14, xz,z’)

g —2¢%2—-2m;—1

- d1_1 d2_1 Z Z Z Z G ¢1 » X1 ¢1 (yl‘ll ) (¢2 >X2)¢2 (yx216 )

(q yEIF'* u1=0 wug2=0 35=0

m;—1qM1—2¢%2 -2

T X 2 2 GO e )0 xa)e sy
> o m)ok(v)

y€eF;

Further, for 0 < u; < ¢ — 2 and 0 < uy < g% — 2, one can easily observe that

-2

=)

(g% -1k (¢%2-1)kL

o6 " et (& )

D et wes(y) =

il\g

yE]F;
a2 2riuy tup L)k g—1 ifu; +uL =0 (mod q—1);
= e q— =
k=0 0 otherwise.
In view of this, we obtain
q— 1 —u U
Qi(w1,w24) = (@ —D(g% — 1) > Gy X)) (1) G (¢22aX2)¢22($2¢)<
u1 ug
m;—1

> o 0r)e (7)),
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where the summation > runs over integers u; and uy satisfying 0 < u; < gt — 2,
Uu1,u2
0<uy <q®—2 and u; +usL =0 (mod q — 1).
Further, for 0 < u; < g% — 2 and 0 < uy < ¢% — 2 satisfying u; + usl =

0 (mod g — 1), we assert that

m;—1 . 4 . if ur(§=1ypu2(5-1y — 1;
S ooy = M OO (5.12)
=0

0 otherwise.

To prove the above assertion, we see that if ¢} (67 1)¢52(65 ) # 1, then

D08 (67) = D (81 (6 )es (8, )Y
j=0 Jj=0

10 (0, =1 ¢t (AT DR (A
10y D)oy (d;1) — 1 10y )y (d;1) — 1

d1_q (@®2-1)L
q q
m; m; : -1 —1 —1 : CRCI
as oy =0y = \i. Since ;" € Fyand {7 =¢, ° is a primitive element of F,,

(@1 -yr (@®2-1TL

we can write \; ' =&, ' =&, ' for some integer T satisfying 0 < T < ¢—2.
27T (uq+ug L)
From this, we observe that " (A, Des2(\1) = e o1 = 1, which further

implies that Z U (077)¢42(657) = 0. On the other hand, when ¢" (67 1)¢42 (65 1) =
7=0
i—1 ) .
1, it is easy to see that Z &7 (677) P52 (057) = my, which proves (5.12).
=0
2miuy by | 2miugly

We further note that ¢ (6;1)¢52(6;1) = e «'-1 " -1 = 1 if and only if (¢% —
Duily + (g% — 1)ugly = 0 (mod (g% — 1)(¢% — 1)). From this, we obtain

Qz‘(l’lm $2,z’) =

d2 —1) Z G( ¢1 ,x1)01 (21,)G @;27X2)¢52($2¢), (5.13)

Ul uz

(g"

where the summation ) runs over integers u; and us satisfying
Uy, u2

0<u <gm—2,0<uy<qg? -2,

(¢ — Durly + (g™ — Dugly =0 (mod (g™ —1)(¢™ — 1)) and
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uy +usL =0 (mod ¢ — 1). (5.14)

Further, one can observe that all the distinct integers u;,us satisfying (5.14) are
given by
AQGAZQ

(A Al(KQZQ -+ Klzl) and Ug = HN s

where z1, zo are integers satisfying 0 < z; < M; and 0 < zp < M,. This, by (5.13),
gives Q;(14, 29,) = mi((;cal_)?)i(gﬁ;iﬁ’i). From this and by equation (5.11), the desired

result follows immediately. O]

Next to determine the explicit value of Wy (c;(z1, 2)), we note that O(¢2151) =
M and O(%Ag% ) = M,. Now we shall consider the following three cases separately:
(i) My = 1, (ii) My = 2, and (ili) My > 3. Further, in each of these three cases,
we shall distinguish the following three subcases: (i) M; = 1, (ii)) M; = 2, and (iii)
M, > 3.

In the following theorem, we consider the case My = 1 and we determine the

explicit value of Wy (c;(z1,z2)).

Theorem 5.2.4. Let My = 1, zy,; = &' € del and x9; = &7 € F;dQ, where

Ogsuqul—Z andOSSQ’iquQ_Q.

(a) When M, =1, we have Wi (c;(x1, 22)) = m; — = — %.

(b) When My = 2, the integer d; is even, q is an odd prime power and

rdy(p=1)%  dy
1

mg m;(q — 1)<1 +t q?(_1)81,¢>
q q(g™ —1)(¢*= — 1) '

WH(Ci(xlv $2)) =m; —

(c) Let My > 3. Suppose that there exists a positive integer u satisfying p* =
—1 (mod My). If t is the least positive integer satisfying p* = —1 (mod M),

then we have rdy = 2ty for some positive integer .
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o [f My is even and Z%ZH) 15 odd, then we have

m;  malg—1) (l—dal(Ml—l))

; M, .
m; — =t — BT (a8 1 if My | 73 4 514
WH(Ci([El, I‘Q)) _ q (I(q 2( )(;111) )
m;  malg—1)\1+q2 . M
L (=) M S s

o If either M, is odd or m(jl\’;;rl) is even, then we have

omi mi(q—l)(1—(_1)771qd71(M1_1))

m; Yo if My | 8145
Wi (ci(1, 29)) = ‘ ( 1)2(: 3)>jq11 d211>)
m;  mila— - q .
M T T DD A 1

Proof. To prove this, we see, by Lemma 5.2.3, that to determine the Hamming
weight Wy (c;(z1, 22)), it is enough to determine the explicit value of

Mi—-1

—A1K121 2
Oi(z1,02) = — Y G4  X1)OT I (0,4). (5.15)
z21=0
To do this, we shall distinguish the following three cases: (a) M; =1, (b) M; = 2,
and (c¢) M3 > 3.

(a) When M; =1, by (5.15) and (2.4), clearly we have ©;(x;;,z2;) = 1.

(b) When M; = 2, g_blAlKl is a quadratic character of F e, and ¢ is odd. Further,

we note that M; = 2 = gcd(qdql%ll, (GGg1), which implies that d; is even. Hence

equation (5.15) can be rewritten as

—A1 K1

Oi(T1i,2,) =1 — G(dy ' x1) P (21). (5.16)

rdl(p—1)2 dy

From this and by Theorem 2.2.1, we obtain ©;(z1;,x2,;) = 1+t~ 1 g2 (—1)%4.
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(c) Next let M; > 3. Here by Theorem 2.2.2, for 1 < z; < M; — 1, we see that

(¢1 aXl) =

—A Kz (—1)* q71 if M is even and }%t“) is odd;
) ' (5.17)

—1)7- qu otherwise.

When M is even and ’%tjl) is odd, we see, by (5.17), that

! —AK
L= ) ¢0M ™ (@)Gd T xa)
z1=1
J My;—1
— 11— (]71 Z (_1)z1¢1A1K121 (mlﬂ')
z1=1

Ml_l 2mLz181 4

I W

O, (21,4, T2,1)

4 o (2mE, o My
_ g 3 )

1—qd71<M1—1) lf M1 | %—'_Sl,i;

1+ q%1 otherwise.

On the other hand, when either M; is odd or m%il) is even, we see, by (5.15)
and (5.17), that

dq M —1 (271%218177:)
Oi(r14,m24) = 1—(=1)"""¢> Z ev M
z1=1

1— (=1)"Lq% (My — 1) if M, | s14;
rd

14 (=1)"1p= otherwise.
Now on substituting the values of ©;(x1,,22;) in equation (5.15) in the respective
cases, we get the desired result. O]

In the following theorem, we determine the explicit value of Wy (c;(z1, x2)) when

MlzlandM2:2.
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Theorem 5.2.5. Let My = 1, My = 2, xy, = &' € Fry and xa; = S € Froy,

where 0 < s1; < g™ =2 and 0 < 59, < ¢ — 2.

rdy(p—1)2  d 4
( ) Wh dy i h W ( ( )) _ mi(q—l)_mi(q_1)<1+L 214)1 1 qTQ(_l)szz)
‘ on Gz 15 cven, We have WHGA\T1, T2)) = q q(q91—1)(g%2—1)

(b) When dy is odd, the integer dy is also odd and we have

r(dy+do)(p—1)?  dy+dy
m;(q —1 mi(q—1)(1+ i q 2
WH(CZ‘(fL’l,l'z)) = <q ) — (

(_1)31,i+32,i)
q (g™ —1)(g¢*2 — 1) '

Proof. To determine the Hamming weight Wy (c;(z1,22)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

AgGA

) X1)¢W (Iz,i)¢1AlK2 (l’u)

_ AyGA ALK

Oi(x14, ;) = 1+ G(0," , x2)G(¢y

AgGA AgGA

To do this, we note that O(¢," ) = My = 2, so the character ¢, is the quadratic

character of F, and ¢ is odd. Since ged(L,q — 1) = 1, we see that L is odd.
Further, M; = 1 implies that gy = 1 and G\ = ¢ — 1. From this, it follows that

(qd*ql# = M, = 2. This gives d = 1 and N g H = 2. Further, it is easy to see that

| Aly(1 —7'A (q® — 1)L
A, — 4 (_ o 1) (g ) )
g—1 2 2
d / 1( d
gt =1 (1 —7Ay) 7(¢™ —1)L
- (= ) 61
and
da _
NgpH = 2 = ged ()\QQH, w - Aleﬂ). (5.19)

Now we shall distinguish the following two cases: (a) ds is even and (b) dj is odd.

(a) Let dy be even. Here as d = 1, the integer d; must be odd. From this, we observe

q%2—

q_ll is even and the integer A; is odd. This, by (5.19), clearly

that the integer
implies that the integer 7/, is even. Further, since G divides 1—7"Ay, by (5.18),
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one can easily observe that ¢1A1K2 is the trivial multiplicative character of F 4,

in this case. From this and by Theorem 2.2.1, we obtain

NG AyGA rdy(p—1)%  dy

@i(xl,i,flfz,i) =1~ G(%HA/ aX2)¢2HA/ (57521) =1+ 1 q? (—1)52’i-

(b) When dy is odd, we see that the integer qzz:ll is odd and g» = 1. Next as

qG_—)‘l = ged(A1,G) = 1, by (5.19), one can easily see that the integer A; must
be odd. From this, we note that the integer d; is odd.

Now when G is even, we see, by (5.19), that the integer 7/ is even. Further,

as G divides 1 — 7'A1, we observe that the integer 7’ is odd. This, by (5.18),

implies that (blAIKQ is the quadratic character of F ;.

On the other hand, when G is odd, we observe, by (5.19), that the integer 7/5

is odd. We further note that the integer 7/ must be odd if the integer % is
even, while the integer 7’ is even if the integer % is odd. Now since both
the integers (q‘ij%)[,) Ty are odd, we see, by (5.18), that nglAlKQ is the quadratic

character of F ;.
From this and by applying Theorem 2.2.1, we obtain

r(dy+dg)(p—1)%  dy+dy
4 2

@Z‘(Ilﬂh xQ,i) =1+ q (_1)51,1'4'5271'.

[]

In the following theorem, we determine the explicit value of Wy (c; (21, 22)) when

M, = M, = 2.

Theorem 5.2.6. Let My = My =2, 11, = &' € del and z9; = &' € IF;‘dQ, where
0<s1;<q"—2and0 < sy; <q® —2. Here the integer g € {1,2} and p is an

odd prime.
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(a) When g1 =1, we have ¢ =3, G=X=d =2 and

4 2sgit+s1,i+td2  dy+do
2m; (1—37 +2(-1) )

2m; 2 2 .
I - - if 2| 51,45

W (ci(z1,22)) = 3 d?(i’»dl )(3%2-1)
3 3(391-1)(392-1) if 2 J( S1,4-

(b) Let g1 = 2.

o I[fp=3(mod4), then we have

dr 2sgitrdatsii dy+dy
(vm  ma@ D) (T2 ) 2| o
W (ci(z1, 22))= a a(g?1-1)(¢%2-1) 1,43
T ) dl
(¢—=D)m;  mi(g—1)(1—q2) ,
¢ g D)= if 21 51,

o Ifp=1 (mod4), then we have

(

dy dq+2do 2(rda+sg ) +s1,5
(¢=1)m; mi(q—1) (1+q 24+2¢ 4 (—1) 2 7.)
q q(g?1-1)(g*2-1)
Zf2 ‘ Sl,i;
Wr(ci(x1, 22)) = 4 dp+2dy  2rdatsy )+ltsi,
(e=Dm; _ mile=1) (1= 12477 7 (-1) 3 )
q a(g?1-1)(g*2-1)
’Lf 2 T Sl,i;

\

where R; = Re (a + Lb)% and Z; = Im (a + Lb)% denote the real

rdy
2

and imaginary parts of the complex number (a-+1b)z | respectively (Here

a and b are the integers determined uniquely by p = a*+b*, a = —1 (mod 4)
g%1-1
andb=a& * (modp)).
Proof. To determine the Hamming weight Wy (c;(z1,22)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Ao GA Ao GA
—A1 K, 26 2G

@i(xl,hxli) = 1- G(¢1 7X1) 1A1K1 (xlz) + G(EQHA/ >X2)¢2HV <x2,i>F($1,z’)>

—A1K2 —Al K1+K2

where F(a1,0) = o (21,) (G682, x0) + G607 x)of o (@) ). As My =
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AgGA
Ms = 2, we note that (blAlKl and ¢, are the quadratic characters of F e, and F 4,

respectively and ¢ is odd. Since ged(L,q — 1) = 1, the integer L must be odd.
Further, since M; = 2 and ¢ — 1 divides G\, we see that the integer ¢; divides 2. So
we shall distinguish the following two cases: (a) g1 = 1, and (b) g1 = 2.

(a) Let g; = 1. Here we have qG_—)‘l =2 = ged (qzl__ll,G), which implies that both

the integers d; and G are even. Since G = ged(fy,¢? — 1) is even and g; =

ged (qdl—_l fl) = 1, one can easily see that the integer %1 is odd, which implies

qd—l )
that the integer d is even. Further, as qGTAI = 2 and M, = 2, we see that
(¢ =DNgoH _ -1 _ 2 d—1 .
Tf_él.Nextwenotethatqul—l—i-q—i-q + .- 4+¢“ " > 4. This

implies that NgoH = 1 and % = 4, which further implies that ¢ = 3 and

d = 2. From this, we obtain GA = 4. Since A = ged(2, 3d1G_1) and the integer

Sdgl is even, we note that A = 2, which gives G = 2. Further, it is easy to

observe that

(g4 — 1)(=270y(1 — 27'Ay) — 7'(¢® — 1)L)
8
(q" — 1)(=71ly(1 = 27'A1)) 7' (g™ — 1)(¢% — 1)L'

4 8

AlKQ =

_ree(eM—na—2r'ay)
This implies that ¢1A1K2 = ¢ * . Since G = 2 and N =1 =
ged(2, AoGL — Ay1ls), we note that the integer 75 is odd, which further im-

plies that O(¢5%?) = 4. Further, we note that Ay K; = qd12_1, and ¢1A1(K1+K2) =

(q%1 —1)(—re5(1—27" Aq)+2)
o3 E " This gives O( 1A1(K1+K2)) = 4. Next since p = 3 =
—1 (mod 4),r =1 and %1 is odd, by Theorem 2.2.2, we see that G(alAIKQ, X1) =
G@fl(KﬁKﬂ) = —p%l. This implies that the sum

d
F(ai;) = —p? ¢P " (2,) (1 + o7 (21,))
dq —27\'LT[2(1—2T,A1)3177;

= _pTQ( 1 )(1+€TFLS1,¢>
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From this and by Theorem 2.2.1, we obtain

s1,;tda+2s2§ dj+dg

1—-3% +2(—1) 3327 if 2 51
41
1+3% if2*817i.

@z’(xl,z‘, x2,i> =

(b) When ¢g; = 2 = ged (qdl—_l 61), we see that qG_—’\l = 1 and both the integers

@1

dq, 0y are even. Now as My = 2, we observe that NgoH = 2 and qqd_—_ll =1,

ie., d = 1. Since d = 1 and d; is even, the integer d; must be odd and

g2 =1 = ged (qzz__ll,@). This implies that the integer As is odd and

NH =2 = ged(ANH, AsGL — Ay7ls). (5.20)

Further, since 4 = gecd (Al, %) =1and G = ged (%,q — 1), by (5.20), one

can easily observe that the integer A; is odd in this case. Next we see that

d—1 r=ATly(1—7T'A (¢ — 1)L “d—1)A
ALK, = q < Tlh(l—1 1)_T(q ) )_(q ) . (5.21)
2(q—1) 2 2 1
where A = %_T/AI) — 7' Ay L. Further, as Ay, Ay, L all are odd integers, we

observe, by (5.20), that the integers G and 7/ are of the same parity.

When G is even, the integer 7/5 is even. Since G divides 1 —7'A;, we see that
the integer 7/ is odd. From this, it is easy to see that the integer A is odd.
This, by (5.21), gives O(d, ") = 4.

On the other hand, when G is odd, we note that the integer 7/ is odd. Next

we observe that the integer 7’ is odd if the integer % is even, while the

1-7'Aq

integer 7' is even if the integer % is odd. That is, the integers —%

and 7’ are of the opposite parity. Now as both the integers Ay L and 7/5 are
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odd, we see that the integer A is odd. This, by (5.21), gives O(alAlK2

Al(K1+K2) _M . .
Next we see that ¢1 = ¢ 4 . In view of this, we observe that

the characters gbl and ¢1A1(K1+K2)

) = 4.

are inverses of each other, which implies

that O(¢1A1K2) = (¢1A1 (Rihz) ) = 4. Since A; = % is odd, we note that
g =1 (mod 4) and dl is odd. So we shall distinguish the following two cases:
(i) p=3 (mod 4), and (ii) p =1 (mod 4).

(i) When p = 3 (mod 4), the integer r must be even. That is, p = —1 (mod 4)

(ii) Let p =1 (mod 4). Since O(¢;,

and the integer "2 is even. Now by Theorem 2.2.2, we get G(Efl&,xl) =
—A1(K1+K2)

G(¢

rdy _1 dy dq

,x1) = (=1)=z '¢gz = —q7.

This implies that

Fla) = —q7 o™ (xy)(1+ ¢85 (21,))

dy (ﬂleyiA

27 (~1)F if2|
=2 q2(=1)= if 2] s
= —qze\ 2 )<1+(—1)51,i): q L

0 if2)(817i.

From this and by Theorem 2.2.1, we obtain

rdo+sy i +2s2;  dy+dgy

d1 .

1+q2 +2(-1) 2 gz if2] sy
a1 .

1—q2 if 2151,

@i(ﬂfu, $2,z‘) =

Al K1+K2 —A1 K>

) =0

orem 11.4.4 of [11, p. 356], we see that there exists a multiplicative character

) = 4 divides p— 1, by The-

¢ of IF, having order 4 such that

—A1(K1+K>)

1

—A1 Ko

(0) = 6(Ne., x, () and 3" (0) = (N, 15, () for all a € Fi,
(5.22)
where Ny , /p, denotes the norm function from Fg onto F,. Further, by

Davenport-Hasse’s Theorem (see Theorem 11.5.2 of [11, p. 360]) and by using
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the fact that the integer rd; is even, we get

—A1 K>

x1) = —G(6,X)" and G(¢,

(—Al (K1+K?2)

¢1 7X1) = —G(Q_b, X/>rd17

where x’ is the canonical additive character of IF,. This implies that

Flz1,) = =61 (21,) <G(5, X))+ G(9, X')le(—l)sl’i)

a%1-1

Since £ = &, "' is a primitive element of F,, we see, by (5.22), that

. 2ru(g?1-1)A - - B o
b E) =€ T = A =g, (€)= 867 ) = 6(€)
and
2mi(g® —1)(A+2) i
G gy = @ = Y = BN e, (€)= 967 ) = B(0).

As the integer rd; is even and 5%1 = —1, by (2.4), we get

- .n\rd1 rdy —rd1 _Aar2)ezlrdy d1
G<¢7X) ¢ - (b ¢ (_1>G<¢7 /) =1 2 G<¢7 X/)
(A+2)(p—1)rdy

= ()TNGB ) =G (5.23)

We further assert that

F(zy,;) = —™ meji ((a + Lb)Tl + (a — Lb)%(—l)‘*“).

271'L(qd1 —1)Asy ;

To prove this assertion, we first note that ¢£%2(z, ;) = e @101 = A5

Y

and we shall distinguish the following two cases: A = 1 (mod 4) and A =
3 (mod 4).

When A =1 (mod 4), we have ¢(¢) = ¢. By Theorem 4.2.3 of [11, p. 163], we
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see that G(é, x')"™ = p o (a + Lb) . Now by (5.23), we obtain
F(Il,i) - —leﬂp’"i <<a _|_ Lb)Tl (a — Lb)TdTl(—l)Sl’i> )

When A = 3 (mod 4), we have gb(f) = 1. By Theorem 4.2.3 of [11, p. 163], we
note that G(¢, x')™ = p = “(a+ Lb) . Now by (5.23), we get
Flarg) = (=0 ((a =) % + (a+b) 7 (-1)™)

rdy

= —Vip1 ((a + Lb)T1 (a — Lb)%(—l)ﬁﬂ) ,

which proves the assertion. This, by Theorem 2.2.1, implies that

2(rdg+sg ;)+s i r .
14+ q%l +2 qdﬁf% (1) e Re (a + Lb)% if 2| s14;
@i(mlm $27i) = dq dq+2dg 2(rdg+sg ;) +1+s1 5
1—q2 +2q 2 (—1) 2 Im (CL+Lb) lf2J[SlZ

In the following theorem, we determine the explicit value of Wy (c¢;(z1, x2)) when

M123andM2:2.

Theorem 5.2.7. Let My > 3, My = 2, 21, = & € Fru and az; = S e Fo,

where 0 < s1; < g™ —2 and 0 < s9; < q® — 2. Let S = Tézx (1 _ d_é))\T/Al) B

'(g2-1)L
q—1

. Here S is an integer, the integer rdy is even and p is an odd prime.
(a) Let S be even. Suppose that there ezists a positive integer u satisfying p* =
—1 (mod My). If t is the least positive integer satisfying p* = —1 (mod M),

then we have rdy = 2ty for some positive integer .
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o [f My is even and %Tl) s odd, then we have
( dq rde(p—1)?  dy
milg=1) mi(q-1) (~1+q7 (M -1)) (1+(-1)*20 T ¢ 7 )
q a(q?1—1)(¢"2-1)
Zf M1 | S1, + M;
WH<Ci<5U1az2)) =9 dy rda(p—1)2  do ’
mitg=1) _ mila=1) (g7 ) (142 g7 )
q (g1 —1)(¢?2 1)
\ Z.fleSLi—l—%.
e [f either M; is odd or %ﬁr” 15 even, then we have
rde (p—1)2
(mi(q—l) _ mi(q—l)(lﬂ—l)”q%l(Ml—l)) (1+L 2 qd%(—l)%)
a a(q1—1)(q2—1) )
Wir(ci(z1,22)) = 1 d s deMl | s
mig=) i) (1-(-170F) (17T g F (1))
q (g™ -1)(¢"2-1)
L if My )f S14-

(b) Let S be odd. Suppose that there exists a positive integer u' satisfying p* =
—1 (mod 2My). Ift and t’ are the least positive integers satisfying p' = —1 (mod M)

and p' = —1 (mod 2M,), then we have rdy = 2ty = 2t'+ for some positive

integers v and ~'.

'(pt4+1) (p +1)

e If M, is even and -2

1$ odd, then we have

2M?
( d1 (H“Qi) rdy(p—1)%  dj+dy
malgey) | mila=) (1+qF (o) W) R SR )
q a(q1-1)(q"2~1)
if My | s1,;
Wi (ci(w1,22)) =
m;(g—1 m;(g—1){1— QT(Ml 1)
(Z )_ q(qdl( 1)(d2 1) )ZfMl'fSlz&M1|511,
kmi(g_l) - Zzlgiql 11))1—2;1 21 Zf Ml 'f S1,4 & MlJfSll Ml
o If both the integers My, L p H) are even and the integer WY s odd,

My

2

7
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then we have

4 (sl’i+w’+sz~) rdo(p=1)2  dy+doy
m;(qg—1) mi(Q*l)(lJqu +(=1)\ M1 L S Ml)

q a(g" —1)(¢"2-1)
if My | s14;
Wh(ci(z1, 22)) =
(g mia—1) (1-¢F (M -1)
(g S qq(qdl( 1;1(112 11 )ZfMljfslz&M”S“ eat
mi(g=1) _ milg=1)(1+g7) M & M 4 My
\ g a(g"1 —1)(¢"2-1) o M 51, st

e If either M, is odd or 7(5’\21) is even and % is odd, then we have

a1
ml(q_l) mi(q—l)(1—(—1)7_1q7(M1_1)+XiM1)

N I 1y (q%2—1 if My | s1;
Wh(ci(21,22)) = a ( q(q™ 1)(:2) )
m;i(qg—1 m;(g—1) | 1+(—=1)""1q 2 )
(Z H - q(gh1—1)(q%2-1) if My )f S1,i»

S j 2
Liysy,) rdae=1)® ditdy
L 4 2

where X; = (—1)(M1

° ]f% 1s even and either My is odd or the integer 7(7]’\21) 15 even, then
we have
mi(g—1) mi(q—l)(1—(—1)”*1q%(M1—1)+yiM1) , .
a« q(gh1-1)(¢%2—1) if My | 514
WH(Ci(I’l,[L‘Q)) - ( 1 dl)
mi(g—1) _ mie-D{I+(1)"""qZ ,
g N q(gh1—1)(¢g%2-1) if My sy,

Proof. To determine the Hamming weight Wy (c;(z1,22)), we see, by (5.9) and
(5.10), that it is enough to determine the explicit value of the sum
AgGA AQGA M1

Gi(ﬁl,i,xz,i) = 1+G(¢ HN Xz) ﬁzz <Z G Al Kotz K1) Xl)

z1=0

Mi—1

MO )) = 3T GE )0 ). (524

z1=1

2

I
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AgGA
For this, since My = 2, we note that ¢,™ is the quadratic character of [F a4, and q is

odd. Since ged(L, g—1) = 1, the integer L must be odd. Further, for 0 < z; < M;—1,

we see that
Now as M, = 2, for 0 < z; < M; — 1, we obtain
¢ -1 (¢’ = D7'A 1o
A (Fy 1K) = G (=t (1) = 7(¢" = DL+221(g - 1))
i 1)(S +2
_ 21\(41 +22) (5.25)

Note that S is an integer. Now we shall distinguish the following two cases: (a) S

is even and (b) S is odd.

qd1 -1 (¢ -1)s

a) Let S be even. Since O(¢251) = O(¢, ™ ) = M, we note that ¢, > €
1 1 1
(¢™K1) This, by (5.25), implies that {750 .0 < 2) < My — 1} =

(2151 Therefore equation (5.24) can be rewritten as
& Ak
O;i(r1,, 72,) = <_ 1+ Z Go, ' x) 1AlK121($1’i)> % <_ L+
z1=1

_ AgGA Ao GA >

G(P™  X2) ™ (2,) (5.26)

We next assert that the integer ds is even in this case.

To prove this assertion, we suppose, on the contrary, that the integer d, is odd.

This implies that both the integers d and A, are odd. As My = 2, we see that

g2 | 2. Since ds is odd, we must have go = 1. This implies that %# = 2,

(%) From this, we see that 2 | (qd;#, which

(¢*—ONH
e=D)AH _ 9 i

which gives p

implies that 2 | NH = ged(AH, AoGL — Ay7ly). Further, it is easy to observe

that the integer A; must be odd, which implies that the integers G and 7/
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are of the same parity Further, since both A; and d are odd, one can see that

the mteger = ged (%)), G) is odd.

When G is even, both the integers ﬂ and 7/y are even. Since T/A%q;*” =

1 (mod ) the integer 7/ must be odd, which implies that the integer S is

odd. This is a contradiction.

On the other hand, when G is odd, we note that both the integers &, 74, are

odd. Further, since % =1 (mod % 1) and —AI%A

that 7’ is odd if q%l( - %) is even, while 7’ is even if q%l (1- —T/Algf\d_l))
(a2 -1)L
R

is odd, we observe

is odd. Now as both the integers and 7y are odd, we see that the

integer S is odd, which is a contradiction.

This proves the assertion that the integer ds is even. Next by Theorem 2.2.1,

we note that

AoGA ApGA rdy(p-1)2  dy

G(9y™"  x2)p™ (w0) = — T ¢ (=1)=", (5.27)

Further, for 1 < z; < M; — 1, by Theorem 2.2.2, we see that

4 . . t .
ALK —1)*qg2 if M is even and 22+ g odd;
G ) = (= . ' M (5.28)

(—1)"'¢2  otherwise.

When M, is even and ’%ZH) is odd, we see, by (5.28), that

M;—1 Mi—1

—A1K121 ALK 4 ALK
S GE T )R () = qF 3 (—)P R ()
z1=1 z1=1
dq Ml_l 27“,218177;
=q? e™Fe M
21
rd Ml_l 21z M,
— qu e M~ (8 Z+T)
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—qd if Mlj(slz M
This, by (5.26) and (5.27), implies that
T p—1 2
(=14 ¢ (My — D)(=1— 5% (=1))
O;(21,, T2,) = if My | s, + M,

2
2
(_1 —q%)(—l—bdz(ziqug(—l)sz,i) if Ml'fSlZ M

On the other hand, when either M is odd or 22+ is even, we see, by (5.28),

)
that
Mi—1 AK Mi—1
Z G 1 1217 )¢1A1K1z1(x17i) 'Y 1q2 Z ¢A1K1Z1 xlz
z1=1 z1=1
d Ml_l 2wz 81 4
= (=177 Y e
z1=1
(—1)7_1q 21 (Ml — ].) if M1 | S1.4s
—(—1)1¢? if Myt s
This, by (5.26) and (5.27), further implies that
o (p—1)2
(=14 (=1)771qF (My — 1)) (=1 — 5 g F (~1)%29)
O;(1,,22,) = if My | s

Y rdy(p=1)% dy So\ -
(—1 = (=171 F ) (=1 = g F (<)) if My sy

g1 (¢1-1)s g1

(b) Next let S be odd. Here as O(¢,*""* ) = 2M,, we note that ¢, " € (¢, ).

Further, by (5.25), one can easily observe that { lAl(KQJerKl) 0 <z <
(a1 -1)(1+22)

M, — 1} = {gbl 2 0< 2z < M, — 1}. In view of this, equation (5.24)
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can be rewritten as

ot —A1 K121 A K — B B
Oi(w1i,w25) = 1= > G(dy 7 x)T 7 (w10) + G, x2) o™ (2,0)
z1=1
M1 (@¥1-1)(1+221) (@h -1)(14221)
- 2M 2M
(S G@ T e T (). (5:29)
z21=0

Here we assert that the integer rds is even.

To prove this assertion, we suppose, on the contrary, that rds is odd. Since
ds is odd, the integer d is odd. Now working in a similar manner as in part
(a), we see that the integer A; is odd. Further, as the integer rd; is even, we
note that g, is even. Now since p = —1 (mod 2M;) and g; | M;, we observe

that p = 3 (mod 4). Further, as rd; = 2ty and 2M; | p + 1, we see that the

g1 -1
20,

integer is even. On the other hand, let s be the positive integer such

that 2° || g1, i.e., 2° | g but 257! t g;. Since both 7,d are odd, we note that
2] ¢—1and 2 || ¢® — 1. Further, as A; is odd, one can easily observe that
2571 || ¢ — 1 and the integer qGT’\l = gcd(Al(g‘fl_)l),G) is odd. From this, it

is odd, which is a contradiction.

g1
oM,

follows that the integer

This proves the assertion that the integer rdsy is even. Further, for 1 < k£ <
2M; — 1, by Theorem 2.2.2, we see that

a1k —1kg=s if Py (0 +1) is odd;
6@ =g TV o (530

(—1)"~1¢% otherwise.

Now on substituting the values of Gauss sums from (5.27), (5.28) and (5.30)
in equation (5.29) and after an easy computation, we obtain the desired values

of the sum O;(z1,, x2,) in the respective cases.

]

Next we proceed to determine the explicit value of the Hamming weight Wy (¢; (21,
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x9)) when My > 3. From now on, throughout this section, suppose that there exists
a positive integer uy satisfying p*2 = —1 (mod M,). Further, let t5 be the least
positive integer satisfying p’? = —1 (mod Ms). Then by Theorem 2.2.2, we have

rdy = 2ts9ys for some positive integer v, and for 1 < zo < My — 1, we have

dg . . ta 1) .
_85GAz (—1)72q>= if My is even and 2222FD g o4

Gy "™ x2) = . Ma (5.31)

(—1)2"1¢7  otherwise.

In the following theorem, we determine the explicit value of Wy (¢;(z1,x2)) when

Mlzland]\/[223.

d_1)/ 7' (g%2 —
Theorem 5.2.8. Let My =1, My > 3, B = —é;f; (1— (g (1;)/\ Al) — (ZDQG;)L, T1; =
e F;dl and v9; = &' € F;dw where 0 < s1; < g% —2 and 0 < s9; < g% — 2.
Further, let us define the integers T = ged (B, M) and N = M, (note

& GAT
(a) Let N = 1.

o [fTgy is even and ’%ZH) is odd, then we have

mi( ,1)(17 d72(T 71))
mig=l) _ mil a? (Tg> if Tgo | 505+ 722

dy _ do
WH(Ci(xh x2)) = 7 q(q® 1)‘53 2-1)
mi(g=1 mi(g—1)(1+q % . .
(g L q(qglql—l))((ng—li if Tga 1t 805+ 52

o [f either Tgy is odd or I%;ZH) s even, then we have

mitgety  mita—1) (1-(=1)2"1¢F (Tgs-1))

N T 1) (g1 if Tga | s2,4;
Wy(ci(xy,20)) = q (q(q )(a 1 dz))
mi(g—1)  mi(g—1)(1+(=1)7271¢2 _
Z N q(gh1-1)(¢%2 1) if Tga 1 52,4

(b) When N = 2, the integer rdy is even and p is an odd prime.
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o [fL—TD 72(”2“) is odd, then we have

mi(q—l) mi(q_l)(1_qd72(T92—1)+uiTg2)

N 1) (q%2— if Tga | 5243
Wh(ci(x1,22)) = 1 a(g 1d21)(q 2—1)
m;(q—1 mi(q—1)(14q 2 .
(Z = q(q(dqlfl))((ng—li if Tgo Jf 52,45

where U; = LM(—U (;2(,; 1 1%%.

1
o If 72 + ) 15 even, then we have

mi(g—=1) mi(g—1) (1+(~1)2 #? # (Tg2-14+ViTg2) )

a1 —1)(q% —1 if T'go ‘ 52,15
Wh(ci(21,22)) = ! ( a(g™ - )d(;l)? )
m;(g—1 m;i(g—1) (1—(=1)72¢ 2 .
(Z L g(q™ —1)(g2—1) if T'ga 1 52,4,

rdi(p—1)% d ( ) (

d Ly
where V; =1 1 q2 (— s“).

T92

(c) Let N > 3. There exists a least positive integer s' satisfying p* = —1 (mod N).

Here we have rd; = 28’V for some positive integer v/'.

o [f either the integer T'N gy is odd or both the integers T'N go, aL TGRS

TNg2
even and N is odd or both the integers p"/(zj\s, ) m"’T%Z;H) are of the same
parity and N s even, then we have

)

mi(g=1)  mi(g—D)(1—(=1)12¢F : _

(g = (Z(qdz(fl)((ngflq) = if T 5.
mitg—1)  mila=1) (14124 F (Tga—14(-1)" Tga(N-1)g )

g ("1 =1)(¢?2-1)

Wa(eilw1, 22)) = o Zngz | 52 & N | ;292 B;ﬂl’i§

mi(g—=1)  mila— )(1+( 1)72q2 7 (Tg2—1—(~1)" Tgaq ) ))

q (g1 -1)(¢"2-1)

[ B K3

\ szg2|321&NJ(§3g2 o

e I[fTNg, is even, % is odd and either N is odd or pTH) is even,
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then we have

dg
m;(g—1 m;(g—1)(1 2 M+28 i
- FTof =57
mstg—)  mita=1) (1=0F o1+ (V-1 (=14 F )-1)
q (g1 -1)(¢"2-1)
Whr(ci(z1,29)) = if Tgy | 22220 & N | M?Trz?”' +
do dy /
mig=1) _ mia=1)(1-¢F (T201-4F (-1)*))-1)
q a(¢"1-1)(¢*2-1)
. Mso+2s9 ; Mo+2ss ; Bsii
\ if Tgy | 72572 & N =52t 4 20,
o If ’w is odd and both N, % are even, then we have
/ do
ma(a—1)  mile-)(1-(-1)2¢7F) . -
?1  q(gTt-1)(¢2-1) if Tg2 f 5245
mitg—1) _ mila) (141120 F (192197 (V-1)792)
¢ (g1 =1)(¢"2-1)
Wa(ci(w, 22)) = ZfT92 | 50,5 & N | ;ng BSTM + 5
mi(g—1) mz‘(qfl)(H(* 12¢% (Tga—1+47 Tg2))
g @D (g2—1)
8924 Bsy,;
\ szgﬂng&NJ(ngz = —1—%.

Proof. To determine the Hamming weight Wg(c;(z1,22)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Mz—1 AQGAZ2 AgGAzg ALK
Oi(r1i,m0:) =1+ Y G( (X2) by T (22, G(GTT X))@ ().
zo=1

(5.32)
For this, we note that as M; = 1, we must have g; = 1 and G\ = ¢ — 1. Further, it

is easy to see that

(¢ — 1)G X ATl (¢ —1D)T'A\ T'(¢2 —1)L (¢ —1)G\B

ALKy = ] (— (1— )— ) = ]
(@ — DNgH\ Gx G\ G\ (¢ — UNH

(5.33)

Note that B is an integer. Next by (5.33), we see that O(¢152) = (qda%,}[ = N.

Now we shall distinguish the following three cases: (a) N =1, (b) N = 2, and (c)
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(a) Let N = 1. Here by (2.4) and (5.32), we note that

Tga—1 _ AyGrzg AgGrzg
7 /
@z‘(fl,z‘afl?li) =1- E Gy "™ x2)pp ™ <x21)

zo=1

When T'gs is even and P2 +) o odd, we see, by (5.31), that

Tg2
Tgo—1
4y 102 . AQHG;/ZQ
— > 2
Oi(21,2:) = 1—q7 E (=1)=¢, (2,1)
zo=1
do TQQ*l 2mLz9s8g ;
= 1—q= g e"?e To
zo=1
Tga—1
do 27l'LZ2( +ﬂ)
= 1—¢q2 E e T92 tho2
zo=1

1—qF(Tgy—1) if Tgy | 59, + 22
if T92+82’i+ %

On the other hand, when either T'gy is odd or P+l g even, we see, by

Tg2
(5.31), that
ds Tg2—1 AgGAzy
@i(ﬂﬁu, 902,z‘) = 1- (_1)72_1617 Py "N ($2z)
zo=1
_ 1 - (—1)72_1qd72(T92 —1) if Tgy | sa4;
1+ (—1)72*1qd72 if Tgo 1 S92

(b) Let N = 2. Here we note that ¢2'*2 is the quadratic character of F,a and g is
odd. Further, each integer zo satisfying 1 < zo < My = 2T'g, can be uniquely
expressed as zo = 2Q) + R, where 0 < () < Tgo when R=1and 0 < Q < T'gy
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when R = 0. Hence equation (5.32) can be rewritten as

Tga—1

_A2G>\/2Q AQG)\IZQ ALK K
O;(21,i, T2,:) 21—2 Gy ™ x2)Pg ™ (w03) + G() 7 x1) T 2 (21,4)
Q=1
T 1 __AgGA(2Q+1) AgGA(2Q+1)
(D GE@ T e M (@), (5.34)
Q=0

Now we assert that the integer rd; is even.

To prove this assertion, we suppose, on the contrary, that the integer rd; is
odd. This implies that both the integers d and A; are odd. Since rds is
even, we note that the integer ds is even. Further, as N = (ng‘# = 2
and GA = ¢ — 1, we observe that 2 | NH = ged(AH, AyGL — %). We
note that ged(As, ﬁ—z) = 1. Further, it is easy to show that the integer A, is

odd, which implies that the integer g, is even. Next since rds = 2ty7, and

p? = —1 (mod 2Tgy), we see that the integer q;;g;l is even. On the other

hand, as g, is even, there exists a positive integer s such that 2° || go. Further,
as p'2 = —1 (mod 2Tg), we note that p = 3 (mod 4). Since both r,d are odd,

we see that 2 || ¢ — 1 and 2 || ¢¢ — 1. Now as Ay = d’f—i; is odd, it is easy

to observe that 257! || ¢ — 1. Since N'H | GA = q — 1, we note that 2 || N H.

From this, it follows that the integer T = (qc(lq__;i;‘;[

the integer q;;_;; is odd. This is a contradiction.

is odd, which implies that

This proves the assertion that the integer rd; is even.

(i) Now when 222+ is odd, by (5.31), we see that

2Tg2
Tool  sereary A9GA(2Q+1) ds T2l ayareery
7 7 —= /
NGB Xy P () = =g Y 6 P (1)
Q=0 Q=0
Tga—1

mLsg | 2mesg jQ

do
= —qT E e To2 + Tg2

Q=0
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$9.4

do =t
—Tg2q 7 (=1)To2 if Tygs | s25

0 if T'gs 1 59,
and
Toa7 1 ajone AyGA2Q v To2—1  A,caeg
DTGB, ™ xa)by T (w2) = 4T Y 6y ™ (w0)
Q=1 Q=1
d .
q%(ng —1) if Tgo | so;
—= da ‘
g% if Tgo f 52

This, by (5.34) and by Theorem 2.2.1, implies that

T —1)2 52,4
L= % (Tgy — 1) + 25 (21 (Fros) 5% g,
Oilais2i)= it Tgo | su.
do )
I+q72 if T'ga 1 s2,:.

.. t211) . . . . . .
(ii) When 22°%Y is even, working in a similar manner as in part (i), we

2T'g2
obtain
L= (17t (Tge — 1+ 5 g% (—1) (Bt 1)
Oi(w1,, 12,4)= if T'gs | S,
L+ (~1)2 g if Tgo § 52,

(c) Let N > 3. Here for 1 <u < N — 1, we see, by Theorem 2.2.2, that

—A1 Kou (—1)“qd71 if N is even and ’w is odd;
G(¢1 7X1> = 4

(5.35)
(-=1)""'¢3  otherwise.

In this case, it is easy to see that each integer z; satisfying 1 < z; < My =
T'Ngs can be uniquely written as z; = NQ + R, where 0 < @ < T'gy when
I1<R<Nand1l<@ < Tgy when R = 0. Therefore equation (5.32) can be
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rewritten as

Tg2-1 AQG/\NQ AQGANQ Tg2—1 N—1 _A .
O; (xlzaxQZ - 1_ZG » X2) P X xQz +Z Z( o » X 1)
Q=0 R=1
A KoR __A2GANQ+R) A2GANQ+R)
PN (@)G (g JX2)py T (x21)> (5.36)

Here we shall consider the case when N is even and both the integers ’%@:1),

Zw are odd. In this case, by (5.31), (5.35) and (5.36), we obtain

dy dy+do
Oi(214,20;) =1 —q2U(xa;) +q 2 V(14 224), (5.37)
where
Tg2—1 A cang
7
U(ry;) = by " (224)
Q=1
and
N-1 A,err A KR
!
V(w14,2;) = (1 + U(sz,z'))( Gy " (0)0 (Jfl,i)>-
R=1
Next we observe that
Tga—1 27rL(qd2 1)GANQsg ; Tga—1 2mLQsg 4 T _ 1 lfT So
Ul(x.) Z o (@12 Dgprr — Z . Tg22, _ g2 92 | $2.i3
0=1 -1 otherwise.
and
N-1 AQG)\R A KoR N-1 27\'LR522 27TLBR81 i
!
O o L e €0 B N R
R=1 1

T

1ngg|822andN)(82l Bovs,

R=
N -1 1ng2\322andN]s“ Bevi.
T
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From this, it follows that

Tga(N —1) if Tgs | s9; and N | % 4 le,i;

T
Viwi 22i) = ¢ =Tg, if T'gs | s2 and N { 7= + s
0 if Tgy 152

This, by (5.37), further implies that

do :
1+ ¢% if T'go 1 5245
do dy . S92.4 Bs i
0321, 02:)=41—q2 (Tga =1 =Tgq 2 (N = 1)) if Tga | 825 & N | Te T T
d72 ﬂ . S K Bs ,i
1—q%(Tg, =1+ Tg:q7) i Tgo | 525 & Nt 7, + =7

pr(@2+1) p/(p* +1

TNg2 N ) are odd. Working in

when N is even and both the integers

a similar manner as above, one can also determine explicit values of the sum

©;(x1,4,2;) in the remaining cases.
L]

In the following theorem, we determine the Hamming weight Wy (¢;(x1, 2)) when

M; = 2 and M, > 3 with either O( 1A1K2) =1or O 1A1K2) = 2.

Theorem 5.2.9. Let My = 2, My > 3, zy,;, = &' € del and xo; = &' € dez,
where 0 < s51,; < gt —2 and 0 < 59 < q® — 2. Suppose that either O(qbfle) =1
or O(gzﬁlAlK?) = 2. Then p is an odd prime, the integer rdy is even and the following

hold.

d 22 (pt2+1)
Mo

o [f M, is even an s odd, then we have

( 'rdl(p—l)2
4

R
(—1)"hiq2 )

mi(g—1) i m;(g—1) (71+qd72(M271)) (1+L
q q(g?1-1)(¢%2-1)

if My | sa; + A,

Wr(ci(x, x2)) = 2

dy rd) (p—1)> o d1
mig=1)  mila-D0+e ) (11T (c1)Lig D)
a a(gh1-1)(q%2-1)

Zf MQ 'f 5924 + %
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y2(p2+1)

o [f either M, is odd or 22— is even, then we have

Mz

rdy (p—1)? dq )

milg-1) | mi(a=1) (—1+ (121 F (M) (1075 (C1yrag P

q

Wh(ci(w1,29)) =

mi(g—1) mi(q—1)<1+(—1)”2‘1qd72) (1+L 1

a(g?1—1)(¢%2-1)

if My | say;

dy(p—1)2 d
4 (—1)5“(171)

q

a(g1—1)(g*2—1)

if My Jf 52,4

Proof. To determine the Hamming weight Wy (c;(z1,22)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

O, ) ) — G AQISAA'ZQ AZ?IG)\);ZQ e TA122K> Aq22K> )
1(371,27 1‘271) - Z (¢2 ) X2)¢2 (‘TQJ) (¢1 ) X1> 1 ($1,l)
220=0
FQEN D g g, ) (539)

Since O( flKl) = M; = 2, we note that nglAlKl is a quadratic character of F q,, ¢ is
odd and the integer d; is even. Further, by Theorem 2.2.1, equation (5.38) can be

rewritten as

Mr—1 _ AyGAzg AgGAzy rd (p—1)2 dq
@i(xl,i,l'z’i) == <—1+ Z G(¢2 i 7X2)¢2 i <x271)> X (_1_Lf(_1)31ﬂ'q7>
zo=1
(5.39)

Next when M, is even and ’%ﬁm is odd, by (5.31), we see that

My—1 _ AgyGAzg AgGAzg dy Mz—1 AgGAzg
7 7 —= 7
S G, ™ x2)dy ™ (2) = q2 Y (=120, ™ (22,)
zo=1 zo=1
d. Ma—1 2mLzg Mo
= q* Z e 2 (s2.+2)
zo=1

d
g7 (My — 1) if My | s, + 2L,
—qd72 if MQ"’SQJ—'—%
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This, by (5.39), implies that

rd (9112
o ] B O - D) (1 ST ()i i My | s A
i(xl,iaxQ,i) = dy rdy (p—1)2 rn ) M
(I4+g2)(1+e 7 (=1)rig2) if M1 sg;+
On the other hand, when either Mj is odd or }%t;m is even, we see, by (5.31),
that
Mz—1 _AQG)\ZQ AoGAzo do Mz—1 27TL2252’i
DG )6 Y (wa) = (<1 gE Y e
zo=1 zo=1
(—1)2=1qF (My — 1) if My | sy
—(—]_)')/271610172 if M, J[ 59
This, by (5.39), implies that
e (112
~(1 ()7 (M = 1) (14 5 (1) T Mo | sa

@i(l“l,i, 5172,z‘) = dy rdp (p—1)2 d

(L4 (1)t F) (1 +0 1 (=1)ig?) if Myt sg,.

]

Now we proceed to determine the Hamming weight Wy (c;(1,02) when both
My, My > 3. To do this, we see, by Lemma 5.2.3, that we need to determine explicit
values of the Gauss sums G(¢1A1j,xl), where 1 < j < (¢% — 1)g;. Towards this,
we note that O(¢2") = (¢* — 1)g1 > 3. Now by Theorem 2.2.2, we see that the
explicit values of the Gauss sums G(¢77, x1), 1 < j < (¢* — 1)gy, are known in
the semi-primitive case, i.e., when there exists a least positive integer ¢; satisfying
pt = —1 (mod (¢ —1)g1). In the semi-primitive case, by Theorem 2.2.2, we see that
the integer rd; must be even. We also recall that there exists a least positive integer
to satisfying p'2 = —1 (mod M), which gives rdy = 2ty7, for some positive integer vo.
That is, the integer rds is also even. This implies that the integer rd = ged(rdy, rds)

is even. As ¢ —1 =1 or 2 implies that rd = 1, we must have ¢ — 1 > 3. Since we
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have p'* = —1 (mod (¢¢—1)g;), there exists a least positive integer f satisfying p/ =
—1 (mod ¢?—1). This, by Theorem 11.6.2 of [11], implies that rd = 2. This further
implies that ¢?—1 = p"*—1 = (p/ +1)(p/ — 1), which gives (p ) (pf —1) = 1. From
this, we get p/ —1 = 1, which holds if and only if f = 1, p = 2 and rd = 2. Therefore

in the semi-primitive case, we must have ¢ = 2 or 4. In the following theorem, we
determine the Hamming weight Wy (¢;(x1,22)) when M; > 3 and My > 3 in the

semi-primitive case.

Theorem 5.2.10. Let My > 3, My > 3, zy, = ' € F*dl and xo; = &' € F*dz,
where 0 < 51; < gt —2 and 0 < S9; < q®™ — 2. Suppose that there exist least positive
integers t; and ty satisfying p* = —1 (mod (¢ — 1)g1) and p*2 = —1 (mod My).
Then we have q = 2 or 4. Furthermore, we have rdy = 2t17y,, rde = 2ty for some

positive integers i, vz, and

(

dy
m;(q—1 m;(g—1) 1—(_1)'v1q7) . |
(Z - q(qd1<1)(qd21) if Myt 81
mi(g—1) _ mi(a—1) (14 (-171¢F (=14 (=12 F My (M2-1)) )
! q(gh1-1)(q%2—1)
Wy (ci(xy,z2)) = if My | s1; & My | sa; + %ﬁfsu;
mi(g=1) _ mi(q_l)(1"'(_1)71‘7(1Tl ((M1—1)—(—1)72qd72M1))
7 q(¢®1-1)(¢%2-1)
‘ if My | s1i & My f sy, + 2220200

Proof. To determine the Hamming weight Wy (c;(z1,22)), we see, by (5.9) and

(5.10), that it is enough to determine the explicit value of the sum

Ml 1 MQ 1M1 1

AIKIZI A K AQG)\ZQ
_ 1 121 HN
@i(ml,iny,i) = 1- E (¢1 » X )¢1 3311 E E ( o3 ,XQ)
z1=1 zo=1 2z1=0
£2G2z) 1(Kaz2+K121)

6 (102)G(5 e ) (5.40)
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Further, for 1 < v < (¢? — 1)g; — 1, by Theorem 2.2.2, we see that

—Aqv

G ) = (1) g7

From this and by (5.31), equation (5.40) can be rewritten as

M;—1
@i(xl,z‘,xz,z‘) = 1- Z(_l)wilq%(bl&mzl(xl,i)
z1=1
! 220222 4 Ay (Kaza+Kiz1)
=30 S (1) g e, T () (—1) g R g

zo0=1 2z1=0

= 11— q%(—l)vl_lX(fL‘Li) + (—1)’Y1+72q(d1;d2)Y([E17i7ZEQ,i), (541)

where

Mi;—1

Xl = Y o

z1=1

and My—1 AgGAzg
Y('Tl,’h'rQ,i) — (1 _|_X xlz )( Z ¢2 —EN x2 AIKQZQ('Tl,i)>~
zo=1

Next we see that

N K, = NooH (- ATl (1- (¢~ 1)T’A1> (- 1)T’A2GL>

NgoH G GNH
_ (@' = DA
= —7/ /\<1 o ) 7'(q 1)L
(¢—1)7' Ay

Further, since % divides 1— and ¢— 1 divides ¢?2 — 1, we note that %

G

is an integer. Next we observe that

Mi—1 Mi—1 .
17 A1K1z1 ! 2mesy 21 M1 —1 if M1 | S15
X(x1,) E o1 (1) = e Mo =

z1=1 =1 -1 otherwise.
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and
Mz—1 AyGAzo Mz—1 22989 ; 27rL(qd1—1)K2z2317i
L2y A1K2z = My (DT -
o) (xQ,i)¢1 (xlz) = e 1
zo=1

NgoHKysy ;
(52,i+ GroL :

I
SMMSS
LOJL L

Q)

[ V)
g3

QS

. NgoHKo>s1 4
MQ —1 if Ml ‘ S1, and Mz ‘ 52 + %,

. NgoHK2s1 3
—1 if M1 ‘ S1,4 and M2 T 524 + Tgl

From this, it follows that

’ .
Ml(MQ — ].) if M1 | 514 and M2 | 524 + %,
Y (x1,02:) = — M, if My |si; and Myt sa,; + N2l Kos1.i,

GA\g1 )
0 if Ml )( S14-

Now on substituting the values of X (z1;) and Y (z14,22,) in equation (5.41), we

obtain
(1 - (_1)qud71 if M ¢ 51,
L (=171 (M — 1) + (—1) 72 5 My (My - 1)
Oi(x14,T2;) = it M, | s1; and My | so, + NgaHKos1,i |

GAg1 ’
(dq+do2)

L (1) (M = 1) = (1) M

i NgoHKos1
if My | s1,; and Ms 1 se; + %'

]

Remark 5.2.11. By applying Theorems 5.2.2-5.2.10 and by (5.4), one can deter-
mine all non-zero Hamming weights in some A-MT codes with at most two non-zero
constituents, which we demonstrate in the following section by computing Hamming

weight distributions of several classes of MT codes.
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5.3 Some applications

In this section, we will explicitly determine Hamming weight distributions of
some classes of MT codes with at most two non-zero constituents. Using these
results, we further identify two classes of optimal equidistant linear codes and several
other classes of minimal linear codes within these classes of MT codes. Recall that
the support of a vector v = (vg, vy, ,v,-1) € Fy, denoted by supp(v), is defined
as the set supp(v) = {i: 0 < i <n — 1,v; # 0}. Further, a vector u € Fy is said to
cover another vector v € Fy if supp(v) C supp(u). A codeword ¢ € C is said to be
minimal if ¢ covers only the codewords ac € C for all a € F,, and ¢ does not cover
any other codeword of the code C. The linear code C is said to be minimal if every
codeword of C is minimal.

Next we first state a sufficient condition for a linear code over a finite field to be

minimal, which was derived by Ashikhmin and Barg [1].

Lemma 5.3.1. [1] A linear code C over F, is minimal if it satisfies

”mm q_l
> —, 5.42
”ma:p q ( )

where Wi and W, denote the minimum and the maximum among the Hamming

weights of non-zero codewords of the code C, respectively.

In view of the above lemma, we see that all equidistant linear codes over finite
fields satisfy the inequality (5.42), and hence are minimal linear codes. It has been
shown that minimal linear codes are useful in constructing secret sharing schemes
with nice access structures [19, 23, 54, 60, 80] and in secure two-party computation
[2, 22]. In addition, these codes can be effectively decoded with a minimum distance
decoding algorithm [1].

Throughout this section, let 4 be a A-MT code of length n over F, with the
constituents €1 = (Fy) C Gi, 6> = (F3) € Gy and €5 = --- = €, = {0}, where
Fy = (Fi1,Fia,--- ,Fiy) € G and Fy = (Foy, Foo, -+, Foy) € Go. Further, let us
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define the sets Z; = {1 < i <(:F; #0},Zy, ={1<i<{(:F,; #0},Z; =
{1<i</{t:F,;#0andF,; =0},2, ={1<i</{:F,;=0andF,; #0}
and Zs = {1 < i < {: Fi; # 0and Fy; # 0}. We also recall that M; = %,
MQ:W_IGMagw_ng( =1 0y) andTw—gcd(dw L0, for 1 <w <2,

In the following result, we state the Griesmer and Plotkin bounds for a linear

code over [F,.

Theorem 5.3.2. [44] Let C be a linear code of length n, dimension k and Hamming

distance d over F,.

k=1
(a) (Griesmer bound) The parameters [n,k,d| of the code C satisfy n > {%-‘.
=0

(b) (Plotkin bound) The parameters [n, k,d] of the code C satisfy ¢* < {LJ

qd—n(gq—1)
provided gd > n(q — 1).
In the following theorem, we obtain a class of equidistant optimal A-MT codes

that attain Griesmer and Plotkin bounds.

Theorem 5.3.3. If 7, = 1, Fy # 0 and Fy = 0, then the A-MT code € is an
equidistant code of length n over F, with the only non-zero Hamming weight as

> mila-Dg 7 g, particular, if Zy = {1,2,--- L}, then the code € has parameters

g -1

[n, dy, "(qq_dll—)ﬁl_l and is an optimal code that attains both the Griesmer and Plotkin

bounds.

Proof. Since 77 = 1, by (5.4) and by applying Theorem 5.2.2(a), we see that each

non-zero codeword of ¢ has Hamming weight > %. Further, for each i €
i€z

Zy, since €™ = §7™ = A7) we see that Sglm’ “Y = 1, which implies that (1:1__711 |

m;. Now when Z; = {1,2,--- ¢}, one can easily see that the code € has parameters
[n dq ”(qdll—)qlll and attains both the Griesmer and Plotkin bounds. O

From this point on, in Tables 5.1-5.9, we assume that Ay =1 and A; = 0 for all
other non-zero Hamming weights j’s. In the following theorem, we obtain another

class of equidistant optimal A-MT codes, which attain Griesmer and Plotkin bounds.
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Hamming weight j

Frequency A;

rdy(p=1)% dy rdy(p—1)Z dy
Z mi(qfl)(qd1+L*47 q2 ) n Z m;(g—1) (qdlfL Z q2 ) gt -1
dy 1 dy _1 2
i3 q(q ) €3y q(q )
rdy (p—1)° dy d rdi(p—1)° dy
7) mi(qfl)(q Tte 4 qT) gt -1

mi(g—1)(¢1—" 4 ¢
2 ( (g1 -1) + 2

1€S51 1€52

q(qh1-1)

Table 5.1: Hamming weight distribution of the code € considered in Theorem 5.3.4

Theorem 5.3.4. Let Fy # 0 and F, = 0. If S; ={i € Z, : F1; is a square in ]qu1},
Sy = {i € Zy : Fi; is a non-square in Iqul} and 71 = 2, then the A-MT code €
has at most two non-zero Hamming weights and its Hamming weight distribution
is given by Table 5.1. In particular, let Z; = {1,2,--- £} and mqy = mg = --+ =

me so that n = mqyl. Now if { is even and |Si| = |Ss| = £, then the code €

n(g—1)q1~!

has parameters [n,dl, P

] and s an optimal equidistant code that attains

Griesmer and Plotkin bounds.

Proof. By applying Theorem 5.2.2(b) and working in a similar manner as in Theorem

5.3.3, the desired result follows immediately. O

In the following theorems, we identify some more classes of few weight A-MT

codes.

Theorem 5.3.5. Let 7y > 3, Fy = (€11, €19, ,€14) and Fy = 0. Suppose that there
exists a least positive integer sy satisfying p* = —1 (mod 7). Then we have rd; =
2v181 for some positive integer vi. The A-MT code € is a 2-weight code of length n
over F,, whose Hamming weight distribution is given by Table 5.2. Furthermore, if
vy 18 odd, then the A-MT code € is minimal when q%l —qri + 1 >0, while if 1y is

even, then the A-MT code € is minimal when qd71 —qn+711 —1>0.

Proof. Tt follows immediately from (5.4) and by applying Theorem 5.2.2(c). O

Theorem 5.3.6. If M, = M, = 1, then the A-MT code € has at most three non-zero

Hamming weights and its Hamming weight distribution is given by Table 5.3.
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Hamming weight j Frequency A;
5 mi(a—1) (¢1—(-1"1-1¢F (n-1) 1
1€E21 @D n
d
5 mi(g-1) (g1 +(~1)1~1g ) (¢"1~1)(r ~1)
: q(qh1-1) g
€2

Table 5.2: Hamming weight distribution of the code € considered in Theorem 5.3.5

Hamming weight j Frequency A;
(— di—1
Z ml((;dll)_qll qdl _ 1
= m;(qg—1)g%2T do
EEZ: g1 ¢= -1
7 2

=T

mi(g—1 m;(qg—1)q%2 T m;(q—1)((¢"1 —1)(¢%2—1)—1
ZZ qd1 )ql + ZZ (qd2 12 + ZZ (a= d1 11)()052 21) 1) (qdl - 1>(qd2 - 1)
1€43 1€EZY i€

Table 5.3: Hamming weight distribution of the code € considered in Theorem 5.3.6

Proof. Here it is easy to see that 7 = g1 = 9 = g = 1. Now the desired result

follows by equation (5.4) and by applying Theorems 5.2.2(a) and 5.2.4(a). O

Theorem 5.3.7. IfMl = 2, M2 = 1, F1 = (6171, €12, " ,611) and F2 = (62’1, €22, ",

€20), then the A-MT code € has at most five non-zero Hamming weights and its
Hamming weight distribution is given by Table 5.4.

Proof. Here one can easily observe that 71 = g1 = 2 and 5 = go = 1. Now the
desired result follows by equation (5.4) and by applying Theorems 5.2.2(a), 5.2.2(b)
and 5.2.4(b). O

Theorem 5.3.8. Let My > 3, Fy = (€11,€19,- - ,€10) and Fy = (€21,€22, -+, €20).
Suppose that there exists a least positive integer t satisfying p' = —1 (mod My). Then
we have rdy = 2ty for some positive integer . Furthermore, if 11 = 19 = My = 1,
then the A-MT code € has at most four non-zero Hamming weights and its Hamming

wetght distribution is given by Table 5.5.

Proof. The desired result follows by (5.4) and by applying Theorems 5.2.2(a) and
5.2.4(c). O
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Hamming weight j Frequency Aj
d rdy (p—1)2 dl
> mi(a=1) (¢ v?) -1
d1—1 2
1€Z1 ala )
rdi(p—1)° dy
Z mi(Q*l)(qdlfL 1 QT) qgh1—1
d1—1 2
iz, a(q )
mi(q—1)q2 T do
Z qu—l q - 1
1€
d rdq (p—1)2 ﬂ
Z mi(qfl)((] L+t 4 q ) + Z mg q 1 d2 ! (qdl_l)(qd2_1)
. q(q?1—1) q%2—1 2
1€23 ZEZ4
rdy (p—1)2 dy
+ Z <mz(q D) mi(g=1)(A+e— 4 g2 ))
dl—l d271
i a(q )(q )
rdq (p—1)2 dl
> mifg—1) (¢~ ?) . S mila-ngt? (a1 ~1)(g%2—1)
. q(q?1—1) q%2—1 2
1€23 ZEZ4
rdy (p—1)2 dy
+ 3 mz(q D _ mi(g=)(A—" T q2)
q(q1-1)(¢%2-1)
VA

Table 5.4: Hamming weight distribution of the code € considered in Theorem 5.3.7

Theorem 5.3.9. If M1 = 1, M2 = (g2 = 2, F1 = (61,176172,"' ,611) and F2 =
(€21,€29, -+ ,€24), then the A-MT code € has at most five non-zero Hamming

weights and its Hamming weight distribution is given by Table 5.6.

Proof. Here one can easily see that , = g9 = 2 and g, = 71 = 1. Now the desired

result follows by (5.4) and by applying Theorems 5.2.2(a), 5.2.2(b) and 5.2.5(a). O

Theorem 5.3.10. If M1 = g2 = 1, M2 = 2, F1 = (61’176172,"' ,61’5) and F2 =
(€21,€22, -+ ,€24), then the A-MT code € has at most four non-zero Hamming

weights and its Hamming weight distribution is given by Table 5.7.

Proof. Here we note that , = go = g1 = 71 = 1. Now the desired result follows by

(5.4) and by applying Theorems 5.2.2(a) and 5.2.5(b). O

Theorem 5.3.11. If F} # 0,F; # 0,71 = 7 = 1 and Zs is the empty set, then
the A-MT code € has at most three non-zero Hamming weights and its Hamming

weight distribution is given by Table 5.8.
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Hamming weight j Frequency A;
mi(g—1)gT1 T dy
Z qd1_1 q - 1
ISVA
D mi(q;l)qdrl ¢ — 1
) q“2—1
€7
22 mi(g—1)gT1 T + 3 mi(g—1)q%2~1 (@1 -1)(¢"2-1)
g1 da 1 M-
€73 icZy 1 !

mi1) mie-0 (1—0n-n(11e )
+ >

(g1 =1)(¢*2-1)

1€EZ5
> mi(q—1)g1 T I)qdl ! + 3 mi(g—1)q%2~1 (@1 -1)(¢=2—1)(M1—1)
A g1 -1 q*2-1 My
1€Z3 1€EZY

d

mi(g—1) mi<q—1><1+<—1>v-1q21’)
+y (i >

dl—l d271
&7 a(q )(q

Table 5.5: Hamming weight distribution of the code € considered in Theorem 5.3.8

Proof. 1t follows immediately by (5.4) and by applying Theorem 5.2.2(a). O

Remark 5.3.12. Working in a similar manner as in Sections 5.2 and 5.3, one
can also determine Hamming weight distributions of several classes of MT codes
with more than two non-zero constituents Cy,Ca,--- ,C,, all of whose codewords

(Ow,1,0w2, -+, 0wye) € Cy satisfy the following condition:

For 1 <1 </, there exist integers a;,b; such that 1 < a; <b; < p and z,,; =0 for
L <w(#ai,bi) <p. (¥

In the following theorem, we determine Hamming weight distributions of a class

of MT codes with three non-zero constituents whose codewords satisfy the condition

().

Theorem 5.3.13. Let € be a A-MT code of length n over F, with the constituents
¢ = ((1,1,0,---,0)) C Gy, 6 = ((0,0,1,1,0,---,0)) C Gy, €5 = ((0,0,0,0,1,- -
1)) € Gs and €, = --- = 6, = {0}. Let Froy = (&) and 13 = ged (ng:ll ),

where 631 = €53 for some integer U3 satisfying 0 < s < ¢® — 2. If iy = 75 = 13 =

1, then the A-MT code € has at most seven non-zero Hamming weights and its

Hamming weight distribution is given by Table 5.9.
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Hamming weight j Frequency A;
mi(g—1)g@1 1 d
Z - qd1,1 q T — ]_
1€
rdg(p—1)2 do
Z m;(q—1) (qd2+L 1 q?2 ) q%2—1
da —1 2
&2, a(q )
rdo(p—1)° doy
Z mi(qfl)(qd27" 4 qT) qd271
da —1 2
€2 q(q )
d rdy(p—1)° dy
) mi(g—1)g"1 " + ¥ mi(q_l)(q e ‘17) (g1 -1)(¢*2-1)
gh1—-1 a(q?2-1) 2
i€Z3 1€EZY
rdg(p—1)2 dy
m;(g—1) 1 (1+L gz )
+ 2= L CES)
1€
d rdo(p—1)2  do
> mi(g—1)q% 1 s mi(q*l)(q . qT) (g1 -1)(¢%2-1)
q1-1 q(q?2-1) 2
i€Z3 1€EZY
oy (y ()
m;(qg—1 1— —t q
+ Z q ( (¢91—1)(¢%2-1)
1€05

Table 5.6: Hamming weight distribution of the code € considered in Theorem 5.3.9

Hamming weight j Frequency A,
1 A1 =1
Z mz(qdl)q qd1 1
) q“1—1
ez
Zzl mi(g—1)g%~" A
1€E23 4l I
Z mi(qqgll)_qldl—l I Z mi((f];;)_qldz—l (qd171)2(qd2—1)
1€Z3 1€E24
e o r(dy+dg)(p—1)%  (dy+dp)
3 (et e (14, MO )
zeii'(q—l)qdl*l mi(g—1)q™ T (¢ -1)(¢™2-1)
1E43 1€44
mi(g—1) mi(g—1) r(dyt+dg) (=12 (dj+dp)
+.€ZZ: ( ¢ ale—1)(g%2-1) (1_L a4
1€25

Table 5.7: Hamming weight distribution of the code % considered in Theorem 5.3.10

Hamming weight j Frequency A;

S m(q;;%zldl*l ¢ —1
. qi1—
€2
Ezl mi(g—1)g72 71 d2 _ q
1€29 g*2-1 E

mi(g—1)q1~! mi(g—1)q%2~1
> o > to- e (g™ —1)(¢™ — 1)
ISV 1€22

Table 5.8: Hamming weight distribution of the code % considered in Theorem 5.3.11
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Hamming weight j Frequency A;

(m1+m;r)l§q:11)qd1*1 -1
(m3+m;1(3§q_—11)qd2; 1 ¢ — 1
(ms+-+my)(g—1)q3~ d
(m1+m2)q(ziil§qdl‘1 (m3+ma)(g—1)g%2 " - jl_ : d

i —1 21 (@™ —1)(g™ - 1)
o e = (¢~ De" ~ 1)
S = S — = — (¢ ~(g" ~ 1)
(m1+m;g£q:11)qd1*1 (m3+m33£q:11)qd2*1 + (m5+~-~+;7?ig)£(11—1)qd3*1 (qd1 _1)(qd2_1)<qd3_1>

Table 5.9: Hamming weight distribution of the code % considered in Theorem 5.3.13

Proof. By applying Theorem 3.5.2 and by working in a similar manner as in Theorem

5.2.2(a), the desired result follows.

]
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A generalization of multi-twisted
codes over finite fields, their

Galois duals and Type II codes

6.1 Introduction

In Chapters 3-5, we studied MT codes over IF,, whose block lengths are positive
integers coprime to ¢. In this chapter, we shall extend this family of codes and study
MT codes over I, whose block lengths are arbitrary positive integers not necessarily

coprime to ¢q. To do this, we assume, throughout this chapter, that ¢ = p", where

119
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p is a prime number and r is a positive integer. Let my,mo,--- ,my be arbitrary
positive integers (not necessarily coprime to ¢), and let n = my +mg+ - - - +my. Let

A= (A1, A2, -+, Ag), where Ay, Ag, -+, A¢ are non-zero elements of .

In this chapter, we shall study algebraic structures of A-multi-twisted (MT) codes
of block lengths (my, mg,--- ,my) and length n over F, and their Galois duals (i.e.,
their orthogonal complements with respect to the Galois inner product on IF;‘) We
shall derive necessary and sufficient conditions under which a A-MT code of block
lengths (mq,ma, - -+ ,my) and length n over F, is (i) Galois self-dual, (ii) Galois self-
orthogonal and (iii) Galois linear with complementary dual (LCD). We shall also
provide a trace description for all A-MT codes of block lengths (mq,mg, -, my)
and length n over F, by using the generalized discrete Fourier transform (GDFT),
which gives rise to a method to construct these codes. We shall further provide
necessary and sufficient conditions under which a Euclidean self-dual A-MT code
of block lengths (mq,ma, -+ ,my) and length n over Fy- is a Type II code when
A =1 and m; = n;2% for 1 < ¢ < ¢, where a > 0 is an integer and ny,ng, -+ ,ny are
odd positive integers satisfying ny = ny = - -+ = ny (mod 4). We shall also develop
generator theory for A-MT codes of block lengths (my, ma, - -+, m,) and length n over
[F, and show that each A-MT code of block lengths (my,ms,--- ,my) and length n
over [F, has a unique normalized generating set. With the help of a normalized
generating set, we shall explicitly determine the dimension and a generating set of
the Galois dual of each A-MT code of block lengths (mq,ms, - ,my) and length
n over [F,. Besides this, we shall obtain several linear codes with best-known and

optimal parameters from 1-generator A-MT codes over F,, where 2 < ¢ < 7.

This chapter is organized as follows: In Section 6.2, we study A-MT codes of block
lengths (mq,mg, -+ ,my) and length n over F, and their dual codes with respect to
the Galois inner product on Fy (Theorems 6.2.2-6.2.6). We also derive necessary
and sufficient conditions for a A-MT code of block lengths (mq,ms,--- ,my) and

length n over F, to be (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois
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linear with complementary-dual (LCD) (Theorem 6.2.8). In Section 6.3, we provide
a trace description for all A-MT codes of block lengths (my, ms, - - ,my) and length
n over F, by using the generalized discrete Fourier transform (GDFT), which gives
rise to a construction method for these codes (Theorem 6.3.2). In Section 6.4, we
derive necessary and sufficient conditions for a Euclidean self-dual A-MT code of
block lengths (mq,mg, - ,my) and length n over Fyr to be a Type II code when
A = 1 and m; = n;2% for 1 <1 < ¢, where a > 0 is an integer and ny,ng,--- ,ny
are odd positive integers satisfying ny = ng = -+ = ny (mod 4) (Theorem 6.4.4). In
Section 6.5, we show that each A-MT code of block lengths (my, ma, - ,my) and
length n over F, has a unique normalized generating set (Theorem 6.5.3). We also
explicitly determine the dimension and a generating set of the Galois dual of each
A-MT code of block lengths (my,ma,--- ,my) and length n over F, (Corollary 6.5.4
and Theorem 6.5.6). Besides this, we identify several linear codes with best-known
and optimal parameters from 1-generator A-MT codes over F,, where 2 < ¢ < 7
(Tables 6.1 and 6.2). It is worth mentioning that these code parameters can not be
attained by any of their subclasses (such as constacyclic and quasi-twisted codes)
containing record breaker codes. This shows that this generalized family of MT
codes over finite fields is more promising to find codes with better parameters than

the current best-known codes.

6.2 MT codes over finite fields and their Galois

duals

In Chapters 3-5, we studied MT codes over F, whose block lengths are coprime
to ¢. In this section, we shall extend the definition of MT codes, and we shall study
MT codes over I, whose block lengths are arbitrary positive integers (not necessarily
coprime to ¢). To do this, we recall that F, is the finite field of order ¢ = p", where

p is a prime and r is a positive integer. Here we have n = my + mgy + - -+ + my,
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where mq, mo, - -+ ,my are arbitrary positive integers, not necessarily coprime to gq.
For 1 <i </, let us write

m; = n;p™, (6.1)

where a; > 0 is an integer and n; is a positive integer coprime to ¢. Let Fy
denote the vector space consisting of all n-tuples over F,. We also recall that
A= (A1, A2, -+, Ag), where A\, Ag, - -+, \; are non-zero elements of F,. For 1 <7 </,
one can show that there exists a non-zero element o; € F, such that A\, = afai,

which implies that 2™ — \; = (2™ — o;)P" in F,[z]. Now a A-multi-twisted (MT)
¢

module V' is an F [z]-module of the form V = [[Vi, where V; = % =
i=1 ‘

% for 1 < ¢ < (. From this point on, we shall represent each element

c € Fy as ¢ = (cro,C11, 5 Clmy—13€2,0, €215 " s Coma—13 """ 5 €005 Ce15 """ 5 Clmy—1)

and the corresponding element c¢(z) € V' as ¢(x) = (c1(2), ca2(2), - -+, co(x)), where
m;—1 )
ci(z) = Y ¢ja? € Vi for 1 <i < (. Note that the map ¢ — c(z) is an F-linear

=0
vector space isomorphism from [y, onto V.

Definition 6.2.1. [5/ A A-multi-twisted (A-MT) code C of length n over F, is de-
fined as an F,[z]-submodule of the A-MT module V. Equivalently, a linear code C of
length n over I, is called a A-MT code if ¢ = (¢1,0,C11, "+ s Climy—15C2,0,C21, - = - ,
Coma—15° " 3€00sCo1s 5 Comp—1) 05 @ codeword of C, then its A-MT shift Th(c) =
()\101,m171, C1,0, """, Cl,m1—2; >\262,m2717 €20, yC2ma—25" " 5 )\zcz,mpb Cro, " 7Cf,mg72)

s also a codeword of C.

Now let g1(x), g2(x),- - - , go(x) be all the distinct irreducible factors of the poly-
nomials 2™ —ay, 2™ —w, -+, 2™ —ay over F,. Further, for 1 <i </Zand1 <w < p,

let us define

1 if g,(z) divides 2™ — a; in F,[x];
Cwi =
0 otherwise.

Therefore for 1 < ¢ < /, the irreducible factorization of the polynomial ™ — «; over
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[F, is given by
2 = g = ga () o) gy ) 6:2)

which further implies that the irreducible factorization of the polynomial ™ — \;

over [F, is given by

Next for each i, we see, by applying the Chinese Remainder Theorem, that

Vi ~ @wz Z>

w

P )
where the ring isomorphism is given by a;(z) — > €u,; (ai(z) + (g (2)P")) for each
w=1

a;(z) € V;. This implies that

f o[2] Flo _  Fi
V=1l @(f“ T T Tty ) 6

G

p
and the corresponding ring isomorphism from V' onto € G, is given by
w=1

l—) Z <€w 1 Cl gw( ) “1>),6w72 (02($)+<gw($)pa2>)7 .. ,Ew,Z(CZ(x)+<gw(x)pae>)>

w=1

for each c(z) = (¢1(x),co(z), -+ ,co(z)) € V. Furthermore, for 1 < w < p, let us
define

Sy, = {(a(m) 4 (gu ()P, ) + {go(x)P?), - -+, alz) + <gw(x)p“é’>> La(z) € Fq[x]} '

Here for each w, one can observe that the set S, is a commutative ring with unity

with respect to the component wise addition and the component wise multiplication,
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Fqlz] Fole] .. _ Fgz]
w1 2y S0 2 g (2)p 2y T Cw g e T

and we shall view the set G,, = ( > as an

S,-module. In particular, when a; = as = - -+ = ay, the set G,, can also be viewed as

Fy[a]

& Gu(z)P™)

-module for each w. From the above discussion, we deduce the following:

Theorem 6.2.2. (a) Each A-MT code C of length n over F, can be uniquely ex-

pressed as

C= Echw,
w=1

where Cyy = { (€w1(c1(x) + (gu(x)P™)), -, €welce(z) + (gu(z)P™))) € G :
(c1(x), ca(x), -+ ,ce(x)) € C} is an Sy,-submodule of Gy, for each w. (The codes

C1,Ca, -+ ,C, are called the constituents of C corresponding to the polynomials

g1(x), g2(x), -+, g,(x), respectively.)

(b) Conversely, if Dy, is an S,-submodule of G, for 1 < w < p, then the direct
p
sum D = @ D, is a A-MT code of length n over F,.
w=1
Next we proceed to study dual codes of A-MT codes of length n over F, with
respect to the Galois inner product on Fy, which is first defined and studied by Fan
and Zhang [36]. For this, let k& be a fixed integer satisfying 0 < k < r. Then the

k-Galois inner product on Fyy is a map (-, -); : Fy x Fy — F,, defined as

L m;—1

()= diy; foralld,ceFw.

i=1 j=0

n

u» Where oy,

Note that the map (-, )% is a non-degenerate ox-sesquilinear form on F
is an automorphism of F,, defined as oy (b) = 0" for each b € F,. In particular,
the k-Galois inner product coincides with the Euclidean inner product on Fj when
k = 0, while the k-Galois inner product matches with the Hermitian inner product

r

on IE‘;’; when r is even and k =

[\

Now for a A-MT code C of length n over F,, the k-Galois dual C** of the code
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C is defined as
CH ={deF;:(dc)=0forall ceC}.

Next let m = lem|[m10(A;), maO(N2), -+ ,meO(Ng)], where O()\;) denotes the
multiplicative order of A; for each 7. It is easy to see that T{* = I, where [
is the identity operator on Fj. From this, we see that the k-Galois dual Ct* of
the code C is a linear code of length n over [, satisfying the following: if d =
(d1,07 dl,h Tty dl,ml—lé d2,0, d2,1, s ,dz,mg—l; T ;de,o, df,la T ,dé,mgq) is a codeword
of C1¢, then its A=P*-MT shift T, s (d)=(A7" dyom—1,d10, - > damy—23 A5” damy-1,
dag, +  dome—2;"+; )\Zpkd&w_l, deo, -+ dom,—2) is also a codeword of C*, where
AP = (Al_pk, A;pk, e ,)\;pk). Therefore C+ is a A=""*-MT code of length n over
F,. Equivalently, C** is an F,[z]-submodule of the A~?"-MT module V' = ]ﬁ[l‘/;’ :

where V! = Fyla] — = ]quk ; for 1 <i</.

(@mi=ATT) ((@Miag PP

In order to further study algebraic structures of k-Galois duals of A-MT codes,

let us define a map .7, : Fy[z] — F,[z] as

Ff@) =z +a e+ d o+ d
for each f(x) = ap + a1z + -+ + aua’ € F,fx] with a; # 0. Then we observe the
following:

Lemma 6.2.3. Let a(x) = ag+az+---+aat, d(x) = do+dyx+---+d,at € Fylz],
where ag, a;, d, are non-zero elements of Fy and t,u > 0 are integers. Then for

0 <k <, we have the following:
(a) (T o Zioy) (a(2)) = (Fr—k © F) (a(2)) = al@).
(b) Fi(a(z)d(z)) = Ti(a(x)) T (d(2)).
Proof. Proof is trivial. O

Now we make the following observation.
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Lemma 6.2.4. For 0 < k < r, the map T}, : <f£[f}1> — <f,fl[x1 defined as

Ti(d(z)) = jz:; d x I for each d(z Zd = %]1),

is a ring automorphism. (Here we have x=' = z™! € <£Z[x}1> )

Proof. Its proof is straightforward. O]

Next for 0 < k < rand 1 <17 </, let us define the map 7;(“ : Vi = V! as

() m,-—l k . mi—l . k
T (ci(x)) = > o 077 for each ¢i(x) = Y cija/ € Vi, where 7! = AV ™! €
7=0 7=0

V!. We see that the map Ti is a ring isomorphism, and its inverse is a map S,gi)
m;—1 )

V! — V;, defined as S ( i(x) = Z dy ; ""279 for each di(z) = > d;j27 €V,
j=0

where 71 = A\ '2™~! € V;. One can easily show that the map S,iz) is also a ring

isomorphism. Now let us define the maps (-,-), : V' x V — Folrl - and {3,

(zm—1)
VxV — —@Z[f}w as

and

(o). ()}, = 3" A (ﬁ) ()89 (di(2))

i — /\Z
i=1

for d(z) = (di(x),dy(x), -+ ,de(x)) € V' and c(x) = (c1(x), co(x), -+ ,co(z)) €V,

where V' and V' are viewed as <fni[:f]l>—modules. From this, we make the following

observation.
Lemma 6.2.5. For 0 < k < r, the following hold.

(a) If d(x) € V' and c(z) € V, then we have

(d(x), c(x)),, = (d, e),+{d. Ta(c))y 2+ {(d, T}(c)), @*+- -+ {d, T (c)), 2™
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and

{c(z),d(x)}, = (¢, d), _,+(c, Ty (d)>r_k x4+ (c Tm_l(d)>r_kxm_1 in

Y A_pk

(b) For d(z) € V' and c(x) € V, (d(x),c(z))r = 0 if and only if {c(z),d(z)}, = 0.

(¢) The mapping (-, )k is a non-degenerate Ty-sesquilinear form on V' x V) and

the mapping {-,-}, is a non-degenerate T,_j-sesquilinear form on V x V',
Proof. Proof is trivial. O

In the following theorem, we show that the k-Galois dual of a A-MT code of
length n over F, can also be viewed as the orthogonal complement of the code with

respect to the 7i-sesquilinear form (-, -), .
Theorem 6.2.6. IfC (C V) is a A-MT code of length n over F,, then its k-Galois
dual Ct+(C V') is a AP"-MT code of length n over F, and is given by

CH = {d(x) € V' : (d(x),c(z))r = 0 for all c(x) € C}.

Proof. 1t follows immediately from Lemma 6.2.5(a). O
Further, a A-MT code C of length n over I, is said to be
(i) k-Galois self-dual if it satisfies C = Ct*.
(ii) k-Galois self-orthogonal if it satisfies C C C**.
(iii) k-Galois linear with complementary-dual (LCD) if it satisfies C N Ct* = {0}.

We now proceed to study algebraic structures of k-Galois self-dual, k-Galois self-
orthogonal and k-Galois LCD A-MT codes of length n over F,. Towards this, we
first recall that gi(z), g2(2),- - , g,(x) are all the distinct irreducible factors of the

polynomials ™ — oy, 2™ — ag, -+, 2™ — oy in Fylz]. Further, by Lemma 6.2.3,
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one can easily observe that 7 (¢g1(x)), Jk(g2(2)), - , Tk(g,(x)) are all the distinct

irreducible factors appearing in the factorizations of the polynomials 2 —a; ” k, x™—

oc;pk, cee L x— ozzpk in F,[x]. Next for 1 < w < p, we note that there exists a largest

non-negative integer t,, satisfying the following two conditions:

(1) guw(@), Tilgw(®)), -+, T (gw(z)) € Fylz] are distinct irreducible factors of

the polynomials ™ — ay, 2™ — ag, -+ , 2™ — oy in F,lz].

(i) Either (Z % (gu(2))) # (gu (2)) for 1 < w' < por (F (gu(2))) = (gu())
holds.

Accordingly, we classify the irreducible polynomials g;(x), g2(x), - -, g,(z) as fol-

lows:

Definition 6.2.7. For 1 < w < p, we say that an irreducible factor g,(x) of the

polynomials ™ — ay, 2™ — g, -+ ,x™ — g in Fylx] is of the

o Type Lif ty =0 and (T (gu(2))) = (gu(2)).
o Type I if ty = 0 and (T (gu(2))) # (9u(2))-

o Type 1T if t,, > 1 and (7 (g, (2))) = (gul2)).

o Type IV if t, > 1 and (T (g,(2))) # {gu()).

Now we assume, by relabelling g, (x)’s if required, that ¢;(x), g2(x), - , g5, ()
are all the distinct Type I irreducible factors, gs,+1(), gs,+2(), - - - , gs, (z) are all the
distinct Type II irreducible factors, gs,+1(), gs,12(), - -+ , gs;(x) are all the distinct
Type IIT irreducible factors and gs,1(x), gss12(x), -+, gs,(x) are all the distinct
Type IV irreducible factors of the polynomials 2™ — aq, 2™ — g, -+ , 2™ — ay in
[F,[z]. Here we note that p = s+ i (ty+1). Further, for 1 < a < s4,0 < b <t,+1

Y=s9+1
and 1 <17 </, let us define

R — Fole] () 1 if Z2(ga(x)) divides 2™ — o in F,[z];
o (T (ga(x))P™) o 0 otherwise,
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(note that RS;JFI) = RLO; fora € {1,2,--+ ;s1}U{so+1,804+2,--+ 83} and 1 <
i < ).

Forl <a <s4,0<b<t,and 1 <1 </, we observe that if eg))l = 1, then
T (go(2)) divides 2™ — o ? " in F,[z]. Now by applying the Chinese Remainder

)

Theorem again, we obtain

53

(EBQ(O)) ( @ gff”)ea( ) (9§“)@g§1)@---@9§t21>>@

p=s1+1 z=s9+1 g
S4
( . <95°>@g§1>@-~-@g5“))),
v=s3-+1 h a: 4

and
S1 52 83
(@g@)@( O 1)o@ (wremvs ont))e
t=1 n=s1+1 z=s9+1 h ?{’Z g
S4
(& (wrons on))
v=s3+1 h Hu d
where
gg’) — (€$)1R£1)17 a2Ra27' - aeR ) forl<a<s;and 0<b<t,,
’Hgo) = (eitj)RZJ, ez‘; RSB, . 752,2 Riog) for so +1 < 2z < s3,
HES = (efi[l)Rff)l, Szl)R . ,eszl)Rfj)Z) for sy +1<w<sgand 1 <s<t,+1,

(note that =t = Hgo)’ as RS;H) = Ri?g for so+1<z<szand 1 <i</).

In view of this, from now on, we shall identify each element c¢(z) = (¢1(z), c2(x), - - -

Cg(.f)) e Vas C = (Clu CQ? T 7C817 Csl—l-lu Csl+27 e 7C827 CSQ+17 CSQ+27 e 7C837 0534-17
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Csytay -+, Cs,), where

G = (C.019,-,C) e 6,0 = (. O, C) € GV and

w10 20

C, = @0,c9,....c% chch,....cly)-. 0% ) ... chyeaq,

w,r w0 wl Yw2H " w,

for 1 <t<s;,81+1 < pu<syand so+ 1< w < sy with
CL) = el (ei(@) + (T (gal@)™)) € IR

forl1<a<s4,0<b<t,and1<i</.
Analogously, we shall identify each element d(z) = (dy (), do(z), - ,de(x)) € V!
as D = (D1, Do, -+, Dy, Dgy 41, Dsyy2, -+, Doy, Dsyy1, Dsyi2, - -+ Dy, D1, D ya,
-, Dg,), where

0 0 0 0 1 1 1)
Dt - (Dlg,l)?DzE,Q)?“'?D( )>€gt( )7 DH - ('D/(L&7D/(j,%77‘D;(j, ) H(l
D, = (D(?l)?Dz?2)7"' Diog,Dif,D(%7--~ 7D£127"' Dil)ngt )7 o 7D( Z)> € H, and

Dv = (D(t11)+1)7D1()t,12)+1) aD(tv+1) D£1£7D§}%7 v,1 » P2

with

D) = e (@) + (g@)™)), Dy = e (dil) + (Tilgu(@)™)),

Di?i) = egj)(dix —|—<gz >), D(J) =€ Sl 1)( —|—<9j g.(z))"" >) and
DY) = el (dix) + (T (go(@))))

for 1 < j<t,1<j7<t,+1,1<t<s;,8+1<u<sy s5+1<2z< 83,

ss5+l<v<sgyand 1 <i</.

Next for 1 < a < sgand 0 < b <t,+ 1, we note that the set S® — {(f(x) +
(T aa@P™ ), @)+ (TGl S )+ (Toan()P™)) ¢ (@) € Fyfa]}

is a finite commutative ring with unity with respect to the component wise addition

. ’Dﬁgv' .. D(tv) D(tv) ,Dit,z)) € H,
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and the component wise multiplication. Further, since V and V' are F [x]-modules,
we shall view the set G (resp. 7—[,(}), #” and H&S)) as an S”-module (resp. Sh-
module, Séo)—module and Sés)—module) for 1 <a <s;and 0 <b<t, (resp. for
sS1+1 < u<sy,859+1<2<s3 s9+1<w<sgand 1< s<t,+1). From this,
one can observe that a A-MT code C of length n over F, can be uniquely expressed

as

<@Ct(o)) b ( é CS”) ® ( é (Cﬁo) ®c @---@sz))) -
t=1

p=s1+1 z=89+1
S4
( D (650) ocW ... o Cf}m))) 7 (6.4)
v=s3+1

where Ct(o) (resp. C,SO), ¢ and ngj,)) is an St(o)—submodule of g§“) (resp. S;(LO)—
submodule of gf})), S,gj )_submodule of (]Z(,j ) and Sl(,j ) _submodule of géj /)) forl <t<g
(resp. for s1+1 < pu < s9, 80+1<2<s3,0<7<t,s3+1<0v<s4and
0<j <t).

Now for 1 < w < p, let deg g, () = d,,. Further, note that deg Z; (g, (7)) = dy,

as gy () is an irreducible polynomial over F,.

Fori<a<s,0<b<tpband1 <</, let —: e&b).R() D RO 1o the

it tagt az a,i
map, defined as
dap®i—1

Z hp if ) = ;

(6]

h((f)(l') _ ’ (65)
0 if ¥ =0

a,i

(®) dog 7t ® (tat1) _ p(0)
for all hy;(z) = Z hyx? € R ( Vi) when ¢,; = 1, (note that R, = R,

i
fora € {1,2, -, Sl}U{82+1 Sg+2,---,s3}and 1 <i</).

For 1 <t <s;and 1 <17 </ satisfying egg) = 1, we observe that the conjugation
map — is the identity map when d; = 1,k = 0 and p* = 1, while it is an automor-
phism of Rg? when either d; > 1 or 0 < k < r or p* > 1. In view of this, we note
that for each ¢(x) = (¢1(x), ca(x),- -+ , co(x)) € V, the element ¢(z) € V' is identified
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as

(017 027 T 70817 Cs1+17 Cs1+27 e 70827 Csz+17 0524-2, e 70837 ng+17 CSg-‘rQ? Tt 7054)7

where

©9.c9,---.ceg?, T, = (9.cH,-.c)end,

B I3

€, ¢ ... ¢ 9.9 ... O, oY el L oY) e B,

z z,1 z

S8 A

(Cvl 7C(tv o C(tz)ac(01)701€?2)7 7015?27 70%_1) Ctv_l )t C(t;_l)) € H,

’U, ’U, U7 ’U7

for 1 <t<sy,s1+1< u<s9,8+1<z<s3and s3+1<v < s, with

O] = (@) + (T gala))™)) € RS

a,l .t

forall 1 <a<sy, 0<b<t,and1l<i</.

From this point on, let a = max{ay,as, -+ ,a,}. Then it is easy to see that if

e® 1forsomel§a§s4,0§b§taand1gigf,thenxmi:)\;pk

Rfjjj”, which implies that A;” (2 — 1)/(@™ — A;"") = m/m; = 0 in RCTY when
a; # a, while A;pk(im —1)/(a™ — A;pk) = m/m; # 0 in RbJrl when a; = a.
In view of this, one can easily observe that the sesquilinear form corresponding to

. . . g Fqlz 2 Fglz]
(-,-), is a mapping [-, -], from V' x V into <@ <gt(qx[)11“>> ® < ©® <«%(gz£1’]))”“>> ®

t=1 p=s1+1
S3 S4

Fy[z] Fy[z] . Fylz] Fy[z]
(z:@ﬂ <<9z<w>”“> T ® O %Z(gz(x))m) ) ’ (v=§+1 <<z§”“(gv(x>)p“> @
Tgolr @O (gu<x>>pa>>>’ defined as

: m . _(0) 5(0) ~(0) : m (0) (0) ~(0) : m 0)
[D7C]k:<zm Dlzcll7 M D CQZ’ 7ZH 51,1 31,1 3117

i=1 " i=1 " i=1 "

¢ ¢
m (o) 1) (0) m (o) 1) (0)
Z Eesl+1,iDsl+1,iCsl+1,i’ Z Eesl+2,iDs1+2,iCsl+2,i7 T

i=1 i=1
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¢ y4
m o m (ts2+1) tsz+1) m (0) o
82, 32,1 52,17 m,652+11 52+1z 52+117 52—1—12 52+lz so+1,17
i

=1

my;
y4

. Z m (t52+171)D( 52+1)C( so+1— 1)
=1

m Zﬁ (t2g) p(0) (CEsy)
mi652+1’i so+1,4 “so+1,0 ’ ) . mi 83,0 783,17 83,0
=1
l l I 4 -
m (O) m tSs tss)c(t%—l) M tegy1 Dt53+1+10t53+1
é Ee‘% i 83 z 53 ’L’ 72 E 83,1 83, $3,0 7Z: E€s3+1,i s3+1,2 s3+1,3°
i=1 =1 i=1
l - l -
m.o  pm A0 Zﬁ (tsg1-1) y(tsg 1) (Esgt1=1)
E s a1 sa 1Y sa k1,070 2 Css sstli Tsgtla 0T
. (] .
i=1 i=1
¢ - l J—
t54 ts4+1 (tsy) m (0) m (t54*1)D(tS4)C(tS471)
€s4,i s4z s4z ’E :7 €sa)i 542 542"”’27.6847%' sS40 7 sai )
my; —m
z:l i=1 =1

(6.6)

for each C € V and D € V’. Furthermore, with respect to the sesquilinear form
[-,-], (as defined by (6.6)), we observe that the k-Galois dual C** of the code C is

given by
S1 So
1y <@C§O)Lk> ® ( @ C;(LO)J_IC) ( @ C 2)Lk EBC J_kEB_ . '@Cz(tz_l)J—k)
t=1 p=s1+1 z=s2+1
S4
@( P crec O e .0 cﬂvmk), (6.7)
v=s83+1
where

o CV%(C G s the orthogonal complement of C\”) with respect to [ 1 rggo)xgt(o)

for 1 <t <sy;

o CF(LO)LI“ (C M) is the orthogonal complement of C with respect to [, 1 er})ng‘”

for s1+1 < p < s9;

o C/+(C 1YY is the orthogonal complement of C'*) with respect to [-, Ji 130y gt
and cﬁj”’f(g ’ngﬂ)) is the orthogonal complement of cY with respect to

['7‘]’? ngj+1)Xg£j) fOl“ 0 SJ S tZ - 1 and 82 +1 S VA S 83;
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o CV ’)”(g HY IH)) is the orthogonal complement of CY/ ) with respect to

[ ]k [ 46+ 6" for s +1 <wv <syand 0 <5 <t,.

Here [-,-]i fggmxgt(m (resp. [+, -], r%ﬁf)xgﬁo)’ [k T g [l Ty, ges and
[ ], [H(Uj/+1)xg£j/> ) is the restriction of the sesquilinear form [-,-]; (as defined by
(6.6)) to G\¥ x G\ (vesp. H x G, HITY x G H® »x G and 1Y x gP)
for each t (resp. p, z, v, j and j'). Further, for so4+1 <z < sz and s3+1 < v < sy,
let us define ICE?) = g;ﬁj) N ng) and /Cq(,j/) = Ql(,j,) N ng,), where 0 < 7 < ¢, and
1<j" <t

Now as a consequence of the above discussion, we have the following theorem,
which provides necessary and sufficient conditions under which a A-MT code is (i)

k-Galois self-dual, (ii) k-Galois self-orthogonal and (iii) k-Galois LCD.

Theorem 6.2.8. Let A = (A, Ag, -+, \¢) be fized, where i, Aa, -+ , A are non-zero
elements of F,. Let

c = (@CS”)@( P C}P)@( P (CS”@CQ”@---@CQZ)))
t=1 =

p=s1+1 z=89+1
S4
@( & (Cff’) aClVe @ Cff”))
v=s3+1

be a A-MT code of length n over F,, where Ct(o) (resp. C£0)7 ¢ and Cﬁj')) s an
S§0)-subm0dule of Qt(o) (resp. Sﬁo)—submodule of Q,SO), SY) _submodule of GY and
Szgj/)—submodule of gfﬂ")) for 1 <t < s (resp. forsg;+1<p<s9,8+1<2<
83,0 <7 <t,s3+1<v<s4and0<j <t,). Then for 0 <k <r, the following
hold.

(a) The code C is k-Galois self-dual if and only if the following conditions are
satisfied:

e None of the polynomials x™ — aq, 2" — g, - - - , 2™ — ay has an irreducible

factor of the Type II in F,[z].



6.2 MT CODES OVER FINITE FIELDS AND THEIR (GALOIS DUALS 135

o CV =% for1<t<s.

o for so+1 < 2 < s3and 0 < 5 < t,, ng) s an Sz(j)—submodule of
KY) satisfying ¢V = ¢t ¢V = ¢k @ = ¢ L o) =

Citz—l)Lk )

o Forss+1<w < sy, CQ(,O) = {0}, Cél) = IC»E,l) and Cz(,j/) s an Sl(,j/)-submodule
of K satisfying ¢ = oY Ve gpg et = {0}, where 2 < j' <t,.

(b) The code C is k-Galois self-orthogonal if and only if the following conditions

are satisfied:

° Ct(o) C C,&(O)L’“ for1 <t <sy.
o C,SO) = {0} forsi+1 < pu < so.

o forss+1<z<s3and0 < j < t,, ng) 18 an S§j)—submodule of Ing)
satisfying CY € ¢4 et € ¢t P et L el el

o for s3+1 < v < sy, Cz(,o) = {0}, Cz(,l) is any Sé”—submodule of le,l)
and C5" is an SY”-submodule of K satisfying ci" C Céj/_l)L’“, where
2<j <ty

(¢) The code C is k-Galois LCD if and only if the following conditions are satisfied:

o CVNCOM = {0} for1 <t < s

. C,SO) 15 any Sﬁo)—submodule of QL(LO) forsi+1<pu<s,.

o Forso+1<z<s3and0<j<t,, O n el = {0}, eV A cOte —
{0}, e mel Ve = (o,

o For sy +1 < v < sy, C is any S -submodule of G\ and €Y7 N
cy I = {0}, where 1 < j' < t,.

When either £ = 0 or r is even and k = 7/2, we see that Z*(gw (7)) = gu(2),
which implies that t,, < 1 for 1 < w < p. This further implies that the polynomials
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™ — ap, ™ — g, -, 2™ — ap do not have an irreducible factor of the Type IV in
F,[z]. From this and by (6.4), we note that a A-MT code C of length n over F, can

be uniquely expressed as

53

S1 52

c=(@c)e( @ e ( D (ach)), (6.8)
t=1 p=s1+1 z=89+1

where CTFO) (resp. C;(LO) and CY )) is an St(o)—submodule of gt(o) (resp. Sﬁo)—submodule

of Ql(to) and Sz(j)-submodule of Qéj)) for 1 <t < sy (resp. for s+ 1 < p < sy and

So+1<z<s3with0<j<1).

6.3 Trace description of MT codes

In this section, we will provide a trace description for all A-MT codes of length n
over [F,. For this, we first recall the definition of the Hasse derivative of a polynomial

in F,[x].

Definition 6.3.1. [51] For an integer j > 0, the j-th Hasse derivative (or the j-th
h

hyperderivative) of the polynomial g(x) = > gix* € F [z] is defined as
i=0

We next recall the definition of the classical discrete Fourier transform (DFT).
For this, let 6 be a positive integer satisfying ged(f,p) = 1, and let A be a non-zero
element of F,. Further, let £ be a primitive #-th root of unity in some field extension
of F,, and let 3 be an element in some field extension of F, satisfying 3% = \.

One can easily observe that all the distinct roots of #¥ — X over F, are given by

-1
B, BE, BE2, -+, BEPL. Now the classical DFT maps the element c(z) = Z:OC,,:E” €
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Fy[a]
(xf—)

to the sequence (¢, ¢y, -+, Cg_1), where

>
—

ey =c(BE) =) c;(BEY) for 0<v<O—1.

J

I
o

On the other hand, the inverse DFT is given by

5

-1
éh(ﬁ_“)h for 0<kK<6-—1.
0

>
Il

We refer to [57, p. 239] for more details.

Next let M = lem [n;0(ay),n20(az), - -+ ,n¢O(cy)], where O(a;) denotes the
multiplicative order of ; in I, for 1 < i < ¢. We note that ged(M,q) = 1, and
hence there exists a field extension Fg of F,, which contains a primitive M-th root
of unity. From this, we observe that there exist elements 1, B2, -« , 8¢, &1, &2, -+ , &
in Fg such that

B = a; and O(&) =n; for 1 <i < (.

Therefore for 1 < i </, we have
2" — oy = (x = Bi)(x — Bi&) -+ (w — Bi&" ) in Folal,
which gives

" — )\ = (x" — Oéi)pai = (x - @')pai (x - Bzfz‘)pai T (x - ﬁif?i_l)pai in I[‘T‘Q [95]

Further, recall that g;(x), g2(x), - - - , g,(x) are all the distinct irreducible factors

of the polynomials ™ —ay, 2™ —ay, - - - , 2™ —ay in Fy[z]. For 1 <w < p, if d,, is the

Fy[x]
(gw(z))

be a root of g, () in Fya, for 1 <w < p. Now for 1 <4 < fand 1 < w < p satisfying

degree of the irreducible polynomial g, (z), then we have ~ [ a, . Next let 0,
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€w,i = 1, we note that there exists an integer 7 satisfying 0 < ) <n; —1 and

(1)

5@&2—1‘) = Ow-

Furthermore, for 1 < i < ¢, we note that 3" = «;, which implies that 51.((1_1)”1' =1.

This further implies that ﬂf_l = &' for some integer ¢; satisfying 0 < ¢; <n; — 1.

Next if €,; = 1 and Bi€l is a root of g, (x) for some integer t; satisfying 0 < ¢; <

tigt+e;
)

n; — 1, then one can observe that [;¢ is also a root of g,(z) for 1 < ¢ < ¢
and 1 < w < p. Further, for 1 < i < ¢, let us define a map x; : Z/n,Z — Z/n;Z
as h +— gh + ¢; for each h € Z/n;Z. Here for each i, we see that the map x; is
a bijection and induces an equivalence relation ~ on Z/n;Z, which is given by
hy ~ hy if and only if h; = x%(ho) for some integer d. Therefore for each 4, there is
a 1-1 correspondence between the equivalence classes of Z/n;Z with respect to the
relation ~ and the irreducible factors of 2™ — o in F[z]. These equivalence classes
are called orbits of x; for each . Further, if €, ; = 1 for some w and 7, then we choose
the integer 7 asa representative of the orbit corresponding to the irreducible factor

gw(z) of 2™ — a;. Now let us define the sets
Ti={w:1<w<pande,, =1}for 1 <i</

and

Uy={i:1<i<lande¢,,; =1} for 1 <w <p.

In order to provide a trace description for A-MT codes, we will use the concept
of the generalized discrete Fourier transform (GDFT) in a manner similar to that of
Theorem 6.2 of Ling et al. [52] and Theorem 7 of Jia [47]. To do this, we see that

for 1 < i < {, the generalized discrete Fourier transform (GDFT) of the element
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m;—1 )
ci(x) = Zo ¢ jx? € V; is given by the following matrix
‘7:

() A(3) A(1)
€0,0 €o,1 T Con;—1
(i NO; A (4)
R €10 €11 T Clm;—1
C; = ,
A(4) A(4) ()
| Cpei-1,0 Cpi-11 "7 Cptioin—1 |
where
m;—1 ]
A3 lgil hiy __ hij—g:
Coin, = Ci - (Bi&) = cij(Bi&")
im0 \Ji

for0<g;<p*—1and 0 < h; <n; — 1.

Further, for 1 <i < /¢, 0<g; <p* —1 and 0 < h; < n; — 1, we observe that

m;—1 . m;—1 .
(2 j hi 1—1 j hiteiNi—j (7
(Egn)" =2 (g)ci,jwi& =3 (g )cz-,jwsz ) = e (69)
i =0 )

=0 '

where ¢; is an integer satisfying 0 < &; < n; — 1 and 77" = €. Now if f(z) is an

irreducible polynomial of degree d in Fy[z] and b > 0 is an integer, then one can

show that the quotient ring % is isomorphic to the finite commutative chain
F qlu
ring (‘Z;E,; ~Fpa+ulfa+---+ uPb—IIqu with «?° = 0. In fact, the ring isomorphism
T F 4lu] . . €T
from <fE;i[)'jb> onto <j;£,>] is given by r(x) +— r(a(l —w)) for each r(z) € %, where

w”” = 0 and « is a root of f(x) in Fya. In view of this, for 1 <w < pand 1 <i </,

we observe that

IF ]F w U/l g . ag
Ew,i% ~ €y Z;p£i>] ~ €y (quw + uiFaw + - +uf I]quw> with «? " = 0.

In view of this, for 1 < w < p, we see that

= Ewa

F . [ul] F a. [UQ] F dw [UZ]
gw: <€w,1 2 a y €w,2 1 a PR S VIN4 4 a )
(™) (uh ") (")
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where u =0 for 1 <¢ < (. Further, let us define a map ¢ : V — @ L, as

w=1

p pa1—1 ' p2—1 pie—1
V(e (), ea(a), - Z (Z u{l D Z ud? e Z UJWE?M >

w=1 71=0 jo=0 5=0
for all (ci(z),co(x), -+ ,ci(x)) € V, where for 1 < w < p,1 <i</land 0 < j; <
pr =1,
i 3 ORI
é(l) B CZ[JZ]<5”LU) — ngz](ﬁié'iw ) lf Gwﬂ; — 1’
@
JirTw 0 lf Ewﬂ: _ O

p
One can easily show that the map W is the ring isomorphism from V onto @ L.
w=1

Now for 1 < w < p, let us define

{( alzlu talinl(s GQZlu” 21 (6,), - - - ,Wz_lugea[je]@w)) a(z) € Fq[:c]},

Jj1=0 J2=0 Je=0

where ufai = 0 for 1 < < /. Here for each w, we see that the set F,, is a finite
commutative ring with unity with respect to the component wise addition and the
component wise multiplication, and we shall view the set £, as an JF,-module.
From the above discussion and by Theorem 6.2.2, we observe that a A-MT code C

p
of length n over I, can be uniquely expressed as C = € C,, where C,, is an F,,-

w=1
submodule of £,, for each w. The codes C;,Cs,--- ,C, are called the constituents of
C corresponding to the polynomials g;(x), g2(x), - - - , g,(2), respectively. Conversely,

P

if D,, is an F,-submodule of L, for 1 < w < p, then the direct sum D = @@ D,, is
w=1

a A-MT code of length n over F,.

Now to explicitly derive the inverse transform of the GDFT, let us define c(; 4,y (x) =
Cisty + Cityrpsi T + -+ Cii (ni—1)p%i 2" for 0 <t; <p% —1and 1 <i < /(. Further,

for each i, we note that there exists a positive integer k; satisfying k;r — a; > 0.

kijr—a;

Now for 1 < i < £ and 0 < ¢; < p% — 1, let us define dgy,)(z) = ¢

1,0
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kir—a;

cpkir—al + Cp

i titpi it (ni—1)pe ., Then for each 4, by using the DFT, we see that

2"~ where Pt

it +v p%i d(l,tz)(ﬁlgzvl)
with 0 <t; <p% —1and 0 <wv; <n; — 1. Further, for each i, by using the inverse

kir—a; kir—a;

7 . -
d(i’ti)($) - Cﬁti +Cft +p‘lb$+ +Cft +(n

—1)pai

DFT, one can easily observe that cft ::; 0y = %Ci(i,ti)(fi_w)a where 0 <v; <n; — 1.

This implies that

'—m‘p“i n;—1 . N s
b Z Clits) ((Bzflhl)p 1) (fi_”ip 1) for each relevant ¢, v; and t;.

h;=0

Citi+uvpt = n;
(6.10)

Now for 1 < ¢ < /¢, let H;(z) be the p% x p% matrix whose (s;, 4;)-th entry is
(’S‘Z)x“i_si, where the rows and columns of H;(x) are indexed from 0 to p* — 1. It is

easy to see that the matrix H;(z) is invertible and its inverse is given by H;(—z) for

each . Further, for each 7, we observe that

Hi(@if?i) ' ' = o , where 0 < h; < n; — 1. (6.11)

e (BE | [0

Now for each v;,t; and i, by (6.9)-(6.11), we get

B A (N (G - ——
Cititup® = T Z Z (u) (_Blgll) .77.7 i <5 " )

h;=0 \ ji=0
1 pti—1 j n;—1 -
_ ( ji—ts hi\Ji—ti—vip®i L(4)
IS (e (S e )
t ji:() ' hi:O
1 pi—1 jZ L Ji—ti—vip%i /\(1,)
- n_ Z (t> j ZTer /Fq (<ﬁl§1 ) cji T(i)) )
b ji=0 v weT; v

where Tr]Fq 4, /F, 18 the trace function from FFa, onto I, for each w.

From the above discussion, we have the following theorem, which provides a

trace description for all A-MT codes of length n over F, using the GDFT.



A generalization of multi-twisted codes over finite fields, their Galois
142 duals and Type II codes

Theorem 6.3.2. (a) For 1 < w < p, let Cy, be an F,-submodule of L, and let

us write each word x,, € Cy aS Ty = (T 1, Twa, - Twe), where
(4) (4) (4) pti—-1 . 1.
l1'()711) _'_ xl,wuz + ttt + .Tpal_quZ Zf E’LU,’L - 1,

(L‘w7i —=

0 otherwise,

with mgj)w € Fpaw for 1 <w <p, 1 <i<Lland0 < j; <p* — 1. Further, for

1 <@ </, let us define

Ci<$1,$2,"' axp) = (Ci,O(xla-QjZa"' 7$p)aci,1($lax27"' 7xp)7"'

: 7ci,mi—1($17 Loy« 7$p))7

where for 0 <t; <p* —1and 0 <v; <n; — 1,

1 p%i—1 ]l - ; s
Ci,ti+vipi (1,22, - ’:EP):Tv( Z (t) (=1 . Z Trquw /Fq <m§z?w (57“”)]1 e ) >
N Gi=0 N weT;
(6.12)
(1)
with 6, = B:£™ . Then the code

c = {(Cl(xlax%"' 7wp)502(x17$27"' wrp);"' §C€("E17$27"' ,:L‘p)) :

wawaorlgwgp}

is a A-MT code of length n over IF,.

(b) Conversely, each A-MT code of length n over F, can be obtained from its

constituents (that are Fy,-submodules of L,,) through this construction.

Remark 6.3.3. (a) The above theorem also provides a method to construct all

A-MT codes of length n over IF,.

(b) Theorem 3.5.2 follows, as a special case, on taking a; = ay = -+~ =ay =0 in

Theorem 6.3.2.
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6.4 Type II MT codes

Type II codes over finite fields form an interesting class of linear codes. These
codes are useful in constructing unimodular lattices and in the determination of
modular forms [37, 44]. In this section, we shall also study Type II codes within the
family of A-MT codes over finite fields. For this, we assume, throughout this section,
that ¢ = 2" and @y = ay = --- = ay = a. Here ny, no, - - - , ny are odd positive integers.
We also recall that Uy = {i: 1 <i < {,e;; = 1}. Moreover, for all ¢ € U;, we assume
that n; = n’ (mod 4) for some odd integer n’. We also note that there exists a
trace-orthogonal basis of For over Fy ([51, p. 75]). Now let B = {by, by, -+ ,b.} be

a trace-orthogonal basis of For over Fy. That is, for 1 < u,v < r, we have

1 if u=uv;
TT]FQ’I‘/]FQ (bubv) =
0 otherwise,

where T'rg,, /r, is the trace function from Fyr onto Fy. Since B is a trace-orthogonal
basis of For over [Fy, each element y € Fyr can be uniquely written as y = Zr: y;ib;,
where y; € Fy = {0,1} for 1 < j < r. Now the Lee weight of the element ]yZIE Fyr
with respect to the basis B is defined as the sum wt?(y) = Z y;j. Further, the Lee
weight of a vector ¢ = (co, C1, 0, Cpe1) € F3. with respect to the basis B is defined
as the sum wt?(c) = Z wt?(¢;), i.e., the sum of the Lee weights of its individual
components. Now a Euchdean self-dual code of length n over Fy- is said to be a Type
IT code if the Lee weight of each of its codewords is a multiple of 4. This definition
of Type II codes is shown to be independent of the choice of the trace-orthogonal

basis [12].

In order to study Type II A-MT codes of length n over For, we see, by Theorem
p
6.2.2, that a A-MT code of length n over Far can be uniquely expressed as C = @ C,

w=1
where C,(C G,) is a linear code of length ¢ over the finite commutative chain ring

]FQ'I‘ [CIZ]
(9w ()*)

for 1 < w < p. Further, we know that the GDFT gives rise to the ring
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ffrl[)z;% onto %;LQ;] ~ For + ulFyr + -+ - + 02" 7 'Fyr with v®* = 0,

given by b(z) ~ b(1) + ublt(1) + -+ 4+ > 722" 7U(1) for each b(z) = by + bz +

((ffl[)ﬂa>. Further, the inverse map from Ii;g[f;] onto <(firl[)x2]a> is

given by Ay + uA; + -+ + 1 1Ay = By + Bix + -+ + Boa_12*' 7! for each
Ap+ud;+ -+ uF T Agey € T2 where Be = Ao+ (T A+ (U7 Agey

(u2®) S

for 0 < ¢ < 2% — 1. This gives rise to a Gray map ¢ : % — 2, which is defined

isomorphism from T

T A<

as
H(Ag+uA; + -+ u* Tt Ag_1) = (By, By, -+, Ba_y) (6.13)
for each Ag +ud; + -+ +u*> 1 Ap0_4 € %. Therefore with respect to the trace-

orthogonal basis B of For over Fy, the Lee weight of the element Ag + uA; + --- +
w1 Aga_y € ]ji;[f;] is defined as the Lee weight of its Gray image ¢(Ag+uA; +-- -+
U2a_1A2a—1) = (Bo, By, -+, Baa_1), where B, = A¢ + (gtl)Aﬁ—l +o T+ (2:_1)142‘1—1

for0 <¢<2¢—1.

Now we make the following observation.

Lemma 6.4.1. Let C be a A-MT code of length n over For. Let X\; = 1 for some
integer 1 satisfying 1 < @ < £, and let C; be the constituent of C corresponding to
the irreducible factor g1(z) = x — 1 of 2™ — \; = 2™ — 1 in For[z]. Suppose that
there is an (odd) integer n' such that n; = n' (mod 4) for all i € Uy. If the Lee
weight of every codeword of C is a multiple of 4, then the Lee weight of every word
of the constituent Cy is a multiple of 4. Conversely, if the Lee weight of every word
of the constituent Cy is a multiple of 4, then the Lee weight of every codeword of C
corresponding to the direct sum Cy @ {0} @ --- & {0} is a multiple of 4.

Proof. Let x1 = (211,212, -+ ,214) € C; be fixed. Let us write

x(()l)l + xgl)lu N xé{‘)_l’luga,l if e, = 1;
T1; =
0 otherwise,

WherexgEFgrfor1§i§€and0§j§2“—1.AsUlz{izlgigﬁandeM:
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1}, we see that wt?(z,) = Z wtP(d(x1,)) = > wiP(d(xy,)).

i€l
Now by applying Theorem 6.3.2, the codeword ¢ € C corresponding to the ele-

ment (1'1, O7 . 70) € Cl@{O}@ . @{0} is given by c = (Cl,Oa C11, 5 Climy—15 €20, C2,15
s C2ma—15 " 3€C005Cots " 5 Comp—1), Where for 0 < ¢ < 2% — 1,1 < ¢ < (¢ and

0 S V; S n; — ].,

1 1 2a_1y (1 o

s (2 e (T2l e Uy

Ci t4v;20 = )
0 otherwise.

We further observe that

n;—1
B B
wty E th Ci,0, Ci,15 " - ,Cz‘,mi—l) = E E wty (Ci,um, Ci,14v;20, " " 7Ci,2a71+v¢2a)
€Uy €Uy v;=0
n;—1
= E E wt? (o (1,4)) E nywt? (¢ (14))
€Uy vi= €Uy
= n E wty (p(z1,)) = n'wt? (1) (mod 4).
€Uy
From this, the desired result follows immediately. O]

Now we state Lemma 7.1 of Ling et al. [52] on the Lee weight of vectors over

[For with respect to the basis B.

Lemma 6.4.2. [52] Let B be a trace-orthogonal basis of Faor over Fa, and let

wt? denote the Lee weight function with respect to the basis B. Then for y =

(Yo Y15+ s Yn—1),Y = (W, Y1, -+, Ynq) € FS., we have
wtB(y + o) = wtP(y) + wtP(y) — 2wtB(y x /) (mod 4),

where y * Y = (YoYo, Y1Y1, "+ s Yn—1Yn_1)- Furthermore, if (y,y'), = 0, then wtf (y +
y') = wtB(y) + wtB(y') (mod 4).

The following lemma generalizes Lemma 7.3 of Ling et al. [52].
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Lemma 6.4.3. Let \; = 1 for1 <1 < (. Let C = é Cw be a Fuclidean self-
orthogonal A-MT code (i.e., a GQC code) of length n OLZI; For, where Cy,Cs,- -+ ,C,
are the respective constituents of the code C corresponding to the irreducible factors
g1(x), g2(x), -+, g,(x) of the polynomials x™ —1,2™> —1,--- 2™ —1 in For[x]. Let
w be an integer satisfying 1 < w < p and g,(x) # x — 1. Then the Lee weights of
all the codewords of C corresponding to the elements of the direct sum {0} & --- &

{0} ®C, @ {0} @ --- @ {0} are multiples of 4.

Proof. To prove the result, let z, = (X1, Twa, -+, Twys) € Cy be fixed. Let us write

(4) (4) (i) 201

xO,w + L1t +oot x2a—1,wu if Cw,i = 17

Twi = .
0 otherwise,

where :EEZZU € Fyra, for 1 < i < fand 0 < j < 2% — 1. Next by Theorem 6.3.2, we
see that the codeword ¢ € C corresponding to the element (0,--- ,0,x,,0,---,0) €
{0} - -®{0}®C,,B{0}®- - -®{0} isgiven by ¢ = (c1,0, 1,15+ 5 CLimy—1; C2,05C2.15 " *
Coma—15" " 3€005C1s "+ 5 Comp—1), Where for 0 <t <2 —1,1<i</land 0 <w; <
ni —1,

Cit+v;20 = 0if ¢ ¢ Uw (614)

and

201 ,.
J 1) cj—t—0;20N g -
Citpope = Z (t) TT]quw/Fq(xg-ﬂ)Uéfu ey i 4 € U, (6.15)
=t
Further, consider the minimal polynomial P(z) of §,% over Fy. Now as §,%" # 1,
we note that the minimal polynomial P(z) of d,* must have an odd number of
non-zero monomials. Let us write P(z) = 1+ a%* + 272 + -+ - + 274-1 where d is an

odd integer. From this, we have

1+ 5;j12a + 5;]52“ 4+ 5;33*12(1 =0. (616)
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Next for i € U,,,0 <v; <m; —1and 0 <t <2 —1, we see, by (6.15) and (6.16),
that

Citv20 T+ Citt(v4i1)20 T+ + Citg(vija_r)2e = 0.

Further, for ¢ € U,,,0 <v; <n; — 1 and 0 <t < 2% —1, let us define

0 _
At,vi = Cit4v;29,
1 _
At,yi - Ci7t+'l}i2a _I_ C’i,t+(’ui+j1)2a7
tw; 1,t+v;29 1,6+ (vit+J1)2% 1, t4(vi+j2)2%)
(d=2) _
t i = Cittv;20 T Cipt(vi+j1)20 T T Citt(vi+ja_s)20-

From this, it follows that

Cittv;20 = 050
_ (1)
Ci7t+(vi+j1)2a - At,v,- + At,’ui’

2 1
Cit+(vi+j2)2e = Al(f,v)i—i_Ag,gﬂ

_ (d-2) (d—3)
Cit+(vitja_2)20 = At,vz‘ +At7vi J

_ (d—2)
Citt(vitig—1)2¢ = Atﬂ}i

Next we observe that

dwtB(c) = Z d wt(cio, ity s Cimit)
i€Uy

n;—12%-1

B
= E E g th(Ci,t-i-vﬂ“yCi,t+(vi+j1)2a7"'7Ci,t+(vi+jd_1)2“)

€Uy v;=0 t=0
n;—12%—1

= YYD Yt (A AR Y, AL ALY A

1€Uy v;=0 t=0
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Further, by applying Lemma 6.4.2, we get

ni—120-1  d— d-3
d wt?(c) =2 Z Z Z (Z wty ( A(b1 Z (A(b2 A bj+1))> (mod 4)
i€Uy v;=0 t=0  by=0 b2=0
d—2 n;—12%—1 n;—12%—1
=3 (23 S ) 23 (S Y
bi=0 €Uy v;=0 t=0 2=0 €Uy v;=0 t=0

wtf (A% A%Y) ) (mod 4).
From this, we obtain

dwtf(e) = 2(wtf () + wtf (c+ T () + -+ witf (e + T () + -+ +
T (0)) ) = 2(wif (e x (e + T (0) + wif (e + T (0)) +
(c+ T (€) + T () 4+ - +wt? (e + T () + -+ + T3 "% (c))
s(c+ Ty (c) + -+ Ty (c))> (mod 4). (6.17)

Since C is a Euclidean self-orthogonal A-MT code, by applying Lemma 6.4.2, we
note that 2 wt?(¢’) = 0 (mod 4) for all ¢ € C. From this and by (6.17), one can
easily observe that d wt?(c) = 0 (mod 4), which implies that wtZ(c) = 0 (mod 4).
From this, the desired result follows. m

In the following example, we show that Lemma 6.4.3 does not hold for Euclidean
self-orthogonal A-MT codes of length n over For when \; # 1 for some integer 4
satisfying 1 <1 < /.

Example 6.4.1. Let g =4, { =2, m; = my =5, and let A = (b*,b?), where b is a

Fyz]
)

Fylz]
o)

primitive element of Fy satisfying 1 +b+b> = 0. Here we have V = X
It is easy to see that the set B = {b,b*} is a trace-orthogonal basis of Fy over Fs.
From this, we get wt?(0) = 0,wt?(1) = 2 and wt?(b) = wt?(¥?) = 1. Now let C
be a 1-generator Fuclidean self-orthogonal A-MT code of length 10 over Fy with the

generating set {(b+ bx + b*x? + 23, b + bx + bz + 23)}. Further, we observe that
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25 —b% = (z—=b)(2*+2+b%) (22 +b*x+b?) is the irreducible factorization of z°—b* over
Fy. Let us take gi(x) = . — b, ga(x) = 2® + 2+ b* and gs(x) = 2* + bz + b*. Now by

3
applying Theorem 6.2.2, we get C = € C,,, where Cy = ((b,1)) is a (;Ff([;U%) -submodule

w=1
of G1, Co = ((b? + 1262, b2 +1302)) is a <;F;([§])> -submodule of Gy with 62 +08,+b* = 0 and
Cs = ((b+03,b+03)) is a <[9F;([i)> -submodule of G3 with 62+b*03+0* = 0. Next let us take

x1 = (b,0) € C1,x9 = (b* + 1?09, > +b%53) € Cy and x3 = (b+d3,b+d3) € C3. Now by
Theorem 6.3.2, we see that the codewords c1, co,c3 € C corresponding to the elements
(21,0,0) € C; @ {0} @ {0}, (0,22,0) € {0} & C> @ {0}, (0,0, 23) € {0} & {0} &C5 are
given by ¢; = (b+z+b222 +bx3 4+t b+r+b2x* +brP+xt), co = (D +x+b2x?+b%x3, b+
r+022? +0%23) and cz = (D* +bx+ b2 + 2, 02+ br +b*x? + 1), respectively. Here it
easy to see that wtB(cy) = 14 # 0 (mod 4) and wt?(cy) = wtP(c3) = 10 # 0 (mod 4).
This shows that the Lee weights (with respect to the basis B) of the codewords of C
corresponding to the elements of C; ® {0} @ {0},{0} & C, @ {0} and {0} & {0} & Cs
need not be multiples of 4. This shows that Lemma 6.4.3 does not hold when \; # 1

for some integer v satisfying 1 < i < /L.

Now in the following theorem, we assume that \;, = 1 for 1 < ¢ < ¢, and we
derive necessary and sufficient conditions under which a Euclidean self-dual A-MT

code of length n over Fyr is a Type II code.

Theorem 6.4.4. Let C be a Fuclidean self-dual A-MT code of length n over Far.
Let \; =1 for 1 < i < {, and let C; be the constituent of C corresponding to the
irreducible factor gi(x) = x — 1. Suppose that there is an odd integer n' satisfying
n; = n' (mod 4) for all i € Uy. Then the code C is a Type II code over For if and
only if the Lee weight of each word in the constituent Cy is a multiple of 4.

Proof. To prove the result, it suffices to show that wt?(¢) = 0 (mod 4) for all ¢ € C
if and only if wt?(z;) = 0 (mod 4) for all z; € C;.
o
To do this, let ¢ € C be fixed arbitrarily. AsC ~ @ C,, in view of Theorem 6.3.2,

w=1
we see that there exist 1 € Cy, 29 € Cy,--- ,2, € C, such that c is the codeword
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p
corresponding to the element (x1, 29, - ,x,) € @ C,. We further note that

w=1

(xlwr?a'” 7$p>:(l'1,0,"' ,0)+(071’2,0,"' 70)++(0707 )07xp>'

Now for 1 < w < p, by Theorem 6.3.2 again, let c,, € C be the codeword correspond-
ing to the element (0,--,0,2,,0,---,0) € {0} ®--- {0} ®C, ® {0} & --- D {0}.

o
Since C ~ @ C,, we must have ¢ = ¢; + ¢ + -+ + ¢,. Next as C is a Euclidean
w=1

P
self-dual A-MT code, by Lemma 6.4.2, we see that wt?(c) = Y wt?(c,) (mod 4).
w=1
Further, by Lemma 6.4.3, we note that wt?(c,) = 0 (mod 4) for 2 < w < p. From
this, we obtain

wt?(c) = wtP(c;) (mod 4),

where ¢; is the codeword of C corresponding to the element (z1,0,---,0) of the
direct sum C; @ {0} & --- @ {0}. Now by applying Lemma 6.4.1, the desired result

follows immediately. O]

In the following example, we illustrate the above theorem to find a Type II MT

code over Fs.

Example 6.4.2. Let ¢ = 2, { = 2, my = 20, my = 4, and let A = (1,1). Here we

have V = <IF220[@1> X <;FZ[_$L. Let us take g1 () = x —1 and go(x) = 1+ o+ 2> + 2% + 4.

Now let C be a 1-generator A-MT code of length 24 over Fy with the generating set
{(@P+at+2"+ 28+ 20422+ 2B+ 2+ 217 1+ 2%+ 23)}. Let Cy be the constituent
of C corresponding to the irreducible factor g\(x) = x — 1 of the polynomials x*° — 1
and x* — 1 in Fa[z]. It is easy to see that Cy = (1 +u?, 1+ u+u?)) is a linear code
of length 2 over Fy + uFy + u?Fy + u®Fy, where u* = 0. Since ¢ = 2, we note that
B = {1} is the trace-orthogonal basis of Fy over Fy, which implies that wt2(0) = 0
and wtP(1) = 1, (i.e., the Lee weight is the same as the Hamming weight here).
By using the Magma Computational Algebra System, we see that the code C is a
self-dual A-MT code of length 24 over Fy and that the Lee weight of each word of
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the constituent Cy is a multiple of 4. Now by applying Theorem 6.4.4, we see that
the code C is a Type II code over IFs.

6.5 Generating sets of MT codes and their Galois

duals

Let C(C V) be a A-MT code of length n over F,. A set S = {y1(2), y2(x), -+ ,y,(2)}
consisting of the codewords of C is called a generating set of the code C if each code-
word ¢(z) € C can be expressed as ¢(z) = fi(z)y1(x) + fo(z)ya(x) + - + fo(2)y,(x)
for some fi(z), fa(x), -, fo(z) € Fy[z], and we write C = (y1(z),y2(x), - -, y,()).
The code C is called a p-generator code if p is the cardinality of a minimal generating
set of the code C.

Furthermore, a generating set {by(x),ba(x), - ,by(z)} of the code C is called a
normalized generating set of the code C if it satisfies exactly one of the following

two conditions for each integer ¢ satisfying 1 <7 < /¢

L bj(x) = (0,0,---,0) € V when there does not exist a codeword c(z) =
(CLl(.CE), s ,Ciyi(ﬂf), O, s ,O) n C Wlth Clﬂ(‘l')(?é O) € V;

IL. bj(x) = (Fii(z), Fia(x), -, Fi(2),0,---,0), where F;;(z)(# 0) € V; is a
monic polynomial satisfying deg F;;(z) < deg ¢;;(x) for all the codewords
c(x) = (¢a(x), - ,ci(x),0,---,0) of C with ¢;;(x)(#0) € V.

Now in the following theorem, we will show that each A-MT code of length n

over [F, has a normalized generating set. It also extends Theorem 2.1 of Bae et al.

[9].

Theorem 6.5.1. Every A-MT code of length n over F, has a normalized generating

set.
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Proof. To prove the result, let C(C V') be a A-MT code of length n over F,. Now
for 1 <i </, let us take b;(x) = (0,0,---,0) € C if there does not exist a codeword
in C of the form ¢;(z) = (ci1(x), cio(x), -+, ¢ii(2),0,---,0) with ¢;;(z) # 0, oth-
erwise take b;(z) = (Fi1(x), Fi2(z), -+, F;i(x),0,---,0), where F;;(z)(# 0) € V;
is a monic polynomial satisfying deg F;;(x) < deg ¢;;(z) for all the codewords
ci(z) = (¢ia(x), -+, cii(x),0,-++,0) € C with ¢;;()(# 0) € V;. We will show that
C = (br(x), ba(x), - be()).

For this, let 1 < ¢ < ¢ be fixed, and let d;(x) = (d;1(z), di2(2), -+ ,dii(2),0,---,0)
be an arbitrary codeword of C with d; ;(z)(# 0) € V;. Here we assert that F;;(x) di-
vides d; ;(z) in IF,[z]. To prove the assertion, by the division algorithm in F,[z], there
exist unique polynomials ¢;(z),r;(x) € F,[z] satisfying d;;(z) = ¢;(z) F;;(x) + (),
where either 7;(xz) = 0 or deg r;(x) < deg F;(z). If r;(x) # 0, then there exists a
codeword dy(z)—gs(2)bi(x) = (i (£)—s(2) Fi (2), dia(@)—s(2) Fin (), -+ dig 1 ()
¢i(x)F;i—1(x),ri(x),0,---,0) in C with deg r;(x) < deg F;;(x), which is a contra-

diction. So we must have r;(x) = 0, from which the assertion follows immediately.

Now let c(x) = (c1(z), ca(z), - - ,ci(x)) € C be an arbitrary non-zero codeword.
Let j be the largest integer satisfying 1 < j < ¢ and ¢;(z)(# 0) € V;. Then we have
c(z) = (c1(x), co(2), - -+ ,¢j(x),0,---,0). Here we will show that

c(x) = fr(@)bi(2) + fol@)bo(w) + - - + f(2)b;(x) (6.18)

for some fi(z), fo(x), -, fj(x) € Fylz]. To prove this, we will apply induction on
j > 1. When j = 1, we have ¢(x) = (¢i(z),0,---,0) € C, where ¢;(z)(# 0) €
V1. By the above assertion, we see that F);(x) divides ¢(z) in F,[z], which im-
plies that ¢i(z) = fi(z)Fi1(z), where fi(xz) € Fy[z]. This implies that c¢(z) =
(fi(x)F11(x),0,---,0) = fi(z)bi(z). Hence equation (6.18) holds when j = 1.
Now let h > 2 be an integer, and let us suppose that equation (6.18) holds for
1 < j < h—1. We will now show that the equation (6.18) holds when j = h.
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For this, let ¢(z) = (c1(x), ca(x), - ,en(x),0,---,0) € C, where ¢;(z)(# 0) € V.
By the above assertion again, we see that Fj,,(z) divides ¢;(z) in Fy[x], which
implies that cp(x) = fu(z)Fpp(x) for some fr(x) € F,[z]. Further, we observe
that c(z) = fr(z)bn(z) = (c1(z) — falz)Fha(z), c2(@) — fu(@) Fho(x), - cnoa(z) —
fn(@)Fyp-1(2),0,---,0) = d(z)(say) € C. If d(x) = 0, then we have c¢(x) =
frn(x)by(z). On the other hand, if d(x)(# 0) € C, then by the induction hypothesis,
we see that there exist fi(x), fa(x), - -, fa—1(z) € Fy[z] such that ¢(x)— fr(x)bp(z) =
A(@) = Fi (001 (@)+ o @)ba(a) 4+ Faa(@)b1(2), where fu(2), fo(@),+ , fur(z) €
F,[z]. From this, we get c(z) = fi(x)bi(z) + fo(x)bo(z) + - - + fn(x)by(z), which
proves equation (6.18) when j = h.

Now by (6.18), the desired result follows immediately. O

We further observe the following;:

Lemma 6.5.2. Let C be a A-MT code of length n over F, having a normalized
generating set {by(x),ba(x), -+ ,be(x)} satisfying conditions I and II. If b;(x) is non-

zero for some integer i satisfying 1 < i < {, then F;;(z) divides ™ — \; in F,[x].

Proof. To prove the result, let 1 < ¢ < ¢ be fixed. By the division algorithm
in F,[z], there exist unique polynomials Q;(z), R;(z) € F,[z] such that 2™ — \; =
Qi(x)F;i(x)+ R;(x), where either R;(z) = 0 or deg R;(x) < deg F;;(z). From this, it
follows that Q;(z)F;;(z) = —R;(z) in V;. Now we see that Q;(x)b;(z) is a codeword of
C and that Q;(2)b;(z) = (Qi(x)Fi1(x), Qi(z)Fia(x), - -, Qi(x) Fim1(x), Qi(x) F (),
0,-++,0) = (Qi(x) Fia(z), Qi(x) Fiz(x), - -, Qi(2) Fiia(x), —Ri(2),0,-- - ,0) . If R;(x)
is a non-zero polynomial in V;, then deg R;(z) < deg Fi;(z) and Q;(z)b;i(x) =
(Qi(z)Fia(x), Qi(x) Figlx), - -+, Qi(w) Fii-1(2), —Ri(),0,- -+ ,0) € C, which contra-
dicts our choice of F;;(x). Therefore we must have R;(x) = 0, which implies that

F;i(x) divides ™ — \; in F,[x]. O

Further, a normalized generating set {b1(x),bo(z), -+ ,be(x)} (satisfying condi-

tions I and II) of the A-MT code C is said to be nice if for i + 1 < j < ¢, either
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F;i(z) =0or deg Fj,(x) < deg F;;(x), where 1 <7 < (.
In the following theorem, we show that each A-MT code of length n over F, has

a unique nice normalized generating set.

Theorem 6.5.3. Every A-MT code C of length n over F, has a unique nice nor-

malized generating set.

Proof. By Theorem 6.5.1, we see that the code C has a normalized generating set
{b1(x),ba(x),- -, be(x)} satisfying conditions I and II. Now to produce a nice normal-
ized generating set for the code C, let us take dy(z) = by(z). Further, if b;(z)(3£ 0) €
V1, then by applying the division algorithm in [F,[z], we see that there exist unique
polynomials Qa1(x), Raq(x) € Fy[z] such that Fyi(z) = Q21(z)Fi1(x) + Rai(z),
where either Ry ;(z) = 0 or deg Ro1(x) < deg Fi1(x).

Now let us define

do(x) = ba(z) — Qa1(x)b1 () = (Roa(x), Fo2(x),0,---,0).

Further, if by(x)(5# 0) € V3, then by applying the division algorithm in F,[z], there
exist unique polynomials Q3 2(), R32(z) € F,[z] such that F5 () = Q32(z) Faa(x)+
Rs (), where either Rso(z) = 0 or deg Rs2(z) < deg I o(z). Moreover, if by (x) #
0, then for F5;(z) — Qs2(z)Foq1(x) € Fy[z], by the division algorithm in F[z], there
exist unique polynomials Q31 (), Rs1(x) € F,[z] such that F51(x)—Qs2(z)Foq(x) =
Qs1(x)Fi1(x) + Rs1(x), where either R3y(z) =0 or deg Rs1(z) < deg Fy1(z).

Now let

ds(z) = bs(z) — Qs2(x)ba(z) — Q31(2)b1(x) = (Rs1(x), Ry 2(x), F53(x),0,---,0).

Further, proceeding like this for 2 < i < £ and 1 < 57 < ¢ — 1, and by apply-

ing the division algorithm again, we can recursively choose unique polynomials
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Qij(z), R j(x) € Fy[z] such that

Fij(7) = Qi (2) Ficy () = -+ = Qija (2) Fjpa 5 (2) = Qi (2) Fy(x) + Rij(w),

where either R, j(x) = 0 or degR; ;(x) < deg F} ;(z).

Furthermore, for 3 <i </, let us define

di(r) = bi(z) = Qii1(2)bia(z) — -+ — Qi (7)bi ()
= (Ri’1($), Ri’g(l‘), s ,Rm'_l(l’), Fm’(l’), 0, cee ,0)

Now it is easy to observe that the set {d;(z),ds(x),- - ,dy(x)} is a nice normalized
generating set of the code C.
Next let {ti(x),ta(x), -+ ,ts(x)} be another nice normalized generating set of

the code C satisfying exactly one of the following two conditions:

A. ti(x) = (0,0,---,0) € V when there does not exist a codeword ¢;(z) =
(Ci,l(x)v T ,Cm‘(l‘), 07 Tt 70) in C with CZ,Z(‘T)(?é O) € V;

B. ti(z) = (H;1(x), Hio(x), -, H;;(x),0,---,0), where H,;;(z)(# 0) € V; is a
monic polynomial satisfying deg H;;(z) < deg ¢;;(z) for all the codewords
¢i(z) = (cia(x), - ,ci(x),0,---,0) of C with ¢;;(x)(# 0) € V;, and for i+1 <
J <L, either H;;(z) =0 or deg H,;(z) < deg H;;(x), where 1 <1i < (.

Now we will show that d;(z) = t;(z) for 1 < i < {. Towards this, let 1 < i < ¢ be
fixed.

If there does not exist any codeword cz(w) = (¢i1(x), -+ ,c¢ii(x),0,---,0) in C
with ¢;;(x)(# 0) € V;, then we have d;(z) = (0,0,---,0) = t;(z).
Now suppose that there exists a codeword c,( ) = (cia(z), -+ ,cii(2),0,---,0)

in C with ¢;;(z)(# 0) € V;. In this case, we note that d;(x) = (R;1(z), Ria(x), -,
Riia(), Fii(2),0,---,0) and t;(z) = (H1(v), Hio(x), -+, Hiia (), Hii(x), 0,
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.-+ ,0). We also note that both F; ;(x), H;;(z) are monic polynomials in F,[x] of the
same degree.

If F;i(x) — H;i(x)(# 0) € V;, then deg (F;;(x) — H;;(z)) < deg F;;(x). This im-
plies that there exists a non-zero codeword d;(z)—t;(x) = (R;1(z)—H;1(x), Ri2(x)—
His(x), -+ ,Rii—1(x) — Hij—1(2), Fii(x) — H; ;(x),0,---,0) in the code C satisfying
deg (F;i(z) — H;;(z)) < deg F;;(x), which contradicts our choice of F;;(x).

Therefore we must have F;;(z) = H;;(x), which gives d;(z) — t;(x) = (R;1(z) —
Hi1(x),Ri2(x) — Hio(z), -, Rii—1(x) — H;j—1(x),0,0,---,0) € C. Here we assert
that

R;j(x) =H,j(x) for 1 <j<i-—1. (6.19)

Suppose, on the contrary, that the assertion (6.19) is not true. Let 1 <k <i—1
be the largest integer such that R;x(z) — H;x(z) # 0. Then we note that d;(z) —
ti(x) = (Ripn(z) — Hix(x), Rio(z) — Hio(x), -+, Rig(x) — H; 1(x),0,0,---,0) € C
and deg (R; () — H; x(x)) < deg Fjx(x), which contradicts our choice of Fj ;(x).

Now by the assertion (6.19), we get d;(x) = t;(x) for 1 <14 < ¢, which completes
the proof of the theorem. O

In the following corollary, we explicitly determine the dimension of each A-MT

code of length n over F,.

Corollary 6.5.4. If C is a A-MT code of length n over F, with a normalized gen-
erating set {by(x),bo(z), - ,be(x)} satisfying conditions I and II, then we have

¢
dimy,C = Z (m; — deg Fi;(z)) .
i=1

(Here we take F;;(x) =a™ — N\ if Fii(x) =0€V; for1 <i</{.)

Proof. One can easily show that the set {27b;(z) : 0 < j < m; —deg F;;(z) and 1 <
i < (} is a basis set of C over F,. From this, the desired result follows immediately.

]
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Now we proceed to explicitly determine a generating set of the k-Galois dual
code of each A-MT code of length n over F, from its normalized generating set. For
this, let C be a A-MT code of length n over F,, and let {by(x),ba(x), - ,be(x)} be
a normalized generating set of the code C satisfying conditions I and II. From this
point on, we shall take F; ;(x) = 2™ — X\; when F;;(x) =0in V; for 1 <7 < /. Now
for 1 <n </, let us define

AO(z) = FO

)
n.m

(2) = F,(x), B®(z) =0 and
DO (z) = (F\(x), Fn(;(x) o FO(2),0,-+,0) = by(a).

Further, for 2 <np </fand 1 <7 <n—1, let us define

b (x) = Ay (@)D (@) =By i(@)by-i(w) = (F)(x), Fyy(@), - i (2),0,--- ,0),

n.n—i n n.n—i n,
(0) (i—-1)
, E. (x) (i) F, (2)
where AY _(z) = = = and B, .(z)= i
i god(FyY, ,_i(x).Fy ) (@) G ged(Fy, (@) FiL ) (@)

Next it is easy to observe that
Fi(x) = AQ () A (). AD (x) divides 2™ — X in F,[]
and

for2<n<l1<i<n—1landn—1<j<n—1 Then we make the following

observation.

Lemma 6.5.5. For 1 <i </, let us take F; ;(x) = 2™ — \; when F;;(x) =0 in V.
For2<n</tland1l <1 <n-—1, the following hold.

(a) B("] l)(I) _ Fn,i(m) . anl 1(15)31(7}2;—1(95) .
AT ”(x)AJ,’,Jl Da)-AD (@) Fuil@)  F@)AY)
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B (@) Fyi(x) By (@)BEh (@) Fyn1 (@) By Y

(b)—=n =T a = T nﬁu) e ( 71‘:71;171

AnZ (33)14777,7#1 ('T)"'An,n—l(x) Fii(2) Fi+1,i+1($) Fnzl,'r]—l('r)

Proof.  (a) To prove this, for 2 < n < ¢, we see that

-2 _ (n—2) -2
b2 (x) = (F,7(x),0,-+,0, F"2(x),0,--- ,0)

n,1 7,m
= AU (@) AU (@) - AN ()b (2) — AT () AV (@) -
A® (@) B ()b (@) — - — AU (@) AV () BUTY () ba ()
—A;’g?) (x)B,g73—3>(x)b3(x) - Bf,’ff) (2)ba ().

This further implies that

F 2 (z) = AV (@) AV () - AL (2) Fya(x) — AV (@) AU () -

n,1 7,3 7,2
2 1 -2 -3
AP (@)BY) (@) Fyoia(x) — - — AU () BY P (@) By () —
By (@) Fy ()

and

F" ()= 0=A2 () ANV (2) - AL (@) F () — AV (2) AV (2) -

7,8 n,m

AP (2)BY () Fyyi(x) — - — AU () AT ()

nm 1,8

—i—1 -2 —i+1 —1
BUT (@) Fipr s(w) — AU (@) - AT () BUT (@) s ()

for 2 <14 < n— 1. From this, the desired result follows immediately.

(b) To prove (b), let 2 < n < ¢ be fixed. Here we will apply the strong mathe-

matical induction on 7 — i, where 1 < ¢ < 5 — 1. Towards this, by part (a),
B'Ey%r)]fl(x) — F’Wﬂ]*l(x)
AN (@) P (@)

Further, let 2 <np < /f and 1 <i <n—1 be fixed integers, and let us assume

we see that

and hence the result holds when n — 7 = 1.
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that the result holds for 1 <7 <n —1—1, i.e., we have

1
B\ (@) _ Fui@ P @B, @)
j 1 1 . . 1
A9 (@) AT D (@) A () REEIC Y i (@)
(G-1)
B g
Fn 1,n— 1( )

for 1 <j <n—1i— 1. Now we shall prove the result for j =n — i, i.e.,

By () _ Ful)  Fun@BlL@)
AU @) AT @) AL (@) Flala) ﬁﬂwa>
w1 (@) B ()
75771277 12(33)

For this, we see, by part (a) and by (6.20), that

Fyi(z) an”l(f’:)Bi(}r)l,i(x) e 1($)BT(7W_1f;1)(fE)
Fii@) Fz(—ll-)l i41(2) Fg" 1;7 ()
_ Ene) i () Finae) M_P“4@<%Mm_%2xwﬂnm»
Fii(x)  Fii41(x)Fii(x) Fo_1n-1(z) \\ Fii(z) Fi,i(l')Agl_)lm_Q(.r)
. Fia(e) B (@) )
Fii(@) A @) AT 2 @) A, (@)
_ File)  Fyi@Fyyoi(z) 0 Fiaa(e) <Fn7i(:p) - Fn’i"—l(x)Bi(Jlr)l,i(x) )
Fia@)  Fig@) Byt @) Fa(@) \Fu) E+1,i+1(x)Az(21,i($)
_ Fyn1(z )31(777 o V(@)
QWH@MLW)nﬂQ)_ﬁhx@
_ Fule) Pyl )By (@ ) Fia(@) BT (@)
Fii(z) Fll(l')A;I%—l(w) Fii(x )Af;?”:l 1)(5”)‘42,7:2_2) () qu)?_l(:v)
_ Bfr(:z‘_i)(ﬂﬁ)
AL @AY @) AT (@)

Hence the result follows by strong mathematical induction.
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Bae et al. [9, Th. 3.11] tried to determine a normalized generating set of the
Euclidean dual code of a binary GQC code from the normalized generating set of
the code. However, we noticed an error in Theorem 3.11 of Bae et al. [9], which we

illustrate in the following example.

Example 6.5.1. Let ¢ = 2,{ = 3 and my = mg = m3 = 3. Here we have V =
VixVox Vs = <]F2[x] x 2le o Félil 1ot Cobe GQC code of length 9 over Fy

x3—1) (x3—1) (z3—1)

with a normalized generating set {by(x), by(x), bs(x)}, where by (z) = (1,0,0), by(z) =

(1,1 + 2+ 2%0) and bs(z) = (1,x + 1,2+ 1). Now by Lemma 3.7, Theorem 3.11
and Example 3.12 of Bae et al. [9], we see that the Euclidean dual code C° of
the code C is a GQC code of length 9 over Fy with a normalized generating set
{e1(x), ea(x), e3(x)}, where e1(x) = ex(x) = (0,0,0) and e3(z) = (0, (x+1)A32(x), 1)
with A3 2(z) = x~' (mod 1). This implies that C** = ((0, (z + 1)A32(2),1)) for any

A3a(x) € (beF??E"%. However, one can easily observe that (0, (z + 1)A32(x),1) & C*o
whenever A\3o(x) # x (mod 1+x+2?). This shows that there is an error in Theorem
3.11 of Bae et al. [9], and hence in the method provided by Bae et al. [9] to
determine generating sets of the Euclidean dual codes of GQC' codes over Fy from

their normalized generating sets.

Now in the following theorem, we explicitly determine generating sets of the
k-Galois duals of all A-MT codes over F, from normalized generating sets of these

codes. It also rectifies errors in Theorem 3.11 of Bae et al. [9] for binary GQC codes.

Theorem 6.5.6. If C is a A-MT code of length n over F, with a normalized gen-
erating set {by(x),ba(x), -+ ,be(x)} satisfying conditions I and II, then a generating
set of the k-Galois dual code C* of the code C is given by {ai(x), az(z), -+ ,ae(z)},

where

ai(x) = (0,0, T (Eii(2), T (B (), T (Biel))  (6.21)

—Ligmi )\, 1™ —\)BY™) (g .
with E;;(z) = %@)M and E;; = 2 ;;j_f;?))(i;” (=) for1 < i < { and
JsJ
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i <j <U{. (Here we take F;;(x) =a™ — X\, if F;;(x) =0€V; for1 <i</{.)

Proof. In order to prove this, we will first show that ai(z), as(x), -, as(x) € C*,
ie., (a;(x),bi(x)), =0 forall 1 <4,j < ¢ To do this, let 1 <i,5 < ¢ be fixed.
First of all, for i < j, one can easily observe that {b;(x),a;(x)}, = 0.

Next for j < i, we consider

™ —1

" —1
M) + Ejj1(2) Figr(2) A1 (m

{i(e).ay (@)}, = i) Fog@)dy me )t

et Ej,i(.f)F’i,i(x))‘i( = )

T — N\
Fii(z) Fijsi(@)BY (@) Fii1(2)BY V()
_ < 1,5 _ 4,j+1 41,5 o Mg 1 ; AZ_I’J
Fiy(@) F, J'(Jlr)l,jﬂ () E i(:,]ij) (x)
(i—9)
B Y (x
_ (1) 1,7 ( ()i_j) >(xm _ 1)
Az‘,z‘—1($) T Ai,j (z)

This, by Lemma 6.5.5(b), implies that {b;(x),a;(x)}, = 0 for j < i. Further, by
Lemma 6.2.5(b), we get a;(x),as(x),- -+, ar(z) € Ct*, which further implies that

(a1(z), az(x), -+ ,ag(x)) € CH-. (6.22)

On the other hand, let (di(z),da(x), - ,de(x)) € Ct*. This, by Theorem 8.3.2 and
Lemma 6.2.5(b), implies that

Fua@)S (o) (5= ) =0 (mod 7 — ),
Fou () (dy ()M (;ﬁ“i) + Foo(@)5 (da(@)) o (iif‘i) =0 (mod 2™ — 1),
Fua ()8 (da ()M ( fnm — i) + Fua(z)S; )(dg(az))Ag< fnm — 12> +

) =0 (mod z™ —1).
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From this, we observe that

SV (di(x)) =y () Br (@),
S (do()) = 1 (2) Eral) + ya() Ena(2),

S (ds(x)) = y1(2) Erg (@) + yo(x) Eay(x) + ys(w) By a(2),

S(de(x)) = y1(2) Ere(2) + yo(@) Bag(x) + -+ + yo(2) Ee(),

where y; (), y2(x), - -+ ,ye(z) € Fy[z]. This implies that (Slgl)(dl(a:)), S,S)(dg(x)), e
LS (d(x))) € (Bra(x), Bra(@), -, Bre(2)), (0, Baa(x), -+, Eag(x)), -+, (0,0,
<, 0,E(x))) C V. As ﬁ(i) is the inverse of S,gi) for 1 < i < [, we see that

(dy(x),da(x), - ,de(x)) € {ar(x),az(x), - ,a,(x))(C V). From this, we obtain
CHe C (ay (), as(z), -+, ae(z)) . (6.23)

Now by (6.22) and (6.23), the desired result follows immediately. O
Now we provide an example to illustrate Theorem 6.5.6.

Example 6.5.2. Let C be the GQC code of length 9 over Fy (as considered in
Example 6.5.1) with a normalized generating set {by(x), ba(x), bs(x)}, where by(z) =
(1,0,0),bo(x) = (1,1 + z + 2%,0) and b3(z) = (1,z + 1,z + 1). Now by applying
Theorem 6.5.6, we see that a generating set of the Euclidean dual code C*° of the
code C is given by {ai(x), as(),as3(x)}, where a;(z) = (0,1 + 2%, 1), as(x) = (0,1 +
221+ 2%) and az(z) = (0,0,1 + z + 2?). Since a;(x) = az(x) + asz(x), we see that
Cho = (az(), as(x)).

Remark 6.5.7. (a) Let C be a A-MT code of length n over F, with a normalized
generating set {by(x),ba(x), -+ ,be(x)} satisfying conditions I and II. By ap-

plying Theorem 6.5.6 and by working in a similar manner as in Theorem 6.5.3,
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one can determine a unique generating set S = {Ry(x), Ra(x), -+, Re(x)} for
the dual code C* with R;(z) = (0,- -+ ,0, R;;i(x), Riiv1(x), -+ , Ris(z)), where
R;i(x) = K <77€l)( s i /\ )) is a monic polynomial for some r; € F, and
either R;;(x) =0 or deg Rﬂ(m) < deg R;;(z) for1 <j<i<L.

(b) The results derived in Section 3.4 can be similarly extended to this generalized
family of MT codes over Fy, whose block lengths my, mo,--- ,my are arbitrary

positive integers, not necessarily coprime to q.

In the database maintained by Grassl [39], many linear codes with best-known
and optimal parameters [n, k, dmin| have been listed over F, when 2 < ¢ < 9. In Ta-
bles 6.1 and 6.2, we also identify several linear codes with best-known and optimal
parameters [n, k, dyin] from 1-generator A-MT codes over F, with the generating
set {(by(x),bo(z),- - ,be(z))} by carrying out computations in the Magma Com-
putational Algebra System, where 2 < ¢ < 7. It is worth noting that these code
parameters cannot be attained by constacyclic and QT codes. In Tables 6.1 and
6.2, the element b;(x) = bio + bi1x + b;2x® + -+ + bim,—12™ 1 € V; is represented

by the sequence b; gb;1 - bim,—1 for 1 <i < ¢, and b is a primitive element of [F,.
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q | (m1,ma, -+ ,my) A (b1(x),ba(z), -+, be(x)) [n, K, dmin]
2 (21,1,1) (1,1,1) | (101011010101010110010, 1, 0) 23,16, 4]
2 (21,1,1) (1,1,1) | (101110011110110100110,1, 1) 23,15, 4]
2 (15,5,3) (1,1,1) | (010011110111011, 10111, 011) 23,10, 8
2 (14,7,2) (1,1,1) | (10011010000110, 0010001, 00) 23,9, 8]
2 (14,7,2) (1,1,1) | (10111010111111, 1010011, 10) 23,8, 8]
2 (24,4,1) (1,1,1) | (100111110011110011111100, 1000, 1) 29,20, 4]
2 (21,7,1) (1,1,1) | (001111000001110010011, 1001101, 0) 29,12, 8
2 (24,3,2) (1,1,1) | (001111110110111100011011,00110) [29,21,4]
2 (28,2,1) (1,1,1) | (1110001010111101100110000100, 11, 0) [31,22,4]
2 (28,2,1) (1,1,1) | (0010110101010110111101101111,10,1) | [31,23,4]
2 (28,2,1) (1,1,1) | (1110100111010010010111011100,10,1) | [31,24,4]
2 (20,10,1) (1,1,1) | (00101110101000101110,0111111010, 1) (31,14, 8]
2 (30,1) (1,1) (001101100111011101011101010100, 1) (31,18, 6]
2 (35,2) (1,1) (11010010000100000110001100010011110,| [37,27, 4]
00)

2 (40, 1) (1,1) | (10101110111100010010100010001010011 | [41,31,4]
00100, 0)

2 (35,5,1) (1,1,1) | (01000011011100010100110010101011000, [41,32,4]
01100, 0)

2 (42,1) (1,1) | (11100111010011101011100011000010101 | [43,33,4]
1010100, 0)

2 (42,1) (1,1) (00000111000010101110011111110000110 | [43, 34, 4]
1110011, 0)

2 (42,1) (1,1) | (01101011001100101110000101111111010| [43,35, 4]
1011111, 0)

2 (21,21,1) (1,1,1) | (101010100011011000010,0110110000101 | [43,21, 10]
00101101, 1)

2 (42,4,1) (1,1,1) | (01101010110100001100000100011010000 | [47,37,4]
0110011, 1100, 1)

2 (42,4,1) (1,1,1) | (01110111101110000000111101000001011 | [47,38, 4]
0001000, 1100, 0)

2 (42,3,2) (1,1,1) | (00111111000110111101010010011010111 | [47,39, 4]
0110110, 001, 10)

3 (11,11, 1) (2,2,1) | (11012110120, 00022201121, 0) 23,10, 9]

3 (11,11,1) (2,2,2) | (22012201200, 11122121102, 2) 23,11, 9]

3 (26,2,1) (1,1,2) | (01221102101102211211100210, 10, 2) [29, 20, 6]

3 (24,3,2) (1,1,2) | (121221120202111212100112, 211, 11) 29,19, 6

5 (24,5) (1,3) | (322143404240332412004122, 24224) 29,5, 3]

) (30,1) (4,2) (400032102243414411401230334141,1) (31,26, 4]

7 (16,1) (2,2) | (3365356202240515, 6) (17,13, 4]

7 (8,8,1) (4,4,5) | (13460303, 36344311, 2) 17,8, 8]

Table 6.1: Linear codes with optimal parameters [n,k, dmi,| over I, obtained as
1-generator A-MT codes
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q (m17m27"' amf) A (bl(x)vbQ(x>7"' ,bg({L‘)) [n7 k, dmin]
2 (33,2,2) (1,1,1) | (001010111011100100010010110101110, | [37,23, 6]
11,11)

2 (30,5,2) (1,1,1) | (110010001011011010000010110100, (37,18, 8]
00110, 10)

2 (18,18,1) (1,1,1) | (100000001101110110, (37,15, 10]
011011001111000110, 1)

2 (20,20, 1) (1,1,1) | (10000000111001000111, [41,19,10]
11000010001111010011, 0)

2 (28,14,1) (1,1,1) | (1000110101100100101000010110, (43,23, 8]
10110011001010, 1)

2 (21,21,1) (1,1,1) | (000001010000100111111, [43,16,12]
101111100100101000000, 1)

2 (30, 15,2) (1,1,1) | (100101001011111111001011001001, (47,26, 8]
111000000101111, 10)

2 (42,8, 3) (1,1,1) | (100011101100101000011101111100111 | [53,42, 4]
110110000,01111000, 101)

3 (14,14,1) (2,2,1) | (22020002020202,00001022110010, 0) [29, 14, 9]

3 (24,4,1) (1,2,1) | (102020210002112000202102, 0201, 1) [29, 22, 4]

3 (20,5,4) (1,2,1) | (11211020200200001200, 11222, 2022) [29, 15, §]

3 (24,4,1) (1,1,2) | (200121101020220121012120, 2021, 2) [29, 18, 6]

3 (14,14,1) (1,1,2) | (21121011001201, 12221202100101, 1) 29,14, 9]

3 (24,4,3) (1,2,1) | (211220112021102210221110, 0012, 200) | [31, 20, 6]

3 (24,4,3) (1,2,1) | (021122222212210211220122,0202,212) | [31,24,4]

4 (9,9,1) (1,1,0%) | (b*160b11b1, 01067670100, 1) 19,8, 8]

4 (7,7,7,2) (1,1,1,1) | (bb10000, 10616162, 162602626262, b?b?) [23,7,12]

4 (20,2,1) (b,b,b%) | (b2b20016%6b01b%16°10b%bbb?1, 10, b?) (23,17, 4]

4 (18,18, 1) (1,1,6%) | (0116b%b*bb1b11b11000, [37,17,12]
000bbb2bb11b0b1bbb>b, b?)

5 (11,11,1) (3,3,2) | (41013412110, 34442312433, 3) [23,11,9]

5 (20,5, 4) (1,1,1) | (20410204030400122031, 40023, 3414) 29,17, 8]

7 (16,2,1) (1,6,1) | (5332356045155140, 63, 5) (19,14, 4]

7 (21,1,1) (1,2,4) | (632622252145661023230, 5, 5) (23,18, 4]

Table 6.2: Linear codes with best-known parameters [n, k, duin| over F, obtained as

1-generator A-MT codes
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fields

7.1 Introduction

Let F, denote the finite field of order ¢, and let n = m; + mg + - - - + my, where

mq,ma, - -+ ,my are arbitrary positive integers (not necessarily coprime to ¢). Let
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A= (A1, A2, -+, Ag), where Ay, Ao, - -+, A; are non-zero elements of IF,. In this chap-
ter, we shall explicitly determine Hamming weights of all non-zero codewords of sev-
eral classes of A-multi-twisted (A-MT) codes of block lengths (my, ma, -+ ,my,) and
length n over FF,. Using these results, we shall explicitly determine Hamming weight
distributions of several classes of A-MT codes of block lengths (mq,ms, - -+ ,my) and
length n over F, with a few weights, which have applications in constructing strongly
regular graphs, association schemes and authentication codes. We shall also identify
two classes of optimal equidistant A-MT codes of block lengths (my, ms, - -+ ,my,) and
length n over F, meeting the Griesmer as well as Plotkin bounds, which have nice
connections with projective geometry and combinatorial designs and are useful in
constructing distributed storage systems. Besides this, we shall obtain three differ-
ent classes of few weight A-MT codes of block lengths (my, ma,-- - ,my) and length
n over IF,, which are useful in constructing secret sharing schemes with nice access

structures.

This chapter is organized as follows: In Section 7.2, we explicitly determine Ham-
ming weights of all the blocks of non-zero codewords of several classes of A-MT codes
of block lengths (my,ms,---,my) and length n over F, (Theorems 7.2.2-7.2.10).
Using these results, one can explicitly determine Hamming weights of all non-zero
codewords in these A-MT codes and their Hamming weight distributions. In Section
7.3, we explicitly determine Hamming weight distributions of several classes of A-
MT codes of block lengths (mq, mo, - -+ ,my) and length n over F, with a few weights
(Theorems 7.3.1-7.3.9). Among these classes of few weight MT codes, we obtain two
classes of optimal equidistant A-MT codes that attain both Griesmer and Plotkin
bounds (Theorems 7.3.1-7.3.2). Besides this, we identify three different classes of
few weight A-MT codes, which are useful in designing secret sharing schemes with

nice access structures (Theorems 7.3.1-7.3.3).

From now on, throughout this chapter, let F, denote the finite field of order

q = p", where p is a prime number and r is a positive integer. Let my,mq, -+, my be
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arbitrary positive integers, not necessarily coprime to q. Let n = mq+mo+---+my,
and let A = (Mg, Aa, -+, Ag), where Ay, Ag, - -+, Ay are non-zero elements of F,. Here

we shall follow the same notations as in Chapters 2 and 6.

7.2 Hamming weights of codewords of MT codes

In this section, we shall determine Hamming weights of non-zero codewords of
several classes of A-MT codes over finite fields. To do this, let C be a A-MT code of
length n = my +mgy + --- + my over F, with the constituents C;,Cs,--- ,C,, whose

codewords x,, = (Tyw1, Twa, - Twe) € Cyp satisty the following condition:

For 1 < </, there exist integers 41, 73 such that 1 <i; < iy < p and z,,; =0

for 1 < w(# 11,12) < p, (7.1)

(note that the integers i; and i depend upon 7). Now let us write each word z,, € C,,

as Ty = (Tw1s Tw2, - » Twye), Where

(@) (@) () pti—1 . 1.
. B xmw + waui + e —'— xpai—l,’wui lf G’LU,’L' = 1,
w,i —

0 otherwise,

with xgz)w € Fpaw for 1 <w < p, 1 <¢ < land 0 < j; < p% — 1. Next we see, by

Theorem 6.3.2, that the codeword of C corresponding to the words z; € Ci, 25 €

Cy, -+ ,x, € C, is given by
C(xbm%”' 7xp) = (Cl(l’l,l’g,"‘ 7xp);02('r17x27"' 7xp);'” ;Cf(xlax%"' 7'Ip>)
with 2, = (Tw1, Twa, -+ Twy) € Cy for 1 < w < p, where

Ci(I17$27 ce 7%) = (Ci,o(xl,@, ce 7'1:/)); Cz’,1($17$2; T 7'Tp)7 T 7Ci,mi—1($1,l‘27 ce 7'1:/)))
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is the ith block of the codeword c(x1,xs,- -+ ,x,) of the code C with

1 p%i—1 .i o P . R
Citi+v;p%i (xlv Loy 7$P) - n; ( Z (i) (_1)J2 : Z TT’]quw /Fq (xi?wdg; e )>
7 7 el

7i=0

(7.2)
for 1 <i</,0<t;<p*—1land0<wv; <n;—1.

From now on, for 1 < w < p, let x, = (Ty1,Tw2, -, Twe) € Cyp be fixed. In
view of this, we see that the Hamming weight Wy (c(21, 22, - - -, x,)) of the codeword
c(xy, 29, -+ ,x,) € C is given by

¢
WH(C(xh Lo, - 71:[')) = Z WH(Ci(‘rla T, - 7IP>>7 (73)
i=1
where Wy (¢;(x1, 22, -+, x,)) denotes the Hamming weight of the ith block ¢;(z1, 2,
-, x,) of the codeword ¢(xy,xs,--- ,x,) € C for 1 <1i < (. Therefore to determine
the Hamming weight of the codeword ¢(z1, 22, -+ ,z,) € C, it is enough to determine
the Hamming weights Wy (¢1(z1, 22, -+ ,2,)), Wh(ca(21, 22, -+ ,2p)), -+, Wi (co(z1,
Tg,- -+ ,x,)) of each of its £ blocks. Towards this, we note that
pi—1n;—1
WH(Ci(xb Loy ,pr)) = Z Z WH(Ci,ti—&-vipai (xb Loy« 73:/7))
t;=0 v;=0
pi—1
= Z Agti)(‘rh Xo - 7xp)7 (74)
ti:O
n;—1
where Agti)(l'l,.fg o xy) = 3 Wh(Cityqopei (X1, 22, -+ ,x,)) for 0 < t; < p* —1
v;=0
and 1 <4 < /. In order to determine the Hamming weight Wy (c;(x1, 22, -+ ,z,)) of
the ith block ¢;(z1, 22, -+ ,x,) of the codeword ¢(z1,z, -+ ,z,) € C for 1 <i </,
it is enough to determine the number Agti)(xl, Tg,---,x,) for 0 <t; <p% — 1.

From this point on, let 1 <7 < ¢and 0 <t; < p* —1 be fixed. Further, by (7.1),

there exist integers ¢y, 79 satisfying 1 <13 < iy < pand x,,;, =0 for 1 <w < p and
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w & {i1,12}. In view of this and by (7.2), we see that

Agti)(ﬁl,%“' Tp) = N — HO <v, <n;—1:Trp dil/Fq(yt( )“(SZ_I”"”)+
q

TT]quig /Fq <y£ )12 Z_zvlp Z - 0}|

where
pai —1 j pai —1 j
i i % ji—ti i i i i —1q
y’Eiv)il - Z (t) x.gz?zl <_6i1)3 < ]quh and yzgi,)iz - Z (t) 95;322 <_(5i2 )j € ]quiQ'
Ji=ti ‘ Ji=t; ¢

From this point on, let us define
ti % i ti
D Wy ier) = A (wn, w2 ). (7.5)

Now we shall first express the number Dgti) (yg)l1 , yt(:)w) in terms of certain character
sums over finite fields. For this, we assume, throughout this chapter, that y and x,,
are canonical additive characters of Fy and F 4, for 1 < w < p, respectively. Then

by (2.1), the number D(t )(yti)“, yf )12) can be rewritten as

DI ()

n;—1
1 \ v. —v;p%i
N nz_gz Z < (Ter /Fq(yi )11511 zp )+TTqui2/Fq(y§ )12512 g ))>
v;=0 z€F,
n;—1
n 1NN (@) g5ov (i) s-vip®
= - ;_5§<ZOX<ZT7"FJ% /e, (Ui 05 )) (sz /8o Y0 ))-
2€FY vi=

Further, by using the fact that Tr]pq 1, /Fq 18 an Fo-linear map for 1 < w < p and by
(2.2), we observe that

D0 i) == 2= S Z S NN E )}

ZGF* V=
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From this, we obtain

0 if yt(:,)ll = ylszl,)lz = 0;
R 0,0, £ 0%, =0,
zelly v;
DI 0 mt) 15y N0 sty 0 g gy 2,
(yt 7,17yt 12) q q E]F* 5 OXlQ yt 412 712 yti,il - yti,iQ )

n 1 —v; K3 — Uy i
((51 : l Z Z Xn( ytz,n i1 " )Xm(zng )12512Up )

ZE]F* V=

1fyt Zl#()&yt Z27«'50
(7.6)
In order to explicitly determine the number Dgt')(yg?“,yf )12), we further proceed

to express the above character sums in terms of Gauss sums, whose explicit values

are known only in certain special cases [11, 51]. For this, we shall distinguish the
following two cases: (i) either yt(:)“ or yg)lg is zero and (ii) both yg)“ and yt(:)w are nomn-

zero. From this point on, throughout this chapter, we assblme that (, is a primitive
element of F 4, for 1 < w < p. It is easy to observe that Cw"w T is a primitive element
of I, for each w. Now for 1 < w < p, since d,, € quw, we can write 0! = Cf;“f for
some integer ¢, satisfying 0 < ¢,, < ¢% — 2. Further, let 7, = ged (qz%l,fw), and

let ¢,, be a generator of the multiplicative character group IF/Z:U of Fa, for each w.

7.2.1 Determination of the number Dl(t)(yf)“,yiz)w) when ei-

ther yg)“ or ?Jt(f)@ is zero

When ys)“ = 4. =0, by (7.6), we have Dgt')(yf )“,yf )ZQ) = 0. So we assume,

tiiz
throughout this section, that yt(:)sl # 0 and yt(j)s,_ = 0, where {s;, s}} = {i1,42}. In the

following lemma, we express the number D,L(t)(yt(:)“,yt(:)m) in terms of certain Gauss

sums.
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Lemma 7.2.1. We have

oo @ mlg—1)  mg—1) = e ation
D@'i y?i’y?i): . - = G(¢s i s Xs; ) s i ?/-ls- .
o Vi) = =20 = gty 2 ) (910,
Proof. To prove this, we see, by (7.6), that
ti i q - 1 —Ul i
DIy yiy) = ———= — = Z Z X (2040, 0577). (7.7)
ZE]F* V=

Next by (2.5) and by using the fact that Iﬁfd\ = (¢s,), we note that

n;—1 S’L —2n;—1

Z X:XSZ zyt“sz _Ulp l) - 51 -1 Z Z Z G qusl gbh( ytz,sl _Ulp )

ZG]F* ;= ZG]F* h;=0 v;=

Furthermore, for 0 < h; < ¢%i — 2, one can observe that

q—2 (@i —1)k =2 2 (g% —1)n;k
Z ﬁb?l('z) = Cbgf(Csi )= Ze (@™ ~1)(a-1)
2€F; k=0 k=0
2 ngk g—1 ifh; =0 (mod g — 1);
= [ qg—1 =
k=0 0 otherwise.
From this, we get
n;—1
Z Z XSZ zytl751 S4 P 1)
zEF v;=
qujl_lfl n;—1
g—1 (° —(g-1)z 3 0
- LS e i (S >))-
2z;=0

Next if ¢l 1% (6,7) # 1 for some integer z; satisfying 0 < z; < q , then we
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observe that

ni—1 ni—1 (a=1)z W™y — 1

q— 1)z1 v,p i _ q—1)z p i Vs Si
Z ¢ ) - Z ¢ 5 ) - (q—l)zi (5;pai) o 1

Si

ng 1)21()\ 1) -1

= gq 1)z1(6s—p 7,) 1 = O’
as 07" = \; and A~ ' = 1. Therefore for 0 < z; < q , we get
n;—1 n; if ¢Sq 1)21(6 P z) — 17

Z¢q 1zZ va):

0  otherwise.

Further, for an integer z; satisfying 0 < z; < i 11, we note that qb(s'f_l)zi(é;p“i) =

2mi(g—1)z;p® ils;

Sl Ksipai) =e "1 =1lifand only if (g —1)z;pl,, =0 (mod g% — 1),

Si Si

which holds if and only if z; =0 (mod (g™ )) From this, we obtain

7s; (a— 1)
n;—1 Ts; =1 (a%%i —1)b; (a%%i —1)b;
i) c—wp% ni(qg —1) = T, (i
DD Xl ) = T D G T xa)on T (i)
z€Fy vi=0 q b;=0
n;—1
Now on substituting the above value of the sum ) Z Xs, (2 yt“sl 6,,"""") in equation
ZEF* V=
(7.7), the desired result follows immediately. O
In the following theorem, we explicitly determine the number th (ygz)“,yé?u)

B .
Theorem 7.2.2. Let ?/£ s gsf e F*ds and yt =0, where 0 < bgz)s < g%i — 2.

(a) If 7o, = 1, then we have Dl(t )(yfz?“,yﬁh)w) = "i([flfl) + q?;gf;li).

(b) If 7, = 2, then the integer ds, is even and

rds; (=12 dy; 0
) () @) nilg—1) | (g =D+ T g2 (=1) )
Di (ytuil’yti,b) = + s ’

q q(g™ —1)
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(c) Let 75, > 3. Suppose that there erists a positive integer v, satisfying P =
—1 (mod 15,). If zs, is the least positive integer satisfying p*i = —1 (mod 7s,),
then we have rds, = 2z,,v,, for some positive integer vs,.

Vs, (P™%i +1)

o When 7, is even and == s odd, we have

ds;
n;(qg—1) ni(qg—1)(— 1+qT(7-SZ,_1)) )
' ’ o ds,L if Ts,
D( )(yt(“)zla yt(z)m) = a q(q™%i—1)

ni(g=1) | ni(g— 1)(1+qT) : Tsq
T iy if o 5+ by

5 bl

irS5 "

pus; (p%i +1)

S

o When either 7, is odd or is even, we have

ds.
ni(g—1) _ ni(g=D)(=14(=D" g2 (r,,-1) @ .
] i - ds; _ Zf Ts; bti,szw
D( )(yt( )1,1’ ylg )22) - (q 1) ( 1)(1+( q:f;lus__ll)@) ()
ni(g— ni(g— —1)"i" g : i
q + q(qui_l) Zf TSi Tbti,si‘
Proof. To prove the result, we first note, by Lemma 7.2.1, that
DI 9 ) ni(g—1) nilg d) (v, 1)7 (7.8)
’ q q(q® —1)
) Ts;—1 (%% —1)b; (ngZ 1)bi
where @;(yt(z)s) =Y ¢s (yt“sl) (6s; ™", Xs,)- So to determine the number
bi=0

Dgt )(ygl)“,yf )12), it is enough to determine the explicit value of the sum @;(yg)sz)

q%si_1

To do this, we note that O(¢s, ™ ) = 7,. Now we shall consider the following three

cases separately: (a) 75, = 1, (b) 75, = 2, and (c) 75, > 3.

(a) When 7,, = 1, by (2.4), we note that @;(ygz)s) =—1.

g%si o1

(b) When 7,, = 2, we note that 551 " is the quadratic character of F:dSi. We also

observe that 7,, = 2 divides q =1+4q+---+q¢% !, which implies that ¢
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is odd and d;, is even. Now by Theorem 2.2.1, we get

ds, ds,
q °t—1 q "t—1 2 .
rds, (p—1)° ds; (4)

Oy )= =14 s (W )G(hs™ o xe) = —1—1 1 g2 (=1) e

(c) Next let 75, > 3. Here by Theorem 2.2.2, for 1 < b; < 7,, — 1, we note that

S5 ds; . . vs. (p*%i .
_“Idfifl)bl (—1)big=" if 7,, is even and M is odd;
G(¢51 ! >Xs,~) = ds; ot
(—=1)»=~1¢g="  otherwise.
(7.9)
When 7, is even and w is odd, we observe, by (7.9), that

S

Tsi 71 (a®i —1p;

3 dsi . Ts. 7
QL) = —14+q= > (DY ™ (i)

b;=1

ds; %)
Tsi_l <27”bi(q S _1)b§i’5i 2mebiTs; >

= —1+Q%Ze o

dg.
7s,;(q %i-1)

b;=1
dsi ”I'S,L'*1 27meb; (b(z) J,_Ti)
= —1+¢q2 E e e w2
b;=1

dsi . Ts.: 7
—14q72 (1, — 1) if7, | %—l—b() ;

ti,8:)

ds; .
—1—q= otherwise.

. . vs. (P75 +1) .
On the other hand, when either 7, is odd or % is even, we observe,

by (7.9), that
: ds,; Tt by
Oly) = 1+ (="l > oy T (ylls)
b;i=1

dg. .
1+ (=)= tg2 (1, — 1) if 7y, | bg?sz,;

—1—(=1)=1g=2 otherwise.

)

»Si

Now on substituting the values of @;(yﬁl ) in equation (7.8) in the respective cases,
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we get the desired result. O

7.2.2 Determination of Dl(t’)(yp“,ygz)w) when yt 4 # 0 and
?Jt(Z)zQ # 0

Throughout this section, we assume that yt W 7 0 and yt iy 7 0. To determine
the number D" )(ygl)“,yt( )12) we shall first fix the following notations:

i = ng<d11> d; ) gs, = ng( nSZ 117681) for 8; € {ila Z2}
Ag= # for s; € {iy,is} 7; is the least positive integer satisfying
Tizil — qi—1
9i,Ge (mOd Gi )
G; = ged ( L 1) 7/ is the least positive integer satisfying
T —1)Ay, q—1
—Gi/\i 1 =1 (mod A_z>
H; = gcd ( =, giQ q" — 1) L; is the least positive integer satisfying
gt -1 (qdi2 —-DL;
-1 q—1
i1 T Sig
qmi—1) A, Gi Ly Ay il
A; = ged (PHE g — 1) A} = ged (A, 57— S
_ (g"i=1)(¢=1) r_ Aty (@17 /("2 1)L
K = GiA; Ki= " ANgi, H; ] (1 - G\, 1) " AN Hgi,
_ Gihigi 1 (@"i—1)Ajgi, H;
MZ - q—l ' MZ - GZA,L .

Note that K/ — — Jifehi  7i(a%i-1) (AigGiLi R YAY
! =

N H; 9ig Hi

G HAT G ) and M] = are

Gih;
integers, and ged(L;, g — 1) = 1.

In the following lemma, we first express the number th’)(ygz)l y yiz)z ,) in terms of

certain Gauss sums.

Lemma 7.2.3. We have

ni(g—1) ni(q — 1)@z(yt(l)7,17yt(2)12)

DIy 4Dy = . , :
b q q(g% —1)(¢%=2 — 1)

117 Jt;,i2
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M!—-1p;—1 ) Ajy Gihjzo
0100 ) = D0 3 (G T o G0 166, T )
20=0 z1=0

A, Gz

H,L-A; 3

Proof. To prove the result, we see, by (7.6), that

t; ) Z(q B 1) 1 % )
POl =" Lo g0 400 o
where €; (yt “,yfz)w) =Y Zo X“(zyf )“5“”“’ )Xu(zyt 12(5 "), Now since deil =
ZG]F* Vi

(¢s,) and IFZ% = (¢i,), we note, by (2.5), that

Zl 2q _

Ul W) = o) Z Z Z( By xin ) (zy00, 0,

zeIF* p1=0 p2=0 v;=0

G(gblg 7XZ2) ( yt(“)zg(szgvlp l)) :

Further, for 0 < p; < g% — 2 and 0 < py < ¢%2 — 2, one can easily observe that

(q iy _ l)k @2 “1)kL,
YN () = Z 0! ) (G, )
z€FY
ZQ CAMERAL q—1if pug + peL; =0 (mod ¢ — 1);
= (& q— —=
0 otherwise.
From this, we obtain
7 q— 1 7 T 7
Ui Uis) = T g =) O G ol W) G X ()
m M2

n;—1

. ( > )0k (6,)).
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where the summation »  runs over the integers p; and o satisfying 0 < py <
[i1, 42

g% —2,0 < pp < q%2 —2 and pg + poL; = 0 (mod g —1). Next for 0 < py < g% —2
and 0 < pg < g2 — 2 satisfying py + 2 L; = 0 (mod ¢ — 1), we assert that

S o - ng it @O (6,7 = 1,
DO (6, = (7.11)
v;=0 0  otherwise.

To prove this, we note that if gbé‘f(é{lpai) é‘;(@;pai) # 1, then

$ gy oy < SLOTIEEC) =1 OO0 1

a

= c RO O =1 BlE e (6, — 1

a4 d
g ‘11 (¢ *2-1)L;

mp o SMi ) . : -1 * -1 __ q—1 . .
as o; = 0,," = A;. Since ;" € Fy and ¢ = G, is a primitive element
("1 -1)s (¢%2 1L

. —1 o q—1 . q—1 . . .
of Fy, one can write \;" = ¢, = G, for some integer J satisfying

2meJ (p1tuoly)

0 <J < qg—2 In view of this we obtain ¢ (A7 )@ (A\T) = e o =1

which further implies that Z P (0;, N

12 \"1i2

Y

") = 0. On the other hand, when

v;=0
n;—1

PO P2 (6,7") = 1, we have z P (57 )2 (07,

11 1 12 12

(7.11).

e .
YP) = n;, which proves

Ul—

2mipy €y, p% 2mipgl;, pi
o 1 + 2

We further note that gb’ff((?i_lpai) o) =e a%i1 1 “2-1 =1 if and only
if (q%2 — 1V)prly, + (¢% — V)pgly, =0 (mod (g% — 1)(¢%2 — 1)). From this, we get

1 nz i K i
Uik Yiik) = Ty ) 2o OO X)) OO i)l (ki)
N17N2

(7.12)

where the summation Y runs over the integers p; and ps satisfying
B2

0< iy < g% —2,0< pp < g% =2,
(¢% — Dals, + (¢" — Dpali, = 0 (mod (g™ — 1)(¢™> — 1)) and
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Furthermore, one can observe that all the distinct integers puq, po satisfying (7.13)

are given by

pr = A (Kiz + Kiz1) and pp = 2HT;Z27
where 21, z9 are integers satisfying 0 < z; < M; and 0 < 2z, < M/. This, by (7.12),
i i n;(¢—1)0; él) , t(l) . .
gives Ql<yt(l)z17y§1)z2) = (fqdjl)_l()i(;cgzill;Q). From this and by equation (7.10), the
desired result follows immediately. O]
Next to determine the explicit value of DI (3. | 4 te that O(¢-"") =
plicit value of D;*"(yy, ;. 4y, ;, ), we note that O(¢;, ") =

Ajy Gidg
M, and O(gbigHiAi ) = M!. Now we shall distinguish the following three cases: (i)
M] =1, (ii) M = 2, and (iii) M/ > 3. Further, in each of these three cases, we shall

consider the following three subcases separately: (i) M; = 1, (ii) M; = 2, and (iii)
M; > 3.

In the following theorem, we consider the case M/ = 1, and we explicitly deter-

(t) ()0 0 ).

mine the number D;" (v, , Y. s,

, noy .
Theorem 7.2.4. Let M! = 1, yt(?)il =G, €T, and yg_’)m € Fr,, . where 0 <
(3} q 3 (3] q K

7

). < qdil — 2.

tii —

o ()¢, @ @) _ nilg=1) _ ni(g—1)
(a) If M; =1, then we have D" (yy ;. yi3,) = == pE TR

(b) If M; =2, then the integer d;, is even and

rdiy (p—1)2 diy (i)
@, @ @ nilg—1) mlg=1D(1+e T gz (=1)%n)
Di (y i,il’ytmz) = - d; d;
q q(g®n —1)(g%= — 1)

(c) Let M; > 3. Suppose that there ewists a positive integer p} satisfying p* =
—1 (mod M;). If 6; is the least positive integer satisfying p” = —1 (mod M),

then we have rd;, = 20,;7y; for some positive integer ;.
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. (pPi+1) .
e When M; is even and ’% is odd, we have

d;
nitg=1) _ mile-1)(1-077 (Mi-1))
7 q ( dil—l)( di2_1)
D (g, virsy) = ey
ni(g=1) ni(q—l)(l-f—qT)

q a(q1 —1)(¢"2 ~1)

if My | i 4 )

ti,i1)

ZfM T A + bt 41"
o When either M; is odd or p@¥itl) even, we have

M;

d;
ni(g—=1) ni(q—1) (1—(—1)'”71(]71 (Mi—l))

: : if M; | b
t) (oD (0 a ("1 ~1)(g"2 1) toin)
D( )(yt(zy)'Ll’ ygzy)m) - z ! ! dil )
ni(g=1) _ nmile=D){I+(D)%" g2 TSV
q a(q"1 —1)(¢"2 —1) if M; T btz,u

Proof. By applying Lemma 7.2.3 and working in a similar manner as in Theorem

7.2.2, the desired result follows immediately. O

In the following theorem, we explicitly determine the number Dgt")(yt(?il, t(:)m)
when M; =1 and M} = 2.

Theorem 7.2.5. Let M; = 1, M! = 2, 4. = cf " e, and Yiih = Cf "€

tiyi1 1 2

]Fd,wher60<b <qi1—2and0§b§i2§q22—2.
q K2}

ti,i1

rdiy (-12 diy 00
i ni(g—1 1+ 1 1 Pt.in
(a) Whend;, is even, we have D (yt “,y;’)m) = ((fz ) (1— - (qdil_l)((lqdlZ( 1)) )

(b) When d;, is odd, the integer d;, is odd and

r(diy +di)(p=1)%  dy +d; @) 00
D( ) (Z) () z<q _ 1) 1 1_'_ L 1 42 q 12 2( 1)bt zl+bt ,ig
(yt zﬁytl,zz) - d; d; .
q (¢ = 1)(g% — 1)

Proof. To determine the number Dgt )(yi?)“, yg)m) we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

A Gilg Ao Gily
K/

i < HAL -0 K] HyAL i W Ki, (i
Oy y ) = 1+ G, x) G xa)d, " (D)o (),
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Ay Gilg A4, Gihg

Towards this, we see that O(¢,, ity ) = M] = 2, so the character ¢i2HiA§

is the
quadratic character of quiQ and ¢ is odd. Since ged(L;, ¢ — 1) = 1, we see that L;

is odd. Further, M; = 1 implies that ¢g;, = 1 and G;A; = ¢ — 1. From this, we

(¢ —1)A%gi, Hi

| = M = 2, which further implies that n;, = 1 and Alg;, H; = 2.

obtain

Furthermore, it is easy to see that

po = L1 A= EAy) e - DLy
e qg—1 2 2
d; / 1 d;
gt —1 Tili,(L —7/A) T/ (q%2 — 1)Li>
— _ L — L 14
and
diy, — NG L.
Ngi,H; = 2 = ged (AigigHia % - Ai1€i27i>' (7.15)

Now we shall consider the following two cases separately: (a) d;, is even and (b) d,,

is odd.

(a) When d;, is even, we note that the integer d;, is odd, as 7; = 1. From this, we

d;
see that the integer % is even and the integer A;, is odd. This, by (7.15),
q
clearly implies that the integer 7;¢;, is even. Further, since G; divides 1 —7/4,;,,

by (7.14), we observe that Qﬁﬁ”Ki is the trivial multiplicative character of F 4, .
q

This, by Theorem 2.2.1, implies that

A Gl A Gl
2t t 2 l/ : rd; (P*1)2 d; (%)
H; N, 2 2 b

i i - HA i i _ —_— P
O, ) = 1-G(6," ™ xi)ey, " ) = 1T g (= 1) e,

g%2 -1
q—1

(b) When d;, is odd, we note that the integer is odd and ¢;, = 1. Now as
% = gcd(A;,, G;) =1, by (7.15), one can observe that the integer A;, must

be odd, which further implies that the integer d;, is odd.

Now when G} is even, we note, by (7.15), that the integer 7;¢;, is even. Further,
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as G; divides 1 — 7/A;,, we observe that the integer 7] is odd. This, by (7.14),

implies that ¢, 2k s the quadratic character of F 4, .
q 1

On the other hand, when G; is odd, we see, by (7.15), that the integer 7;¢;,
is odd. Further, one can easily observe that the integer 7/ must be odd if the
integer % is even, while the integer 7/ is even if the integer éA” is odd.
Now since both the integers (qq—l)L Til;, are odd, we note, by (7.14), that

Ai L. 3
o, T quadratic character of qun'

This, by Theorem 2.2.1, implies that

i i r(di) +dip)(p—1)?  d; +dz, @) @
O; (yt(l,)wylf )12) =141 1 q 2 (— 1)bt iyt g 0

In the following theorem, we explicitly determine the number Dgti)(yg?il,yg?m)
when M; = M] = 2.

Theorem 7.2.6. Let M; = M = 2, yt(l)l1 = Zf e Fr, s and yt(l)l2 =( " e F,

where 0 < bgl)“ < g% —2and 0 < bfj)m < q%2 — 2. Here the integer g;, € {1,2} and

p 1s an odd prime.

(a) When g;, =1, we have ¢ =3, Gy = \; =n; =2 and

d;, Zb(?, 2+b§””+ iy diy
() T G ke el RPY 0
(t:) 3 d; d; tii1)
D (yt i Yt 12) = . 3(3%1 —1)(3%2 1) Ji1
21
% o 2ni(1+3T) . 2 (’L
3 3(3di1 _1)(3di2 _1) Zf T bt 1"

(b) Let g;, = 2.

o [fp=3(mod4), then we have

i Qb( )i +rd; *bi )11 d;. +d;
S s s D111
ti (3 7 a; _ ; — Z ;
Dz( )(y;,)zlvy;,)m) - ! . (¢"1-1)(g *2-1) 1
i1

nila=) () ___1=g>
q (1 (qdil _1)(qdi2_1)) Zf 2 T bt I
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o Ifp=1 (mod4), then we have

4 ;. +2d; 2(rd; +b(> )+b{D.

ni(g—1) (1 . 1+qu+2q 7 =1 t222 Ll Rz)
a (g1 —1)(¢"2 ~1)
) () () 2f2|bml,
D (ytz,zl ) ytl,lz) =9 4, 4, +2d;, 2(rd, +bi )12)+1+b§ )11
ni(g—1) <1 _ 1-q 2 42¢7 T (=1 2 7
q (¢ -1)(¢"2 1)
if 24 bt i

rd;
where R; = Re (e; + o f;) = andZ, = Im (e; + Lfl) denote the real
dZ
and imaginary parts of the complex number (e; + ¢ fi)Tl, respectively

(Here e; and f; are the integers determined uniquely by p = e + [Z,e; =
dzl q '1-1

—1 (mod 4) and f; = e;(;, (mod p)).

Proof. To determine the number Dlgt")(yg?il, yij}iQ), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

7 —A;, K; i
O,y u" ) = 1G0T X))o

(yti,il)
Ajy Gilg Ajy Gilg

o “EA ;
+G(¢12 ) Xi2)¢i2 (ylgl?lg)ﬂ(ylgl,)zl)’

i A K, (i A, K TA (K +K]) DNy Kip (i
where Fz(yt()“) = ¢, " (yfi?il)<G(¢,1 VX)) G X )@, (yt()zl)>

AGA

Since M; = M] = 2, we see that gbﬁ”Ki and gbhHiA; are the quadratic characters
of F ., and F a4, respectively, and ¢ is odd. As ged(L;, g — 1) = 1, the integer L;
must be odd. Further, since M; = 2 and ¢ — 1 divides G;A;, one can observe that
the integer g;, divides 2. So we shall consider the following two cases separately: (a)

g, = 1, and (b) g;;, = 2.

(a) When g;; = 1, we see that G Al =2=gcd (q e ;), which implies that both
the integers d;; and G; are even. As G; = ged(l;,,q™ — 1) is even and g;, =

ged (qq,,: 11,£ ) = 1, one can easily observe that the integer C;—l is odd, which
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implies that the integer n; is even. Further, since % = 2 and M| = 2, we
note that % = 4. Next we see that qq"i%ll =14+q+¢*+ - -+q" 1 > 4.
From this, we obtain Alg;,H; = 1 and q;]i—_ll = 4, which further implies that

g = 3 and n; = 2. This gives G;A; = 4. Since A; = ged(2, 3d2,i_1) and the

integer 372;1 is even, we see that A; = 2, which implies that G; = 2. Further,

it is easy to see that

(g% —1)(=27l5, (1 — 27/0;)) — (g% — 1) L;)

A“KZ/ -
8

d.
Tty (a1 -1)(A-27{Ay))

This further implies that QS i f = ¢, * .As Gy =2 and A, =

= ged(2,A;,G;L; — Ay 1ili,), we see that the integer 7;¢;, is odd, which
A, K! qdil—l

further implies that O(¢;," ") = 4. Next we observe that A; K; = and
e (a1 1) (=it =278 ) 42)

o) — g i . This implies that (¢ ") = 4,

Now since p = 3 = —1 (mod 4), r = 1 and % is odd, by Theorem 2.2.2, we

A K] —Aq, (Ki+ K] diy . .
note that G(¢;, 1K1, Xir) = G(¢;, (K +K1)) — —pz . From this, we obtain

i dip A K i i
F) = —p2 o, @ )+ 6, y0))

(1)
d;, €, (1=27]2 )bt iy

2meT;d;
= —pTe( 1 )<1+embi )11)
d; bil:)i
—2p 2 (=1)75" if 2| b

0 1f2J(b

t; 117

ti,i1°
This, by Theorem 2.2.1, implies that

b(i), +d; +2b()

| = 3% 4 (1) ST g 40

7 7 - 2 — 2 2 1 g ;

@ (yt(z,)zlayzgl,)zg) - dy, tit
1+3% if 2457,

(b) Let g;, =2 = ged (’1 Ly ) Here we see that % =1 and both the integers

qhi—1"

d;,, l;, are even. Since M/ = 2, we observe that Alg;, H; = 2 and qz:l =1,
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ie.,, n; = 1. Now as n; = 1 and d;, is even, the integer d;, must be odd and

9i, = 1 =gecd ( g2t 1 U ) This implies that the integer A;, is odd and

Further, as g% = ged (A“, 7) 1 and G; = gcd( .G — 1) by (7.16), we

observe that the integer A;, is odd in this case. Next we note that

py iy = L (At e DLy _ gt DA,
1T 2(g— 1) 2 2 B 4 ’
(7.17)
where A; = % — 7/A;, L;. Further, since A;,A;,, L; all are odd

integers, one can easily observe, by (7.16), that the integers G; and 7;¢;, are

of the same parity.

When G; is even, we observe that the integer 7;¢;, is even. Since G; divides

1 — 7/A;,, we note that the integer 7/ is odd. From this, one can easily see

that the integer A; is odd. This, by (7.17), gives O(azﬁln&) iy

On the other hand, when G; is odd, we see that the integer 7;¢;, is odd. Next

12

we note that the integer 7/ is odd if the integer Pgﬁ is even, while the integer

A
i and 7/ are of

7! is even if the mteger 17784 s odd. That i is, the mtegers —&

TG

the opposite parity. Now as both the integers A;, L; and 7;¢;, are odd, we note

that the integer A; is odd. This, by (7.17), implies that O(¢; ”K’) = 4. Next

@M
= ¢; . From this, one can easily observe
A (Ki+Kj)

L(Ki+K!
we note that gb D

that the characters qSZAll and ¢,
implies that O(g_biAlilKé) = O(¢~ o (Kt KD

11

are inverses of each other, which

) =4. As A :%150dd,wesee

that ¢ = 1 (mod 4) and ” is odd. So we shall consider the following two
cases separately: (i) p =3 (mod 4), and (ii) p =1 (mod 4).

(i) When p = 3 (mod 4), we note that the integer » must be even. That is, p =

—1 (mod 4) and the integer "4 s even. Further, by Theorem 2.2.2, we get

2



7.2 HAMMING WEIGHTS OF CODEWORDS OF M'T CODES 187

—A; . / rd; d; d;
G(Qﬁll& Xil) = G(Qﬁﬁ”(KﬁKz),Xil) = (—1)71_16171 = —qu. Now working

in a similar manner as in part (a), we get

©) (2)
rd; +bt 'Ll+2bt 519 dil +di2
2

tll’

d;
y G 14q¢2 +2(—1 if 2 b\
@Z<y7§17)117y§17)12) = di, ( ) |
1—q=2 if 24 b\"

ti,i1°

1 (KG+KY) K!

(i) Let p = 1 (mod 4). As 0@, ") = 0@,"™) = 4 divides p — 1, by
Theorem 11.4.4 of [11, p. 356], we note that there exists a multiplicative

character ¢ of IF, having order 4 such that

(Ki+Kj))

Gt @) = 6(Ne , gm, (@) and 67 (@) = BN, s, (@) (7.18)

for all o € ]quil , where Ng , /r, denotes the norm function from qun onto [,
q ‘1
Further, by Davenport-Hasse’s Theorem (see Theorem 11.5.2 of [11, p. 360])

and by using the fact that the integer rd;, is even, we obtain

A, (Ki+K!) K!

G(ailzl ' » X1 ) <¢7 ) 1 and G<¢ " i?Xil) = _G(aa Xl)rdzl

where X’ is the canonical additive character of F,. This gives

A K/ (%)

R0, = —65 00 (G 0™ + G(6, ) (<1 ).

d;
g '1-1

As ( = (""" is a primitive element of F,, we note, by (7.18), that

27'rL(q 7‘1 —1)A; di171
—A;, K! —

(ﬁzlll Z(Ch) =€ Wi = LAi - ¢(Nqui1 /E» (C“)) 5( ) - E(C)

and

d; )
2mi(q 'l —1)(A;42) Jdi1 g

(G=e @ = =GN (G) = (6,7 ) = 9(Q).

iy (K +K])

'
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Since the integer rd;, is even and "7 =—1, by (2.4), we see that
— ) rd. di, (A;+2)(p—1)rd; ———d;, ——rd;;
GG, X)) = g™ (DGO, x) T =0 GO =Glox)
(7.19)

Next we assert that

W rd

i ) i rd; rdiy ()
Filyith) = ="enp 3 (et fy) = + (e = of) 7 (<1,

27u(q diy _ 1)A2b£”21

To prove this assertion, we first see that ¢ " ’(yﬁ’)“) — e ("1 =

(@
i1 and we shall consider the following two cases separately: A; = 1 (mod 4)

and A; = 3 (mod 4).

When A; =1 (mod 4), we see that ¢(() = ¢. By Theorem 4.2.3 of [11, p. 163],
_ rd,b-

we note that G(¢, /)% =p (e; + sz) . This, by (7.19), implies that

rd;

; B0 rd; rdiy ©)
Filyf0) = —onp ™ (et 1) 3+ (e of) 3 (1),

When A; = 3 (mod 4), we note that »(C) = ¢ By Theorem 4.2.3 of [11, p.
163], we see that G(¢, x') % —p N (el—i—afl) . This, by (7.19), implies that
i (i). rd; i rd (i)‘
Fy) = —(=0ap (e = of) =+ (e+ o) = (-0

(2) rdil

rd; rd; (@)
= 0 (e o) F (e — o) (1),

which proves the assertion. From this and by Theorem 2.2.1, we obtain

( d; djy +2d; 2(rd; +b<) )+ b{).

i i i )i rd;
l—i—qu—l—Qq 1 2(—1) 2 i Re(ei—l—bfi) 7
if 2 | "
(@) (@) 1 b1
Oi (yt ,i17 ytz,w) di, iy +2d;, 2(rd; +b<z) )+1+b§ >11 o
1—q2 +2q 7 (-1 ) Im (e; + ¢f;) 2
| if 24 bt iy
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O

In the following theorem, we explicitly determine the number DEt')(yt(Z)“,yS?m)

when M; > 3 and M| =

, b0 , ()
Theorem 7.2.7. Let M; > 3, M/ = 2, y\, = (" € Fy, and g = i e

ti,i1 1 122

* i ) i Tilio Ni
IFq%, where 0 < bg ' < ¢ —2and 0 < bg iy < gt — 2. Let S; = _q+1(1 —

i —1) 7! A /(q%2 ~1)L; . : ; , )
i ”) G )Li Here S; is an integer, the integer rd;, is even and p is an

GiA; qg—1

odd prime.

(a) Let S; be even. Suppose that there exists a positive integer pi; satisfying p =
—1 (mod M;). If 6; is the least positive integer satisfying p” = —1 (mod M),

then we have rd;, = 260;7y; for some positive integer ;.

o [f M; is even and %ZH) s odd, then we have

( 4 p(8) - rdi, (p— n? 4
mlq=n) | mla=D) (S0 0h-n) (s )
! ala™1 —1)(g%2—1)
(t:) ¢, (9 (4) ZfM ‘ b ’21 Mz;
Di (yti,ipyti,iz): diy p(0) Tdiy (p— 1)2 d,
n;(q—1) i ni(q—l)(l—i-qT) (1+( 1) ti t ZQLﬁiqT)
! alg"1 —1)(g"2 -1)
\ if M; )(bt i + M

o [f either M; is odd or M s even, then we have

M;
( di rd;, (p—1)%  d; RO)
ni(g=1) _ ni(g=1) (14+(=1)ig 2 (M;-1)) (1+L*“pﬁq 7 (—1)tiviz )
' ala™1—1)(g"2 1)
D( )( (@ ) )= if M, ’bt s
ytz,uaytz,lz diy rdiQ(p71) d%z KO
mt=1) _ mila)(1=C10ig ) (e g ()
I g(q"1 —1)(¢"2 1)
\ if M; J(bt“”

(b) Let S; be odd. Suppose that there exists a positive integer p; satisfying p*
—1 (mod 2M;). If 0; and 0, are the least positive integers satisfying p’ =
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—1 (mod M;) and p% = —1 (mod 2M;), then we have rd;,

some positive integers ; and ..

. A~ (pPi 41 9§+1
o [f M; is even and 2P ) (P 1)

2M?

= 20,7, = 20.~. for

1s odd, then we have

50

rd; (p—1)2 diy +di,

D (e, vii) =

(1 (1+qi1}+(—1)( tM,Zl o (1)22) 2

q¢ 2 Mz))

(¢ -1)(¢"2 ~1)
if M; |btz

217
n;(qg—1) 1— qT(M —1) (4 Qbiz)l +M; .
4 ( (g™ =1)(q"2 — I)ZfMJ[btn&M| 1_;
9y @)
ni(g=1) _ mi(g— 1)(14q2) 2by, 4, M
\ ¢ a(q"1 —1)(g"2 1) if M Tbt i1 & M g
700" .
o If both the integers M, %(gﬂfl) are even and the integer —%(pﬁﬂ) is odd,
then we have
4 dil ( (1)11 - +b( ) ) rdi2 (p—1)2 dil +di2
ni(g—1) (1 _ (1+q7+(—1) L 1 qg 2 Mz))
a4 (¢"i1 ~1)(q"2 1)
(), &) ) if M; | b,
D e ) = (1) - (1) (D 4,
ni\g— q - it
q <1_(d’1 1)(q%2 — 1>ZfM+bth&M’+v
iy @)
na=l) _ nale=)0te 2 2 0
0 ety M, & M

e [f either M; is odd or %(’ﬁjl) is even and HEFD 2MH) 15 odd, then we have
1 (1*(*1)“’2“1qd%(M'*1)+X‘M~)
(t:) / (4) (@) "1(‘31* )<1 o (¢"1 —1)(q%2 —1) > of M; | btz,ll;
D (ytl,ll ) ytl,’LQ) ( gy )
ni(g=1) _ nilg=)IH(1)% g2 TSV
q a(q"1-1)(q"2 ~1) if Mif by,
(9” p(®) ) rdy, (p—1)%  dy, +d;
where X; = (—1) R P R
o M is even and either M; is odd or the integer IGRRE even,

M;
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then we have

d.
(—1)i—lg o M
), () " ni(g—1) (1 — (1 ( 1)(7dilq:)7((i\:[2z 1§+371Mz)> fM |bt L
i 7 (2 q — q —
Di (yti,h’yti@): di
nilg=1) _ mila=1) (1+()n1g )
1 a(g"1—1)(g"2—1)

if M; 4 b

tiyi1?

,(0)
i1 B rd; (p—1)%  d;, +d;
whereyi:(—l)( + +“2)L g

Proof. To determine the number Dz(t (yt(l?l g yg)m) we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

' A Kz Ay Koz, (i
@ (yé )7,17yt 7,2 - ]' _Z G ' ) )¢Zl 1(y§“)’tl)

z1=1
NN NN .
— H;Al H;AT Ay (K421 K;)
+G(¢’LQ ‘ ) Xi2)¢i2 ’ yt 7,2 § : G 21 XZI)

21=0
qu'Ail(K;‘i‘ZlKi)(ygi)' >>
11 i,01 :
(7.20)

A,LQG A;

Towards this, as M = 2, we see that ¢, TN s the quadratic character of IF 4, and

2

q is odd. Since ged(L;,q — 1) = 1, one can easily observe that the integer L; is odd.

Further, for 0 < z; < M; — 1, we note that

diy —1 (¢" — 1)1l A;
(it 2k i, (g — 1)Ajgs, H; ( Titis G\
m o1 — WA . H:
_Ti/(qdzg _ 1)Lz + Zl(q )C(;ZAZ ) i9i2 z)‘

Now as M! = 2, for 0 < z; < M; — 1, we get

, _ (g% = 1)(Si +22)
A (K + 2 K;) = i . (7.21)
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Note that S; is an integer. Now we shall distinguish the following two cases: (a) S;
is even and (b) S; is odd.

(a) Let S; be even. As O(gbA K) = 0(¢;,"" ) = M;, we see that ¢, " €
(@> ). This, by (7.21), gives {¢> ) L0 < 2 < My — 1) = (6017,

Therefore equation (7.20) can be rewritten as

M;—1
i i —Aq Kiz A Kz i
GZ(yt(z,)n’yé,)m) - < -1+ Z G(d)il ' 1’Xl'l)gbil ' 1<yt(z)%1))

z1=1
Ajy Gihy Ajy Gidg

X ( -1+ G(Q_bigHiA; 7Xi2)¢i2HiA; (ygl)m)) (7'22>

Next we assert that the integer d;, is even in this case.

To prove this, we suppose, on the contrary, that the integer d;, is odd. This
implies that both the integers n; and A;, are odd. Since M/ = 2, we note that
Jiy | 2. As d;, is odd, we must have g;, = 1. This gives % = 2, which
implies that (G i), From this, we note that 2 | qmqﬂ which

implies that 2 | ALH; = ged(A;H;, A, G;L; — A, 7;¢;,). Further, it is easy to

(¢"—1)A}H;
— =2

see that the integer A;, must be odd, which implies that the integers G; and
7:l;, are of the same parity. Further, since both A;, and 7; are odd, one can

observe that the integer G A’ = ged (%1), Gi) is odd.

. . _ TIA; (-1
When G; is even, both the integers qA—_l and 7;¢;, are even. As % =

1 (mod qA;l), the integer 7/ must be odd, which implies that the integer S; is

odd. This is a contradiction.

On the other hand, when G; is odd, we see that both the integers q;_l,n-ﬁ

22

are odd. Further, since % =1 (mod qX—l) and ”Gq—Azl) is odd, we

T/A,L (q"ifl) . . . .
_ LogWhel W A (=
(1 e ) is even, while 7/ is even if p (1
T A 1i—1) . dig _1 L;
—lcl;(z\- ) is odd. NOW as both the integers (qqfl) and 7;¢;, are odd, we
143

note that the integer S; is odd, which is a contradiction.
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This proves the assertion that the integer d;, is even. Now by Theorem 2.2.1,
we see that

Ajy Gily Ajy Gilg
— H;A H;M,

G(¢i2 o aXi2)¢i2

. rdi, (p-1)%  d,
(_Z) =2

(%)
L) =R )

(y
Further, for 1 < z; < M; — 1, by Theorem 2.2.2, we note that

d;
a1 . . (p%i+1) .
Koo (—1)"g— if M; is even and I%:Jr) is odd;

7Xi1) =

—A

G,

B
diy .
(—1)t¢=  otherwise.
(7.24)
Now on substituting the values of Gauss sums from (7.23) and (7.24) in equa-

tion (7.22) and after an easy computation, we obtain the desired values of

@z(yt(z)“,y(l)w) in the respective cases.

d; d; .
g 11 (¢ "1 -1)8; g ‘1-1

(b) Next let .S; be odd. Since O(¢i12Mi ) = 2M;, we see that ¢, B e (.
Further, by (7.21), we note that {qu”(KHZlKi) 0 <z < M; - 1} —

i1
d;
(¢ "1 -1)(1+227)

{@.1 2Mi 0 <z < M, — 1}. In view of this, equation (7.20) can

be rewritten as

M;—1

@i<y1§¢7)il>y(¢,)i2) =1 _Z G(o;," B Xi )@ ! 1<yt(u)i1)

z1=1
Ay C/"\i/Ai Ay GiIA'L' " M;—1 (%1 —1)(14221)
- Hidg Hihg i - 2M;
+66," e, (X 6@, )

21=0

(o%in —21131(1-‘—221) 0
i 1
X¢i1 (yti,il)) .

(7.25)

We next assert that the integer rd;, is even.

To prove this assertion, we suppose, on the contrary, that rd;, is odd. As d;,

is odd, the integer 7; is odd. Now working in a similar manner as in part (a),
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one can easily observe that the integer A;, is odd. Further, since the integer
rd;, is even, we see that the integer g;, is even. Now as p% = —1 (mod 2M,)
and ¢;, | M;, we note that p = 3 (mod 4). Further, since rd;, = 20!y, and

/ . diy .
2M; | p% + 1, we observe that the integer q2]1\4_ L is even. On the other hand,

gi, but 27+ 4 g,

let s¢; be the positive integer such that 2 || g;,, i.e., 2%
Since both r,n; are odd, we see that 2 || ¢ — 1 and 2 || ¢" — 1. Further,
since A;, is odd, one can easily observe that 247! || ¢%1 — 1 and the integer

G’A Aq (g"i-1) . . . diy _q
= ged(=+, ", Gi) is odd. From this, it follows that the integer ‘57

is odd, which is a contradiction.

This proves the assertion that the integer rd;, is even. Further, for 1 < x <
2M; — 1, by Theorem 2.2.2, we note that

d;,
(q diqy _ —1)k (_1)nq7 if P’YZ(P -‘rl) is Odd
G, ™ xi) = “ 2Mi (7.26)

(=1)%1g 2" otherwise.
Now on substituting the values of Gauss sums from (7.23), (7.24) and (7.26)
in equation (7.25) and after an easy computation, we obtain the desired values

(4)

of the sum ©; (yt i Yiri,) in the respective cases.

[]

Now we proceed to explicitly determine the number Dgti) (yt(l)“, yt(l)m) when M/ >
3. From this point on, throughout this section, suppose that there exists a positive
integer ¢} satisfying p* = —1 (mod M!). Further, let e; be the least positive integer
satisfying p® = —1 (mod M/). Then by Theorem 2.2.2, we have rd;, = 2e¢;p; for

some positive integer g;, and for 1 < zo < M/ — 1, we have

D4y Gilizg

G (g_bm H,L'Afb.

d;
(—1)Z2q72 if M! is even and ’%,H) is odd;

d;
(=1)%-1¢="  otherwise.

In the following theorem, we explicitly determine the number DZ-(t' (yi )Z 1,yt(:)m)



I
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when M; =1 and M] > 3.
_ ATty (qg"i— 1 (¢%2 —1)L;
Theorem 7.2.8. Let M; =1, M| > 3,‘ B; = _G-Aigi (1 — ) ngG v
0 _ i Fr,, and i, = i e B, where 0 < b“ < g% — 2 and
Uiy = Ciy S oand Yy, = G, S iy where hiy S an
0< bt iy < diy 2 Further, let us define the integers T; = gcd( is %) and
N, = % (note that N; | M!).
(a) Let N; = 1.
o IfT,g;, is even and % 15 odd, then we have
i9ig
( # (19, -1)
ni(qfl) . ni(q 1) —q 2 ( i9ig — T b Tigig .
D( )( @ @) ) = a alq™1 —1)(q%2 —1) if Tigis | tiiz T 2
yt'w"l’ ytz i2) T z
ni(g—=1) _ mi(g=1)(A+q72") Tigi
q a(q™1 —1)(¢"2 1) i 19z, Tbt TR

(pSi+1
o If either Tig;, is odd or P2P“HY s cven, then we have
b2 ngzg ’

dj,
ni(g=1) _ "i(q—U(l—(—l)@i‘qu(TigiQ—l)

. 1 q ( dil 71)( di271)
D( )(yfi,)m yt(“)m) _ (q q q %)
ni(g—=1) ni(g—1) (14+(—1)% 172 o
‘ g™ —1)(g"2 1) if Tigs,

(b) When N; = 2, the integer rd;, is even and p is an odd prime.

o [f 2= p ZH) is odd, then we have

d:
22
ni(g=1)  milg—1) (1*117 (Tigi2*1)+UiT¢g¢2)

) if Tigi, | b§)2

- . if T;g; |b :
(ti) ¢, (@) (4) q dir _1)(q%2 —1 2 | Y090
D (yt“ 1’yt1,z2) a(q . )(a )
nig=1) _ ni(g=1)(1+q72")
q a(q™ 1 —1)(g%2 1) if Tigis Jfbt iz
W
where U; = LMH(Z_UQ (— (Ttig; bi)l) %
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1
o [fE 2+ s even, then we have
2T, i, ’

d;

ntamy) _ mla=) (14000 (Tgy19Ti0)) )
(ti) (@) « a(q™1 —1)(g%2 —1) if T:95, ’ tiia?
D gy vti,) = : )
nig—1) _ mila=1)(1=(=1)%q > N
4 q(qdil—l)(qdi2_1) Zf ngZz Tbti,iQa
rdy (p-1?  dy, ( §)12+ (i) )
where V; =1 1 g2 (—1) "% biivin

(c) Let N; > 3. There exists a least positive integer w; satisfying p** = —1 (mod N;).

Here we have rd;, = 2w;¥; for some positive integer v;.

o If either the integer T;N,g;, is odd or both the integers T;N;g;,, I%Tl)
1 1 12

. . 9 (pWi+1 (p€i41
are even and N; is odd or both the integers - l(’]’v_ + ), p%i_(]’z,_;_“ ) are of the
i i1ViGig

same parity and N; is even, then we have

( di2
ni(Q*l) _ni(qfl)(lf(fl)giq 2 ) . > (z )
q q(qdil _1)(qdi2_1) Zf ,-ngzg Jfbt S
diy g,
ni(g—1) n;(g—1) (1+(—1)giqT (Tigi2—1+(—1)§iTigi2 (Ni—l)qT))
a q(q"1 ~1)(¢"2 -1) " o
(), @ (@) i b, Biby”,
D (yt URs 22) Z'fTigiz‘sz ZQ&NZ"’IEQZE_‘_ B 1;
d;
ni(g—1) nz‘(q—l)(1‘*‘(—1)9“1%(TigiQ—l—(—l)ﬂi igquﬁfl))
a a(g"1 ~1)(g"2-1)
b, b(“
Zngl2‘bt 12 &NTng +

o If T;N;g;, is even, p"TZ(]I\’,—l? is odd and either N; is odd or pT:H) is
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even, then we have

( 4
n;(q—1) ni(q—l)(l—&-qTQ) if T Ml+2b§ )22
4 d; Zf ’L'giZ/t 2 )
q q(g "1 -1)(¢"2-1)
dig 0. Y1
ni(g—1) _m(qfl)(lfq 27 (Ti9ip (1+(N;—1)(—1)Yig 2 )*1))
q a(g™1-1)(¢"2 ~1)
; (4) ’ (4) (%)
D( i) y(l) y() — M’+2bt Mi+2by), M+2b;),  Biby,
( t“Zl, t“’LZ) ZngZZ | & N ‘ 2nglz + Tz )
diy LT
nig=1)  mila=D) (1= (Tigiy (=02 (-1)")-1))
q a(q"t —1)(g"2 1)
M'+ bi” M'+2b(l) B b(l)
7,2 t;,10 tii
\ i T, | & Nyt Mo Bl

o If p—ﬁi%f“) is odd and both N;, % are even, then we have

( ( 1)(1 (1)@ d%)
mifg=l) MR T 0
g q(qd"l—l)(qdiz_l) Zf ngzz )f bt k7%

d,L'2 dil
ni(g=1) _ nila=1) (1+(—1)QiqT(TigiQ_l_qT(Ni_l)Tigig))
q a(q"1 —1)(g"2 1)
(), @ () , B0 Bb®.
D i) = i Tigiy |60, & Ny | g2+ 200 4 25,
d; d;
ni(g—1) _nila—1) (1+(*1)9iq72(Ti9i2*1+quTi9i2))
q a(q"1—1)(g"2 1)
t )1 bg )7,
Znglz‘btzg&NJngz_F 1+

Proof. To determine the number Df")(yﬁj}h, yiz)m), we note, by Lemma 7.2.3, that it

is enough to determine the explicit value of the sum

M!-1 D4y Gihizo D4y Gihizo
- HiA; COH AL (6 A Kz
O; (yt( )zl’ylg 12 = 1+ Z ( 7Xi2)¢i2 (yt(i?’ig)G<¢21 ' 7Xi1)
zo=1

A Klzo

o)), (7.28)

Towards this, we note that as M; = 1, we must have ¢;, = 1 and G;A; = ¢ — 1.
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Further, it is easy to observe that

A qo - g% = DG (- Airiliy (1- (q" — 1>T£An) Tt - 1)Li>
Y (¢" — 1)Ajgi, H; Gil; Gili Gil\;
(g7 — DAH; '
Note that B; is an integer. Next by (7.29), we note that O((bA”KZ) = W =

N;. Now we shall consider the following three cases separately: (a) N; = 1, (b)
N; =2, and (c) N; > 3.

(a) Let N; = 1. Here by (2.4) and (7.28), we see that

zgzz_l G Az G A;z
H A7 HA] i
@ (yt(l)zﬂytl,zg - Z G 12 7XZ2)¢12 (yt(l,)zg)
zo=1

When Tg;, is even and % is odd, we observe, by (7.27), that

4 ngzg 1 AiQGzAzzZ
@ @) _ 22 § ’ 22 HiAj ()
@ (ytz, 217 ytl 12) - 1 —q 2 (_1) ¢i2 ’ (yti,ig)
zo=1
A Tigi2_1 27rLz2b§ )l
‘2 mLZ T
= 1—gq g e""e T
zo=1
Tigin—1 )
dy, iz 2729 ( (1) +T1912 )
— 1 _ qT § eTigi2 t;,12 2
zo=1
diy £ b Tz‘gz‘Q .
1= aF (Tg, — 1) i Togs, | b, + 5
= ds
i2 . (%) Tigi
I if Tigiy 1 by, + =5

On the other hand, when either T;g;, is odd or 22 peilb+1) s aven, we observe,

Tigi
by (7.27), that

1919

1912_1 5 Giliz

H A )
Y % yzf, L)

zo=1

@ (yigl)’u ? ylgj,)lg) = 1 - Ql
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d;
1- <_1)Qi_1q72(ﬂgi2 - ) if Tgm | bt Jio)
1+ (—1)91_1(] 3 it 159, J(btmz.

(b) Let N; = 2. Here we see that ¢ﬁi1K’{ is the quadratic character of F 4, and ¢ is
q

odd. Further, each integer z, satisfying 1 < 2o < M/ = 2T;g;, can be uniquely

expressed as 2o = 2Q)+ R, where 0 < ) < T}g;, when R =1and 0 < Q < T;g;,

when R = 0. In view of this, equation (7.28) can be rewritten as

Tigis—1 Ay Gifi2Q A5 GiNi2Q
@ _ T HiA HA; (%)
@ (ytz,n?ytl,lz) - 1 - Z G(¢ZQ 7Xi2>¢i2 (yti,ig)
Q=1
Tigig— Ajy GiA;(2Q+1)
—Aq K] AY KI i H; AL
+G@ " v ol o )
Q=0
Ay Gy (2Q+1)
X(blg ytz,lz )

(7.30)

We further assert that the integer rd;, is even.

To prove this assertion, we suppose, on the contrary, that the integer rd;, is

odd. From this, it follows that both the integers n; and A;, are odd. As rd;, is

mi—1)ALH;
() Hy z;_A)_T? =2 and

Gi\; = g — 1, we observe that 2 | ALH; = ged(A;H;, Ay, G L; — M) Now

even, we see that the integer d;, is even. Further, since N; =

we see that ged(A,,, 21—2) = 1. Further, it is easy to observe that the integer
2
A;, is odd, which implies that the integer g;, is even. Next as rd;, = 2e;0; and

d;
p® = —1 (mod 2T;g;,), we note that the integer ‘IQTZ_ is even. On the other

hand, since g;, is even, there exists a positive integer ¢; such that 2%

| Gis -
Further, since p% = —1 (mod 27;¢;,), we note that p = 3 (mod 4). As both

d12 1
o q”l D)giy

is odd, it is easy to see that 2% || ¢%2 — 1. Since AJH; | Gili = ¢ — 1, we

r,nm; are odd, we observe that 2 || g —1 and 2 || ¢" — 1. Now as A,

get 2 || ALH;. From this, we see that the integer T; = % is odd, which
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furt

q

her implies that the integer % is odd. This is a contradiction.

This proves the assertion that the integer rd;, is even.

(i)

(i)

Now when 912(‘; ) s 0dd, by (7.27), we note that

Tigis—1 A, GiA(2Q+1) A, G (2Q+1)

O H A, O H AL i
Z G 7,2 ? XiQ )gblg (yt(“)lg)

Tigin—1 7rLb1(57f>. 27rLb£7'_). Q
i %2 302
2 T

= —q2 e 'i9ig Ti9ig
Q=0
b(0).
di ti i
= _,I;gzéqT(_l)Tiglé lngm | bt g
O lf Tglz T bt 12
and
Tigin—1 A, Gihi2Q Ay GiNi2Q diy
L2 — 2HiA§ QHZ-A;. (i) 22 ngzg - 1) it ngzz | bt )
Z G(¢12 7X’L'2)¢i2 (yti,iz) = dg
Q=1 —q 2 if T;gs, Jf bt Jio”

From this and by (7.30) and by Theorem 2.2.1, we obtain

0

d; rd; ( 71)2 t,i2 ()_ d;. +d;
1— ¢ % (Tigi, — 1)+ (—1)(T’q’2 bt"’”)q%Ti%
@ @)
@ (ytzall7yt2712) lf Tg’tz | bt 12;
dg
1+ q72 if Tigi, 1 bti,iQ'

When &2+ ) is even, working in a similar manner as in case (i), we

2Thg
obtain
2 7"(11-1(;0—1)2 dil ( EZ)LQ b(i). )
1+ (—1) 2 (Iwgz2 -1+ quT(—l) Tigip =~ Tt T'ng)
@ @)
O; (yt i Yy 12) if Tygs, | bt .
d;
1— (—1)gq 5 if T,9:, 1 bf ia+
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(c) Let N; > 3. Here for 1 <u < N; — 1, we see, by Theorem 2.2.2, that

di
—A, K (—1)qz if N; is even and ’MTH is odd;
G(¢21 7Xi1) = 9 dil . '
(=1)%~1g2  otherwise.

(7.31)
Further, we note that each integer z; satisfying 1 < z; < M/ = T;N,g;, can be
uniquely written as z; = N;Q + R, where 0 < @ < Tg;, when 1 < R < N,
while 1 < @ < T;g;, when R = 0. In view of this, equation (7.28) can be

rewritten as

Tigis—1 N;—1 Ay Giri(N;Q+R) 2, GiAi(N;Q+R)

i o HA, HyA] i
O; (yé)zl,yt(l,)m) =1+ Z Z (G(¢i2 ;Xiz)@'g (Z/t(l)zg)
Q=0 R=1
Tigis—1 A, GiAN;Q
—A;, K!R A KIR, (i — T mAL
G, e ) - Y (6, X)
Q=1

A GZAlNZQ

b " wlh). (7.32)

Here we shall consider the case when NV; is even and both the integers I%‘?l),
T 1 12

Z%WZH) are odd. In this case, by (7.27), (7.31) and (7.32), we observe that

@ ) L NG! Wty @) ()
CHES 12) =1-q7 Uly, W) Ta 7 E V(yt i Yt 12) (7.33)
where
Tigin—1 AjyGiAN;Q
HA i
yt“zg Z ¢12 (ygl,)lg)
and

Vi ) =+ UGNV )
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with V’(yt(z)“,yfl) )= ¢, ik () )szAl”KZR(yg?il). Next we see that

tii2

Tigi271 2me(g 22 1)G;A;N; Qb(z)

t; ,19
(@) _ (@ —1)(a"12 —1)g;, H;A!
vl = 3 e i
Q=1
191271 27\'LQb(l>

tisi2

— E e ngzg

T:g;, — 1 1fT912|b

t; 7,2’

-1 otherwise

and
N;—1 2mRb(”Z 27rLB Rbi”ll
(@) (4) _ N,
V (ytwll’ytuZZ) - 1%2 t
R=1
@ B b“)
12
N1 1fT912|bt@23ndN|Tg + —
t;,1
if T;9:, | bt i, and N; J[ng + —t

This implies that

(9) Zb(l)
Eglg(Nz - 1) lnglg | bt o and N | jfgzz _I_ B t; L1
(@) (3) (7,)2 Blbiz)l
V<yt““’yt“22> B _ng if ngz ’ bt ,i2 and N 'f ngzz - T; 17
0 it Tigs, 107,
From this and by (7.33), we obtain
4 diQ
1+ qz2 if 7-'922 J(btl,m;
d; 4
1- QTQ(TigiQ —1- T»giqulU\/i _ 1))
' Bl >Z B b§ )l
© <y§“)“’y§“)l2> - if TgZQ ’ bt Jio and N ‘ Yfgzz Ti 1;
d;
p® Bib(i)_
\ lngZ2|bt o andNJ( tZQ %
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poi(p®i+1) pdi(pYi+1)
TiNigiy N;

when /; is even and both the integers are odd. Working in

a similar manner as above, one can also determine explicit values of the sum
Q) () \ - .
©i(Ys,i,s Y1,4,) N the Temaining cases.
O

In the following theorem, we determine the number DEt') (yt( )“, yt(l)m) when M; = 2

and M/ > 3 with either O(qﬁ aft ) =1or O(gzﬁ nf ) = 2.

, @ , (i)
Theorem 7.2.9. Let M; = 2, M! > 3, y, = Ch e F'y, and gl = e e

1 012
F*,,,» where 0 < b,@i < g% —2 and 0 < b,
q

13,02
O(gbﬁ”K’) =1 or O(QSA”KZ) = 2. Then p is an odd prime, the integer rd;, is even

and the following hold.

< q%2 — 2. Suppose that either

o [f M! is even and % is odd, then we have

i

4

d;, rd;, (p—1)? NOREEN
ni(q—1) 4 ni(q—l)(—1+qT(M{—1)) (1+Lﬁ7( 1)t ”qT)
q q(q®1 —1)(¢"2 ~1)
) () () if M| b+
D; (ytz,’Ll?ytl,Zg)_ diy rd;; (p—1)2 B dyy
=) mila=D(+g ) (1T () o)
q q(q"i1 —1)(¢"i2 ~1)
if ML, + 2

o [f either M/ is odd or %,JF ) s even, then we have

( s rd;, (p—1)* (1) d;
ni(g=b) | "i(q—l)(—1+(—1)9i*1q72(M{—1)) (1+L S (1) tiiig 21)
1 q(q™1-1)(q"2 -1)
QI if M 1B,
D (yt zwyt 12) d2.2 Tdil(P—1)2 b(i) dil
n;(g—1) - n;(g—1) (1+(—1)@rqu) (1+Lﬁ7( 1) tooi qT)
a a(g"i1 —1)(¢"2 —1)
L if M1 bt“l2

Proof. As M; = 2, we note that qbﬁ”Ki is the quadratic character of F 4, and q
qg 'l
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is odd. Now by applying Theorem 2.2.1 and working in a similar manner as in

Theorem 7.2.8(a), the desired result follows immediately. ]

Next we proceed to determine the number Dgt")(yg?il, yt(Z)Z ,) when both M;, M >
3. Towards this, we see, by Lemma 7.2.3, that we need to determine explicit values
of the Gauss sums G(¢ﬁi1j, Xi,), where 1 < j < (¢" — 1)g;,. To do this, we observe
that O(gzﬁﬁ”) = (¢" — 1)g;, > 3. Now by Theorem 2.2.2, we note that the explicit

values of the Gauss sums G(¢, ", xi), 1 < j < (¢" — 1)g;,, are known in the

N
i

semi-primitive case, i.e., when there exists a least positive integer ¢; satisfying p* =
—1 (mod (¢" — 1)g;,). In the semi-primitive case, by Theorem 2.2.2, we note that
the integer rd;, must be even. We also recall that there exists a least positive integer
e; satisfying p® = —1 (mod M), which implies that rd;, = 2e;0; for some positive
integer p;. That is, the integer rd;, is also even. From this, it follows that the integer
rn; = ged(rd;,,rd;,) is even. Since ¢" — 1 = 1 or 2 implies that r7; = 1, we must
have ¢m — 1 > 3. As we have p* = —1 (mod (¢" — 1)g;,), there exists a least
positive integer f; satisfying p/i = —1 (mod ¢" — 1). This, by Theorem 11.6.2 of
[11], gives mm; = 2f;. From this, we obtain ¢" — 1 = p™ — 1 = (pfi + 1)(p/i — 1),
which implies that (pf”rl)(pfi — 1) = 1. This gives p/i — 1 = 1, which holds if and

ghi—1

only if f; =1, p = 2 and r7); = 2. Therefore in the semi-primitive case, we must

have ¢ = 2 or 4. In the following theorem, we determine the number Di(ti)(yt(j?il 5 yff)m)

when M; > 3 and M/ > 3 in the semi-primitive case.

, "0) A (i)
Theorem 7.2.10. Let M; > 3, M] > 3, yt(_z) = (" e F*d'l and y@
1 q K 1

01 1 t 7i2 o

F;din where 0 < bg:)“ < g% —2 and 0 < bg)u < ¢%2 — 2. Suppose that there

exist least positive integers €; and e; satisfying p* = —1 (mod (¢" — 1)g;,) and

p® = —1 (mod M]). Then we have ¢ = 2 or 4. Furthermore, we have rd;, = 2¢;0,,
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rd;, = 2e;0; for some positive integers o;, 0, and

( ( )( ( )g' di1)
ni(qfl) i n; qfl 1—(—-1 iqT
q q(g"i1 —1)(q%2 —1) if M; )fbt i1t
, 4 d;
ni(g=1) _ ni(q—1) (14+(-1)% ¢ 2 (M —1)+(~1)21q 2 M; (M]-1)) )
D(t ( (i) )= ! a(a"1 ~1)(¢"2 -1) (i)
; in) — . I3 A;gi HiK’b * i
ytz,u yt, 2 Zf Mi | bg i & M/ ’ bt s QGiA—lgllt17
’ dil d;
mifg—) _ mila=D) (1H0%g 2 (M=) (-1)eig F0ri) )
4 alq™1 —1)(¢%2 —1) .
Ngiy HiK(b,,
ZfM|bt11&MU(btz2 é/\—zgzll

—A; v / i
Proof. As p = 2, by Theorem 2.2.2, we see that G(gzﬁﬁ” Xy ) = (—1)~‘~’i_1qTl for

i 1S an Integer.

1 <wv < (¢" — 1)g;,. Further, one can easily observe that
Now working in a similar manner as in Theorem 7.2.8(c), the desired result follows

immediately. [l

Remark 7.2.11. By applying Theorems 7.2.2-7.2.10 and by (7.3)-(7.5), one can
determine Hamming weights of all non-zero codewords of several classes of A-MT
codes and their Hammaing weight distributions, which we demonstrate in the following

section by computing Hamming weight distributions of several classes of M'T codes.

7.3 Hamming weight distributions of MT codes

In this section, we will explicitly determine Hamming weight distributions of
several classes of MT codes with the constituents Cy,Cs,--- ,C,, whose codewords
satisfy the condition (7.1). Using these results, we further identify two classes of
optimal equidistant linear codes meeting the Griesmer bound and the Plotkin bound
and several other classes of minimal linear codes within these classes of M'T codes.

Recall that the support of a vector v = (vg, vy, ,U,_1) € [y, denoted by
supp(v), is defined as the set supp(v) = {i : 0 <i < n—1,v; # 0}. Further, a vector

u € Fy is said to cover another vector v € Fy if supp(v) € supp(u). A codeword
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c € C is said to be minimal if ¢ covers only the codewords ac € C for all a € I, and
¢ does not cover any other codeword of the code C. The linear code C is said to be
minimal if every codeword of C is minimal. It has been shown that minimal linear
codes are useful in constructing secret sharing schemes with nice access structures
[19, 23, 54, 60, 80] and in secure two-party computation [2, 22]. In addition, these
codes can be effectively decoded with a minimum distance decoding algorithm [1].

Throughout this section, let 4 be a A-MT code of length n over F, with the
constituents 6,65, - - - , €, such that 6,, = (F,,) is an F,,-submodule of £,,. Further,
let us assume that F, = (Fy 1, Fiwo, -+, Fywe), where

Fy 4 FO e+ F) ™ e, = 1;

i—1,w g
Fw,i = .
0 otherwise,

with F](f)w € Fpap for 1 <w < p, 1 <i</land 0 < j; < p*% — 1. Further, for each
w, let us define £, = {1 <i</{:F,; #0}.
In the following theorem, we identify a class of optimal equidistant linear codes

over finite fields within the family of A-MT codes.

Theorem 7.3.1. Let F1 = (bLlulljal_l, b172u§a2_1’ tee ,blyguga[_l) 7£ 0 and FQ = F3 =
o= F, =0, where by; € Fpay for 1 < i < (L. If 7y = 1, then the A-MT code €

18 an equidistant linear [n,dl, > %]—code over Fy. In particular, if By =
1€k
1,2,--- L}, then the code € has parameters |n,d;, "(q_dl—)qdrl and is an optimal
qi1—1
code that attains both the Griesmer and Plotkin bounds.
Proof. Since €, = (F1), we have €, = {(Vbuu’fal_l,l/b172u§a2_1, e ,Vblygufaz_l) :

v € Fq }, which implies that || = ¢™. Note that the code € satisfies the condition
(7.1) with ¢; = 1 and iy to be any integer satisfying 1 < ip < p for 1 < i < /.
Further, for 1 <7 < fand 0 < t; < p% — 1, it is easy to see that (pa;q) # 0.
From this, for each t;, we see that y(l)l = (pa;_l) vby i (—6;)P" 71t £ 0 for i € By and

T, = (Vbl,lu’fal*l,I/bLgugaQ*l, e ,Vbl,gufa“l)(# 0) € %,. Now for each i € Fy, by
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equations (7.1), (7.4) and (7.5) and by Theorem 7.2.2(a), we see that the Hamming

weight of the ith block ¢;(z1,22, - ,2,) of the codeword c(zy, 22, - ,2,) € € is
given by
pa‘i—]_ .
, . 0 if 1 = 0;
_ (ta) ¢, (4) (@ \ _ 1 ;
WH<CZ(I17 x27 o« e ,xp)) — Z D’L (yti7i17yti,i2) - paini(qfl)qdl_l th .
t:=0 a7 — Otherwise,

where z,, € €, for 1 < w < p. Further, by (7.3), we note that each non-zero

mi(g—1)g?1~"
g -1

codeword of ¢ has Hamming weight >
i€EF

fomi — 5™ = AL we see that ¢omila) — 1 which implies that q:

. Furthermore, for i € E, since

1—
-1

L | 'm;. Now

when E; = {1,2,---,¢}, one can easily observe that the code ¥ has parameters
[n, dy, "(q;}l—)ﬁl_l and attains both the Griesmer and Plotkin bounds. O

From this point on, in Tables 7.5-7.8, we assume that Ay = 1 and A; = 0 for
all other non-zero Hamming weights j’. In the following theorem, we explicitly
determine Hamming weight distributions of the codes belonging to a class of A-MT
codes having at most two non-zero Hamming weights. We also identify two different
classes of optimal equidistant linear codes and 2-weight minimal linear codes within

these classes of MT codes.

Theorem 7.3.2. Let I}, = (bl,luﬁalfl,b172u50271,~" ,buufaz*l) # 0 and Fy =
Fy = -« = F, =0, where b1; € Fp, for 1 < i < L. If S = {i € Ey :
bii is a square in Fa }, So = {i € Ey : by, is a non-square in Fa } and 7y = 2,
then dy is an even integer, q is an odd prime power, and the A-MT code € is a lin-
ear code of length n and dimension d; over F, having at most two non-zero Hamming
weights and its Hamming weight distribution is given by Table 7.1. Furthermore,

the code € is a 2-weight code over Fy if > m; # > m;, while the code € is an

1€51 1€Ss
equidistant code if > m; =Y. m,.
i€ST 1€S2
In particular, let By = {1,2,--- , £} and m; = mg = --- = my so that n = my/.

Now if € is even and |Si| = |Ss| = £, then the code € is an optimal equidistant
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Hamming weight j Frequency A;
mi(q*l)(qdlﬂrdl(p Uqul) mi(g—1) (g% - qu%) gh1-1
z‘ezsl q(q?1—1) T 16252 a(q?1—1) 2
(=) om0 ) |
Z.stjl q(qh1-1) T ig;Q q(g1-1) 2

Table 7.1: Hamming weight distribution of the code % considered in Theorem 7.3.2

(g—L)gd—?

dll

bounds. On the other hand, if either S; = {1,2,--- £} or So = {1,2,--- ,{}, then
rdp (p—1)2 Q)

linear [n,d;, ™ |-code over F, that attains both the Griesmer and Plotkin

n(q— 1)(qd1—b E:
a(q*1-1)

is a minimal linear code when either 2 || M or 4 | lepTl and dy > 4, (note

that 2 | =)

the code € is a 2-weight linear [n dy, -code over F,, which

a1
Proof. Since F7,, = (¢1), it is easy to see that ;"' is a primitive element of
) (¢91—1)r;
F,. Also for 1 < i < £ and 0 < t; < p% — 1, we note that (p t_l) =( "
(¢ —1)r;

for some integer r; satisfying 0 < r; < p— 2, which implies that 2 | e
as 71 = gcd( ) Further, for ¢« € F;,0 < t; < p% — 1 and 2, =

(¢ bllupl 1 b12Up2 ... blgupZ 1) € ¢ with 0 < h < g% — 2, one can

Y

observe that

i pY —1 a1t P — D@ty ey,
yzgi,)lz( t; )Clhbl,z‘(—fsl)p o :( t; )Clblzg 2 G |

g1 -1
2

is a square in IFZl when (]'b;; is a square in Fdl, as 2 | ¢; and 2 | . Now by
applying Theorem 7.2.2(b) and working in a similar manner as in Theorem 7.3.1,

the desired result follows immediately. O

In the following theorem, we explicitly determine the Hamming weight distri-
bution of the code € when 7, > 3, I} = (eLlu]fal_l,eLgugaz_l, e ,ewulzae_l) and
Fy = F; = ... = F, = 0 in the semi-primitive case. We also derive sufficient

conditions under which the code % is minimal.
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Hamming weight j Frequency A;
> mi(qfl)(qdlf(*l)”l’lq%l(ﬁfl)) g1
F (g1 -1) 1
5 mi(q—l)(qdl-ﬂ-(—l)”l*lq%l) (¢ —1)(11—1)
S alg® 1) i

Table 7.2: Hamming weight distribution of the code € considered in Theorem 7.3.3

Theorem 7.3.3. Let 7, > 3, F = (e 1ttt Y eroul "t o g ol and Fy =
1t 22U LU

F3 = .- = F, = 0. Suppose that there exists a least positive integer z; satisfying

p*t = —1 (mod 11). Then we have rdy = 22111 for some positive integer vy.

4
(a) When v, is even, the A-MT code € is a 2-weight linear [n,dy, Y mi(q;(lq)d(fi;qj)} -
i€Fq

code over F,, whose Hamming weight distribution is given by Table 7.2. Fur-

ther, the code € is minimal when daI —qn+711—1>0.
d

(b) When vy is odd, the \-MT code € is a 2-weight linear [n, dy, mz‘(q—l)(qdl—(Rl—l)QT)} }

. a(gh1-1)
i€F,
code over ¥y, whose Hamming weight distribution is given by Table 7.2. The

code € is minimal when qd71 —qri +1>0.

Proof. By applying Theorem 7.2.2(c) and working in a similar manner as in Theo-

rems 7.3.1 and 7.3.2, the desired result follows immediately. O]

In the following two theorems, we identify several 2-weight and 3-weight codes

within the family of MT codes, and explicitly determine their Hamming weight

distributions.

Theorem 7.3.4. Let ¢ = 2", a1 = ay = -+~ = a; = 1, F} = (e11,€12,- "+, €10)

and Fy = F3 = --- = F, = 0. If i = 1, then the A-MT code ¢ has parameters

[n, 2dy, > %] and is a 2-weight code, whose Hamming weight distribution
i€k

18 given by Table 7.5.

Proof. The desired result follows by equations (7.1), (7.3)-(7.5) and by applying
Theorem 7.2.2(a). O



Hamming weight distributions of multi-twisted codes over finite

210 fields
Hamming weight j Frequency A; | Hamming weight j Frequency A;
n;(qg—1 d; =1 m;(g—1 dp-1
$ (qqdl)_qll 2(qd1 —1) > (qqd1)_q11 (qd1 —1)2
1€k, i€k

Table 7.3: Hamming weight distribution of the code % considered in Theorem 7.3.4

Hamming weight j Frequency A;

ni(g—1)g%1—1
> gt 1)
ST

ni(qg— d|—1
e 2q" — 1)+ 2q" ~ g™ ~2) + ("~ 1)
1€

m;(q— d]—1
> 0" = 12q" ~1)(g" =2 +(¢" 1) (g -2
i€y

Table 7.4: Hamming weight distribution of the code % considered in Theorem 7.3.5

Theorem 7.3.5. Let q = 3T, ay = g = *+* = Qy = 1, F1 = (61’1,61,27"' ,61%)
and Fy = F3 = --- = F, = 0. If i = 1, then the A-MT code ¢ has parameters
[n, 3dy, Y. %] and is a 3-weight code, whose Hamming weight distribution

1€k
1s given by Table 7.4.
Proof. The desired result follows by equations (7.1), (7.3)-(7.5) and by applying
Theorem 7.2.2(a). O

In the following theorem, we explicitly determine Hamming weight distributions
of the codes belonging to a class of A-MT codes having at most three non-zero
Hamming weights. We also identify a class of 3-weight minimal linear codes within

this class of MT codes.

a2 _1

Theorem 7.3.6. Suppose that F| = (bmu]fal_l, bigub - 7b1’w§ae_1) #+0,F, =
e ,bgygufaz_l) # 0 and F5 = Fy = --- = F, = 0, where

bii € Foao and by € F oy for 1 < i < {. Then we have i1 = 1 and is = 2 for

pa’l—l pa2_1
(172,11&1 s 52,2%

1 <i < (. Furthermore, if £y N Ey is a non-empty set and M; = M =1 for some i
satisfying 1 < i < £, then the A-MT code € is a linear code of lengthn and dimension
dy 4 dy over ¥, having at most three non-zero Hamming weights and its Hamming

weight distribution is given by Table 7.5. In particular, if By = Ey = {1,2,--- /(},
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] I;Iamming weight j Frequency A,
iEZE:;l % gt —1
NPESpPToES:
ieZEQ W(qqd+ql2 g —1
D @ D@ 1)
i(g=1)((¢"1 —1)(¢%2-1)—
+ iGEZl;WE‘Q mi(g ql()q(d(?—ll)(lq)d(gjl)l) 1)

Table 7.5: Hamming weight distribution of the code € considered in Theorem 7.3.6

n(g—1) ((qd1 —1)(¢* —1)—1)
("1 -1)(¢"2-1)

over Fy, which is minimal when both dy,ds > 2 and ged(dy, ds) = 1.

then the A-MT code € is a 3-weight linear [n, dy + ds, }—code

Proof. Since i1 = 1 and i = 2 for 1 < i < ¢, we note that M; = My = --- = M, and
M| = M} = --- = M;. Further, one can easily observe that m = g1 =75 =¢2 = 1, as
My=My=---=M,=M =M)=---= M, =1. Now the desired result follows
by equations (7.1), (7.3)-(7.5) and by applying Theorems 7.2.2(a) and 7.2.4(a). O

In the following theorem, we explicitly determine the Hamming weight distribu-

p*2-1

. al —1 a1 a1 —1]
tion of the code € when Iy = (e uf ~~ ,eroul " o+ Jeoul ), Fo = (eguf

)

62,2u§a2 Lo ,6274u§aé_1), Fy=F,=---=F,=0,and M; = 2 and M = 1 for some
integer ¢ satisfying 1 < i < ¢. We also derive sufficient conditions under which the

code ¥ is minimal.

al_l a2_1 a[_]_
Theorem 7.3.7. Suppose that Fy = (e1u] ~ ,e1pub -+ yereuy ), Fh =
a1 _1 ag 1 ap 1
(€gpuf "~ egoub L oe Legpul ) and Fy = Fy = -+ = F, = 0. Then we have

iv =1 and iy = 2 for 1 < i < {. Furthermore, if M; = 2 and M! = 1 for some i
satisfying 1 < 1 < £, then dy is an even integer, q is an odd prime power, and the
A-MT code € is a linear code of length n and dimension dy 4+ ds over F, having at
most five non-zero Hamming weights and its Hamming weight distribution is given
by Table 7.6. In particular, if By = Ey = {1,2,--- £}, dy # 2ds and ged(dy,dy) = 1,

a1
then the code € is a 5-weight linear [n, dy + ds, %d:;m} -code over F,, which
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i Hamming weight j Frequency A;
rdy(p—1) dil
¥ mi(qfl)(qlerLﬂiq 2) gh1-1
dlf]_ 2
iEB a(q )
rdy(p—1)2 d
Z mi(qil)(qdlfbﬁiq%) |
dy _1 2
B, a(q )
mi(q—1)q%2 T d2
Z q%2—1 q- — 1
1€ Fo
d rdy (p—1)2 41
> mita3)s AL ) 4 3 et (g1 —1)(g®2-1)
11 21 2
1€E1\E2 ala ) 1€FE2\ F1
rdy(p=1)% dy
+ Z mi(g—1) mi(g—D(A+ & g2
A q(q?1—-1)(¢%2+2)
rdq (p—1)2 dl
> mi(q*l)(qdlj )y S mile Dot (g1 ~1)(g2-1)
1—1 2—1 2
i€E1\ B2 ala ) 1€ B2\ En
rdy(p—1)2 dy
+ Z m;(q—1) m;(g—1)(1— 1 q2
A q(q?1—-1)(¢%2+2)

Table 7.6: Hamming weight distribution of the code € considered in Theorem 7.3.7

is minimal when either dy > 2dy and qdrl(qd?1 +1) > q%l +q% or dy < 2dy and
dy > 4.

Proof. Here it is easy to see that M; = My = --- = My and M| = M) = --- = M,.
Since M; = 2 and M| = 1, we note that 7, = g; = 2 and 75 = g = 1. The desired

result follows by equations (7.1), (7.3)-(7.5) and by applying Theorems 7.2.2(a),
7.2.2(b) and 7.2.4(b). O

In the following two theorems, we identify two more classes with few weights
within the family of MT codes, and explicitly determine their Hamming weight

distributions.

Theorem 7.3.8. Suppose that F; = (bl,lul b12 Pl
(bg}lufal_l,bmug%_l,--- ,bggugaf_l) # 0 and F3 = Fy = --- = F, = 0, where
bi; € I a, and by; € ¥ a for 1 < i < 0. Then we have i1 = 1 and i = 2 for
1 < i < /. Furthermore, if E1N Ey is the empty set and 71 = 5 = 1, then the A-MT

code € is a linear code of length n and dimension dy + dy over F, having at most
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I;Iamming weight j Frequency A;
(o— =T

P pra—

ZEZEQ % q” -1

iEEzl:\Ez mi(%)_qldlil " iEE‘%%El mi(%)—qldﬂ (qdl - 1)(qd2 - 1)

Table 7.7: Hamming weight distribution of the code € considered in Theorem 7.3.8

three non-zero Hamming weights and its Hamming weight distribution is given by

Table 7.7.

Proof. The desired result follows immediately by equations (7.1), (7.3)-(7.5) and by
Theorem 7.2.2(a). O

a2 1

Theorem 7.3.9. Suppose that F; = (61’111}1)“171, €1aub e ,el,guia“l), Fy =

(6271u€a1_1,62’2u§a2_1, e ,euuﬁ’az_l) and Fy = Fy = --- = F, = 0. Then we have
i1 =1 and i = 2 for 1 < ¢ < {. Furthermore, if E1 N Fy is the empty set and
71 =2 and 1o = 1, then the A-MT code € is a linear code of length n and dimension

dy + dy over F, having at most five non-zero Hamming weights and its Hamming

weight distribution is given by Table 7.8.

Proof. 1t follows immediately by equations (7.1), (7.3)-(7.5) and by applying Theo-
rems 7.2.2(a) and 7.2.2(b). O
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Hamming weight j

Frequency A;

rdi(p—12 dy )

E mi(q_l)(qd1+L 1 q2 qdl—l
d1—1 2
i a(q )
rdy (p—1)2 dy
> mi(q—l)(qdl—L T q2 ) g1 —1
dl—l 2
i&B qa(q )
mi(g—1)q%2~ " d
Z - qd2—1 q 2 -1
i€Fo
d rdi (p—1)% dy
S mi(q_l)(q e ‘17) D mi(g—1)q®21 (g1 —1)(¢g%2-1)
. q(qh1-1) . q?2-1 2
Z€E1\E2 ZGEQ\El
d rdy(p—1)2 dy
$ mi(a=1) (g1 =) + ¥ mi(g—1)q?2 " (@1-1)(¢"2-1)
4 q(q?1-1) 4 q?2—1 2
t€EFE1\E2 IS AV

Table 7.8: Hamming weight distribution of the code € considered in Theorem 7.3.9



Skew multi-twisted codes over

finite fields and their Galois duals

8.1 Introduction

In this chapter, we shall introduce a new class of linear codes over finite fields,
viz. skew multi-twisted (skew MT) codes (or skew generalized quasi-twisted codes),
which is a generalization of some well-known classes of linear codes such as cyclic
codes, generalized quasi-cyclic codes and MT codes. We shall also study algebraic
structures of skew multi-twisted codes and their Galois duals (i.e., orthogonal com-

plements with respect to the Galois inner product). We shall view skew multi-twisted

215
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codes as direct sums of certain concatenated codes, which gives rise to a method to
construct these codes. We shall obtain a lower bound on their minimum Hamming
distances using their multilevel concatenated structure. Besides this, we shall deter-
mine the parity-check polynomial of each skew multi-twisted code, and obtain BCH
type bounds on their minimum Hamming distances. We shall determine generating
sets of Galois duals of some skew multi-twisted codes from generating sets of these
codes. We shall also derive necessary and sufficient conditions under which a skew
multi-twisted code is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois
LCD (linear with complementary dual). We shall also obtain many linear codes with
best known and optimal parameters from 1-generator skew multi-twisted codes over

finite fields Fg and Fy.

This chapter is organized as follows: In Section 8.2, we state some basic defi-
nitions and results that are needed to derive our main results. In Section 8.3, we
introduce a new class of linear codes over finite fields, viz. skew multi-twisted (MT)
codes and study their algebraic structures (Theorem 8.3.3). In Section 8.4, we show
that each skew MT code is a direct sum of certain concatenated codes (Theorem
8.4.2). We also determine a lower bound on their minimum Hamming distances us-
ing their multilevel concatenated structure (Theorems 8.4.3 and 8.4.4). In Section
8.5, we study their dual codes with respect to the Galois inner product (Theorem
8.5.5). We also derive necessary and sufficient conditions under which a skew MT
code is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD (Theorem
8.5.7). In Section 8.6, we obtain the parity-check polynomial of each skew MT code,
determine generating sets of Galois duals of some skew MT codes from generating
sets of the corresponding skew MT codes, and derive BCH type lower bounds on
their minimum Hamming distances (Theorem 8.6.2). We list several linear codes
with best known and optimal parameters obtained from 1-generator skew MT codes

(Tables 8.1 and 8.2).
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8.2 Preliminaries

In this section, we shall state some basic results on skew polynomial rings that
we need to derive our main results. For this, throughout this chapter, let IF;, be the
finite field of order ¢ = p", where p is a prime and r is a positive integer. Let o be

an automorphism of F, having the order as «, and let Fy be the fixed field of 0. Let
R = {ap + a1 + azx® + - - + a,x" : ag, a1, -+ ,a, € F,and n > 0}

be the set of all formal polynomials in the indeterminate = over IF,, where the
coefficients are written on the left of the indeterminate x and its higher powers.
One can easily observe that the set R forms a ring with unity under the usual
addition of polynomials and under the multiplication defined using the distributive

law and the rule
(az")(ba’) = ac’(b)x"™ for each a,b € F, and integers 4,5 > 0.

The ring R is called a skew polynomial ring over F, and elements of R are called
skew polynomials. Note that the ring R is non-commutative unless o is the identity

automorphism. Now the following result is well-known.

Theorem 8.2.1. [18, 31] In the skew polynomial ring R, the following hold.
(a) The ring R has no non-zero zero divisors.
(b) The units of R are the units of IF,.

(¢) The center of R is given by Z(R) = F7[z°] = {ao + arz® + --- + aqz®™ :

ag, a1, - ,aq € FY and d > 0}.

(d) If f(z),g(z) € R are such that f(z)g(x) € Z(R), then we have f(x)g(x) =
g(x) f(x).
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In the following theorem, we state the right division algorithm in R, and the

corresponding result holds regarding the left division in R.

Theorem 8.2.2. /61, Th. Il.11] (Right Division Algorithm) For f(z),g(z) € R
with f(x) # 0, there exist unique skew polynomials q(x),r(xz) € R such that g(x) =
q(z)f(x) + r(x), where either r(x) = 0 or deg r(x) < deg f(x). When r(z) =0, we
say that f(x) is a right divisor of g(x) or g(x) is a left multiple of f(x).

Further, by applying the right (left) division algorithm, one can show that the
ring R is a left (right) principal ideal ring, i.e., each left (right) ideal of R is principal.
That is, for each left ideal I of R, there exists an element a(z) € I such that
I ={f(z)a(z): f(x) € R}, and we shall write I = (a(x)),. Similarly, for each right
ideal J of R, there exists an element b(z) € J such that J = {b(z)f(x) : f(z) € R},
and we shall write J = (b(x)) 5 .

Let f(z),g(z) € R be such that either f(x) or g(z) is non-zero. Then a monic
skew polynomial d(xz) € R is called the greatest common right divisor (gerd) of
f(z) and g(zx), written as d(z) = gerd(f(z), g(x)), if it satisfies the following two

conditions:
(i) d(x) is a right divisor of both f(x) and g(x).
(i) If e(z) is another right divisor of both f(z) and g(z), then e(z) is a right
divisor of d(x).
We say that the skew polynomials f(z),g(z) € R are right coprime if they satisfy
gerd(f(z), g(x)) = 1.
Theorem 8.2.3. /3, Th. 7] Let f(x),g9(x) € R be such that either f(x) or g(x) is

non-zero. If gerd(f(x),g(z)) = d(x), then there exist skew polynomials a(x),b(z) €
R such that d(x) = a(x)f(x) + b(x)g(z).
Further, let f(z), g(x) be non-zero skew polynomials in R. Then a monic skew

polynomial ¢(z) € R is called the least common right multiple (Icrm) of f(z) and

g(x), written as £(x) = lerm [f(x), g(z)], if it satisfies the following two conditions:
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(i) ¢(x) is a right multiple of both f(z) and g(z).

(ii) If k(x) is another right multiple of both f(z) and g(z), then k(x) is a right
multiple of ¢(x).

The greatest common left divisor (gcld) and the least common left multiple (lclm) are
defined in an analogous manner. Further, if f(z), g(z) € R are such that either f(x)
or g(z) is non-zero and gcld(f(x), g(z)) = h(z), then there exist skew polynomials
A(x), B(xz) € R such that h(x) = f(z)A(z) + g(x)B(z).

An element f(z) € R is called a 2-sided element of R if it satisfies (f(z)), =
(f(x))r = (f(x)) . It is easy to see that a 2-sided ideal of R is generated by a 2-sided
element of R. Further, a 2-sided element f(z) € R is called a maximal element of

R if the 2-sided ideal (f(x)) is a maximal ideal of R.

Theorem 8.2.4. [46, Th. 1.1.22] Each 2-sided element of R is of the form c(l +

a1+ -+ adxdo‘)xe, where ¢ € By, a1, -+ ;a4 € F7 and d,e > 0 are integers.

The following theorem states that each non-zero non-unit 2-sided element of R

can be expressed as a product of 2-sided maximal elements of R.

Theorem 8.2.5. [46, Th. 1.2.17] Let f(x) be a non-zero, non-unit and a 2-sided
element of R. Then f(x) can be expressed as f(x) = gi(x)ga(x)--- g:(z), where
g1(x), g2(x), - -+, g:(x) are 2-sided maximal elements of R. Such a factorization is

unique up to the order and up to unit multipliers.

Further, for each 2-sided element f(x) € R, the set = = {r(z) + (f(z)) :
r(z) € R} can be viewed as a ring. From now on, we shall represent elements of the

quotient rlng by skew polynomials in R of degree less than deg f(z).
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8.3 Algebraic structures of skew multi-twisted codes

over finite fields

In this section, we will introduce a new class of linear codes over finite fields, viz.
skew multi-twisted codes, which is a generalization of M'T codes. To do this, through-
out this chapter, let n = my + mg + - - + my, where my, mo,--- , my; are positive
integers such that ged(m;, q) = 1 and « divides m; for 1 <4 < (. Let F} denote the
vector space consisting of all n-tuples over F,. Let A = (A1, Ag, -+, Ar) and AP =
()\l_pk, /\2_pk, e 7/\Z_pk) for each integer k satisfying 0 < k < r, where A\, Ay, -+, Ay
are non-zero elements of F7. Under these conditions, by Theorem 8.2.1(c), we see
that the skew polynomial ™ — \; € Z(R), which implies that (z™ — ;) is a 2-
sided ideal of R for 1 < ¢ < ¢. This further implies that V; = ﬁ
ring for each 1. ZThen a skew A-multi-twisted (MT) module V is a left R-module of

is a quotient

the form V = H Vi. We further observe that there exists an F,-linear vector space
isomorphism frlgrln [y, onto V. From now on, we shall represent each element b € Fy
as b = (b1o,b11, " bim—1; b2, ba1, 5 02my—15 7 5be0,be, 7b€,mg—1) and the
corresponding element b(z) € V as b(z) = (b1(x),ba(x), - ,be(z)), where b;(x) =
mi]l bmmj € V; for 1 <4 < (. Further, the skew A-MT shift operator T , on FZ is
j=

defined as TA,a(b) = (U(Albl,ml—l)y 0(51,0)7 ce >U(bl,m1—2); U()\QbZ,mg—l)a U(bz,o), Tty
0 (bamy—2); 50 (Aebemg—1),0(beo)s -+ 5 0(bgm,—2)) for each b € Fy. Next let

m = lem [myO(\y), maO(Aa), -+ -, meO(Ne)],

where O()\;) denotes the multiplicative order of A; in F, for 1 < ¢ < ¢. One can show

that T}", = I, where I is the identity operator on Fy.

Definition 8.3.1. A skew A-multi-twisted (MT) code (or a skew generalized A-
quasi-twisted code) of length n over F, is defined as a left R-submodule of the skew
A-MT module V. Equivalently, a linear code C of length n over I, is called a skew
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A-MT (or a skew A-GQT) code if T »(c) € C for each codeword c € C, (i.e., if the
skew A-multi-twisted shift of each codeword of C is also a codeword of C).

In particular, skew A-MT (or skew A-GQT) codes of length n = my+mg+- - -+my

over F, are

A-MT (or A-GQT) codes of length n over F, when ¢ = I (the identity auto-
morphism on F,) [5, 69].

permutation-equivalent to QT codes of length m¢ over F, when \; = Ay =

=N, 0=1and my =mg=---=my [47].
skew GQC codes of length n over F, when \; = 1 for 1 <7 < ¢ [48].

permutation-equivalent to QC codes of length m;¢ over F, when o = I, m; =

me=---=mpand \y = Ag =--- = A\, =1[77].
skew A;-constacyclic codes of length m; over F, when ¢ =1 [31].

Ar-constacyclic codes of length my over F, when ¢ =1 and o = I [10].

Now to study algebraic structures of skew A-MT codes, we first prove the fol-

lowing;:

Proposition 8.3.2. Lett be a positive integer such that o dividest and ged(t, q) = 1,

and let A be a non-zero element of Fy. Then the following hold.

(a) The skew polynomial z* — X\ € Z(R) can be uniquely expressed (up to order)

as

o' = A= fi(@) fa(2) - fol@), (8.1)

where fi(x), fo(x), -+, fs(x) are monic, pairwise coprime and irreducible poly-
nomials in Z(R). Furthermore, equation (8.1) also gives the factorization of

2t — X into 2-sided maximal elements of R.
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(b) There exist €1(x), e2(x), - -+ ,e5(x) € Z(R) satisfying €;(x)e,(x) = 0;,€;(x) for
1 <ju<sande(r)+e(r)+ - +el(x)=11n ﬁ, where 0;,, is the
Kronecker §-function. Furthermore, for 1 < j <'s, (¢;(x)) is a 2-sided ideal of

ﬁ with the unity as €j(x). As a consequence, we have <wt—7i>\> ~ @(ej (x)).

7j=1
(¢) For1<j <s, themap ¥ : 55 — (€;(2)), defined as ¥;(g;(x)) = g;(x)e; ()
for each g;(x) € Tﬁ»’ is a ring isomorphism.

R .4 R
(d) (xt=X) — g (f ()"

Proof. Here by Theorem 8.2.1(c), we see that ' — A € Z(R) = F[2*], which is a

unique factorization domain. Now using the fact that ged(t, q) = 1, we can write

== fi(0) fole) - Sy (), (8.2)

where fi(z), fo(x), -+, fs(x) are monic, pairwise coprime and irreducible polynomi-
als in Z(R). Next we assert that fi(z), fo(z),-- -, fs(z) are also 2-sided maximal
elements of R.

To prove this assertion, we see that ' — X € Z(R) is a 2-sided element of R. So

by Theorem 8.2.5, we can write
' — X = hy(2)ho(x) - - hy(2), (8.3)

where hy(z), ha(x),- - , hy(z) are 2-sided maximal elements of R. Further, for 1 <
i < wv, by Theorem 8.2.4, we note that h;(x) = ciﬁi(x)mei, where ¢; € F,, e; > 0, and
hi(x) = hiothina® R 22+ ARy 2D yith by g, by, Bt € FY
and 7; > 1. On comparing coefficients in (8.3), we get e; = 0 for each i, and

cicy - - - ¢, = 1. This gives

D H hi(x). (8.4)

Note that h;(z) belongs to Z(R) for each . Furthermore, since h;(z) is a maximal
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element of R, we see that h;(z) is an irreducible polynomial in Z(R). Hence equation
(8.4) also gives the factorization of ' —\ into monic, pairwise coprime and irreducible
polynomials in Z(R). By (8.2) and (8.4) and by uniqueness of such a factorization,
we have s = v and f;(z) = hy(z) for 1 < i < s (on relabelling h;(z)’s if required).
For each i, as h;(z) = ¢;h;(x) is a maximal element of R and h;(z) € Z(R), we see

that f;(z) = h;(x) is a 2-sided maximal element of R, which proves the assertion.

Next we define f;j(z) = [] fu(x) for 1 < j < s. We observe that the skew
u=1

uFj
polynomials f;(x) and fj(x) are coprime in Z(R) = F7[z?] for 1 < j < s. So

for each j, by Euclidean algorithm in Z(R) = F7[x], there exist skew polynomials
A;(z), B;(z) € Z(R) satistying A;(x)f;(x)+ B;(x)f;(z) = 1. Now on taking ;(z) =
Bj(x)fj(:p) for 1 < j < s and working in a similar manner as in Theorem 2.11 of

Gao et al. [48], the desired result follows. O

Now we recall that ged(m;, q) = 1, a divides m; and a(\;) = \; for 1 < i < £,
By Proposition 8.3.2(a), we see that each skew polynomial ™ — \; € Z(R) can
be uniquely expressed (up to order) as a product of monic, pairwise coprime and
irreducible polynomials in Z(R). Let ¢1(z), g2(x), -+ ,g,(x) € Z(R) be all such
distinct irreducible factors of the skew polynomials ™ — Ay, ™2 — Ao, - -+ ;2™ — )\,

in Z(R). Further, for 1 <w < pand 1 <1i </, let us define

1 if gy(x) divides 2™ — \; in Z(R);
€Cw,i
0 otherwise.

Then for 1 < i < ¢, we observe that

2 N = g (@) ga(a) - gl) (55
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Now for each i, by applying Proposition 8.3.2; we see that

V @ sz N®Ewl w

with £, = % for 1 < w < p, and the corresponding ring isomorphism is given
by
P
x) Zam for each a;(x) € V;,
w=1

where ay; := €4 (a;(z) + (gu(2))) for 1 < w < p. From this, it follows that

p

V=TTV @ (cwnFucwsFu - cwely ). (8.6)

=1 w=1 é;

and the corresponding ring isomorphism is given by

p
'T) — § (aw,la A2, """ 7aw,£>

w=1

for each a(z) = (a1(x), az(x),- - ,ap(x)) € V, where a,; = €,i(ai(x) + (guw(z))) for
1 <w < pand 1 < i < (. Further, since V is a left R-module, we shall view
Gw = (€wiFu, €waFu, -, €uwelFy) as a left F,-module for each w. In view of the

above, we have the following:

Theorem 8.3.3. Each skew A-MT code C of length n over F, can be uniquely

expressed as
P
¢=Pcu.
w=1

where Cypy = {(Quw1, Gw2, " s Gws) € Gy & (a1(2),a2(x), - ,ae(x)) € C} is a left Fy,-
submodule of G,, for each w. (The left modules Cy,Cs,--- ,C, are called constituents
of the skew A-MT code C.)

Gao et al. [48, p.60] remarked that each constituent of a 1-generator skew GQC
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code is either {0} or 1-dimensional, and hence a free module. However, this is not

true in general, which we illustrate in the following example.

Example 8.3.1. Let ¢ = 32, m; = 4,my = 2, A = (1,1), and let ¢ = o be
the Frobenius automorphism of Fs2, (i.e., o(b) = b for all b € F32). Here we
have V.= Vi x Vo = ﬁ X ﬁ We first note that F§, = F3 and O(0) = 2,
which, by Theorem 8.2.1(c), gives Z(R) = F3[x?]. Further, we observe that x* —1 =
(22 = 1)(z*+ 1) = (22 +1)(2* — 1) is the factorization of the skew polynomial z* — 1
into 2-sided mazimal elements of R. Let us take gi(x) = 2*> — 1 and go(x) = 22 + 1,
so that we have F,, = (gw—%» for 1 < w < 2. By applying Proposition 8.3.2, we

get V >~ (Fy, F1) @ (F3,{0}). Now let C be a skew A-MT code of length 6 = 4 + 2
—_——  ——

g1 G2
over Fs2 with the generating set {(x + z*,x + 1)}. By Theorem 8.5.3, we see that

the constituents of C are given by C; = ((zr+ 1,2+ 1)) and C; = ((x — 1,0)). One
can easily observe that any other gemerator of the constituent Cy s of the form
B(x + 1,z + 1), where B(# 0) € Fs2. Further, there exists (x — 1)B™Y(#£ 0) € I,
such that (x — 1)B™'B(z + 1,z + 1) = 0 in Gy, which implies that the constituent
Cy is not a free left Fi-submodule of Gi. One can show that the constituent Cy is a
free left Fy-submodule of Gy with the free basis as {(x —1,0)}. This shows that each

constituent of a 1-generator skew GQC code need not be a free module.

8.4 Concatenated structure of skew MT codes

In this section, we will view skew A-MT codes of length n over I, as direct sums
of certain concatenated codes. Using their multilevel concatenated structure, we will
also determine a lower bound on their minimum Hamming distances. To do this,
by (8.5), we see that ™ — \; = ﬁ gw(x), where for 1 <w < pand1<i </,
€w; = 1 if g, (z) divides 2™ — Ai,wz:rid €w; = 0 otherwise.

Now let 1 < w < pand 1 < ¢ < ¢ be fixed. If ¢,; = 1, then we see that

zMi—\;

gw(z) and .- are coprime in Z (R), and hence there exist skew polynomials
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Ay.i(x), Byi(z) € Z(R) such that A, ;(2)gw(x)+ Buy.i(x) (%) = 1. Let us define
€w,i() = By,i() (ﬁj‘”) . Further, we observe that e, ;(x) + (gw(2)) = 1+ (gu(x))

(z)

in (gw . On the other hand, if €, ; = 0, then we define e, ;(z) = 0. One can show

that <em( ) = <ew,i (9”;:(:6) >> for 1 <w < pand 1 < i < (. Further, for each

i, working as in Proposition 8.3.2, we observe that the following hold in the ring

R .
<m77Li _)\’L> .

(i) For 1 <w,w < p, we have e, ;(2)ey i(T) = dpuw€wi(T).
(i) eri(x) 4+ egs(x) + -+ + epi(z) = 1.
cee p
(111) @i ""z ) @(ew z( >>
(iv) (ewi(z)) =~ €y, F, for each w and 1.

Now let 4, ; be the ring isomorphism from €, ; F}, onto (e, ;(x)), which is given by
€w.i0w(T) > 0y (x)ey ;(z) for each 0,(x) € %.

morphism ¢, ; from (e, ;(z)) onto €, ;F,, defined as a(z) — €, ;(a(z) + (g (x))) for

The inverse of 1, is the ring iso-

each a(x) € (e, ;(z)). Further, for each w, we recall that G,, = (€41 Fy, €2 Fyp, -+ - - -

ewely) is a left F,-module, where F,, = . We shall view both V and G,

_R
{guw(2))
(1 < w < p) as rings with respect to the component wise addition, denoted by +,
and the component wise multiplication, denoted by ®. If 1,, is the unity of F,, then
lg, = (€wi1lw, €walu, - ,€usly) and 1y == (1,1,--- 1) are the unities of G, and
V' respectively.

Next we define the maps &, : V — G, and ¥, : G, — V as

q)w(al(x)v GQ(I‘)? U ,CLg(:L’)) - (ewi(al(x) + <gw(x)>)v Ew,Q(GQ(x) + <QW(x)>)’ T
ewe(ae(r) +{gu(2))))

for all (ai(x), as(z), -+, ai(z)) € V, and

Wy (01(2), 02(2), -+ 0e(2)) = (Vw1 (91(2)), Yu2(02(2)), -+ Pue(0e(x)))
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for all (01(x),02(x), -+ ,00(2)) € Gu.

For 1 <w < p, let E, = (€w71(l’),€w72($’), e ,€w’g($)) € V. One can show that
U,(lg,) = By and (Ey) = (ew1(x)) X (ewa(x)) X -+ X (eye(x)). We further note
that the restriction map ®,, [(g,) and ¥,, are inverses of each other for each w. From

the above discussion, we deduce the following:
Lemma 8.4.1. (a) V,(G,) = (E,) for 1 <w < p.
(b) For 1 <w,w < p, we have B, ® Ey = 6y u Ey.

(c) Zp_jl E,=1y and V = Gp_al(Ew).

Proof. For each w € {1,2,--- | p}, clearly we have ¥,,(G,,) C (FE,). For the converse
let a(z) € (E,), where a(z) = r(z) ® E,, for some r(z) = (r1(x), r2(x), -+ ,re(x)) €
V. Thus we get, a(z) = (ri(z)ew1(z), r2(x)ew (), - 1e(z)ew () = Vip(€wa1m1(x),
€w2l2(T), -, €were(x)) for (€,171(x), €pora(T), -+, €wsre(r)) € Gy as ¥, is onto,
which further implies that (£,) C V,,(G,). Other two identities follows immediately
by the defination. Now to prove V = é (E,), firstly we prove that sum is direct.
Now for 1 < w < p, let us suppose thatwy:;(x) € (E,) such that yi(x) +ya () +- - -+
yp(x) = 0. On right multiplication by E.,, we get y,,(z) = 0 for each 1 < w < p. Thus

P P
the sum is direct. Also for each r(x) € V, we have r(z) = ) r(z) © E, € @ (Ew),
w=1

w=1

p p
which implies that V' C € (£,). Hence we get V = @ (Eu). O
w=1 =

w=1

Now for 1 < w < p, the concatenation of (E,,) and a left F,,-submodule D of G,

is defined as

(Ew) OD={ (Yu,1(01(2)), Yu,1(92(2)), -+, w1 (0(2))) + (01(2), d2(2), -, d()) € D}

In the following theorem, we show that each skew A-MT code of length n over F,

can be expressed as a direct sum of certain concatenated codes.
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Theorem 8.4.2. (a) Let C be a skew A-MT code of length n over F, with the

constituents C1,Ca, -+ ,C,. Then the code C has a concatenated structure

C= é(E@ 0d,(Co E,),

)
where @, (C@Ew) = Cy, for eachw. As a consequence, we have C = @@ (E,,) OC,.

w=1

(b) Conversely, let €, be a left F,,-submodule of G, for 1 < w < p. Then the direct
p
sum C = @ (E,) O <, is a skew A-MT code of length n over F,.

w=1

Proof.  (a) To prove the result, we note that

CzC@lV:CG)(iEw) _Mcok,
w=1

w=1

For 1 <w < p, wesee that COE,, = {(c1(@)ew,1 (), c2(x)ewa (), -+, co(z)ewe(z)) :
(c1(@), ca(x), -+, ce(2)) € C}, which implies that

,(COE,) = {(dui(cr(2)ew1(2)), dualca(t)ews(r)), + , dulce(w)ewe()))
(ar(2), (), -+, e(z)) € C}
= {(ew(ci(@) + (9w (@))), €wa(cal@) + (gu(2))), - s €welce()
Hguw(2)))) : (e1(2), c2(2), -, o)) € C}
.

as Pu.i(€wi(2)) = €wi(1+ (guw(x))) for each i and w. Further, since the restric-
tion map ®, [(g,) and the map ¥,, are inverses of each other, we see that

(E,)0%,(Co®E,)=C0o E, for each w. From this, part (a) follows.

(b) To prove this, it is enough to prove that (E,)O0&, is a skew A-MT code
of length n over F, for 1 < w < p. For this, we observe that (E,)O0¢C, =
{W.,(0w(2)) : du(z) € €,}. It is easy to see that U, (6,(2)) + Uy (cuw(z)) =
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Uy, (6w(z) + cuw(x)) € (Ey,) D€, for each §,(z), cy(z) € €,. Further, for each
f(z) € R, we note that f,(z) = f(z)+(gu(z)) € F, and that f,(z)d,(x) € &,
for each 0y, () = (0w (), 0uw2(x), -+, 0we(z)) € €,. This implies that

W (fu(2)0u(2)) = (Vo1 (fuo(2)) V1 (0w (%)) Y2 (fu(2)) 1w 2(8u2 (), - - -
2 Pt (fu(2)) e (0e(2)))
(f(@)ew1(2) w1 (Gu,1(2)), £(2)ew2() w2 (0w (2)), -
s F(@)ewe(1) U, e(Gue(2)))
= (f(@)%u,1 (0,1 (2)), f(2)hw2(duw2(@)), s f(2)we(ue(2)))
= f(2)Pu(dw()),

as Y i(0y,i(7)) € (ewi(x)) and ey ;(x) is the unity of (e, (z)) for 1 <7 < £.
This shows that f(z)¥,(0,(x)) € (E,)O¢&, for each f(z) € R and d,(z) €
¢,. Therefore (E,)O¢, is a left R-submodule of V' for each w. From this,
part (b) follows immediately.

Next we will show that each skew A-MT code of length n over F, has a multilevel
concatenated structure. To do this, let C be a skew A-MT code of length n over F,
with the constituents Cy,Cs, -+ ,C,. Let us define

¢ [ T 3\
Ciq1 Ci2 *++ Ciy
C21 C22 -+ Cop
Be = . . . | (cwts Cwzy s Cwe) €Cy for 1T <w < p
C C o e C
\ L pvl p92 p’z_ 7

Note that |Be| = [] |Cw|. From now on, we shall write each element ¢ € B¢ as ¢ =
i=1
(M, @ oo ) where ¢ = (c14, ¢4, ,¢,i)T denotes the ith column of ¢ for



230 Skew multi-twisted codes over finite fields and their Galois duals

1 < i < ¢. We further note that the ith column ¢® of ¢ € B, belongs to the mixed al-

phabet set (€1, Fy, €2, F, -+ -, €,:F,)" for each i. In view of this, one can view B as an
F,-linear code of length ¢ over the mixed alphabet set (€1 1F1, €21F5, -+ ,€,1F,)T x
(€10F1, €200, €0 F,)T X -+ X (€101, €90, -+ ,€,0F,)T.

Now for 1 < i < ¢, define a map Y; : (€1,F1, €2, F5, -+ ,€,,F,) — (e1:(x)) &
(€2:(7)) ® -+ @ (epi(x)) as

Tz’(Cl,ia Coy 7Cp,i) = ?/11,1'(61,2‘) + ¢2,i(02,z‘) + - wp,i(cp,i)

for each (c14,Co4,- -+ ,Cpi) € (€1, F1, €2, Fo, -+ €, F)).

For each i, we see that T, is a left F,-module isomorphism, as v,,; is a ring
isomorphism for 1 < w < p. Further, considering Be as an outer code, we define
multilevel concatenation of Be with ﬁ (e1:(x)) ® (ezi(x)) ® -+ & (e,i(x)) as

=1

T(Be) := {(Tl(c@)),n(c@)), e 7T£(C(f))) (W @ ) e Bc}~

In the following theorem, we show that each skew A-MT code of length n over F,

has a multilevel concatenated structure.
Theorem 8.4.3. For a skew A-MT code C of length n over F,, we have C = Y (Be).

Proof. Let Cy,Cs,---,C, be the constituents of the code C. Here in view of Theorem
P
8.4.2(a), it suffices to show that Y(B¢) = @ (F,,) OC,. To prove this, we consider
w=1
T(B;) = {T(b(l),b@),--- ’b(li)) . (5(1)7()(2),... ’b(é)) e Bc}
= {(Tl(b(l)),Tz(b@)),w ,Tg(b“))) . (b(l),b@), e ,b“)) c Bc}
p
- {Z (¢w,1<bw,1)a 77Z)w,2(bw,2)7 e 7¢w,f(bw,f)) : (b(1)7 b(2)) Tty b(@) S BC}

w=1
p

= P(E.) OC..

w=1
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This proves the theorem. O

Now using the multilevel concatenated structure of skew A-MT codes of length
n over F,, we also determine a lower bound on their minimum Hamming distances

in the following theorem.

Theorem 8.4.4. Let C be a skew A-MT code of length n over I, with the non-
zero constituents as Cy,,Cyy, -+, Cy,, where 1 < wy,wo, - ,wy < p. Let 9; be the

minimum Hamming distance of the code Cy,; for 1 < j < t. Let us assume that

0, <0y < -+ <0y Let us define R, = Idrani? Z}{ Zldmin«@wl,g(x)) D (ew,q(T)) B
ri=, oS

= -@<€wt7g($)>)} forv e {1,2,---  t}. Then the minimum Hamming distance dyn(C)
of the code C satisfies

dmin(c) Z min{ﬁhﬁQ? e 7ﬁt}'

Proof. Working in a similar manner as in Theorem 4.2 of Giineri et al. [41] and by

applying Theorem 8.4.3, the desired result follows. O

8.5 Galois duals of skew MT codes over finite
fields

Next we proceed to study dual codes of skew A-MT codes over finite fields
with respect to the Galois inner product on Fy. To do this, let & be a fixed integer
satisfying 0 < k < r. Let oy be an automorphism of F, defined as oy (b) = b for each
b € F,. Recall that the k-Galois inner product on F} is a map (-, -)x : Fy xFp — F,,
defined as

¢l m;—1

(a,0) =Y D ag b, for all a,b € FL.

i=1 j=0
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Here we observe that (-, -); is a non-degenerate og-sesquilinear form on Fy. In par-
ticular, the k-Galois inner product coincides with the Euclidean inner product on
[F; when k = 0, while the k-Galois inner product matches with the Hermitian inner

r

product on Fy when r is even and £k =

[}

Now if C is a linear code of length n over I, then its k-Galois dual is defined as

CH* ={a€F!:{ab)=0forallbeC}.

k

In order to study the k-Galois dual C* of the code C, let us define C** = {(b’l’jﬂo, W,

k k k k k k k
1P ) ) p p ) )
: 7b1f,m1—1ab2707b127717"' 7b12)7m2—17"' abZOab[,l)”' abg’mefl) . (bl,Oabl,la"' 7b1,m1—la
020,021, s b2ma—15 000,01, bom,—1) € C}, which is also a linear code of

length n over F,. It is easy to see that C*+ = (C?")L0. Furthermore, if C is a skew A-
MT code, then one can show that the code C*" is a skew AP*-MT code, where AP =
()\’fk, )\gk, e )\fk). Now using the fact that T, = I, we see that C** is a skew AP
MT code of length n over F, i.e., C1* is a linear code of length n over F, satisfying
the following: if @ = (@10, @11, 5 Qlmy—1; 02,0, Q215" " * 5 Q2mg—1;** 5 Q00 Qp1s " * s

k

Apmy—1) € C*, then its A= -multi-twisted shift Ty ,(a) = (A" o(a1m-1), 0(ai),

ok o
0 (a1 -2); AT o (azmy-1), 0 (azp), 0 (a2ma—2); 3 AT 0(@gm,-1),0(ar0),
- 0(agm,—2)) € Ct. Equivalently, C1* is a left R-submodule of the skew A~?"-MT
¢
module V' = [] V/, where V = ﬁ for 1 <i< 4.
=1 M — ;

Now we make the following observation.
Lemma 8.5.1. For 0 < k <r and a,b € Fy, we have
k
(a’) <CL, b>k = <b7 a)f—k'

(b) (T/{_pk (a),b)y = o9 ({a, T}, (b))r), where 0 < j < m — 1.

Proof. Proof is trivial. m
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For 0 < k < r, define a map 7, : R — R as
Ti(f(@)) = o'(af )a' + 0" e} o'~ 4o oo o+ af

for each f(x) =ag+ ayx + - + azz' € R with a; # 0.

Then we observe the following:

Lemma 8.5.2. Let a(z) = ag+a1z*+ agz®* +- - -+ a;x'™ be an element of R, where
t > 0 s an integer and ag, a; are non-zero elements of F,. Then for 0 < k < r, we

have the following:
(a) (Fi0 Trt) (a(z)) = (Frr 0 Fi) (alx)) = al2).
(b) If d(x) = do + dyx + - + dya* € R and a(z) € Z(R), then Fi(a(z)d(z)) =
Ti(a(z)) T (d(x)).
Proof. Tts proof is straightforward. O
Next we say that the skew polynomial f(z) € Z(R) is
(i) Fp-self-conjugate if it satisfies (f(2)) = (F(f(x))) in R.
(ii) Fi-conjugate to the skew polynomial g(z) € Z(R) if (f(z)) # (g(z)) and
(f(2)) = (T(g(2))).

In particular, when r is even and k¥ = 7, by using Lemma 8.5.2, we note that
f(x) € Z(R) is Jz-conjugate to g(z) € Z(R) if and only if g(z) € Z(R) is J:-
conjugate to f(x) € Z(R). In view of this, we say that two skew polynomials
f(x),9(z) € Z(R) form a Fr-conjugate pair if they satisfy (f(z)) # (g9(z)) and
(f(x)) = (F3(g(x))).

Lemma 8.5.3. For 0 < k < r, the map Ty, :

xm v — <xm ) , defined as

3
L

m—1
—j R
Te(d(x)) = j o j(df Yx~ for each d(z ;:0 d;z’ € w1

I
o
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is a ring anti-automorphism. (Here we have x=1 = 2™~ € <zm 7y .)

Proof. First of all, we will show that 7y, is a well-defined map. For this, let f(z), h(z) €
(xm iy be such that f(z) = h(z) in (:rm—l which implies that f(z) — h(z) =
(z™ — 1)r(x) for some r(x) = 19 + rx + rx® + -+ + rat € R with r, # 0.
Since 2™ — 1 € Z(R), by Lemma 8.5.2(b), we get Z(f(z) — h(x)) = F(z™ —
1)%(7’(:5)) = —(2™ — 1)J(r(z)), which further implies that Z,(f(z) — h(x)) =
gdeelf@=h@ED T (f(z) — h(z)) = 0 in W From this, it follows that T.(f(x)) —
Tr(h(z)) = Te(f(z) — h(z)) =0 1in (zm 77 This shows that 7}, is a well-defined map.
Further, we observe that 7y is a ring anti-homomorphism, and (7,_x o Tx)(d(z)) =
(Th o Tr-)(d(x)) = d() for each d(z)

homomorphisms 7, and 7,_; of m—1> are inverses of each other. From this, the

€ ﬁ This implies that the ring anti-

desired result follows. O

Next, for 0 < k < r and 1 < 7 < /, let us define the map ﬁ(i) V=V
, mi— A A m;—1 .
as ﬁ(l)(bi(x)) = > U_J(bfZ)x_] for each b;(z) = Y b2 € Vi, where 27! =
= 7=0
Y Frmil e V!. We see that the map 7;@ is a ring anti-isomorphism, and its inverse

is a map S\ : V! — V;, defined as S\ (a;(z)) = Z a‘j(ag’;—k)x_j for each a;(z) =
7=0
m;—1 ) .
S a; 20 € VI, where 271 = A7'2™~1 € V;. One can easily show that the map S
7=0
is also a ring anti-isomorphism.

Now let us define the maps (-,-), : V' x V — 1 and {-,-}, -V xV' —

< m
ﬁ as
¢
_pk " —1 i
(a(w),bla)), = SN <—) ai(2) T (b))
i=1 ™=\
and

14

(ta)ale)e = o0 (= ) @S (o)

for a(z) = (a1(x),az(x), - ,ar(x)) € V' and b(z) = (bi(z),bo(z), -+ ,be(x)) € V,

where V' and V' are viewed as left ﬁ-modules. Now we make the following
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observation.

Lemma 8.5.4. Let a(z) € V' and b(x) € V.

(a) We have
(a(x), b(x))), = {a, b + (@, Tao (b)), 2 + (@, TR 5 (b)) 2 + - + (@, T (b)),

and

R
{m —1)°

{b(@), a(@)}y = (b, a), (0, Ty i (@), -+ (T (@), @™ " im

(b) (a(z),b(x))r = 0 if and only if {b(x),a(x)}, = 0.

(¢) The mapping (-, )k is a non-degenerate Ty-sesquilinear form on V' x V, and

the mapping {-,-}, is a non-degenerate T,_j-sesquilinear form on V x V',

Proof. To prove the result, let us write a(z) = (a1(x), az(x), -+ ,a,(z)) € V' and
m;—1 )

b(x) = (bi(z),bo(x), -+ ,be(z)) € V, where a;(z) = > a;;27 € V] and b;j(x) =
j=0

m;—1 )

Yo bia? € Vifor 1 <i </,

j=0

(a) Here we observe that

a; ()T, (0i()) = (a3, bi)y + (ais Tao (b)) @+ -+ {ag, T (b)) ™

and)\i_pk(w—_>—1—|—)\p m’—i—)\?p 2?4 +)\("Tf )pkx(%_l)m",where

Ty, .0 (bi) f()i (;(bl7mi_1), o(bio), -+ ,0(bim,—2)) is the skew \;-constacyclic shift
of b; for each i. From this, we get (a(x),b(z)), = (a,b), + (a,Trx (b)), +
(a, TR , (b)), &*+- -+ (a, Ty, 1 (D)), z™ ' in WLl Working in a similar man-
ner, one can show that {b(z),a(z)}, = (b,a),_, + (b, T\ U(a)>r_kx +- 4

m—1 m—1 : R
<b, TA oy (a >7«ka n gy



236

Skew multi-twisted codes over finite fields and their Galois duals

(b)

By part (a), we note that (a(x),b(z)), = 0 if and only if <a,T/{,U(b)>k = 0 for
0 < j < m — 1. Further, for 0 < j < m — 1, by Lemma 8.5.1(a) and (b), we
sce that (a, T3, (b)), = 0 if and only if (T}",1 (a),b), = 0, which holds if
and only if (b, T:L—;Z,g(a»r—k = 0. From this and by part (a) again, part (b)

follows immediately.

For this, we first observe that (a(z), b(z) + d(z)), = (a(x), b(x)),+(a(z), d(z)),
and (a(x) +e(z),b(x)), = (a(z),b(x)), + (e(z),b(x)), for all a(x),e(x) € V'
and b(z),d(x) € V. Further, by part (a), we see that

(a(z), zb(x)), = (a,Trx (b)), + <a, TK,G(b»k z+--+(a,b), x™!

= (a(x), b(x)), 2™

and

(a(x),ub(z)), = (a,b), u”" + (a, Tx (b)), o(u’" )z + -

k

-+ {a, TX};l(b»kam_l(up Y™t

= (a(), b(x)), v

for each w € F,. This implies that (a(z),r(x)b(x)), = (a(z),b(x)), Tr(r(x)) for
each r(z) € % On the other hand, since )\Z-_pk (L> € Z(R) for1 <

zm—1 m; —pk
( xMi—\;

i < {, we have (r(z)a(z),b(x)), = r(z) (a(x),b(z))), for each r(x) € ﬁ

This shows that the map (-, ), is a Tg-sesquilinear form on V' x V.

Next to show that the sesquilinear form (-, -), is non-degenerate, suppose that
(a(z),b(x)), = 0 for all a(x) € V', which, by part (a), implies that (a,b), =0
for all a € F. Now as (-, -), is a non-degenerate sesquilinear form on ¥, we
must have b = 0, and hence b(x) = 0. Working in a similar manner, one can

show that if (a(z),b(x)), = 0 for all b(x) € V, then a(x) = 0.
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Working in a similar way as above, we see that the mapping {-, -}, is a non-

degenerate 7,_i-sesquilinear form on V' x V',

From the above discussion, we deduce the following:

Theorem 8.5.5. Let C (C V) be a skew A-MT code of length n over F,. The k-
Galois dual CH+(C V') of the code C is a skew AP -MT code of length n over F,

and 1s given by
CH = {a(x) € V' : (a(x),b(z))r = 0 for all b(x) € C}.

A skew A-MT code C of length n over F, is called (i) a k-Galois self-dual code if it
satisfies Ct+ = C, (ii) a k-Galois self-orthogonal code if it satisfies C C Ct*, and (iii)
a k-Galois LCD (linear with complementary dual) code if it satisfies C N Ct+ = 0.
To study these three classes of skew A-MT codes, we proceed as follows:

For 1 < i < /¢, we see that Jj(a™ — \;)) = 1 — )\kami = —)\fk(xmi — )\;pk).
On the other hand, we note, by (8.5) and Lemma 8.5.2(b), that (2™ — \;) =
T(91(2)) " Ty (ga(x)) > - - - Ti(g,(x))%* for each . From this, we obtain ™ —
AP = N T (2) T ga(2))2 - - Tilgy(x))e for 1 < i < £. By Lemma
8.5.2, one can easily observe that the skew polynomials . (g1(z)), Zk(g2(2)), -+ - )
T (g,(x)) are also irreducible elements of Z(R). From this, it follows that .7 (g1(x)),
T(g2(x)), -+, Tu(g,(x)) € Z(R) are all the distinct irreducible elements appearing
in the factorizations of the skew polynomials ™ — [ ” k, zm2—)\P k, s ame= NP =
Z(R). Further, for 1 < w < p, there exists a largest non-negative integer d,, satis-

fying the following two conditions:

(1) gw(®), Zi(gu(®)), -+, T (gu(z)) € Z(R) are distinct irreducible factors of

the skew-polynomials 2™ — Ay, 2™2 — A, - -+, 2™ — X\, in Z(R).
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(i) Either (Z,% ™ (gu(2))) # (gur(2)) for 1 < w’ < por (FH (gy(2))) = (gu())
holds.

Definition 8.5.6. For 1 < w < p, we say that an irreducible factor g,(x) of x™ —
AL, ™2 — Ao, - x™ — N in Z(R) is of

o Type Iif dyy =0 and (Fi(gu(2))) = (9u()).

Type 11 if dyy = 0 and (Fj(gw(7))) 7 (gu(2))-

Type L1 if dyy > 1 and (774 (9u(2))) = (gu(2)).

Type IV if dy > 1 and (F" " (9u(2))) # (gu(2))-

Now by relabelling ¢, (z)’s (if required), we assume that g;(z), g2(x), - , ge, ()
are all the distinct Type I irreducible factors, ge, +1(2), ge,12(), - -+, ge, () are all the
distinct Type II irreducible factors, ge,11(%), ges+2(), -+, gey(z) are all the distinct
Type IIT irreducible factors and ge,+1(), ges12(), -+, ge,(x) are all the distinct
Type IV irreducible factors of the skew polynomials ™ — Ay, 22 — g, - -+ ;2™ — )y
in Z(R).

Note that

e4
p=es+ Z (ds +1).

s=ea+1
For1<a<e;,, 0<b<d,+1and 1< </, let us define
R ») 1 if Z%(ga()) divides 2™ — )\; in Z(R);

Ra,b = ——— and €ai =
(T (9a())) ’ 0 otherwise,

(note that R, 4,41 = Rap for 1 <a <e; and es+1 < a < e3). In view of the above,

(8.6) can be rewritten as

Vo~ (@g§o>)@( D g,@)@( D (ggo>@gg>@---@gyu1))@
t=1

p=ei1+1 u=eg+1 a;
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( Eé (gé‘)’@gé”@---@gﬁd“)),

p— vV
v=e3+1 Gy

where G\” = <€$)1Raba a2Rab> - ,GgﬂRa,b) for 1 <a<esand 0 <b<d,.

For1 <a <e,0<b<d,and 1 <7 </, we observe that if e((zbz = 1, then
T (ga(z)) divides 2™ — AP “in Z (R). Therefore by applying Proposition 8.3.2

and working as above, we see that

(ég@) ® ( @ Hf})) @ ( 639 (ﬁg’) o HY @---@%5}“1)) @
t=1

p=ei+1 u=eo+1 ‘Z
€4
(@ (e ems ous)),
v=e3+1 ~

Where gt(O) == (Et 1 Rt 05 EtQRt 0y """ 761(5,()2Rt,0)7%l&l) - ( M 1R/L71a 14, 2Ru,la Tt 7653%Ru,1)7

(0) ( (du)Ru07 u2)Ru,07' o aefjg)Ru,O)a gw) - ( gwl I)Rsun ng I)stv' o 76(;2_1)}%5,(«1)
forl1 <t<ep,e1+1<pu<eeat+1<u<e;,ent+l1<s<eandl <w<ds+1,

(note that 7—[5 w ) 7—[&0), as Ry g,+1 = Rup for ea +1 < u < ey).

In view of this, from now on, we shall identify each element b(z) = (by(x), bo(z), - - -
,bg(l’)) cVasB = (Bh B2a ) Bel) Be1+1a B€1+27 e ’Bezu B€2+17 B62+27 T Be37
Beyi1, Begi2, -+, Be,), where

Bt = (Bt(ol)aBt(OQ)a : 7B(0)) € gt(O)7BM = (B(?)
B, = (Bél)aBg()Z)f" Biof)ngll)’Bng"' 7B§,1£)"" 7B£’d13)7B£dS)a"' 7B£t1;)) € G

for 1 <t < eer+1 < p < egen+1 < s < ey with B(b-) = e(bz(bi(x) +
(T2(90(2)))) € €)Ryp for 1 <a< ey, 0<b<d,and 1 <i</.

Apart from this, we shall identify each element a(x) = (a;(z), az(x), -+ ,ar(x)) €
Vias A= (A17 A27 T A617Ael+17 A61—|—27 : A627 A62+17 A62+27 T Ae37 A63+17 A63+27
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, Ae,), where
0 0 0 1 1) 1
At - (A§1)7A£2)7 7A7§€)) € gt( )’A - (AL)DAEL% vA( )) 67{;&”?
Ay —-(14«2 142%" fqu7f4ulvf4gg"' 1452"' /42%0714J% 7"'71483)) € H, and

(

Ay = (AT, A,

Y

’Az()(,ig+1)7A1(11% Az()%v 7A1(j527 7A1()(,if)7A1(JC,l§)> 7A1()(:ig)) S Hv

with A = e ( <> (o <>>> AD) = e (ai(@)+H(Tigu (@) ), AL 1= € (ar()+
(gu(@))), AY) = 97 (ay(x) + (T (gu(2)))) with 1 < j < d, and AY) =

E(j,-_l)< +<t7] gv ))>)forlgjlédv+1,1§t§€1,€1+1SMS@Q,

V,8

o+ l1<u<es,est+1<v<esandl<i</.

Now for 1 < w < p, let deg g, (x) = 1. Further, note that deg (g (x)) = 1w,
as gy () is an irreducible element of Z(R). For 1 <a <e4,0<b<d,and 1 <i </,

let —: egRa,b — eszRa,bH be the map, defined as

met b o )
Yoo f(hR)a— ife,; = 1;

]’La(l') = 5=0 ’ (87)
0 if ¢ =0

a,i

Na—1

for all h,(z) = Z hest® € 6( )Ra,b(g Vi), (note that Ry 4,+1 = Rao when 1 <a < e

andeg—|—1<a<63)

We further observe that for each B € V, the corresponding element B € V' is
identified as

(B17 B27 te 7B81) Bel+17 B61+27 e )BEQJ B62+17 B82+27 e 7B637 B83+17 B63+27 e 7Be4>,

where B, = (B{Y, B\, ,BY)) € ¢” for1 <t < e, B, = (BY}, B}, ,BY)) €
M forex+1 < p < es, By = (B, BYY -+ By BYL B, -+ BE), - BIGTY,
B,ﬁf’;*”, . Bidgfl)) € H,fores+1 <u<ezand B, = (Bz(}flf ,Bfflz”), e ,qufl;),Bq()?l),
@, : ij)g, BTV BTV BT € H, for ey +1 < v < ey with
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Bg’? = e(bl)- (bi(z) + (T (ga(2)))) € eflljszbH forall 1 <a<ey 0<b<d, and
1

In view of this, a skew A-MT code C of length n over F, can be uniquely written

€1 ) e3
(@Ct(o)) @ ( S% Cﬁo)) D ( D (Cff’) oM @---@C}ﬂu))) =
t=1

p=ei+1 u=ea+1
( D (c}f)) S g ... @Cédw)), (8.8)
v=e3+1

where Ct(o) (resp. Cﬁo),Cﬁj) and Céj,)) is a left R,g-submodule of Qt(o) for 1 <t <
e; (resp. left R, o-submodule of Q,SO), left R, j-submodule of G and left R, ;-
submoduleofgqgj’) fore;+1 < pu<es, e+l <u<es, es+1<v<e, 0<575<4d,
and 0 < 7' < d,).

Next we see that if for some a,b and 1, e() = 1, then z™ /\;pk in Rypt1,
which implies that A;” <m> = mﬁ in R, pt1. Further, the sesquilinear form

€1
corresponding to (-, -),, is the map [-, |, from V' xV into the direct sum { < D Rto) @
t=1

( & i) @ ( & (Ruo® R &+ @ Rug,) ) & ( D (Rgy1 ®Roi® @

p=e1+1 u=ez+1 v=e3+1

Rv,dv)> }, which is defined as

¢ l l
4,81, = (32 P A0BE, 3 A 3 A0 B

m; . e1tt et e,

i=1" " i=1 i=1
em() 1) (0) Em() 1) (0) gm() (1) (0)
0 1 0 0 1 0 0 0

E :Eeel—i—l,iAq—i—l,iBel—i-l,i’ § :Eeel—ﬁ-Z,iAel—i-Q,iBel—&-Zi’ S E s 652,214@2713@2,,,

. 1 . 1 . 1

=1 i=1 =1

4 J4
m (d52+1) o (deg1) m B(O) o
M 662+1 7 eg+1 7 €2+1 70 62+1 7 62+1 i ea+1,2° ’

i=1" " i

4 - 4 [
M (deyt+1— 1)A( e2+1) (deg+1—1) ﬁ d53 (d53 1) B (0)

662+1 ) ea+1,0 62+1 ) ’ ’ 63 7 63 7 63,’L ) 63 [ 63 i es,n?

m; m;

=1 =1 z:l

L [ [
m (de3—1) (de3) (de3—1) m d63+1 de3+1+1 d63+1
D3 —€esi e Dead > €eptLides 10 Byt
7 7

i=1 i=1
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¢ ¢ -
m (0) ey (0) M (dez+1—-1) 4(deg+1) p(deg+1—1)

Z Eeeg—l—l,iAeg—i-l,iBeg—l-l,i? T vz T, Ceatli Aegfii Befi

i=1"" i=1 "

V4 V4
M (dey) 4(dey+1) (dey) m ©) 4
Z*Eem Ae4,i Be47i 7ZE%4,@ eq,i eu" )
i=1 "

ey
i=1

MN

M (dey—1) 4(dey) (de -1)
4 4 4
o e4 i Ae4 7 64 i :

m;

N

=1

Moreover, with respect to form defined by (%), we observe that the k-Galois dual

C** of C is given by

el e €3
e — ( @ Ct(O)J‘k> D ( @ C;So)lk> D ( @ (Cu(du)ik @Cu(o)lk@. . .@Cu(du—l)lk))
t=1

p=ei1+1 u=eg+1
€4
o( @ E@moc®o  ocun), (5.9
v=e3+1

where

o CV%(C G s the orthogonal complement of C\”) with respect to [, 1 fg§°>xg§°>

for 1 <t <ey;

o C,(LO)L’“ (C ’H,(})) is the orthogonal complement of C,SO) with respect to [+, ], THE})XQLO)

for e +1 < p < ey;

o C ”k(g HY +1)) is the orthogonal complement of C¥) with respect to
[y ], ngtj+l)Xg1(Lj) for 0 < j <d,—1 and Cid"”’“(g HSLO)) is the orthogonal

complement of ci™ with respect to [, -], | (@) for es +1 < u < eg; and

HY %G
o CY ’”’c(g HY IH)) is the orthogonal complement of ¢ with respect to

[ Jk Ty g fores+1 < v <egand 1 <j' < d,.

Here [, |z [0 g (resp. [ -], L340 56O [ e T g [ lk T g and
[, ]s r%”’“)ngﬂ') ) denotes the restriction of the form [-,-]x (as defined by (x)) to
(0) X Qt (resp. ’H,(}) X Q,SO), T 5% D U1 5 i) and HY T x gf,j')) for each
t (resp. p, u, j, v and j).
For es +1 <u <ezandez+1< v < ey, let ICq(f') = gf}) ﬂ?—[ff) and le,jl) =

gfﬂ' N ’Hf,j /), where 0 < j < d, and 1 < j’ < d,. In the following theorem, we derive
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necessary and sufficient conditions under which a skew A-MT code is (i) k-Galois

self-dual, (ii) k-Galois self-orthogonal and (iii) k-Galois LCD.

Theorem 8.5.7. Let A = (A, Ag, -+, \¢) be fized, where A, Ao, -+ , A are non-zero

elements of Fy. Let

C = <@Ct(0)> a5 ( @ CLO)) ® ( @ (C1(LO) @CQ(LI) @'“@ngdu)>>
t=1

p=ei+1 u=e2+1
€4
= ( &$ (C}f’) ecCVe @ ngv)))
v=e3+1

be a skew A-MT code of length n over F,, where Ct(o) (resp. Cflo), ¢ and Cl(,j,))
is a left Ryo-submodule of Qt(o) for 1 <t < ey (resp. left R, o-submodule of Q,(LO),
left R, j-submodule of G and left R, j-submodule of gy foreir +1 < p < ey,
eotl<u<es, es+1<v<e,0<j<d, and0<j <d,). Then for 0 <k <r,
the following hold.

(a) The code C is k-Galois self-dual if and only if the following conditions are
satisfied:

e None of the skew polynomials ™ — Ay, 2™ — Ao, -+, 2™ — Ay has an
irreducible factor of the Type II in Z(R).
o forl <t<ey, Céo) is a left Ry o-submodule ofgf‘” satisfying C§°) = Cﬁoﬂ’“.

o fores+1 < u<e3zand0 < 5 < d, C&j) is a left R, j-submodule of

K9 satisfying ¢ = ¢l o) = ¢t ¢ = ¢ ol =
Cq(idufl)J_k.

o fores+1 < v < ey, 0 — {0},C7(,1) — KV and Cl(,j/) is a left R, ji-
submodule of Ky satisfying cY) = kY ned VY gna el = {0},

where 2 < j' < d,.
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(b) The code C is k-Galois self-orthogonal if and only if the following conditions

are satisfied:

o forl <t<ey, Ct(o) is a left Ry o-submodule ofgt(o) satisfying Ct(o) - Ct(O)L’“.
o Foreg+1< p<ey, C,SO) = {0}.

o fores+1 < u<e3and0 < 5 < d, Cz(Lj) is a left R, j-submodule of
K satisfying ¢ C c{®H ¢V c ¢l e c et el C
Cl(idufl)J_k.

e Fores+1<v<ey,C¥ = {0}, etV s any left R, 1-submodule of KM
and C5" is a left R, jr-submodule of K satisfying ci) C ngj/_l)b“,

where 2 < j' < d,.
(c) The code C is k-Galois LCD if and only if the following conditions are satisfied:

e forl <t < ey, Ct(o) is a left Ryp-submodule of Qt(o) satisfying C’t(o) N
¢V = {o}.

o fore;+1< u<ey, CLO) is any left R, o-submodule of gff’).

o fores+1<u<esand0<j<d,, C&j) is a left R, ;-submodule of Q@(Lj)
satisfying O it = {0}, ¢V nelOt = {0},--- ,Cq(fi“) etV —
{0}.

o Fores+1 < v < ey, ¢l s any left R,o-submodule of 950) and Cl(,j,)

is a left R, j-submodule of Gy satisfying ey ned Ve = {0}, where
1< <d,.

Proof. By (8.8) and (8.9), the desired result follows. O

When either & = 0 or 7 is even and k = %, we see that 7?(g.()) = guw(x), which
implies that d, < 1 for 1 < w < p. This further implies that the skew polynomials

™ — A, x™ — X9, - -+ 2™ — \p do not have an irreducible factor of the Type IV
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in Z(R). In view of this and by (8.8), we note that a skew A-MT code C of length

n over [F, can be uniquely expressed as

€3

€2
c=(@c”)e( @ c)e( @ (ach)). (8.10)
t=1 p=e1+1 u=ez+1
where Ct(o) (resp. CLO) and CY )) is a left RR;o-submodule of Qt(o) for 1 <t < ey (resp.
left R, o-submodule of gff’) and left R, j-submodule of Ql(f') for e; +1 < p < eo,
ea+1 <u<e;and 0 < j <1). Furthermore, when o = I, we see that each

constituent of a A-MT code of length n over IF, is a free module.

8.6 Generator theory for skew MT codes

In this section, we will extend the results derived in Section 3.4 and develop
generator theory for skew A-MT codes. We will also derive a BCH type lower
bound on their minimum Hamming distances. The other results derived in Section
3.4 can be similarly extended to skew A-MT codes.

A skew A-MT code C of length n over F, is called a p-generator code if g is the
smallest positive integer satisfying the following property: There exist ¢ number
of distinct codewords by (), ba(x), -+ ,b,(z) € C such that each codeword c¢(z) € C
can be expressed as c(x) = fi(2)bi(x) + fa(x)ba(z) + -+ + fo(x)by(x) for some
fi(x), fa(x), -+, folz) € R. The set {by(x),ba(x),- - ,b,(x)} is called a generating
set of C, and we shall write C = (b1(x), ba(x),- -+ ,by(x)) . The annihilator of C is
defined as Ann(C) = {f(z) € R : b(z)f(z) =0in V for 1 < ¢ < p}. It is easy to
see that ]ﬁ[(:cml — ;) € Ann(C), and that Ann(C) is a non-zero right ideal of R. As
R is a rigﬁt principal ideal ring, there exists a unique smallest degree monic skew
polynomial A(z) in R such that Ann(C) = (h(x))r. The skew polynomial h(x) is
called the parity-check p