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Abstract

Doctor of Philosophy

Spatiotemporal Linear Stability of Viscoelastic Free Shear Flows

by Diksha BANSAL

In this thesis, we have explored the temporal and spatiotemporal stability analyses of
free shear, viscoelastic flows in the limit of low to moderate Reynolds number (Re)
and Weissenberg number (We). The description of the six chapters are as follows:

• The first chapter introduces the fundamental difference in the instability arising
from Newtonian versus non Newtonian fluids: Newtonian fluid undergoes instabili-
ties with increasing Re, although a direct transition to instability is also possible via
bypass transition. Contrarily, non Newtonian fluids exhibit both inertial and purely
elastic instabilities that arise even when the effect of inertia is too small to drive an
instability in a Newtonian fluid at the same flow condition. Past research by several
groups are highlighted.

• The second chapter discusses the Compound Matrix Method (CMM) which is used
to numerically integrate the eigenvalue problem using auxiliary variables emerging
from the Orr-Sommerfeld equation (OSE).

• In the third chapter, a description of the different types of instabilities is included.
The temporal modes refer to cases where the instability in the complex frequency is
determined as a function of real wave number. The convectively unstable modes give
rise to wave packets moving away from the source and ultimately leaving the medium
in its undisturbed state. Absolutely unstable modes, by contrast, are gradually con-
taminated everywhere from a point-source disturbance. Evanescent modes (or the
direct resonance mode) arise if the two coalescing modes originate from waves prop-
agating in the same direction.

• The fourth chapter highlights the stability analyses of antisymmetric, free shear,
viscoelastic flows in the dilute regime, obeying the Oldroyd-B constitutive equation.
The temporal stability analysis indicates that with increasing We, (a) the entire range
of the most unstable mode is shifted toward longer waves, (b) the vorticity structure
contours are dilated, and (c) the residual Reynolds stresses are diminished. The
spatiotemporal analyses show that the free shear flow of dilute polymeric liquids
is either (absolutely/convectively) unstable for all Re or the transition to instability
occurs at comparatively low Re.

HTTP://WWW.IIITD.AC.IN


v

• In the fifth chapter, we provide a detailed comparison of the temporal and the spa-
tiotemporal linearized analyses of free shear, viscoelastic flows in the limit of low
to moderate Reynolds number and Elasticity number obeying four different types
of stress-strain constitutive equations: Oldroyd-B(ε = 0,a = 1), Upper Convected
Maxwell(ε = 0,a = 1,ν = 0), Johnson-Segalman (ε = 0,a = 0.5) and Phan-Thien
Tanner(ε = 0.5,a = 0.5). The temporal stability analysis indicates (a) elastic stabi-
lization at higher values of elasticity number and (b) a non- monotonic instability
pattern at low to intermediate values of elasticity number for the JS as well as the
PTT model. The spatiotemporal phase diagram divulge the familiar regions of in-
ertial and elastic turbulence, a recently verified region of elastoinertial turbulence
and the unfamiliar temporally stable region for intermediate values of Reynolds and
Elasticity number.

• In the concluding chapter, we highlight the challenges that we have faced and intend
to face in future numerical simulations as well as our future problems demanding
a full spatiotemporal stability analyses: (a) Rayleigh-Plateau, describing the onset
of the detachment of a droplet, (b) Saffman-Taylor, or the formation of patterns in
a morphologically unstable interface between two fluids in a porous medium, (c)
Faraday instability, or an unstable state of a flat hydrostatic surface due to a critical
vibration frequency.
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Chapter 1

Introduction and review of literature

This chapter provides a general overview of the past research in Newtonian as well as
non-Newtonian fluid instabilities, and organized as follows: §1.1 outlines the basic
difference of the instability arising in Newtonian fluids versus those arising in non-
Newtonian (viscoelastic) fluids. §1.2 outlines the basic features of the viscoelastic
flows. §1.3 delineates the phenomena of ‘turbulence’ and §1.4 describes some of the
basic transition pathways to instability and turbulence in viscoelastic fluids. Finally,
some industrial applications are provided in §1.5.

1.1 Newtonian versus viscoelastic instability
For a fluid with kinematic viscosity ν in a geometry of linear scale L with a typi-
cal flow velocity V , the Reynolds number, Re = V L

ν
is the ratio of the inertial term

of O(V 2/L) and the viscous damping term of order νV
L2 at the largest relevant scale,

the scale of the flow geometry. It is well known that when the Reynolds number
increases, flows of Newtonian fluids typically follow a scenario: (a) at small Re the
flow is laminar and stable, (b) at some intermediate value the laminar flow profile
becomes unstable, so that a more complicated flow pattern develops, while (c) at suf-
ficiently large Reynolds numbers the flow is turbulent (Morozov and Sarloos, 2007).
However, a direct transition from a laminar flow to turbulent flow (also known as
the ‘bypass transition’) is also possible (Negi et al., 2019; Sundarama, Sengupta,
and Sengupta, 2019). An exception to such a sequence of transition pathway to tur-
bulence in Newtonion fluids are the wall-bounded flows (Sengupta and Bhaumik,
2018).

FIGURE 1.1: Qualitiative sketch stressing the similarities between a
typical scenario found in Newtonian fluids as the Reynolds number Re
increases, and in visco-elastic fluids upon increase of the Weissenberg

number We. (Source (Morozov and Sarloos, 2007))



2 Chapter 1. Introduction and review of literature

Newtonian fluids are simple fluids like water and alcohol whose dynamics is de-
scribed by the Navier-Stokes equations (Sengupta, 2016). Since the Reynolds num-
ber measures the importance of inertial effects relative to the viscous damping ef-
fects, the typical scenario is that as inertial terms become more and more important
in normal Newtonian flows, there is a tendency to more and more complicated flow
patterns and eventually turbulence. Sometimes the first transition is a transition to a
nontrivial coherent flow pattern, and this transition is followed by one or more sec-
ondary bifurcations, before the turbulent regime is reached. But a direct transition
from a laminar flow to a turbulent flow is also possible (also known as the ’bypass
transition’). Contrarily, viscoelastic dilute polymeric liquids exhibit both the iner-
tial (Bird, Armstrong, and Hassager, 1987; Bird et al., 1987) and purely elastic insta-
bilities (instabilities which arise even when the effect of inertia is too small to drive
an instability in a Newtonian fluid at the same flow conditions) (Larson, Shaqfeh,
and Mueller, 1990). Inertial effects are usually negligible as the Reynolds numbers
are small but the fluid is strongly non-Newtonian due to the shear-induced elasticity
and anistropy, or the so-called ’slow relaxation effects’. The dimensionless number
governing these non-Newtonian effects is the Weissenberg number (We). From a
number of precise experiments and theoretical investigations in the last fifteen years,
it has become clear that as the We increases, visco-elastic fluids exhibit flow instabil-
ities driven by the anisotropy of the normal stress components and the curvature of
the streamlines (Groisman and Steinberg, 1998). The combination of these normal
stress effects that drive laminar curved flow unstable and the possibilty of the elastic
effects to store energy in high shear regions and to dump it elsewhere in less sheared
regions, appears to be strongly self-enhancing: Instabilities and the transition to a
turbulent regime driven by these elastic forces, are often found to be hysteretic and
strongly subcritical (nonlinear) (Groisman and Steinberg, 2000).

1.2 Basic features of viscoelastic flows
In viscoelastic flows of polymeric solutions, the Reynolds numbers are often quite
small, since the viscosity is large. Polymeric fluids are sometimes called viscoelastic
fluids. This means that the fluids have both viscous and elastic properties. The use of
the word “elastic” to characterize a property of a fluid may seem a bit contradictory.
By elasticity one usually means the ability of a material to return to some unique,
original shape; on the other hand, by a fluid one means a material that will take the
shape of any container in which it is left, and therefore does not possess a unique,
original shape. Another concept that is closely tied to that of elasticity is the concept
of "memory”. Indeed a material that has no memory cannot be elastic, since it has no
way of remembering a unique, original shape. Hence fluids exhibiting elastic proper-
ties are also often referred to as memory fluids. Since polymeric fluids are not chem-
ically cross-linked they will not have a permanent memory, but there will be a finite
long relaxation time. We say that the relaxation spectrum gives the fluids a fading
memory of duration of the longest relaxation time. When the longest relaxation time
is equal to or greater than the characteristic time for the macroscopic flow system,
marked deviations from Newtonian behavior are observed. The distinction between
the rheology and the fluid mechanics of viscoelastic materials is vague but is worth
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stating. The former is concerned with constitutive relations between stress and de-
formation and may involve physical modeling at a molecular level. Controllability of
the flow field is essential when making rheological measurements to evaluate mate-
rial properties, so the kinematics are generally imposed and the momentum equation
is not solved. Viscoelastic fluid mechanics, on the other hand, is the study of mo-
tions in which the kinematics cannot be established a priori, and the continuity and
momentum equations must be solved together with the constitutive equation for the
stress. The equations that must be solved for even the most elementary viscoelastic
liquids are considerably more complex than the Navier-Stokes equations, and many
unresolved issues of a fundamental nature remain (Denn, 1990). Students of vis-
coelastic fluid mechanics have therefore focused on the use of constitutive equations
that capture important qualitative features of material rheology, but that are simplistic
relative to the formulations believe to characterize real materials. When polymers are
long, they get easily stretched by the shear present in flows, and the viscosity of the
solution is large. Solutions of flexible high molecular weight polymers differ from
Newtonian fluids in many aspects (Bird, Armstrong, and Hassager, 1987). The most
striking elastic property of the polymer solutions is that stress does not immediately
become zero when the fluid motion stops, but rather decays with some characteristic
time, λ , which can reach seconds and even minutes. Equation of motion for dilute
polymer solutions differs from the Navier-Stokes equation by an additional linear
term due to the elastic stress, τ (Bird et al., 1987). Since the elastic stress is caused
by stretching of the polymer coils, it depends on history of motion and deforma-
tion of fluid elements along its flow trajectory. This implies non-linear relationship
between τ and the rate of deformation in a flow (Bird, Armstrong, and Hassager,
1987). The non-linear mechanical properties of polymer solutions are well mani-
fested in their large extensional viscosity at high rates of extension (Tirtaatmadja and
Sridhar, 1993) and in the Weissenberg effect (Bird, Armstrong, and Hassager, 1987;
Weissenberg, 1947).

The important dimensionless number characterizing the rheology of polymers is
We which controls the stretching of the polymers, the so-called normal stress effect,
or the relaxation phenomena. Alternatively, the We = V λ/L (or the product of the
characteristic rate of deformation and the relaxation time) is a measure of degree
of nonlinearity in the mechanical properties of the viscoelastic fluid. When the We
becomes large, in practice larger than 1, the fluid rheology deviates from a regular
Newtonian flow (Bird, Armstrong, and Hassager, 1987; Denn, 1990; Denn, 2004;
Shaqfeh, 1996; Larson, 1999; Larson, 1988). A simple well-known example of
this is the so-called rod-climbing effect (Bird, Armstrong, and Hassager, 1987)(refer
Figure 1.2 ). Viscoelastic effects manifest themselves in shear flows through the
normal stress, which first appears as a quadratic term in shear rate. Inertial stresses
are of order ρV 2, where ρ is the density. This competition is dramatically illustrated
via inserting rotating rods in two beakers. First one contains a Newtonian liquid
while the second one contains a polymer solution. In figure 1.2, we see that the
Newtonian liquid near the rotating rod is pushed outward by the centrifugal force
and a dip arises near the center of the beaker. The contrasting behavior is for the
polymer solution where it moves towards the center of the beaker and starts to climb
up the rod. Moreover, for comparable rotational speeds, the polymer solution seems
to respond far more dramatically than Newtonian liquid.
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FIGURE 1.2: Rod climbing in solution of high molecular weight
polystyrene in a Newtonian fluid(right) and no effect in Newtonian

fluid(left) (Source: https://ewoldt.mechanical.illinois.edu/)

This phenomenon has undoubtedly been known for a long time and it seems first
to have been discussed in the context of normal stresses in a lecture by Weissenberg
in 1946, and it is therefore known as the "Weissenberg effect"(Figure 1.2). The phe-
nomenon can be interpreted in a rather simple fashion with the use of an extra tension
along the streamlines. Rod climbing is easily analyzed approximately in the absence
of surface tension. Simple models of viscoelastic liquids predict a tension along a
circular streamline, which must be balanced by an increased hydrostatic pressure,
and this simple approach leads to an analytical solution for many viscoelastic con-
stitutive equations. A number of important effects in the flow of polymeric liquids
may be attributed to the fact that polymeric liquids exhibit normal stress differences
in shear flows. Let us first establish some labeling conventions for referring to nor-
mal stress differences. If the fluid moves along one coordinate direction only and its
velocity varies only in one other coordinate direction, then we call the direction of
fluid velocity the “1” direction; the direction of velocity variation, the “2” direction;
and the remaining neutral direction, the “3” direction. Then we call τ11− τ22 , the
first normal stress difference. Likewise, we call τ22− τ33 the second normal stress
difference. x, y, and z correspond to 1, 2, and 3 respectively. Thus the first normal
stress difference is τxx− τyy and the second normal stress difference is τyy− τzz. For
Newtonian fluids the normal stress differences are exactly zero in shearing flow. For
polymeric fluids the first normal stress difference is practically always negative and
numerically much larger than the second normal stress difference. This means that
to a first approximation polymeric fluids exhibit in addition to the shear stresses an
extra tension along the streamlines, that is, in the “u1” direction. It was shown by
Weissenberg that the simple notion of an extra tension along streamlines may be used
to obtain qualitative explanations of a large number of experiments. The second nor-
mal stress difference has been found experimentally to be positive, but usually much
smaller than the magnitude of the first normal stress difference. This means that in a
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shear flow the fluid exhibits a small extra tension in the "3" direction. A simple struc-
tural explanation for this extra tension is lacking, and the simplest kinetic theories of
polymeric fluids are not capable of describing this effect; more elaborate theories are
successful, however (Bird, Armstrong, and Hassager, 1987). We emphasize that the
second normal stress difference is quite small, and it is normally observable only in
situations where the first normal stress difference, for geometrical reasons, has no
effect.

1.3 Turbulence
Turbulence is one of the most fascinating phenomena in nature and one of the biggest
challenges for modern physics. It is common knowledge that a flow of a simple,
Newtonian fluid is likely to be turbulent when velocity is high, viscosity is low and
size of the tank is large. Recent examples in the category of Newtonian fluid tur-
bulence include the analytical techniques to study the Boussinesq approximation in
Richtmyer-Meshkov Instabilities (RMI) (Mikaelian, 2014), a non-perturbative ap-
proach to study the spatial instability of weakly non-parallel shear flow (Huang and
Wu, 2015), Direct Numerical Simulations (DNS) of Rayleigh Taylor Instability (RTI)
between two air masses with a temperature gradient (Sengupta et al., 2016), the im-
pulse response of a canonical zero pressure gradient boundary layer via the dynam-
ical system approach (Bhaumik and Sengupta, 2017) and the DNS of a wavepacket
in laminar to turbulent transition in a Blasius boundary layer with the wave modes
decomposed using a combination of Proper Orthogonal Decomposition (POD) and
Fast Fourier Transform (FFT) (Kang and Yeo, 2017). However, a direct transition
from a laminar flow to a turbulent flow is also possible (Sundarama, Sengupta, and
Sengupta, 2019). Motion of simple, low molecular, Newtonian fluids is governed by
the Navier-Stokes equation (Landau and Lifshitz, 1987; Tritton, 1988). This equa-
tion has a non-linear term, which is inertial in its nature. The ratio between the non-
linearity and viscous dissipation is given by the Reynolds number, Re =V L/ν ,where
V is velocity, L is characteristic size and ν is kinematic viscosity of the fluid. When
Re is high, non-linear effects are strong and the flow is likely to be turbulent. So,
turbulence is a paradigm for a strongly non-linear phenomenon (Landau and Lif-
shitz, 1987; Tritton, 1988). There is no unique commonly accepted definition of
turbulent flow (Tritton, 1988), so it is usually identified by its major features (Lan-
dau and Lifshitz, 1987; Tritton, 1988). Turbulence implies fluid motion in a broad
range of spatial and temporal scales, so that many degrees of freedom are excited in
the system. A striking practically important characteristic of turbulent flows is major
increase in the flow resistance compared to an imaginary laminar flow with the same
Re. It is reasonable to inquire, whether non-linearity of mechanical properties of a
fluid can give rise to turbulent flow, when the equation of motion is linear. For a
polymer solution this corresponds to a state, when the Weissenberg number is large,
while the Reynolds number is small. This situation can be realized, if the parameter
of elasticity We/Re = λν/L2 is large enough. An important step in investigation of
influence of the non-linear mechanical properties on flow was made about a decade
ago, when purely elastic instability was experimentally identified in curvilinear shear
flows (Magda and Larson, 1988; Muller, Larson, and Shaqfeh, 1989). This insta-
bility occurs at moderate We and vanishingly small Re and is driven by the elastic
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stresses (Muller, Larson, and Shaqfeh, 1989; Larson, Shaqfeh, and Mueller, 1990;
Groisman and Steinberg, 1998). As a result of this instability, secondary, in general
oscillatory, vortex flows develop, and flow resistance somewhat increases (Magda
and Larson, 1988; Muller, Larson, and Shaqfeh, 1989; Larson, Shaqfeh, and Mueller,
1990; Groisman and Steinberg, 1998; Byars et al., 1994). There are elastic stresses
that appear in the polymer solutions in a flow, and that grow non-linearly with the
flow rate (Bird et al., 1987). This can lead to many special flow effects, including
purely elastic transitions (Larson, Shaqfeh, and Mueller, 1990; Byars et al., 1994;
Joo and Shaqfeh, 1994) that qualitatively change character of the flow at vanishingly
small Re. As a result of such transitions secondary vortical flows appear in differ-
ent systems, where the primary motion is a curvilinear shear flow. Onset of those
secondary flows depends on the We = λ γ̇ , where γ̇ is the shear rate. It plays a role
analogous to that of Re in competition between non-linearity and dissipation. As it
has been reported recently, an elastic flow transition can result in a special kind of
turbulent motion, elastic turbulence (Groisman and Steinberg, 2000), which arises at
arbitrary small Re. A second and more recent instability is the so called ‘elastoiner-
tial turbulence’ (occurring at moderate Re and large We) which is characterized by
maximum drag reduction state, and originates from a linear instability of pipe and
channel flows. In a series of experiments in the 1960s and 1970s, this transition
to turbulence was observed in dilute polymer solutions, at Reynolds numbers much
lower than Newtonian threshold by several groups, the phenomena being dubbed as
“early turbulence” (Hansen and Little, 1974). Later (A. A. Draad and Nieuwstadt,
1998) observed an order of magnitude reduction in the natural (unforced) transition
Re for a polymer solution. More recently, (Samanta et al., 2013) studied transi-
tion in polyacrylamide solutions, in smaller diameter pipes, thereby accessing higher
Weissenberg numbers. In a 4 mm diameter pipe, the transition process for concen-
trations lesser than 200 ppm was analogous to the Newtonian one with forced and
natural transitions occurring at disparate Reynolds numbers. In sharp contrast, for
the 500 ppm solution, the transition occurred at Re ∼ 800 independent of the per-
turbation amplitude. Further, spatially localized structures (puffs), characteristic of
the bistability associated with the Newtonian subcritical transition (Barkley, 2016),
were absent. Subsequently, this new transitional pathway, connecting the laminar
state to a novel elastoinertial turbulent state, has been demonstrated over a much
wider parameter range (Choueiri, Alonso, and Hof, 2018). Fluids can exhibit non-
Newtonian behavior in a number of ways. They may be purely viscous, in that the
stress depends on the rate of deformation in a nonlinear fashion, but there is no de-
pendence on the past history of the deformation. They maybe viscoelastic, in that the
stress depends in a well-defined way on the history of the deformation; viscoelastic
liquids are also called memory fluids, and basic invariance principles of physics re-
quire that their stress dependence be nonlinear for any finite deformation. The term
viscoelasticity is used because these fluids respond to deformations over short time
scales like elastic solids, but they flow like ordinary liquids over long time scales.
Non-Newtonian fluid behavior is to some extent a matter of timescales. Even ar-
gon will exhibit non-Newtonian behavior if the deformation rate is comparable to
the reciprocal of the molecular relaxation time. Fluids that are non-Newtonian over
observable time scales (milliseconds to minutes) usually have a microstructure that
must relax; typical examples are entangled polymers and colloidal suspensions. For
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most fluid mechanics applications, the microstructure must exist over a sufficiently
small spatial scale to permit averaging and the use of a continuum approximation.
The standard problem in non-Newtonian fluid dynamics arises when the continuum
constitutive equation relating the stress tensor to the rate of deformation tensor is
known, resulting in a coupled set of field equations that must be solved for a speci-
fied geometry and defined boundary conditions. The constitutive equation depends
on the particular microstructure and might be in the form of algebraic, differential,
integral, or integro-differential equations. Two characteristics emerge in flows in
which memory fluids differ qualitatively from those in Newtonian fluids: normal
stress effects in shear that counter inertial effects (see Weissenberg effect above),
and stresses in extensional deformations that can be orders of magnitude larger than
those in Newtonian fluids. A common situation in which inertia and fluid elasticity
result in qualitatively different contributions to the motion is flow near a rotating disk.
The inertial (von Karman) flow for Newtonian fluids is a textbook example, because
it is one of the few cases in which an exact solution can be obtained to the full Navier-
Stokes equations. The fluid near the disk is pumped outward as a manifestation of
the "centrifugal force", while the fluid flows uniformly toward the disk to conserve
mass. Viscoelasticity, however, induces the opposite flow: fluid flows radially inward
near the disk, with a transverse flow away from the disk to conserve mass. This phe-
nomenon seems to have been observed by Reiner and coworkers (Reiner, Blair, and
Hawley, 1949), but they provide no details. Descriptions of noninertial secondary
motions induced by rotating surfaces began to appear in the published literature in
the early 1960’s, many in articles by Giesekus. There are numerous reproductions
of these early experiments, as well as later ones, in Boger and Walters (Boger and
Walters, 1993). The effect of fluid elasticity on rotational flows has obvious signif-
icance for laminar mixing, both in polymer processing and in biotechnology, where
dissolved polysaccharides may cause similar phenomena (Hill, 1972). These effect
results in nonlinear effects on hydrodynamic length scales, as they are induced by
the shear rate (the velocity gradient) in the flow being large enough, larger than the
inverse of the longest polymer relaxation time. So, in viscoelastic flows the nonlin-
ear effects do not come from inertial terms but from the elastic terms. The question
now naturally arises whether small Reynolds number viscoelastic flows will follow
roughly a similar scenario as the Newtonian fluids, a laminar flow regime, followed
possibly by a regime with nontrivial coherent flow patterns, then turbulence, as a
function of the We, and what would be the mechanism of destabilization. Clearly,
this question can only be posed and answered precisely for a given flow geometry
and for a given rheological model (the so-called "constitutive equation" for the vis-
coelastic stresses). Nevertheless, the normal stress effect, which we think is the major
mechanism of flow destabilization and transition to turbulence in viscoelastic flows,
is very robust and common to virtually all polymers. Therefore, we feel that it is
useful to think of this question in this broader sense, and to be guided by the analogy
between well-known Newtonian scenario and the putative viscoelastic scenario when
tackling a specific problem. As we shall discuss, in the last decade several key exper-
iments have been done which demonstrate the existence of viscoelastic instabilities
and turbulence and which lead us to propose that our thinking be guided by the anal-
ogy (Morozov and Sarloos, 2007). Moreover, these experiments indicate, loosely
speaking, that viscoelastic flows might have an ever stronger tendency to become
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turbulent than normal Newtonian fluids. This forces on us the question what the typ-
ical route to turbulence of viscoelastic flows is, and whether the scenario is realistic.
Many of the issues are still largely open, and researchers are struggling to find a way
to approach them. It is therefore too early for a review of the subject-instead this
chapter has more the character of an introductory essay aimed at bringing together
evidence from various angles on how strong the tendency of viscoelastic fluids is
to exhibit subcritical flow transitions. One of the main threads of this essay will be
that this tendency to subcritical behavior is so strong, that also viscoelastic parallel
shear flows exhibit a direct subcritical transition to viscoelastic turbulence. Apart
from the intrinsic scientific interest in exploring the similarity of the two scenarios
discussed above, there are also very good practical reasons to do so. If Newtonian
fluid dynamics remains a challenge even today, then viscoelastic flows seem to pose
unsurmountable problems. First of all, at the technical level, the difficulty is that
while the Navier-Stokes equations for a Newtonian fluid are simply equations for the
velocity vector field, the rheological equations for a viscoelastic fluid involve a non-
linear "constitutive equation" for the stress tensor. Any calculation is therefore much
harder for viscoelastic flow than for Newtonian flow, and even conceptually sim-
ple approximation schemes often lead to cumbersome expressions with many terms.
Secondly, the structure of these equations is such that in flow regions with signif-
icant shear, components of the stress tensor tend to grow exponentially fast; this
makes numerical simulations of such flows so hard that the difficulty of extending
numerical techniques to significant Weissenberg numbers has been termed the "High
Weissenberg Number Problem" (Owens and Philips, 2002; Fattal and Kupferman,
2004; Hulsen, Fattal, and Kupferman, 2005).

Finally, a complicating factor is that because there are many different constitutive
equations, one always faces the question to what extent a given theoretical result is
an artefact of a particular constitutive equation or an explicit example of a relatively
general phenomenon. For all the above reasons, even if analogies can only help give
qualitative insight into which instability scenario or route to turbulence might be pos-
sible or expected in a particular case, exploring these analogies can be of great help in
studying viscoelastic flows. Our interest in viscoelastic flows as an instability prob-
lem arose when we posed ourselves the question "will viscoelastic flow in a parallel
flow geometry (plane Couette flow, Poiseuille flow) exhibit some kind of nonlinear
instability to (probably weakly) turbulent flow, just like Newtonian pipe and Couette
flow become turbulent at high enough driving forces?" As we shall discuss, it has
been accepted for quite some time that in flow geometries with curved streamlines
(like a Taylor-Couette cell), viscoelastic flows become linearly unstable at high Weis-
senberg numbers, even when the Reynolds number is small (P.Pakdel and McKinley,
1996). These instabilities are due to the anisotropy of stress tensor, which also gives
rise to the so-called rod-climbing effect of polymer solutions. If one is a bit familiar
with the nonlinear (subcritical) transition to turbulence in Newtonian pipe flow or
Couette flow, one naturally expects viscoelastic pipe flows to have a similar nonlin-
ear subcritical transition to some kind of turbulent state. Simply put, one expects
the laminar state to be linearly stable to perturbations of infinitesimal amplitude, but
once the amplitude of the perturbation is large enough, the perturbed flow will have
curved streamlines and the curved streamlines in combination with anisotropic forces
mechanism will take over and the perturbations will grow even larger (Bertola et al.,
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2003; Meulenbroek et al., 2003; Meulenbroek et al., 2004; Morozov and Sarloos,
2005). This is the essence of what is called a subcritical (nonlinear) transition. Quite
surprisingly, after parallel shear flows were shown to be linearly stable in the mid-
seventies of the previous century, the implicit assumption in the field seems to have
been that such flows would also be nonlinearly or even absolutely stable, i.e., that
even if such flows are perturbed significantly, they will return to steady laminar flow
behavior. The final verdict on this issue is not yet in, but there are both strong theoret-
ical and numerical indications that indeed there is indeed a nonlinear flow instability,
with a threshold which decays rapidly (as 1

We2 ) with Weissenberg number. More-
over, we shall show in Chapter 3 that a simple back-of-the-envelope extension of the
linear stability criterion of curved flows predicts that the threshold is wavenumber-
independent, suggesting that the instability normally will give rise to turbulence.
The question concerning the nonlinear stability of parallel shear flows actually has
immediate practical and technological relevance. Beyond some rather well-defined
flow rate the outflow (the "extrudate" in industrial terms) shows undulations whose
amplitude increases rapidly with increasing flow rate. At high enough flow rates
the flow appears to be chaotic or turbulent (Larson, 2000). In fact, various recent
high-precision experiments on viscoelastic model fluids have given overwhelming
evidence for the presence of turbulence in viscoelastic fluids at low Reynolds num-
bers (Vinogradov and Manin, 1965; Groisman and Steinberg, 2000; Groisman and
Steinberg, 2001; Groisman and Steinberg, 2004). Although we will focus here on
the basic issue of polymer flow stability and the onset of turbulence, we note that the
effects are directly relevant technologically: the standard way of making polymer
fibers in industry is extrusion, in which the molten polymer is forced through a small
opening and subsequently cooled to obtain the final product. Since undulations of the
extrudate are unwanted, the occurrence of such instabilities is the rate-limiting factor
for such extrusion processes (Denn, 1990; Pahl, Gleissle, and Laun, 1991; Denn,
2001; Rauwendaal and Gramann, 2001). A detailed understanding of these types of
phenomena has remained elusive for already over 40 years: the earliest documented
attempts date back at least to the 1960s (Vinogradov and Manin, 1965), when the
use of polymer fibers became widespread. Although it is clear that in some cases
instabilities at the outlet of the extruder are at the origin of melt fracture phenomena,
if indeed polymer pipe flow itself exhibits a nonlinear instability, these will in some
sense pose a fundamental barrier to avoiding melt fracture instabilities. In fact if the
instability is subcritical (nonlinear), it is likely that in practice extrusion instabilities
are strongly coupled to the nonlinear instabilities in the pipe, as the latter need to be
triggered by an perturbation of sufficiently large amplitude. To contrast this with the
inertia-driven turbulence in Newtonian flows, Larson has coined the term "turbulence
without intertia" or "elastic turbulence" (Larson, 2000).

In the 1880s Osborne Reynolds (Reynolds, 1883) established that fluid inertia
(that is, momentum) drives the irregular patterns observed in water flowing rapidly
from a pipe, plumes emerging from a smokestack, eddies in the wake of a bulky
object, and many other everyday phenomena. Known as "turbulence", these pat-
terns occur at high values of the Reynolds number, the dimensionless ratio of inertial
to viscous force. Over the years turbulence has become better characterized, and
we now know it to be accompanied not only by an increase in drag, but also by
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FIGURE 1.3: 1Illustration of the surface irregularities that occur in the
extrusion of a polymer fluid from a tube. (a) five snapshots of a poly-
mer flowing out of a tube (the wider structure at the top), with the flow
rate increasing from left the right, (b) At high flow rates the extrudate

become very irregular (Source (Morozov and Sarloos, 2007)).

certain characteristic spatial or temporal velocity fluctuations. Groisman and Stein-
berg (Groisman and Steinberg, 1998) show that both an increased resistance to flow
and other features of turbulence can occur in fluids with hardly any inertial forces,
if the role of inertia is instead played by elasticity, a force present in solutions of
long-chain polymers. The flow studied by Groisman and Steinberg (Groisman and
Steinberg, 2000) is simple: a polymer fluid confined between two parallel disks is
sheared by rotation of one of the disks about their common axis. At increased flow
rates (but rates still too low to generate much inertia) the flow acquires turbulent char-
acteristics. Irregular flow patterns have long been seen in polymeric and other elastic
fluids, and have even occasionally been dubbed "elastic turbulence" (Larson, 1988).
One such flow is that of a polymer melt emerging from the end of a capillary tube.
Above a critical flow rate, the polymer jet becomes irregularly distorted. Distortions
in this and other polymer flows can mar products made from polymers, such as films
and extruded parts. If the polymer is made more viscous by increasing the length
of its polymer molecules, the minimum flow rate producing such irregular flow de-
creases. This is surprising because an increase in viscosity has the opposite effect on
inertially driven turbulence. In fact, for fluids containing long polymer molecules,
the Reynolds number at the onset of the instabilities can be minuscule, as low as
10−15. Turbulent flow of water in a pipe, by contrast, has a much higher Reynolds
number, around 105. It is clear, then, that inertia has nothing whatsoever to do with
this kind of polymeric turbulence. For viscous polymers, instabilities and irregular
flows set in at a critical value of We or the ratio of elastic to viscous forces in the
fluid, which for polymeric fluids plays the role of Re in creating the nonlinearities
that lead to unstable flow. Because elastic forces increase with polymer length more
rapidly than viscous forces, fluids containing long polymers are especially prone to
such phenomena, despite having viscosities that can be hundreds to millions of times
higher than water. Until the work of Groisman and Steinberg (Groisman and Stein-
berg, 2000), quantitative measurements of the length and time scales of elastic turbu-
lence had been lacking. Still lacking, even now, is a proper understanding of how the
length and time scales of elastic turbulence are produced by the underlying elastic
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forces. In other words, what is missing is an elastic counterpart of the ’cascade’ pic-
ture of inertial turbulence. In this, the largest eddies in the flow feed their energy into
smaller eddies, which in turn drive even smaller eddies, and so on until the energy
stored in the smallest eddies is finally dissipated as heat. The resulting hierarchy of
interacting eddies of various sizes is known as well-developed or hard turbulence.
In Kolmogorov’s ‘bucket brigade’ description of hard turbulence, a power-law dis-
tribution in length scales is produced by this handing off of energy from larger to
smaller eddies. For “elastic turbulence”, the basic mechanisms of instability in the
base flow are mechanisms involving ’normal stresses’. Normal stresses are produced
by the stretching of polymer molecules in a flow, leading to an elastic force like
that in a stretched rubber band. If the streamlines are circular, the polymer ’rubber
bands’ press inward from all directions, pressure, or ‘hoop stress’ (Larson, Shaqfeh,
and Mueller, 1990). Despite being non-inertial, there is a strong analogy between
such elastic forces and inertial instabilities involving curved streamlines, such as the
flow in the gap between an inner rotating and a concentric outer stationary cylin-
der (circular Couette flow). In either the parallel-disk flow studied by Groisman
and Steinberg (Groisman and Steinberg, 2000), or the circular Couette flow, inertial
forces try to fling fluid outwards, producing a radial pressure gradient, whereas elas-
tic forces squeeze fluid inwards, tending to drive fluid up the rotating inner cylinder.
Whether the stresses are inertial or elastic (directed outward or inward), there is a ra-
dial pressure gradient that, if large enough, can drive an instability, leading to a more
complex flow. For non-elastic fluids, the precise mechanism for the initial instability
in inertial circular Couette flow was worked out by Taylor (Taylor, 1923) in 1923,
whereas analogous work for purely elastic instabilities (Phan-Thien, 1983; Larson,
Shaqfeh, and Mueller, 1990; Byars et al., 1994)dates only from around 1985-95. Be-
yond these initial instabilities, the first steps are being taken to work out the cascades
of instabilities in elastic flows. The work of Groisman and Steinberg (Groisman
and Steinberg, 2000) leaps over these cascades, deliberately inciting highly unstable
flow by having a large gap between the disks, relative to the disk diameter, so that
the stabilizing influence of the viscous drag is minimized. The result is a flow with
the power-law structures characteristic of hard, well-developed turbulence, but with
negligible inertia.

1.4 Instability and transition to turbulence
Developing an understanding of instability and transition in free shear flows at low
to moderate Re has been a central problem in the theory of fluid motion for over a
century. In the present study we are concerned with the instability of viscoelastic
fluids in free shear flow and in particular in the possibility that viscoelasticity may
significantly affect the inviscid modes associated with inflexional velocity profiles.
Important understanding of the mechanisms of vorticity production, subharmonic
(pairing) instabilities, and vortex stretching has come from such studies (Morozov
and Sarloos, 2007). This understanding opens the possibility of rational methods of
manipulation and active control of turbulence by influencing transition mechanisms.
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Examples of such manipulation include the use of time dependent motion of bound-
aries, modification of the properties of surfaces, including grooves and ribs, and addi-
tion of polymers and/or fibres to the flow. The nonlinearities in the equations of mo-
tion describing fluid flow can lead to the development of hydrodynamic instabilities
stemming from the consideration of fluid inertial effects, Coriolis effects, buoyancy,
surface tension, etc. (Sengupta, 2004). In many flows involving macromolecular liq-
uids, hydrodynamic instabilities are observed at low flow rates that are absent in the
corresponding flow of Newtonian fluids (Bird, Armstrong, and Hassager, 1987). In
polymeric materials, the presence of a well defined microstructure results in a com-
plex rheological response, which in turn affects the stability of the fluid motion. Poly-
meric liquids exhibit significant elastic and shear-thinning phenomena which are rep-
resented by nonlinear terms in constitutive relations that describe the state of stress
in flowing polymeric materials. These viscoelastic constitutive equations are nonlin-
ear functionals of the rate of deformation tensor, γ̇ = (∇υ)+ (∇υ)t , where υ(x, t)
is the velocity vector. The complex interaction of nonlinear terms in the momentum
equation and the constitutive equation give rise to a new class of unstable flows with
a rich dynamical structure (Azaiez and Homsy, 1994a). One of the best-documented
instabilities in Newtonian flows is the Taylor-Couette instability (DiPrima and Swin-
ney, 1981). In the Taylor-Couette geometry (a fluid confined between two concentric
rotating cylinders (DiPrima and Swinney, 1981; Swinney, 1988; Andereck, Liu, and
Swinney, 1986)), the first nontrivial change when the outer cylinder is fixed while the
inner one rotates with increasingly large rotation rate, is a sharp transition to Taylor
vortex flow, induced by a linear instability of the laminar flow profile. When the
rotation rate is increased even more, one rapidly encounters secondary bifurcations
to more complicated flows and turbulence (Andereck, Liu, and Swinney, 1986). For
counterrotating cylinders, there may even be a direct transition to turbulence, i.e.,
there is no intermediate regime with nontrivial coherent flow. This is consistent with
the fact that in planar Couette flow (two parallel plates moving in opposite direc-
tions, with a fluid in between) the laminar flow is linearly stable for any Re, while
a nonlinear (subcritical) transition to turbulence occurs in practice for Re of order
300-400 (Schmid and Henningson, 2001). After all, in the limit in which the gap
is small and the cylinders counterrotate with the same rotation rate, Taylor-Couette
flow approaches planar Couette flow. Likewise, the transition to turbulence in pipe
flow is direct and nonlinear, although, weakly turbulent flow in this geometry still
appears to be organized by coherent structures (Hof et al., 2004). The Taylor insta-
bility is characterized by the generation of streamwise vorticity and development of
a steady secondary cellular structure in the axial direction, known as Taylor cells.
The source of this instability is inertial motion of material elements along curved
streamlines in which the centrifugal forces act to push the fluid outside its circu-
lar orbit. A similar Taylor-Couette instability occurs in the flow of non-Newtonian
fluids; however, the destabilizing forces arise from nonlinear interactions between in-
ertia, fluid shear thinning, and elasticity. Experiments with constant viscosity ‘ideal
elastic fluids’ have demonstrated the presence of a purely elastic mode that occurs at
negligibly small Reynolds numbers (Reynolds, 1883), and linear stability analyses
with simple constitutive relations are able to predict this instability. Elastic insta-
bilities also occur in more complex geometries that are not amenable to classical
linear stability analyses due to the difficulties in obtaining analytical expressions or
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accurate numerical solutions for their base flows. Finally, we want to reiterate the
fact that unlike the Newtonian case, predictions are likely to depend upon details of
the equations relating stress to shear rate. The relation between these two tensors
is nonlinear and usually involves an integral or differential equation known as the
constitutive equation. For a thorough discussion of the development of rheological
constitutive equations for viscoelastic fluids and their application in fluid dynamics
see Goddard (Goddard, 1979), Bird et al. (Bird, Armstrong, and Hassager, 1987;
Bird et al., 1987) and Larson (Larson, 1988).

1.5 Industrial applications of viscoelastic instabilities
Understanding the hydrodynamic stability and transition of free shear flows of di-
lute polymer solutions is paramount to both the fundamental theory of viscoelastic
liquids and their industrial applications, especially those arising in microfluidic mix-
ing and viscoelastic stabilization via polymer addition. Microfluidics, (Squires and
Quake, 2005) which is essentially a field dedicated to miniaturized plumbing and
fluidic manipulation, offers the possibility of solving outstanding system integration
issues by allowing automation to proceed to scales that will rival current electronic
integrated circuits. Although most current effort in microfluidics concerns devices
with applications in chemistry, biology, and medicine, there are also applications in
the physical sciences for control systems and heat management, energy generation,
and display technology. There is a long history of using fluidics as control systems,
ranging from logic devices to thrust reversers in aircraft; this program ultimately
foundered in part because scaling properties of the fluid physics prevented miniatur-
ization. Liquid crystal displays and ink jet printers are ubiquitous consumer products
that can be thought of as microfluidic devices, and have had enormous industrial
impact. As fuel cells become more widely deployed, it is likely that they will ulti-
mately incorporate some sort of microfluidic plumbing. Likewise, understanding the
mechanism governing the transition to turbulence in shearing flows of viscoelastic
biofluids is decisive in resolving the swelling instability transition in mucus (Sircar
and Roberts, 2016a), cartilage (Sircar et al., 2015), adhesion-fragmentation transi-
tion in cells (Sircar and Bortz, 2013; Sircar, Younger, and Bortz, 2014; Sircar and
Roberts, 2016b) and bending instability transition in soft tissues (Destarde, Annaidh,
and Coman, 2009).

Another industrial application of viscoelastic liquids lies in the mechanism of
drag reduction (DR). The reduction in turbulent friction losses by the dilute addition
of high molecular weight polymers to flowing liquids has been extensively studied
since the phenomenon was first observed over 60 years ago (Toms, 1948). The addi-
tion of small quantities of high molecular weight polymers to flowing liquids can pro-
duce profound effects on a wide variety of flow phenomena that appear incommensu-
rate with a small concentration of polymers added to a solution (Graham, 2014). This
is most evident in turbulent boundary layers, in which dissolving parts-per-million
quantities of long-chain flexible polymers into solution can reduce turbulent friction
losses by as much as 80% compared with that of the solvent alone. The correspond-
ing effect on the character of the flow is equally impressive. The acute differences
in the near-wall turbulent structure between Newtonian flow and polymer drag re-
duced flow can be described phenomenologically as follows: As a consequence of
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the reduced wall friction, the mean velocity profile is modified and the shear in the
boundary layer is redistributed. This effect alters the nature and strength of the vor-
tices formed, resulting in a significant modification of the near-wall structure of the
turbulent boundary layer. The unknown in this simple description is the lack of cou-
pling between the near-wall turbulence and the skin friction, such that one cannot
be merely a consequence of the other. It is this complexity of the near-wall turbu-
lence dynamics, further coupled with the dynamics of dilute polymers in solution,
that has made the determination of a detailed mechanism of polymer drag reduc-
tion an enigma for nearly 60 years. Drag reduction was discovered independently
by Mysels and Toms during World War II and published only later (Mysels, 1949;
Toms, 1949; Agoston et al., 1954). The phenomenon is sometimes called as "Toms
effect", because the first public description was by Toms in 1948 (Toms, 1948) at the
First International Congress on Rheology, but Mysels’s observation predate those of
Toms, and the terminology is inappropriate. At the very tiny polymer concentrations
of interest in drag reduction, the viscosity and density of the polymer solution differ
only slightly from those of the pure solvent. Nonetheless, the effect of the polymer
additive is to lower the value of the friction factor at a given Reynolds number. The
amount by which the friction factor is lowered is a measure of the amount of drag
reduction. A number of polymer characteristics making for good drag reducers have
been determined. A long-chain backbone and flexibility are important characteristics
of good drag-reducing agents. For instance, of two polymers with the same molecu-
lar weight and same structural units, a linear one will be more effective than a highly
branched one. Also, for two different polymers of similar configuration and the same
molecular weight, the one with the lower molecular weight monomer will have the
greater drag-reducing effect if both are utilized at the same weight concentration.

Researchers study polymer DR for both practical and fundamental purposes (White
and Mungal, 2008). The obvious economic interest in applications as wide-ranging
as crude oil transport, wastewater treatment, firefighting, and distributed heating and
cooling systems, in addition to the obvious military applications, resulted in a burst
of research activity. It was subsequently found that the addition of surfactants or
fibers can also cause drag reduction; surfactant drag reduction is reviewed in Zakin
et al. (Zakin, Lu, and Bewersdorff, 1998). The early research on drag reduction fo-
cused on how the presence of the polymer at such dilute concentrations affected the
structure of the turbulence, particularly the near-wall region. There are only a few ex-
perimental studies of viscoelastic free shear flows and there is little understanding of
how polymers affect either primary or secondary instability modes. Hibberd, Kwarde
and Scharf (Hibberd, Kwade, and Scharf, 1982) and Riediger (Riediger, 1989) stud-
ied the effects of the addition of polymers and surfactants on the instability of the
mixing layer. The results of the experimental measurements and flow visualizations
show a delay in the formation of the typical structures of the plane mixing layer, i.e.
roll-up and pairing. They also reveal that the presence of polymer additives leads to
an enhancement of the large-scale turbulent structures and an almost complete sup-
pression of the small-scale structures. Practical applications are pipe flows (or other
internal flow geometries) and marine vehicles, although the former has had much
more success with polymers than the latter. Fundamentally, studying the effects of
polymers on turbulence provides valuable insight into the physics of fluid turbu-
lence, particularly the self-sustaining mechanisms of wall turbulence. Moreover, if
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a detailed understanding of the mechanics of polymer DR can be determined, it is
conceivable that the effect can be reproduced by other means, such as surface mod-
ification, sensor actuation, or additives, among other strategies (Gad2000). Success
on this front would have tremendous impact on the economics of energy propulsion
and pollutant emission reduction from vehicles. Improved and expanded practical
applications of polymer DR will be advanced greatly by the development of robust
polymer models and drag reduced turbulence models for the large eddy simulation
and Reynolds-averaged Navier-Stokes numerical simulations techniques (White and
Mungal, 2008). These techniques will allow for the modeling and optimization of
applications at high Re and in complex geometries. In addition to the experiments
needed to support these efforts, detailed numerical investigations to study the effects
of polymer additives in flows at high Re, with pressure gradients, with roughness,
and with separation offer unique opportunities to provide valuable insights on the
fundamental fluid physics in these complex flows.
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Chapter 2

Compound Matrices: A numerical
method for stiff DEs

2.1 Introduction
The most primitive way to find numerical solution of linear inhomogeneous two-
point boundary-value problems for systems of ordinary differential equations is through
the use of explicit shooting methods. We shall restrict our attention to “difficult”
problems, by which we mean “stiff” differential systems for which the real parts
of the characteristic values of the differential operator will be widely separated. A
fundamental work by Conte (Conte, 1966) has clearly explained the pitfalls which
may be encountered if one attempts to solve such a difficult problem by using the
standard (superposition) shooting method, and there is a considerable literature de-
voted to devising other shooting methods which obviate these pitfalls. Perhaps the
most popular of these other methods is that of orthonormalization (Godunov, 1961),
a concise account of which is given in Conte’s paper. Another method which has re-
ceived a great deal of attention is the Riccati method, see for example (Scott, 1973).
Both the orthonormalization method and the Riccati method do however have their
disadvantages, with orthonormalization it is a laborious accounting feat to construct
the required function, and the differential equations of the Riccati method have an-
noying singularities. The Riccati method is successful in overcoming the growth
problem but other difficulties arise due to the singularities of the Riccati matrix R and
its inverse S. If, however, an attempt is made to eliminate the singularities from the
Riccati method then, as Davey (Davey, 1979) has shown, one is led directly to the use
of compound matrices. Our interest in the use of compound matrices was stimulated
initially by the need to overcome certain difficulties which arose in the asymptotic
theory of the eigenvalue relation for the Orr-Sommerfeld problem (Lakin, Ng, and
Reid, 1978). It soon became evident, however, that they also provide a simple and
effective method for the numerical treatment of eigenvalue problems for stiff differ-
ential equations, especially those of hydrodynamic type which are typically of order
four or six. There are many aspects of the method which clearly require further study
both analytically and numerically. In this chapter, we discuss few of those aspects.

Standard iterative technique (such as the shooting techniques) for finding eigen-
values of a set of differential equations tend to be inaccurate for stiff systems. Since
these technique are used to calculate eigenvalues, the converged numerical solution
strongly depends on an initial estimate. Therefore, a major disadvantage of the al-
gorithm is the necessity of providing an appropriate initial estimate to get the most
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dominant eigenvalue. The accuracy can be improved dramatically by using a corre-
sponding differential system of a compound matrix, the elements of which are the
minors of the solution matrix. Further, the problem of inaccuracy in the solution can
be alleviated by complementing the Compound Matrix Method with an approximate
asymptotic analysis, or by calculating all the eigenvalues of a discretized problem us-
ing standard algorithms for selected parameters. For linear homogeneous eigenvalue
problems with separated boundary conditions, the brilliancy of the Compound Matrix
Method is that it transforms difficult (i.e., stiff) two-point boundary-value problems
which cannot be solved by the standard (superposition) shooting method into initial-
value problems which can be solved by the same standard shooting method because
the required solutions will not be subdominant. The essence of the method is to de-
termine the multilinear form (or wedge product) of the linearly independent solutions
which satisfy the known initial conditions. The resulting Compound Matrix Method
was first used by Gilbert and Backus’ for elastic wave problems (Gilbert and Backus,
1966), and later by Ng and and Davey for two-point boundary value problems and
eigenvalue problems of the Orr-Sommerfeld equation (Ng and Reid, 1979b). These
investigations computed eigenvalues and eigenfunctions with marginal errors where
standard shooting methods failed. Eigenvalue problems for ordinary differential
equations are usually treated by first defining a solution matrix which satisfies cer-
tain prescribed initial conditions and the required eigenvalues are then obtained as the
roots of some minor of the solution matrix. If we attempt to evaluate this minor by
computing its elements separately, as in a standard shooting method, then there may
be a serious loss of accuracy numerically especially when the differential equation is
stiff. Davey examined the efficiency of the Compound Matrix Method compared to
the orthonormalization for a standard difficult eigenvalue problem and found that the
Compound Matrix Method requires about three times as many integration steps and
approximately twice as much computing time as orthonormalization (Davey, 1980).
This comparison was for a fourth-order problem and for higher differential orders
we expect the Compound Matrix Method to require comparatively more computing
time. However, the method has the important advantage that it is so easy to under-
stand and program relative to other shooting methods for difficult problems, there-
fore it is an ideal method for those who are anxious to spend most of their time doing
theoretical work and so wish to do their occassional computational work with the
minimum of inconvenience. Another important advantage of using the Compound
Matrix Method for difficult problems relative to other shooting methods is that it can
be used by someone who only needs to know how to use a Runge-Kutta integration
routine, all other shooting methods for difficult problems require much more knowl-
edge. This chapter is organized as follows. In section 2.2, we discuss the different
methods to solve the eigenvalue problem and in subsection 2.2.2 we introduced the
Compound Matrix Method for different type of problems followed by an application
of the method in section 2.3.
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2.2 Mathematical Methods
We consider the following eigenvalue problem,

∂φφφ

∂x
= A(x,λ )φφφ , a≤ x≤ b, (2.1)

B(x,λ )φφφ = 0, x = a, (2.2)

C(x,λ )φφφ = 0, x = b, (2.3)

where A is a 2n × 2n matrix, B and C are n × 2n matrices, all being known func-
tions of the independent variable x and a parameter λ , and φφφ is a 2n-dimensional
vector function (“Compound matrix method and evans function - a quick introduc-
tion”). The aim is to determine values of the parameter (eigenvalues) λ so that
non-trivial solutions exist. Such eigenvalue problems feature in a variety of disci-
plines. For instance, it often results from a linear stability/bifurcation analysis of fluid
flows (Afendikov and Bridges, 2001), solitary waves (Pego and Weinstein, 1992),
and pre-stressed elastic bodies(Fu and Pour, 2002). One or both of the boundaries
x = a,b may be infinite.

2.2.1 Determinantal Method
This would be the first method one could think of without reading any books. The
idea is to shoot from one end to the other end and to iterate on λ so that the boundary
condition on the other end is satisfied. We may also shoot from both ends towards
a middle point and to iterate on λ so that the two solutions coincide at the middle
point. If we choose to shoot from x = a, then the procedure is as follows:

• Assuming that matrix B has rank n, we may then always find n linearly inde-
pendent vectors φφφ

(1)
0 ,φφφ

(2)
0 , ....,φφφ

(n)
0 , such that

B(a,λ )φφφ (i)
0 = 0, i = 1,2, ....n. (2.4)

Using each of these vectors as the initial value at x = a, we may integrate (2.1)
from x = a to obtain n independent solutions, say φφφ (i)(x), i = 1,2, ...,n.

• A general solution that satisfies (2.1) and the boundary condition (2.2) is then
given by

φφφ =
n

∑
i=1

kiφφφ (i)(x) (2.5)

where k1,k2, ...,kn are arbitrary constants. We define M(x,λ ) to be the 2n× n
matrix whose ith column is φφφ (i), that is

M(x,λ ) = [φφφ (1),φφφ (2), ...,φφφ (n)]. (2.6)

Equation (2.5) can then be written as

φφφ = M(x,λ )kkk, (2.7)
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where k = [k1,k2, ....kn]
T .

• On substituting (2.7) into the other boundary condition (2.3), we obtain

C(b,λ )M(b,λ )kkk = 0. (2.8)

• Since kkk 6= 0, we deduce that

|C(b,λ )M(b,λ )|= 0, (2.9)

where a pair of vertical bars denotes the determinant of the matrix enclosed.
We iterate on λ so that the determinantal equation (2.9) is satisfied.

When one of the boundaries or both are infinite, it is usual to shoot from x = a
and from x = b, respectively, so that the two solutions match at a middle point, say
x = d. Denote φφφ (1)(x), φφφ (2)(x), . . ., φφφ (n)(x) the n solutions obtained by shooting from
x = a as explained above. Then again, a general solution satisfying the left boundary
condition is given by

φφφ =
n

∑
i=1

kiφφφ
(i)(x) (2.10)

Likewise, we denote by φφφ (n+1)(x),φφφ (n+2)(x), ...,φφφ (2n)(x) the n solutions obtained by
shooting from x = b. Then a general solution satisfying the right boundary condition
is given by

φφφ =
2n

∑
i=n+1

kiφφφ
(i)(x), (2.11)

where kn+1,kn+2, ...,k2n are another set of n constants. The two solutions (2.10)
and (2.11) must match at x = d. Thus,

n

∑
i=1

kiφφφ
(i)(x) =

2n

∑
i=n+1

kiφφφ
(i)(x), when x = d (2.12)

or equivalently,
N(d,λ )c = 0, (2.13)

where

N(d,λ ) = [φφφ (1),φφφ (2), ...,φφφ (n),φφφ (n+1),φφφ (n+2)],

c = [k1,k2, ...,kn,−kn+1,−kn+2, ...,−k2n]
T (2.14)

We then iterate on λ so that the determinantal equation

|N(d,λ )|= 0 (2.15)

is satisfied. We note that whereas the |N(d,λ )| defined above is dependent on d, or
the matching point, the following quantity is independent of d,

D(λ ) = e−
∫ d

a trA(s,λ )ds|N(d,λ )|. (2.16)
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This may easily be proved with the aid of the properties

dφφφ (i)

dx
= A(x,λ )φφφ (i), (2.17)

and ∣∣∣Aφφφ
(1),φφφ (2), . . . ,φφφ (2n)

∣∣∣+ ∣∣∣φφφ (1),Aφφφ
(2), . . . ,φφφ (2n)

∣∣∣+ · · ·
+
∣∣∣φφφ (1),φφφ (2), . . . ,Aφφφ

(2n)
∣∣∣= trA

∣∣∣φφφ (1),φφφ (2), . . . ,φφφ (2n)
∣∣∣ (2.18)

The determinantal method is conceptually easy, but for large or small values of λ the
eigenvalue problem usually becomes stiff and the solutions y(1),y(2), ...,y(n), although
linearly independent initially at x = a, quickly become linearly dependent due to
the dominance of exponentially growing solutions. To address this problem, the
Compound Matrix Method was proposed in (Ng and Reid, 1979b; Ng and Reid,
1979a; Ng and Reid, 1985; Lindsay and rooney, 1992). Bridges (Bridges, 1999))
gave a very good differential-geometric interpretation of this method and explained
why this new method works.

2.2.2 Compound Matrix Method
Here, a generalization of the Compound Matrix Method (originally proposed in (Ng
and Reid, 1985)) is presented in this section to deal with the eigenvalue and the
boundary-value problem involving unstable systems of ordinary differential equa-
tions. Details are given for the fourth- and the sixth-order problems. Consider a
problem involving single differential equation of the form

φ
IV−a1φ

′′′−a2φ
′′−a3φ

′−a4φ = f (2.19)

where ai (i= 1, 2, 3,4) and f is a complex function of x and 0≤ x≤ 1 (for example),
and φ is required to satisfy an equal number of boundary conditions at the endpoints.
The procedure outlined in (Ng and Reid, 1979b; Ng and Reid, 1979a) consists of two
essential steps.

1. Rather than attempting to compute a set of linearly independent solutions
of (2.19) which satisfy the boundary conditions at x = 0 (for example), we
compute the minors of the corresponding solution matrix by a direct numerical
integration of the so-called compound matrix equations which these minors
satisfy.

2. We derive a second- order auxiliary differential equation the coefficients of
which are some of the minors determined in the first step. The solution to the
boundary-value problem is then obtained by integrating the auxiliary equation
from x = 1 to 0 subject to the boundary conditions at x = 1.

Because of the effectiveness of the Compound Matrix Method in treating problems
involving single equations of the Orr-Sommerfeld type, it is desirable to generalize
the method to deal with other unstable differential systems, typically of order four
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and six, which frequently arise in the study of hydrodynamic stability. In this con-
nection, we note that the necessary generalization of the first step of the method for
systems can readily be found in the work of (Schwarz, 1970) which gives a general
algorithm for the derivation of the compound matrix equation associated with an nth
order complex, linear system of the form

φφφ
′ =AAA(x)φφφ + fff (2.20)

In order to explain the method in detail we solve a Boundary Value problem via
fourth order and a sixth order system, described next.

2.2.2.1 Fourth-Order System

Consider the linear inhomogeneous system

φφφ
′ =AAA(x)φφφ + fff (x), 0≤ x≤ 1, (2.21)

where AAA(x)=[ai j(x)] is a 4×4 matrix, fff (x)=[ f j(x)]T and the solution φφφ=[φ j(x)]T are
4× 1 column vectors. We shall also suppose that the boundary conditions at x = 0
and x = 1 are given by

PφPφPφ(0) = ppp, (2.22a)
QφQφQφ(1) = qqq. (2.22b)

where PPP and QQQ are 2× 4 matrices of rank 2 and ppp and qqq are 2× 1 column vectors.
By superposition, the solution to the two-point boundary-value problem can then be
written in the form,

φφφ = ggg+αuuu+βvvv, (2.23)

where ggg is any solution of (2.21) which satisfies the initial condition (2.22a), while uuu
and vvv are two linearly independent solutions of the homogeneous system

φ
′

φ
′

φ
′ =AAA(x)φφφ (2.24)

subject to initial condition
PφPφPφ(0) = 000 (2.25)

The constants α and β are determined by requiring that φφφ satisfies the boundary
condition (2.22b) at x = 1.

Rather than attempting to compute ggg, uuu, and vvv explicitly as is the case with the
other initial-value methods, the first step of the Compound Matrix Method is based
on considering certain minors of the 4×3 solution matrix φ0φ0φ0=[g u v][g u v][g u v] of the inhomo-
geneous system (2.21) and the 4x2 solution matrix φφφ= [u v][u v][u v] of the corresponding
homogeneous system. We note that the six 2×2 minors of φφφ are

yi j =

∣∣∣∣ ui vi
u j v j

∣∣∣∣ (2.26)
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for i= 1,2,3 and j = i+1., ...,4. In terms of these 2×2 minors, the four 3×3 minors
of φ0φ0φ0, can be written as

zi jk = giy jk +g jyki +gkyi j (2.27)

where i = 1,2, j = i+1, ..,4 and k = j+1., ...,4. For later purposes, we also note the
quadratic identity

y12y34− y13y24 + y14y23 = 0, (2.28)

which can readily be obtained from the Laplace expansion of the determinant∣∣∣∣∣∣∣∣
u1 v1 0 0
u2 v2 u2 v2
u3 v3 u3 v3
u4 v4 u4 v4

∣∣∣∣∣∣∣∣= 0 (2.29)

If we now arrange the 2× 2 minors of φφφ according to the lexicographical order
of their indices to form the 6× 1 vector y = [y12,y13, ...y34]

T , then y is called the
second compound of φφφ which can also be denoted by C2[φφφ ]. Similarly zzz =C3[φ0φ0φ0] =
[Z123,Z124,Z134,Z234]

T is called the third compound of φ0φ0φ0. By a direct calculation or
by using the algorithm of (Schwarz, 1970), it is easy to show that

y′y′y′ =BBB(x)yyy, (2.30)

where

B(x) =


a11 +a22 a23 a24 −a13 −a14 0

a32 a11 +a33 a34 a12 0 −a14
a42 a43 a11 +a44 0 a12 a13
−a31 a21 0 a22 +a33 a34 −a24
−a41 0 a21 a43 a22 +a44 a23

0 −a41 a31 −a42 a32 a33 +a44


(2.31)

Similarly, zzz must satisfy the equation

z′z′z′ =CCC(x)zzz+DDD(x) fff , (2.32)

where

C(x) =


a11 +a22 +a33 a34 −a24 a14

a43 a11 +a22 +a44 a23 −a13
−a42 a32 a11 +a33 +a44 a12

a41 −a31 a21 a22 +a33 +a44


(2.33)

and

D(x) =


y23 −y13 y12 0
y24 −y14 0 y12
y34 0 −y14 y13
0 y34 −y24 y23

 (2.34)

Moreover, the initial conditions for y and z can easily be derived from (2.22a) and
(2.25) using (2.26) and (2.27).



2.2. Mathematical Methods 23

Suppose now that y and z have been computed by integrating (2.30) and (2.32)
from x=0 to 1 subject to the appropriate initial conditions, the next step of the
Compound Matrix Method requires that the solution of the boundary-value prob-
lem (2.21), (2.22) be obtained from an auxiliary second-order system. First, we note
that for fixed i, j with i j, (2.23) gives

φi−gi = αui +βvi, (2.35)

and
φ j−g j = αu j +βv j, (2.36)

and hence it follows that

yi jα = (φi−gi)v j− (φ j−g j)vi (2.37)

and
−yi jβ = (φi−gi)u j− (φ j−g j)ui (2.38)

On substituting (2.37) and (2.38) into

φ
′
i −g′i = αu′i +βv′i (2.39)

and simplifying, we have

yi jφ
′
i = aiµ(yµ jφi− yµiφ j− ziµ j)+ yi j fi, (2.40)

where the summation is to be taken over µ . Moreover, on interchanging i and j
in (2.36), and on noting that yi j =−y ji and ziµ j =−z jµi, we obtain

yi jφ
′
j = a jµ(yµ jφi− yµiφ j− ziµ j)+ yi j f j, (2.41)

Equations (2.40) and (2.41) thus form a closed system which can be used for the
determination of φi and φ j by integrating backward from x= 1 to 0.

To determine the initial condition for φ at x =1, we rewrite (2.23) in matrix form
φ1−g1 u1 v1
φ2−g2 u2 v2
φ3−g3 u3 v3
φ4−g4 u4 v4


 1
−α

−β

= 0 (2.42)

This is a linear homogeneous system with a nontrivial solution [1,−α,−β ]T , Hence
the determinant of any three rows of the coefficient matrix must vanish. This in turn
implies that

DDD(x)φφφ(x) = zzz(x), (2.43)

where DDD(x) is given by (2.34). Incidentally, we note that the derivation of (2.43)
from (2.42) provides a simple algorithm for computing the matrix DDD(x) in (2.34).
By using row reduction and the quadratic identity (2.28), it is easy to show that the
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augmented matrix associated with (2.43) is of rank 2, i.e.,

[D|z]∼
[

D∗ z∗
0 0

]
=


y23 −y13 y12 0 z123
0 y34 −y24 y23 z234
0 0 0 0 0
0 0 0 0 0

 (2.44)

Clearly then the boundary conditions (2.22b) together with (2.44) form a system of
four linear equations of the form[

D∗(1)
Q

]
φ(1) =

[
z∗(1)

q

]
. (2.45)

Thus φ(1) can be uniquely determined provided that

det
[

D∗(1)
Q

]
6= 0. (2.46)

We note that this condition must be satisfied if the boundary-value problem (2.21),
(2.22) is to have a unique solution. This follows from the fact, which can be verified
by a direct calculation, that (2.22b) is equivalent to the condition that det[QφQφQφ(1)] 6= 0,
where φφφ is any solution matrix of the homogeneous system (2.24) which satisfies the
homogeneous boundary conditions PφPφPφ(0) = 000.

Suppose now that φi, and φ j, are computed by integrating (2.40), (2.41) from x
= 1 to 0 and that the remaining two components of φ are obtained algebraically by
solving D∗D∗D∗(x)φφφ(x) = z∗z∗z∗(x), then it is necessary to show that φ thus determined is the
solution of the boundary-value problem (2.21), (2.22).

First, we consider (2.40) and (2.41). Using (2.43), we can rewrite (2.40) and (2.41),
respectively, as

yi j
(
φ
′
i −aiµφµ − fi

)
= 0 (2.47)

yi j
(
φ
′
j−a jµφµ − fi

)
= 0 (2.48)

Second, differentiating (2.43) and noting that D′ = CD−DA, we obtain

D(φ ′−Aφ − f) = 0 or D∗(φ ′−Aφ − f) = 0 (2.49)

Equations (2.47)-(2.49) can clearly be combined to obtain

H(φ ′−Aφ − f) = 0 (2.50)

where HHH is nonsingular. Hence φφφ is a solution of (2.21) and it satisfies the initial con-
dition(2.45). Finally, we note that the solution of the boundary-value problem (2.21),
(2.22) must also satisfy the initial condition (2.45) at x =1. Hence by uniqueness, if
is the solution of the initial-value problem (2.21) and (2.45) as is presently the case,
then it is also a solution of the boundary-value problem (2.21), (2.22).
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2.2.2.2 Sixth-Order System

Although we have restricted our discussion in subsection 2.2.2.1 to fourth-order
problems, the basic ideas are quite general. In this section, we outline the corre-
sponding results for problems involving sixth-order systems. These results, together
with those presented in subsection 2.2.2.1, are therefore directly applicable to a large
class of unstable boundary-value problems which frequently arise in the study of
hydrodynamic stability.

To avoid repetition in our present discussion, direct reference will be made to
specific equations in the previous section, but it should then be understood that the
definitions of the various quantities involved must be suitably modified to deal with
the sixth-order systems. For example, the coefficient matrix AAA(x) in (2.21) is now
6× 6 and fff (x) and φφφ(x) are each 6× 1 column vectors. Similarly in (2.22), PPP and
QQQ are 3×6 matrices of rank 3, and ppp and qqq are 3×1 column vectors. Analogous to
(2.23), we write

φ = gφ = gφ = g+αuuu+βvvv+ γwww, (2.51)

where ggg is any solution of (2.21) which satisfies the initial condition (2.22a), while
uuu, vvv, and www are three linearly independent solutions of (2.24), (2.25).

Consider now the solution matrices φ0φ0φ0 = [g u v w][g u v w][g u v w] and φφφ=[u v w][u v w][u v w]. The twenty
3×3 minors of φφφ are

yi jk =

∣∣∣∣∣∣
ui vi wi
u j v j w j
uk vk wk

∣∣∣∣∣∣ (2.52)

where i = 1,2,3,4, j = i+1 . . . ,5, and k = j+1, . . . ,6. The fifteen 4x 4 minors of φ0φ0φ0
, can be written as

zi jkl = giy jkl−g jykli +gkyli j−glyi jk (2.53)

where i = 1,2, ...,6, j = i+1...,6,K = j+1....,6, and l = k+1, . . . ,6. Moreover, by
considering the Laplace expansion by complementary minors of the determinant∣∣∣∣∣∣∣∣∣∣∣∣

ui vi wi 0 0 0
u j v j w j u j v j w j
um vm wm um vm wm
uk vk wk uk vk wk
ul vl wl ul vl wl
um vm wm 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.54)

we obtain 30 quadratic identities of the form

yi jmyklm− yikmy jlm + yilmy jkm = 0 (2.55)

where m= 1., ...,6; i, j,k, l 6=m;1≤ i< j < k< l≤ 6. If we let yyy=C3[φφφ ] = [y123, y124,
...,y456]

T and zzz =C4[φ0φ0φ0] = [z1234,z1235, ...,z3456]
T , then yyy and zzz satisfy the compound

matrix equations (2.30) and (2.32), respectively. Corresponding to (2.40) and (2.41),
we now have the auxiliary system

yi jkφ ′i = aiµ
(
yµ jkφi− yµikφ j + yµi jφk− ziµ jk

)
+ yi jk fi (2.56)
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yi jkφ
′
j = a jµ

(
yµ jkφi− yµikφ j + yµi jφk− ziµ jk

)
+ yi jk f j (2.57)

yi jkφ
′
k = akµ

(
yµ jkφi− yµikφ j + yµi jφk− ziµ jk

)
+ yi jk fk (2.58)

Furthermore, by using the quadratic identities (2.55) and after a somewhat lengthy
calculation, we can show that the augmented matrix [DDD(x)|zzz(x)] is of rank 3, i.e.,

[D|z]∼
[

D∗ z∗
0 0

]
=



y234 −y134 y124 −y123 0 0 z1234
0 y345 −y245 y235 −y234 0 z2345
0 0 y456 −y356 y346 −y345 z3456
0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0


(2.59)

Clearly then the initial condition for φφφ at x=1 can be uniquely determined using (2.45).
Thus once yyy and zzz have been computed by integrating (2.30)- (2.32) from x=0 to 1,
the solution φφφ can be obtained by integrating (2.56)- (2.58) backward from x = 1 to
0. Moreover, as in the fourth-order case, we can show that φφφ is indeed the solution
of the sixth-order boundary-value problem (2.21), (2.22).

2.2.3 Eigenvalue Problems and Their Adjoints
Consider the linear eigenvalue problem defined by

φφφ
′ = A(x,λ )φφφ , 0≤ x≤ 1 (2.60)

and

Pφ(0) = 0, (2.61a)
Q φ(1) = 0. (2.61b)

where AAA(x,λ ) is a 2r x 2r matrix, PPP and QQQ are r x 2r matrices of rank r, φφφ is a 2r x 1
vector and λ is the eigenvalue parameter. Depending on whether r=2 or 3, Eqs (2.60),
(2.61) defines a fourth- or sixth-order problem. We let yyy be the rth-compound of the
2r× r solution matrix φφφ of (2.60) which satisfies the boundary condition (2.61a) at x
=0. Clearly then yyy must satisfy the compound matrix equation

y′y′y′ =BBB(x,λ )yyy (2.62)

where the matrix BBB(x,1) can be derived from AAA(x,λ ) as discussed in section 2.2.2.
By using the rule that the compound of the product of two matrices is equal to the
product of their compounds, it then follows from (2.61b) that

Cr[QΦ(1)Φ(1)Φ(1)] =Cr[Q] ·Cr[ΦΦΦ(1)] = 0 (2.63)

Equation (2.63) is the appropriate eigenvalue relation for (2.60), (2.61) and it is
equivalent to requiring that a certain linear combination of the elements of yyy vanish
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at x =1. Thus to determine the eigenvalue, we can repeatedly integrate the compound
matrix equation (2.62) from x =0 to 1, while a Newton-type iteration scheme is used
to vary λ until the eigenvalue relation (2.63) is satisfied. Next we note that φφφ must
also satisfy the auxiliary systems (2.40), (2.41) or (2.56)-(2.58) with zzz=0 and fff=0.
The initial condition for φφφ at x=1 can be obtained in the same manner as discussed
in section 2.2. Thus, once we have computed the eigenvalue, we can obtain φφφ by
integrating (2.40), (2.41) or (2.56)-(2.58) from x=1 to 0. Moreover, using an argu-
ment identical to the one used for boundary-value problems, we can show that φφφ

is indeed an eigenfunction of (2.60), (2.61). Now, consider the adjoint problem of
(2.60), (2.61) consisting of the system

φφφ
†′ =−AH(x,λ )φφφ † (2.64)

and the adjoint boundary conditions

ΦΦΦ
H(0)φφφ †(0) = 0, (2.65a)

ΦΦΦ
H(1)φφφ †(1) = 0. (2.65b)

where the superscript H denotes the conjugate transpose, and φφφ is the solution ma-
trix of (2.60) which satisfies the boundary condition (2.61a). To obtain the adjoint
eigenfunction φ †, we may, of course, follow the same procedure for solving (2.60),
(2.61) and first integrate the compound matrix system associated with (2.64), i. e.,

y†′ =−BH(x,λ )y† (2.66)

from x =0 to 1. Here yyy† denotes the rth compound of the 2r× r solution matrix φφφ †

of (2.64) which satisfies the boundary condition(2.65a). Once we have computed yyy†

for O≤ x≤ 1, the adjoint eigenfunction φφφ † can be obtained by integrating the appro-
priate auxiliary system from x = 1 to 0, except that the elements ofyyy in these systems
must now be replaced by the corresponding elements of yyy†. On the other hand, the
above procedure can be simplified and the need for integrating(2.66) can be circum-
vented on noting that a simple equivalence relation exists between the elements of yyy
and yyy†. For the purpose of the present discussion, we first assume that the matrix AAA
is in normal form, i.e., the diagonal elements of AAA are all zero. It then follows that
bi j=0. By a straightforward but somewhat tedious calculation, it can be verified that

y† = Ty∗y† = Ty∗y† = Ty∗ (2.67)

where y*y*y* is the complex conjugate of yyy, and TTT is a constant antidiagonal matrix of
the form

T =

 0 t1n
· · ·

tn1 0

 (2.68)

For fourth-order (r= 2) problems, TTT is 6x6 and

antidiag T = [t16, . . . , t61] = [1,−1,1,1,−1,1] (2.69)
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Similarly for sixth-order (r = 3) problems, TTT is 20 x 20 and

antidiag T
= [1,−1,1,−1,1,−1,1,1,−1,1,−1,1,−1,−1,1,−1,1,−1,1,−1] (2.70)

Now, consider the case where the coefficient matrix AAA is not in normal form. We
then let N = AAT ΛN = AAT ΛN = AAT Λ, where ΛΛΛ = diag AAA and

φ = Eφ̂φ = Eφ̂φ = Eφ̂ where E = E(x) = exp
[∫ x

0
ΛΛΛdx

]
(2.71)

Then (2.60) becomes
φ̂
′ =
(
E−1NE

)
φ̂φ̂

′ =
(
E−1NE

)
φ̂φ̂

′ =
(
E−1NE

)
φ̂ (2.72)

where E−1NEE−1NEE−1NE is a matrix whose diagonal elements are zero. Corresponding to (2.61),
we have

Pφ̂̂φ̂φ(0) = 000 and [QE(1)]φ̂̂φ̂φ(1) = 000 (2.73)

It is easy to show that φφφ † = (E∗)−1
φ̂̂φ̂φ †, where E∗ is the complex conjugate of E

and φ̂+φ̂+
φ̂+ is the adjoint eigenfunction of (2.72), (2.73). Thus if we let ΦΦΦ and Φ̃̃Φ̃Φ be,

respectively, the solution matrices of (2.60) and (2.72) which satisfy the boundary
conditions (2.61a) and (2.73), and Φ†Φ†

Φ† be the solution matrix of the corresponding
adjoint problem, then

ΦΦΦ = EΦ̂̂Φ̂Φ and Φ
†

Φ
†

Φ
† = (E∗)−1

Φ̂̂Φ̂Φ
† (2.74)

By taking the rth compounds of Eqs. (2.74), we obtain

y =Cr(E)ŷ and y† =Cr

[
(E∗)−1

]
ŷ† (2.75)

where ŷ =Cr(Φ̂ΦΦ) and ŷ† =Cr

(
Φ̂ΦΦ

†
)
. since ŷ† = Tŷ∗, it follows from (2.75) that

y† =Cr

[
(E∗)−1

]
TCr

[
(E∗)−1

]
y∗ = [w(x)]−1Ty∗ (2.76)

where

w(x) = exp
[∫ x

0
tr
(
AH)dx

]
(2.77)

Thus, once we have obtained yyy by integrating (2.62), y†y†y† can be obtained from (2.69),
(2.70) and (2.76), (2.77) with little further computation. Moreover, when these
results are applied to the actual computation of the adjoint eigenfunction, it is not
necessary to evaluate w(x). This is due to the fact that in replacing the elements of y
in the auxiliary systems (2.40), (2.41) or (2.56)-(2.58) by the appropriate elements
of y†y†y†, an overall multiplicative factor of y†y†y† (i.e., w(x)) can clearly be omitted.

We note that in most weakly nonlinear theories of hydrodynamic stability, it is of-
ten necessary to solve first an eigenvalue problem which governs the linear stability,
and then a sequence of inhomogeneous boundary-value problems. For unique solu-
tions to exist for these problems, it is necessary to require that their inhomogeneous
terms be orthogonal to the adjoint eigenfunction of the linear stability theory. This in
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turn provides the various conditions needed for the systematic determination of the
Landau constants in the Landau amplitude equation. An application of the procedure
outlined in this section for computing the adjoint eigenfunction can therefore lead to
a simplification of some aspects of non-linear stability calculations.

2.2.4 Linear Boundary Value Problem
To illustrate the basic ideas involved, consider the linear fourth-order equation

L(φ) = φ
IV −a1φ

′′′
−a2φ

′′−a3φ
′−a1φ = 0 (2.78)

where a1,a2,a3 , and a4 are functions of x and 0 ≤ x ≤ 1. To be definite, we shall
also suppose that the boundary conditions at x = 0 are φ = φ ′ = 0. The boundary
conditions at x = 1, however, need not be specified until later. For the present pur-
poses it is convenient to rewrite (2.78) as a system of first-order equations. Thus, if
we let φ = [φ ,φ ′,φ ′′,φ ′′′]T then (2.78) becomes

φ
′ = Aφ
′ = Aφ
′ = A(x)φφφ , (2.79)

where

A(x) =


0 1 0 0
0 0 1 0
0 0 0 1
a4 a3 a2 a1

 (2.80)

Now let φ1 and φ2 be two solutions of (2.78) which satisfy the initial conditions

φ1(0) = [0,0,1,0]T and φ2(0) = [0,0,0,1]T (2.81)

and consider 4 x 2 solution matrix

ΦΦΦ =


φ1 φ2
φ ′1 φ ′2
φ ′′1 φ ′′2
φ ′′′1 φ ′′2

 (2.82)

The 2 x 2 minors of the matrix 4, are

y1 = φ1φ
′
2−φ

′
1φ2, y4 = φ

′
1φ
′′
2 −φ

′
1φ
′
2

y2 = φ1φ
′′
2 −φ

′′
φ2, y5 = φ

′
1φ
′′
2 −φ

′′
1 φ
′
2

y3 = φ1φ
′′′
2 −φ

′′
1 φ2, y6 = φ

′′
φ
′′′
2 −φ

′′
1 φ
′′
2

(2.83)

and they satisfy the quadratic identity (Davey, 1979),

y1y6− y2y5 + y3y4 = 0 (2.84)

By using the general theory given in (Gilbert and Backus, 1966) or by a direct calcu-
lation it is easy to show that yyy = [y1, ...,y6]

T satisfies the equation

y′y′y′ =BBB(x)yyy, (2.85)



30 Chapter 2. Compound Matrices: A numerical method for stiff DEs

where

B(x) =


0 1 0 0 0 0
0 0 1 1 0 0

a3 a2 a1 0 1 0
0 0 0 0 1 0

−a4 0 0 a2 a1 1
0 −a4 0 −a3 0 a1

 (2.86)

Thus yyy is the second compound of φφφ and it satisfies the initial condition

y(0) = [0,0,0,0,0,1]T (2.87)

The boundary conditions on φ at x = 1 will imply that some element of y or,more
generally, a linear combination of the elements of y must vanish there and this con-
dition will provide the required eigenvalue relation. In actual calculations, of course,
some iterative procedure must be used to vary the eigenvalue parameter until this
condition is satisfied to some prescribed degree of accuracy.

Once the required eigenvalue has been obtained by the method just described,
we can then proceed to the determination of the corresponding eigenfunction φ (for
example). Clearly there must exist constants λ and µ such that

φ = λφ1 +µφ2, φ
′ = λφ

′
1 +µφ

′
2

φ
′′ = λφ

′′
1 +µφ

′′
2 , φ

′′′ = λφ
′′′
1 +µφ

′′′
2

(2.88)

The constants λ and µ can be eliminated from these equations in four different ways
and if this is done then we obtain

y1φ
′′− y2φ

′+ y4φ = 0 (2.89)

y1φ
′′′− y3φ

′+ y5φ = 0 (2.90)

y2φ
′′′− y3φ

′′+ y6φ = 0 (2.91)

and
y4φ
′′′− y5φ

′′+ y6φ
′ = 0 (2.92)

Thus we have four possible equations for the determination of the eigenfunction φ .
Consider first the behavior of the solutions of Eqs. (2.89)-(2.92) near x = 0. For this
purpose we observe that as x→ 0 we have

y1 ∼ 1
12x4, y2 ∼ 1

3x3, y3 ∼ 1
2x2

y4 ∼ 1
2x2, y5 ∼ x, y6 ∼ 1

(2.93)

and this limiting behavior is seen to be independent of the coefficients in (2.78). The
point x = 0 is therefore a regular singular point of Eqs. (2.89)-(2.92) and at that point
they have exponents (2, 3), (-1/2, 2, 3), (-4, 2, 3), and (0,2, 3) respectively. It is easy
to show, however, as a consequence of (2.85), that none of the solutions contains
logarithmic terms. Accordingly, near x = 0 the solution of Eqs. (2.89)-(2.92) that



2.2. Mathematical Methods 31

satisfies the boundary conditions must be of the form

φ(x) =
∞

∑
s=0

bsxs+2 (2.94)

where b0, and b1 are arbitrary. When Eq. (2.78) is even moderately stiff, however,
forward integration of Eqs. (2.89)-(2.92) from x = 0 to 1 leads, as might have been
expected, to a serious growth problem. To avoid this growth problem, consider the
possibility of determining φ(x) by integrating one of Eqs. (2.89)-(2.92) backwards
from x = 1 to 0. For illustrative purposes we shall suppose that φ ′(1) = φ ′′′(1) = 0
as these are the relevant boundary conditions for the Orr-Sommerfeld problem which
will be discussed later. In all cases it is convenient to fix the normalization of the solu-
tion so that φ(1) = 1 and, for the present discussion, we shall assume that y1(x) does
not vanish anywhere in the interval 0≤ x≤ 1. For Eq. (2.89) the initial conditions are
φ(1) = 1 and φ ′(1) = 0, and (2.89) then shows that φ ′′′(1) vanishes automatically.
On integrating Eq. (2.89) from x = 1 to 0, we see that φ must necessarily satisfy the
boundary conditions at x = 0 since the exponents of (2.89) at x = 0 are 2 and 3. Thus
we have a simple marching problem for the determination of φ . This procedure,
however, will fail to yield the final values at x = 0 since (2.89) is singular there, but
this is only a very minor limitation. For Eqs. (2.90)- (2.92) the initial conditions are
φ = 1, φ ′(1) = 0 and φ ′′(1) =−y4(1)/y1(1). On integrating these equations from x =
1 to 0, however, some numerical difficulties would be expected due to the exponents
-2, -1/2, and 0 of the equations, respectively, at x = 0. These difficulties, which are
particularly severe in the case of (2.90), have been confirmed by actual calculations
on the Orr-Sommerfeld problem. It remains to be shown, however, that the solution
of Eq. (2.89) obtained in this way is also a solution of Eq. (2.78). For this purpose
let

z1 = y1φ
′′− y2φ

′+ y4φ (2.95)

z2 = y1φ
′′′− y3φ

′+ y5φ (2.96)

z3 = y2φ
′′′− y3φ

′′+ y6φ (2.97)

z4 = y4φ
′′′− y5φ

′′+ y6φ
′ (2.98)

A short calculation then shows that

z′1 = z2 (2.99)

z′2 = a2z1 +a1z2 + z3 + y1L(φ) (2.100)

z′3 =−a3z1 +a1z3 + z4 + y2L(φ) (2.101)

z′4 = a4z1 +a1z4 + y4L(φ) (2.102)
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Suppose now that (2.89) holds, i.e., that z1 = 0. Then z2 = 0 from (2.99) and Eqs. (2.100)-
(2.102) reduce to

0 = z3 + y1L(φ) (2.103)

z′3 = a1z++ z4 + y2L(φ) (2.104)

z′4 = a1z4 + y4L(φ) (2.105)

With φ determined from (2.89) as described above, it can then be shown from (2.97)
and (2.98) that z3(1) = z4(1) = 0. Elimination of L(φ) from Eqs. (2.103)- (2.105)
then gives a pair of first-order equations for z3 and z4 , and the only solution of these
equations which satisfies the initial conditions is the trivial one. Thus L(φ) = 0 and
the solution of (2.89) is indeed the required eigenfunction. An alternative to the
method just described would be to define the solution matrix (2.82) with respect to
the boundary condition at x = 1. In this approach, with φ ′(1) = φ ′′′(1) = 0,φ1 and φ2
would be required to satisfy the initial conditions

φ1(1) = [1,0,0,0]T and φ2(1) = [0,0,1,0]T (2.106)

The eigenvalue of the problem is then obtained by integrating (2.85) backwards,
subject to the initial condition

y(1) = [0,1,0,0,0,0]T (2.107)

and by requiring that y1(0) = 0. We also note that as x→ 1 we have

y1 ∼ x−1, y2 ∼ 1, y3 ∼ a2(1)(x−1)
y4 ∼−1

3a4(1)(x−1)3, y5 ∼−a4(1)(x−1)2, y6 ∼−a4(1)(x−1)
(2.108)

and hence x = 1 is a regular singular point of (2.89) and (2.92) but it is an ordinary
point of (2.90) and (2.91). To obtain the eigenfunction we must now integrate for-
ward from x = 0 to 1 to avoid the growth problem and, for this purpose, Eq. (2.91)
would appear to be the best choice since x = 0 and 1 are both ordinary points of this
equation. The initial conditions are φ(0) = φ ′(0) and φ ′′(0) = 1 (for example). An
argument similar to the one given above then shows that the solution obtained in this
way is also a solution of (2.78) and that φ ′ and φ ′′′ both vanish automatically at x =
1. The eigenfunction φ can then be renormalized, if desired, so that φ(1) = 1.

2.3 An Application
The Orr-Sommerfeld equation, which governs the linear stability of parallel shear
flows, is given by

φ
′ = Aφφ
′ = Aφφ
′ = Aφ (2.109)
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where

φφφ =
[
φ ,φ ′,φ ′′,φ ′′′

]T
, A =


0 1 0 0
0 0 1 0
0 0 0 1

a41 0 a43 0

 (2.110)

with a41 =−
{

α4 + iαR
[
α2(U− c)+U ′′

]}
and a43 = 2α2+ iαR(U−c). Here φ is

the amplitude of the disturbance stream function, U(x) is the mean velocity distribu-
tion, α and R are real parameters and c is (possibly complex) eigenvalue parameter.
For plane Poiseuille flow on the interval 0 < x < 2, we have U(x) = x(2− x). If
we consider only symmetric modes then the problem can be studied on the interval
0≤ x≤ 1 with boundary conditions

φ(0) = φ
′(0) = 0, (2.111a)

φ
′(1) = φ

′′′(1) = 0. (2.111b)

Now, we need only note that the eigenfunction φ satisfies the second-order auxiliary
equation

y1φ
′′− y2φ

′+ y4φ = 0 (2.112)

where y1,y2 and y4 are elements of the second compound y of the 4x 2 solution
matrix of (2.109) which satisfies the homogeneous boundary condition at x = 0. In
the notation of section 5.3, y1;= y12,y2 = y13 and y4 = y23. It is also convenient to
rewrite φ ,y2/y1 and y4/y1 in terms of their real and imaginary parts, i.e.,

φ = φr + iφi, y2/y1 = sr + isi, y4/y1 = tr + iti (2.113)

Equation (2.112) then becomes
φr
φi
φ ′r
φ ′i

=


0 0 1 0
0 0 0 1
−tr ti sr −si
−ti −tr si sr




φr
φi
φ ′r
φ ′i

 (2.114)

Consider now the so-called Reynolds stress function φrφ
′
i −φ ′rφi. Differentiating and

then using (2.114), we have(
φrφ

′
i −φ

′
rφi
)′
= sr

(
φrφ

′
i −φ

′
rφi
)
+ si

(
φrφ

′
r +φiφ

′
i
)
− ti
(
φ

2
r +φ

2
i
)

(2.115)

If we now define
τ1 = φrφ

′
i −φ ′rφi, τ2 = φrφ

′
r +φ ′i φi

τ3 = φ 2
r +φ 2

i , τ4 = φ ′2r +φ 2
i

(2.116)

then it is easy to show that
τ1
τ2
τ3
τ4


′

=


sr si −ti 0
−si sr −tr 1
0 2 0 0
−2ti −2tr 0 2sr




τ1
τ2
τ3
τ4

 (2.117)
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Moreover, if we fix the normalization so that φ(1) = 1 (say), the boundary condi-
tions (2.111b) give

τ1(1) = τ2(1) = τ4(1) = 0 and τ3(1) = 1 (2.118)

Equations (2.117), (2.118) thus show that once we have determined the eigenvalue
c and obtained y by integrating the appropriate compound matrix system which y
satisfies, then t=[τ1,τ2,τ3,τ4]

T can be obtained directly by integrating (2.117) from
x=1 to 0 without having first to compute φ . To test the effectiveness of this approach,
we have computed τ using (2.117) for the eigenmode corresponding to

α = 1, R = 105, and c = 0.2375+0.0037i (2.119)

The results we obtained for the Reynolds stress distribution t were found to be in
excellent agreement with previous results (Drazin and Reid, 2004).

2.4 Conclusion
The Compound Matrix Method is a very efficient numerical method at large wavenum-
bers, where the standard shooting techniques fail or do not provide accurate results.
Since it is essential to study linear stability over a wide range of wavenumbers for as-
certaining the stability of the flow at those wavenumbers, this method is well-suited
for linear stability analysis. At present the Compound Matrix Method is widely used
to calculate the Evans function (Gubernov et al., 2003; Allen and Bridges, 2002),
which is now a standard tool in spectral theory for calculating the unstable eigenval-
ues of the linear differential operators. More applications of the Compound Matrix
Method for the solving Orr- Sommerfeld equation for high wave numbers are avail-
able (Sengupta, 1992). The Orr-Sommerfeld equation is an important equation in
the area of hydrodynamics (Drazin and Reid, 2004). It is also an example of a stiff
equation which requires orthogonalization to be undertaken to maintain the linear
independence of the solutions. Solution of the Orr- Sommerfeld equation is difficult
because of parasitic error growth and the Compound Matrix Method resolves this by
reformulating the problem in a new set of variables. However, parasitic error also
arises in the Compound Matrix Method when the wave number or Reynolds number
is sufficiently high. In particular, the problem of evaluating the eigenfunctions be-
come difficult. It is shown that by using the appropriate equation of the Compound
Matrix Method one can avoid the problem of obtaining the spectral solution for large
wave numbers. In Chapter-4 and Chapter-5, we highlight two more applications of
the Compound Matrix Method, which form the core of this thesis.
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Chapter 3

Local Instabilities In Free Shear
Flows

3.1 Introduction
In many flows of interest, the mean-velocity profile is nonuniform in the streamwise
direction, and in order to distinguish between local and global instability properties,
it is first essential to assume that streamwise variations of the mean flow are slow
over a typical instability wavelength. The terms “local” and “global” then refer to
the instability of the local velocity profile and of the entire flow field, respectively.
In this chapter, we will further characterize the local impulse response of the system
within the parallel-flow approximation at each streamwise station.

First, it is appropriate to briefly recall the classical hydrodynamic instability de-
scription of open flows. Since several spatially developing shear flows are known
to be extremely sensitive to external noise, many controlled experiments have been
conducted to determine their response to different excitation frequencies. As a result,
it has been customary to represent the downstream development of vortical struc-
tures as a collection of spatially growing instability waves of various frequencies
(refer (Ho and Huerre, 1984) for a review of such analyses applied to mixing lay-
ers). In other words, experimental observations have, in general, been compared
with the results of local spatial stability calculations (with given real frequency and
unknown complex wave number) performed on the measured time-averaged mean
velocity profile at each streamwise station. Such an approach has been reasonably
successful in describing the evolution of vortices in forced experiments. For exam-
ples of this type of analysis, the reader is referred to (Crighton and Gaster, 1976)
and (gaster, Kit, and Wygnanski, 1985) among many other similar studies. A large
part of the hydrodynamic stability literature, however, has been devoted to tempo-
ral theory (with given real wave number and unknown complex frequency), where
it is implicitly assumed that the flow develops from some given initial state. The
following question may then be asked: What is the fundamental reason for adopt-
ing a spatial theory point of view in many open shear flows? It is argued here that
the notions of local “absolute/convective” instability provide a rigorous justification
for selecting spatial theory in specific open flows (homogeneous mixing layers, flat-
plate wakes, uniform-density jets). More interestingly, application of these concepts
to other open flows (bluffbody wakes, heated jets) leads to the conclusion that local
spatial theory in the strict sense (real frequency) is not appropriate. Wave number
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and frequency both need to be considered complex, and a global temporal instabil-
ity may arise whereby the entire nonparallel mean flow admits self-sustained global
modes with well-defined complex frequencies.

The impact of such concepts on the study of fluid-mechanical instabilities ap-
pears to be of much more recent origin. A spatio-temporal description of Tollmien-
Schlichting wave packets in boundary layers was developed early on by (gaster, Kit,
and Wygnanski, 1985), and a general formal methodology was proposed without
explicitly introducing a definite distinction between the absolute or convective na-
ture of the instability mechanism. The technique advocated by (Briggs, 1964) has
been repeatedly implemented to analyze the receptivity of compressible shear flows
to acoustic forcing. In geophysical fluid dynamics, (Thacker, 1976) and (Merkine,
1977) have determined the transition from absolute to convective instability in a two-
layer model of the baroclinic instability. But, it is mostly in the last few decades
that these issues have come to the foreground in the description of hydrodynamic
instabilities in spatially evolving shear flows. The distinction between absolute and
convective instabilities appears to have first been brought out in a general context
in (Twiss, 1952) and (Landau and Lifshitz, 1959). It should be emphasized that
plasma physicists have made extensive and seminal contributions to the theoretical
foundations underlying these notions, and that they have applied them to the study of
numerous plasma instabilities. For systematic developments of the main ideas, the
reader is referred to the work of (Sturrock, 1958), (Briggs, 1964) and (Lifshitz and
Pitaevskii, 1981).The complete and lucid review of Bers (Bers, 1983) is particularly
recommended for an up-to-date account of theoretical efforts in the description of
spatio-temporal plasma instabilities. The topic of absolute / convective instabilities
has found its way into the mainstream of the plasma-physics literature: Presentations
of the main ideas have appeared in the books by (Clemmow and Dougherty, 1969).

Local/global and absolute/convective instability concepts provide the necessary
theoretical framework to classify different open shear flows according to the quali-
tative nature of their dynamical behavior. For instance, if the localized disturbances
spread upstream and downstream and contaminate the entire parallel flow, the ve-
locity profile is said to be locally absolutely unstable. Shear flows that are locally
convectively unstable everywhere (e. g., mixing layers, flat-plate wakes) essentially
display extrinsic dynamics, which is in contrast to the shear flows with a pocket of ab-
solute instability of sufficiently large size (e. g., bluff-body wakes, hot or low-density
jets) which displays intrinsic dynamics of the same nature as in closed-flow systems.
Fluid particles are still advected downstream, but temporally growing global modes
may be present. These flows behave as oscillators: The evolution of vortices does
not rely on the spatial amplification of external perturbations but rather on the growth
of initial disturbances in time. Furthermore, the distribution of global modes is syn-
chronized in the streamwise direction. This class of open flows is particularly well
suited to a nonlinear dynamical systems approach of the kind that has been imple-
mented in closed systems. The onset of deterministic chaos, if it exists, is likely to be
well defined in these systems: One expects a well-ordered sequence of bifurcations
leading from a limit cycle (the global mode) to a low-dimensional strange attractor.
The sensitivity of convectively unstable flows to external noise, on the other hand,
makes it much more difficult to discriminate between low dimensional chaos arising
from the flow dynamics and spatially amplified random noise. Finally, there exists a
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third class of marginally globally stable flows where the local velocity profiles are,
strictly speaking, locally convectively unstable in the entire field but absolute insta-
bility is incipient at some streamwise station. In such situations, global modes are
often weakly damped in time, and they can be preferentially destabilized by applying
external forcing in the vicinity of the global-mode frequency (More details on this
final case provided in section 3.1.3). This chapter is organized as follows. In sec-
tion 3.1.1, 3.1.2, 3.1.3, we discuss the Temporal Instability, Absolute / Convective
Instability and the concept of Evanescent modes, respectively. In order to distinguish
between each of these instabilities, a basic understanding of the branch/pinch point
as well as the Cusp-Map diagram is developed in section 3.1.4 and section 3.1.5,
respectively. The Briggs’ Contour Integral Method, utilized to classify the flow-
material parameters leading to the above mentioned stability-instability regimes, is
explained in section 3.1.6, and this method is further elaborated through an example
in section 3.1.7.

3.1.1 Temporal Instability
The classical linear stability theory of parallel shear flows is concerned with the
development in space and time of infinitesimal perturbations around a given basic
flow U(y;Re) In the sequel, x,y, and t denote the streamwise direction, cross-stream
direction, and time, respectively, and U(y;Re) is the sole component of the basic
flow in the x-direction. The basic state is parallel, i.e. it is assumed to be in-
dependent of x. Fluctuations are typically decomposed into elementary instability
waves φ(y;α)exp[i(αx−wt)] of complex wave number α and complex frequency
w. The cross-stream distribution φ(y;α) is then shown in most cases to satisfy an or-
dinary differential equation of the Orr-Sommerfeld type. Enforcement of appropriate
boundary conditions at, say, Yl and Y2 then leads to an eigenvalue problem whereby
eigenfunctions φ(y;α) exist only if α and w are constrained to satisfy a dispersion
relation of the form

D[α,w,MMM] = 0. (3.1)

where MMM is the vector of material and fluid parameters. For simple basic flows, this
relation can be calculated explicitly. For more realistic velocity profiles, it is ob-
tained by numerical integration of the Orr-Sommerfeld equation. Temporal modes
w(α,Re) refer to cases where the complex frequency w is determined as a func-
tion of real wave number α . Conversely, spatial branches α(w;Re) are obtained by
solving for complex wave numbers α when w is given real. In this section we delib-
erately ignore variations in the cross-stream direction y and only consider the spatio
temporal evolution of instability waves in the (x, t)-plane. This projection greatly
simplifies the presentation of the fundamental concepts without losing any of the
essential characteristics of the instability. Thus, one may associate a differential or
integro-differential operator D[−i(∂/∂x), i(∂/∂ t);MMM] in physical space (x, t) to the
dispersion relation (3.1) in spectral space (MMM,w), such that fluctuations u(x, t) satisfy

D
[
−i

∂

∂x
, i

∂

∂ t
;MMM
]

u(x, t) = 0 (3.2)

To solve the corresponding receptivity problem for the above equation, one intro-
duces the Green’s function, i.e. the impulse response G(x, t) of the flow defined by
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D
[
−i

∂

∂x
, i

∂

∂ t
;R
]

G(x, t) = δ (x)δ (t) (3.3)

with δ denoting the Dirac delta function. The basic flow is then said to be linearly
stable if

lim
t→∞

G(x, t) = 0 along all rays x/t = constant (3.4)

and it is linearly unstable if

lim
t→∞

G(x, t) = ∞ along at least one ray x/t = constant. (3.5)

3.1.2 Absolute and Convective Instability
Among linearly unstable flows, one must further distinguish between two types of
impulse response: The basic flow is referred to as convectively unstable if

lim
t→∞

G(x, t) = 0 along the ray x/t = 0 (3.6)

and it is absolutely unstable if

lim
t→∞

G(x, t) = ∞ along the ray x/t = 0, (3.7)

as shown in Fig 3.1. The above definitions can be illustrated on the linearized
Ginzburg Landau model. The operator D then takes the form

D
[
−i

∂

∂x
, i

∂

∂ t
;MMM
]

u(x, t) =
∂ψ

∂ t
+Vg

∂ψ

∂x
i
2

Vgg
∂ 2ψ

∂x2 + iVgr (R ·Re)ψ = 0 (3.8)

where Vg is a real positive constant group velocity, and Vgg and Vgr are complex con-
stants with Vgg.i < 0. When an appropriate cubic nonlinearity is added, this simple
model is known to arise in many marginal-stability analyses of fluid-dynamical sys-
tems close to onset (Newell and Whitehead, 1969) and (Stewartson and Stuart, 1971).
Typically, convectively unstable flows give rise to wave packets that move away from
the source and ultimately leave the medium in its undisturbed state. Absolutely un-
stable flows, by contrast, are gradually contaminated everywhere by a point-source
input. In order to distinguish between convective and absolute instabilities, it is fur-
ther necessary to examine, according to definitions (3.6) and (3.7), the long-time
behavior of the wave number α0 observed along the ray x/t = 0 at a fixed spatial
location. This complex α0 has, by definition, a zero group velocity, i. e.,

∂ω

∂α
(α0) = 0, (3.9)

and the corresponding ω0 = ω(α0) is commonly called the absolute frequency. The
absolute growth rate is then denoted by ω0,i = Imag(ω(α0)). In other words, the
absolute growth rate ω0,i characterizes the temporal evolution of the wave number
α0 observed at a fixed station in the limit t → ∞. By contrast, the maximum growth
rate ωi,max defined previously is observed following the peak of the wave packet.
Just as the sign of ωi,max determines the unstable/stable nature of the flow, the sign of
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FIGURE 3.1: (a) Convective, (b) Absolute instability (Source (Schmid
and Henningson, 2001))

ω0,i determines its absolute/convective nature. One therefore is led to the following
criterion:

ω0,i >0 absolutely unstable flow,

ω0,i <0 convectively unstable flow. (3.10)

3.1.3 Concept of Evanescent Modes
A flow field governed by the Navier-Stokes equations can sustain in general three dif-
ferent types of modal wave fields namely acoustic, vorticity and entropy waves (see
for example, Pierce (Pierce, 1981)). In the linear approximation these modal fields
are uncoupled except at boundaries or possibly at direct resonances. One speaks of a
direct resonance if in a physical system, which allows more than one wave mode, two
(or more) of these modes coalesce. In the present investigation we shall concentrate
on the coalescence of modes of the same wave type and in particular on the coa-
lescence of vorticity modes. If no or only very weak instabilities are present direct
resonance can be a rather powerful selection mechanism leading to algebraic growth
for small times or short distances and the corresponding potentially large amplitudes
may initiate the nonlinear solution long before the exponentially growing mode does.

The concept of direct resonance appears to have important consequences in the
generation of waves by wind, (e. g., Akylas (Akylas, 1982)), and in the stability
of locally parallel shear flows, (Benney and Gustavsson (Benny and Gustavsson,
1981), see also Gustavsson and Hultgren (Gustavsson and Hultgren, 1980), Gustavs-
son (Gustavsson, 1981) and Hultgren and Gustavsson (Hultgren and Gustavsson,
1981) as well as the articles by Akylas and Benney (Akylas and Benney, 1980; Aky-
las and Benney, 1982) on a weakly nonlinear theory of waves at direct resonance). In
the above parencited papers concerning the stability of parallel shear flows the reso-
nant forcing of the vertical vorticity (and hence the horizontal velocity components)
by the vertical velocity has been explored with the goal of elucidating the laminar-
turbulent transition process. This corresponds to a direct resonance between an Orr-
Sommerfeld and a vertical vorticity or so called ‘Squire’ mode. Research concerning
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FIGURE 3.2: Effect of direct resonance on amplitude evolution
(Source (Koch, 1986))

this so called Benney-Gustavsson resonance mechanism is very promising and has
been pursued extensively. However, the main interest of this thesis lies in finding out
whether the flow can support a direct resonance between two Orr-Sommerfeld modes
alone and whether such a resonance mechanism can be of physical importance.The
character of a direct resonance depends on the type of singularity in the dispersion
relation at the point of mode coalescence. It is usually determined by studying the
response to a point source in time and space. In a linear neutrally stable system the
’cut-off’ phenomenon separating propagating from evanescent acoustic waves in a
hard-walled duct belongs to this category (Aranha, Yue, and Mei, 1982).

If the two coalescing modes originate from waves propagating in the same direc-
tion as in the case of a convectively unstable flow the corresponding singularity is
of the double pole type. Such a disturbance will decay ultimately according to lin-
ear theory. However, the short-term algebraic growth associated with such a double
pole may be decisive and carry the system into the nonlinear state. Whether this is
physically possible is determined by the damping rate associated with the modal co-
alescence. If the damping rate is large such resonances are of importance in certain
linear optimization problems (an example is the (Cremer, 1953) for ducts with acous-
tically absorbing walls). If the coalescing modes are nearly neutral the corresponding
damping rates are very small and the algebraic growth may dominate the exponen-
tial decay locally. This is the case addressed by (Benny and Gustavsson, 1981) as
well as in the present investigation of plane Poiseuille and boundary-layer type mean
flows which are typical examples of convectively unstable flows. To understand the
concept of evanescent mode, Let us take an example of a function f (x) = exp(−αix)
This is demonstrated in Fig. 3.2 by plotting the functions xexp(αix) and exp(−αix)
for various αi = Im(α). For large αi high amplitudes f (x) are quickly reached by
the exponentially growing mode exp(αix). However if αi is very small this growth
is very slow and therefore a direct resonance generating xexp(−αix) can produce
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large amplitudes much faster. Although these modes ultimately decay according to
linear theory the locally high amplitudes may initiate the nonlinear state. In order to
determine if this is possible for a given flow we have to find out, (i) under which con-
ditions direct resonances exist, and (ii) how large the corresponding damping rates
are.

3.1.4 Branch Points and Pinch Points
The simultaneous occurrence of a pinch point in the α-plane and a branch point in the
w-plane can be explained as follows. A pinch point α pinch in the complex α-plane is
a special kind of saddle point satisfying the relation

D
(

α
pinch,ωcusp

)
= 0

∂D
∂α

(
α

pinch,ωcusp
)
= 0

∂ 2D
∂α2

(
α

pinch,ωcusp
)
6= 0

(3.11)
A Taylor series expansion of the dispersion relation in the neighborhood of the sin-
gularity (α pinch,ωcusp) then leads to

0 =
∂D
∂ω

∣∣∣∣
0
(ω−ω

cusp)+
1
2

∂ 2D
∂α2

∣∣∣∣
0

(
α−α

pinch
)2
+O

(
(ω−ω

cusp)2 ,
(
α−α

pinch
)3)

(3.12)
This expression gives a relation between the neighborhood of ωcusp in the w-plane
and the neighborhood of α pinch in the α-plane. The quadratic nature of the local map
between the α and w-planes results in a square root singularity for the local map
between the w and α-planes.

If the contour deformation procedure results in a pinch point in the α-plane, we
are dealing with an absolute instability if the associated branch point in the w-plane
lies above the imaginary w-axis. From the definition of absolute instability it is clear
that such an instability depends on the existence of an unstable wave with zero group
velocity. At an unstable pinch/branch point we have the group velocity, Vg, such that,

Vg =
∂ω

∂α
=

∂D
∂α

/
∂D
∂ω

= 0. (3.13)

3.1.5 The Cusp Map
We have seen that the asymptotic space-time evolution of a linear instability is gov-
erned by the location of pinch points in the complex α-plane that are found by an
analytic continuation of the Laplace inversion contour into the lower-half of w-plane.
This technique requires solving the dispersion relation for the spatial wave number α

as a function of the frequency w. This seems unfortunate, because the computation
of w as a function of α is, in most cases, much easier. It is the goal of this section to
introduce a method for detecting absolute instabilities that solely relies on a mapping
from the α-plane to the w-plane. This technique is due to (Kupfer, Bers, and Ram,
1987) , who refer to it as the ’cusp map’ in the complex-frequency plane.

We will start by examining the mapping from the α-plane to the w-plane. In gen-
eral, dispersion relations are higher order polynomials (or transcendental) in the wave
number α and thus the mapping of the F-contour into the w-plane is multivalued. Let
us denote the image of F in the w-plane by w(F). The reverse mapping of w(F) back
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FIGURE 3.3: Sketch illustrating the cusp map method
(Source (Kupfer, Bers, and Ram, 1987)).

into the α-plane will result in n branches αk(w(F)) with n as the highest order of α

in the dispersion relation. Nevertheless, the original contour F is recovered by one of
the n branches To make the mapping of the F-contour into the w-plane single-valued
we introduce n Riemann shects in the complex w-plane and associate the n contours
in the multi-sheeted w-plane with the n branches αk(w(F)) in the α-plane. The map
between the w and α-plane is governed by the dispersion relation D(α,w) = 0 For a
pinch point in the complex α-plane we have the additional constraints

∂D(α,ω)

∂α
= 0

∂ 2D(α,ω)

∂α2 6= 0 (3.14)

A point w0 in the complex w-plane that satisfies these conditions for a corresponding
α0 has only n1 image points in the complex α0 plane. In other words, two sheets in
the w-plane connect at this specific point w0 We will now concentrate on these two
sheets. Let us introduce a vertical ray that, connects the contour L in each of the two
sheets to the point w0 (refer Fig. 3.3). We will call these rays R1 and R2. They will
help us determine whether the point w0 in the w-plane corresponds to a pinch point
α0 in the α-plane: If and only if the images of the rays R1 and R2 in the complex
α-plane, i.e., α(R1) and α(R2) in Fig. 3.3, originate on two different sides of F , the
branch point at w = w0 corresponds to a pinch point in the α-plane. If the images
α(R1) and α(R2) originate on different sides of F , but connect at one single point
α0 which is not on F , we must conclude that at least one of these images crosses F .
If more than one crossing occurs, the total number of crossings by both images must
be odd.

This criterion forms the basis of the cusp map procedure: By counting the num-
ber of times that each vertical ray, R1 and R2, intersects the contour wk(F), we can
determine whether the branch point w0 corresponds to a pinch point in the α-plane.
The procedure just described, which is completely general, may be used, together
with the following procedure, to determine the stability characteristics of any dis-
persion relation. The procedure requires mapping a section of the α-plane into a
specified region located beneath w(F). A set of vertical rays along the range of un-
stable wave numbers is mapped into the w-plane. These rays, originally parallel in
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FIGURE 3.4: Outline of the numerical procedure for detecting branch
points in the w-plane used in the cusp map method (Source (Kupfer,

Bers, and Ram, 1987)).

the α-plane, may have images that intersect, thus indicating a branch point. The sin-
gularity is identified by the angle-doubling property of its local map. This is the case
in Fig. 3.4, which shows the branch point nested at the edge of a cusp-like trajectory.
If a branch cut is taken downward from the singularity, one obtains a mapping con-
sistent with the multi-sheeted structure implied by the contour w(F). In this case the
branch point is covered only once by w(F) and thus corresponds to a pinch point. In
many problems it is simpler to replace the vertical rays shown in Fig. 3.4 with a set
of horizontal contours that represent deformations of the Fourier integral path. In the
w-plane, these contours will progress downward from w(F) and form a cusp as they
approach the singularity; see Fig. 3.4. Once again the branch point is located by the
angle-doubling (-tripling, etc) property of its local map. This same procedure can be
systematically generalized for dispersion relations with multiple unstable branches.

3.1.6 Briggs’ Method
We will next derive general mathematical criteria based on the singularity structure
of the dispersion relation in the complex w and α-planes to classify instabilities as
convective or absolute. A crucial step in detecting absolute instabilities is locat-
ing pinch points in the complex a plane. A systematic way of accomplishing this
was suggested by Briggs’ (Briggs, 1964) , where we repeatedly solve for the spatial
branches of the dispersion relation for frequencies w given along specified paths in
the complex w-plane. For simplicity, we choose straight lines parallel to the imagi-
nary w-axis. Mapping points along these w paths into the α-plane traces out spatial
branches of the dispersion relation associated with the given temporal branches in



44 Chapter 3. Local Instabilities In Free Shear Flows

FIGURE 3.5: Illustration of the numerical procedure for detecting sad-
dle points in the α-plane used in the Briggs’ method (Source (Schmid

and Henningson, 2001)).

the w-plane. By varying the real part of the w lines, we gradually visualize the map
of the w-plane into the α-plane under the dispersion relation D(α ,w) = 0. It should
then be fairly straightforward to locate saddle points in the α-plane. An important
restriction to keep in mind is that the saddle point has to consist of spatial branches
that originate in different half-spaces. A saddle point clearly forms in the α-plane as
the w lines are varied accordingly. Moreover, the two spatial branches forming the
saddle point originate in two different half-spaces. The corresponding branch point
in the w-plane, marked by a circle along the third ray (refer Fig. 3.5), lies below the
real w-axis and thus does not constitute an absolute instability, according to Briggs’
criterion.

We will start with the solution to the stability problem in Fourier-Laplace space.
If we Fourier- and Laplace-transform Eqn. (3.3) and formally revert back to physical
space, we have

G(x, t) =
1

4π2

∫
L

∫
F

exp[i(αx−ωt)]
D(α,ω,MMM)

dαdω (3.15)

where L and F denote the inversion contour in the Laplace-w-plane and the Fourier
α-plane, respectively. Although the Fourier-Laplace integral (3.15) could be de-
termined for all x and t, the complexity of the dispersion relation suggests a time-
asymptotic solution of the integral. Moreover, the definition of convective and abso-
lute instability as a limit process for large time also warrants an asymptotic approach
in evaluating the Fourier-Laplace integral (3.15) The time-asymptotic evaluation of
the integral expression for the Green’s function will involve the deformation of the
integration contours in the complex α and w-planes. By deforming the integration
path through a saddle point in the a plane, we can use the method of steepest descent
to evaluate the time-asymptotic behavior. If this evaluation will result in a divergent
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integral, the flow under investigation is considered absolutely unstable according to
the definition. If the asymptotic limit results in a convergent integral (in fact, in a
zero integral), the flow is convectively unstable. Special care has to be taken when
applying the method of steepest descent. We will come back to this issue later. Care-
ful evaluation of the time-asymptotic behavior of the Fourier-Laplace integral (3.15)
is accomplished using a method introduced by Briggs. In Briggs’ method (Briggs,
1964) the wave number integral is chosen first,

G̃(x,ω) =
1

2π

∫
F

exp[iαx]
D(α,ω,MMM)

dα (3.16)

which is followed by the w-inversion

G(x, t) =
1

2π

∫
L

G̃(x,ω)exp[−iωt]dω (3.17)

The method of analytic continuation is used to deflect the original L-contour in
an attempt to lower it below the real w-axis (refer Fig. 3.6). If this is achieved, the
exponent in the w-inversion integral (3.17) forces the integrand to vanish as t → ∞;
if not, the time-asymptotic discrete response is governed by the highest discrete sin-
gularity in the w-plane. Lowering the w-contour could fail if a singularity above the
real w-axis is encountered. Because of the interconnection through the dispersion
relation this singularity in the w-plane will have an associated singularity in the α-
plane. We start by choosing the real α-axis as the inversion contour for the spatial
part. This integration path maps through the dispersion relation to a curve in the w-
plane denoted by w(F). The temporal inversion contour has to lie above this curve in
order to satisfy causality: The integration path for t < 0, which involves closure in the
upper half-plane, cannot encircle any singularities, or, in other words, the integrand
of the w integrall (3.17) has to be analytic in the w-half-space: 0 > maxIm(w(F))
The temporal contour L can also be mapped back into the α-plane, resulting in the
branches labeled α+(L) and α−(L). The spatial branch above the real axis is as-
sociated with the dynamics downstream of the origin, while the branch below the
real α-axis governs the perturbation behavior upstream of the source. By analytic
continuation we will try to lower the w inversion contour below the real axis. As we
deform the w-contour, its image in the α-plane will also deform At some point, the
original α-contour will be squeezed between the two branches, which will necessi-
tate the deformation of the original α-contour as well. This will in turn modify the
w-contour. By constantly adjusting the inversion contours and their maps into the
associated plane, we may arrive at a situation where the spatial inversion contour is
pinched between the two spatial branches, therefore prohibiting any further defor-
mation without crossing singularities. If this occurs, the temporal inversion contour
cannot be lowered any further due to formation of a branch point in the w-plane.

Convectively unstable modes are produced by α-roots which end up in a different
half of the α-plane from the one in which they originate, when the L contour is de-
formed onto the real α-axis. The crossing of the real α-axis distinguishes them from
evanescent modes. A fuller account of the theory is given by (Bers, 1983). An abso-
lute instability eigenmode is formed from the merging of two eigenmodes. As such
its occurrence may be viewed intuitively as a form of resonance between the modes; a
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FIGURE 3.6: Sketch of contour deformation procedure for Briggs’
method. Left: complex w-plane, right: complex α-plane

(Source (Schmid and Henningson, 2001)).
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FIGURE 3.7: An example in schematic of an absolute instability cre-
ated by the intersection of two α-roots with three crossing of the αr-
axis (αi = 0). The vertical ray from w0 cuts the αi = 0 contour in the
three places in the double-sheeted w-plane (Source (Yeo, Khoo, and

Zhao, 1996)).

resonance which leads to growth, since the merged eigenmode has wi> 0. Physically,
the modal interaction associated with the merging takes place over the source of the
perturbation. This is because the participating modes are from the upstream (x1 < 0)
and downstream (x1 > 0) sides of the source. Thus the instability is localized with
respect to the location of the source, and envelopes an ever increasing neighborhood
of the perturbation source with time. A shear flow with a sizable pocket of absolute
instability may display the dynamic characteristics of a closed-flow (compact) sys-
tem. These unstable flows behave like an oscillator. A convectively unstable mode,
on the other hand, has been shown to be associated with a sinusoidal wave which
grows in amplitude as it travels away from the source, from which it also derives its
frequency. A convectively unstable mode is essentially a driven mode. It decays to
zero with time when the driving source is turned off; whereas an absolutely unstable
mode is more akin to a self-sustaining temporal mode, and has been termed as such
by Bers (Bers, 1983). When (wo)i > 0, a possible absolute instability is indicated. It
is still necessary, however, to verify that the intersection arises from roots originat-
ing from opposite halves of the α-plane. For such an intersection to be possible, at
least one of the α-roots must cross the αr-axis of the α-plane at least once. An even
number of crossing brings an α-root back into its original half of the α-plane, while
an odd number brings it into the opposite half. The sum total of crossings must be
an odd number for a genuine pinch point. The fulfillment of this requirement can be
checked by drawing a straight ray from the suspected cusp point vertically upward
(wr = constant) and observing the number of times this ray intersects the image of
the αr-axis (αi = 0) in the w-plane (a double or multisheeted Reimann surface). This
is because every crossing of the αr-axis in the α-plane by the α-roots (as the wi is
varied with the lowering of the L contour) is reflected by a corresponding crossing of
the image of the αr-axis (αi = 0) in the w-plane by the vertical ray (which represents
variation in wi) in one of the Riemann sheets of the co-plane. Figure 3.7 presents
a schematic example of the application of this criterion to a situation in which the
intersecting pair of α-roots crosses the αr-axis a total of three times. In this case
the upward vertical ray emanating from the cusp point cuts the image of the αr-axis
(αi = 0) three times on the two Riemann sheets. When the Riemann sheets of the
branch point wcusp correspond to spatial branches located in the same α-plane for
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high enough L, no pinching of F can occur as L is lowered. The corresponding
branch point in the w-plane is not related to the absolute growth rate. Thus, care
must be exercised to locate branch-point singularities pertaining to spatial branches
originating from distinct halves of the α-plane. The vertical-ray criterion may also
be used to distinguish genuine convective instabilities from evanescent modes.

We summarize the Briggs’ method as follows: The necessary (but not sufficient)
condition for the presence of absolute instability is the vanishing characteristic of the
group velocity, vg, at the saddle point in the α-plane or the branch point in the ω-
plane (vg =

∂ω

∂α
= ( ∂D

∂α
)/( ∂D

∂ω
) = 0 such that ω = D(α)). But the group velocity is zero

at every saddle point, in particular where the two α-branches meet, independent of
whether the branches originate from the same half of the α-plane (i. e., when evanes-
cent modes are detected) or not. To overcome this inadequacy, Briggs (Briggs, 1964)
devised the idea of analytic continuation in which the Laplace contour L, in equa-
tion (3.15), is deformed towards the ωr axis of the complex ω-plane, with the simul-
taneous adjustment of the Fourier contour F in the α-plane to maintain the separa-
tion of the α-branches; those which originate from the top half (the upstream modes
with αi > 0) from those which originate from the bottom half of the α-plane (or the
downstream modes). The deformation of the F contour (while preserving causality)
is inhibited, however, when the paths of the two α-branches originating from the op-
posite halves of the α-plane intersect each other, leading to the appearance of saddle
points which are the pinch point, αpinch. The concurrent branch point appearance in
the ω-plane is the cusp point, ωcusp (i. e., D(αpinch,ωcusp)= ∂D(αpinch,ωcusp)

∂α
=0 but

∂ 2D(αpinch,ωcusp)
∂α2 6=0). Kupfer (Kupfer, Bers, and Ram, 1987) employed a local map-

ping procedure to conceptualize the stability characteristics of this branch point. Near
a ‘reasonably close’ neighborhood of the pinch point, a local Taylor expansion yields
a dispersion relation which has a second-order algebraic form in the ω-plane (and
which is a first order saddle point in the α-plane), i. e., (ω−ωcusp)∼ (α−αpinch)2.
This period-doubling characteristics of the map causes the αi-contours to ‘rotate’
around ωcusp, forming a cusp. In the ω-plane, we draw a ray parallel to the ωi-axis
from the cusp point such that it intersects the image of the F-contour (or αi = 0 curve)
and count the number of intersections (consequently, count the number of times both
α-branches cross the αr-axis before forming a pinch point in the α-plane, as shown
in Figure 3.7). If the ray drawn from the cusp point intersects the image of the F con-
tour in the ω-plane (or if either one or both the α-branches cross the αr-axis) even
number of times, then the flow dynamics correspond to an evanescent mode. Other-
wise, in the case of odd intersections the observed cusp point is genuine, leading to
either absolutely unstable system (in the upper half of the ω-plane) or convectively
unstable system (in the lower half of the ω-plane); provided the system is temporally
unstable.

3.1.7 An Example
To further demonstrate this important method, we will introduce a sample dispersion
relation (taken from (Kupfer, Bers, and Ram, 1987)) and apply Briggs’ method. The
dispersion relation is a mathematical one; it is used here for demonstration purposes
only. Its simplicity allows explicit solutions for the pinch point and branch point
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FIGURE 3.8: Map of the complex w-plane into the complex α-plane
under the dispersion relation (3.18)(Source (Schmid and Henningson,

2001)).

locations. We consider

D(ω,α) = ω−
[

1
3
(α− i)3 + i−αV

]
(3.18)

where we have also introduced a parameter V. The pinch points and branch points
can be found by solving dw/dα = 0, which yields

α1,2 = i±
√

V (3.19)

for the pinch points and

ω1,2 = (1−V )i∓ 2
3

V
√

V (3.20)

for the associated branch points in the w-plane. We set V = 0.75 and proceed with
Briggs’ method as outlined earlier We will map lines of constant w into the complex
α-plane by solving the cubic dispersion relation (3.18).

Clearly, a saddle point forms in the complex α-plane that is marked by a symbol
and corresponds to the solution of equation (3.19) for V = 0.75 (refer Fig. 3.8). Its
branches originate in different half-spaces of the α-plane. The corresponding branch
point in the w-plane is also marked. We see that the branch point is clearly above
the real w-axis, proving the occurrence of an absolute instability. Admittedly, this
example is fairly simplistic. It nevertheless demonstrates the usefulness of Briggs’
method to detect absolute instabilities. More complicated dispersion relations can be
contrived that challenge the readers’ knowledge of analytic function theory.

The method just outlined for the computation of absolute and convective stability
characteristics is closely related to the method of steepest descent. The method of
steepest descent does not distinguish between branches originating in the same or
different half-spaces. Additional analysis of the global topology of the phase function
is necessary to focus on the correct type of saddle points in the α-plane. In fact, the
integral representation of the Green’s function solution suggests looking for saddle
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points of the phase function and evaluating the integral asymptotically according to
standard techniques. It is important to also consider the global topology of the phase
function; not all points with dw/dα = 0 are associated with absolute instabilities
Failure to consider the global topology of the phase function may result in flawed
calculations and incorrect conclusions about the absolute or convective nature of the
instability (Huerre and Monkewitz, 1990). For a more detailed treatment, including
numerical examples, the reader is referred to (Lingwood, 1997).
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Chapter 4

Spatiotemporal linear stability of
viscoelastic free shear flows: dilute
regime

4.1 Introduction
In this chapter we report the temporal and spatio-temporal stability analyses of anti-
symmetric, free shear, viscoelastic flows obeying the Oldroyd-B constitutive equa-
tion in the limit of low to moderate Reynolds number (Re) and Weissenberg number
(We). Classical approaches to the viscoelastic instability studies involve identify-
ing an equilibrium state, whose stability is studied through eigenvalue analysis by
linearizing the governing equations. The eigenvalue analysis seek the least stable
eigenmode of the linearized mass and momentum conservation equations suitably
transformed to the Orr-Sommerfeld Equation (OSE) (Drazin and Reid, 2004; Sen-
gupta, 2016) via parallel flow approximation. One of the features of traditional eigen-
value analysis is that the disturbance field is assumed to grow either in space or in
time. Huerre and Monkewitz (Huerre and Monkewitz, 1990) have attempted to ap-
ply the combined spatio temporal theory to a restricted class of Newtonian mixing
layers with the goal of determining a general criterion whereby a class of flows can
be analyzed by either the spatial or temporal theory by inspecting the dispersion rela-
tion in the complex wave number-frequency plane. Some other applications as well
as laboratory and numerical experiments on the stability studies of shear flows of
Newtonian and non-Newtonian liquids are listed in (Batchelor, Moffatt, and Worster,
2002; Schmid and Henningson, 2001; Kalliadasis et al., 2012). However, the mod-
els and experiments listed in these references fail to present a comprehensive, spatio
temporal analyses of plane, free shear flows in the form of an instability-phase dia-
gram. Therefore a motivation of this chapter is to illustrate this phase diagram in the
viscoelastic parameter space. The characterization of fluid flows as being absolutely
or convectively unstable and the method of spatio temporal analysis by progressive
moving of the isocontours in the complex frequency and wavenumber plane was first
proposed by Briggs (Briggs, 1964) and later by Bers (Bers, 1983) in the context of
plasma physics. Early numerical work focused on actively controlling the temporal
instability in the inertial limit of free shear layer, polymer flow simulations via ad-
dition of polymers (Azaiez and Homsy, 1994a), the use of time dependent motion
of the boundaries, the modification of the properties of the surfaces and including
grooves and ribs (Stone et al., 2004). Rallison et al. detailed separate studies of
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temporal as well as spatial instability in channel flows of dilute polymer solution,
including stratified flows (Wilson and Rallison, 1999) and multilayer Couette and
Poiseuille flows (Miller and Rallison, 2007), obeying either the Oldroyd-B, Upper
Convected Maxwell or the Finitely Extensible Nonlinear Elastic (FENE) fluid con-
stitutive equations. The literature on theoretical studies of the spatio temporal lin-
ear analysis of viscoelastic flows are more recent (Govindarajan and Sahu, 2013).
In this chapter, we aim to address the following intriguing questions through com-
bined linear spatio temporal stability analysis: What is the critical flow / polymer
relaxation conditions for the onset of instability ? and more crucially What is the
linear spatio temporal, time asymptotic response of the flow at the critical value of
the material parameters ? In the next section, we delineate the model of the free
shear layer flow coupled with the Oldroyd-B constitutive relation for the extra elas-
tic stress tensor (§4.2.1) and the details of the linear stability analysis via the fourth
order OSE (§4.2.2). A thorough description of the Briggs contour integral method to
determine the existence of absolute instability, convective instability and evanescent
modes in spatio temporal analysis in included in this section. In §4.3, we introduce
the Compound Matrix Method to numerically integrate the resultant system of stiff
differential equations for the auxiliary variables emerging from the Orr-Sommerfeld
equation. Section 4 highlights the simulation results of the temporal (§4.4.1) and
the spatio temporal (§4.4.2) stability analyses of anti-symmetric, free shear flows of
polymeric liquids. This chapter concludes with a brief discussion of the implication
of these results and the focus of our future direction (§4.5).

4.2 Mathematical model and linear stability analysis
Unlike Newtonian solvents, the stability predictions of polymeric liquids depend
upon the details of the equations relating stress to the shear rate. The Oldroyd-B
constitutive equations has its range of applicability limited to dilute solutions and
moderate shear rates (Bird et al., 1987). It predicts no shear thinning, a constant
first normal stress coefficient and a zero second normal stress coefficient. The nu-
merical solution obtained by linearizing the Navier Stokes along with the extra stress
constitutive equation (or the OSE stability equation) is reliable in describing the char-
acteristics of the initial stages of the mixing layer transition (Bird, Armstrong, and
Hassager, 1987). The linear stability results can be utilized as the initial-boundary
conditions for DNS (Sengupta, 2016) or the large eddy simulation of polymeric liq-
uids (Steinberg, 2018) in order to further study the flow evolving process down-
stream.

4.2.1 Mathematical model
For the mixing layer flow configuration it is customary to assume U1 (respectively
U2) as the free-stream velocity of the upper (lower) flow. We denote U0 =

1
2(U1−

U2) as the free-stream velocity in a reference frame moving with the average velocity
of the flow (i. e., 1

2(U1 +U2)) and δ , the momentum thickness of the mixing layer.
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The continuity and the momentum equations for an incompressible flow are,

∇ ·v = 0, ρ
Dv
Dt

=−∇p+v · τ, (4.1)

where v is the velocity vector, ρ the density, p the isotropic pressure and τ the extra
stress tensor. Equations (4.1) are closed through the evolution equation for the extra
stress tensor τ , written as the sum of the viscous, Newtonian stress, τs (= ηsD, D is
the shear rate tensor) and the elastic stress, τ p (= ηpA), where ηs,ηp are the solvent
viscosity and the polymeric contribution to the shear viscosity, respectively. We let
η(= ηs +ηp) and ν(= ηs/η) denote the total viscosity and the viscous contribution
to the total viscosity of the fluid, respectively. The constitutive equation for the extra
stress tensor, τ , obeying the Oldroyd-B model then becomes,

τ = η [νD+(1−ν)A], (4.2)

where the tensor A satisfies the Upper Convected Maxwell equation,

∂A
∂ t

+v ·∇A−∇vT ·A−A ·∇v =
D−A

λ
, (4.3)

λ is the polymer relaxation time. Although the two basic ingredients of polymer
rheology, anisotropy and elasticity, are properly described by the Oldroyd-B model,
this constitutive relation fails in many circumstances, e. g., it fails to predict the
physical value of the viscosity in extensional flow when the relaxation time of the
polymer times the extension rate exceeds 0.5 (or when the elongational flow is strong
enough to drive the two sides of the polymer dumbbell infinitely far apart from one
another) (Bird et al., 1987).

4.2.2 Linear Stability Analysis
Using U0 and δ as the reference velocity and length scale, respectively, we charac-
terize the non-dimensional form of equations (4.1), by the dimensionless numbers,
Re = ρδU0/η and We = λU0/δ . We assume that the mean flow is two-dimensional
(with x and y being the streamwise and spanwise directions in space, respectively)
and quasi-parallel with its variation entirely in the spanwise direction, i. e.,

U(y) = tanh(y), Ω(y) = tanh2(y)−1, Ψ(y) = log(cosh(y)), (4.4)

where U(y),Ω(y),Ψ(y) are the dimensionless streamwise mean velocity (with zero
spanwise mean velocity), spanwise mean vorticity and the associated streamfunc-
tion, respectively. Further, assume that the mean flow supports a two-dimensional
disturbance field. The streamfunction and the extra stress tensor are represented by
the base state profile (Ψ(y),T(y)) plus a small perturbation, Fourier transformed in
x and t as follows,

ψ(x,y, t) = Ψ(y)+φ(y)ei(αx−ωt),

τ(x,y, t) = T(y)+ϕ(y)ei(αx−ωt), (4.5)
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where φ(y),ϕ(y) are the spanwise perturbations in the streamfunction and the extra
stress tensor and α,ω are the complex wavenumber and angular frequency, respec-
tively. Note that (4.4) is a solution of the momentum equations for incompressible
flow (4.1) provided that there is a dimensionless body force

f(y) =
(

1−ν

Re
T′′12−

ν

Re
Ω
′′
)

ex, (4.6)

where T12 is the shear component of the base state polymer stress and ()n denote
the nth derivative of any variable function with respect to y. The shear component
of the base state polymer stress (i. e., the solution of equation (4.3) under the mean
flow conditions (4.4)) is O(1) uniformly in the entire flow domain. Consequently,
we argue that the correction due to the body force, f(y), is uniformly O(1/Re) in
space. Rewriting equation (4.1) in the streamfunction-vorticity formulation and uti-
lizing equations (4.2), (4.3), (4.4), (5.7), we arrive at the equation governing the
perturbation of the streamfunction, given by the familiar fourth order OSE (Azaiez
and Homsy, 1994a),

i
{
(αU−ω)(φ ′′−α

2
φ)−αU ′′φ

}
− ν

Re

(
(

d
dy

)2−α
2)

)2

φ =

1−ν

FRe

4

∑
n=0

cnφ
(n), (4.7)

where the coefficients ci’s are

c0(y) = α
4 +F (4)−α

2
(

F ′′

F

)
(F −1)

−2α
2
(

F ′

F

)2

(F 2 +1)−4
(

F ′

F

)
F ′′′−3

(F ′′)2

F

+ 4
(F ′)4

F 2 −6F ′′
(

F ′

F

)2

(F −1),

c1(y) =−2α
2
(

F ′

F

)
(F −1)+4

(
F ′′

F

)(
F ′

F

)
(F −1)2

−4
(

F ′

F

)2

(DyF )(F −1)+ 2
(

F ′′′

F

)
(F −1),

c2(y) =−2α
2 +3

(
F ′′

F

)
(F −1)+2

(
F ′

F

)2

(F −1)2,

c3(y) = 2
(

F ′

F

)
(F −1),

c4(y) = 1,

(4.7a)

and F = 1+ iWe(αU−ω), solved together with the vanishing boundary conditions
for the free shear flow disturbance (φ → 0,φ ′ → 0 as y→ ±∞). In this chapter,
we have limited the domain of integration in the spanwise direction to the upper
half of the flow and analyzed only the anti-symmetric disturbance for the purpose
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of illustrating the solution methodology. The boundary conditions are revised as
follows,

φ = φ
′′ = 0 at y = 0 (4.8a)

φ = φ
′ = 0 at y→ ∞. (4.8b)

In § 4.3, we delineate a numerical solution procedure for solving the eigenvalue
equation (4.7) together with the boundary conditions (4.8a)(4.8b).

4.3 Solution to the eigenvalue problem
The eigenvalues (i. e., the values of (α,ω) satisfying equation (4.7)) are found by
examining the consequence of the far stream boundary condition, given by equa-
tion (4.8b), on the solution structure of the OSE. In the limit y→∞, we have U(y)= 1
and U ′′(y) = 0, which reduces the OSE to the following constant coefficient differ-
ential equation (Drazin and Reid, 2004),

φ
(4)−2α

2
φ
′′+α

4
φ =

iReF∞

1−ν +νF∞

(α−ω)(φ ′′−α
2
φ), (4.9)

where F∞ = 1+We(α −ω). The solution to equation (4.9) can be obtained in the
form φ = eλy, with the characteristic roots given by λ1,2 =∓α and λ3,4 =∓q, where

q =

[
α

2 +
iReF∞

1−ν +νF∞

(α−ω)

]1/2

. The fourth order OSE (4.7) will have four

fundamental solutions, {φi}4
i=1, i. e., φ =

4

∑
i=1

aiφi. To satisfy the boundary condi-

tion (4.8b), one must have a2 = a4 = 0 for real (α,q) > 0 which warrants a general
solution of the form

φ = a1φ1 +a3φ3. (4.10)

Equation (4.10) is a non-trivial, admissible solution of the OSE, satisfying the zero
boundary conditions at the centerline (i. e., at y = 0, equation (4.8a)) if and only if
the determinant of the associated matrix of the linear algebraic system vanishes at
y = 0, i. e., (

φ1φ
′′
3 −φ

′′
1 φ3
)
|y=0 = 0, (4.11)

which is the dispersion relation of the problem. In the asymptotic limit of Re→∞, the
eigenmodes of the free shear layer instability problems are such that |q| � |α|. This
enormous contrast between the two sets of roots of the characteristic equation (4.9)
is the source of stiffness causing the fundamental solutions of the OSE to vary by
several orders of magnitude in the entire physical domain, and thus necessitate the
use of Compound Matrix Method (CMM) (Ng and Reid, 1985). In CMM, one works
with a set of auxiliary variables which are combinations of the fundamental solutions
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φ1 and φ3, namely

y1 = φ1φ
′
3−φ3φ

′
1,

y2 = φ1φ
′′
3 −φ3φ

′′
1 ,

y3 = φ1φ
′′′
3 −φ3φ

′′′
1 ,

y4 = φ
′
1φ
′′
3 −φ

′′
1 φ
′
3,

y5 = φ
′
1φ
′′′
3 −φ

′′′
1 φ
′
3,

y6 = φ
′′
1 φ
′′′
3 −φ

′′′
1 φ
′′
3 , (4.12)

satisfying the corresponding first order ODEs,

y′1=y2,

y′2=y3 + y4,

y′3=y5−
(1−ν)(c1y1+c2y2+c3y3)+F (iRe(αU−ω+2α2ν)y2

(1−ν+Fν)
,

y′4=y5,

y′5=y6+
(1−ν)(c0y1−c2y4−c3y5)+F (iRe(αU−ω)+2α2ν)y4

(1−ν+Fν)

+
F (iRe[(αU−ω)α2+αU ′′]+α4ν)y1

(1−ν +Fν)
,

y′6=
(1−ν)(c0y2+c1y4−c3y6)+F(iRe[(αU−ω)α2+αU ′′])y2

(1−ν+Fν)

+
α4νy2

(1−ν+Fν)
(4.13)

Since at y→ ∞: φ1 ∼ e−αy and φ3 ∼ e−qy, we can estimate the free stream values of
the unknowns,

y1 ∼ (−q+α)e−(α+q)y,

y2 ∼ (q2−α
2)e−(α+q)y,

y3 ∼ (−q3 +α
3)e−(α+q)y,

y4 ∼ (−αq2 +α
2q)e−(α+q)y,

y5 ∼ (αq3−α
3q)e−(α+q)y,

y6 ∼ (−α
2q3 +α

3q2)e−(α+q)y. (4.14)

Since all the variables in equation (4.14) attenuate at the same rate, the stiffness of
the problem is removed by rescaling the variables, say with respect to y1, so that the
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(rescaled) free-stream conditions for solving equations (4.13) are

y1 = 1.0,
y2 =−(α +q),

y3 = α
2 +qα +q2,

y4 = qα,

y5 =−qα(α +q),

y6 = (qα)2 (4.15)

The solution for equations (4.13) is obtained by marching backward from the free
stream to the centerline, with the initial conditions provided by equations (4.15).
A suitable value of (α,ω), or the eigenvalue for a given combination of material
parameters M is obtained by enforcing the dispersion relation (equation (4.11)) in
auxiliary variables, i. e.,

y2 = 0 at y = 0. (4.16)

Now the task is of finding out the corresponding eigenfunction.This also can be done
readily by noting that the eigenvector φ is a linear combination of φ1 and φ3 such
that (Sengupta, 2016)

φ = a1φ1 +a3φ3,

φ
′
= a1φ

′
1 +a3φ

′
3,

φ
′′
= a1φ

′′
1 +a3φ

′′
3 ,

φ
′′′
= a1φ

′′′
1 +a3φ

′′′
3 (4.17)

One can eliminate a1 and a3 in many ways. This leads to the following differen-
tial equations for φ

y1φ
′′− y2φ

′+ y4φ = 0,
y1φ
′′′− y3φ

′+ y5φ = 0,
y2φ
′′′− y3φ

′′+ y6φ = 0,
y4φ
′′′− y5φ

′′+ y6φ
′ = 0 (4.18)

In principle, having obtained y1 to y6 for all y’s, it is possible to obtain φ by
solving any one of the four equations listed above but the presence of four alternatives
raises the question of which of these equations is more accurate and consistent for
the solution process.

The eigenfunction, φ , are found using a suitable linear combination of φ1 and φ3,
via equations (4.10), (4.12), (4.13), such that the characteristic roots at free stream (i.
e., the solution to equation (4.9)) have a negative real part and the coefficients in the
resulting differential equation do not vanish at the centerline. An equation satisfying
these constraints was suggested by Davey (Davey, 1980) as follows,

y4φ
′′′− y5φ

′′+ y6φ
′ = 0. (4.19)
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4.4 Results
In our numerical experiments, the zeros of the dispersion relation (equation (4.11),
(4.16)) were found in the α/ω plane inside the region |ωr| ≤ 1.5, |ωi| ≤ 1.5, |αr| ≤
3.0 and |αi| ≤ 0.1, using a discrete step-size of ∆αr/i = ∆ωr/i = 5×10−3. The free
stream boundary conditions were applied at η = 12, which leads to the numerical
value of the momentum thickness, δ = 0.30685. Numerical integration from the free
stream to the shear layer centerline was accomplished via the fourth order Runge
Kutta time integration with discrete step-size of ∆y = 6.67× 10−4 in the tranverse
direction. The eigenfunctions are found by numerically integrating equation (4.19)
from the centerline to the free stream starting from the centerline conditions, equa-
tion (4.8a). The presence of only two free stream conditions (4.8b) imply that the
eigenfunctions are scaled with respect to the centerline value of φ ′ (i .e., φ ′(0)).
Hence, the results discussed in §4.4.1, 4.4.2, involving these eigenfunctions, are qual-
itative.

4.4.1 Temporal stability analysis
In this section we explore the stability of the solution of the OSE (equation (4.7))
by exclusively assigning ω to be a complex number. The temporal stability analysis
in the inviscid limit was earlier studied by Azaiez (Azaiez and Homsy, 1994a). In
this section, we revisit their work and derive similar conclusions in the regime of low
to moderate Re and We. In Figure 4.1 we present the curves of the most unstable
mode (i. e., ω

Temp
i , the largest positive imaginary component of any root of the dis-

persion relation (4.11)) versus the wavenumber, αr. Note that, as We is increased,
the range of the unstable wavenumbers is reduced and the entire temporally unstable
spectrum is shifted towards longer waves (i. e., the region of instability is gradually
concentrated around αr = 0). All these observations suggest a mechanism of elastic
stabilization in non-Newtonian fluids which we elaborate in this section. Later, in
§4.4.2, we outline how the nature of this instability changes from absolute instability
to convective instability.

Further characterization of the presence of viscoelasticity on the flow is high-
lighted via the ratio of the transverse to the streamwise velocity fluctuations (Fig-
ure 4.2a) and the variations of the magnitude of the vorticity disturbance (Figure 4.2b).
These figures are presented for six different combinations of (Re,We) evaluated at the
peak of the most unstable mode ((αmax,ωmax), refer Figure 4.1 caption for the re-
spective numerical values). Figure 4.2a depicts the relative strength of the transverse
velocity fluctuations versus tranverse spatial coordinates. We remark that at a lower
value of We (e. g., We = 1.0) these relative fluctuations are significant within the
viscous mixing region (y ≤ 1) whereas at higher We values (e. g., We = 40.0) these
fluctuations become important outside the mixing layer region and in a region where
the fluid is essentially moving at the free-stream velocity (i. e., at We = 40.0 the ve-
locity fluctuation ratio attains its maximum at y≈ 3.8 where the mean velocity U0(y)
is 99% of its free-stream value). This study indicates the self-enhancing effects of
polymer stretching (also known as the relaxation effect) in viscoelastic parallel shear
flows of dilute solutions (Larson, Shaqfeh, and Mueller, 1990). This observation is
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FIGURE 4.1: Most unstable mode, ω
Temp
i versus wavenumber, αr for

We =1(dashed curve), We = 10 (dash-dotted curve), We = 40 (dotted
curve) and for Re = 100 (black curve), Re = 400 (green curve). The
peak of these curves are at αmax = −0.001 and ωmax =0.784+0.285i
(for Re = 100,We = 1); 0.084+0.043i (for Re = 100,We = 10);
0.015+0.016i (for Re = 100,We = 40); 0.795 + 0.248 i (for Re =
400,We = 1); 0.070+0.032i (for Re = 400,We = 10); 0.020+0.011i
(for Re= 400 We= 40). The viscosity coefficient is fixed at ν = 0.5.

further corroborated by observing the magnitude of the vorticity disturbance (Fig-
ure 4.2b). While at lower We (We ≤ 10.0) the region of maximum magnitude of
vorticity disturbance is inside the range y ∈ [0,1], at higher We this maximum occurs
in the range, y≥ 1.

More insights about this mechanism of stabilization can be gained by comparing
the contours of the rate of vorticity production (drawn at identically equal levels) for
an arbitrary time in the streamwise versus transverse direction, at Re= 400,We= 1.0
(Figure 4.3a) and Re= 400,We= 40.0 (Figure 4.3b) evaluated at the eigenvalues cor-
responding to the peak of the most unstable mode (refer Figure 4.1 caption). Note
that as We increases, the vorticity structures become larger and the contour spac-
ing becomes wider. An equivalent outcome can be drawn by examining the root
mean square of streamwise velocity fluctuations, urms(0,y) (Figure 4.4a) and Resid-
ual Reynolds shear stress (Figure 4.4b) at a fixed streamwise location, x0 = 0. Higher
We begets a larger urms (e. g., urms ≈ 1.5,6.0 at We = 1.0,40 respectively) and a
lower residual Reynolds stresses. To summarize, the stretching of the polymers with
increasing We brings about a normal stress anisotropy leading to a elastically loaded
fluid: when the polymers stretch, elastic energy is stored in the sheared fluid. This
energy is released after the fluid element has been adverted to other regions where
the shear-induced stretching forces are smaller. Thus, an important mechanism of
stabilization via elastic energy transfer is introduced. The same mechanism can be
established by observing the variation of the viscoelastic fluid element moving from
one region to another as shown in (Bird, Armstrong, and Hassager, 1987), and omit-
ted for brevity.
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FIGURE 4.2: (a) The ratio of the transverse vs streamwise veloc-

ity disturbance,
u
v
=− φ ′

αφ
and (b) the variation of the magnitude of

the vorticity disturbance, |ω|= |α2
φ −φ

′′| in the transverse direction
(refer equation (5.7)), evaluated at the peak of most unstable mode
(αmax,ωmax) whose values are listed in Figure 4.1 caption. A horizon-
tal line is drawn to distinguish the mixing region, y ≤ 1. All curves

are numerically estimated at the viscosity coefficient ν = 0.5.

FIGURE 4.3: The rate of vorticity production contours
DΩ

Dt
(x,y) = i(Dyyφ −α

2
φ) (ω−Uα)eiαx in the streamwise

versus transverse direction at (a) Re = 400,We = 1, and (b)
Re = 400,We = 40, evaluated at the peak of the most unstable mode
(refer Figure 4.1 caption). The contours are drawn at identically equal
levels and the viscosity coefficient is fixed at ν = 0.5 in both cases.
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FIGURE 4.4: (a) Streamwise root mean square velocity fluctuations,

urms(0,y) =

√
1
T

∫ T

0
[u′(0,y, t)]2dt and (b) Residual Reynolds shear

stress =
1
T

(∫ T

0
(U(y)+u′(0,y, t))v′(0,y, t)dt

)
−U(y) evaluated at

a fixed streamwise location, x0 = 0 and at the peak of the most un-
stable mode (refer Figure 4.1 caption). The inset in (a) shows the
maximum variation in urms(x,y) at y ≈ 1, the edge of the mixing
layer. u′(x,y, t) and v′(x,y, t)) are the streamwise and transverse ve-
locity fluctuations (equation (5.7)) at Re = 400,We = 1 (solid curve),
Re = 400,We = 40 (dotted curve) and at fixed viscosity coefficient,
ν = 0.5. U(y) is the mean flow (equation (4.4)). T = (2π/ωmax

r ) is one
time period and ωmax

r is the real part of the angular frequency at the
peak of the most unstable mode.
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4.4.2 Spatio temporal stability analysis
The spatio temporal analysis, where both ω and α are designated as complex num-
bers, is a step which is necessary to reveal the stability phase diagram in the flow-
material parameter space (i. e., in the (Re,We,ν)-space, Figure 4.8). In the onset,
we demonstrate an example of a cusp point in the ω-plane (Figure 4.5a) and the sad-
dle point in the α-plane (Figure 4.6) which correspond to each other via the local
angle-doubling map as indicated by Kupfer (Kupfer, Bers, and Ram, 1987) (details
in § 4.2.2). To this end, a particular set of parameters are chosen for which the flow
is absolutely unstable: Re = 100,We = 1,ν = 0.9. First, the image of the dispersion
relation at αi = 0 is obtained (Figure 4.5a). This curve is the root of the dispersion
relation (equation (4.11)) with the maximum positive imaginary component of the
frequency, ωmax

i , as outlined in §4.4.1. As we decrease the imaginary component of
the wavenumber (for downstream mode in this example), the corresponding image in
the ω-plane is observed. When αi is sufficiently negative (e. g., αi = −0.0301), we
detect the appearance of the cusp point at ωcusp = 0.6268+0.2362i. The pinch point
in the α-plane (which is also the saddle point) corresponding to the cusp point in the
ω-plane arises at αpinch =−0.041−0.0301i (Figure 4.6). The pinch point is obtained
by drawing the isocontours of ωr (Figure 4.6a) and ωi (Figure 4.6b) in the α-plane.
Consequently, by drawing a ray parallel to the ωi axis (Figure 4.5a), we note that this
ray intersects αi = 0 curve only once (i. e., odd number of times), implying that the
cusp point is genuine. Since the imaginary component of this cusp point is positive
(ωcusp

i = 0.2362), the free shear viscoelastic fluid flow at Re = 100,We = 1,ν = 0.9
is absolutely unstable.

Evanescent modes are also encountered in our analysis and to illustrate their ex-
istence we consider another example of the cusp point formation at Re = 100, We =
1 ν = 0.5 (Figure 4.5b). In this case, a ray emerging from the cusp point and par-
allel to the ωi axis, intersects the αi = 0 curve twice (i. e., even number of times),
thereby establishing that this cusp point corresponds to an evanescent mode. Evanes-
cent modes (also known as the direct resonance mode (Koch, 1986)) arises if the
two coalescing modes (given by the solution to equation (4.7)) originate from waves
propagating in the same direction (detailed discussion in §4.2.2). Linear stability
theory predicts that these disturbances decay in the asymptotic limit of long time, but
in the short term an algebraic growth associated with such a mode may be decisive
to cause the transition to turbulence in receptivity studies (Lingwood, 1997).

In order to determine the range of Re (for fixed ν , and different We) for which
the flow regimes are absolutely unstable, convectively unstable or temporally stable,
we plot the absolute growth rate in Figure 4.7 (i. e., ω

cusp
i , which is the growth rate

at the cusp point obtained by deforming the Fourier contour in the α-plane starting
from the most unstable temporal mode, ω

Temp
i (refer §4.4.1 for finding the most

unstable mode), as explained in the above two examples. We define Res (Wes) as the
maximum critical Reynolds number (minimum critical Weissenberg number) for the
flow to be temporally stable. Notice that the magnitude of the absolute growth rate
(wherever it exists) predominantly decreases with increasing Re and with increasing
We. Although the combined effect of these parameters on the flow stability are often
reported in terms of the elasticity number (El = We/Re, which corresponds to the
ratio of the time scale for the elastic stress evolution to the time scale for diffusion
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FIGURE 4.5: (a) Cusp point formation in ω−plane for Re =
100,We = 1,ν = 0.9. The cusp point is formed at ωcusp = 0.6268+
0.2362i with the corresponding pinch point at αpinch = −0.041−
0.0301i. The ray drawn from the cusp point, parallel to the y-axis in-
tersects the αi = 0 curve once (odd number of times), indicating a gen-
uine cusp point, (b) Evanescent mode formation for Re = 100,We =
1,ν = 0.5 at ωevan = −0.0649+ 0.0430i and with the corresponding
pinch point at αpinch =−0.038+0.047i. The ray drawn from this cusp
point, parallel to the y-axis intersects the αi = 0 curve twice (even

number of times).
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FIGURE 4.6: The pinch point, αpinch = −0.041− 0.0301i, in the
α−plane corresponding to the cusp point as outlined in Figure 4.5a
for Re = 100,We = 1,ν = 0.9, which are demonstrated by drawing

the iso-contours of (a) ωr and (b) ωi.
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of momentum (Azaiez and Homsy, 1994a)), we elaborate the impact of these flow-
material parameters via the stability phase-diagram, discussed next.

FIGURE 4.7: The cusp points, ω
cusp
i versus Re in regions of con-

vective and absolute instabilities calculated at the viscosity coefficient
ν = 0.35.

We depict the boundaries of the temporally stable regions (S), convective instabil-
ities (C), evanescent modes (E) and absolute instabilities (A) within a selected range
of flow-material parameter space, i. e., Re ∈ [0.1,500], We ∈ [1,1000] and ν = 0.35
(Figure 4.8a), ν = 0.20 (Figure 4.8b). While We is similar to the Deborah number and
is often confused with it in technical literature of dilute polymeric flows (Bird, Arm-
strong, and Hassager, 1987), they have different physical interpretations. We indi-
cates the degree of anisotropy or orientation generated by the deformation and is ap-
propriate to describe flows with a constant stretch history such as simple shear flows.
In contrast, the Deborah number is used to describe flows with a non-constant stretch
history, and physically represents the rate at which elastic energy is stored or re-
leased (Bird et al., 1987). The boundaries of temporally stable regions are estimated
to reside within the range We∈ [Wes = 505,1000], Re∈ [0.1,Res = 24.9] at ν = 0.35
(refer Figure 4.8a) and We ∈ [Wes = 455,1000], Re ∈ [0.1,Res = 20.1] at ν = 0.20
(refer Figure 4.8b), respectively. The linear stability phase diagram for the free shear
flow systems dominated by viscous stresses (i. e., the case in which ν > 0.35), have
revealed a similar transition scenario as highlighted in Figure 4.8a, 4.8b within an
identical range of Re, We. Hence, the discussion of those phase diagrams are omitted
in this chapter. Two conclusions can be deduced from these phase diagrams. First,
since the boundary of the absolutely unstable region, (A, E), is not parallel to the y-
axis, the authors surmise that the flow will be absolutely unstable for sufficiently high
Re and irrespective of We. This assertion is supported by previous numerical studies
of inviscid viscoelastic mixing layer in the limit of high Re,We such that the elasticity
number is held fixed and finite (Azaiez and Homsy, 1994a). Second, unlike Newto-
nian fluids, viscoelastic liquids are either (absolutely/convectively) unstable for all Re
(e. g., consider the region We< 455 in Figure 4.8a and 4.8b) or the transition to insta-
bility occurs at very low Re (e. g., Res = 24.9,20.1 at ν = 0.35,0.20 and We = 1000,
respectively). Further in the latter case, the transition is direct from temporally stable
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region to absolutely unstable region for viscous stress dominated fluids (i. e., the case
of ν = 0.35, Figure 4.8a) while this transition is more gradual, S→C→A for elastic
stress dominated fluids (i. e., the case of ν = 0.20, Figure 4.8b). Although absolute
instability is far more vicious than convective instability as the occurrence of abso-
lute instability pervades the entire flow domain, convective instability can also cause
transition to turbulence if sufficient spatial distance is given for the disturbance to
grow (Huerre and Monkewitz, 1990). The second conclusion can be attributed to the
fact that viscoelasticity dramatically exacerbates free shear flow instabilities arising
from a combination of normal stress anisotropy and elasticity (Larson, 2000).

FIGURE 4.8: Viscoelastic free shear layer stability phase-diagram at
(a) ν = 0.35 and (b) ν = 0.20, in the Re-We parametric space. The re-
gions S, C, A are denoted by temporally stable, convectively unstable
and absolutely unstable regions, respectively. The domains outlined
by A, E and C, E are those where both the unstable and evanescent

modes (denoted by E) are found.

We recapitulate our discussion by indicating some experimental findings which
corroborate our numerical results, starting from the systematic studies of viscoelastic
Taylor-Couette flows in 1990 by Larson (Larson, Shaqfeh, and Mueller, 1990). The
important interpretation that emerged from their work and later extensions (Larson,
2000) was that when inertial effects are unimportant, viscoelastic flows can exhibit an
elasticity driven instability and with appropriately prepared model polymer solutions,
one can make quantitative contact between experiments and theoretical predictions
using Oldroyd-B constitutive relation. More relevant experiments which will be ana-
lytically tackled (in our future research work) via the linear spatio temporal treatment
outlined in this section, are the surface buckling instability (or the azimuthal com-
pression in an inward radial flow) studies of an Oldroyd-B fluid (Podgorski and Bel-
monte, 2002), the viscoelastic RTI (Graham, 2003), the Rayleigh-Plateau, Saffman-
Taylor and the Faraday instabilities (Lindner and Wagner, 2009).



66
Chapter 4. Spatiotemporal linear stability of viscoelastic free shear flows: dilute

regime

4.5 Conclusions
This investigation addresses the linear, temporal and spatio temporal analyses of free
shear flows of dilute polymeric liquids with anti-symmetric centerline conditions
for low to moderate Re and We. §4.2 presented the free shear viscoelastic flow as
well as the elements of the linear stability analysis via the solution of the Orr Som-
merfeld equation, including the illustration of the Briggs contour integral method to
determine the existence of absolutely unstable, convectively unstable and evanescent
modes. §4.3 demonstrated the steps of the Compounded Matrix Method, utilized to
numerical solve the resultant system of stiff differential equations. The numerical
outcome, in a selected range of Re and We, highlight that with increasing We the
region of temporal instability is gradually concentrated near zero wavenumber, the
vorticity structures of the disturbance become larger and more widely spaced and
the residual Reynolds stresses are lowered, all these observations indicating a mech-
anism of elastic stabilization in non-Newtonian free shear flows of dilute solutions.
The spatio temporal analysis reveal that either the flow is unstable for all Re or the
transition to instability transpires at comparatively low Re stipulating the significance
of the intimately connected normal stress anisotropy, elasticity and the slow relax-
ation effects. Although the Oldroyd-B model describes well the behavior of poly-
meric liquids composed of a low concentration of high molecular weight polymer
in a very viscous Newtonian solvent at moderate shear rates, more realistic descrip-
tion of polymeric solution and melts, including the effect of shear thinning, non-zero
normal stress coefficient and stress overshoot in transient flows is missing and hence
deserves a full numerical exploration in the near future, using a constitutive relation
which incorporates these above mentioned features.
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Chapter 5

Spatiotemporal linear stability of
viscoelastic free shear flows:
non-affine response regime

5.1 Introduction
The understanding of the hydrodynamic stability and the flow transition in free shear
flows of viscoelastic liquids has continued to receive prolonged interest due to its
practical applications in microfluidic mixing (Squires and Quake, 2005), viscoelastic
stabilization via polymer addition (White and Mungal, 2008) and in shearing flows
of viscoelastic biofluids, like mucus (Sircar and Roberts, 2016a), cartilage (Sircar et
al., 2015) and adhesion-fragmentation transition in cells (Sircar and Bortz, 2013; Sir-
car, Younger, and Bortz, 2014; Sircar and Roberts, 2016b; Sircar et al., 2016). Most
investigations of low to moderate Reynolds number (Re) have either focused on the
linearized studies (Ray and Zaki, 2014), experimental analysis (Groisman and Stein-
berg, 1998) or the full Direct Numerical Simulations (DNS) (Yu and Phan-Thien,
2004) of the affine response of dilute polymeric liquids. However, in semi-dilute
or moderately concentrated polymeric liquids, instabilities may arise due to flow in-
duced inhomogeneities, and an improved understanding of the transition pathway
of the non-affine or the non monotonic flow response in (but not limited to) strong
elongational flow, is expedient.

The concepts of absolute and convective instabilities are well established to study
the evolution of impulse disturbances in Newtonian flows. Absolute instability was
earlier experimentally verified by Shoji et. al (Shoji et al., 2020) in liquid jets. There
is also an extensive literature on Newtonian wakes and mixing layers, including
the blunt body experiments listed by Oertel (Oertel, 1990), the linear analysis by
Chomaz (Delbende and Chomaz, 1998) and Healy (Healy, 2009) and the DNS stud-
ies by Pier (Pier, 2008). Overall, these studies found a destabilizing effect of finite
boundaries and an existence as well as a transition to absolute instability in the near
wake region.

The spatiotemporal analysis of viscoelastic free shear layers (a transition region
between two stream of different velocity) are more recent and scarce. An early exper-
imental study by Vihinen et. al (Vihinen, Honohan, and Lin, 1997) reported absolute
instability in viscoelastic liquid jets. Pipe reported a stabilizing effect of polymer
addition in his experiments on viscoelastic cylindrical wakes, which is counteracted
by shear thinning and a transition from convective to absolute instability at higher
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polymer concentrations (Pipe, 2005). In contrast, the linear analysis of dilute mixing
layers (Ray and Zaki, 2014) and dilute jets (Ray and Zaki, 2015; Alhushaybar and
Uddin, 2019; Alhushaybari and Uddin, 2020) relay a significant range of parameters
where viscoelasticity was found to be destabilizing. A recent DNS study of jets (M.
C. Guimaraes and Silva, 2020) necessitates the use of an extra (convective) timescale
to characterize the memory fading property of viscoelastic fluids.

In this Chapter, we have limited our focus on the linear spatiotemporal analy-
ses of viscoelastic free shear layer, mainly within the regime of non-affine / non
monotonic flow response. We characterize the fluid flows as being absolutely or
convectively unstable and utilize the method of spatiotemporal analysis by progres-
sive moving of the isocontours in the complex frequency and wavenumber plane, as
proposed by Kupfer (Kupfer, Bers, and Ram, 1987). The next section describes the
model of the viscoelastic free shear layer flow coupled with four constitutive relations
for the extra elastic stress tensor for simultaneous comparison of results: Oldroyd-
B, Upper Convected Maxwell (UCM), Johnson-Segalman (JS) at the slip parameter
value, a = 0.5, and the linear Phan-Thien and Tanner (PTT) model at a = 0.5 and
the elongation parameter explored within the range ε ∈ [0,0.99], although a detailed
study is predominantly conducted at ε = 0.5 (§5.2.1) as well as the details of the lin-
ear stability analysis leading upto the fourth order Orr-Sommerfeld equation (OSE)
(§5.2.6). §5.3 introduces the Compound Matrix Method (CMM) to numerically solve
the resultant system of stiff ordinary differential equations (ODE) emerging from the
OSE, rewritten in terms of the auxiliary variables. §5.4 showcases the simulation
results including numerical method validation (§5.4.1), the temporal (§5.4.2) and the
spatiotemporal stability analyses (§5.4.3), followed with a brief discussion on the
implication of these results as well as the focus of our future direction (§5.5).

5.2 Mathematical model and linear stability analysis
Unlike Newtonian solvents, the transition to instability in polymeric liquids depends
on the details of the equations relating stress to the shear rate. The linear PTT model
properly describes the non-affine behavior of polymeric liquids composed of a low to
moderate concentration of high molecular weight polymer in a very viscous Newto-
nian solvent at moderate shear rates, including the effect of shear thinning, non-zero
normal stress coefficient and stress overshoot in transient flows (Yu and Phan-Thien,
2004). Further, this model predicts finite stress at finite strain rates for strong elon-
gation flow, a feature which is achieved by constraining the length of the polymer
chain to a maximum allowable length. The numerical solution obtained by lineariz-
ing the Navier Stokes along with the extra stress constitutive equation is reliable in
describing the characteristics of the initial stages of the mixing layer transition (Bird,
Armstrong, and Hassager, 1987). Hence, the linear stability results can be utilized
as the initial-boundary conditions for Direct Numerical Simulation (Yu and Phan-
Thien, 2004) or the Large Eddy Simulation of polymeric liquids (Steinberg, 2018) in
order to further study the flow evolving process downstream.
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5.2.1 Mathematical model
The continuity and the momentum equations for an incompressible flow in a free
shear flow configuration are as follows,

∇ ·v = 0, (5.1a)

ρ
Dv
Dt

=−∇p+∇ · τ, (5.1b)

where v is the velocity vector, ρ the density, p the isotropic pressure and τ the extra
stress tensor, which is written as the sum of the viscous, Newtonian stress, τs (= ηsD,
where D = ∇v+∇vT is the rate of strain tensor) and the elastic stress, τ p (= ηpA).
ηs,ηp are the solvent viscosity and the polymeric contribution to the shear viscosity,
respectively. Introducing the parameters, η(= ηs+ηp) and ν(= ηs/η), representing
the total viscosity and the viscous contribution to the total viscosity, respectively, the
extra stress tensor can be rephrased as follows,

τ = η [νD+(1−ν)A]. (5.2)

The tensor A satisfies the linear PTT equation (Yu and Phan-Thien, 2004),

(1+ ελ trA)A+λ
DA
Dt

= D, (5.3)

where the Gordon-Schowalter convected derivative,
DA
Dt

, is,

DA
Dt

=
∂A
∂ t

+v ·∇A− 1
2
(WT +aD) ·A− 1

2
A · (W+aD). (5.4)

W = (∇v−∇vT) is the vorticity tensor, λ is the polymer relaxation time, a is a slip
parameter characterizing the non-affine motion of the chains and ε ∈ [0,1] is a di-
mensionless parameter describing the maximum elongation of the polymer chains.

5.2.2 Oldroyd-B model
For ε = 0,a = 1 the motion is affine and the Johnson-Segalman model reduces to the
Oldroyd-B model. The Oldroyd-B model describes well the behavior of polymeric
liquids composed of a low concentration of high molecular weight polymer in a very
viscous Newtonian solvent at moderate shear rates. But this constitutive relation fails
in many circumstances, e. g., it fails to predict the physical value of the viscosity in
extensional flow when the relaxation time of the polymer times the extension rate
exceeds 0.5 (or when the elongational flow is strong enough to drive the two sides of
the polymer dumbbell infinitely far apart from one another) (Bird et al., 1987). The
other three models are also described as follows.

5.2.3 Upper Convected Maxwell model
An exception to the Oldroyd-B model is the UCM fluid (ε = 0,a = 1,ν = 0), a case
where the extra stress tensor is purely elastic. A UCM liquid predicts a quadratic
shear rate dependence of the first normal stress difference and zero second normal
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stress difference (which is a realistic behavior of polymer melts at moderated shear
rates (Bird, Armstrong, and Hassager, 1987)), but a constant shear viscosity (or no
shear thinning behavior). The upper-convected Maxwell (UCM) model is a general-
isation of the Maxwell material for the case of large deformations using the upper-
convected time derivative. The model was proposed by James G. Oldroyd. The
concept is named after James Clerk Maxwell. The model can be written as:

∂A
∂ t

+v ·∇A−∇vT ·A−A ·∇v =
D−A

λ
, (5.5)

where A is the stress tensor, v is the velocity vector and λ is the polymer relaxation
time.

In the case of steady shear, the upper-convected Maxwell model predicts for the
simple shear that shear stress to be proportional to the shear rate and the first dif-
ference of normal stresses (T11−T22) is proportional to the square of the shear rate,
the second difference of normal stresses (T22−T33) is always zero. In other words,
UCM predicts appearance of the first difference of normal stresses but does not pre-
dict non-Newtonian behavior of the shear viscosity nor the second difference of the
normal stresses. In case of start-up of steady shear, the equation is only applicable,
when the velocity profile in the shear flow is fully developed. Then the shear rate
is constant over the channel height. If the start-up form a zero velocity distribution
has to be calculated, the full set of PDEs has to be solved. In this case, only two
components of the shear stress became non-zero for the UCM model. For the case
of small deformation the nonlinearities introduced by the upper-convected derivative
disappear and the model became an ordinary model of Maxwell material.

The UCM model recaptures all of the linear viscoelastic modelling and show
Newtonian / Neo-Hookean behavior for the limiting case (slow / fast flow). Contrary
to this, UCM model follows no shear rate dependence of viscosity and first normal
stress difference (i.e no shear thinning) and the extensional thickening is too severe
in this model. This model works for very dilute solutions (< 0.5% concentration) and
dilute solutions with very high solvent viscosities (Boger fluids).

5.2.4 Johnson-Segalman model
The Johnson-Segalman (JS) fluid (an illustration of this model is highlighted via a
fixed slip parameter, a = 0.5 and ε = 0) allows for a non-monotonic relationship
between the shear stress and rate of shear in a simple shear flow, consequently ex-
plaining the ‘spurt’ phenomena or a dramatic increase of the volumetric flow rate
(equivalently a jump in the strain rate) at a critical stress which is independent of
molecular weight of the polymer (Malkus, Nohel, and Plohr, 1991). The equation
for JS model is described in equation (5.4), where the left-hand-side of the equa-
tion is known as the Gordon-Schowalter (GS) convected derivative, in JSO models
the nonaffine motion of polymer chains. They are not locked into a rubber network,
which deforms with the flow, but rather the chains are allowed to slip past the con-
tinuum.
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For a = 1 the motion is affine, and JS reduces to the Oldroyd-B model, which for
µs = 0 is the same as the upper-convected Maxwell model. Decreasing a increases
the slippage, and softens the response of the material by increasing shear-thinning in
shear flows, and reducing strain hardening in extensional flows. (The slip-parameter
a should be restricted to 0.2< a< 0.89 for consistency with experiments using dilute
solutions of a variety of commercial polymers. The ratio of the second normal stress
difference to the first, equal to −(1− a)/2 for JS, was found to lie between −0.40
and −0.055, and to be independent of the shear-rate).

5.2.5 Phan-Thien Tanner model
Finally, the PTT model is derived from the Lodge-Yamamoto network theory by
Phan-Thein and Tanner (Thien and Tanner, 1977). The model is an extension of the
UCM model with the Gordon-Schowalter convected derivative written to include a
function dependent on the trace of the polymer stress. The linear PTT model (il-
lustrated via the model parameters a = 0.5,ε ∈ [0,0.99]) is based on finitely exten-
sible springs; it does reproduce shear-thinning and generally captures the instabil-
ity transition more accurately than the Oldroyd-B as well as the JS model (Yu and
Phan-Thien, 2004). Both the linear and exponential forms of the PTT model are
extensively used (Thien, 1978). The quadratic form is far less widely mentioned in
literature, but is used to model the wire-coating process (Ngamaramvaranggul and
Webster, 2002). Both the affine (a = 0) and the non-affine (a 6= 0) PTT models are
found in literature but the simpler affine model is more prevalent in the study of con-
traction and re-entrant corner flows (Evans, 2010). The PTT model improves upon
the UCM model for modeling polymeric fluids since the UCM model over predicts
stresses at large deformation rates, along with obtaining a closer fit to the real world
normal stress differences.

5.2.6 Linear Stability Analysis
Consider the free-stream velocity in a frame moving with the average flow velocity,
i. e., U (= 1

2 (U1 - U2), where U1(U2) is the free-stream velocity of the upper(lower)
flow), and the momentum thickness, δ (Azaiez and Homsy, 1994a). Utilizing U,δ
as the reference velocity and the length scale, respectively, we nondimensionalize
equation (5.1) and introduce the the dimensionless numbers, Re = ρδU/η and the
Weissenberg number, We = λU/δ . Assuming that the mean flow is two-dimensional
(with x and y being the streamwise parallel and transverse directions in space, re-
spectively) and quasi-parallel with its variation entirely in the transverse direction,
i. e.,

U(y) = tanh(y), Ω(y) = tanh2(y)−1, Ψ(y) = log(cosh(y)), (5.6)

where U(y),Ω(y),Ψ(y) are the dimensionless streamwise parallel mean velocity
(with zero transverse component), mean vorticity and the associated streamfunc-
tion, respectively. Further, assuming that the mean flow supports a two-dimensional
disturbance field, the streamfunction and the extra stress tensor are represented by
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the base state profile (Ψ(y),τ0(y)) plus a small perturbation, which is Fourier trans-
formed in x and t as follows,

ψ(x,y, t) = Ψ(y)+φ(y)ei(αx−ωt),

τ(x,y, t) = τ0(y)+ϕ(y)ei(αx−ωt), (5.7)

where φ(y),ϕ(y) are the transverse perturbations in the streamfunction and the extra
stress tensor and α,ω are the complex wavenumber and angular frequency, respec-
tively. We note that equation (5.6) is a solution of the momentum equations for
incompressible flow provided there is a dimensionless body force term on the right-
hand-side of equation (5.1b) (Sircar and Bansal, 2019). We rephrase equations (5.1-
5.4) in the streamfunction-vorticity formulation and avail equation (5.7) to arrive at
the equation governing the perturbation of the streamfunction, given by the fourth
order OSE (Azaiez and Homsy, 1994a).{

i
[
(αU−ω)(D2−α

2)−αD2U
]
− ν

Re
(D2−α

2)2
}

φ=
1−ν

FRe

4

∑
n=0

cnDn
φ . (5.8)

where Dn(·) denote the nth derivative of any variable function with respect to y, D =
d/dy, F = 4d3

0
[
aS1S2 +S1S3 +(1−a2)S2

1
]2
[S3 +(1+a)S1]

2 and the coefficients ci’s
are listed as follows:

c0 =
−4(S3 +(1+a)S1)

2

(4S2
0d3

0(S3 +(1+a)S1)2)

[[
S2

0
{
(D2Ã)d2

0− Ãd0(D2d0)−2(DÃ)d0(Dd0)+2Ã(Dd0)
2 +α

2Ãd2
0
}

+2(1−a2)iα
{

S0
(
(D2U)(S1 +S3)+(DU)(DS1 +DS3)

)
− (DU)(S1 +S3)(DS0)

}
(Ã)d2

0 +2(1−
a2)iα(DU)(S1 +S3)S0

{
(DÃ)d2
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22
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12
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12
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, (5.9a)
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where the following coefficients are used in the definition of ci’s above,
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along with the first derivatives,
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The components of the base state extra elastic stress tensor, τ0, is given by
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where the coefficient M1 in the base stress, is given by
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(5.14)

Following the usual Newtonian development (Azaiez and Homsy, 1994a), we assume
that φ = φr + iφi (the subscript r/i from this point onwards will denote the real and
the imaginary components) and φr and φi (both real valued functions) are even and
odd functions of y respectively. Thereby, we restrict the domain of integration to the
upper half of the flow such that the boundary conditions at y = 0 (or the so called
centerline conditions), are altered as follows,

φi = φ
′′
i = 0 (5.15a)

φ
′
r = φ

′′′
r = 0. (5.15b)

The far stream boundary conditions (or the conditions at y→ ∞) is given by

φr/i = φ
′
r/i = 0. (5.16)

In § 5.3, we detail a solution procedure for solving the eigenvalue problem (5.8-5.16).

5.3 Solution to the eigenvalue problem
The primary step in evaluating the eigenvalues (α,ω) and the eigenfunction, φ , de-
scribing the disturbance field (satisfying equation (5.8)) is to probe the ramification
of the far stream boundary conditions (5.16) by using the mean flow information at
far stream, i. e., limy→ ∞ : U(y) = 1,U ′′(y) = 0, which simplifies the OSE (5.8) to
the following constant coefficient ODE (Sengupta, 2012),

φ
(4)−2α

2
φ
′′+α

4
φ =

iReS∞

(1−ν)+νS∞

(α−ω)(φ ′′−α
2
φ), (5.17)

where S∞ = 1+We(α−ω). The solution to equation (5.17) can be derived by setting
φ = eλy, such that one gets the characteristic roots as λ1,2 = ∓α and λ3,4 = ∓Q,

where Q=

[
α

2+
iReS∞(α−ω)

(1−ν)+νS∞

] 1
2

. The fourth order OSE (5.8) has four fundamental

solutions, i. e. {φi}4
i=1, whose asymptotic variation with y→ ∞ is: φ1,2 ∼ e∓αy;

φ3,4∼ e∓Qy. Then the general solution which satisfies the far stream conditions (5.16)
for real (α,Q)> 0, is of the form

φ = a1φ1 +a3φ3. (5.18)
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Equation (5.18) admits a non-trivial solution of the OSE, satisfying the far stream
condition (5.16) and the centerline conditions (5.15a, 5.15b) if and only if the de-
terminant of the associated matrix of the linear algebraic system given by equa-
tion (5.18), vanishes at y = 0, or(

φ1φ
′′
3 −φ

′′
1 φ3
)
|y=0 = 0, (5.19)

for the odd component (equation (5.15a)) and(
φ
′
1φ
′′′
3 −φ

′′′
1 φ
′
3
)
|y=0 = 0, (5.20)

for the even component (equation (5.15b)), respectively. Equations (5.19, 5.20) serve
as the dispersion relation of the problem and will be solved simultaneously. The
stiffness of the OSE (5.8) (e. g., in the case of far stream eigenmodes in the limit
Re→∞, we see that |Q| � |α|, leading to an immense contrast between the two sets
of characteristic roots of equation (5.17)) thereby causing the solution components
corresponding to the different fundamental solutions to lose linear independence.
This source of parasitic error growth necessitates the use of CMM (Ng and Reid,
1985), where one works with a set of following auxiliary variables,

y1 = φ1φ
′
3−φ3φ

′
1, y2 = φ1φ

′′
3 −φ3φ

′′
1 , y3 = φ1φ

′′′
3 −φ3φ

′′′
1 ,

y4 = φ
′
1φ
′′
3 −φ

′′
1 φ
′
3, y5 = φ

′
1φ
′′′
3 −φ

′′′
1 φ
′
3, y6 = φ

′′
1 φ
′′′
3 −φ

′′′
1 φ
′′
3 , (5.21)

satisfying the initial value problem (IVP) (Sircar and Bansal, 2019),

y′1=y2,

y′2=y3 + y4,

y′3=y5−
[
(1−ν)(c1y1+c2y2+c3y3)−F (iRe(αU−ω+2α2ν)y2

(1−ν)c4+Fν

]
,

y′4=y5,

y′5=y6+

[
(1−ν)(c0y1−c2y4−c3y5)+F (iRe(αU−ω)+2α2ν)y4

(1−ν)c4+Fν

+
F (iRe[(αU−ω)α2+αU ′′]+α4ν)y1

(1−ν)c4+Fν

]
,

y′6=
(1−ν)(c0y2+c1y4−c3y6)+F(iRe[(αU−ω)α2+αU ′′])y2

(1−ν)c4+Fν

+
Fα4νy2

(1−ν)c4+Fν
, (5.22)

where the initial conditions are estimated by substituting the free stream values of
the unknown (i. e., in the limit y→ ∞ substitute φ1 ∼ e−αy and φ3 ∼ e−Qy in equa-
tion (5.21)) and normalizing with respect to one of the variables (e. g., y1) to remove
stiffness. The rescaled initial conditions for solving equations (5.22) are

y1 = 1.0, y2 =−(α +q), y3 = α
2 +qα +q2,

y4 = qα, y5 =−qα(α +q), y6 = (qα)2 (5.23)
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The numerical solution for IVP (5.22, 5.23) is obtained by marching backward from
the free stream to the centerline. A suitable value of the eigenpair (α,ω) is obtained
by enforcing the dispersion relation (equations (5.19, 5.20)) in auxiliary variables
and solving simultaneously, i. e.,

Re(y2) = 0 at y = 0 for odd component, (5.24a)
Re(y5) = 0 at y = 0 for even component, (5.24b)

respectively. Re(·) denotes the real part of the complex valued function.

5.4 Results
The zeros of the dispersion relation (equation (5.24)) were explored within the com-
plex α−ω plane inside the region −0.02 ≤ ωr ≤ 0.13,−1.6 ≤ ωi ≤ 0.25,αr ≤ 1.6
and |αi| ≤ 0.02. Previous results indicate that the influence of viscoelasticity is
fully captured by the modified elasticity number, E = (1−ν)We

Re , a parameter repre-
senting the ratio of the fluid relaxation time to the characteristic time for vorticity
diffusion Ray and Zaki, 2014. We highlight our instability results versus this pa-
rameter. The continuation curves in §5.4.2 and 5.4.3 are depicted within the range
E ∈ [10−3, 5.0] using a discrete step-size of 4E = 10−3. The numerical solution
of the IVP (5.22, 5.23) was determined via the fourth order Runge Kutta integra-
tion with a step-size of 4y = 2.2× 10−3. The integration domain was truncated
at η = 12.0 (a point at which the free stream boundary conditions (5.16) were im-
posed), which leads to a value of the momentum thickness (the reference length scale
introduced in §5.2.6), δ = 0.30685. The results in §5.4.2 and §5.4.3 are compared at
two different values of Re (i. e., Re = 40 and Re = 400) as well as, at ν = 0.3 (the
elastic stress dominated case) and at ν = 0.7 (the viscous stress dominated case).

5.4.1 Numerical method validation
First, our numerical method outlined in §5.3 is validated by reproducing the absolute
and the convective instability results for (a) inviscid mixing layers investigated by
Huerre and Monkewitz (Huerre and Monkewitz, 1985) or the Rayleigh instability
equation (figure 5.1a), and (b) spatially developing viscoelastic Oldroyd-B mixing
layers probed by Ray and Zaki (Ray and Zaki, 2014) (figure 5.1b), using the non-
dimensional base-state velocity profile given by

U(y) = 1+S tanh
(y

2

)
, (5.25)

where the parameter S is the ratio of the difference and the sum of the free-stream ve-
locities of the upper and the lower half. In figure 5.1a, we recover the familiar curve
of the cusp / pinch points for different complex pairs (α,ω) determined by the nu-
merical integration of the inviscid Rayleigh equation together with the exponentially
decaying far stream boundary condition, equation (5.16). Note the crossover from
the real-ω axis at the critical value, S = 1.315, highlighting a transition from con-
vective instability (i. e., ω

cusp
i < 0) to absolute instability at this value. Figure 5.1b

presents the evolution of the critical value of S versus the elasticity number, E, at
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ν = 0.5 and Re = 50,100,400,1000 for an Oldroyd-B fluid. First, notice the re-
duction at low elasticity number regime, E < 0.1, followed by an enhancement of
absolute instability, with increasing E (i. e., the critical value of S eventually drops
with increasing E). Second, note that the elasticity number is the dominant flow
parameter measuring viscoelasticity while the Reynolds number has negligible influ-
ence beyond Re≥ 400. A more detailed outlook of the influence of viscoelasticity is
acquired by examining the temporal growth rates, described in the next section.

FIGURE 5.1: (a) Locus of the cusp points of the Rayleigh equation
in ω-plane at critical values of the parameter, S, and (b) the critical
values of S versus elasticity number, E, of the OSE (equation (5.8))
for Oldroyd-B fluids, at ν = 0.5 and Re = 50,100,400,1000. The

mean velocity profile is given by equation (5.25).

5.4.2 Temporal stability analysis
A positive sign of the temporal growth rate indicates whether absolute instability is
possible. The temporal stability analysis for viscoelastic free shear flows in the dilute
regime, for low to moderate Re and We, was earlier studied by us (Sircar and Bansal,
2019). In the limit of large Re and We such that We/Re ∼ O(1), Azaiez conducted
the temporal stability analysis through an elastic Rayleigh equation and concluded
elasticity as the controlling flow parameter within the dilute flow regime (Azaiez and
Homsy, 1994a). In this study, we extend these ideas within the non-affine / non-
monotonic response regime. Figure 5.2 presents the solution of the OSE (5.8) for
purely real wavenumbers, αr (third column), while allowing angular frequency to
be complex number. The other two columns in figure 5.2 are the temporal growth
rate or the largest positive imaginary component of any root of the dispersion rela-
tion (5.24), ω

Temp
i (second column) and the corresponding real part of the frequency

(first column). The four models are shown using solid line (Oldroyd-B fluids), dot-
ted line (UCM fluids), dash-dot line (JS fluids, a = 0.5) and dashed line (PTT fluids,
a = 0.5,ε = 0.5).

First, notice the instability curves (in particular the curves for the UCM fluid)
do not start at the same point near E = 0. Readers are reminded that the simulation
starts at E0 = 10−3, i. e., E ≡ 0 (the Newtonian case) is not considered in the present
discussion. Further note that the viscous stress dominated case at Re = 40, with the
exception of the UCM fluid, is unstable in the limit E → 0 (figure 5.2h). This insta-
bility occurs at short wavelength (i. e., large αr, figure 5.2i) and low frequency (i. e.,
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small |ωr|, figure 5.2g). In the dilute regime, the shear flow instabilities were found
to arise at zero elasticity number, through a combination of instability via normal
stress anisotropy and elasticity (Sircar and Bansal, 2019). In the non-affine regime,
we surmise a similar operative mechanism. The overall trend, for large values of E,
is that elasticity is stabilizing for UCM fluids (figures 5.2b,e,h,k), stabilizing for PTT
fluids at higher Re (figures 5.2e,k) but has negligible small (although stabilizing) in-
fluence on Oldroyd-B and JS fluids (ωTemp

i curve is nearly flat in the range E ≥ 3.5).
The mechanism of this elasticity-induced stabilization is well documented by Hinch
in an appendix to Azaiez (Azaiez and Homsy, 1994a), and is akin to the action of a
‘surface tension’. The stretched polymers contribute to an effective tension along the
vibrating membrane that is the shear layer, and this tension damps the perturbations.
This important analogy with the surface tension helps to provide a physical expla-
nation for the influence of viscoelasticity on mixing layer stability, in the large-E
limit.

The JS as well as the PTT fluids at Re = 40 shows a non-monotonic behavior at
low to intermediate values of E (figures 5.2b,h) with alternating regimes of stability
followed by instability, a feature typical of semi-dilute or moderately concentrated
polymeric liquids. These fluctuations are characterized at short wavelengths (fig-
ures 5.2c,i) and low frequency (figures 5.2a,g). However, the PTT model ‘overesti-
mates’ (‘underestimates’) the instability predicted by the JS model for elastic stress
dominated (viscous stress dominated) case at low to intermediate values of E (i. e.,
compare dashed and the dash-dot curves in figures 5.2b,e versus figures 5.2h,k). In
addition, within the range E ≥ 3.5, while the stability of the Oldroyd-B as well as the
JS fluid is almost exclusively a function of E (figures 5.2b,e,h,k), the PTT model pro-
duces a more complicated behavior, dependent on all the three parameters, E,Re,ν .
The reason for these observations is explained as follows. The JS model is derived
from a kinetic theory in which the polymers are represented as beads connected by
springs and this underlying assumption of infinitely extensible springs is limiting in
the JS model. The finitely extensible (nonlinear) springs of the PTT model arrests the
infinite stresses at finite strain rate in extensional flows, leading to a complex pattern
described above.

In particular, the PTT results (compared with the JS results at ν = 0.7,Re = 400,
figure 5.3a) indicate that a realistic value of the maximum elongation, ε , can induce
a significant stabilizing influence of elasticity for large values of E. For small values
of ε (i. e., ε ≤ 0.1), results are close to those obtained with the JS model. As ε is
increased, the (nonlinear) stiffness of the polymer molecules is increased, and one
expects a reduction in the (stabilizing) influence of elasticity. We have considered
several values of ε , but are particularly interested in results for ε = 0.5. Previous
analysis of viscoelastic mixing layers in high Weissenberg number flows have used
values between ε = 0.3 and ε = 0.7 (Hagen and Renardy, 1997).

We gain a better understanding of these results and construct a criteria for the
recovery of the ‘JS behavior’ by examining the base-state polymer stresses, τ0. In
steady homogeneous shear flow, the behavior of the base-state polymer stress in the
PTT mixing layer is closely related to the standard viscometric results which, in suc-
cession, depends on the non-dimensional shear rate (Ferras et al., 2019). At low
shear rates, the elongation of the PTT springs is modest, and the PTT and JS models
produce similar results. At higher shear rates, the springs become more stretched,
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FIGURE 5.2: The frequency, ωr, (first column); most unstable mode,
ω

Temp
i , (second column); wavenumber, αr (third column) for param-

eters (a-c) ν = 0.3, Re = 40, (d-f) ν = 0.3, Re = 400, (g-i) ν = 0.7,
Re = 40 and (j-l) ν = 0.7, Re = 400 versus the elasticity number, E,
using using solid, dotted, dash-dot and dashed curves for Oldroyd-B,
UCM, JS (at a= 0.5) and PTT fluids (at a= 0.5,ε = 0.5), respectively.
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nonlinear elasticity becomes important, and the PTT polymer stress components be-
come attenuated relative to their JS counterparts. These trends are present in the tanh
mixing layer as well, though the velocity gradient is not constant, and the polymer
stress depends on the local shear rate. The role of elongation must also be considered,
and using Eqs. (5.13), the ratio of the JS and PTT stress components can be shown
to be functions of the shear rate, ζ ≡ εEUy. Figure 5.3b presents the base stresses
at ν = 0.7,Re = 400, with respect to this shear rate at the centerline, ζ = ζc = εE.
Unsurprisingly, when the shear rate, ζc, is small, there is little difference between the
PTT and the JS models, but at larger values of ζc, the JS stress is larger. We can fore-
see that the relative attenuation of the base stresses as ζc is increased, is connected
to the stabilizing influence of elasticity which was observed in our temporal stability
results. Conversely, we would expect to recover the JS behavior if ζc is less than
some critical value, ζ ∗c = 0.126, i. e., the ratio of all the base stresses are less than
90% beyond this critical value of ζc. A better characterization of these instabilities
are revealed through the spatiotemporal analysis in §5.4.3.

FIGURE 5.3: (a) The temporal growth rate for linear PTT fluids,
ω

Temp
i versus E, and (b) the log-log plot of the ratio of the PTT versus

JS base stresses as a function of the centerline shear rate. Other pa-
rameters are fixed at a = 0.5,ν = 0.7,Re = 400 and ε = 0.5 for plot

(b).

5.4.3 Spatiotemporal stability analysis
Spatiotemporal analysis is typically relevant when one introduces an impulse exci-
tation locally in a flow and observes how that disturbance evolves. In an effort to
determine the range of E (for fixed Re and ν) for which the flow regimes are abso-
lutely unstable, convectively unstable or temporally stable, we recover the absolute
growth rate (or the growth rate at the cusp point, ω

cusp
i , figure 5.4) starting from

the most unstable temporal mode, ω
Temp
i . The cusp point in the ω−plane is a sad-

dle point satisfying the criteria, D(α,ωcusp)= ∂D(α,ωcusp)
∂α

=0 but ∂ 2D(αpinch,ωcusp)
∂α2 6=0

(where D(α,ω) = 0 is the dispersion relation). However, not all cusp points are un-
stable and, in particular, the evanescent modes are segregated from the regular cusp
points using the Briggs idea of analytic continuation (Kupfer, Bers, and Ram, 1987).
While the Oldroyd-B model is presumed to represent the dilute polymeric liquids,
the linear PTT model (due to the finite, nonlinear elongation of the polymer chains
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at a = 0.5,ε = 0.5) portrays the instability transition for moderately concentrated
polymeric liquids. A discontinuity in the curves in figure 5.4 indicates a region of
temporal stability.

The instability pattern shown in figure 5.4 is a result of a complex interplay be-
tween the inertial forces (proportional to Re) and the normal stress anisotropy through
elasticity (proportional to E). For example, within the lower elastic number regime
(i. .e., E < 0.5) the dilute polymeric liquids display constricted regions of temporal
stability at higher value of Re (comparing the solid curve at Re = 40 (figure 5.4a)
versus the curve at Re = 400 (figure 5.4b)). Similarly, the viscous stress dominated
case reveals (convective) instability at lower value of Re and E (figure 5.4c). Clearly,
while the former observation is the result of inertia, the latter is the outcome of insta-
bility generated via polymer elasticity. Analogous with the temporal stability analy-
sis, we find that the absolute growth rate of the PTT fluids in the high elastic number
regime is always lower than the JS fluids. This is because the finite elongation at-
tribute of the PTT fluids is able to rein in the large elastic stress gradient buildup.

To explore the nature of these instabilities, we compute the boundaries of the
temporally stable regions (S), convective instabilities (C), evanescent modes (E) and
absolute instabilities (A) within a selected range of flow-elasticity parameter space,
i. e., Re∈ [0.1,400],E ∈ [10−3,5] and ν = 0.3 (figure 5.5a) and ν = 0.7 (figure 5.5b).
The boundaries of the temporally stable, convectively unstable and absolutely unsta-
ble region, for dilute liquids in the elastic stress dominated case (figure 5.5a) are nu-
merically estimated to reside within the range E < 0.3, approximately 0.3≤ E ≤ 1.5
and E > 1.5 (for all values of Re), respectively. In contrast, the concentrated poly-
meric liquids exhibit temporal stability and absolute instability in a confined region,
i. e., E < 0.1 and E > 4, respectively. For the viscous stress dominated case (fig-
ure 5.5b), the dilute as well as the concentrated liquid reveals convective instability
within the range Re < 150 and E < 0.1 (including in the limit Re� 1) which is
followed with alternating regions of (temporal) stability and (convective) instability
for larger values of E. Absolute instability is unveiled by the Oldroyd-B fluids for
E > 1.5 and by the PTT fluids for E > 1.0, for practically all values of Re.

We discuss the significance of the temporal stability analysis (figure 5.2) as well
as the spatiotemporal phase diagram (figure 5.5) in relation to the experiments for
Newtonian as well as viscoelastic flow past a cylinder, since the shear layer insta-
bility is closely related to the instability of the cylinder wakes (Pipe, 2005). In the
case of Newtonian wakes for Re < 1, the flow past a cylinder is steady and with-
out recirculation (Taneda, 1956). The emergence of a locally, convectively unstable
wake is detected at Re≈ 5, whereby the selected perturbation are amplified and con-
vected downstream but ultimately leave the flow undisturbed (Monkewitz, 1988).
The locally most unstable part of the wake becomes absolutely unstable at Re≈ 25,
although this is not sufficient for self-sustained global oscillations of the wake. At
Re ≈ 47 the region of absolute instability in the wake is large enough for the wake
to sustain time-amplified oscillations, which is followed by the onset of the laminar
two-dimensional von Kármán instability (J. M. Chomaz and Redekopp, 1988). This
transition to global instability has been ascribed to a supercritical Hopf bifurcation
towards a limit cycle (Provansal, Mathis, and Boyer, 1987) and the linear stability
analysis appears to faithfully describe the Newtonian wake dynamics, ‘unreasonably’
far above the global instability threshold of Re (Oertel, 1990).
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FIGURE 5.4: The cusp point, ω
cusp
i versus E evaluated at the flow pa-

rameters, (a) ν = 0.3,Re= 40, (b) ν = 0.3,Re= 400, (c) ν = 0.7,Re=
40, and (d) ν = 0.7,Re= 400, shown using solid, dotted, dash-dot and
dashed curves for Oldroyd-B, UCM, JS (at a = 0.5) and PTT fluids (at

a = 0.5,ε = 0.5), respectively.
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In contrast, first notice that all four stress constitutive relations in the phase di-
agram in figure 5.5 indicates a convectively unstable region for moderate values of
E. For the elastic stress dominated case, figure 5.5a, this region lies in the range
0.6 ≤ E ≤ 0.7 (Oldroyd-B), E0 ≤ E ≤ 0.1 (UCM), 0.5 ≤ E ≤ 0.6 (JS and PTT);
and for the elastic stress dominated case, figure 5.5b, this region lies in the range
0.8≤ E ≤ 1.1 (Oldroyd-B), E0 ≤ E ≤ 0.1 (UCM), 0.5≤ E ≤ 0.6 (JS and PTT); for
significantly larger values of Re (i. e., Re > 47). This observation is in congruence
with the early experimental studies of viscoelastic vortex street highlighting the re-
duction in the vortex shedding frequency (related to the temporal growth rate in the
present study) (Kalashnikov and Kudin, 1970), as well as in the intensity of the vor-
ticity (Cadot and Kumar, 2000), namely the origin of inertial turbulence modified by
elasticity. Second, notice the appearance of convectively unstable region for the vis-
cous stress dominated case, for small values of E and in the limit Re→ 0. This result
corroborates the experimental findings of McKinley et al. (McKinley, Armstrong,
and Brown, 1993) showing instability induced by elasticity for viscoelastic flow past
a cylinder at Re� 1 as well as the findings of Coelho and Pinho (Coelho and Pinho,
2003) showing a significant destabilization of the wake for shear-thinning, elastic
fluids at Re < 40, in other words the presence of elastic turbulence.

Two other observations are noteworthy: first, the Oldroyd-B, JS and the PTT
models suggest absolute instability for sufficiently large values of E (i. e., E > 4
(E > 1.5) for the elastic (viscous) stress dominated case, figure 5.5a versus 5.5b)
and second, the presence of a temporally stable region for the JS and PTT models
for the elastic stress dominated case (figure 5.5a), approximately within the range
0.6 < E < 4 and Re < 100. While the former observation signifies a pathway to elas-
toinertial turbulence (appearing at moderate Re and large E) which characterizes the
maximum drag reduction state and even originates in linear instability studies of pipe
flows (Chaudhary et al., 2021), the latter observation indicates an intricate tug-of-war
between the inertial destabilization and elastic stabilization. While the presence of
the first region was recently substantiated (Samanta et al., 2013), a comprehensive
experimental ratification of the second region is eagerly awaited.

FIGURE 5.5: Viscoelastic free shear flow stability phase diagram at
(a) ν = 0.3, and (b) ν = 0.7, in the E–Re parametric space. The re-
gions S, C and A are denoted by temporally stable, convectively unsta-
ble and absolutely unstable regions, respectively. The domains outline
by (A, E) and (C, E) are those where both the stable and evanescent

modes (denoted by E) are found.
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Chapter 5. Spatiotemporal linear stability of viscoelastic free shear flows:

non-affine response regime

5.5 Conclusions
This investigation addresses the linear, temporal and the spatiotemporal analyses of
free shear flows of dilute as well as moderately concentrated polymeric liquids for
low to moderate Reynolds number and Elasticity number, by capturing the non-affine
flow response of a ‘tanh’ base flow mixing velocity profile. Section 5.2 presented the
viscoelastic free shear flow model as well as the elements of the linear stability anal-
ysis via the solution of the Orr-Sommerfeld equation. Section 5.3 demonstrated the
steps of the Compound Matrix Method, utilized to numerically solve the resultant
system of stiff differential equations. The temporal stability analysis in section 5.4.2,
indicates (a) elastic stabilization at higher values of elasticity number and (b) a non-
monotonic instability pattern at low to intermediate values of elasticity number for
the JS as well as the PTT model. The spatiotemporal phase diagram in section 5.4.3
divulge the familiar regions of inertial and elastic turbulence, a recently verified re-
gion of elastoinertial turbulence and the unfamiliar temporally stable region for in-
termediate values of Reynolds and Elasticity number.

Although this study provides an improved understanding of the linear dynamics
of mixing layers for dilute to moderately concentrated polymeric liquids, a number of
simplifying assumptions were made, and the relaxation of these assumptions paves
a way for further progress. Understanding the importance of base flow spreading,
confinement and nonlinearity as well as the consideration of the shear flows of poly-
mer melts (or fluids with very large viscosity) are of substantial importance. Finally,
we note that we have considered only the two-dimensional instabilities which is a
common simplification in the absolute / convective instability studies of Newtonian
flows where Squire’s transformation can be applied (Squires and Quake, 2005). A
modified Squire’s transformation for Oldroyd-B fluids also exist (Bistagnino et al.,
2007), but we are not aware of a similar result for the PTT model. Hence, a con-
sideration of the three-dimensional instability modes in future studies with the PTT
model may be worthwhile.
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Chapter 6

Conclusions: challenges faced and
future problems

6.1 Introduction
In the first part of this final chapter, we discuss the challenges and the difficulties
faced in the numerical simulations as well as the linearized approximations of the
free shear flows. In the second part of this chapter, we review three different types of
viscoelastic surface instabilities which will form the basis of our future investigation:
The Rayleigh-Plateau, the Saffman-Taylor and the Faraday instabilities. These insta-
bilities are classical examples of hydrodynamic surface instabilities, whose complete
theoretical description is still lacking.

6.2 Challenges faced in viscoelastic fluid simulations
Some of the most challenging problems in the numerical simulation of viscoelastic
flows are associated with singularities or boundary layers which occur in the high
Weissenberg number limit. Another challenge is the reentrant corner singularity
which arises in contraction flows. The stresses and deformation rates at a reentrant
corner are infinite, and therefore the local Weissenberg number at the corner is infi-
nite, regardless of what the global Weissenberg number of the flow is. The numerical
resolution of the corner singularity has been problematic, and the upper convected
Maxwell model has been particularly recalcitrant. A third difficulty in numerical
simulations is the resolution of the stress boundary layers on walls: a feature more
pronounced for the upper convected Maxwell model.

6.2.1 High Weissenberg Number problem
In many ways, the problem of high Weissenberg number problem for viscoelastic
flows is similar to high Reynolds number problem for Newtonian flows. The first
thing one does when dealing with a problem involving a small parameter is to set
this parameter equal to 0. Thus, for high Reynolds number flows, the first step is to
investigate what happens when viscosity is neglected entirely; this leads to the Euler
equations. Below, we shall see that there is a counterpart of the Euler equations for
the high Weissenberg number limit in viscoelastic flows. Rather curiously, the high
Weissenberg number limit of the upper convected Maxwell fluid is actually related
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to the Euler equations (Sengupta, 2012). The Euler equations, however, cannot de-
scribe all the relevant features of high Reynolds number hydrodynamics. First, the
Euler equations require fewer boundary conditions than the Navier-Stokes equations.
This leads to boundary layers in which viscous effects cannot be neglected. We shall
see that boundary layers also arise in high Weissenberg number flows, even though
these elastic boundary layers have nothing to do with satisfying boundary condi-
tions (Azaiez and Homsy, 1994b). Another problem with the Euler equations is that
they allow a lot of nonuniqueness. For instance, in the flow through a pipe, the Euler
equations allow an arbitrary steady parallel velocity profile, plus a multitude of un-
steady and nonparallel flows. Just from the Euler equations we can, therefore, learn
nothing about the velocity profile which actually establishes itself in a high Reynolds
number pipe flow.We shall find a similar situation in the case of high Weissenberg
number flows.

6.2.2 Corner Singularities
Interest in the mechanics of viscoelastic flow past sharp corners has been stimulated
by attempts at numerical solution of axisymmetric and plane flow through sudden
contractions (Boger and Walters, 1993). The difficulties encountered in obtaining
convergent solutions for Oldroyd fluids and its generalizations at large values of the
Weissenberg number has been widely documented (Keunings, 1989). There is still no
general agreement regarding the convergence problems, although most investigators
believe that the major difficulty is associated with the resolution of very large stress
gradients emanating from comer singularities.

Knowledge of the behavior in the neighborhood of a comer would enable the
construction of elements that incorporate the strength of the singularity. This problem
is unsolved in general and remains one of the most pressing outstanding issues in
viscoelastic fluid mechanics. Most of the attention has focused on fluids for which the
retardation time is equal to zero. It is easily shown for a=−1 that the stream function
cannot be expressed as a power in distance from the comer. (G. G. Lipscomb, 1987)
have shown that for a "second-order fluid," the strength of the stress singularity is
twice that of the Newtonian fluid; this leads in some cases to a nonintegrable stress.
Their finite-element simulations for a Maxwell fluid are consistent with this ordering
up to the element closest to the comer, and they conclude that even when the stress is
integrable, it would exceed the known bond strength of the materials (hence requiring
relaxation of the no-slip condition). (Davies, 1988) has obtained a complete solution
for the corotational derivative (a = 0). The comer stresses for a = 0 are in fact
bounded, but values of a close to zero are unlikely to be of physical significance.
There is widespread speculation that the presence of the retardation time ensures that
the stress singularity will be of the same order as that for a Newtonian fluid.

6.2.3 High Weissenberg Number boundary layer
In contrast to the case of high Reynolds number flows, the boundary layers observed
in viscoelastic flows have nothing to do with boundary conditions. The boundary
condition in both cases is the no-slip condition. The elastic boundary layers, how-
ever, showno steep gradient of velocity; instead, it is primarily the stresses which
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change radically across the boundary layer. Indeed, the boundary layer is found even
if the velocity field is prescribed and only the integration of stresses from the consti-
tutive law is considered. The physical reason for the formation of a stress boundary
layer is as follows: at the wall, the velocity is 0. Hence, the stresses are determined
completely by the local velocity gradient, and they are given by the steady viscomet-
ric functions. At some distance from the wall, however, the memory of the fluid is
important, and the stresses are determined by the velocity gradients over some dis-
tance along the streamline. If the Weissenberg number is large, this leads to a sharp
transition in stress behavior close to the wall.

6.3 Future problems: spatiotemporal analysis for vis-
coelastic surface instabilities

In this section, we review three typical hydrodynamic surface (or more general inter-
facial) instabilities: the Rayleigh–Plateau instability, the Saffman–Taylor instability
and the Faraday instability. These instabilities were chosen as they are each represen-
tative of a more general class of pattern-forming systems and I intend to investigate
each. Here we discuss the modifications of these instabilities that occur when using
viscoelastic fluids instead of simple Newtonian liquids.

6.3.1 Rayleigh-Plateau instability
6.3.1.1 Newtonian liquids

A liquid column with a free surface always disintegrates into smaller droplets be-
cause surface tension leads to minimization of the surface-to-volume ratio. Rayleigh
showed that the size R of the droplets is determined by the wave length λ of the
sinusoidal distortion with the fastest growth rate. For the inertia-dominated case,
i.e., for low viscosity liquids, one finds λ ≈ 9r with the radius r of the column.
For the pending droplet, a similar scenario holds. When a pending droplet is fed
quasistatically via a syringe pump, it starts to fall if gravitation overcomes capillary
forces. However, as soon as the droplet begins to fall, surface tension again leads
to minimization of its surface area and acts as the main pinching force (Clanet and
Lasheras, 1999; Rothert, Richter, and Rehberg, 2003; Wagner et al., 2005). Thus,
the primary stages of the pinch-off of a droplet can be modeled as a Rayleigh in-
stability. The thinning dynamics of the neck radius, shown in Fig. 6.1, can be fitted
with an exponential law corresponding to exponential growth of the amplitude of the
most unstable wavelength. The growth rates fit well with the predictions made by
Rayleigh’s theory (Wagner et al., 2005).

During the final stages of the pinch-off process in the nonlinear regime, the sit-
uation becomes very different. The system no longer reflects the original geometry,
e. g., the diameter of the nozzle, but instead depends on material parameters (density,
surface tension and viscosity) only. The dynamics of this finite time singularity in
which the minimum neck diameter reaches zero in finite time can be described by
self-similarity solutions. For the low viscosity and thus inertia-dominated regime,
which applies in the case of water, it follows that the minimum neck radius ap-
proaches zero such that r(t)∼ (t− tc)2/3 (Fig. 6.1) (Eggers, 1993).



96 Chapter 6. Conclusions: challenges faced and future problems

FIGURE 6.1: Left image: Water droplet falling from nozzle. Right
image: Same experiment repeated after the addition of 100 ppm poly-
mer solution, mol. weight 4×106 g/mol (Source (Lindner and Wagner,

2009)).

FIGURE 6.2: Left image: Minimum neck diameter hmin vs. time for
water (◦) and 100 ppm polymer solution (mol. weight 4×106 g/mol)
in water (�). Right image: The elongational viscosity for different
concentrations of the polymer solution as a function of the Hencky
strain, a measure of elongation (Source (Lindner and Wagner, 2009)).

6.3.1.2 Polymeric liquids

The effect of elasticity on the (linear) dynamics of the Rayleigh-Plateau instability
can be best studied theoretically by use of the (linear) Maxwell model. Chang et
al. (Chang, Demekhin, and Kalaidin, 1999) performed a linear stability analysis and
predicted slight variations of the critical wave numbers and of the growth rates due
to linear elasticity.

In the experiments presented in Fig. 6.1, solutions of the flexible polymer at low
concentrations (10-2000 ppm) in a low viscosity solvent were used. In these solu-
tions, elastic contributions at small deformations are weak and, as a consequence, the
complex viscosity η∗ is difficult to determine by small amplitude oscillatory shear
rheometry. This means that, for small deformation, the polymers do not affect the
flow. Indeed, the experimental results (refer Fig. 6.2) show that the dynamics of the
primary stages of the detachment process are not altered. Only when the flow (and
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thus the elongation) is strong enough do the polymers become stretched, interrupting
the finite time singularity of the pinch-off process. Instead, one observes the forma-
tion of a filament and an abrupt transition to a new exponential regime with a much
larger time scale. This inhibition of the finite time singularity was first observed by
Amarouchene et al. (Amarouchene et al., 2001).

This is a surprising observation because it means that the elastic stresses in the
liquid that balance the stresses from the surface tension are much higher than for
the case of the pure solvent (Fig. 6.2). Still, the shear viscosity of the sample is
close to the solvent viscosity. The solution to this apparent contradiction is the fol-
lowing: any type of flow can be divided into a rotational and an elongational part.
The elongational part stretches the polymers and induces stresses. The rotational
part, e. g., in shear flow, causes the polymers to tumble and stresses are averaged
out to a large degree. In the filament, the flow is purely elongational and stretches
the polymers most efficiently. This leads to the so called elongational viscosity ηe.
For Newtonian liquids, the elongational viscosity ηe is directly given by geometrical
considerations and it follows ηe = 3ηshear. The factor 3 is called the Trouton ratio.
For polymers, the situation is less clear and measurements of the elongational vis-
cosity are non-trivial. The growing elastic stresses in the filament stabilize the flow,
since any distortions would lead to further stresses. This makes the filament very
robust and we might expect a Rayleigh-Plateau-like instability to be observed only at
the very end of the thinning process when the polymers are fully stretched and elastic
stresses cannot increase further. However, in most of the experiments, a more or less
irregular instability scenario is observed at the very end of the thinning process and
singular ‘beads’ grow on the filament. In a numerical study, Chang et al. (Chang,
Demekhin, and Kalaidin, 1999) predicted that the filament should start to disinte-
grate from both ends where it is connected to the falling droplet and the reservoir in
the nozzle. At these points, the curvature and surface stresses are maximal. Experi-
mentally, Oliveira et al. (Oliveira and McKinley, 2005; Oliveira, Yeh, and McKinley,
2006) found an iterative process between generations of larger and smaller beads,
but their range of observations was limited. Experimental data obtained by Sattler et
al. (Sattler, C.Wagner, and Eggers, 2008) indeed revealed an instability process that
was triggered from the ends. In contrast to previous studies, in which the plates where
pulled apart abruptly, in these experiments the separation was performed very gently
in order to prevent any additional distortions. Though in most of the experiments
singular droplets grew on the filament, it was possible to observe the exponential
growth of a coherent sinusoidal pattern (Sattler, C.Wagner, and Eggers, 2008). The
inverse growth rate of the pattern was found to be 1/ω = 9.3±0.1 ms. Linear stabil-
ity of a viscous fluid thread [1] predicts ω = γ/(6R0ηe f f ), resulting in an estimated
extensional viscosity of ηe f f = 9 Pa s±2, more than one order of magnitude smaller
than the extensional viscosity ηE(12µ m) = 100 Pa s estimated above, but neverthe-
less four orders of magnitude higher than the shear viscosity. The exponential regime
was followed by the final shrinking of the remaining thread between the beads, which
followed a linear law as expected for highly viscous liquids (Eggers, 1997; Rothert,
Richter, and Rehberg, 2003).

Finally, we outline the answer to the question of how the filament finally breaks.
For polymer concentrations greater than 1000 ppm, it was observed that the liq-
uid filament connecting two beads did not break; instead, a pattern that resembles
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a solid fiber. The beads sit alongside the filament; experiments on fluid drops on
a fiber (Carroll, 1986) show that there must be a finite contact angle between the
drops and the filament for such a symmetry breaking to occur. It follows that the thin
filament must have formed a (solid) phase different from that of the drops (James
and Saringer, 1980). Our interpretation of this experimental data is that, due to the
coupling of stress fluctuations and concentration fluctuations, a flow-driven phase
separation takes place. Microscopically, one can imagine that while solvent drains
from the filament, the polymers become entangled, leading to even higher polymer
concentration and increased entanglement, i.e., flow-induced phase separation takes
place (Kume et al., 1997). Further evidence for this concentration process was found
in (Sattler, Kityk, and Wagner, 2007), where birefringence measurements were per-
formed to examine molecular conformations in the break-up process. Evaporation
can be excluded as a factor in the formation of solid fibers, based on experiments in
a two-fluid system.

6.3.2 Saffman-Taylor instability
6.3.2.1 Newtonian liquids

The classical Saffman-Taylor instability occurs when, for example, air pushes a vis-
cous fluid in a narrow channel of height b and width W , a so-called Hele-Shaw cell.
In the following, the viscosity of air is neglected and the viscosity of the viscous
liquid is given by η . The surface tension between the two fluids is σ and the viscous
liquid is considered to perfectly wet the channel.

Flow in the confined geometry is then governed by Darcy law, which gives the
mean velocity (averaged over the thickness of the channel) of the fluid as a function
of an applied pressure gradient: V = − b

12η
∇p. The incompressibility of the fluid

reads ∇ ·V = 0 and one thus deals with growth in a Laplacian pressure field ∇p = 0.
The pressure jump at the interface is given by δ p = σ(2

b + κ), with κ being the
curvature in the direction of the channel width, once again using a two-dimensional
approximation. Together with the boundary conditions, this set of equations com-
pletely determines the problem.

When the less viscous fluid pushes the more viscous fluid, an initially straight in-
terface becomes unstable. Small perturbations lead to an increased pressure gradient
and a higher velocity in front of the perturbations and are thus amplified. Surface
tension, on the other hand, stabilizes the initially straight interface. The competition
between viscous and capillary forces leads to the emergence of a characteristic length
scale that can be calculated using linear stability analysis (Chuoke, Meurs, and Poel,
1959). The maximum growth rate is found for a wavelength lc = πb/

√
Ca with cap-

illary number Ca = ηU/σ . The small fingers grow and begin to compete with the
more advanced fingers, screening the less advanced fingers. In a linear channel of
width W , one finally observes a single finger propagating through the cell, the re-
sult of a nonlinear growth process. An example of initial finger growth and finger
competition, together with the growth rate obtained from the linear stability analy-
sis, can be seen in Fig. 6.3 left. The relative width of the single finger λ , defined as
the ratio between the finger width w and the cell width W , is given by the control
parameter 1/B = 12Ca(W/b)2, that is, the ratio between the two length scales of the
system W and lc. Representation of the results obtained using different fluids (and
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FIGURE 6.3: Left image: Growth rate τ as a function of the wave
number k. The most unstable wavelength lc is given by 2π/kc. Inset:
Snapshots of the destabilization of the planar front between air and
silicon oil. Right image: Relative finger width λ as a function of
surface tension for air pushing silicon oils of different viscosities in
channels of different geometries. Inset: snapshot of a finger advancing

into a linear cell (Source (Lindner, Bonn, and Meunier, 2000)).

thus different surface tensions or different viscosities) and different cell geometries
as a function of the control parameter 1/B shows that the results fall on a universal
curve (see Fig. 6.3 right). With increasing velocity U of the finger tip, viscous forces
become increasingly important compared to capillary forces and the relative finger
width decreases. At high velocity, the finger width does not, however, tend to zero
but stabilizes near a plateau value at λ = 0.5.

This instability was described by Saffman and Taylor in 1958 (Saffman and Tay-
lor, 1958); however, finger selection remained a puzzle for several decades. Neglect-
ing surface tension, Saffman and Taylor found a family of analytical solutions of the
shape of the interface given by x = W (1−λ )

2π
ln[1

2(1+ cos 2πy
λW )] that agrees well with

experimental observations. This treatment does not, however, explain the selection
of a given finger width. For this, one must take the surface tension into account.
This was done numerically by McLean and Saffman in 1981 (McLean and Saffman,
1981). The selection process was solved analytically only much later (Combescot
et al., 1986) and was attributed to the fact that the surface tension represents a singu-
lar perturbation leading to a solvability condition at the finger tip. It is this condition
that selects the finger from the family of solutions found by Saffman and Taylor.

The Saffman-Taylor problem is ideally not a two-dimensional problem. In reality,
there is a thin wetting film that remains between the advancing finger and the glass
plates. The thickness of this film, according to the Bretherton law, is proportional
to Ca2/3t/R = 0.643(3Ca)2/3 (Tabeling and Libchaber, 1986). As a consequence,
the pressure jump at the interface is continuously modified. This three-dimensional
effect leads to the slight modification of the finger width observed between different
experimental geometries, as observed in Fig. 6.3.

6.3.2.2 Polymeric liquids

When performing experiments in dilute solutions of xanthane, one observes a strong
modification of the selection process. As can be seen in the snapshot in Fig. 6.4
left, at high velocity, fingers are found to be significantly narrower than the classical
limit of λ = 0.5. This observation can be qualitatively linked to the behavior of the
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FIGURE 6.4: Left image: Relative finger width as a function of the
velocity for solutions of xanthane (◦) at 1000 ppm and (•) at 50 ppm.
Inset: snapshots of fingers in the two solutions at high velocity. Right
image: Viscosity in front of the advancing finger in a shear thinning
fluid found from numerical simulations. The shear thinning effect
increases from top to bottom. Red corresponds to high viscosities and
yellow to low viscosities. (Source (Kondic, Shelley, and Muhoray,

1998)).

shear thinning fluid pushed by the finger in the Hele-Shaw cell. Numerical simula-
tions (Kondic, Shelley, and Muhoray, 1998) show that the viscosity is not uniform
throughout the cell (see Fig. 6.4 right); regions of high fluid velocity and thus high
shear rate have a low viscosity. This is essentially the case in front of the finger tip
and the system becomes anisotropic, leading to finger narrowing.

For weak shear thinning, it is shown (Lindner et al., 2002) that simply replacing
in the control parameter 1/B the constant viscosity η by a shear-dependent viscosity
η(γ̇) one allows rescaling the data onto the universal curve for Newtonian fluids. The
shear rate γ̇ is here the average shear rate in the cell. For stronger shear-thinning,
this rescaling fails and deviations from the classical result toward smaller fingers are
observed.

Narrower fingers have also been observed by Rabaud et al. (Rabaud, Couder,
and Gerard, 1988). Using a Hele-Shaw cell with engraved glass plates, they found
viscous fingers with λ significantly smaller than 0.5 for Newtonian fluids. The ob-
servation of such ‘anomalous’ fingers is explained by the fact that the engravings
represent a local perturbation at the finger tip. This disturbance removes the classical
selection of the discrete set of solutions. The continuum of solutions given by the
analytical result of Saffman and Taylor without surface tension then becomes acces-
sible: λ can take values smaller than 0.5 at high velocity. Rabaud et al. showed that
for a given value of the capillary number Ca, it is not the relative finger width that is
selected but that the dimensionless radius of curvature at the tip ρ/b. ρ can be linked
to the finger width λ via the relation ρ = λ 2W

π(1−λ ) , which follows from the finger shape
predicted by Saffman and Taylor.

A similar mechanism has been found to be responsible for the selection of the vis-
cous fingers in a shear thinning fluid. Here when the shear thinning character of the
fluid is strong enough, anisotropy plays the role of the perturbation at the finger tip.
Fig. 6.5 left shows experimental finger profiles for a given capillary number and three
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FIGURE 6.5: Left image: Experimental finger shapes in a solution of
xanthane of 2000 ppm for three different channel widths W = 2,4 and
8 cm. Right image: Sketch of the thin wetting layer observed between
the finger and the glass plates. (Source (Lindner and Wagner, 2009)).

different cell widths. One clearly observes that the radius at the finger tip is identical
for the three experiments, leading to lower finger width compared to the Newtonian
case, in which the relative finger width λ is selected. The relation between ρ/b and
λ is found to depend on the shear thinning character of the fluids. Knowledge of
the relationship between ρ/b and λ solves the selection problem, as we can now
predict the finger width λ from the rheological data. The presence of shear thinning
thus leads to a completely different selection mechanism that is closer to what is ob-
served, for example, in dendritic growth [30] and which requires anisotropy in the
system. Corvera Poire et al. (Poire and Amar, 1998) directly solved the problem for
a power law fluid; their results are in good agreement with the experimental obser-
vations. Note that at high velocities one observes a saturation of ρ , leading to an
increase of the finger widths. This might be attributed to inertial effects, which have
been observed to increase finger width (Chevalier et al., 2006) and which may begin
to play a role in this low viscosity fluid.

In experiments using solutions of the flexible polymer, completely different be-
havior is found. In contrast to the observations in shear thinning fluids, where finger
narrowing occurs, one now observes finger widening compared to the Newtonian
case (see Fig. 6.4 left). The presence of normal stresses in the thin wetting layer
might be responsible for the finger widening; one can attempt to account for this ef-
fect by adding a supplementary pressure to the system. In classical theory, the pres-
sure jump at the interface between two liquids is given by the radius of curvature.
Tabeling et al. (Tabeling and Libchaber, 1986) have shown that one can incorporate
the effect of a finite thickness of the wetting film by correcting the surface tension
in the control parameter. Following the same argument, in the control parameter one
can add the supplementary pressure caused by the normal stresses to the surface ten-
sion term σ∗ = σ +1/2N1(γ̇)b. For moderate normal stresses, this allows rescaling
of the data onto one universal curve and once again solves the selection problem.

6.3.3 Faraday instability
6.3.3.1 Newtonian liquids

The Faraday experiment was first reported in 1831 (Faraday, 1831). In the appendix
of this paper, Faraday reports on the crispated state of a layer of liquid that is shaken
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vertically. He refers to works by ‘Oersted, Wheatstone and Weber and probably oth-
ers (sic)’ who had earlier mentioned the phenomenon; however, according to Fara-
day, it was he who gave the first conclusive description. The experimental setup
consisted of a box that was mounted on a rod. The rod was set into vibration by
a bow; its oscillation frequency was presumably on the order of a few Hz. When
the oscillation amplitude exceeded a certain critical value, standing capillary surface
waves were observed. Apparently, Faraday was impressed by the richness of the
patterns and noted: ‘obtained in this way the appearances were very beautiful, and
the facilities very great’. It is a remarkable achievement that even at that early date
Faraday found that the surface waves oscillate with half of the driving frequency.
This is the so-called subharmonic response. Faraday also pointed out differences
in the wavy surface patterns when he compared simple oils with, e.g., the white of
an egg. He stated: ‘The difference between oil and white of egg is remarkable; . .
. the crispated state may be a useful and even important indication of the internal
constitution of different fluids.’

In 1868, Matthiesen (Matthiesen, 1868) reported on systematic measurements;
he stated incorrectly that the surface response should be synchronous to the drive. In
1883, Lord Rayleigh (Rayleigh, 1883) proposed a theoretical treatment in terms of
a parametric pendulum, the Mathieu oscillator. In 1954, Benjamin and Ursell (Ben-
jamin and Ursell, 1954) solved the linear problem for ideal liquids (without viscos-
ity) with an infinite set of Mathieu oscillators that oscillate with integral and (n+1)/2
multiples of the driving frequency. The integral multiples correspond to a possi-
ble harmonic (synchronous) response and the (n+1)/2 to a subharmonic response
(Fig. 6.6). In 1994, Kumar and Tuckerman (Kumar and Tuckerman, 1994) presented
a numerical analysis of the linear problem in the case of viscous liquids with finite
depth of the layer. Together with an analytical treatment, this analysis was used to
find parameters to experimentally reproduce a harmonic response using a very thin
layer of liquid (Muller et al., 1997). Recently, a large variety of patterns with up to
10-fold rotational symmetry (quasiperiodic), superlattices or localized patterns have
been reported (Binks and Water, 1997; Arbell and Fineberg, 1998). A variety of
these patterns could be obtained using a simple liquid driven with a single frequency.
Near onset, in linear order, a single wave number first became unstable. The resulting
wave vector(s) could have any orientation, but nonlinear interaction with the higher
harmonics led to a given pattern selection process (Muller et al., 1997). Obviously,
the pattern dynamic might become even richer if two discrete wave numbers become
unstable simultaneously.

It is worth mentioning that numerical simulation of the full hydrodynamical prob-
lem of the Faraday experiment with a single driving frequency for simple liquids be-
came available only very recently (Perinet and Juric, 2009). Perinet et al. solved the
complete nonlinear Navier-Stokes equations by a finite-difference projection method
coupled to a Front Tracking technique for the calculation of the surface tension forces
and advection of the interface. They compared the complete spatial and temporal
Fourier spectrum of the surface state and found good agreement with experimental
data from Kityk et al. (Kityk et al., 2005). A quantitative theoretical description
of the nonlinear wave state of polymeric liquids remains an even more challenging
problem that is still unsolved.



6.3. Future problems: spatiotemporal analysis for viscoelastic surface instabilities103

FIGURE 6.6: The linear stability diagram of the Faraday experiment
for a Maxwell fluid. a) For a Newtonian fluid, (b) For polymeric fluids
with finite relaxation time, (c) For polymeric fluids when the inverse
polymer relaxation time compares to the driving angular frequency Ω

(Source (Muller and Zimmermann, 1999)).

6.3.3.2 Polymeric liquids

The first experimental data on Faraday waves of polymer solutions were, to our
knowledge, presented in 1998 by Raynal, Kumar and Fauve (Raynal, Kumar, and
Fauve, 1999). Their work concentrates on dilute polymer solutions where the in-
fluence of elasticity is small. They found a slight shift of the critical acceleration;
the critical wave numbers were not affected. In 1999, Muller and Zimmermann
presented a linear stability analysis for a Maxwell fluid (Muller and Zimmermann,
1999). They found that when the inverse of the relaxation time of the Maxwell fluid
compares to the driving frequency, a harmonic response might become unstable first
and that, for a certain set of parameters, a bistable situation exists; see Fig. 6.6.
Again, in 1999, Wagner and Muller presented experimental and theoretical data on a
Faraday experiment using a concentrated polymer solution of 2000 ppm (mol weight:
4×106 g/mol) in a water-glycerol mixture (Wagner, Muller, and Knorr, 1999) with
a relaxation time τp ∼ 1s. The rheological data obtained for the complex viscosity
was then fed into the linear stability algorithm of Kumar and Tuckerman (Kumar
and Tuckerman, 1994) and a reasonable agreement of the experimentally and numer-
ically determined critical accelerations was obtained. Notably, a bicritical situation
was found in which the subharmonic and harmonic responses became unstable si-
multaneously. For parameters where only a harmonic response existed, a coherent
pattern of hexagons was observed (Fig. 6.7a). The hexagonal symmetry is generic
for a harmonic response where the temporal symmetry allows the coupling of three
wave vectors Hn that are equally distributed on the critical circle (Fig. 6.7c). For fre-
quencies close to the bicritical point, with increasing driving strength subharmonic
wave vectors Sn also become unstable. They are slaved by the harmonic hexagonal
pattern and arrange together to a 2 × 2 superlattice. The nomenclature is taken from
crystallography and relates to the ratio of 1 : 2 of the harmonic and subharmonic
wave vectors, which is close to the ratio of linear unstable wave numbers (Fig. 6.7b).

The pattern-forming process can be understood in the following way. The linear
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FIGURE 6.7: (a) The harmonic hexagonal pattern, (b) The harmonic-
subharmonic hexagonal superlattice, (c) and (d) The respective spatial
Fourier spectra, (e) Localized stationary surface patterns of harmonic
hexagons in coexistence with a localized nonstationary patch of lines.

(Source (Wagner, Muller, and Knorr, 1999)).

stability analysis reveals that the surface state consists of a singular wave number k
(only exactly at the bicritical point do two wave modes synchronously become unsta-
ble) but of an infinite series of temporal Fourier components, nΩ or (n+1)/2Ω for
the harmonic or subharmonic responses, respectively. This linear result is fed into
the nonlinear equations for the hydrodynamic velocity field v. The solvability condi-
tion in quadratic order implies that resonant terms must vanish in the higher orders to
prevent secular growth. For the temporal components, an arbitrary quadratic nonlin-
earity results in a frequency spectrum of integral multiples of Ω whether or not S or H
are considered. Thus, quadratic nonlinearities are able to resonate with harmonic lin-
ear eigenmodes, but not with subharmonic ones. In the same way, spatial resonance
must be guarantied as well. Now, any triplet of harmonic modes {kH1,kH2,kH3}
with |kHm|= kH and kH1+kH2+kH3 = 0 are in resonance. This generic 3-wave vec-
tor coupling is well known (e.g., from non-Boussinesq-Rayleigh-Benard convection)
and enforces a saddle node bifurcation towards hexagonal patterns. The associated
solvability condition is referred to as the amplitude equation or Ginzburg-Landau
equation. Within the subharmonic regime, such a resonant 3-wave vector coupling is
prohibited due to the missing temporal resonance. The pattern selection mechanism
is therefore then controlled by the cubic coupling coefficient in the associated ampli-
tude equations (Edwards and Fauve, 1994; Chen, 1997), and a variety of patterns is
allowed.

For increased driving strength, localized patches of hexagons have also been ob-
served. They cannot be explained by a triplet of real Landau equations supplemented
by diffusive spatial derivatives, since within this familiar amplitude equation model,
stable isolated islands of hexagons do not exist. For even larger driving strength, the
patterns become chaotically time-dependent. Patches of subharmonically oscillating



6.4. Conclusions 105

lines originating in an erratic manner from the cell boundary or the flat surface pene-
trate into the stationary hexagonal superlattice. They then disappear and the original
structure is recovered. This process repeats itself on time scales of seconds to min-
utes, leading to a temporary coexistence of the stationary hexagonal superlattice with
subharmonic lines. Higher driving amplitudes lead to a fully chaotic surface pattern.
Still, no satisfying theoretical description of these states exists.

6.4 Conclusions
Further examples of hydrodynamic surface instabilities include the Kelvin-Helmholtz
instability (the interfacial instability of two liquids that are sheared against each
other), the Rayleigh-Taylor instability (that of the interface between two liquids of
different densities with the heavier liquid placed on top of the lighter), the Benard
Marangoni (an instability that occurs when a layer of liquid that is heated from be-
low becomes unstable due to differences in the surface stresses caused by thermal
gradients), the case in which a thin film flowing down an inclined plane becomes
unstable against wavy distortion (Gupta, 1967) and the disintegration of a liquid jet
into droplets (Eggers and Villermaux, 2008). Some of these systems have been in-
vestigated for the case of complex liquids (Graham, 2003). A special case is the
so-called shark-skin instability (Tordella, 1956; Denn, 1990), which refers to the ap-
pearance of a wavy distortion on a polymeric fiber that is forced through a hole or slit
(a ‘die’) above a critical speed. This instability is attributed either to an instability at
the solid-liquid interface (stick-slip) or to a bulk instability (Bertola et al., 2003). All
these instabilities will be investigated via spatiotemporal analysis at a later time.
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