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Abstract
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A significant increase in wireless communication has been observed over the past decade.
The existing radio frequency (RF) based communication network is not able to cope up with
this influx in connections and data requirements. In order to meet future needs, researchers
have started investigating Light Fidelity (LiFi) for the indoor environment. LiFi offers various
advantages over RF, such as a vast spectrum, spatial reuse, and inherent security. Furthermore,
LiFi does not interfere with the devices operating in the RF spectrum. However, LiFi technology
has its limitations; the major challenges of the LiFi system include the non-linearity due to LiFi
front end, limited front-end bandwidth, and susceptibility to blockages. In this dissertation, we
have tried to address these aforementioned challenges.

Firstly, we propose an adaptive learning architecture (ALA)-based predistoter to mitigate
the effect of front-end non-linearity. The proposed ALA predistoter achieved near-linear
performance in terms of amplitude-amplitude (AM/AM) distortions and constellation plots for
different LiFi front-ends non-linearity.

Secondly, in order to support high data rates with limited front-end bandwidth, highly
spectral efficient modulation schemes such as optical orthogonal frequency division multi-
plexing (O-OFDM) are required. Nonetheless, the major drawback of O-OFDM is that it
suffers from a high peak-to-average power ratio (PAPR), which causes clipping distortion,
reduces the illumination-to-communication conversion efficiency, and affects the lifetime of the
LED. Therefore, in this thesis, we propose advanced spectrally efficient low PAPR modulation
schemes such as double precoded optical orthogonal frequency division multiplexing (DP-
OOFDM) and optical-generalized frequency division multiplexing (O-GFDM). The simulation
results validate that the proposed DP-OOFDM with interleaved subcarrier mapping provides
PAPR as low as 2.1 dB compared to 12.7 dB for the corresponding O-OFDM counterpart.
Lastly, in order to deal with the problem of blockages in LiFi, the coexistence of LiFi and WiFi



has been proposed in the literature. However, an appropriate load balancing strategy plays
a vital role in the overall performance of such heterogeneous LiFi WiFi networks (HLWN).
Nonetheless, the problem of load balancing of HLWN is a non-convex mixed-integer nonlinear
programming (MINLP) optimization problem, i.e., it is mathematically intractable. Therefore,
in this thesis, we propose a reinforcement learning (RL) based load balancing technique for
HLWN. Additionally, we also explore the effect of different mobility models and link aggrega-
tion in HLWN. Simulation results illustrate that the proposed RL-based method can ensure
near-optimal performance at relatively low complexity.

The proposed frameworks in this dissertation can be utilized in LiFi standards. It will be
helpful for LiFi communication engineers to design an efficient physical layer and intelligent
load balancing scheme for HLWN without performing extensive simulations.
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Chapter 1
Introduction

In this chapter, the motivation of the work is discussed in Section 1.1. Followed by Section 1.2
which states the overall objectives of the thesis. The major contributions of this dissertation
and relevant publications are summarized in Section 1.3. The outline of the thesis is discussed
in Section 1.4. Finally, Section 1.5 concludes the introduction.

1.1 Motivation

Cisco report predicts that by 2023, two-thirds of the global population will have the Internet
and the average data-rate requirement will increase by more than three times from 2018 [10].
This rapidly growing connections and data traffic have placed huge pressure on the radio
frequency (RF) communication network, it has been forecasted that the entire RF spectrum
will not be sufficient to provide the demanded traffic by 2035 [11]. In order to support future
data traffic requirements, it is imperative to explore other parts of the electromagnetic spectrum
(shown in Fig.1.1) for devising new communication technologies. Thus, many researchers
are investigating visible light communication (VLC) as one of the promising solutions for
the short-range indoor communication. As the name suggests, this technology works on the
visible light spectrum i.e. 400-830 THz, thus can potentially utilize 400 THz unlicensed
spectrum. VLC offers inherent security and higher spatial reuse because of the nature of visible
light that does not pass through the walls. Furthermore, VLC does not interfere with devices
operating at 2.4 GHz, thus it can be used in RF sensitive environments such as aeroplanes and
hospitals. Additionally, VLC is a green technology, since it is power efficient and utilizes the
existing illumination infrastructure for communication [1, 12]. The VLC technology exploits
light emitting diodes (LEDs) as transmitters to provide high speed wireless communications.
Unfortunately, the conventional blue-phosphor LEDs can only support the 3-dB bandwidth
of approximately 3-5 MHz, due to the slow phosphor response. Researchers are actively
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Figure 1.1: Electromagnetic Spectrum [1]

investigating micro-LEDs, laser diode with diffusers to further improve the bandwidth of VLC
transmitter [13]. Nonetheless, the universal availability of LEDs, license-free deployment,
and Gbps order data rate makes VLC an attractive choice for indoor communications. The
first generation of VLC devices are already available from several vendors such as PureLiFi,
OledComm, Philips, VLNComm and Velmenni. According to a recent market report, VLC
market size is anticipated to reach 80 Billion USD by 2030 [14]. Thus, both IEEE and ITU
have initiated efforts for VLC standardization in the form of IEEE 802.15.13 Task Group [15],
IEEE 802.11.bb [16] and ITU-T G.vlc [17].

The choice of modulation scheme plays a crucial role for ensuring high data rates in a
communication network. Due to the the non-coherent nature of LED transmitters, the conven-
tional RF modulation schemes can not be directly used in VLC. Thus, VLC utilizes intensity
modulation with direct detection (IM/DD) technique for communication, which requires real
and positive transmit signal. In IEEE 802.15.7, many single-carrier modulation techniques
such as on-off keying (OOK) , M-ary pulse-amplitude modulation (M-PAM) , and M-ary pulse
position modulation (M-PPM) and color shift keying (CSK) were proposed for VLC. However,
the demand for spectrally efficient high data-rate communication motivated the introduction
of VLC multi-carrier modulation schemes [18]. Orthogonal frequency division multiplexing
(OFDM) has been proposed for low bandwidth (LB) and high bandwidth (HB) PHY modes of
IEEE 802.15.13. OFDM has several advantages over single carrier schemes: it achieves high
data-rate by using multiple orthogonal subcarriers to concurrently transmit parallel data streams,
eliminates the need for complex equalizers, embodies an inherent resilience to combat ISI; and
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straightforward for medium access (MA) . However, the conventional OFDM symbol is bipolar
and complex. In order make OFDM compatible with IM/DD, the complex bipolar signal
needs to be converted it into real and unipolar signal, the resultant is known as Optical-OFDM
(O-OFDM) . One of the major draw back of O-OFDM system is its high peak-to-average power
ratio (PAPR) . Since the time domain O-OFDM is generated by addition of multiple subcarriers
with distinct frequencies, it is possible to have constructive addition of various subcarriers. This
can result into a relatively higher instantaneous power than the average power, which results in
high PAPR. This high PAPR due to O-OFDM modulation can cause severe clipping distortion
that can result into degradation of system performance. In addition, a high PAPR reduces the
illumination to communication conversion efficiency [19] and lifetime of the LED. Therefore,
in this thesis, we have explored double precoding based method termed as Double Precoded
O-OFDM (DP-OOFDM) for reducing the PAPR of O-OFDM, and evaluated its performance
in terms of complexity, spectral efficiency, PAPR, power-saving and symbol-error-rate (SER)
against conventional discrete fourier transform (DFT)-precoded OOFDM [20] and O-OFDM.
Although this method provides ultra low PAPR, good SER and power saving, it provides
limited support for future communication requirements, such as machine type communication
(MTC), tactile internet, machine-to-machine (M2M) communication, bitpipe communication
and wireless regional area network (WRAN). Applications like MTC and M2M communi-
cation work over low power, therefore making strict synchronization unaffordable. Thus, an
alternative flexible multicarrier approach which enables the mix of synchronous/asynchronous
and orthogonal/non-orthogonal traffic types is required for the next generation. Generalized
frequency division multiplexing (GFDM) is one such potential candidate as it is based on block
structure of NJ samples, where each of the N subcarriers carry J subsymbols. GFDM turns
into OFDM when J = 1, and single carrier with single carrier frequency domain equalization
when N = 1. In GFDM, a single cyclic prefix (CP) is added for entire block that contains
multiple subsymbols, resulting into improved spectral efficiency of the system. This improved
spectral efficiency can be traded for an additional redundancy which leads to relaxation in
synchronization requirements of multiple users in an MTC scenario. GFDM can also fulfill
low latency requirement for tactile internet and vehicle-to-vehicle applications by utilizing its
flexible block structure [21]. The flexible nature of GFDM makes it a suitable candidate for
future communication networks. Therefore, we have proposed optical generalized frequency
division multiplexing (O-GFDM) for VLC physical layer in this thesis.

The physical layer of VLC only supports point-to-point communication whereas light
fidelity (LiFi) can be built over the VLC physical layer to support fully networked, bidirectional,
high-speed optical wireless communication. LiFi utilizes the visible light spectrum for downlink
and the infrared spectrum or WiFi for the uplink. The support of mobility, handover, and
illumination is mandatory in LiFi. LiFi is a wireless networking extension of VLC that supports
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multiuser, bidirectional, multicast, or broadcast communication. LiFi deployment requires
multiuser techniques, resource allocation algorithms, and security strategies [1, 22]. There are
various advantages of LiFi over WiFi:

• High spatial data rate: LiFi can potentially utilize massive bandwidth of visible spec-
trum to achieve high data rates. Although the off-the-shelf LEDs practically have limited
bandwidth, literature has reported that LiFi can achieve a speed over 15 Gbps [23] as
compared to 10 Gbps which is the top speed of WiFi IEEE 802.11ax [24]. Moreover,
the coverage of a LiFi AP is spatially confined to a small region known as attocell.
These small attocells facilitate spatial bandwidth reuse, thus improves spatial-spectral
efficiency.

• High security: Unlike WiFi signals which can penetrate through opaque objects, LiFi
signals cannot pass through opaque structures and thus, they are confined to the room for
the intended communication. Furthermore, as the coverage area of attocell is relatively
smaller than WiFi thus, LiFi can provide higher security compared to WiFi.

• High utility and power efficiency: LiFi can enable the existing illumination infras-
tructure to provide communication, resulting into higher utility. Furthermore, LiFi can
significantly improve energy efficiency [25].

Despite these advantages, LiFi has some limitations. Since light-wave cannot penetrate
through opaque objects, LiFi suffers from a major drawback of blockage. Furthermore, as
all the LiFi access points (APs) in a room operate on the same frequency, there exists co-
channel interference (CCI) between LiFi APs. Consequently, the LiFi throughput fluctuates
spatially which results into various coverage holes in an indoor LiFi environment. LiFi can
support high data rates when the receiver is in direct line-of-sight (LoS) , but as soon as the
LoS connection is lost, the data rate drops significantly; on the contrary, WiFi can support
moderate data rates with more ubiquitous coverage. Thus, to ensure the user’s quality of
services (QoS) , it is suggested to use LiFi technology as an additional layer within the existing
WiFi networks to form heterogeneous LiFi WiFi network (HLWN) . The coexistence of LiFi
and WiFi technologies is possible because of their nonoverlapping spectrums. In [26], it has
been shown that a HLWN provides higher system throughput as compared to standalone LiFi
or WiFi networks. An appropriately designed HLWN can support higher data rate, better user
satisfaction, outage performance, and lower handover rates [27]. For HLWN, load balancing
(LB) includes AP assignment, resource allocation and handover management. LB in HLWNs
is challenging as LiFi’s and WiFi’s coverage areas overlap with each other and WiFi covers
larger area but has lower capacity; this increases the complexity of AP selection process. If
the conventional received signal strategy (RSS) is applied for AP assignment in HLWN, WiFi
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AP will be susceptible to over-load, and the system would not be able to ensure the required
QoS. The problem of load balancing of HLWN is a non-convex mixed-integer nonlinear
programming (MINLP) optimization problem, it is mathematically intractable, consequently,
the conventional optimization methods fail to provide an optimal global solution. Therefore, in
this thesis, we have explored reinforcement learning (RL) based LB for HLWNs. Furthermore,
most of the existing literature considered that a HLWN user could either connect to a LiFi
AP or WiFi AP at a given point, however, in [28, 29] authors have implemented channel
aggregation for HLWN, and demonstrated proof-of-concept by using state-of-the-art LiFi and
WiFi frontends. Motivated by them, in this thesis, we have proposed a RL based LB algorithm
for link aggregation enabled HLWNs which provides near optimal performance at fairly low
complexity.

1.2 Objectives

The main aim of this dissertation is to improve both the PHY and MAC layer of VLC.
Specifically, this Ph.D was funded by Intel India and the objectives were defined according to
the MoU, which are as follows:

• To improve the VLC physical layer by investigating methods to reduce the PAPR of
O-OFDM and advanced modulation schemes for future communication requirements.

• To improve the performance of HLWN by designing a low complexity near-optimal load
balancing algorithm.

• To design an efficient LB algorithm for link aggregation enabled HLWNs with more
realistic system modeling.

1.3 Major Contributions

The major contributions of this dissertation and relevant publications are summarized below.

• In order to improve VLC physical layer, two major works have been investigated in this
thesis. First, DP-OOFDM is proposed to reduce the PAPR of O-OFDM. DP-OFDM
for the first time analyse the performance of real and imaginary part separation based
grouped DFT precoded OFDM in conjunction with Gaussian-minimum-shift-keying
(GMSK) based pulse shaping for VLC system. A comprehensive performance analysis
of proposed DP-OOFDM in-terms of PAPR, power saving, SER, spectral efficiency and
computational complexity against conventional DFT-precoded OOFDM and O-OFDM is
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provided. Furthermore, the analytical PAPR expressions for DP-OOFDM were derived
and results are validated through simulations. Second, an alternative flexible multi-carrier
approach known as O-GFDM has been investigated for VLC to cater future wireless
communication requirements. The O-GFDM significantly reduces the PAPR compared
to O-OFDM counterpart. The analytical SER expressions for O-GFDM SER was derived
and results are validated through simulations. The O-GFDM provides higher spectral
efficiency and significant power saving compared to DCO-OFDM counterpart.

– Rizwana Ahmad, and Anand Srivastava."PAPR Reduction of OFDM Signal
Through DFT Precoding and GMSK Pulse Shaping in Indoor VLC." IEEE ACCESS,
vol. 8, pp. 122092-122103. 2020.

– Rizwana Ahmad, and Anand Srivastava. "Optical GFDM: an improved al-
ternative candidate for indoor visible light communication." Photonic Network
Communications, vol. 39, no. 2, pp. 152-163. 2019.

– Rizwana Ahmad, Anand Srivastava, and Hossam AI Selmy. "Advanced modula-
tion techniques for low PAPR in vlc system." in IEEE 20th International Conference
on Transparent Optical Networks (ICTON), Bucharest, Romania, July 2018.

– Rizwana Ahmad, Anand Srivastava, and Hossam A. I. Selmy "Novel modulation
scheme for VLC", Proceedings of SPIE OPTO, Broadband Access Communication
Technologies XII, 105590K, San Francisco, California, United States, Jan. 2018.

• A RL based load balancing algorithm is designed for HLWN. The reward function of
RL was carefully crafted to increase the average system throughput while ensuring the
required QoS. The convergence and effectiveness of this algorithm were studied under
different mobility models. The performance of the proposed algorithm is compared
against benchmark in terms of complexity, average throughput and user satisfaction. It
is shown that the RL based LB can achieve a near-optimal performance with a lower
complexity as compared to RSS and exhaustive search methods.

– Rizwana Ahmad, Mohammad Dehghani Soltani, Majid Safari, Anand Srivastava,
and Abir Das. "Reinforcement learning based load balancing for hybrid LiFi WiFi
networks." IEEE Access, vol. 8, pp. 132273-132284, 2020.

– Rizwana Ahmad, Mohammad Dehghani Soltani, Majid Safari, and Anand Sri-
vastava. "Load Balancing of Hybrid LiFi WiFi Networks Using Reinforcement
learning." in 2020 IEEE 31st Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC). London. pp. 1-6.
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– Rizwana Ahmad, and Anand Srivastava. "Optimized User Association for Indoor
Hybrid Li-Fi Wi-Fi Network." in 2019 IEEE 21st International Conference on
Transparent Optical Networks (ICTON), Angers, France. pp. 1-5.

• For a link aggregation enabled HLWNs, a centralized RL based LB algorithm is proposed.
This work considers a more realistic system model that takes into account the effect of
receiver orientation and handover overhead. Furthermore, domain knowledge is included
to reduce the action space which in turn reduces the complexity. The performance
of the algorithm for different reward functions is evaluated and compared against the
benchmark in terms of complexity, average throughput and user satisfaction.

– Rizwana Ahmad, Mohammad Dehghani Soltani, Majid Safari, and Anand Srivas-
tava. “Reinforcement Learning-based Near-Optimal Load Balancing for Heteroge-
neous LiFi WiFi network”. Accepted in IEEE System Journal, 2021.

1.4 Thesis Layout

The rest of the thesis is organised as follows:
Chapter 2 presents the VLC system overview. Initially, the necessary background knowl-

edge about VLC along with its applications and system model is briefly explained followed by,
a more detailed explanation of optical VLC channel. Afterwards, various VLC modulation
schemes including O-OFDM are discussed. Further, the possible impairments in a VLC system
are reviewed. Finally, an ALA based predistorter is proposed to mitigate the effect of LED
non-linearity and its performance is compared against VLC system with ideal linear LED.
Overall, the impact of nonlinear LED on O-OFDM system has been mitigated to improve its
performance.

In chapter 3, a further improvement in performance of O-OFDM system is investigated by
employing PAPR reduction method termed as DP-OFDM. DP-OFDM is real and imaginary
part separation based grouped DFT precoded OFDM in conjunction with GMSK based pulse
shaping for VLC system. This chapter provides a comprehensive performance evaluation of
DP-OOFDM against O-OFDM, in-terms of PAPR, power saving, SER, spectral efficiency, and
computational complexity. Further, analytical expression for DP-OFDM PAPR is derived in
this chapter.

Chapter 4 investigate the performance of an alternative flexible multi-carrier modulation
technique i.e., generalized frequency division multiplexing (GFDM) for VLC. In this chapter,
the performance of two variants of GFDM for VLC namely, O-GFDM with DC (OGFDM-
DC) and without DC bias (OGFDM-NDC) have been evaluated against corresponding O-
OFDM counterparts. A comprehensive performance analysis in-terms of spectral efficiency,
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complexity, power saving, PAPR, SER, and subcarrier frequency shift tolerance is provided in
this chapter. Furthermore, this chapter also provides an analytical derivation of O-GFDM SER
expression.

Chapter 5 provides overview of LiFi and its coexistence with WiFi. Initially, the background
of LiFi and HLWN network is briefly explained. Afterwards, the HLWN system model used in
subsequent chapters is discussed. Finally, an optimization based load balancing algorithm for
HLWN is proposed and evaluated against RSS method.

In chapter 6, a low complexity near-optimal centralized RL based dynamic load balancing
algorithm for HLWN is proposed to maximize user QoS. The performance of this algorithm has
been compared against the state-of-the-art signal strength strategy (SSS), iterative optimization
method and exhaustive search based on computational complexity, average network throughput,
user satisfaction, fairness and capacity outage probability. Additionally, two different mobility
models, namely, random waypoint (RWP) and hotspot random waypoint (HRWP) have been
explored in this work, to illustrate the robustness of the proposed algorithm.

In chapter 7, link aggregation enabled HLWN is explored and an efficient RL based load
balancing is proposed for LA enabled HLWN. Furthermore, a more realistic framework with
orientation-based random waypoint (ORWP) mobility model, carrier-sense multiple access
with collision avoidance (CSMA/CA)-based multi-user access, and handover overhead is
discussed in this chapter. Moreover, this chapter extensively covers design of reward function
according to the objectives and demonstrates that a particular reward design is able to provide
both high average network throughout and user satisfaction. In addition, it introduces the
concept of domain knowledge to reduce the complexity of RL load balancing algorithm at the
cost of marginal performance degradation.

Chapter 8 concludes the dissertation and suggests the possible future research directions.

1.5 Summary

The rapid growth in mobile data traffic have motivated researchers to consider investigate alter-
native communication technologies to support the future communication network requirements.
VLC is one of the potential technology, which operates in the visible light spectrum and utilizes
the illumination LEDs for communication. In order to fully efficiently utilizes the spectrum,
O-OFDM modulation has been proposed for VLC. While the O-OFDM provide high data rates,
it suffers from the problem of high PAPR, which causes clipping distortion, and reduces the
illumination-to-communication conversion efficiency. Therefore, in this thesis, more efficient
low PAPR modulation scheme for the VLC physical layer have been investigated. Furthermore,
LiFi can be built over the physical layer of VLC to provide fully networked, bidirectional,
high-speed optical wireless communication. However, since light cannot penetrate through
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opaque objects, LiFi is prone to blockages; hence it can support high data rates in specific areas
only. On the other hand, the WiFi communication technology (WiFi) can support moderate data
rates with more ubiquitous coverage. As the spectrum of WiFi and LiFi are non-overlapping,
both of the technologies can coexist to form heterogeneous LiFi WiFi network (HLWN). The
load balancing strategy plays a critical role in the overall performance of a HLWN. Therefore,
in the second part of this thesis, various intelligent load balancing strategies for heterogeneous
LiFi WiFi network (HLWN) have been investigated.





Chapter 2
VLC Background and Overview

In this chapter, background and applications of VLC are discussed in Section 2.1. Followed by
Section 2.2 which provides a brief overview of a typical VLC system. More details related to
VLC physical layer such as channel model and modulation schemes are discussed in Section 2.3
and 2.4. Various impairments present in a VLC system including thermal noise, shot noise
and LED non-linear distortions are discussed in Section 2.5. In Section 2.5.2, effect of LED
nonlinearity on a VLC system is evaluated and an adaptive-learning-architecture (ALA) based
predistortion algorithm is proposed to mitigate the effect of LED nonlinearity.

2.1 Background

The first use of optical wireless communication (OWC)) dates back to 1880 when Alexander
GrahamBell invented a photo-phone to transmit audio signals by modulating sunlight [30].
With recent advancements in solid-state lighting, LEDs reliability, lifespan, cost, and energy
efficiency have significantly improved; consequently, LEDs are forecasted to take over nearly
84% of illumination infrastructure by the year 2030 [31]. Furthermore, LEDs can switch to
different light intensity levels at a high- rate; this allows LEDs to be used for illumination
and high-speed communication simultaneously. Motivated by this, Komine and Nakagawa,
developed a digital communication system using white-LEDs and referred to it as VLC [32].
Afterwards, VLC Consortium (VLCC) was founded in 2007 to standardize the VLC technology.
The vast bandwidth in the unlicensed band, existing infrastructure, low power consumption,
and no electromagnetic interference make VLC an attractive option for various applications.
Some of them are as follows:

• Wireless connectivity: VLC can be used to provide very-high-speed wireless connectivity
with inherent security. Currently, VLC can provide a data rate of over 15 Gbps [23]
using off off-the-shelf LEDs.
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• Aviation: In aircraft, RF communication is undesirable as it can cause interference in
navigational equipment. Thus, VLC can utilize the existing illumination LEDs of aircraft
for multimedia delivery to passengers. In 2019, Air France Airbus A321 demonstrated
the first in-flight use of VLC.

• V2X communication: The presence of LED-based headlamps in most vehicles and LED-
based traffic lights and street lamps enables the use of VLC for high-speed communica-
tion between vehicle-to-vehicle and vehicle-to-infrastructure. The current achievements
and research challenges associated with the use of VLC for V2X communication are
summarized in [33].

• Underwater communications: The acoustic navigation and positioning technology is
limited by bandwidth whereas the RF communication requires huge antenna size, large
transmitter power and suffers from high attenuation. On the contrary, VLC can provide
higher data rates than the traditional acoustic systems with significantly lower power
consumption and complexities for short-range communication [34].

• Hospitals: Conventional RF-based communication is undesirable in electromagnetic
wave-sensitive areas, such as around MRI scanners and operation theaters, because they
may cause interference. Instead, VLC can be used in hospitals.

• Smart displaying signboards: In modern days, signboards are used everywhere, including
shopping malls, roads, airports, and bus stops. These signboards are formed by an array
of LEDs, that can be used for broadcasting information by utilizing VLC.

• Location-based services: Most public spaces already have LED based illumination;
thus VLC based localization systems can be easily implemented with little additional
equipment [35]. In factories, VLC based localization can be used to locate employees
and assets efficiently. In shopping malls, it can aid efficient navigation and personalized
shopping experiences.

2.2 A Typical VLC system

The basic block diagram of a typical VLC system is shown in Fig. 2.1. In an indoor VLC
system, LED is commonly used as the transmitter front-end. Due to incoherent nature of the
LED, the data is modulated only into light intensity, rather than amplitude and phase. Therefore,
the simplest method of IM/DD technique is used in VLC. As illustrated in Fig. 2.1, the input
data after being coded based on source, channel or precoding methods is modulated and then
the modulated data is made compatible with LED front-end by converting the modulated signal
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Figure 2.1: A Typical VLC system

into real and unipolar signal. Afterwards, the signal x(t) is used for intensity modulation of the
LED, and the LEDs output signal travels through the channel to reach the optical receiver. At
the receiver, optical filters are employed to confine the spectrum of light, weaken the impact
of ambient light sources and for blue filtering. Afterwards, the filtered light is concentrated
on the photo-detector (PD) via an optical concentrator. The PD converts the incoming optical
signal into equivalent electrical signal which is amplified via a trans-impedance amplifier
(TIA) to provide signal y(t) for data demodulation. It is important to notes that the choice
of modulation scheme plays a crucial role in performance of the VLC system. More details
about the modulation schemes, optical channel and impairments present in a VLC system are
discussed in subsequent section.

2.3 Optical Channel

The VLC optical channel can be modelled as:

y(t) = RPD x(t)∗h(t)+n(t) (2.1)

where, "*" stands for a convolution operator, RPD indicates the responsivity of the PD, h(t)
denotes the impulse response of the optical channel, and n(t) is the additive white Gaussian
noise (AWGN) which represents the cumulative noise present in VLC system, explained in
Section 2.5.1. The impulse response h(t) can be expressed as:

h(t) = hLoS(t)+hNLoS(t) (2.2)
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where hLoS(t) is the impulse response of the line-of-sight optical channel, i.e., the direct link
between the LED and PD and hNLoS(t) is the impulse response of the non-line-of-sight (NLoS)
optical channel, i.e., diffused components taking into account the reflections from the walls.
Fig. 2.2 shows the LoS link and NLoS link between the LED and PD. The optical channel in
frequency domain is given as:

H( f )LiFi = H( f )LoS +H( f )NLoS (2.3)
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Figure 2.2: Typical VLC channel with LoS (green) and NLoS (orange) link

2.3.1 LoS Link

The light emitted by LED can be modelled as Lambertion radiation R(φ) following the spatial
distribution function cosm (φ), which can be modelled as [32, 36]:

R(φ) =
(m+1)cosm(φ)Pt

2π
(2.4)

where φ represents the angle of irradiation, m denotes the Lambertian order which specifies
the directionality of the source, and Pt is the transmitted optical power. The value of m can be
calculated from the source half-angle, Φ1/2, which is defined as:

Φ1/2 = arccos(0.5)
1
m . (2.5)

The PD at the receiver is responsible for converting the optical power into electrical current,
and it has various associated parameters which include physical area of PD APD , the receiver’s
field of view (FoV) Ψc .
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The direct LoS link between LED and PD can be modeled as [37]:

hLoS(t) =


R(φ)APD cos(ψ)

d2 δ (t− d
c ) : ψ < Ψc

0 : ψ > Ψc
(2.6)

where, d is the distance between the transmitter and receiver, δ (.) is the Dirac delta function,
c is the speed of light. The angle of irradiance φ , is the angle of view (relative to normal
direction) of the receiver position when looking from the transmitter, can be expressed as:

cos(φ) = n̂T
(CR−CT )

||d||
, (2.7)

The angle of light incidence at the receiver ψ , is the angle of view (relative to normal direction)
of the transmitter position when looking from the receiver, It can be given as:

cos(ψ) = n̂R
(CT −CR)

||d||
. (2.8)

where n̂T and n̂R are the orientations of the transmitter and receiver respectively. The positions
of source and receiver are CT and CR respectively. The DC channel gain for LoS is defined
as [9]:

H(0)LoS =
(m+1)APD

2πd2 cosm(φ)gfgc(ψ)cos(ψ), (2.9)

where, gf denotes the gain of the optical filter; and gc defines the gain of optical concentrator,
and is given as:

gc(ψ) =


n2

sin2(ψ)
, 0≤ ψ ≤Ψc

0, ψ > Ψc

(2.10)

where n is the refractive index of the concentrator.

2.3.2 NLOS Link

For the NLOS link, the light rays reaching to the PD after being reflected from different walls
of the room are considered. The channel gain for NLOS component is defined as [38]:

H( f )NLOS =
ρAPDe j2π f ∆T

Aroom(1−ρ)(1+ j f
fc
)

(2.11)

where ρ is the reflectivity of the walls, Aroom is the area of the room, ∆T is the delay between
the LOS and onset of the diffused signals, and fc is the cut-off frequency of the diffuse optical
channel [39].
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2.4 VLC Modulation Schemes

In VLC, since the same LED is responsible for both illumination and communication, the
modulation schemes need to satisfy the illumination requirements along with reliable commu-
nication. Thus, they should provide a particular luminous flux, support dimming, and ensure
no flickering, i.e, change in light intensity should be faster than perceptible human vision (200
Hz). Accordingly, IEEE 802.15.7 and 802.15.13 have proposed the following modulation
schemes for the VLC physical layer.

2.4.1 On-off Keying (OOK)

OOK is the simplest modulation scheme in which when ’1’ has to be transmitted the LED is
turned ’ON’, whereas when ’0’ has to be transmitted LED is turned ’OFF’. It must be noted
that ’OFF’ state does not imply turning off the LED rather it indicates that the light intensity
being significantly reduced. OOK is easy to implement but can support only limited data rate
with off-the-shelf components [18]. At higher transmission speeds, OOK pulse bandwidth
exceeds the LED 3-dB bandwidth, thus, the OOK modulation schemes begin to suffer from the
undesired effects of inter-symbol interference (ISI) [40]. Therefore, limiting the datarate.

2.4.2 Variable Pulse Position Modulation (VPPM)

VPPM uses PPM to provide communication and PWM to support dimming control. In case of
VPPM, the position of the pulse is modulated according to data and pulse width is modulated
according to the dimming requirement. The advantage of this modulation is that the amount of
dimming does not effect the communication, as long as there is some illumination [2]. Fig 2.3
illustrates an example of VPPM.

2.4.3 Color Shift Keying (CSK)

CSK uses the red-green-blue (RGB) LEDs as transmitter. Specifically, in CSK, the binary data
is first mapped on to x and y chromaticities by using the colour space chromaticity diagram,
after that these chromaticities are converted to the intensities Rt , Gt and Bt that can ensure the
white light. Finally, these intensities are transmitted by the RGB LED. Fig. 2.4(a) and 2.4(b)
illustrates the block diagram of a typical CSK system and colour space chromaticity diagram.

2.4.4 Multiband carrier-less amplitude and phase modulation (m-CAP)

carrier-less amplitude and phase (CAP) modulation transmit two streams of data in parallel,
similar to QAM. However, in contrast to QAM, CAP does not rely on a carrier, but uses orthog-
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Figure 2.3: Variable pulse position modulation (VPPM) with different dimming percentages, where the
encoded information is “0 1 0 0" [2].

(a) (b)

Figure 2.4: A typical CSK based VLC system: (a) Block diagram [3] (b) Colour space chromaticity
diagram (CIE 1931) [3]

onal waveform filters to separate the data streams. Thus, makes CAP receivers simpler than
QAM without compromising on the spectral efficiency and performance. Fig. 2.5 illustrates
the block diagram of m-CAP based VLC system.
Nonetheless, CAP is highly sensitive to non-flat channels, and requires complex equalizers for

frequency selective channels. Thus, for non-flat VLC, a multiband form of CAP (m-CAP) has
been proposed [4, 41]. The m-CAP splits the total signal bandwidth into m equally spaced sub-
carriers, in order to relax the flat-band response requirement by allocating a narrow bandwidth
to individual subcarriers. However, the major disadvantage of m-CAP is that it significantly
increases the computational complexity of the system, as it requires 2m finite impulse response
(FIR) filters at the transmitter and additional 2m FIR filters at the receiver. Thus, an m-CAP
signal in total requires 4m [41].
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Figure 2.5: Block diagram of m-CAP based VLC system [4].

2.4.5 Orthogonal Frequency Division Multiplexing (OFDM)

One limitation of previously discussed single-carrier modulation schemes is that they suffer
from high inter-symbol interference due to non-linear frequency response of LEDs. OFDM
has been widely adopted in VLC because of its high spectral efficiency and robustness against
inter-symbol interference.

For VLC, the transmitted signal needs to be real and positive. Therefore, the complex
bipolar OFDM signal is required to be converted to real unipolar signal. For this purpose,
Hermitian symmetry is applied to convert complex OFDM signal into real signal. Further, in
order to obtain a unipolar OFDM signal, there are various techniques which are used namely,
DC biased optical OFDM (DCO-OFDM): DC bias is added to the bipolar OFDM signal,
asymmetrically clipped optical OFDM (ACO-OFDM): the bipolar signal is clipped at zero
level and only the positive part of the signal is transmitted and Flip-OFDM: the positive and
negative parts of the bipolar OFDM signal are extracted into two separate subframes, and
subframe containing negative part is flipped in polarity, thus resulting into positive valued
signal [42]. DCO-OFDM is more spectral efficient as compared to ACO-OFDM and Flip-
OFDM, but less power efficient [43]. The block diagram of O-OFDM is shown in Fig. 2.6. The
incoming bits are converted from serial to parallel and modulation is performed. Following
that frame mapping and Hermitian symmetry is applied, in order to obtain real valued bipolar
signal after inverse fast Fourier transform (IFFT) operation. Different variant of O-OFDM uses
different techniques to convert this bipolar signal into unipolar signal. In ACO-OFDM, only
odd subcarriers carry information and zero level clipping is performed before transmission,
resulting into unipolar signal. In case of flip-OFDM, the polarity separator extracts the positive
and negative parts of real valued bipolar signal into two frames. These frames are multiplexed
such that first subframe contains positive part and second subframe contains flipped negative
part, therefore, the resultant frame has real unipolar values. In [42], authors have reported
that the performance and spectral efficiency of Flip-OFDM and ACO-OFDM are same and
they both are non-DC techniques. Hence, they can be considered equivalent, except for the
receiver complexity. In case of DCO-OFDM, a real valued unipolar signal is obtained by
adding appropriate DC bias to the bipolar signal. Thus, for DCO-OFDM the information is
carried over (N/2−1) subcarriers, whereas, for ACO-OFDM information is carried over N/4
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Figure 2.6: Block diagram of O-OFDM, where ACO-OFDM: Basic + A, Flip-OFDM: Basic + B,
DCO-OFDM: Basic + C, and ‘Basic’ are unshaded blocks.

subcarriers, provided N is the total number of subcarriers. DC bias added in DCO-OFDM
results into higher PAPR, therefore, making it less power efficient [43]. Additionally, high
PAPR causes clipping distortion, which results in performance degradation [44].

2.5 Impairments in VLC

2.5.1 Noise component

There are three prime noise sources present in a VLC system. First, ambient noise due to solar
radiations or fluorescent lamps presence in proximity of VLC receiver. It is hard to model but
its effect can be reduced using appropriate optical and electrical filters at the receiver. Second,
shot noise in the PD due to intrinsic randomness in the photon’s particle characteristics. It
increases with an increase in light intensity. For a large number of photons, this can be modelled
as an additive white Gaussian noise (AWGN). Third, thermal noise because of random thermal
motion of electrons in the receiver circuit. The resistance of the transimpedance amplifier
(TIA) is a major source of thermal noise. This noise can also be modelled as an AWGN. Thus,
the power of the overall noise in a VLC system can be modelled as:

σ
2 = σ

2
shot +σ

2
thermal (2.12)
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where, σ2
shot and σ2

thermal indicates the power of shot and thermal noise respectively. They
are described as:

σ
2
shot = 2qRPDPoptB+2qIBGI2B (2.13)

where, q is the electron charge, Popt represents the average received optical power, B is the
noise bandwidth which is determined by the minimum of signal modulation bandwidth or
the receiver bandwidth that has been used [45]; IBG indicates the background current; and I2

denotes the noise bandwidth factor.

σ
2
thermal =

4kBTkB
RL

(2.14)

where, kB is the Boltzmann’s constant, Tk is the absolute temperature in Kelvin and RL repre-
sents receiver equivalent load resistance.

2.5.2 Nonlinear Distortions

Apart from these previously discussed noise components, a VLC system also suffers from
clipping and nonlinear distortion caused due to limited dynamic range of LED. Both the voltage-
current relationship and the current-light intensity relationship in the LED are nonlinear [46].
Thus, the optical power emitted by LED Pout follows an nonlinear relationship with input
current signal Iin(t), as show in Fig. 2.7.
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Figure 2.7: LED transfer characteristic: Practical (black) and Ideal (blue)

In this work, a quadratic polynomial is used to characterize the nonlinear behavior of
LED [47]. It can be expressed as:

Pout = b0 +b1 (Iin(t)− IDC)+b2 (Iin(t)− IDC)
2 (2.15)
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where, IDC is the normalized bias current to the LED, and the nonlinearity coefficients b0, b1

and b2 can be defined as:

b0 = ζNL, b1 = 1 b2 =−4ζNL +2 (2.16)

where ζNL controls the severity of nonlinearity. According to the LED type, the experimental
value of ζNL varies in a range of 0.5 to 0.75 [48]. IDC represents the normalized bias current
which is set to 0.5 [47]. The LED nonlinearity significantly degrades the performance of
O-OFDM [49]. In literature, various predistortion and postdistortion techniques have been
proposed to mitigate the effects of LED nonlinear distortion [50–56]. To the best of our
knowledge, although the schemes in literature have shown considerable performance improve-
ment, however, none of them have compared the performance against a linear DCO-OFDM
system [57]. We propose a novel ALA-based predistortion algorithm to mitigate the effect of
LED nonlinearity in VLC system. ALA is a two step learning algorithm. First step includes
error measurement and decision making and second step is coefficient estimation. Firstly, the
error between the input DCO-OFDM signal x(n) and the LED output signal y(n) is measured
in terms of error vector magnitude (EVM) which can be expressed as [58]:

EVM =

√
1
N ∑

N−1
k=0

(
(I(yk)− I(xk))

2 +(Q(yk)−Q(xk))
2
)

√
1
N ∑

N−1
k=0

(
(I(xk))

2 +(Q(xk))
2
) , (2.17)

where I(yk) and Q(yk) are the in-phase and quadrature phase components at the kth subcarrier of
the observed signal y(n), and I(xk) and Q(xk) are the in-phase and quadrature phase components
at the kth subcarrier of the input DCO-OFDM signal x(n). The measured EVM is then compared
with threshold EVM (EV MT ) for decision-making. The value of EV MT typically depends
on the quality of service (QoS) requirement of a DCO-OFDM based VLC system. It can be
calculated from the desired bit error rate (BER) or signal-to-noise ratio (SNR) [58]. If the
measured EVM < EV MT , no further coefficient estimation is required and the output signal
becomes linear in nature. If the calculated EVM > EV MT (indicates nonlinear LED output),
then the coefficients of the predistorter are re-estimated. This process is repeated until we get
the linearzied output signal. This algorithm checks any variation in the linearization of the
transmitted signal in regular intervals. If there is any change in the physical characteristics of
LED or LED gets replaced by another LED, then ALA-based predistortion algorithm adapts to
these changes in the transmitted signal and re-estimates the coefficients of predistorter.

The second step of the algorithm is coefficient estimation. This block minimizes the error
between the predistorter output signal v(n) and the predistorter input signal y(n). A nonlinear
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polynomial model is considered for the predistorter which can be expressed as [59]:

v̂(n) =
P−1

∑
p=0

ĉpxp+1(n), (2.18)

where ĉp are the coefficients and P is the nonlinearity order. Initially, the coefficient (ĉ0) is
set to unity and the remaining coefficients (ĉ1, ĉ2, · · · , ĉP) are set to zero. Later, the values
of these coefficients would be updated depending upon the nonlinear characteristics of LED.
Their values are estimated using the ALA-based predistortion. For a total number of samples
equal to N, we can rewrite (2.18) as (2.19) and (2.20) where v is a N×1 output vector, Y is a
N×P input matrix and c is a P×1 coefficient vector. Since, it is an over-determined system,
therefore it has no solution.


v(0)
v(1)

...
v(N−1)

=


y(0) y2(0) · · · yP(0)
y(1) y2(1) · · · yP(1)

...
... . . . ...

y(N−1) y2(N−1) · · · yP(N−1)




c0
c1
...

cP−1

 (2.19)

v = Yc (2.20)

However, the coefficient vector c can be calculated by using least square (LS) solution on
(2.20), which can be expressed as:

ĉ = arg min
c
∥v−Yc∥2 (2.21)

Algorithm 1 ALA-based algorithm

Input: A DCO-OFDM signal x(n)
Initialization: ĉ0← 1; ĉ1, ĉ2, · · · , ĉP← 0

1: Calculate ALA-based predistorter output v̂(n) using (2.18)
2: Calculate LED output y(n) using (2.15) and OEC
3: Calculate EV M using (2.17)
4: while EV M > EV MT do
5: Compute the values of coefficient cp using (2.22)
6: ĉp← cp ;
7: end while
8: System is linearised
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The solution of (2.21) can be given as:

ĉ = (YHY)−1YHv. (2.22)

These estimated coefficients are used as the predistorter coefficients to predistort the input
signal and then get the linearized output signal from the LED. The above steps for the proposed
ALA-based algorithm has been summarized in Algorithm 1.

2.5.2.1 Simulation Results and Discussion

The VLC channel and simulation parameters are given in Table 2.1 [5] and 2.2 [6, 7]. The
performance of the proposed ALA-predistorter is compared against both linear VLC system
and nonlinear VLC system.

Table 2.1: Optical channel parameters [5]

Channel Parameter Value
Lambertian mode number, m 45
Area of PD, APD 9.8 mm2

PD’s field of View, Ψc 60◦

Transmitter location (xt ,yt ,zt) (2.5 m, 2.5 m, 3m)
Receiver location, (xr,yr,zr) (2.5 m, 2.5 m, 1m )
Optical concentrator gain, gc 0 dB
Optical filter gain, gf 0 dB
Responsivity of PD, RPD 0.53 A/W

Table 2.2: System parameters [6, 7]

System Parameter Value
Room dimension 5 × 5 × 3 m3

Modulation 16 QAM DCO-OFDM
DCO-OFDM IFFT order 512
Reflection coefficient, ρ 0.8
Nonlinearity coefficient, ζNL 0.541, 0.582, 0.65.
Predistorter nonlinearity order, P 7

The amplitude-amplitude (AM/AM) distortions due to nonlinear LED on the DCO-OFDM
signal with different ζNL are shown in Fig. 2.8. It can easily be observed from Fig. 2.8 that
with the increase in ζNL, the gap between the linear model and LED model also increases.
Thereby, degrading the quality of transmit signal degrades and consequently affecting the
overall performance of the VLC system. With the help of the predistorter, the AM/AM curves
approach the linear system which improves the system performance. From Fig. 2.8, it can
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be clearly observed that the proposed ALA-based predistorter is capable of mitigating the
nonlinearity caused by different LEDs.

(a) LED ζNL1 = 0.582 (b) LED ζNL2 = 0.582 (c) LED ζNL3 = 0.650

Figure 2.8: AM/AM plot for nonlinear LED having different ζNL with and without ALA based predis-
torter

(a) LED ζNL1 = 0.582 (b) LED ζNL2 = 0.582 (c) LED ζNL3 = 0.650

Figure 2.9: Constellation plot for 16-QAM DCO-OFDM signal when pass through nonlinear LED
having different ζNL with and without predistorter where red, blue, green and dots represents Input
symbols, output symbols without predistorter, output symbols with ALA based predistorter, respectively.

The constellation diagram of input symbols and output symbols of nonlinear LEDs with
and without predistorter for 16-QAM DCO-OFDM signal is shown in Fig. 2.9. It can be
observed that the output symbols without predistorter (blue dots) are deviated from their
expected position (red dots) due to the LEDs nonlinearity and this deviation increases with
an increase in nonlinear parameter ζNL. This indicates that there exits an inherent error in the
nonlinear which is a function of LED nonlinearity. However, in presence of predistorter, the
output symbols (green dots) are reverted close to their desired positions (red dots) because the
predistorter compensates for the inherent LED nonlinear distortion.
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2.6 Summary

In this chapter, an overview of a typical VLC system was presented followed by details related
to VLC channel model, modulation schemes, and impairments in VLC including LED non-
linearity. In the second half of the chapter, we proposed an adaptive-learning-architecture based
predistortion technique to mitigate the effect of LED non-linearity. While the existing literature
compared the performance of their algorithm “with predistorter" and “without predistorter" in
nonlinear VLC system only, we have compared the performance of our proposed ALA-based
predistortion technique with a linear VLC system as well. Furthermore, It is validated from
the results that our proposed ALA-based predistortion provides performance matching to the
linear VLC system. The near-linear performance is verified by AM/AM, constellation plots
for LEDs with different values of ζNL. In this chapter, we have shown that the effect of LED
non-linearity on a DCO-OFDM system can be mitigated by using ALA-based predistortion. In
the next chapter, we propose a method to deal with the issue of O-OFDM high PAPR.





Chapter 3
PAPR Reduction for O-OFDM

In order to further improve the VLC physical layer, double precoding O-OFDM is proposed
in this chapter to reduce the PAPR of O-OFDM. In Section 3.1, brief introduction and major
contributions related to above mentioned technique are presented followed by details related
to the system model in Section 3.2. The mathematical expressions of PAPR, complexity and
average spectral efficiency are derived in Section 3.3. The analytical and simulation results are
presented in Section 3.4. Finally, Section 3.5 concludes the chapter.

3.1 Introduction

The O-OFDM is most widely adopted in VLC to support high data rates. However, it suffers
from the major draw back of high PAPR. Since the time domain O-OFDM is generated by
addition of multiple subcarriers with distinct frequencies, it is possible to have constructive
addition of various subcarriers. This can result into a relatively higher instantaneous power
than the average power, which results in high PAPR. This high PAPR can cause sever clipping
distortion that can result into degradation of system performance. In addition, a high PAPR
reduces the illumination to communication conversion efficiency and lifetime of the LED.
Thus, various techniques have been investigated in the literature in order to reduce the high
PAPR of O-OFDM. They can be broadly classified into the following categories:

1. Signal Distortion Techniques: These techniques reduce the PAPR by distorting the O-
OFDM signal before its transmission. Some common signal distortion techniques include
(i) clipping and filtering [60, 61] (ii) companding [62] (iii) peak windowing [63] and (iv)
peak reduction carrier. The clipping and filtering method works on the principle that high
signal peaks occur rarely; therefore, these peaks can be clipped, which introduces signal
distortion. Companding techniques involve the application of nonlinear transformation
on the OFDM signal in order to reduce the PAPR values. However, this nonlinearity
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operation destroys the orthogonality of OFDM and results in degraded performance.
These are simple to implement techniques, but they introduce clipping distortion, which
results in SER degradation.

2. Multiple signalling and probabilistic techniques: These techniques generate multiple
candidate signals that contain the same information, and the signal with the lowest
PAPR is selected for transmission. Some common probabilistic techniques includes:
(i) partial transmit sequences [64], (ii) selected-mapping [64], (iii) tone-reservation [65],
and (iv) pilot-assisted [66] etc.. Most of these methods typically require side information
along with the data, which reduces the useful data rate and increases the computational
complexity.

3. Precoding: One of the simplest methods for PAPR reduction is precoding [67]. In [68],
authors proposed a block coding technique for PAPR reduction in O-OFDM; however,
this technique requires additional bandwidth and introduces complexity overhead. In [69],
authors proposed a discrete Hartley transform (DHT)-spread technique PAPR reduction
in a DHT-based ACO-OFDM system. In [70], authors have considered precoding based
on Vandermonde like matrix to reduce the high PAPR of DCO-OFDM and ACO-OFDM.
In [71], authors have considered precoding based on discrete Fourier transform (DFT),
DHT, and Zadoff-Chu transforms, and concluded that DFT precoder performs better
than other precoders. It is found that DFT precoded OFDM provides lower PAPR and
better BER performance [72]. The benefit and feasibility of the DFT precoded OFDM
modulation format for a Gbit/s VLC system are demonstrated in [73]. Meanwhile, in
order to deal with the issue of substantial interference in DFT precoded OFDM, an
optimized lighting layout was proposed in [74]. Further, it has also been shown in [75]
that subcarrier waveform shaping in OFDM is a form of precoding scheme, where
each OFDM block is linearly transformed by a shaping matrix before modulation and
transmission. In literature, various pulse shaping filters like raised-cosine (RC), root-
raised-cosine filter (RRC), Gaussian, and finite impulse response (FIR) Nyquist filters
have been considered for low PAPR OFDM system [76–80]. In [81], authors have used
partial response precoding based on Gaussian-minimum-shift-keying (GMSK) pulse for
further PAPR reduction in DFT precoded OFDMA system.

The concept of Hermitian symmetry (HS) is used in O-OFDM to obtain a real signal.
However, in [82], authors have demonstrated that due to the application of HS, only half
of the time-domain DFT-precoded-OFDM symbols exhibit the single carrier form in
VLC systems, therefore resulting in less compelling PAPR reduction as compared to
radio counterparts. The inherent reason for this degradation is the loss of half of the
degrees of freedom for subcarrier mapping due to the essential conjugate constraint for
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HS; this restricts the subcarrier mapping space to only half of the OFDM bandwidth
after DFT operation, rather than the entire bandwidth as in RF systems. In [83], authors
have implemented a HS free optical-single-carrier frequency-division multiple access
(HSFO-SCFDMA) and illustrated that it performs better than other alternatives that
utilises HS. Furthermore, in [84], authors have shown that implementation based on real
and imaginary separation for DFT precoded layered ACO-OFDM provides better PAPR
performance as compared to conventional the HS method.

3.1.1 Main Contributions

In this chapter, we propose a novel modulation technique based on GMSK pulse shaping and
DFT-precoding to further reduce PAPR of the OFDM signal for the VLC system, without
compromising the power efficiency of the system. Additionally, the concept of grouped
precoding is also explored to reduce the computational complexity of the proposed scheme
compared to conventional DFT precoding [20]. As two precoding operations are performed
in this system, i.e., DFT precoding and GMSK pulse shaping; therefore, we have named the
proposed scheme as double precoded O-OFDM: (DP-OOFDM). In order to make DP-OOFDM
compatible with IM/DD the concept of real and imaginary separation and flip-OFDM have
been implemented in this work instead of HS, as HS based DFT precoded O-OFDM does
not provide the best PAPR reduction [82–84]. For pulse shaping, GMSK has been chosen
because it provides constant envelope and high spectral efficiency [85]. Since the performance
of flip-OFDM and ACO-OFDM is similar [86]. Therefore, the performance of the proposed
DP-OOFDM has been evaluated against ACO-OFDM, based on PAPR, power saving, SER,
spectral efficiency, and computational complexity. To the best of our knowledge, the grouped
DFT precoded OFDM based on real and imaginary part separation in conjunction with GMSK
based pulse shaping has not been analyzed for VLC system. The main contributions of this
chapter are as follows:

1. The DP-OOFDM has been introduced which consist of grouped DFT precoded OFDM
in conjunction with GMSK pulse shaping, this approach has resulted in lower PAPR and
high spectral efficiency over earlier explored alternatives.

2. This work provides a comprehensive performance analysis of proposed DP-OOFDM
in-terms of PAPR, power saving, SER, spectral efficiency and computational complexity
against conventional DFT-precoded OOFDM and ACO-OFDM. For SER evaluation, a
VLC channel with both LOS and NLOS components are considered.

3. The concept of grouped precoding is also explored for DP-OOFDM, in order to reduce
the computational complexity of the proposed scheme compared to conventional DFT
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precoding. Further, different kinds of sub-carrier mapping has been analyzed to study
the effect on PAPR and SER.

4. Analytical expression for PAPR of the proposed system is derived and compared with
simulation results.

3.2 System Model

The block diagram for the proposed DP-OOFDM scheme which implements IM/DD is shown
in Fig.3.1. At the transmitter, symbol mapping block converts the input bits into one of
several possible modulation formats like binary phase shift keying (BPSK), 4-level quadrature
amplitude modulation (4-QAM) etc. The modulated symbols xn, are grouped into blocks each
containing N symbols. The N-point DFT is applied on this block of N symbols. In general,
DFT is performed to transform the data from time domain to frequency domain. However, here
N-point DFT is used as a precoder i.e., the block of N symbols are pre-coded using the DFT
matrix to obtain Xk, as follows [87]:

Xk =
1√
N

N−1

∑
i=1

xn exp
− j2πki

N ,0≤ k ≤ N (3.1)

Further, subcarrier mapping block maps each of the N-point DFT outputs to one of the M(> N)

Symbol 
modulation

DFT
Pulse 

shaping
Subcarrier 
mapping

IDFT
Complex to real and 
Bipolar to unipolar 

conversion & CP

Optical channel

Real to complex and 
Unipolar to bipolar 

conversion & CP removal 

Symbol 
demodulation

IDFT
Signal 

processing
Subcarrier 

de-mapping
DFT

xnData
input

Data
Output

Xk Yq
Zq x'n

rn

yn˜ZqYq
˜Xk

˜xn˜

zn

LiFi Tx

LiFi-Rx

Equalization
Dq

Figure 3.1: Block diagram of DP-OOFDM.

inputs of the inverse DFT (IDFT). There are two methods of subcarrier mapping; localized
subcarrier mapping and distributed subcarrier mapping (described later). Factor of L(= M/N)
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defines the bandwidth expansion factor. For a system transmitting M symbols per block, L
simultaneous transmissions are possible. The output of the subcarrier mapping is multiplied
with frequency response of signal shaping waveform to obtain Yq. Subsequently, M-point
IDFT transforms the subcarrier amplitudes to a complex time domain signal x′k. For IM/DD
data transmission over optical wireless channel, the signal needs to be real and positive. The
complex to real and bipolar to unipolar block makes the complex output of IDFT compatible
for IM/DD transmission. Afterwards, CP is added to zn and resultant signal is transmitted by
the LED. At the receiver, photodetector converts received optical power into electrical signal.
After channel equalization and CP removal, real to complex and unipolar to bipolar block
converts the real unipolar signal z̃n into complex bipolar signal ỹn. Further, M-point DFT is
applied followed by subcarrier de-mapping and frequency domain processing to reverse the
signal shaping applied at the transmitter. The resulting signal is then subjected to N-point IDFT
and symbol demodulation to obtain the data output corresponding to the transmitted input data.
The following subsections discuss different subblocks of the system model.

3.2.1 Subcarrier Mapping

Subcarrier mapping is achieved by implementing either the localized or distributed subcarrier
mode. In localized mode, consecutive subcarriers are occupied by the DFT outputs of the input
data whereas in the distributed mode, DFT outputs of the input data are allocated over the entire
bandwidth with zeros occupying the unused subcarriers [88]. Interleaved subcarrier mapping
is a special case of distributed subcarrier mapping when M = L×N, therefore, equidistance
subcarriers are occupied by DFT outputs of the input data [89]. The output of localized
subcarrier mapping can be expressed as [87]:

Yq =

Xq : q = 0,1, ...,N−1

0 : otherwise
(3.2)

Similarly, the output for interleaved subcarrier mapping can be expressed as [87]:

Yq =

X(q/L) : q = pL, p = 0,1, ...,N−1

0 : otherwise
(3.3)

An example of localized and interleaved subcarrier mappings in the frequency domain for
M = 12, N = 4, and Q = 3 is illustrated in Fig. 3.2. Based on subcarrier mapping, the time
domain output of IDFT differs i.e., samples equally spaced in frequency domain will result into
periodic sequence in time domain and any shift in frequency domain will result into a phase
rotation in time domain. Therefore, time domain output of IDFT for localized mode have exact
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X1 X2 X3 X4

X1 X2 X3 X4 0 0 0 0 0 0 0 0 0 0 0 0

X1 0 0 0 X2 0 0 0 X3 0 0 X4 0 0 0000

x1 x2 x3 x4

DFT

Subcarrier Mapping

xn

Xk

Yq (Localized)

Yq (Interleaved)

Figure 3.2: Subcarrier mapping in frequency domain

copies of input time symbols at the M-multiple sample positions and the in-between values are
complex weighted sum of all the time input symbols in the input block. Time domain output of
IDFT for interleaved mode is simply a repetition of the original input symbols with a scaling
factor(1/Q). The time domain outputs of localized and interleaved mode are shown in Fig.
3.3. In this work, we have analyzed the proposed system for both interleaved and localized
subcarrier mapping.

x1 x2 x3 x4

∗ 𝑚 = σ𝑘=1
4 𝑐𝑘, 𝑚 x𝑘 where   𝑐𝑘, 𝑚 are complex weight
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Figure 3.3: Time domain signal for different subcarrier mapping

3.2.2 Pulse Shaping

For a single carrier system, pulse shaping is required to band limit the transmitted signal.
However, there is a trade-off between PAPR reduction and bandwidth efficiency in a single
carrier system, i.e., pulse shaping limits the signal bandwidth at the cost of increased PAPR of
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the transmitted signals. In order to reduce the PAPR of the single carrier system, we need a
pulse with a reduced tail size because the magnitudes of the filter’s sidelobes directly affect
the PAPR. Few studies have been carried out to design a pulse shaping filter that limits the
signal bandwidth without degrading the PAPR performance [77, 78, 90]. In this work, we
have used GMSK filter for pulse shaping. GMSK pulse provides a constant envelope over the
used bandwidth, and therefore improves the system performance. GMSK pulses are spectrally
efficient and have reduced side lobe gain. Because of the aforementioned reasons, GMSK pulse
has been chosen for pulse shaping in our proposed system. Further, for the sake of comparison
with the conventional DFT precoded OFDM, we have considered rectangular pulse shaping
filer as well which has been referred as DFT precoded OFDM in this work. We have performed
pulse shaping in frequency domain i.e.,

Z = YS (3.4)

where S is the frequency response of the pulse shaping filter g(t). The time domain pulse
shaping filter g(t) is defined as follows [81]:

g(t)GMSK =
1
T
[Q(γ(

t
T
− 1

2
))−Q(γ(

t
T
+

1
2
))] (3.5)

where γ ≈ 2πBT√
ln(2)

, BT is the bandwidth time product, that controls the pulse shape, and

Q(x)≈ 1
2π

∫
∞

x exp(−u2

2 )du

g(t)Rect = rect(
t
T
) =

1 −T
2 < t < T

2

0 otherwise
(3.6)

3.2.3 Complex to Real and Bipolar to Unipolar Conversion

In order to transmit data using LED, the signal needs to be real and positive. To meet this
requirement, the real and imaginary part of the complex valued signal x′ is separated and trans-
mitted in different sub-frames. First sub-frame contains the real part of x i.e., Re(x′) whereas,
the second sub-frame contains the imaginary part i.e., Imag(x′). After time multiplexing, the
resultant vector y is represented as follows [87]:

yn =

Re(x′n) : 0≤ n≤M

Imag(x′n) : M ≤ n≤ 2M
(3.7)

The resultant bipolar signal yn can be written as [87]:
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yn = y+n − y−n (3.8)

where, y+n and y−n are the positive and negative parts of yn respectively. Therefore uniploar zn

can be obtained as follows [87]:

y+n =

yn : yn ≥ 0

0 : otherwise
y−n =

|yn| : yn ≤ 0

0 : otherwise
(3.9)

zn =

y+n : 0≤ n≤ 2M

y−n−2M : 2M ≤ n≤ 4M
(3.10)

All the samples of the resultant signal zn are unipolar which are transmitted through LED, as
shown in Fig. 3.4.
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Figure 3.4: Complex to real and bipolar to unipolar conversion

3.2.4 Grouped DFT Precoding

The DFT precoding block adds extra computational complexity to the proposed system as
compared to conventional optical OFDM system. One way to reduce this computational
complexity is by using the concept of grouped precoding, where instead of performing N-point
DFT, two N/2-point DFTs are applied. The N-block of data is divided into two N/2-blocks,
each of which is processed by one of the two N/2-point DFTs. In this work, we have analyzed
the proposed system using both, simple (N-point) DFT precoding and grouped (two N/2-point)
DFT precoding which are referred as DP-OOFDM and G-DP-OOFDM respectively.

3.2.5 Receiver

At the receiver, PD receives optical signal and converts it into equivalent current signal which
is converted into corresponding voltage signal by the transimpedance amplifier. Afterwards,
CP is removed and channel equalization is performed by a zero-forcing equalizer in order to
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compensate for distortion caused in transmitted signal due to the channel, resulting into signal
rn, which can be expressed as follows [87]:

rn = zn +wn 0≤ n≤ 4M (3.11)

The bipolar signal z̃n is regenerated from rn as [87]:

z̃n = rn− rn+2M 0≤ n≤ 2M (3.12)

Further, the real signal zn can be converted into complex signal as follows [87]:

ỹn = z̃n + j ∗ z̃n+M 0≤ n≤M (3.13)

Further, M-point DFT is applied to ỹn, to obtain frequency domain transform Z̃k.

Z̃k =
1√
M

M−1

∑
i=1

ỹn exp
− j2πki

M ,0≤ k ≤M (3.14)

Afterwards, signal processing block and subcarrier demapping performs reverse operation
of pulse shaping and subcarrier mapping respectively. The signal processing block performs
following operation [87]:

Ỹ = Z̃/S (3.15)

The subcarrier demapping for localized mode can be expressed as [87]:

X̃n = Ỹn n = 0,1, ...,N−1 (3.16)

For interleaved mode subcarrier demapping can be obtained by [87]:

X̃n = ỸnL n = 0,1, ...,N−1 (3.17)

Further, N-point IDFT is applied to convert the signal back into time domain, which is expressed
as [87]:

x̃n =
1√
N

N−1

∑
i=1

ỹn exp
j2πki

N ,0≤ k ≤ N (3.18)

Finally, symbol demodulation is applied in-order to obtain data output corresponding to data
input.



PAPR Reduction for O-OFDM 36

3.3 Performance Analysis and Comparison

This section provides mathematical analysis and comparison of the DP-OOFDM with ACO-
OFDM on the basis of PAPR, computational complexity and spectral efficiency.

3.3.1 PAPR Analysis

The PAPR is defined as the ratio between the maximum peak power and the average power of
the transmitted signal. PAPR of a transmitted signal zn can be defined as [87]:

PAPRz =

max
0≤n≤4M−1

z2
n

E[z2
n]

(3.19)

where E[·] denotes the expectation operation. A high PAPR signal requires LEDs with large
dynamic range in order to avoid clipping distortion. Additionally, high PAPR reduces illumi-
nation to communication conversion efficiency and lifetime of the LED. The probability of
PAPR of block greater than the threshold value (ζ ) is defined by complementary cumulative
distribution function (CCDF) . CCDF of PAPR is commonly used to measure the performance
of PAPR reduction techniques. The PAPR of ACO-OFDM can be expressed as [91]:

ΓACO−OFDM = Prob(PAPR > ζ )

=

1− [2φ(
√

c(0,u)ζ −1)]
M
2 , 0≤ ζ ≤ θ0,U

0, ζ ≥ θ0,U
(3.20)

where θ0,U = u2/c(0,u) and u is the normalized upper clipping bound which is set to 1, for the
sake of simplicity. The other required values are defined below.

c(0,u) =−Φ(0)− (u2−1)Φ(u)+u2−ug(u), (3.21)

g(x) =
1√
(2π)

exp
−x2

2
, Φ(x) =

∫ x

−∞

1√
2π

exp
−t2

2
dt (3.22)

In order to make DFT precoded OFDM compatible with VLC, we have implemented real
and imaginary separation and concept of flip OFDM in order to obtain unipolar signals. It is
important to note that the distribution of PAPR will depend upon the instantaneous power and
average power. As real and imaginary separation followed by positive and negative separation
is implemented, therefore, the relationship between average signal power of x′n and zn can be
obtained as [87]:

E[|x′n|2] = 4E[|zn|2] (3.23)
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The CCDF of PAPR for DP-OOFDM can be obtained by [87]:

ΓDP−OOFDM = Prob(PAPRz > ζ )

= 1− (Prob(PAPRz < ζ ))

= 1−Prob

 max
0≤n≤4M−1

|zn|2

E[|zn|2]
< ζ

 (3.24)

It is important to note that zn and zn+2M are correlated i.e. only one of them would be non-zero,
however, the same is not true for zn and zn+M, as they represent the real and imaginary part of
x′n . Therefore, equation (3.24) can be rewritten as [87]:

ΓDP−OOFDM = 1−2×Prob
(

max
0≤n≤2M−1

|zn|2 < ζ E[|zn|2]
)

= 1−2×
2M−1

∏
n=0

Prob

(
x′n

2
<

ζ E[(x′n)
2]

4

)

= 1−2×Prob

(
x′n

2
<

ζ E[(x′n)
2]

4

)2M

(3.25)

It may be noted that for localized and interleaved sub-carrier mapping the distribution of
instantaneous power of x′n remains the same [92]. The CDF of instantaneous power of x′n at a
given time instant n can be expressed as [93]:

Prob(x′n
2
< ξ ) =

√
ξ

∫
∞

0
J1(
√

ξ R) G(R,n) dR (3.26)

where Jn(·) donates nth order first kind Bessel function and

G(R;n)≜
1

2π

∫ 2π

0
℧x,y(Rcos(φ),Rsin(φ);n)dφ (3.27)

here, ℧x,y is the joint characteristic function of Re(x′n) and Imag(x′n). For Q2-QAM, G(R;n) is
defined as follows [94]:

G(R;n) =
(

2
Q

)2 Q
2−1

∑
m=0

Q
2−1

∑
l=0

J0

(
αnR

√
A2

m +A2
l

)
(3.28)
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where αn depends on the pulse shaping filter i.e., αn = g(t+nT ) and Am ≜ (2m+1)
√

3
2(Q2−1) :

m = −Q
2 , ...,−1,0, ..., Q

2 and Al ≜ (2l +1)
√

3
2(Q2−1) : l = −Q

2 , ...,−1,0, ..., Q
2 . The PAPR can

be calculated by substituting values from equation (3.26) and (3.28) into (3.25).

3.3.2 Complexity

The computational complexity of M-point DFT algorithm is defined as M2 complex multiplica-
tions and (M2−M) complex additions [95]. In case of ACO-OFDM, there is only M-point
IDFT, whereas in case of DP-OOFDM there is N-point DFT, M-point IDFT and frequency do-
main pulse shaping, therefore, increasing the complexity of DP-OOFDM. The G-DP-OOFDM
is an attempt to reduce the complexity of DP-OOFDM by using two N/2-point DFTs for
precoding instead of one N-point DFT precoding as used in DP-OOFDM. The computational
complexities of transmitters for these schemes are given in Table 3.1. It can be seen that
grouped DFT precoding scheme reduces the computational complexity of system as compared
to conventional DFT precoding scheme.

Table 3.1: Computational complexity of transmitters

Modulation scheme No. of effective real multiplications
ACO-OFDM 4M2

DP-OOFDM 4M2 +4N2 +4M2 +M
G-DP-OOFDM 4M2 + 4N2

2 +4M2 +M

3.3.3 Spectral Efficiency

The spectral efficiency of OFDM and DFT precoded OFDM is a function of IDFT size (M) and
modulation order (Q). If pulse shaping filter is not considered, then OFDM and DFT precoded
OFDM will have same spectral efficiency given as [96]

η = Q
M/4

M+CP
(3.29)

where, the factor of 1/4 takes into account the loss of spectral efficiency for conversion of
complex bipolar signal into real unipolar signal. However, in the DP-OOFDM system, we
have considered a GMSK pulse shaping filter along with DFT precoded OFDM whereas
conventional OFDM uses a rectangular pulse, i.e., sinc in frequency domain. By using the
FVTool of MATLAB, the magnitude response of rectangular and GMSK filters are obtained
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using the FVTool of MATLAB, as shown in Figs. 3.5. It is observed that the rectangular filter
has higher sidelobes as compared to GMSK filter, therefore, making the proposed DP-OOFDM
more spectrally efficient as compared to ACO-OFDM.

Figure 3.5: Magnitude response of Rectangular and GMSK pulse.

3.4 Simulation Results and Discussion

In this section, different variants of DP-OOFDM are compared with DFT precoded O-OFDM
and ACO-OFDM, based on their PAPR, power saving and SER using MATLAB simula-
tions. The variants of DP-OOFDM are DP-OOFDM with localized subcarrier maping (L-
DP-OOFDM) , DP-OOFDM with interleaved subcarrier mapping (I-DP-OOFDM) , grouped
DP-OOFDM with localized subcarrier mapping (G-L-DP-OOFDM) and grouped DP-OOFDM
with interleaved subcarrier mapping (G-I-DP-OOFDM) . In this chapter, the focus is on the
performance evaluation of the proposed scheme, therefore, for simplicity we have assumed
irradiance and incident angels as 0. The channel and simulation parameters are given in
Table 3.2 [5] and Table 3.3 respectively. The results are evaluated and presented in Table 3.4.

3.4.1 PAPR

By using extensive MATLAB simulation and equation (3.19), the CCDF of PAPR for proposed
scheme was obtained. Further, using equations (3.26) and (3.28) into (3.25), the analytical
PAPR for the proposed scheme was obtained and plotted in Fig.3.6.
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Table 3.2: Optical channel parameters

Channel Parameter Value
Lambertian mode number, m 45
Area of PD, APD 9.8 mm2

PD’s field of View, Ψc 60◦

Transmitter location (xt ,yt ,zt) (2.5 m, 2.5 m, 3m)
Receiver location, (xr,yr,zr) (2.5 m, 2.5 m, 1m )
Optical concentrator gain, gc 0 dB
Optical filter gain, gf 0 dB
Responsivity of PD, RPD 0.53 A/W

Table 3.3: Simulation parameters

Parameters ACO-
OFDM

DFT-
precoded
OFDM

DP-
OOFDM

G-DP-
OOFDM

Modulation 4 QAM 4 QAM 4 QAM 4 QAM
Order of IDFT 64 64 64 64
Pulse shaping filter Rect. Rect. GMSK GMSK
Bandwidth time
product (BT ) for
pulse shaping filter

NA NA 0.5 0.5

Precoding NA 32-point
DFT

32-point
DFT

2 blocks
of 16-point
grouped
DFT

Figs. 3.6(a) and 3.6(b) show the CCDF of PAPR for DP-OOFDM with localized and
interleaved sub-carrier mapping respectively. For localized mapping, it is observed that the
proposed L-DP-OFDM, performs better than the L-DFT precoded OOFDM and ACO-OFDM.
For a clipping probability Prob(PAPR > ζ ) = 10−1, PAPR gain of 2.5 and 5 dB is achieved
in L-DP-OOFDM over L-DFT precoded OOFDM, and ACO-OFDM respectively. Similarly,
for interleaved sub-carrier mapping, proposed I-DP-OFDM have superior PAPR performance
as compared to I-DFT precoded OOFDM and ACO-OFDM, as shown in Fig. 3.6(b). PAPR
gain of 1.9 and 10.6 dB is achieved by I-DP-OOFDM over I-DFT-precoded OOFDM and
ACO-OFDM, if the clipping probability Prob(PAPR > ζ ) is set to 10−1. Additionally, the
theoretical PAPR derived in section 3.3.1 have been plotted in Fig.3.6, and they show a close
overlap with the simulation results.
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Figure 3.6: CCDF distribution of PAPR (dB) for ACO-OFDM, DFT precoded OOFDM and DP-OFDM
with different subcarrier mapping.
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Figure 3.7: Effect of grouped DFT precoding on CCDF distribution of PAPR (dB)
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Fig. 3.7 illustrates the effect of grouped DFT precoding for the proposed DP-OOFDM in
terms PAPR CCDF. It can be clearly seen that the PAPR for grouped configurations are higher
as compared to the ungrouped configurations. In case of localized subcarrier mapping, for
clipping probability Prob(PAPR > ζ ) = 10−1, the value of PAPR is 5 and 12.5 dB in L-DP-
OOFDM and G-L-DP-OOFDM respectively. Similarly, for interleaved subcarrier mapping,
at clipping probability Prob(PAPR > ζ ) = 10−1, the value of PAPR is 2.1 and 9.8 dB in
I-DP-OOFDM and G-I-DP-OOFDM respectively.

Overall, I-DP-OOFDM provides lowest PAPR as compared to all the other schemes. The
reason behind low PAPR of I-DP-OOFDM can be understood by Fig.3.3 which illustrates
that the time domain output for interleaved mode is simply a repetition of the original input
symbols with a scaling factor (1/Q). Because of this structure, interleaved mode output will
have less fluctuation and lower peaks than localized mode output. Therefore, the interleaved
mode is desirable than the localized mode in terms of PAPR.

3.4.2 Power Saving

The power saving (Psaving) achieved by the DP-OOFDM over the ACO-OFDM, is given by [87]:

PsavingDP−OOFDM = 10log10

(
PACO−OFDM

PDP−OOFDM

)
(3.30)

where, PACO−OFDM and PDP−OOFDM corresponds to the power required for the transmission
of ACO-OFDM signal and different variants of DP-OOFDM respectively. The values of
PACO−OFDM and PDP−OOFDM can be calculated by using the following generic formula [97].

P = Pavg ∗ξ (3.31)

where, ξ is the inverse function of the CCDF for a given clipping probability i.e., Prob.(PAPR>

ζPAPR) and Pavg is the average power per time slot. In order to determine the power saving
achieved by the DP-OOFDM over the ACO-OFDM using equation 3.30, the Pavg for ACO-
OFDM, L-DP-OOFDM, G-L-DP-OOFDM, I-DP-OOFDM and G-I-DP-OOFDM schemes has
been obtained through extensive MATLAB simulations. Furthermore, the value of ζPAPR is
calculated for clipping probability Prob.(PAPR > ζPAPR) set to 10−1 from the CCDF curve
(Fig. 4.6 and 3.7). The power saving is found to be 8.19, 18.05, 13.83 and 19.19 dB over
ACO-OFDM for L-DP-OFDM, G-L-DP-OFDM, I-DP-OFDM and G-I-DP-OFDM respectively.
This saving of power over ACO-OFDM is because of the low Pavg and reduced PAPR of the
proposed schemes. It is important to note that grouped DFT precoding further reduces the Pavg,
therefore, provides higher power saving.
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Similarly, the power saving (Psaving) achieved by the DFT-precoded OOFDM over the
ACO-OFDM, is given by [87]:

PsavingDFT−precodedOOFDM = 10log10

(
PACO−OFDM

PDFT−precoded OOFDM

)
(3.32)

where, PACO−OFDM and PDFT−precodedOOFDM corresponds to the power required for the
transmission of ACO-OFDM signal and different variants of DFT-precoded OOFDM respec-
tively. The values of PACO−OFDM and PDFT−precoded OOFDM can be calculated by using (3.31).
By following the same procedure, the power saving for L-DFT-precoded OOFDM and I-DFT-
precoded OOFDM over ACO-OFDM is found to be 3.98 and 8.04 dB respectively.

3.4.3 SER

By using extensive MATLAB simulation, the SER for the proposed techniques was obtained.
The SER performance for localized subcarrier mapping (L-DP-OOFDM and L-DFT-precoded
OFDM) is shown in Fig. 3.8(a).
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Figure 3.8: SER Performance for ACO-OFDM, DFT precoded OOFDM and DP-OFDM with different
subcarrier mapping.

It is observed that L-DP-OOFDM have better SER performance compared to ACO-OFDM,
and L-DFT precoded OFDM performs better than L-DP-OOFDM, in terms of SER. For FEC
limit i.e., SER of 10−3, L-DP-OOFDM provides SNR gain of 2.9 dB over ACO-OFDM,
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whereas L-DFT-precoded OFDM provides SNR gain of 2.3 dB over L-DP-OOFDM. Similar
trend is observed for Interleaved subcarrier mapping (I-DP-OOFDM and I-DFT-precoded
OOFDM) as shown in Fig. 3.8(b). It is observed that for FEC limit, I-DP-OOFDM and I-DFT-
precoded OOFDM provides SNR gain of 2.9 and 5.2 dB over ACO-OFDM respectively. The
effect of grouped DFT precoding on SER performance is shown in Fig. 3.9. In case of localized
subcarrier mapping, for FEC limit, G-L-DP-OOFDM provides a SNR gain of 6.1 dB over ACO-
OFDM. Similar performance gain is observed for interleaved subcarrier mapping. From the
observations, it can be concluded that grouping not only reduces the computational complexity
but also improves the SER performance. Further, the SER performance is independent of the
subcarrier mapping.
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Figure 3.9: Effect of grouped DFT precoding on SER Performance.

3.5 Summary

In this chapter, we have proposed and evaluated the DP-OOFDM scheme based on complexity,
spectral efficiency, PAPR, power-saving and SER against conventional DFT-precoded OOFDM
and ACO-OFDM. A comprehensive summary of the results is presented in Table 3.4. It is
observed from the results that there is a trade-off between PAPR and SER if the interleaved
subcarrier mapping is used. It must also be noted that, although grouped DFT precoding
reduced the computational complexity at the cost of PAPR performance, but it still provided
better power saving. Further, DP-OOFDM schemes are low PAPR and spectrally efficient as
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Table 3.4: Summary of results

Parameters
ACO-
OFDM

L-
DFT-
precoded
OOFDM

L-
DP-
OOFDM

G-L-DP-
OOFDM

I-DFT-
precoded
OOFDM

I-DP-
OOFDM

G-I-DP-
OOFDM

Value of PAPR
(ζ ) for CCDF
prob. = 10−1

12.7 10.2 7.7 12.75 4.0 2.1 9.8

Power saving
(dB) with re-
spect to ACO-
OFDM

− 3.98 8.19 18.05 8.04 13.84 19.19

SNR (dB) for
FEC limit
(10−3)

10.3 5.1 7.4 1.4 5.1 7.4 1.4

compared to DFT-precoded OFDM and ACO-OFDM. It can be concluded that I-DP-OOFDM
outperformed all the schemes under consideration from PAPR perspective and G-I-DP-OOFM
was desirable from SER and power-saving points of view. Therefore, one can choose either
G-L-DP-OOFDM or G-I-DP-OOFDM for high reliability and power saving, however, I-DP-
OOFDM is the most appropriate scheme for low PAPR. These results are useful in selecting
appropriate schemes for different VLC applications.





Chapter 4
Advanced Modulation Scheme for VLC:
O-GFDM

This chapter presents an advanced more flexible modulation schemes for next generation
VLC: optical-generalized frequency division multiplexing (O-GFDM). The brief introduction
and contributions related to above mentioned system are given in Section 4.1, followed by
Section 4.2 which presents the system model. Section 4.3 provides the derivation of spectral
efficiency, SER, and complexity for this advanced modulation scheme. The simulation results
are presented in Section 4.4. Finally, Section 4.5 summarizes the chapter.

4.1 Introduction

Generalized frequency division multiplexing (GFDM) is one of the potential candidate for next-
generation wireless communications, as it is based on block structure of NJ samples, where
each of the N subcarriers carry J subsymbols. Each subcarrier is filtered by a circularly shifted
filter. The subcarrier filtering can result in non-orthogonal subcarriers, which in turn may
give rise to both inter-symbol interference (ISI) and inter-carrier interference (ICI). However,
efficient receiving techniques can eliminate this interference and can achieve SER performance
matching to that of OFDM [98]. GFDM turns into OFDM when J = 1, and single carrier with
single carrier frequency domain equalization (SC-FDE) when N = 1. Since, GFDM in general
will have some value of J and N, therefore, the PAPR of GFDM will range between OFDM
and SC-FDE [99]. The PAPR of GFDM can be further controlled by adjusting the parameters
of sub-carrier filters [100, 101]. In GFDM, a single CP is added for entire block that contains
multiple subsymbols, resulting into improved spectral efficiency of the system. This improved
spectral efficiency can be traded for an additional redundancy which leads to relaxation in
synchronization requirements of multiple users in an MTC scenario. GFDM can also fulfill low
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latency requirement for tactile internet and vehicle-to-vehicle (V2V) applications by ultizing
its flexible block structure [21]. The flexible nature of GFDM makes it a suitable candidate
for future communication applications. To the best of our knowledge, GFDM for VLC has
not been analyzed in detail, however, a limited analysis was done by one of the authors of
this work [102]. In this work, we propose optical generalized frequency division multiplexing
(O-GFDM), i.e., GFDM for VLC, in order to make it suitable for future applications. Two
variants of O-GFDM namely, with and without DC bias have been evaluated on the basis of
PAPR, SER and subcarrier frequency shift tolerance.

4.1.1 Main Contributions

The main contributions of this chapter are as follows:

1. This work propose two variants of GFDM for VLC namely, O-GFDM with DC (OGFDM-
DC) and without DC bias (OGFDM-NDC). These schemes have been evaluated against
their O-OFDM counterpart.

2. This work provides a comprehensive performance analysis of proposed O-GFDM
schemes in-terms of spectral efficiency, complexity, power saving, PAPR, SER, and
subcarrier frequency shift tolerance against conventional DCO-OFDM and ACO-OFDM
schemes.

3. Further, analytical SER expressions of O-GFDM was derived and results are validated
through simulations.

4.2 System Model

The transceiver structure for DC biased O-GFDM (OGFDM-DC) and Non-DC biased O-GFDM
(OGFDM-NDC) are discussed in sections 4.2.1 and 4.2.2 respectively.

4.2.1 DC-biased O-GFDM

The details of DC biased O-GFDM (OGFDM-DC) transmitter and receiver are as follows:

4.2.1.1 Transmitter

The block diagram of OGFDM-DC transmitter is shown in Fig. 4.1. The input data bits are
converted into NJ data streams where, N is the total number of subcarriers and J is the total
number of time slots. These NJ data streams are sent to NJ independent M-QAM mappers
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and each modulated data symbol is represented as sn, j, where, n ∈ {0,1,2, ...,N − 1} and
j ∈ {0,1,2, ...,J− 1}. Afterwards, each data symbol sn, j is upsampled by (JK−1) zero-
padding, where, K represents the number of samples in a time-slot. This sequence is fed
to a transmit filter with impulse response p(k) of length L = JK and circular convolution is
performed. The transmit filter can have non-rectangular shape which can be either raised
cosine (RC) or root raised cosine (RRC) [103, 104]. After performing circular convolution,
each sub-stream is up-converted by a complex subcarrier cn(k). The resultant complex valued
O-GFDM symbol can be written as

x(k) =
J−1

∑
j=0

N−1

∑
n=0

sn, j(k)⊙ p(< k− jK >JK−1)cn(k) (4.1)

where, < ·>Z denotes the Z-modulo operator and ⊙ denotes the circular convolution and the
matrix form of (4.1) can be represented as:

X = diag(CSP) (4.2)

where, diag (·) returns the main diagonal of a matrix, C is the matrix containing N complex
subcarriers and P is the matrix which contains the circularly shifted version of p(k).
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Figure 4.1: Block diagram of OGFDM-DC transmitter.

Further, it is important to note that resultant GFDM signal is complex and this signal
needs to be converted into real and positive for IM/DD data transmission over optical wireless
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channel. To meet this requirement, the real and imaginary part of the complex-valued signal
X is separated and transmitted in different sub-frames. First sub-frame X1 contains the real
part of X i.e., Re(X) whereas, the second sub-frame X2 contains the imaginary part i.e., Im(X).
After multiplexing X1 and X2, the resultant vector X3 is obtained as follows: The resultant
signal X3 is transmitted through LED after adding appropriate DC bias.

4.2.1.2 Receiver

The block diagram of the OGFDM-DC receiver is shown in Fig. 4.2. The received optical
signal is first converted into an electrical signal with the help of PD. After removal of DC bias,
the resultant signal Y3 is further demultiplexed into Y1 and Y2, to get back the complex-valued
signal Y. After removal of CP, down conversion and convolution with receiver matched filter
(g(k)), minimum means square error (MMSE) detector is used to estimate the transmitted data
bits. MMSE detector is given as [105]:

YMMSE =

[
AHA+

(
1

SNR

)
INJ

−1

AH
]

Y0 (4.3)

where, SNR is the signal to noise ratio of the channel and INJ is the identity matrix of size NJ.
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Figure 4.2: Block diagram of OGFDM-DC receiver.

4.2.2 Non-DC-biased O-GFDM

In this work, we analyze another transmission strategy using the concept of flip-OFDM [42],
which does not require DC-biasing. The transmitter and receiver of non-DC biased O-GFDM
(OGFDM-NDC) scheme are described below:
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4.2.2.1 Transmitter

The block diagram of the OGFDM-NDC transmitter is shown in Fig. 4.3. At the transmitter
signal processing till the formation of the bipolar signal X3 is the same as that of OGFDM-DC.
From (3.7), the bipolar signal X3 can be written as:

X3 = X+
3 −X−3 (4.4)

where, X+
3 and X−3 are the positive and negative parts of X3 respectively and are defined as:

X+
3 =

x3(k) : x3(k)≥ 0

0 : otherwise
(4.5)

X−3 =

|x3(k)| : x3(k)< 0

0 : otherwise
(4.6)

where, x3(k) is the element of vector X3 and k ∈ {1,2, ...,2N}. Positive part X+
3 is transmitted

in first O-GFDM sub-frame followed by the sub-frame containing X−3 signal, by using frame
multiplexing. All the samples of the resultant signal X4 are unipolar, thus can be transmitted
through the optical wireless channel using LED.

M-QAM JK p(k)

𝑒−𝑖0

X

M-QAM JK p(k) X

𝑒−𝑖
2𝜋(𝑁−1)𝑘

𝐾

.

.

.

.

.

.

.

.

.

M-QAM JK p(k)

𝑒−𝑖0

X

M-QAM JK p(k) X

𝑒−𝑖
2𝜋(𝑁−1)𝑘

𝐾

.

.

.

.

.

.

.

.

.

෍

0

N-1

(J-1)N

(JN-1)

Data 
input

Re{*}

Im{*} Delay

Frame
Mux.

X2

X1

X

Complex to real conversion

CP

Se
ri

al
 t

o
 p

ar
al

le
l c

o
n

ve
rt

er

.

.

.

.

.

.

Time Slot #1

Time Slot #J

Polarity 
separator

Delay

Frame
Mux.

X3
+

X3
-

X3 X4

Bipolar to unipolar conversion

JK: Upsampling by a factor of JK p(k): Transmitter filter

Figure 4.3: Block diagram of OGFDM-NDC transmitter.
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4.2.2.2 Receiver

The block diagram of the OGFDM-NDC receiver is shown in Fig. 4.4. Received optical signal
is first converted into equivalent electrical signal by the PD.

The bipolar signal Y3 is regenerated as:

Y3 = Y+
3 −Y−3 (4.7)

where, Y+
3 is the first subframe and Y−3 is the second sub-frame received after frame demul-

tiplexing Y4. Resultant Y3 is further demultiplexed into Y1 and Y2, to get back the complex
valued signal Y. Further, CP removal followed by MMSE detector is used to estimate the
transmitted data bits.

Delay

Multiplication by 

𝑒−𝑖

2

Y3

Y2

Y1

Y
CP

removal Y0

g(k) JK

JK

JK

MMSE

𝑒−𝑖
2𝜋𝑘
𝐾

𝑒−𝑖
2𝜋(𝑁−1)𝑘

𝐾

𝑒−𝑖0

ADC
Frame 

demultiplexer +

g(k)

g(k)

X

X

X

JK: Downsampling by a factor of JK

PD

.

.

.

.

.

.

.

.

.

.

.

.

Data 
output

Delay

Y4

Y3
-

Y3
+

Frame 
demultiplexer +

g(k): Receiver matched filter

Complex to real conversion Unipolar to bipolar conversion

Figure 4.4: Block diagram of OGFDM-NDC receiver.

4.3 Performance Analysis and Comparison

This section provides mathematical analysis and comparison of the above-mentioned schemes
on the basis of spectral efficiency, SER and computational complexity.

4.3.1 Spectral Efficiency

Due to Hermitian symmetry in DCO-OFDM, information is only transmitted over half number
of subcarriers. Therefore, the bit rate of DCO-OFDM is given by [103, 106]:

RDCO ≈
N/2

(T +TCP)
log2 M (4.8)
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where, T and TCP are one-time slot and CP duration respectively, and M is the modulation
level. However, for ACO-OFDM, data is only transmitted over odd subcarriers, therefore, the
ACO-OFDM bit rate is given by [103, 106]:

RACO =
N/4

(T +TCP)
log2 M (4.9)

OGFDM-DC and OGFDM-NDC requires addition of CP after every J time slots, unlike
ACO-OFDM and DCO-OFDM which requires CP addition after every O-OFDM symbols.
Thus, for OGFDM-DC bit rate is given by [103, 106]:

ROGFDM−DC ≈
JN/2

(JT +TCP)
log2 M (4.10)

Similarly, bit rate of OGFDM-NDC is given by [103, 106]:

ROGFDM−NDC =
JN/4

(JT +TCP)
log2 M (4.11)

The spectral efficiency ratio of ACO-OFDM over DCO-OFDM (η1) can be calculated from
(4.8) and (4.9) and is given as:

η1 ≈
RACO

RDCO
=

1
2

(4.12)

Similarly, spectral efficiency ratio of OGFDM-DC and OGFDM-NDC over DCO-OFDM (η2

and η3 respectively) are given as follows:

η2 ≈
ROGFDM−DC

RDCO
=

(
1+ TCP

T

1+ TCP
JT

)
(4.13)

η3 ≈
ROGFDM−NDC

RDCO
=

(1+ TCP
T )

2(1+ TCP
JT )

(4.14)

For the equal number of subcarriers, same modulation level and TCP/T = 0.1, spectral efficiency
ratio of OGFDM-DC and OGFDM-NDC over DCO-OFDM is found to be 1.07 and 0.53
respectively. Thus, it can be concluded that OGFDM-DC has the highest spectral efficiency
among four schemes. The reason for higher spectral efficiency of O-GFDM (DC and NDC)
is due to the fact that CP is required only between O-GFDM frames, unlike O-OFDM that
requires a CP after every time slot.
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4.3.2 SER

The SER for GFDM under AWGN is given by [98]:

Pe = 2
κ−1

κ
er f c(

√
γ)− κ−1

κ
er f c2(

√
γ) (4.15)

where, γ is given by:

γ =
3RT

2(2µ −1)
E ′s

ξ N0
(4.16)

and
RT =

JN
JN +NCP +NCS

(4.17)

µ is the number of bits per QAM symbol, κ =
√

2µ , NCP and NCS are the length of cyclic
prefix and cyclic suffix (CS) respectively, E ′s is the average energy per symbol, N0 is the noise
power density and ξ is the noise enhancement factor that is responsible for adjusting the SNR
of the GFDM receiver. However, it is important to note that inorder to make GFDM compatible
with VLC, two variants namely, OGFDM-DC and OGFDM-NDC are implemented in this
work, each of which will result into different E ′s

N0
, as discussed in the following sections:

4.3.2.1 OGFDM-DC

In order to make GFDM unipolar, DC bias has been added, which results in effective E ′s
N0

, given
by [107]:

E ′s
N0

=
Es

N0

1

(1+( IDC√
Es
)2)

(4.18)

where IDC√
Es

is 0.5. Therefore, for OGFDM-DC, (4.16) is modified to:

γ =
3RT

2(2µ −1)
Es

ξ N0

1

(1+( IDC√
Es
)2)

(4.19)

Further, OGFDM-DC implements MMSE receiver, so there will be no noise enhancement i.e.,
ξ = 1. In our work, 4-QAM has been used, so µ and κ are equal to two. Using 4.15 and 4.19,
theoretical SER for OGFDM-DC is obtained and plotted in Fig.3.8(a)

4.3.2.2 OGFDM-NDC

In OGFDM-NDC, concept of Flip-OFDM is used to make the signal unipolar in nature. Since
the effective SNR for ACO-OFDM and Flip-OFDM is same [86], therefore, the effective
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received E ′s
N0

is given by [107]
E ′s
N0

=
Es

N0
(4.20)

Therefore, for OGFDM-NDC, (4.16) remains same. OGFDM-NDC also implements MMSE
receiver, so ξ = 1. Using values of µ and κ and (4.15), theoretical SER for OGFDM-NDC is
obtained and plotted in Fig.3.8(b)

4.3.3 Complexity

The computational complexity of GFDM is higher than OFDM. However, by using low
complexity GFDM (LC-GFDM) modem structure as proposed in [108], a substantial amount
of complexity reduction can be achieved without incurring any performance loss.

In [108], the transmitter block uses DFT and IDFT matrices, which make the modulation
matrix sparse and hence reduces the computational burden. In the receiver, a reduction in
computational complexity is achieved by designing a low complexity MMSE detector using
block diagonalization of the matrix involved. It is shown that through this block diagonaliza-
tion, a substantial amount of complexity reduction in the matrix inversion and multiplication
operations can be achieved. Further, equalizer used in the receiver will require fewer taps as
the delay spread is small compared with symbol duration.

To have a fair comparison between OFDM, GFDM and LC-GFDM system implementa-
tions, an OFDM system transmitting M concatenated symbols, each having N subcarriers is
considered in the analysis. Quantitative indication of the complexity of the system are shown
in Table 4.1.

In Fig. 4.5, number of complex multiplications (CMs) required have been plotted against
J for fixed N = 64 for OFDM, GFDM and LC-GFDM. It is observed that the complexity
order of LC-GFDM is quite close to OFDM. It is further emphasized that the proposed
algorithm reported for LC-GFDM does not incur any performance penalty and maintain
optimal performance. Such a substantial reduction in the number of computations makes
GFDM based modem structures attractive for hardware implementation.

Table 4.1: Computational complexity

Schemes Number of complex multiplications

OFDM MN
2 ∗ log2(N)+ MN

2 ∗ log2(N)

GFDM (MN)2 + 1
3 ∗ (MN)3 +2∗ (MN)2

LC-GFDM MN
2 {M+ log2(N)}+ MN

2 {4M+ log2(N)+3}
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Figure 4.5: Comparison of computational complexity of OFDM, GFDM, LC-GFDM.

4.4 Simulation Results and Discussion

In this section, we compare DC and non-DC techniques namely the OGFDM-DC with DCO-
OFDM and OGFDM-NDC with ACO-OFDM, based on their PAPR, SER and subcarrier
frequency shift tolerance. Table 4.2 [5], states the optical channel parameters [37, 109, 110].
Table 4.3, shows the simulation parameters parameters [104], calculated for the condition when
OGFDM-DC, DCO-OFDM, OGFDM-NDC, and ACO-OFDM are designed to have the same
spectral efficiency, and accordingly the number of subcarriers are selected for these schemes.

Table 4.2: Optical channel parameters

Channel Parameter Value
Lambertian mode number, m 45
Area of PD, APD 9.8 mm2

PD’s field of View, Ψc 60◦

Transmitter location (xt ,yt ,zt) (2.5 m, 2.5 m, 3m)
Receiver location, (xr,yr,zr) (2.5 m, 2.5 m, 1m )
Optical concentrator gain, gc 0 dB
Optical filter gain, gf 0 dB
Responsivity of PD, RPD 0.53 A/W
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Table 4.3: Simulation parameters

Parameters ACO-OFDM/ DCO-
OFDM

OGFDM-NDC/
OGFDM-DC

Number of subcarriers* 128/64 8/4
Constellation order 4 4
Upsampling factor NA 4
Signal bandwidth 20 MHz 20 MHz
Transmitter filter Rectangular RRC
Roll-off factor NA 0.1

∗
Calculated for the condition when OGFDM-DC, DCO-OFDM, OGFDM-NDC, and ACO-OFDM are designed to have the same spectral efficiency.

4.4.1 PAPR

PAPR of a transmitted signal x(t) can be defined as:

PAPR =
max[x(t)x∗(t)]

E[x(t)x∗(t)]
(4.21)

A high PAPR signal requires LEDs with large dynamic range in order to avoid clipping
distortion. The probability of PAPR of block greater than the threshold value (PAPRo) is
defined by complementary cumulative distribution function (CCDF).

Fig. 4.6(a) shows the CCDF curves for OGFDM-DC and DCO-OFDM. OGFDM-DC
exhibits a superior performance compared to DCO-OFDM. Similarly, Fig. 4.6(b) shows CCDF
curves for OGFDM-NDC and ACO-OFDM. It is observed that the OGFDM-NDC displays a
lower PAPR than ACO-OFDM. If we set probability (PAPR > PAPR0) to 10−2 and compare
the CCDF curves for all schemes, it is seen that PAPR0 has values of 6.5, 15.9, 9.3, and 13.8
dB for OGFDM-DC, DCO-OFDM, OGFDM-NDC, and ACO-OFDM respectively. The PAPR
reduction in O-GFDM is due to the distribution of the data among time slots and subcarriers,
unlike O-OFDM where the data is transmitted only over subcarriers. Additionally, PAPR effects
the illumination-to-communication conversion efficiency [19]. Therefore, reduced PAPR makes
O-GFDM efficient and robust against the clipping distortion due to LED saturation.

4.4.2 SER

By using MATLAB simulation for the systems defined in section 4.2, the SER performance
for OGFDM-DC, OGFDM-NCD, DCO-OFDM and ACO-OFDM was obtained. Fig. 4.7(a)
and 4.7(b) illustrates the SER performance of OGFDM-DC and DCO-OFDM and the SER
performance of OGFDM-NDC and ACO-OFDM respectively for optical channel. Further, the
corresponding analytical SER is obtained substituting equation (4.19) and (4.16) into (4.15),
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Figure 4.6: CCDF distribution of PAPR (dB) for OGFDM and corresponding O-OFDM counterparts.
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Figure 4.7: SER Performance of OGFDM and corresponding O-OFDM counterparts.

for OGFDM-DC and OGFDM-NCD, respectively. Based on these equations the analytical
SER have been plotted in Fig. 4.7.When a zero forcing equalizer is used for O-GFDM, the
performance of O-GFDM closely matches to the O-OFDM counterparts.

4.4.3 Tolerance to Subcarrier Frequency Shift at Transmitter and Re-
ceiver

The local oscillator responsible for sub-carrier frequency up-conversion at transmitter and
down-conversion at the receiver may have a mismatch between them. It gives rise to ICI that
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significantly degrades the systems performance [111]. The mismatch is defined by normalized
frequency shift (ε), which is the ratio of frequency shift between transmitter and receiver
to intercarrier spacing. The performance of OGFDM-DC and DCO-OFDM are shown in
Fig. 4.8(a) with respect to subcarrier frequency shift. It is observed that DCO-OFDM is unable
to achieve the desired SER of 10−3 for ε ≥ 0.09, it reaches to irreducible error floor condition
where even an infinite SNR cannot provide the desired performance.

From Fig. 4.8(b), the performance of OGFDM-NDC and ACO-OFDM for different
subcarrier frequency shift is observed, ACO-OFDM is less tolerant to subcarrier frequency
shift errors as it can not provide the desired SER performance for ε ≥ 0.08. As subcarrier
frequency shift increases, the orthogonality of O-OFDM system is disturbed which results in
poor performance, whereas O-GFDM being inherently non-orthogonal is not severely affected
by subcarrier frequency shift.
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Figure 4.8: Tolerance to frequency shift for OGFDM and corresponding O-OFDM counterparts.

4.4.4 Power Saving

The power saving (Psaving) achieved by the O-GFDM over the O-OFDM counterpart is defined
as:

Psaving = 10log10

(
P1

P2

)
(4.22)

where, P1 is the DC power consumed by the transmitter for transmitting O-OFDM signal
and P2 is the corresponding power for transmitting the O-GFDM counterpart. DC power (P)
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consumed by a scheme is calculated by [97].

P =
Pavg ∗ξ

κ
(4.23)

s where, ξ is the inverse function of the CCDF for a given clipping probability (PAPR >

PAPR0), κ is a constant and Pavg is the average power per time slot. From simulation results,
Pavg is found to be 0.035, 0.36, 0.50 and 0.50 for ACO-OFDM, OGFDM-NDC, DCO-OFDM
and OGFDM-DC respectively. The value of ξ is calculated when probability (PAPR > PAPR0)

is set to 10−3 in the CCDF curve (Fig. 4.6). By substituting the corresponding values in
(4.22) and (4.23), Psaving for OGFDM-DC over DCO-OFDM is found to be 8.74 dB and
for OGFDM-NDC over ACO-OFDM is found to be −2.28 dB. There is a net saving of
power for OGFDM-DC over DCO-OFDM due to the fact that PAPR is significantly lower for
OGFDM-DC as compared to DCO-OFDM and Pavg is same for both the schemes. On the other
hand, Psaving for OGFDM-NDC over ACO-OFDM is negative because of the higher Pavg of
OGFDM-NDC as compared to ACO-OFDM.

4.5 Summary

The results of this chapter are summarized in Table 4.4.

Table 4.4: Summary of the OGFDM results

Parameters DCO-
OFDM

OGFDM-
DC

ACO-
OFDM

OGFDM-
NDC

PAPRo for CCDF prob = 10−3 15.9 8 15.1 10
SNR (dB) for FEC limit 19 19.2 10.3 10.7
Tolerance to subcarrier frequency
shift ∗

0.09 0.10 0.08 0.10

Spectral efficiency gain w.r.t. DCO-
OFDM

1 1.07 0.5 0.53

Power saving in O-GFDM (dB) 8.74 -2.28
∗

Tolerance to subcarrier frequency shift when SNR is increased by 10 dB for target SER = 10−3

GFDM is being considered by the wireless community for 5G systems because of its
flexible structure and other advantages like simple transmit/receive waveforms and low power
consumption due to reduced PAPR. In this chapter, we proposed O-GFDM scheme for VLC and
evaluated it based on spectral efficiency, complexity, power saving, PAPR, SER, and subcarrier
frequency shift tolerance. Results were compared with existing DCO-OFDM and ACO-OFDM
schemes. From the Table, we observed a significant reduction in PAPR for proposed O-GFDM



Advanced Modulation Scheme for VLC: O-GFDM 61

schemes compared to O-OFDM counterparts. However, the SER and subcarrier frequency
shift tolerance performance of the proposed O-GFDM matched the corresponding O-OFDM.
Further, the analytical SER expressions of optical GFDM were derived, and results were
validated through simulations. The proposed schemes provided better spectral efficiency and
significant power saving in case of OGFDM-DC. However, this came at the cost of increased
complexity, which can be reduced by using a low-complexity GFDM (LC-GFDM) modem
structure. It is, therefore, concluded that O-GFDM is an improved alternative to O-OFDM. The
proposed O-GFDM based VLC is expected to very well gel with next generation systems to
deliver seamless last-mile communication services and provide greater flexibility to optimize
the network using software-defined networking.





Chapter 5
Overview of LiFi and its Coexistence with
WiFi

This chapter provides overview of HLWN in Section 5.1 followed by brief discussion on the
HLWN system model in Section 5.2. In Section 5.3, the RSS and optimization based Load
balancing for HLWN are discussed. The simulation results are presented in Section 5.3.3.
Finally, Section 5.4 summaries the chapter.

5.1 Introduction

The point-to-point VLC discussed in previous chapters can be extended to fully networked,
bidirectional, and high-speed optical wireless communication technology known as LiFi. The
major differences between VLC and LiFi are highlighted in Table 5.1.The universal availability
of LEDs, license-free deployment and data rate of Gbps order, makes LiFi an attractive choice
for indoor communications [112]. However, LiFi suffers from a major drawback of blockage.
Thus, the throughput of LiFi users fluctuates spatially, as a result stand-alone LiFi can not
guarantee the QoS to the user through out the indoor environment. On the other hand, WiFi
can support moderate data rates with more ubiquitous coverage. Table 5.2 summaries the key
features of LiFi and WiFi technology. From this, it is obvious that LiFi and WiFi operate in
non-overlapping spectrums and while LiFi can support high data rates when the receiver is in
direct LoS, WiFi can support moderate data rates with more ubiquitous coverage. Therefore,
coexistence of LiFi and WiFi technologies to form a heterogeneous LiFi WiFi network (HLWN)
is suggested. A HLWN provides higher system throughput as compared to standalone LiFi or
WiFi networks [26].
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Parameter VLC LiFi
Spectrum VL IR/VL/UV

Mobility Support optional Mandatory
Communication topology Unidirectional or bidirectional Bidirectional

Communication Mode Point-to-point or point-to-multipoint Point-to-multipoint

Table 5.1: Differences between VLC and LiFi [1].

Parameters LiFi WiFi
Coverage range 3-5m 10m

Datarate 10-100 Gbps [113] Few Gbps
Frequency spectrum VL/IR RF

IEEE standard 802.15 802.11
Security Highly secure Less secure

Communication power consumption Very low Relatively high
Interference from other RF devices No High

Table 5.2: Comparison between LiFi and WiFi [8].

5.2 HLWN System Model

The downlink HLWN considered in this work is assumed to be deployed in a typical office
room of 5×5×3 m3, as shown in Fig. 5.1. The HLWN system has four LiFi APs and one
WiFi AP. The WiFi AP is located in the center of the room ceiling and is assumed to provide
coverage to the entire room, whereas the coverage of each LiFi AP is confined to a smaller
area, called an attocell. The focus of this work is to understand the effectiveness of RL based
LB in HLWN, therefore, a simple scenario with four LiFi APs [9, 114] has been considered
in this study. The proposed work is scalable to a larger room with more number of APs
and users. Furthermore, as all LiFi APs reuse the same modulation bandwidth, therefore,
users in overlapping attocell areas may experience optical interference, which is treated as
additional noise in the system. The spectrum reuse in LiFi provides the advantage of higher
spatial-spectral efficiency at the cost of a significantly low data rate in the overlapping attocell
areas. The LiFi and WiFi channel models used for HLWNs are defined in Sections 5.2.1 and
5.2.2. A central controller (CC) unit is required for efficient utilization of the HLWN [27]. In
this work, it is assumed that a CC is connected to both WiFi and LiFi APs through an error-free
feedback link, and it is responsible for making the load balancing decisions. Besides, the users
are distributed across the room, and they may follow different mobility models, explained
in Section 6.2.1 and Section 7.2.1. Furthermore, the users are assumed to be accessing the
high definition (HD) videos from the internet, hence their require data rates are modeled as
a Poisson process with the parameter Ro. In this work, to support multiple user connections
to a single AP, different types of medium access methods have been explored in this thesis;
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Figure 5.1: Schematic diagram of a HLWN.

namely, time-division multiple access (TDMA), orthogonal frequency-division multiple access
(OFDMA), and carrier-sense multiple access with collision avoidance (CSMA/CA) [115].
In the HLWN, the set of users is denoted by U = {µ|µ ∈ [1,Nu]} . The set of LiFi APs is
denoted by LAP= {α|α ∈ [1,NAP-LiFi]} and WiFi AP is denoted as W. The complete AP set
is given by AP= {W,LAP} . The total number of APs and users present in the system are
represented by NAP = NAP-LiFi +NAP-WiFi and Nu, respectively. The data requirement of each
user µ is given by Rµ .

5.2.1 LiFi Model

The signal-to-noise ratio (SNR) for the user µ connected to LiFi AP α is represented as
SNRµ,α , and can be expressed as:

SNRµ,α =
(HLiFi(µ,α)PoptRPD)

2

NLiFiBLiFi
, (5.1)

where HLiFi(µ,α) is the channel gain between AP α and user µ , RPD indicates photo receiver
responsivity , Popt represents transmitted optical power, NLiFi is the noise spectral density of
LiFi, BLiFi indicates the LiFi AP bandwidth. It may please be noted that the digital modulation
techniques are common for both VLC and LiFi system [116], thus all the physical layer
equations are valid for both systems. The value of HLiFi(µ,α) can be calculated using (2.3),
(2.9) and (2.11). It is important to note that as the same frequency is reused in each LiFi AP,
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therefore, the signal received from other than intended LiFi AP is perceived as interference.
Thus, the signal-to-interference-noise ratio (SINR) for the user µ connected to LiFi AP α is
denoted by SINRµ,α and can be expressed as:

SINRµ,α =
(HLiFi(µ,α)PoptRPD)

2

NLiFiBLiFi +∑β∈AP\{α} (HLiFi(µ,β )PoptRPD)2 (5.2)

where HLiFi(µ,β ) is the channel gain between interfering LiFi APs β and the user µ and
AP\{α} represents a set that includes all elements of set AP excluding element α . The lower
bound on achievable data rate of the user µ connected to LiFi AP α can be calculated using
[9, 28]:

drµ,α =
BLiFi

2
log2

(
1+
(

6
πe

)
SINRµ,α

)
. (5.3)

The simulation parameters used for LiFi channel are summarized in Table 5.3 [9, 117].

Table 5.3: LiFi channel parameters

Channel Parameter Symbol Value
Height difference between the user
and AP

h 2 m

Area of PD APD 1 cm2

The gain of opitcal filter gf 1
Half intensity radiation angle Φ1/2 60◦

Field of View (FOV) of PD Ψc 60◦

Responsivity RPD 0.53 A/W
Reflection coefficient ρ 0.8
Transmit opitcal power per LiFi AP Popt 3 Watt
Bandwidth per LiFi AP BLiFi 40 MHz
PSD of noise in LiFi NLiFi 10−21 A2/Hz

5.2.2 WiFi Model

The SNR for user µ connected to WiFi AP α is given by:

SNRµ,α( f ) =
|Gµ,α |2( f )PT

NWiFiBWiFi
, (5.4)

where G(µ,α)( f ) represents WiFi channel gain, PT indicates transmitted power, NWiFi denotes
noise spectral density for WiFi receiver, and BWiFi is the bandwidth of WiFi AP. The WiFi
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channel gain, G(µ,α1)( f ) is given by [9]:

Gµ,α( f ) =

√
10
−L(d)

10 hr, (5.5)

where f indicates the carrier frequency, hr represents the small-scale fading gain which follows
independent identical Rayleigh distribution with 2.46 dB average power. The L(d) denotes the
large-scale fading loss and it is given as [9]:

L(d) =

LFS(d)+XSF, d < dBP

LFS(dBP)+35log( d
dBP

)+XSF, d ≥ dBP
, (5.6)

where, d represents distance between user µ and WiFi AP α , LFS denotes the free space loss,
dBP indicates breakpoint distance and XSF refers to the shadowing loss. The free space loss can
be calculated by LFS(d) = 20log10 d+20log10 f −147.5 (dB). As the system model consist of
single WiFi AP, there will be no interference for WiFi users The achievable data rate between
WiFi AP α and user µ , can be calculated using:

drµ,α = BWiFi log2(1+SNRµ,α). (5.7)

The WiFi channel parameters used in simulation are stated in Table 5.4 [9, 117].

Table 5.4: WiFi channel parameters

Channel Parameter Symbol Value
Breakpoint distance dBP 5 cm
Shadowing loss XSF 3 dB
Central carrier frequency fc 2.4 GHz
WiFi AP’s transmit Power PWiFi 20 dBm
WiFi AP’s bandwidth BWiFi 20 MHz
PSD of noise in WiFi NWiFi -174 dBm/Hz

5.3 Load Balancing in HLWN

5.3.1 Received Signal Strength (RSS) Based Load Balancing

Conventionally the RSS method selects the AP that offers highest signal strength. However,
in a heterogeneous LiFi and WiFi network since the bandwidth and physical receiver noise
differs for LiFi and WiFi, therefore, received signal strength does not fully represent the quality
of channel [9, 117]. Therefore, the SNR is taken into account in RSS based load balancing
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for heterogeneous LiFi WiFi networks. It may please be noted that the term RSS and signal
strength strategy (SSS) are used interchangeably throughout this thesis. The objective function
of the RSS method for a given user µ is defined as:

max
α

SNRµ,α s.t α ∈ AP. (5.8)

where, AP is the set of APs including one WiFi and four LiFi APs and SNRµ,α represents the
SNR values between µ user and α AP, which can be calculated by (5.4) and (5.1) for WiFi and
LiFi APs, respectively.

5.3.2 Optimization Based Load Balancing

For the optimum load balancing in HLWN, the optimization problem can be defined as:

max
gµ,α kµ,α

∑
µ∈U

∑
α∈AP

gµ,α log
(

drµ,αkµ,α

Rµ

)
s.t. ∑

µ∈U
(gµ,αkµ,α) = 1∀α ∈ AP

∑
α∈AP

gµ,α = 1∀µ ∈ U

gµ,α ∈ {0,1},kµ,α ∈ [0,1],∀µ ∈ U,∀α ∈ AP

(5.9)

where, the optimization variable kµ,α defines the time slot allocated to the users µ connected
to AP α and the binary optimization variable gµ,α indicates the connection between AP α and
user µ . The gµ,α is defined as:

gµ,α =

1, user µ is connected to AP α

0, user µ is not connected to AP α

(5.10)

The first constraint of (5.9) ensures that the sum of time allocation of all users associated to
one AP is 1 and the second constraint states that each user can get connected to only one AP at
a time. This optimisation problem (5.9) is a mixed integer non-linear programming (MINLP)
problem which is mathematically intractable. Therefore, it is not possible to obtain a closed
form solution for this problem.
However, it is possible to find a sub-optimal solution for (5.9). In [118], the authors have
tried to solve similar problem to maximize the network throughput, however, throughput
is not appropriate parameter to ensure QoS. Therefore, in this work, we tried to maximize
the user satisfaction, which is defined as the ratio of achieved data-rate (drµ,αkµ,α ) by the
requested data-rate (Rµ ) for each user. We have divided MINLP (5.9) into two sub-problems:
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AP assignment (gµ,α ) and resource allocation (kµ,α ). For given AP α , gµ,α , the set and total
user connected to AP α can be represented by Uα and Mα . In this case, optimum kµ,α is [118]

kµ,α =
1

Mα

(5.11)

Thus, the problem (5.9) can be rewritten as:

max
gµ,α Mα

∑
µ∈U

∑
α∈AP

gµ,α log
(

drµ,α

RµMα

)
s.t. ∑

µ∈U
gµ,α = Mα ∀α ∈ AP

∑
α∈AP

gµ,α = 1∀µ ∈ U

gµ,α ∈ {0,1},kµ,α ∈ [0,1],∀µ ∈ U,∀α ∈ AP

(5.12)

To solve this problem, the Lagrangian method is utilized. For the constraints, two Lagrangian
multipliers λµ and wα are used. The Lagrangian function for this problem, can be written as:

L= ∑
µ∈U

∑
α∈AP

gµ,α log
(

drµ,α

RµMα

)
+ ∑

α∈AP
wα(Mα− ∑

µ∈U
gµ,α)+ ∑

µ∈U
λµ(1− ∑

α∈AP
gµ,α) (5.13)

This equation can be rearranged and divided into two sub-problems, as:

L1 = ∑
µ∈U

∑
α∈AP

[
gµ,α log

(
drµ,α

Rµ

)
−wα −λµ

]
(5.14)

L2 = ∑
α∈AP

[
Mα(wα − log(Mα))

]
+ ∑

µ∈U
λµ (5.15)

The optimum value of gµ,α is calculated as:

gµ,α =

1 α = argmax
(

log(drµ,α

Rµ
)−λµ −ωα

)
0 otherwise

, (5.16)

Mα = exp(wα −1) (5.17)

where, λµ and ωα are the Lagrangian’s multipliers and their values can be determined by using
similar procedure as mentioned in [118].
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5.3.3 Results and Discussion

The results of the proposed optimized load balancing scheme are compared against the RSS
based user association scheme in terms of average network throughput and user satisfaction. In
order to obtain these results, a room of 5 m x 5 m x 3 m with one WiFi AP in centre of the
room and four LiFi APs, as shown in Fig. 5.1 has been simulated in MATLAB. The simulation
parameters used for LiFi and WiFi channel are summarized in Table 5.3 and Table 5.3 and
Table 5.4 [9, 117].

The user association for RSS and proposed optimization-based scheme obtained using
equation (5.8) and (5.16), respectively. Fig. 5.2 illustrates the user association for RSS and
proposed optimization-based scheme. It can be noted that in RSS based method, most of
the users are connected to WiFi, hence the WiFi is overloaded, however, in case of proposed
optimized method the load of the network is properly balanced between the LiFi and WiFi
APs, i.e., more users are associated with LiFi APs, thus, WiFi AP resources are freed up and
can be utilized for mobile users.

(a) RSS (b) Optimization

Figure 5.2: User Association in HLWN.

The average throughput is obtained by Tavg =
∑µ∈U drµ,α kµ,α

Nu
. The effect of number of

users on system throughput for two schemes is shown in Fig. 5.3. It can be observed that the
system throughput decreases with increase in the number of users. Further, it can be noted
that the optimized scheme is able to provide significantly high throughput as compared to the
conventional RSS based scheme. However, as the number of users increases, the network
saturates and hence the difference in system throughput for the two schemes decrease.
The user satisfaction is calculated as min(1, drµ,α kµ,α

Rµ
), where Rµ is the data rate requirement

of user µ . In Fig. 5.4, the cumulative density function (CDF) of user satisfaction is presented.
It can be observed that for optimization-based user association approx. 46% of the users are
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Figure 5.3: System throughput

Figure 5.4: CDF of User satisfaction

fully satisfied (i.e., USµ,α = 1), whereas only 32% of the users are able to achieve the full user
satisfaction for RSS based association. Further, it can be interpreted from the results that if a
user satisfaction threshold of 0.51 is considered for the system, in optimization-based scheme
around 80% of users will achieve the desired performance whereas in RSS based scheme only
34% of the users will achieve the desired performance.

5.4 Summary

In this chapter, an overview of a HLWN system was presented along with the details related to
LiFi and WiFi channel model. Further, an optimization based load balancing for HLWN has
been explored in this chapter and its performance has been compared against the conventional
RSS HLWN LB in terms of average network throughput and user satisfaction. It was observed
that optimized scheme provided significant improvement in system throughput and user satis-
faction as compared to conventional RSS based user association method. The improvement
in system throughput was higher for low-density network (i.e., less than 10), however as the
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number of user increased, the network saturated. For low user density, the optimized method
provided at least 50% improvement in throughput as compared to conventional RSS based
method. Further, for minimum user satisfaction threshold of 0.51, around 80% of the users were
able to achieve the desired performance for optimization-based user association whereas in
case of RSS based method, only 34% of the users were able to achieve the desired performance.
It is interesting that optimization method provided an improvement but it is at the cost of higher
complexity. In the next chapter, we will explore RL based HLWN LB and will compare its
performance against optimization based HLWN LB.



Chapter 6
Reinforcement Learning Based
Near-optimal Load Balancing for HLWNs

In the last chapters, an optimization based HLWN LB was proposed. In this chapter, we will
explore the application of RL in HLWN LB. This chapter evaluates the performance of RL
based HLWN LB system in the presence of LiFi CCI, randomwaypoint (RWP) and hotspot
random waypoint (HRWP) mobility model. Further, for the sake of simplicity time-division
multiple access (TDMA) has been considered in this chapte. The brief introduction and
contributions related to the above mentioned system are given in Section 6.1 followed by
Section 6.2 which provides a brief overview of the HLWN system. Section 6.3 describes
the RL based HLWN LB. Section 5.4 derives the closed-form expression of SER and system
capacity. The simulation results are presented in Section 6.4. Finally, Section 6.5 concludes
the chapter.

6.1 Introduction

The VLC can be extended to LiFi which is fully networked, bidirectional, and high-speed
optical wireless communication. The universal availability of LEDs, license-free deployment
and data rate of Gbps order, makes LiFi an attractive choice for indoor communications [112].
However, LiFi suffers from a major drawback of blockage. Thus, the throughput of LiFi users
fluctuates spatially, as a result stand-alone LiFi can not guarantee the QoS to the user through
out the indoor environment. While LiFi can support high data rates when the receiver is in
direct LoS, WiFi can support moderate data rates with more ubiquitous coverage. Therefore,
coexistence of LiFi and WiFi technologies to form a HLWN is suggested. A HLWN provides
higher system throughput as compared to standalone LiFi or WiFi networks [26]. An appropri-
ately designed HLWN can support higher data rate, better user satisfaction, outage performance,
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and lower handover rates [27]. The problem of load balancing in HLWN is a MINLP problem.
It may be noted that the problem of throughput maximization in HLWN is neither concave
nor convex in binary connection variable [119, 120], therefore, the conventional optimization
algorithms fails to find a global optimum for this problem. Hence, researchers have started
exploring machine learning based solution for the aforementioned problem. The problem of
AP assignment in HLWN has been addressed by different methods, which can broadly be
classified into three categorise, namely, optimization, fuzzy logic (FL) and machine learning.
Different studies have used optimization based method in order to achieve different objectives
in hybrid LiFi WiFi notworks. In [121], user mobility and handover signalling overheads
are taken into account, and the utility function considered both the system throughput and
fairness. Further, in that work, two different cases, namely, with and without optical co-channel
interference (CCI) were considered. In [119], the optimization problem for maximizing the
achievable user QoS with certain outage probability is formulated and solved by two different
optimization algorithms that jointly and separately optimize the resource allocation and AP
assignment. In [121], a novel Load balancing method is proposed for optimizing the network
throughput over a period of time instead of maximizing the instantaneous network throughput.
In [122], authors have formulated a power allocation optimization problem for the hybrid
LiFi WiFi scenario, under common backhaul constraint. In [123], the authors formulated an
optimization problem in terms of power and bandwidth allocation in order to maximize the
energy efficiency of a heterogeneous VLC RF communication system. In [124], the authors
have presented unified resource allocation and mobility management algorithm for indoor
VLC networks based upon particle swarm optimization. It is important to note that all these
schemes are formulated as optimization problems to be solved at every time-step, therefore,
resulting into a high computational complexity. Other studies have used FL method to assign
APs to users. In [125], authors have explored FL based dynamic load balancing scheme in
order to mitigate the handover effects. This scheme considers the desired data rate and speed
of user, to determine whether a handover is required or not. The user speed information is
exploited by FL, so that more suitable APs can be assigned to users moving at a fast speed or
users experiencing transient shadowing effect. Furthermore, by using FL ping-pong pattern of
handover was avoided. In [117], two-stage AP selection method was proposed, the first stage
determines the association of users to WiFi AP based on FL, and the second stage assigns the
remaining users to the LiFi network. The results achieved by this method was close to the
optimization based method in terms of throughput, at a significantly reduced complexity.

Some studies have explored machine learning based approaches to solve the problem of AP
assignment in HLWN. In [126], authors proposed the concept of responsive association where
the associations are established by taking into account both the users’ current geo-locations and
their current queue backlog states. Furthermore, they considered the concept of anticipatory
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association where the associations are established by taking into account both the users’ time-
variant geo-locations and their evolving queue backlog states. They have reported the results in
terms of delay versus throughput trade-offs. In [127], authors proposed transfer learning based
network selection algorithm, i.e., reinforcement learning with knowledge transfer. Specifically,
in their work, context information is leveraged to tackle the network selection on two aspects.
On one hand, the asymmetric uplink and downlink performance requirements of traffic are
explicitly modeled. On the other hand, some distinguishing features of network as well
as the stationary distribution law of network load are used to assist the algorithm design.
Their work is different from proposed work as reinforcement learning algorithm used is Q-
Learning with knowledge transfer whereas in our work we have used trust region policy
optimization (TRPO) method. Moreover, their work only reported the improvement in the
reward which is a function of instantaneous uplink and downlink throughput. However,
the QoS parameters: user’s satisfaction and fairness has not been studied in that paper. In
[128], authors presented AP selection strategies for HLWN based on the multi-armed bandit,
where the decision probability distribution is updated based on the ‘exponential weights for
exploration and exploitation’ algorithm and the ‘exponentially weighted algorithm with linear
programming’ algorithm. The proposed work is different from the earlier work as the it uses
single agent gradient decent based learning as compared to multi-agent being used in the
previous work.

6.1.1 Main Contributions

Motivated by these earlier works, in this work, we have used reinforcement learning (RL) based
method for performing the load balancing in a hybrid LiFi WiFi network. It has been shown
that RL based load balancing provides improved average network throughput, user satisfaction,
fairness and outage performance. The system is analyzed under two different user behaviour.

The main contributions of this work are summarized as follows:

• We have proposed RL based dynamic load balancing for hybrid LiFi WiFi network. The
reward function of RL has been designed not only to maximize the long-term average
network throughput but also to improve both users satisfaction and fairness.

• The results are compared against the state-of-the-art signal strength strategy (SSS), an
iterative optimization method and exhaustive search, explained in Section 7.3.2. The
results are presented in terms of computational complexity, average network throughput,
user satisfaction, fairness and capacity outage probability.
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• Two different scenarios with different user behavior models have been considered to
demonstrate the adaptability of the proposed RL method, they are referred as random
waypoint (RWP) and hotspot random waypoint (HRWP), explained in Section 6.2.1.

6.2 System Model

In this chapter, a multi-user HLWN as described in Section 5.2 is considered for indoor
communication. The users are assumed to be distributed across the room and they follow
random way point and hotspot random waypoint mobility model, explained in Section 6.2.1.
Moreover, it is assumed that each user can connect to a single AP at a time (i.e., either a
LiFi AP or the WiFi AP). In order to support multiple users connection to single AP, TDMA
is considered in this work and it is assumed that all the users connected to AP α will share
resources equally. Fig. 6.1 shows the schematic diagram of considered HLWN.

Figure 6.1: Schematic diagram of a HLWN.

6.2.1 Mobility Models

In general, most of the studies consider RWP model for mobility. It is a simple model in
which a user selects a random destination and moves towards that destination at a constant
speed. After reaching the destination, user picks up a new destination and starts moving in that
direction and this process continues. However, it is also interesting to consider that inside a
room, there are hotspots, where the users would gather with high probability. For example,
users may gather under the LEDs to have better illumination level.

In [129], authors have introduced a modified random waypoint model, that allows to create
hotspots by modifying the distribution of destination points. The distribution of the destination
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Figure 6.2: Distribution pattern of 100 nodes inside room for modified random waypoint model

points (xd,yd) is given by [129]:

f (xd,yd) =
1

Aroom +(ξi−1)Aa

[
(u(xd + xm)−u(xd− xm))

(u(yd + ym)−u(yd− ym))+(ξi−1) (6.1)

(u(xd− xa,max)−u(xd− xa,min))

(u(yd− ya,max)−u(yd− ya,min))

]
where Aroom is the area of the room, Aa is the area of the hotspot and ξi is the intensity. The room
is defined as −xm ≤ x ≤ xm and −ym ≤ y ≤ ym and hotspot is defined by xa,min ≤ x ≤ xa,max

and ya,min ≤ y≤ ya,max,
In our work, we have considered four hotspots located around four LEDs in the room with

ξi = 200 and Aa = 0.25m2. Additionally, a wait time has been introduced i.e., once a user
reaches to a hotspot, it will wait for some time at that particular location. Afterwards, the user
will select a new destination and the process will continue. This particular mobility model
will be referred as for hotspot random waypoint model (HRWP) in this work. Fig. 6.2, shows
the distribution of 100 nodes inside the room with above mentioned specifications for HRWP
model.

6.2.2 Performance Metrics

In this work, the performance is compared based on four metrics namely, average network
throughput, user satisfaction, fairness and outage probability.
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• The user’s satisfaction Sµ,α is defined as the ratio of data rate achieved by the user to
the data rate required by that user, it can be expressed as [9]:

Sµ,α = min{1,
kµ,αdrµ,α

Rµ

} (6.2)

where Rµ is the requested data rate by user µ . The maximum value of user satisfaction
is 1, which implies that the user has achieved its requested data rate.

• For fairness, Jain’s fairness index is used. Jain’s index can be computed as [130]:

η f =

(
∑
U

Sµ,α

)2

NU ∑
U
(Sµ,α)2 (6.3)

where NU is the number of users.

• The rate outage probability can be defined as [9]:

Φ = Prob(kµ,αdrµ,α < Ro) (6.4)

where Ro is the average required value of throughput.

6.3 Proposed RL Based Load balancing

RL is a promising machine learning approach, where an agent continuously interacts with
the environment in order to observe the state of the environment and to take actions based
on these observations, as shown in Fig. 6.3. The ultimate goal of RL agent is to determine
a stochastic policy, which maps states to a probability distribution over actions, in order to
maximize the cumulative reward. RL can be viewed as an stochastically optimized solution for
Markov Decision Processes (MDPs), when the MDP is not known. In the standard formulation
of MDP, at time step t ≥ 0, an agent is in state st ∈ S, takes an action at ∈A, receives an instant
reward rt = r(st ,at) ∈ R and transits to a next state st+1 ∼ P(·|st ,at) ∈ S. π : S→ P(A) is the
policy, where P(A) is the set of distributions over the action space A [131]. The discounted
cumulative reward under policy π is [132]:

η(π) = Es0,a0,...

[
∞

∑
t=0

γ
tr(st ,at)

]
,

s0 ∼ ρ0(s0),at ∼ π(at |st),st+1 ∼ P(st+1|st ,at)
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Figure 6.3: RL for a HLWN.

where γ ∈ (0,1) is the discount factor where lower values of γ means more emphasis on
immediate rewards. The goal of RL is to find an optimal policy, π∗, which achieves the
maximum η(π) i.e.,

π
∗ = argmax

π

(η(π))

We have formulated the given HLWN AP assignment problem as an infinite-horizon
discounted MDP defined by (S,A,P,r,ρ0,γ) where

• S is the set of continuous states, which includes SINR for all the users from all the APs
represented by a matrix SI, the current load on each AP (LAP) i.e., number of users
connected to a particular AP out of total number of users, and user satisfaction represented
as US. The dimensions of SI is [NU×NAP], dimensions of (LAP) is [NAP] and dimensions
of US is [NU]. Therefore, dimension of the observation space is [NU +NAP +NU×NAP].

• A is a finite set of discrete actions, which is AP assignment, therefore, the dimension for
discrete action space is [NU ].

• r : S×A−→ R is the reward function, which is (drµ,α kµ,α

Rµ
), where drµ,αkµ,α is the achiev-

able data-rate between AP α and user µ , which is given by (5.3), (5.7) and (5.11). The
reward function is carefully designed to take into account both the throughput and user
satisfaction.

• The discount factor γ is set to 0.9, P : S× A× S −→ R is the transition probability
distribution, ρ0 : S−→ R is the distribution of the initial state s0.
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In this work we have used a multi-layer perceptron (MLP) as policy network with parame-
ters θ , for the task of access point assignment. Thus, the policy π can be written as π(at |st ;θ).
The state-action value function Qπ , value function Vπ , and the advantage function Aπ are
defined as [132]:

Qπ(st ,at) = Est+1,at+1,...

[
∞

∑
l=0

γ
tr(st+l,at+l)

]
,

Vπ(st) = Eat ,st+1,...

[
∞

∑
l=0

γ
tr(st+l,at+l)

]
,

Aπ(s,a) = Qπ(s,a)−Vπ(s),

where at ∼ π(at |st ;θ),st+1 ∼ P(st+1|st ,at) for t ≥ 0.

The training process involves the optimization of policy parameter θ of the MLP in order to
maximize the expected discounted return. For this purpose, Trust Region Policy Optimization
(TRPO) is used, which is a scalable algorithm for optimizing policies by using gradient descent
[132]. The policy gradient methods are model free and provides better training stability than
value iteration methods [133]. Moreover, TRPO provides guaranteed monotonic improvements
under certain assumptions [132], which means the policy update in each TRPO iteration creates
a better policy. TRPO methods directly learn the policy π(a|s;θ) using gradient descent, while
constraining the update size of θ at each step. In particular, TRPO enforces this by introducing
a KL divergence constraint on the size of update between the old and new policy at each
iteration. The optimization problem in TRPO can be written as:

maximize
θ

Es∼ρθold ,a∼q

[
πθ (a|s)
q(a|s)

Qθold(s,a)
]

(6.5)

subject to Es∼ρθold

[
DKL(πθold(.|s)||πθ (.|s))

]
≤ δ

where δ is a tunable parameter.
The exact steps required to determine the optimal policy π∗

θ
(at |st) are explained in Al-

gorithm 2. At the end of the training process the optimal policy π∗(a|s;θ) is obtained, as
shown in Fig. 6.4. This policy can be used in the real time in order to predict appropriate AP
assignment, calculate reward and next state, as explained in Algorithm 3. The computational
complexity of such system is usually smaller as compared to optimization based method. In
the next sub section we have defined the optimzation problem with an objective function same
as the reward function of the RL.
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Algorithm 2 :TRPO Algorithim to find optimal policy [132]
Input: Initial policy parameter, θ0
Output: Optimal policy, π∗

θ
(at |st)

1: for k=0,1,2,... do
2: Run policy πθ to collect the set of trajectories
3: Estimate the advantage function Aπk
4: Compute policy gradient gk and KL-divergence Hessian-vector product

function f (v) = Hkv
5: Use conjugate gradient to calculate xk ≈ Hk

−1gk
−1

6: Estimate step update ∆k ≈
√

2δ

xT
k Hkxk

xk

7: Update step θk+1, using line search.
θk+1 = θk +αk∆k

8: end for

Algorithm 3 : Algorithm for load balancing using RL [9]
Input: Current state of HLWN, st and optimal policy π∗

θ
(at |st)

Output: Reward rt+1 and state st+1
Use π∗

θ
(at |st) for given st , in order to predict at .

Update the AP assignment in the environment based on at .
Based on new AP assignment calculate reward rt+1 and new state st+1.
return rt+1 and st+1

π*(at|st) 
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Figure 6.4: Optimum multi-layer perceptron (MLP) policy structure
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6.3.1 Training Performance and Convergence of RL

In this work, we have used TRPO which imposes a trust region constraint on the policy to
stabilize learning. For the sake of simplicity, we have reported the training results for 5 users,
similar trend can be observed for 10 users. Fig. 6.5 shows the training performance of RL
algorithm in terms of average reward for different discount factor,γ .
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Figure 6.5: Training performance and convergence of RL in terms of average reward w.r.t number of
episodes for γ = 0.9 (red) and γ = 0.7 (blue).

It can be seen that the average reward of the algorithm converges after a certain number
of episodes for both γ values. However, there is significant difference in value of average
rewards obtained by the algorithm for different γ values. It can be observed that γ = 0.9
achieves average reward of around 3 times of average reward achieved by γ = 0.7. Therefore,
γ = 0.9 has been chosen for simulation. However, the convergence of the algorithm for γ = 0.9
takes more time. In future work, we aim to include the concept of knowledge transfer in our
algorithm to improve its convergence speed. TRPO being model-free algorithms, directly
learns the optimal policy without estimating the model (transition and reward functions) of the
environment. Therefore, TRPO requires relatively little tuning of hyperparameters; however, it
suffers from higher sample complexity [134]. TRPO is an on-policy method, which means
it explores by sampling actions according to the latest version of its stochastic policy. The
exploration depends on both initial conditions and the training procedure. There are various
methods proposed in literature to deal with the sample complexity of TRPO [135–137];
however, as this work is mainly focused on RL based load balancing for hybrid LiFi WiFi
network, for the sake of simplicity, we have considered the simplest form of TRPO in this
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work. In future work, we aim to include the concept of knowledge transfer in our algorithm to
improve its performance and convergence speed.

6.4 Results and Discussion

We have considered a 5 m × 5 m × 3 m indoor space which is entirely covered by a WiFi AP,
and partially covered by 4 Li-Fi APs, as shown in Fig. 6.1. It is assumed that all the optical
attocells reuse the same bandwidth so there exists interference, which has been included in
the LiFi SINR calculation as given in equation (5.2). The users are assumed to be uniformly
distributed across the room, and two different mobility models are considered, namely, RWP
and HRWP. The parameters for LiFi and WiFi channels are stated in Table 6.1 and 6.2,
respectively [117, 125].

Table 6.1: LiFi channel parameters

Channel Parameter Symbol Value
Height difference between the user
and AP

h 2 m

Area of PD APD 1 cm2

The gain of opitcal filter gf 1
Half intensity radiation angle Φ1/2 60◦

Field of View (FOV) of PD Ψc 60◦

Responsivity RPD 0.53 A/W
Reflection coefficient ρ 0.8
Transmit opitcal power per LiFi AP Popt 3 Watt
Bandwidth per LiFi AP BLiFi 40 MHz
PSD of noise in LiFi NLiFi 10−21 A2/Hz

Table 6.2: WiFi channel parameters

Channel Parameter Symbol Value
Breakpoint distance dBP 2.5 m
Shadowing loss XSF 3 dB
Central carrier frequency fc 2.4 GHz
WiFi AP’s transmit Power PWiFi 20 dBm
WiFi AP’s bandwidth BWiFi 20 MHz
PSD of noise in WiFi NWiFi -174 dBm/Hz

In order to obtain the results a simulation scenario as illustrated in Fig. 6.1 has been coded
in MATLAB. Further, We have considered the data rate requested by the users defined by
Poisson distribution process with parameter Ro, which is set to 50 Mbps for simulation. The
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performance of the proposed RL method has been compared against exhaustive optimization,
iterative optimization and signal strength methods, explained in Section 5.3.1 and 5.3.2. The
SSS method selects the AP that offers highest signal strength. Unlike homogeneous network,
in a hybrid LiFi and WiFi network since the bandwidth and receiver noise differs for LiFi and
WiFi, therefore, received signal strength does not fully represent the quality of channel. Hence,
SNR is used as decision metric for SSS method. Further, exhaustive optimization have been
considered as the performance upper bound at the cost of higher complexity. The Table 6.3
summarises the system parameters.

Table 6.3: System parameters

System Parameter Value
Room dimension 5 × 5 × 3 m3

Number of APs 4 LiFi + 1 WiFi
WiFi AP location (2.5 m, 2.5 m)
LiFi AP locations (2.5 ±1.25 m,2.5 ±1.25 m)
Mobility model RWP, HRWP
Hotspot intensity, ξi 200
Hotspot area, Aa 0.25 m2

User speed 1 m/s
RWP Pause time 0 s
HRWP Pause time 5 s
Requested data rate, Rµ Poisson with 50 Mbps
Gym environment LiFi WiFi network
policy MLP, 2 layers of 64
max KL divergence, δ 0.01
Discount factor, γ 0.9
Episode length, E 1000

6.4.1 Complexity Analysis

The SSS method simply selects the AP with highest SNR value out of total APs (NAP).
Therefore, its complexity is O(NAPNU) [117]. The optimization method based on exhaustive
search is computationally expensive as it searches over all possible connections between users
and APs, therefore, the complexity is O((NAP)

NU). The complexity of optimization problem
based on iterative methods depends on number of iterations I that it takes to converge. Its
complexity can be estimated as O(NUNAPI) [119]. The computational complexity of training
phase of RL depends upon the number of states (n) in the MDP and it is given by O(n), however,
this is just one time training cost. During the real time the complexity of RL algorithm depends
on the optimal policy which is represented in form of MLP, the complexity depends upon
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the dimensions of observation and action space which in given in Section 6.3, therefore, the
complexity for RL is O(N2

UNAP +N2
U +NUNAP).

The complexity of SSS increases linearly with number of users, whereas for exhaustive
optimization the complexity increases exponential with number of user. The complexity for
iterative method is dependent on I and in case of RL the complexity has a quadratic relation
with number of users. It is observed from Table 6.4 that the real time complexity of RL is
much smaller as compared to exhaustive and iterative optimization. For better understanding,
we have plotted the computational complexity of these methods for different number of users,
assuming I = 30 [119], shown in Fig. 6.6. It can be observed from the graph that the complexity
of RL is lower than exhaustive and iterative method.

Table 6.4: Computational Complexity [9]

Scheme Complexity
SSS O(NAPNU)
Iterative O(NU NAPI)
Exhaustive O((NAP)

Nu)

RL O(N2
UNAP +N2

U +NUNAP)
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Figure 6.6: Computational Complexity

6.4.2 Effect of Number of Users

The average network throughput for different number of users under various load balancing
schemes are stated in Table 6.5. For 5 users, the iterative optimization based AP assignment
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Table 6.5: Average network throughput (Mbps) for different number of users

NU SSS Iterative Exhaustive RL
5 116.23 174.04 239.90 218.81
10 73.12 98.72 138.41 110.69

provides 49.74% increment in average network throughput over SSS, whereas the RL and
exhaustive optimization provide an improvement of 88.26% and 106.41% over SSS in average
network throughput respectively.
As the number of users are increased to 10, RL and exhaustive search provides 51.37% and

89.29% improvement in average network throughput over SSS, respectively. The RL is able to
provide significant improvement over SSS in throughput as compared to iterative algorithm
for which the improvement in average network throughput over SSS is limited to 34.24 %. It
is important to note that as the number of users increases, the network performance saturates,
because of this the gain achieved by different load balancing methods is restricted.

The values of Jain’s fairness index η f for different number of users under various load
balancing schemes are calculated using equation 6.3, they are tabulated in Table 6.6. For 5
users, all the schemes are able to achieve the fairness value very close to 1. However, for 10
users, SSS fairness is limited to 0.96, whereas both RL and optimization achieve a fairness of
0.97. The fairness index for exhaustive optimization was highest i.e., 0.97. Since the Jain’s
fairness index and average network throughput provide an average overview of the network
performance. In order to provide a better insight on the performance of these schemes, the
CCDF of user satisfaction and outage probability for particular throughput are provided.

Table 6.6: Fairness for different number of users

NU SSS Iterative Exhaustive RL
5 0.9998 0.9999 1.0000 1.0000
10 0.9568 0.9743 0.9872 0.9727

The user satisfaction can be calculate using equation 6.2, afterwards the CCDF of user
satisfaction can be calculated using MATLAB code. Fig. 6.7 shows the CCDF of user satisfac-
tion for different number of users under four different load balancing schemes. The value of
satisfaction is calculated using Eq. 6.2. From the results, it can be observed that SSS based
scheme performs worst in terms of user satisfaction, less than 40% and 25% of the users are
completely satisfied for SSS based AP assignment method for 5 and 10 users, respectively. For
iterative optimization, it is around 85% when there are 5 users but this value drops drastically
to far less than 30% when the number of users are increased to 10. For exhaustive optimization
and RL around 98% and 96% of users achieve complete satisfaction when there are 5 users, but
as the number of users increases to 10, this value drops to around 45% and 40% respectively.
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Figure 6.7: User Satisfaction: Nu=5 (dashed lines) and Nu=10 (solid lines)

Therefore, it can be observed that highest percentage of full user satisfaction is achieved by ex-
haustive search method followed by RL, which provides close enough performance. Moreover,
an increase in number of users reduces the user satisfaction for all schemes.

The outage probability for a threshold throughput of Ro can be calculated from the simula-
tion results using the equation (6.4). Fig. 6.8 illustrates the outage probability for a threshold
throughput of Ro. It can be observed that for 5 users, if a system allows 10% of the users to be
in outage in terms of capacity, than the average network throughput can be around 210 and 180
Mbps for exhaustive search and RL respectively. In case of iterative algorithm this value is
limited to less than 100 Mbps, where as for SSS it is around 40 Mbps.It can be observed that
SSS performs worst, followed by iterative optimization. For larger outage probabilities, beyond
0.6, the performance of RL and exhaustive optimization converges. Further, as the number
of users increases from 5 to 10, for a particular outage probability for the throughput value
decreases significantly. Overall, exhaustive search provides highest possible throughput for a a
particular outage probability, followed by RL, which provides almost similar performance at
higher outage probability. Increase in the number of users degrades the performance for all
schemes, but mostly RL performs close to exhaustive search.
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Figure 6.8: Outage probability: Nu=5 (dashed lines) and Nu=10 (solid lines)

6.4.3 Effect of Mobility Models

In this work, we have also considered different user behaviours such as HRWP mobility model,
which has four attraction points located around the four LEDs. Table 6.7 summarizes the
average network throughput for 5 users under two different mobility models.

Table 6.7: Average Network throughput (Mbps) for different mobility models

NU SSS Iterative Exhaustive RL
5 (RWP) 116.23 174.04 239.90 218.81
5 (HRWP) 122.23 197.28 267.86 214.85

It is interesting to note that the pattern of performance remained the same for both mobility
models. The exhaustive optimization provides the highest improvement in terms of average
network throughput over SSS method, followed by RL and iterative optimization. The Jain’s
fairness index for 5 users under different mobility models are tabulated in Table 6.8. It can be
observed that all the schemes are able to achieve full fairness (η f = 1) for 5 users under both
mobility models.
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Table 6.8: Fairness for different mobility models

NU SSS Iterative Exhaustive RL
5 (RWP) 0.9998 0.9999 1.0000 1.0000
5 (HRWP) 0.9990 0.9968 1.0000 1.0000

Figure 6.9: User Satisfaction (5 users) : with RWP (soild lines) and HRWP (dashed lines)

Fig. 6.9 shows the CCDF of user satisfaction for 5 users under different mobility models. It
can be observed that the user satisfaction changes significantly for the two mobility models.
For SSS, in case of HRWP around 45% of the users are able to achieve full satisfaction
whereas in case of simple RWP, it is only limited to 35%. Further, exhaustive search provides
slight improvement in user satisfaction for HRWP. At the same time, RL provides performance
matching to iterative optimization method for HRWP. Further, RL ensures 0.85 user satisfaction
for all users for both mobility models, whereas iterative optimzation scheme is only able to
ensure the user satisfaction for 90% of the users, which means that at least 10% of users never
achieves the desired user satisfaction for iterative algorithm. Moreover, SSS can ensure the
user satisfaction only for 70% of the users in HRWP model.

Fig. 6.10 illustrates the outage probability of a particular throughput Ro for 5 users under two
different mobility models. It can be observed that in case of HRWP the achievable throughput
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Figure 6.10: Outage probability (5 Users) : with RWP (soild lines) and HRWP (dashed lines)

with certain outage probability increases for exhaustive search. For SSS, the performance
remained almost same with RWP and HRWP. Iterative algorithm and RL exhibits similar
behaviour for the two mobility models, for smaller values of outage probability, they support
higher throughput in RWP models, but for larger values of outage probability, they support
higher throughput in HRWP models. Overall, the trend of performance for four methods
remained same for both the mobility models and it is shown that RL provides robustness
against different user behaviour.

6.5 Summary

In this chapter, an RL based dynamic load balancing scheme has been considered for HLWNs.
The reward function of RL was carefully crafted to increase the average system throughput
while ensuring the required QoS. The RL was trained to determine the optimal policy, by using
TRPO algorithm. Afterwards, the optimal policy was exploited to determine the appropriate
AP assignment for the given state. Based on simulation results and complexity analysis,
it is shown that the proposed method achieves a significantly better performance at lower
run-time complexity compared to the conventional SSS scheme and the iterative algorithm.
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The exhaustive optimization provided the best performance at the cost of high computational
complexity which is impractical for real life scenarios. However, it is shown that the RL scheme
can achieve a close performance as exhaustive search with a lower complexity. Furthermore,
the performance trends of RL compared to other schemes remained unchanged for different
mobility models, which proves the robustness of the proposed scheme





Chapter 7
Load Balancing in Link Aggregation
Enabled HLWNs

In chapter 6, it was assumed that a HLWN user can either connect to a LiFi or WiFi AP at
a time, however in a HLWN, it is possible for a user to connect to both LiFi and WiFi AP
simultaneously. In this chapter, the performance of an link aggregation enabled HLWN is
investigated and compared against HLWN that allows connection with single AP at a time.
Further, a RL based HLWN LB has been proposed for link aggregation enabled HLWN.
This chapter evaluates the performance of RL based HLWN LB in the presence of LiFi CCI,
orientation based RWP, and handover. Furthermore, the concept from domain knowledge
are also included in RL based LB to further reduce its complexity. The brief introduction
and contributions related to the above mentioned system are given in Section 7.1 followed by
Section 7.2 which provides a brief overview of the HLWN system. Section 7.3 describes the
LB methods for link aggregation enabled HLWN LB. The simulation results are presented in
Section 7.4. Finally, Section 7.5 concludes the chapter.

7.1 Introduction

In a HLWN, it is possible for a user to connect to both LiFi and WiFi AP simultaneously.
A HLWN where user can aggregate data from both LiFi and WiFi link is known as link
aggregation enabled HLWNs. There exists limited literature on the aggregation of LiFi WiFi
links in a HLWN [29, 126, 138–140]. In [126], authors proposed the concept of responsive
and anticipatory association, the associations were established based on users’ geo-locations
and queue backlog states. Their objective was to find the optimal trade-off between the
average system queue backlog and the average per-user throughput. In [29, 138], authors
have implemented channel aggregation for HLWN, and demonstrated proof-of-concept by
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using state-of-the-art LiFi and WiFi frontends. Both of these works focused on practical
demonstration and employed AP assignment based on the received signal strength and ignored
the effect of AP overloading. In [139], authors have proposed an online two-timescale power
allocation algorithm for users with multi-homing capability that allows the users to aggregate
the resources from both RF and LiFi APs. However, they have not considered the effect of
interference between LiFi APs. Further, they implemented Q-learning based methods and
compared their results only with stand-alone LiFi and WiFi AP, whereas in the current work
policy-gradient based method has been implemented. In [140], the authors utilized Lyapunov
optimization function for determining the optimal scheduling based on queue lengths for
achieving the desired throughput. The authors have practically validated the performance of
proposed protocol by implementing it on a real-life prototype. Their focus was on queue length-
based scheduling algorithm to achieve optimal throughput. On the other hand, the current
proposed work focuses on optimal AP assignment for a higher average network throughput
while ensuring a particular user satisfaction. There are various research gaps in the above-
mentioned works. Firstly, these works did not compare their results with two benchmarks
RSS and exhaustive search method which has been done in the current work. Secondly, the
current work also compares the performance of the system without and with link aggregation
which was missing in most of the previous studies. Thirdly, the current work considers a more
realistic scenario with effect of handover overhead, interference between neighbouring LiFi
APs, user mobility and receiver device orientation. Additionally, in the current work, three
different reward functions for different objectives have been explored, whereas most of the
existing research works have explored only single reward function. Finally, in order to reduce
the complexity of RL algorithm the concept of domain knowledge has been exploited in the
current work. In our previous work [9], we have applied RL for AP assignment in HLWN
and reported promising results, but we assumed a simplistic system model. We assumed
time-division multiple access, and assumed that a user can connect to single AP, i.e. it can
either connect to WiFi AP or LiFi AP at a time. Furthermore, we did not considered the effect
of receiver orientation or handover overhead in our previous system model. However, in current
work the effect of link aggregation and different reward functions is studied. Further, concept
of domain knowledge has been exploited to reduce the complexity of the proposed system.
Additionally, in this work, we have considered a more realistic framework for modeling the
HLWN with CSMA/CA and handover overhead.

7.1.1 Motivation and Main Contributions

Motivated by earlier works to study link aggregation effect on HLWN performance, two
different types of receiver, namely, single AP (SAP) and link aggregation (LA) receiver, are
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considered in this work. The SAP receiver will allow users to receive data from either a LiFi or
WiFi AP, whereas the LA receiver will allow users to receive data simultaneously from both
LiFi and WiFi APs. For LA user, it is assumed that the physical and medium access layer of
WiFi receiver and LiFi receiver will work independently [29]. Furthermore, in literature, it has
been proven that load balancing of HLWN is a non-convex MINLP problem [119, 120] which
is mathematically intractable, thus, the conventional optimization algorithms can not find the
global optimum solution for this kind of problem. Therefore, to overcome this limitation of the
conventional optimization algorithm, we have proposed a centralized RL algorithm to perform
LB in a HLWN. The RL algorithm determines its actions based on online-learning from the
HLWN environment. Moreover, the effect of different reward functions on the proposed
algorithm’s performance is also studied in this work. The concepts of domain knowledge have
been exploited to reduce the algorithm’s computational complexity. It has been shown that RL
based LB in a HLWN with an appropriate reward function provides significantly improved
performance.

The main contributions of this chapter are summarized as follows:

• Two different types of receivers, namely SAP and LA, have been considered to study
the effect of link aggregation on the performance of HLWNs. A user equipped with a
SAP receiver device can receive data from a single AP at a time, whereas a LA receiver
equipped user can receive data simultaneously from both LiFi and WiFi APs.

• We have proposed a centralized RL based algorithm for dynamic LB in HLWN, and to
prove the generalization of the proposed RL algorithm: three different reward functions
have been considered, as explained in 7.3.0.3 and their effect have been investigated on
the average sum throughput and user satisfaction.

• A more realistic framework with orientation-based random waypoint (ORWP) mobility
model, CSMA/CA-based multi-user access, and handover overhead has been considered
in this work.

• Furthermore, the concepts of domain knowledge have been utilized to reduce the obser-
vation and action space, which reduces the RL algorithm complexity.

• The proposed RL scheme is compared against the RSS and exhaustive search method, ex-
plained in Section 7.3.2. The results are presented in terms of computational complexity,
average network throughput, and user satisfaction.
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7.2 System Model

In this work, a typical office room of 5×5×3 m3 with multi-user HLWN is considered, as
shown in Fig. 7.1. The coverage range of WiFi AP is assumed to be around 10 m, whereas the
coverage range of each LiFi AP is limited to few meters. A CC unit is required for efficient
utilization of the HLWN [27]. In this work, it is assumed that a CC is connected to both WiFi
and LiFi APs through an error-free feedback link which is responsible for making the load
balancing decisions. Furthermore, in order to study the effect of link aggregation, two different
types of receiver are considered in this work, (1) SAP scheme which allows each user to receive
data from a single AP, and (2) LA scheme which allows user to receive data simultaneously
from both LiFi and WiFi AP. It is important to note that, although LA receiver, allows the
user to simultaneously receive data from both LiFi and WiFi AP, but the CC can still decide
to connect a LA user to only a LiFi/WiFi AP in order to avoid unnecessary overloading on a
particular AP. Furthermore, the users are assumed to be accessing the high definition (HD)
videos from the internet, hence their require data rates are modeled as a Poisson process with
the parameter value of 70 Mbps. Moreover, in order to have a more realistic framework, the
ORWP mobility model and CSMA/CA [115] based multi-user access have been considered in
this work.
In the HLWN, the set of users is denoted by U = {µ|µ ∈ [1,Nu]}. The set of LiFi APs is

5 m

5 m

3 m

: WiFi AP

: LiFi AP

: Users

Controller

: User connected to LiFi AP

: User connected to WiFi AP

: Users route

Figure 7.1: Schematic diagram of a link aggregation enabled HLWN.

denoted by LAP = {α|α ∈ [1,NAP-LiFi]} and WiFi AP is denoted as W. The complete AP
set is given by AP = {W,LAP}. The total number of APs and users present in the system
are represented by NAP = NAP-LiFi +NAP-WiFi and Nu, respectively. The LA user is capable
of receiving data from both LiFi and WiFi AP simultaneously, therefore, let α1 ∈ {0,W}
and α2 ∈ {0,LAP} indicate the WiFi and LiFi AP conntected to the LA users. The binary
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association variable gµ,α is defined as:

gµ,α =

1, user µ is connected to AP α

0, user µ is not connected to AP α

(7.1)

The achievable datarate of a user µ connected to an AP α is represented by drµ,α . Further, the
achievable datarate of a user µ connected to a WiFi AP α1 is given by drµ,α1 . Similarly, the
achievable datarate of a user µ connected to a LiFi AP α2 is given by drµ,α2 . Their values can
be calculated using the corresponding equations 5.7 and 5.3.

7.2.1 Orientation-based Random Waypoint Mobility Model

Generally, most studies consider RWP model for mobility. In RWP, a user pick a random
destination and travels at a constant speed towards that destination. Once the user arrives at the
destination, the user selects a new destination and starts moving in that direction at a constant
speed and this process continues. However, in case of LiFi users, the receiver device orientation
plays a crucial role. Therefore, in this work we have considered Orientation based RWP
(ORWP) model which was initially proposed in [141] and developed in [142] and [143]. In
fact, the ORWP considers the orientation of receiver device while the users move. A correlated
Gaussian random process should be generated for the polar angle during the movement of
users. The parameters of the ORWP model are chosen from [141]. The ORWP mobility model
has been used for the first time in the hybrid LiFi and WiFi networks in [144] to assess the
performance of the hybrid system more realisticly and support dynamic load balancing for
mobile users. In this study, we considered pause time in the simulation of ORWP which is
ignored in [144]. Users may tend to stop for a while at each destination and then continue their
movement. We assume pause time at each destination follow an exponential distribution with a
mean value of 10 seconds [143].

7.2.2 Handover

During a network handover, an overhead occurs that causes a drop in the average data rate
of the user involved in the handover. In order to model this reduction in data rate, handover
efficiency was introduced in [119] which is defined as the fraction of overhead time to actual
transmission time. However, it is important to note that the exact handover efficiency can not
be calculated [144]. Therefore, an average handover efficiency is used to estimate the negative
effect of handover on users’ data rate.
In a HLWN environment, two types of handover exists, namely, vertical and horizontal
handover. When a SAP user moves from LiFi AP to WiFi AP or vice-versa, it is termed as
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vertical handover (VHO) and when a user moves from LiFi AP to another LiFi AP, it is termed
as horizontal handover (HHO). Assuming that user µ was previously served by AP α t−1 and is
now being served by AP α t . For SAP user, the estimated handover efficiency can be modelled
as [145]:

ηSAP(t) =


1, α t = α t−1 ∀ α t ,α t−1 ∈ AP

η0,HHO, α t
2 ̸= α

t−1
2 ∀ α t

2,α
t−1
2 ∈ LAP

η0,VHO, otherwise.

∀ α ∈ AP

(7.2)

where, η0,HHO and η0,VHO denote average handover efficiency for HHO and VHO, re-
spectively. Typically, the HHO require a lower amount of overhead and they occur faster in
comparison to the VHO. The reason is that the HHO happen among the same domain using the
same wireless technology whereas VHO fall among different technologies, which in this work
is between LiFi and WiFi. Thus, a higher value of η0,HHO =0.9 is chosen in comparison to the
η0,VHO = 0.6 [144]. However, it may please be noted that the choice of these values does not
affect the generality of our proposed algorithm.

On the other hand, a LA user can either connect to both LiFi and WiFi AP, or connect to
only one of them, therefore, the modelling of VHO will be different from SAP. In this work,
VHO for LA user is modelled as handover from both LiFi and WiFi connection to either LiFi
or WiFi and vice-versa. Therefore, the estimated handover efficiency for LA user, can be
modelled as [145]:

ηLA(t) =


1, α t

1 = α
t−1
1 and α t

2 = α
t−1
2 .

η0,HHO, α t
1 = α

t−1
1 or α t

2 ̸= α
t−1
2 .

η0,VHO, otherwise

∀ α1 ∈W,α2 ∈ LAP.

(7.3)
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7.3 RL-based Load Balancing Method for LA Enabled HLWN

RL is a popular machine learning approach. An RL agent is capable of providing an optimal
solution (policy) without the exact knowledge of the underlying mathematical model. RL agents
directly learns its policy based on the interaction with the environment, the communication
happens between agent and environment in terms of action and reward. The ultimate goal of
RL agent is to determine a stochastic policy, which maps states to a probability distribution
over actions, in order to maximize the cumulative reward [9]. RL works based on three vectors,
namely, state, action, and reward. The state vector defines the present status of the hybrid
LiFi WiFi environment. The action vector defines the action of AP assignment taken by the
RL agent, after observing the present status of the environment. The reward vector defines the
reward received by the system after an action is taken by the system. Let S and A represent the
state and action space, respectively. At a given time step t ≥ 0, an agent will be in state st ∈ S,
it will take an action at ∈ A, and will receives a corresponding instant reward rt = r(st ,at) ∈ R
and transits to a next state st+1. The CC trains the learning algorithm in order to obtain its
policy πθ (at |st) for AP association. This process is repeated and with each iteration, the system
keeps moving toward the actions that provides maximum cumulative reward. At the end of
the training process the optimal policy π∗(a|s;θ) is obtained, this policy can be used in the
real time in order to predict appropriate AP assignment, calculate reward and next state, as
explained in algorithm 3 of chapter 6.

In this work, the state, action and reward are formulated as follows:

7.3.0.1 State Space S

The state vector S defines the current status of the hybrid LiFi WiFi environment, it provides
necessary information to the agent to make its decision. In this work, as we are training the
agent to determine the optimal AP assignment strategy, therefore we need to take into account
the SNR between the user and various APs, which is define by (5.1) and (5.4). Furthermore,
as we are dealing with HLWN which is susceptible to AP overloading, we need to provide
the information regarding load on a particular AP to the RL agent. Therefore, S is the set of
continuous states, which includes:

• SNR between users and APs represented by a matrix S⋉

• Current load on each AP i.e., number of users connected to a particular AP represented
by LAP. The dimensions of LAP is [NAP]

The dimensions of S⋉ depends upon the number of APs considered, conventionally the SNR
matrix is considered between all the users and all the APs resulting into S⋉ dimension of
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[Nu×NAP]. However, based upon our domain knowledge, we have observed that in a standalone
LiFi network, usually 2 APs on average provides a SNR difference of 10 dB. Therefore, instead
of including the information about all the APs, it would be more efficient to transmit the SNR
information between the user and two highest SNR providing APs to the controller. Therefore,
by using this simple domain knowledge (DK) the dimension of the observation space can be
reduced from [NAP +Nu×NAP] to [NAP +Nu× (2+1)].

7.3.0.2 Action Space A

In this work, A is a finite set of multi-discrete actions. As we are considering the LA receivers,
which allows the users to connect to both LiFi and WiFi AP at the same time. However,
sometimes the simultaneous connection might not contribute towards a higher reward, this
could happen due to AP overloading. In such cases, the controller can decide to transmit the
information to LA user via single link only, therefore, converting LA into SAP receiver. Hence,
the action space must have discrete values to indicate the standalone connection with LiFi or
WiFi AP and simultaneous connection to both LiFi and WiFi AP as well. The action space for
a particular user µ in our setup, can be defined as A = {0,1,2,3,4,5,6,7,8}, where,

• at = 0 indicates the user is connected to WiFi AP,

• at = 1,2,3,4 indicates that the user is connected to LiFi AP 1,2,3, or 4 respectively

• at = 5,6,7,8 indicates that user is connected to both WiFi AP and LiFi AP 1, 2, 3 or 4
respectively.

However, as we already discussed that two highest SNR APs are usually sufficient to serve
the user demands. Therefore, by using this DK, we can reduce the action space. We can
store the IDs of highest SNR providing APs at the user and can reduce the action space to
A= {0,1,2,3,4}, where

• at = 0 indicates the user is connected to WiFi AP,

• at = 1,2 indicates that the user is connected to highest or second highest SNR LiFi AP
respectively

• at = 3,4 indicates that user is connected to both WiFi AP and highest or second highest
SNR LiFi AP respectively.

Inclusion of this simple DK, reduces both the action and observation space, which reduces the
computational complexity and improve the convergence of the RL algorithm.
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7.3.0.3 Reward

In this work, we have used three different reward functions (R1,R2,R3) for three different
objectives:

• R1 : This reward is designed to maximize the long-term average network throughput.
The immediate reward rt , is given as [145]:

rt =
∑µ∈U∑α∈AP(tµ,α)

Nu
, (7.4)

where, tµ,α is defined as [145]:

tµ,α =


ηSAPgµ,αdrµ,αkµ,α , for SAP user.

ηLA(gµ,α1drµ,α1kµ,α1

+gµ,α2drµ,α2kµ,α2), for LA user.

(7.5)

where, kµ,α represents the time slot allocation between AP α and user µ , which is given
as [145]:

kµ,α =
1

∑µ ′ gµ ′,α
, s.t. µ

′ ∈ U

• R2: This reward is designed to maximize the average long-term user satisfaction and the
immediate reward rt is defined as [145]:

rt =
∑µ∈U∑α∈APUSµ,α ×C1

Nu
, (7.6)

where, C1 scaling factor is included in order to avoid problem of local convergence and
USµ,α is defined as [145]:

USµ,α =


ηSAPgµ,α drµ,α kµ,α

Rµ
, for SAP user

1
Rµ

ηLA(gµ,α1drµ,α1kµ,α1

+gµ,α2drµ,α2kµ,α2), for LA user

(7.7)

where, Rµ is the required data rate of user µ .

• R3 : It is important to note that reward R2 tries to maximize the average user satisfaction,
which means even if a user is achieving very low user satisfaction and others are achieving
high user satisfaction, the resultant average will be high. Therefore, the reward R2 is
incapable of ensuring the required QoS for every user. The reward R3 is designed to
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maximize the long term average network throughput while ensuring 50% user satisfaction
(USµ,α = 0.5) for each user. A negative reward with appropriate scaling has been used
to ensure 50% user satisfaction. The immediate reward rt , is defined as [145]:

rt =
∑µ∈U∑α∈APQµ,α

Nu
, (7.8)

where, Qµ,α is defined as [145]:

Qµ,α =

−C2× (1−USµ,α), USµ,α ≤ 0.5.

C1×USµ,α , otherwise.
(7.9)

where, USµ,α depends upon the receiver type and is defined by (7.7). Additionally, C1

and C2 scaling factors are included to avoid the problem of local convergence. Further-
more, value of C2 >C1 ensures that the condition of USµ,α ≤ 0.5 is highly discouraged.
The values C1 and C2 have been found intuitively by searching the space for values
greater than 1. It was found that for C1 = 100, the policy was able to converge to a global
solution and beyond 100 there was no change in the system performance. Additionally, a
higher value of C2 means the agent will try more aggressively to avoid USµ,α ≤ 0.5 but
this would penalise the average network throughput performance because there exists
a trade-off between the average network throughput and user satisfaction. Therefore,
C2 = 1000 was set to provide a balanced performance in terms of the average network
throughput and user satisfaction [145].

7.3.1 RL Training Algorithm

The objective of the training process is to optimize the policy parameters θ in order to find the
optimal policy, π∗ which maximize the expected discounted return η(π) [132].

π
∗ = argmax

π

(η(π)),

η(π) = Es0,a0,...

[
∞

∑
t=0

γ
tr(st ,at)

]
,

where γ ∈ (0,1) indicates the discount factor.
In this work, we have used a MLP with parameters θ for the policy network and represented

the policy as πθ (a|s). For training of the policy network, we have used TRPO algorithm [132],
which is a model-free policy gradient algorithm. TRPO supports good training stability [133]
and guarantees monotonic improvement under certain assumptions [132].

Training performance and convergence of RL: TRPO stabilizes the learning by imposing
trust region constraints on the policy updation. TRPO being a model-free algorithm requires



Load Balancing in Link Aggregation Enabled HLWNs 103

relatively lower hyper-parameter tuning, but its suffer with high sample complexity [9]. In
literature, various methods have been proposed to reduce the sample complexity of TRPO
[135, 136]; in this work we have tried to reduce the complexity of TRPO by utilizing the DK
which enables us to reduce the action and observation space. Therefore, reduces the overall
complexity of the proposed system. By using the TensorBoard visualization toolkit of python
the training performance of RL algorithm for three different reward functions with and without
knowledge transfer was obtained, as shown in Fig. 7.2.
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Figure 7.2: Training performance and convergence of RL for different reward functions without (blue)
and with (orange) DK.

It can be observed that for all the reward functions the RL algorithm converges. From
Fig. 7.2, it is clear that the RL agent converges to larger rewards when SNR from all the LiFi
APs is considered, which is represented by blue colour curve. However, when only 2 best LiFi
APs are considered the RL converges to a smaller average reward value indicated by orange
colour curves. When R1 is considered the difference in average reward with and without DK is
significant, however, for R2 reward both with and without DK converges to same values, as
shown in Fig. 7.2 (b). Similarly, for R3 reward both with and without DK converges to same
value. It must be noted that only Fig. 7.2(c) has a negative value of average reward, this is due
to the design of R3 given in (7.8).

7.3.2 Other Load Balancing Methods

• Received Signal Strength (RSS) [117]: For a HLWN due to different physical receivers
and bandwidth of LiFi and WiFi, the noise component observed at receiver is not uniform.
Therefore, received signal strength does not fully represent the quality of channel. Hence,
SNR must be used as the decision metric for RSS method in HLWN [9]. For SAP
receiver, there will be single value of α , the objective function of the RSS method for a
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given user µ is defined as [145]:

max
α

SNRµ,α s.t α ∈ AP. (7.10)

where, AP is the set of APs including one WiFi and four LiFi APs and SNRµ,α represents
the SNR values between µ user and α AP, which can be calculated by Eq. (5.4) and
Eq. (5.1) for WiFi and LiFi APs, respectively. For LA receiver, the user will connect to
two APs simultaneously, therefore, there will be α1 and α2, corresponding to highest
SNR WiFi and LiFi AP, respectively. As there is only one WiFi AP present in the
considered scenario, therefore α1 = 1, indicating that user is always connected to WiFi
AP. Another variable α2, will give the value corresponding to highest SNR LiFi AP,
which is defined as [145]:

α2 = max
α2

SNRµ,α2 s.t α2 ∈ LAP. (7.11)

• Exhaustive search: Exhaustive search also known as brute force search guarantees
the best performance at the cost of high complexity. In line with the objective of the
proposed RL scheme, the SAP users’ objective function for exhaustive search with
different rewards rt is defined as [145]:

max
gµ,α kµ,α

∑
µ∈U

∑
α∈AP

(rt),

s.t. ∑
µ∈U

(gµ,αkµ,α) = 1∀α ∈ AP,

∑
α∈AP

gµ,α = 1∀µ ∈ U,

gµ,α ∈ {0,1},kµ,α ∈ [0,1],∀µ ∈ U,∀α ∈ AP.

(7.12)

where, rt is defined according to (7.4), (7.6), and (7.8) based on the corresponding
rewards function. The first constraint ensures that the sum of time allocation of all
users associated to one AP is 1 and the second constraint states that each user can get
connected to only one AP at a time. Similarly, for LA receiver, user can connect to both
AP’s simultaneously, therefore, let α1 ∈ {0,W} and α2 ∈ {0,LAP} indicate the users
connection with WiFi and LiFi APs respectively. For LA receiver, the objective function
for exhaustive search in line with proposed RL algorithm with different rewards rt is
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defined as [145]:
max

gµ,α kµ,α
∑

µ∈U
∑

α∈AP
(rt),

s.t. ∑
µ∈U

(gµ,αkµ,α) = 1∀α ∈ AP,

∑
α1∈W

gµ,α1 ≤ 1∀µ ∈ U,

∑
α2∈LAP

gµ,α2 ≤ 1∀µ ∈ U,

gµ,α ∈ {0,1},kµ,α ∈ [0,1],

∀µ ∈ U,∀α ∈ AP,∀α1 ∈W,∀α2 ∈ LAP.

(7.13)

The first constraint is same as that of SAP user objective function. The second and
third constraint states the condition that each user can get connected to maximum
one WiFi and one LiFi AP at a time. The exhaustive search has been considered in
order to provide the upper bound performance at the cost of higher complexity. The
exhaustive search implementation has been made possible for this problem because of
the room dimension, which restricts the number of users and APs, therefore limits the
computational complexity to a reasonable value [9].

7.4 Performance Evaluation and Discussion

We have considered a typical 5 × 5 × 3 m3 indoor space, with one WiFi and four LiFi APs, as
shown in Fig. 7.1. It is assumed that the WiFi AP fully covers the room, whereas, the four LiFi
APs partially covers the room. The focus of this work is to understand the effectiveness of RL
based LB in HLWN, therefore, a simple scenario with four LiFi APs [9, 114] and one WiFi
AP has been considered in this study. The proposed work is scalable to a larger room with
more number of APs and users. Furthermore, two different types of receiver, i.e., SAP and
LA schemes have been implemented in simulation. The effect of scheduling and reordering
overhead is out of the scope of this work, as that require the protocol design, which has been
addressed in [140]. Moreover, in order to study the effect of different reward functions on
system performance, three different rewards for optimising various system metrics, as explained
in Section 7.3.0.3 have been considered in this work. The simulation setup is coded in python
3.7 and MATLAB 2018. An Open AI Gym environment has been built from scratch for the
HLWN. We have used stable-baseline GitHub repository [146] for RL algorithm (TRPO) and
implemented ORWP [143]. The results reported are average over 200 episodes, and the values
of system parameters are chosen in accordance with previously published works [9, 117, 144]
and summarized in Table 7.1.
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Table 7.1: System parameters

System Parameter Value
Room dimension 5 × 5 × 3 m3

Number of APs 4 LiFi + 1 WiFi
WiFi AP location (2.5 m, 2.5 m)
LiFi AP locations (2.5±1.25 m,2.5±1.25 m)
User distribution Uniform
Mobility Model ORWP
User speed 1 m/s
User receiver LA, SAP
Requested data rate, Rµ Poisson with 70 Mbps
RL Gym environment LiFi WiFi network
RL policy MLP, 2 layers of 64
RL max KL divergence, δ 0.01
RL Discount factor, γ 0.9
RL Episode length, E 1000
RL reward scaling factor, C1 100
RL reward scaling factor, C2 1000

The performance of the proposed RL with LA (RL-LA) method has been compared against
exhaustive search with LA (Exh-LA), exhaustive search with SAP (Exh-SAP), RSS with
LA (RSS-LA) and RSS with SAP (RSS-SAP), based on computational complexity, average
network throughput and user satisfaction. Furthermore, this section also compares performance
of RL-LA with DK (RL-LA-DK) against the Exh-LA with DK (Exh-LA-DK), Exh-SAP with
DK (Exh-SAP-DK), RSS-LA with DK (RSS-LA-DK) and RSS-SAP with DK (RSS-SAP-DK).
The details regarding performance metrics are explained in next section.

7.4.1 Performance Metrics

In this work, the performance comparison is based on complexity, average network throughput
and user satisfaction.

• The average network throughput (Tavg) is calculated as [145]:

Tavg =
∑µ∈U∑α∈AP(tµ,α)

Nu
, (7.14)

where tµ,α represents the data rate of each user µ from the AP α , and can be calculated
using (7.5)
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• The user’s satisfaction Sµ,α is defined as the ratio of data rate achieved by the user to the
data rate required by that user, it can be expressed as [145]:

Sµ,α = min{1,USµ,α}, (7.15)

where USµ,α is defined by (7.7). The user satisfaction ranges from 0 to 1, Sµ,α = 1
implies that the user has achieved the requested data rate.

7.4.2 Complexity Analysis

As RL-LA requires training and its convergence dependence on the state action space, and the
RL algorithm. The training complexity of RL-LA cannot be directly compared with exhaustive
search and RSS as these methods do not have a training phase. Therefore, in this work, the
training and convergence of RL is addressed separately in Section 7.3.1 and in this section,
only run-time complexity of all methods is considered. In order to calculate complexity of
RL-LA, it is important to note that the RLs’ real time complexity in test phase is nothing but
the complexity incurred in the forward pass of the trained policy network which in this work,
is a MLP with 2 hidden layers. Let’s assume, the number of neurons in each layer to be L1

and L2, respectively. The input and output layers will be defined based on the dimensions of
observation and action space which are explained in section 7.3. Therefore, the complexity of
RL-LA is given by O((NAPNu +NAP)L1 +(L1L2)+(L2Nu)) [145].

The RSS-SAP method simply selects the AP with highest SNR value out of total APs (NAP).
Therefore, its complexity is O(NAPNu) [117]. In RRS-LA method, user is always connected to
WiFi AP and selects the highest SNR LiFi AP, therefore, its complexity is O(NAP-LiFiNu). The
exhaustive search is computationally more expensive, since it looks for all possible connections
between users and APs, therefore, the complexity of Exh-SAP is O((NAP)

Nu). In case of
Exh-LA, the complexity further increases to O((NAP-WiFi +2NAP-LiFi)

Nu).
The complexity of various schemes with four LiFi and one WiFi AP is illustrated in Fig. 7.3

which is obtained by plotting the corresponding expressions using MATLAB. It is clear that
LA receiver has higher complexity as compared to SAP receiver. The application of DK can
reduce the complexity of RL-LA and Exh-LA to O(((NAP-WiFi +2)Nu +(NAP-WiFi +2))L1 +

(L1L2)+ (L2Nu)) and O((NAP-WiFi + 4)Nu), respectively. It is to be noted that RL run-time
complexity can be reduced using neural network pruning [147] which is beyond the scope of
this work. The effect of DK on the computational complexity for Exh-LA-DK and RL-LA-DK
is shown in Fig. 7.4.
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Figure 7.3: Computational complexity of different schemes.
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Figure 7.4: Reduced computational complexity with DK.

7.4.3 Effect of Different Reward Functions

In this section the effect of different reward functions on average network throughput and user
satisfaction has been presented.The average network throughput for different reward functions
is summarized in Table 7.2.

It can be observed that the performance of RSS-LA and RSS-SAP remains unchanged for
different reward functions, this is due to the fact that for RSS-LA and RSS-SAP, the decision
of AP assignment depends alone on the received signal strength and does not take into account
the other factors.
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Table 7.2: Average network throughput (Mbps) for different reward function.

Reward RSS-SAP Exh-SAP RSS-LA Exh-LA RL-LA
R1 40.66 190.83 97.60 235.81 220.90
R2 40.45 158.81 97.52 197.10 189.50
R3 40.86 174.81 97.80 218.90 215.90

For all rewards, Exh-LA performs best followed by RL-LA in terms of average network
throughput. The advantage of link aggregation can be clearly observed from Table 7.2. The
RSS-LA provides an improvement of around 57 Mbps over RSS-SAP, similarly, Exh-LA
provides an improvement of around 30 Mbps over Exh-SAP. The largest average network
throughput of 235 Mbps is achieved by Exh-LA for reward R1, followed by RL-LA which is
able to achieve 220 Mbps for reward R1. The value of average network throughput in Exh-
LA,RL-LA and Exh-SAP reduces for reward R2, as R2 focuses on maximization of average
user satisfaction alone. The reward function R3 provides a more balanced approach that ensures
50% user satisfaction and also tries to maximize the throughput. For reward R3, the average
network throughput improves over R2, for Exh-LA, RL-LA and Exh-SAP.

The user satisfaction for each scheme is obtained using the equation (7.15) then CCDF of
user satisfaction was plotted using MATLAB. The performance of various schemes in-terms of
CCDF of user satisfaction for different reward functions is shown in Fig. 7.5.
It is observed from Fig. 7.5 (a), that none of the schemes are able to ensure full user satisfaction

for reward R1, this is due to the fact that the reward R1, is designed specifically to maximize the
average network throughput. Therefore, we can see that a system with high average data rate
does not guarantee a high QoS for users. The RSS-SAP receiver performs worst as it simply
select one highest SNR AP for association. However, when a LA receiver is used, which allows
the user to receive simultaneously from highest SNR LiFi and WiFi AP, the performance of
RSS-LA improves significantly. As the reward function is focused on improvement of average
network throughput, the performance of RL and exhaustive search with SAP and LA receiver
suffers in-terms of user satisfaction. For the second reward function R2, the results are shown in
Fig. 7.5 (b). It can be seen that the performance of RSS-SAP and RSS-LA remains unchanged,
as they are independent of the reward function. The reward function R2 is specifically designed
to maximize the average user satisfaction. For Exh-LA, there is significant improvement as it
is able to provide full user satisfaction to all the users. Similar trend is observed for RL-LA,
which is able to ensure full user satisfaction for 90% of the users and is able to ensure 96%
user satisfaction for all users. There is also improvement in Exh-SAP, for reward function
R2, but this improvement is limited due to receiver restriction of single AP connection. The
user satisfaction performance for R3 reward function is shown in Fig. 7.5 (c). The results for
RSS-SAP and RSS-LA remains unchanged. However, there is significant improvement in
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Figure 7.5: User satisfaction assessment for different reward functions.

Exh-SAP. The reward R3 ensures that all the users must achieve a user satisfaction of more
than 50% and same can be observed from the Fig. 7.5 (c). For R3 reward, RL-LA is able to
provide full 98% user satisfaction to all the users. As Exh-LA, was already able to achieve full
user satisfaction, therefore, no changes were observed in its performance.

7.4.4 Effect of Domain Knowledge

In this section, we present the results of domain knowledge transfer on various schemes
with different reward functions. From the VLC domain knowledge, we understand that SNR
information from two highest SNR LiFi APs is sufficient for making a decision of AP assign-
ment, inclusion of this simple DK improves the convergence and reduces the computational
complexity of proposed schemes. The Exh-LA-DK provides an improvement of around 40
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Table 7.3: Average network throughput (Mbps) with Domain knowledge.

Reward RSS-SAP-DK Exh-SAP-DK
R1 40.78 178.08
R2 40.15 143.76
R3 40.56 159.10

Reward RSS-LA-DK Exh-LA-DK RL-LA-DK
R1 97.94 216.78 205.68
R2 97.17 180.97 173.20
R3 97.78 203.44 199.45

Mbps over Exh-SAP-DK. The trend of average network throughput for various schemes with
different rewards remains same as it is without the application of DK. However, in order to
clearly understand the effect of DK, the values of Table 7.3 are compared with corresponding
values from Table 7.2. It can be clearly observed that if only two highest SNR LiFi APs
considered for decision making the average network throughput for Exh-LA-DK, RL-LA-DK
and Exh-SAP-DK reduces as compared to when all the LiFi APs are considered. However,
it is interesting to note that by the application of this simple DK reduces the gap between
RL-LA-DK and Exh-LA-DK performance.

The user satisfaction for various schemes with DK, under different reward functions is
illustrated in Fig. 7.6.
As the reward R1 focuses on maximization of average network throughput, the user satisfaction

performance suffers, as shown in Fig. 7.6(a). For reward R2, the user satisfaction performance
for Exh-LA-DK, RL-LA-DK and Exh-SAP-DK improves significantly. From Fig. 7.6(b), it
can be observed that Exh-LA-DK is able to provide full user satisfaction to around 95% of the
users for reward R2 as compared to 80% in case of reward R1. Similarly, RL-LA-DK with R2,
is able to provide full user satisfaction to 90% of users as compared to 85% users when reward
R1 was used. The Exh-SAP-DK also observe 10% improvement in the number users achieving
full user satisfaction for reward R2 as compared to R1. The user satisfaction performance of
various schemes for reward R3 with DK is shown in Fig. 7.6(c). It can be observed that reward
R3 provides best user satisfaction performance from individual users point of view. Even
after application of DK and reduction of exploration space to only two highest SNR LiFi APs,
Exh-LA-DK is able to provide full user satisfaction to 97% and RL-LA-DK is able to support
around 96% of the users. The Exh-SAP-DK can ensure full user satisfaction to around 95%
of the users. The application of reduced exploration space has a direct effect on the system
performance which can be directly seen from Fig. 7.6. However, for reward R3, a good user
satisfaction and average network throughput can be achieved even while considering only two
highest SNR LiFi APs. The application of DK reduces the system complexity significantly and
its effect would be more prominent for a high density network deployment.
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Figure 7.6: User Satisfaction performance for different rewards with Domain knowledge.

7.5 Summary

In this chapter, RL-based dynamic LB scheme for HLWNs has been considered and three
different rewards R1, R2, and R3 have been investigated. From the results, it was observed
that for reward R1, RL-LA provided a 106% improvement in average network throughput
as compared to RSS-LA, but the user satisfaction was compromised. In the R2 reward, RL-
LA ensured complete user satisfaction for 90% of the users and 96% user satisfaction for
all users but the average network throughput was reduced. Further, it was observed that
RL-LA with reward R3 provided a balanced system performance with high average network
throughput (215.90 Mbps) and good user satisfaction (98%). Furthermore, the effects of link
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aggregation receivers on the system performance was also investigated. It was observed that
Exh-LA provided a minimum improvement of 23% over Exh-SAP in terms of average network
throughput. Similarly, RSS-LA provided an improvement of around 57 Mbps over RSS-SAP.
Therefore, it can be concluded that LA significantly improved the system performance at the
cost of increased complexity. Additionally, it was observed that the computational complexity
for RL and exhaustive search increased quadratically and exponentially with the number of
users. For the LA receiver scheme, the complexity further increased, which made Exh-LA
impractical for real-life scenarios. Therefore, in order to reduce the computational complexity,
this chapter introduced a concept from the domain knowledge transfer. It was observed that
DK significantly reduced the complexity at the cost of marginal performance degradation for
Exh-LA-DK and RL-LA-DK. Overall, the RL-LA-DK with reward R3 provided balanced
average network throughput and user satisfaction performance matching to the Exh-LA-DK at
a significantly lower complexity.





Chapter 8
Conclusion and Future Work

In this dissertation, techniques for improving LiFi physical layer and its coexistence with WiFi
were investigated. First, we proposed an ALA-based predistoter to mitigate the effect of LED
nonlinearity. The proposed method achieved near-linear performance in terms of amplitude-
amplitude (AM/AM) distortions and constellation plots. Secondly, in order to combat the
issue of high PAPR for O-OFDM, advanced modulation schemes such as DPOOFDM and
O-GFDM were analyzed and evaluated against the conventional O-OFDM. It was observed
that these proposed modulation schemes significantly reduced the PAPR compared to the
O-OFDM counterpart. Additionally, to improve the coexistence of LiFi and WiFi, in this
thesis, we investigated a novel reinforcement learning (RL) based load balancing for downlink
heterogeneous LiFi and WiFi networks (HLWN). The proposed load balancing algorithm
optimized the overall throughput and improved users’ satisfaction. Further, the effect of
mobility models, receiver orientation, handover, link aggregation, and optimum resource
allocation were evaluated. The results were reported in terms of the average system throughput
and user satisfaction. The results were compared against conventional signal strength strategy
(SSS) and exhaustive search. The proposed RL-based load balancing for HLWN provided a
near-optimal performance at significantly lower complexity. The rest of the chapter is organized
as follows: Section 8.1 provides summary of the main contributions, followed by Section 8.2
which highlights the possible future research direction.

8.1 Summary of Contribution

The main contributions of this dissertation can be summarised as follows:

• The performance of grouped DFT precoded OFDM based on real and imaginary part
separation in conjunction with GMSK based pulse shaping termed as DP-OOFDM
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was analyzed and evaluated for VLC system. A comprehensive performance analysis
of proposed DP-OOFDM in-terms of PAPR, power saving, SER, spectral efficiency
and computational complexity against conventional DFT-precoded OOFDM and ACO-
OFDM was provided. It was observed that DP-OOFDM schemes had low PAPR and
were spectrally efficient as compared to DFT-precoded OFDM and ACO-OFDM. The
I-DP-OOFDM outperformed all the other schemes from PAPR perspective and G-I-DP-
OOFM was desirable from SER and power-saving points of view. Therefore, when high
reliability and power saving is required either G-L-DP-OOFDM or G-I-DP-OOFDM
must be used whereas I-DP-OOFDM is the most appropriate modulation scheme for low
PAPR.

• An advanced more flexible modulation scheme for next-generation VLC: optical-generalized
frequency division multiplexing (O-GFDM) was analyzed and evaluated on the basis
of spectral efficiency, complexity, power saving, PAPR, SER, and subcarrier frequency
shift tolerance. The performance was compared with the existing O-OFDM counterpart.
It was observed that proposed O-GFDM significantly reduced PAPR as compared to
O-OFDM counterparts. Further, the proposed OGFDM-DC had better spectral efficiency
and significant power saving. The proposed O-GFDM based VLC is expected to very
well gel with next generation communication technology to deliver seamless last mile
communication services and provide greater flexibility to optimize the network using
software-defined networking.

• A reinforcement learning (RL) based dynamic load balancing scheme for downlink
heterogeneous LiFi WiFi network was proposed and evaluated. The load balancing in
HLWN is a non-convex mixed integer non-linear programmable problem that is mathe-
matically intractable. Thus, an appropriately designed RL based load balancing algorithm
wa evaluated in this work. The convergence and effectiveness of this algorithm were
studied under different mobility models. It was observed that the RL algorithm achieved
better performance than the conventional SSS and iterative optimization algorithm in
literature. Further, exhaustive search was also explored to determine the upper-bound. It
was observed that the exhaustive optimization provided the best performance at the cost
of high computational complexity which is impractical for real life scenarios. In contrast,
RL scheme achieved a matching performance to exhaustive search at a significantly
lower complexity.

• A reinforcement learning-based load balancing scheme for link aggregation enabled
heterogeneous LiFi WiFi network was proposed and evaluated. The system model was
modified to take into account the effect of receiver orientation and handover overhead.
Additionally, three different reward functions, namely, average network throughput (R1),
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average user satisfaction (R2), ensuring min user satisfaction for each user (R3), were
evaluated. Furthermore, domain knowledge was included to reduce the action space,
which significantly reduced the complexity. The performance was compared against
the benchmark in terms of complexity, average throughput, and user satisfaction. It
was observed that only reward R3 provided a balanced performance in terms of user
satisfaction and average network throughput. Further, the domain knowledge significantly
reduced the complexity at the cost of marginal performance degradation for Exh-LA-DK
and RL-LA-DK. Overall, the RL-LA-DK with reward R3 provided balanced average
network throughput and user satisfaction performance which matched the Exh-LA-DK
and offered the advantage of low complexity.

This dissertation can be utilized for improving the LiFi physical layer and efficient coex-
istence of LiFi and WiFi. This work illustrates the effectiveness of RL based algorithms for
solving the load balancing problem in HLWN.

8.2 Future Work

There are many possible directions in which the work articulated in this dissertation can be
extended. Some of the future research directions are as follows:

• In this dissertation, although the ORWP mobility model considers the effect of receiver
orientation, the effect of mobility pattern and blockages which depends upon room layout
and other user movement has been neglected. A typical RWP mobility model does not
consider the effect of time, space (room layout and furnishing locations), or interaction
with other users. Hence, typical RWP fails to capture realistic spatio-temporal channel
characteristics. Thus, RWP is not most accurate for considering the mobility-aware
load balancing in HLWN [148, 149]. Further, since RL based load balancing is capable
of learning and leveraging through the spatio-temporal channel characteristics to skip
unnecessary handovers and predict the load on APs, therefore, in order to make a more
effective performance evaluation of RL based dynamic LB schemes, an accurate user
mobility model must be adopted. The performance of the RL based LB algorithm for
HLWN in presence of spatio-temporal channel model will be investigated in our future
work.

• The current RL based LB algorithm focuses on the improvement of QoS in terms of
average user satisfaction, but other parameters that effects the QoS such as latency and
buffer overflow in link-layer are overlooked. Therefore, either the reward function must
be redefined to incorporate them or appropriate Markov decision process (MDP) model
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must be included in the system model to account for these factors. Furthermore, it is
imperative that the link aggregation enabled HLWN will require additional processing at
either the network or link layer for splitting and reordering of the packets transmitted
over two different links. This processing overhead must be included in the system model
to provide more realistic performance evaluation of RL based dynamic LB schemes.
These topics will be studied in our future research.

• The current work is limited to downlink HLWNs. In future, this can be extended for
bi-directional load balancing. Specifically, based on the user service requirement, the
asymmetric downlink-uplink features of network performance can be leveraged [150].
Furthermore, based on different user service requirement, optimal resource allocation
must be adopted rather than equal resource allocation that is considered in current work.
This will be investigated in our future work.

• In this dissertation, a centralized controller is responsible for all the decision making, it
is assumed that the central controller has all the information available instantaneously.
However, this is not practical. Therefore, a more suitable approach can be to utilize
the central controller to determine the association parameter for each AP [151] and
perform the optimal resource allocation at AP level. It is important to note that since
link aggregation based system has been considered, therefore, the central controller
also needs to determine the split ratio between the LiFi and WiFi network. This can be
another future direction.
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