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Abstract

Historically, throughput is one of the key performance indicators driving the
transition to next-generation cellular networks. The throughput per square kilo-
meter depends on three factors: 1) Available spectrum, 2) Base station density,
and 3) Spectrum utilization efficiency. The mmWave spectrum (24 GHz - 100
GHz) is actively being explored to augment the sub-6 GHz spectrum (450 MHz
– 6000 MHz) due to the availability of a wide spectrum and low auction cost.
However, it has limited coverage and range, limiting its usefulness in indoor
short-range mobile broadband services. This makes the sub-6 GHz spectrum a
preferred candidate for outdoor communications and network coverage services.
The high auction cost of the sub-6 GHz spectrum limits the licensed spectrum,
and base station density is constrained due to infrastructure cost, handover over-
head, and interference constraints. Thus, innovative ways to utilize the sub-6
GHz spectrum efficiently needs to be explored.

One promising solution is dynamic spectrum sharing which is now a de-facto
approach in cellular networks. For instance, 5G supports the deployment in
shared (2.3 GHz Europe / 3.5 GHz USA) and unlicensed (2.4 GHz / 5-7 GHz
/ 57-71 GHz global) spectrums along with licensed non-contiguous spectrum.
Joint radar-communication systems are being explored to improve the utiliza-
tion of a large section of the sub-6 GHz spectrum allocated to radar applications.
Similarly, IEEE 802.15.4 for industrial internet-of-things (IIoT) networks sup-
port deployment in 250-740 MHz, 3.1-4.8 GHz and 6 - 11.6 GHz. To enhance
spectrum efficiency, multi-antenna systems are being explored, allowing mul-
tiple users to communicate simultaneously over a given frequency band. This
demands wideband spectrum analyzer (WSA) for the digitization of ultra-wide
non-contiguous spectrum (UWNS), and capability to identify the transmission
opportunities in time, frequency and spatial domains reliably. The traditional
approaches need complex hardware and signal processing algorithms that ques-
tion their suitability for real-time requirements.
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In this thesis, we focus on the sub-Nyquist sampling (SNS) and sparse antenna-
array based intelligent and reconfigurable WSA for the digitization and spatial
sensing of UWNS using low-rate analog-to-digital converters (ADCs). In the
first contribution, we explore reconfigurable SNS, which allows the digitization
of a non-contiguous spectrum. The non-contiguous nature demands learning the
occupancy of various parts of the spectrum since spectrum digitization can fail
when the number of occupied bands in a digitized spectrum is higher than that of
ADCs. On the other hand, high throughput requirement demands digitization
of as wide spectrum as possible. We address such a trade-off via Multi-Play
Multi-Armed Bandit (MPMAB) framework. The functionality of the proposed
intelligent and reconfigurable WSA is validated using real radio signals via uni-
versal software radio peripheral (USRP) testbed.

After successful digitization and identification of vacant spectrum, the next
contribution deals with the characterization of the occupied spectrum. We ex-
tend the WSA using a multi-antenna approach to enable blind identification
of carrier frequency, angle of arrival and modulation scheme. It is referred to
as ultra-wideband angular spectrum sensing (UWASS). The UWASS receiver
overcomes the limitation of existing methods in which the number of antennas
depends on the spectrum sparsity making it computationally efficient. The per-
formance of the UWASS receiver is analyzed for uniform and sparse antenna
arrays. In the third contribution, we develop a realistic multi-antenna USRP
testbed to demonstrate the functional correctness of the UWASS receiver for
various parameters such as signal-to-noise ratio (SNR), spectrum sparsity, an-
tenna array, and its size.

Recently, deep learning has outperformed conventional statistical and ma-
chine learning based spectrum characterization methods. In the fourth and last
contribution, we explored various deep learning approaches for spectrum recon-
struction and characterization. Specifically, we propose a novel non-iterative
wideband deep learning-based modulation classification (WDLMC) which can
simultaneously identify the frequency band status and the modulation scheme
of all the frequency bands in the digitized spectrum compared to existing iter-
ative approaches. We also propose deep learning based spectrum reconstruc-
tion for UWASS as an alternative to the conventional orthogonal matching pur-
suit (OMP) approach. In-depth performance analysis validates the functional
correctness and superiority of the proposed approach over state-of-the-art ap-
proaches in terms of computational complexity and execution time.
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To summarize, the proposed intelligent and reconfigurable WSA offer effi-
cient and hardware friendly solutions to improve the utilization of the sub-6
GHz spectrum by identifying the spectrum opportunities in time, frequency and
spatial domains.

Keywords: Automatic modulation classification, direction-of-arrival, multi-
play multi-armed bandit, non-contiguous sensing, sub-Nyquist sampling, uni-
versal software radio peripheral, wideband spectrum analyzer
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Chapter 1

Introduction

1.1 Background

The rapid evolution of wireless communication from low-speed text and voice

based communication to today’s high-speed and reliable video and multimedia

based communication make it an integral and indispensable part of our daily ac-

tivities. Its impact on economic progress is huge due to the ubiquitous capacity

of multimodal and interactive communication, which has made the applications

such as massive internet of things (IoT) networks, smart industry, smart cities,

intelligent transportation systems and wearable devices reality today. It has also

played a vital role in making human life more secure and healthy. Even during

the unprecedented lockdown due to the Covid-19 pandemic, wireless communi-

cation enabled the rapid transition to remote learning, work from home offices,

tele-medicine, and multimedia services, making social distancing a little less

lonely. Its usefulness in contact tracing and vaccine supply chain logistics is

crucial in the ongoing fight against Covid-19 and sustainable life thereafter.
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Significant research and innovation efforts are needed to bring next-generation

wireless technologies that make the envisioned futuristic services such as re-

mote healthcare, autonomous driving, the large-scale artificial intelligence of

things (AIoT), extended reality, flying cars etc., a reality. In this direction, vari-

ous studies, experiments and standardization activities are being carried out for

next-generation networks such as 5G and 6G. As shown in Table 1.1, these net-

works are expected to support a wide range of use cases compared to broadband

based services in existing networks.

Table 1.1: Features of 4G, 5G and 6G, the future generation wireless standard. AR: augmented reality, ELPC:
extremely low power consumption, eMBB: enhanced mobile broadband, ERLLC: extremely reliable and low
latency communications, FeMBB: further eMBB, HD: high definition, LDHMC: long distance and high mobility
communication, MBB: mobile boradband, mMTC: massive machine type communication, umMTC: ultra mMTC,
URLLC: ultra reliable low latency communications, UHD: ultra high definition, VR: virtual reality, IoT: internet of
things, V2X: vehicle to everything.

Key Features 4G 5G 6G

Use Cases
MBB eMBB, URLLC, mMTC FeMBB, ERLLC, umMTC

LDHMC, ELPC

Applications

HD Video Streaming AR/VR Tactile Internet
Mobile TV UHD Video streaming Fully Automated Driving
Mobile Pay V2X, IoT Internet of Bio-Nano Things
Mobile Internet Smart Cities/Home/Industry Industrial Internet

Peak Data Rate 100Mbps 20 Gbps ≥ 1 Tbps

Spectrum Efficiency 1× 3× 15− 30×
Network Energy 1× 10− 100× 100− 10, 000×

Efficiency
Device Density 105 devices/Km2 106 devices/Km2 107 devices/Km2

Latency 10ms 1ms 10− 100 µs

Throughput is one of the important performance metrics of a cellular net-

work. Historically, switching to next-generation cellular networks is econom-

ically feasible only when it offers at least 100-factor improvement per square

kilometre throughput. The throughput depends on three parameters: 1) Avail-
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able spectrum, 2) Base station density and 3) Spectrum utilization efficiency.

The mmWave spectrum (24 GHz - 100 GHz) is actively being explored beyond

4G networks due to the availability of a wide spectrum and low auction cost.

However, it has limited coverage and range, limiting its usefulness in indoor

short-range mobile broadband only. Thus, making the sub-6 GHz spectrum

a preferred candidate for outdoor communications and network coverage. In-

frastructure cost, handover overhead, and interference constraints limit the base

station density. A sharp rise in the auction price of the sub-6 GHz spectrum

demands innovative ways to utilize the sub-6 GHz spectrum efficiently.

One promising solution is dynamic spectrum sharing (DSS) which is now a

de-facto approach in recent and upcoming networks. For instance, as shown

in Fig. 1.1, in the subsequent deployment of 4G cellular networks, various

paradigms such as LTE-Unlicensed, Licensed Assisted Access (LAA), LTE

WLAN Link Aggregation (LWA), LTE WLAN radio level integration with IPsec

tunnel (LWIP), MulteFire, Wi-Fi (802.11ac/ .11ad /.11ax/.11ay) are explored to

make unlicensed sub-6 GHz spectrum available for cellular networks without

compromising on QoS [1]. The IEEE 802.15.4 for industrial internet-of-things

(IIoT) networks support deployment in 250-740 MHz, 3.1-4.8 GHz and 6 - 11.6

GHz. Since the majority of the sub-6 GHz spectrum is allocated for radar ser-

vices, joint radar-communication systems are being developed to improve the

spectrum utilization [2].

The upcoming 5G network follows a revolutionary path of the DSS. For in-

stance, a non-contiguous shared (2.3 GHz Europe / 3.5 GHz USA) and unli-
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censed (2.4 GHz / 5-7 GHz / 57-71 GHz global) spectrum in addition to the

licensed spectrum [3–5] are explored in 5G new radio (NR) to allow oppor-

tunistic spectrum access over time and geographies. 5G has extended LAA

to anchored NR-U and standalone NR-U. The anchored NR-U combines the

unlicensed spectrum with both the licensed and shared spectrum, whereas stan-

dalone NR-U allows the usage of unlicensed spectrum for the 5G cellular con-

nection. 5G also supports DSS between the 4G and 5G cellular users over the

same frequency bands. The ultra-wide and non-contiguous sub-6 GHz spectrum

(UWNS) makes the characterization, i.e. identification of spectrum opportuni-

ties, challenging. To enhance the spectrum efficiency, multi-antenna massive

MIMO (mMIMO) systems are being explored, which allows multiple users to

communicate simultaneously over a given frequency band via beamforming [5].

Hence, a dedicated wideband spectrum analyzer (WSA) for spatial sensing of

UWNS is desired and the focus of the work presented in this thesis.

5G
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LTE-U
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MulteFire
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Figure 1.1: Various DSS technologies in 4G and 5G Networks.
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1.2 Motivation

The design of WSA for spatial sensing of UWNS involves three important tasks:

1) Digitization of UWNS, 2) Spectrum conditioning, and 3) Spectrum charac-

terization. Most of the existing works focus on narrowband spatial sensing. The

desired narrowband spectrum is digitized via Nyquist-sampling based approach,

which is then filtered to remove interference and noise. The resultant signal is

then characterized to determine its status (vacant or busy), modulation scheme,

angle-of-arrival etc. Various spectrum characterization methods such as en-

ergy detector [7,8], matched filter [9], cyclostationary detector [10,11], wavelet

based detector [12, 13], maximum-likelihood estimation [14, 15] and machine

learning/deep learning algorithms [16, 17] have been studied in the literature.

The energy detector utilizes the signal energy to characterize the spectrum. Its

performance has been analyzed for various channels models like Rayleigh, Ri-

cian, Nakagami, k−µ and k−µ extreme fading channels [7]. Improved energy

detector utilizing the pth power of the absolute sample is also discussed for co-

operative spectrum sensing scenario in [8]. By maximizing the signal to noise

ratio (SNR) of the received signal, the matched filter [9] has shown better perfor-

mance than the energy detector based spectrum sensing at low SNR case. But

due to the requirement of prior knowledge of the signal parameters like modula-

tion scheme, pulse shaping, etc., matched filtering is not preferred for spectrum

characterization [10]. Cyclostationary feature detection determines the spectral

correlation function of the received wide sense stationary signal, thus enabling
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the cyclostationary detector to determine the spectrum parameters like carrier

frequency, direction of arrival (DoA), modulation scheme under low SNR con-

ditions [10]. Cyclostationary detectors along with high order cumulants are

further used to determine the modulation schemes of higher-order modulation

schemes [11]. The wavelet transform based spectrum sensing method proposed

in [12] has shown higher sensing accuracy the energy and cyclostationary de-

tectors. Furthermore, wavelet transform along with the classification methods

is used to perform spectrum characterization [13].

The maximum likelihood method proposed in [14] used a collaborative log-

likelihood function to determine the status of the narrowband spectrum. A hy-

pothesis for each modulation scheme is considered in [15], and a hypothesis

having the highest value of likelihood function is selected to determine the mod-

ulation scheme of the spectrum. Recently, an intelligent machine and deep learn-

ing spectrum characterization method, showing better performance than the

feature-based and likelihood-based characterization methods, have been stud-

ied in the literature. Deep learning in various applications of wireless com-

munication is studied [16]. Here, deep learning techniques like dense neural

networks, long short term memory and detection network have been studied for

wireless channel estimation, modulation classification and MIMO detection, re-

spectively. Two convolutional neural networks, AlexNet and GoogLeNet, are

discussed in [17] to perform the modulation scheme characterization.

Although the characterization methods discussed in [7–17] can be extended

for WAS on UWNS of bandwidth up to a few GHz, but they require pro-
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hibitively high Nyquist rate analog to digital converters (ADCs) for wideband

signal digitization. Such ADCs are cost, area and power hungry. For example,

the narrowband channel bandwidth in WiFi bands (2.4GHz and 5GHz) ranges

from 20MHz to 160MHz [6], whereas the bandwidth of a wideband spectrum

for 5G use cases can range from 700 MHz to 7 GHz [19]. Thus, as shown in

Table 1.2, increases the cost, power and area requirement by 1232%, 1266% and

864%, respectively. Hence there is a need for efficient WSA methods [18].

Table 1.2: Comparison of Nyquist sampling and sub-Nyquist sampling digitization techniques.

Characteristics
RF-Nyquist Sub-Nyquist
Sampling Sampling

Analog Bandwidth ∼ 8 GHz 10− 200MHz

Number of ADCs Single ADC Multiple ADCs

Power High Low

Consumption (> 8200mW ) (28− 600mW )

Area Requirement
High Low

(> 781mm2) (67− 81mm2)

Cost (in USD) High (> 2451) Low (34− 184)

Due to the under-utilization of the spectrum in the temporal and spatial hori-

zon, the wideband spectrum exhibits sparse characteristics. By exploiting the

sparse nature, sub-Nyquist sampling (SNS) based WSA techniques have been

studied in the last decade [23–29,31,36–42,54,55]. SNS digitization techniques

employ multiple low rate ADCs such that the average sampling rate is below the

Nyquist rate of the wideband signal [56]. For example, as shown in Fig. 1.2, a

received wideband signal, x(t) of maximum frequency fmax, is divided into N

frequency bands (or channels) of bandwidth B Hz. If M out of these N fre-

quency bands are occupied, and M << N , then the minimum sampling rate

7



f
𝐵 0 

𝑋(𝑓) 

2𝐵 3𝐵 4𝐵 5𝐵 6𝐵 7𝐵 𝑓𝑚𝑎𝑥
= 𝑁𝐵 

Figure 1.2: Wideband spectrum with N channels (or frequency bands).

required to sample and reconstruct a multiband signal is given by Landau’s the-

orem, and it is equal to MB [57]. Various SNS digitization techniques are

designed to achieve this rate with fewer ADCs, and computationally efficient

analog front-end.

The multi-coset sampling (MCS) and modulated wideband converter (MWC)

are state-of-the-art SNS techniques and studied widely in the literature [56].

MCS [58,59] uniformly samples the received wideband signal, x(t), via K par-

allel synchronized ADCs at a distinct time offset w.r.t. the initial sample. The

sampling rate of all K ADC is 1
NT , where K << N and T is the Nyquist

period of x(t). MCS follows a straightforward approach to generate low rate

samples, but it suffers from various limitations. First, due to time delays of

order pico-second, it is difficult to achieve accurate time-offsets. Second, due

to the processing of direct radio frequency (RF) signal, it requires ADCs with

high analog bandwidth of Nyquist frequency (i.e. in GHz ) [60]. The MWC

SNS technique has been explored in [60] to overcome these drawbacks. It uses

a specific analog mixing function, followed by a low pass filter and a low rate

ADC at every analog branch. Thus, it avoids the need for accurate time off-
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sets. Furthermore, to validate the functionality of MWC, a hardware prototype

is developed in [61] to perform MWC based SNS on a wideband spectrum of

bandwidth 2GHz. However, the existing MCS and MWC SNS techniques digi-

tize the entire wideband spectrum, and hence they are categorized as contiguous

SNS techniques. But these contiguous SNS techniques suffer from two major

limitations:

1. The number of low rate ADCs is directly proportional to the number of

active transmissions in the sensed spectrum. Since the number of ADCs is

fixed in the SNS architecture, the contiguous SNS technique incurs recon-

struction failure when the number of active transmissions becomes larger

than ADCs.

2. The upcoming wireless cellular networks are expected to operate on the

non-contiguous wideband spectrum. The existing contiguous SNS is not

capable of skipping the digitization of undesired frequency bands. Thus,

by sensing the active transmissions present in the undesired bands, the con-

tiguous SNS leads to inefficient utilization of hardware resources.

To overcome the above limitations, a non-contiguous SNS technique that can

offer complete control over the number and location of sensed bands needs to

be explored. The finite rate of innovation (FRI) architecture of SNS [62, 63] is

similar to the architecture of MWC. But instead of digitizing all N frequency

bands, FRI digitizes a set of non-contiguous frequency bands, β. To perform

this, the FRI uses unique mixing functions at each analog branch. Due to this,

9



the DTFT of samples generated at the output of every analog branch is a linear

combination of shifted copies of all frequency bands present in β. However, the

determination of β is a challenging task as the increase in the size of β may

increase the number of vacant frequency bands in β. However, it also increases

the probability of characterization failure at WSA. Hence, there is a need for

a learning and decision making (LDM) algorithm. By balancing the trade-off

between the size of β and characterization failure, the LDM algorithms can se-

lect the best set of frequency bands for the digitization of UWNS. Furthermore,

there is a need for characterization techniques that can determine the occupancy

status and parameters (like carrier frequency, DoA, modulation scheme, etc.) of

occupied bands directly from the sub-Nyquist samples of the UWNS. Motivated

by these open research problems, the work presented in this thesis focuses on

the design of a reconfigurable and intelligent WSA for the characterization of

the sub-Nyquist sampled UWNS.

1.3 Research Objectives and Major Contribution

The work presented in this thesis aims to address the research challenges related

to the design of reconfigurable and intelligent WSA for UWNS and efficiently

implement the proposed WSA on the hardware testbed. These challenges will

be addressed via the following research objectives:

• Design a subset selection algorithm, which balances the trade-off between

the channel (or frequency bands) subset size and characterization failure,

10



and allows selection of the best channel subset such that total throughput is

maximized. Note that the throughput is the number of vacant bands in the

sensed spectrum.

• Develop a universal software radio peripheral (USRP) hardware testbed to

validate the performance of the proposed subset selection algorithms for

different spectrum statistics.

• Perform SNS based characterization of the UWNS by determining the va-

cant and occupied frequency bands and parameters like carrier frequencies,

direction of arrivals and modulation schemes of occupied bands.

• Develop a muti-antenna USRP testbed to perform ultra-wideband angular

sensing and study its performance analysis for various sparsity levels of the

signal, antenna array configuration and the number of antennas.

• Develop a USRP hardware testbed to determine the modulation scheme

parameter of the occupied frequency bands at the sub-Nyquist rate for dif-

ferent modulation schemes and channel conditions.

Various contributions of this thesis to meet the above research objectives are

summarised as follows:

C1. Our first contribution is to propose a multi-play multi-armed bandit (MPMAB)

algorithm to select a channel subset to perform non-contiguous digitiza-

tion. As the selection of subset results in the loss of feedback whenever

the number of active transmissions is higher than the number of ADCs,

11



the channel subset selection becomes a non-trivial problem. We develop

various MPMAB algorithms to meet the above requirement [J5, J3]. The

first algorithm, K−SL (K−subset learning), shows the learnability of the

MPMAB problem for the channel statistics of Bernoulli distribution [J5].

Here, the algorithm always selects a subset of size the same as the number

of ADCs and hence, failure does not happen. We then extend the K-SL al-

gorithm to the K+−SSL (K+− subset shared learning) algorithm, which

identifies the optimal subset that gives the best possible throughput (i.e. the

number of vacant channels) and could have a size potentially larger than

the number of ADCs. Next, we propose K+−SSLE (K+−SSL via subset

size estimation) to reduce the computational complexity due to a large num-

ber of subsets. By learning the channel statistics, K+−SSLE determines

the size of the best subset. But to perform accurate learning, K+−SSLE

requires the knowledge of the minimum difference between the channel

statistics. So, then we propose K+−BSSLE (Blind SSLE) to overcome

the drawback of K+−SSL [J3]. It considers Markov channel distribution

where the current occupancy status of channels depends on their previous

status, and hence, it is more realistic than the Bernoulli channel distribu-

tion. Later the performance of the proposed MPMAB has been verified on

the USRP hardware testbed.

C2. By using the proposed MPMAB algorithm, our next work develops an in-

telligent reconfigurable UWASS receiver architecture, and it is the second

contribution of this thesis [J2]. The proposed receiver follows a multi-

12



antenna array followed by a non-contiguous SNS digitization technique.

The estimation algorithms then utilize the sub-Nyquist samples to deter-

mine the occupancy status of sensed channels and carrier frequency and

DoA of the occupied channels. The performance analysis of this work is

done for the different number of sub-Nyquist samples, ADCs and antennas.

C3. As the third contribution of the thesis, we develop a multi-antenna USRP

hardware testbed for UWASS [J1]. At the transmitter, we develop a multi-

directional multi-band wireless traffic signal consisting of SC-FDMA sig-

nals at every channel. These SC-FDMA signals occupy the channels with

user-defined occupancy statistics, and it is unknown at the receiver. The

receiver consists antenna array followed by the proposed MPMAB and pa-

rameter estimation techniques discussed in points C1 and C2. We validate

the performance of the developed UWASS USRP testbed for various an-

tenna array configurations, including sparse and uniform antenna array and

different occupancy statistics of the generated multi-directional multi-band

wireless traffic signal.

C4. The fourth and last contribution of the thesis is the designing of deep

learning based modulation classification (DLMC)[J6, P1]. Here, we con-

sider two approaches. The first one uses the conventional approach where

DLMC is applied sequentially on all occupied frequency bands (or chan-

nels) transmissions. However, in the proposed approach, the DLMC is ap-

plied for the first time on the symbols reconstructed from the sub-Nyquist

samples. To validate the performance of the proposed sequential DLMC
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approach on the real radio signal, we also develop a USRP testbed [P1].

Whereas in the second approach, we introduce a unified deep learning

model for WSA to accomplishes two tasks: 1) Reconstruct the signal di-

rectly from the sub-Nyquist samples, and 2) Identify the occupancy status

and modulation scheme of all bands [J6]. The proposed non-iterative ap-

proach based reconstruction provides the occupancy status of all bands in

a single forward pass leading to significant improvement in execution time

over state-of-the-art iterative methods. In addition, the proposed approach

does not need complex signal conditioning between reconstruction and

characterization. We extensively compare the performance of our frame-

work for a wide range of modulation schemes, SNR and channel conditions.

A single unified deep-learning framework makes the proposed method a

good candidate for reconfigurable platforms.

1.4 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives an overview of

the state-of-the-art SNS digitization techniques and challenges faced by them.

A literature review of the existing MPMAB algorithms and wideband spectrum

characterization is provided. Later the survey of the hardware implementation

of various wideband spectrum digitization and characterization algorithm is dis-

cussed. Chapter 3 presents the proposed MPMAB for the selection of the best

channel subset for Bernoulli and Markovian channel distribution. The perfor-

mance analysis is also presented, along with the description of the proposed
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USRP hardware testbed. An intelligent and reconfigurable UWASS receiver ar-

chitecture is proposed, and its performance is analyzed for various number of

antennas, ADCs and SNR in Chapter 4. The designing of the multi-antenna

USRP testbed for the verification of the UWASS receiver proposed in Chap-

ter 4 is explained in Chapter 5. The hardware validation is done extensively

for different antenna array configurations and sparsity of the spectrum. Chap-

ter 6 discusses the proposed DLMC techniques along with the study of their

performance analysis for various deep learning models. Chapter 7 concludes

the thesis with some possible future directions.
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Chapter 2

Literature Review: Wideband Spectrum

Digitization & Characterization

In this chapter, we review the state-of-the-art wideband signal digitization and

characterization techniques. We begin with the detailed study of sub-Nyquist

sampling (SNS) techniques, followed by the discussion on channel subset se-

lection algorithms and various wideband spectrum sensing and parameter es-

timation techniques. In the end, we present the hardware prototypes for the

wideband signal digitization and characterization.

2.1 Wideband Signal Digitization Techniques

This section discusses the state-of-the-art low rate wideband digitization tech-

niques.
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2.1.1 Time Interleaved ADC

Time interleaved ADCs (TI-ADC) [64] considers a wideband signal, x(t), di-

vided into N number of frequency bands (or channels). It consists of N number

of parallel ADCs, as shown in Fig. 2.1. The sampling rate of each ADC is

fs
N , where fs is the Nyquist frequency of x(t). As shown in Fig. 2.1, every kth

ADC has a phase offset of k 2π
N . The output of each ADC is then combined by

a multiplexer working at a clock frequency of fs Hz to produce high Nyquist

rate samples. TI-ADC follows a straightforward approach to generate Nyquist

rate samples via low rate ADCs, but it suffers from various limitations. First,

due to the requirement of time delays of 1
fs

(i.e. in pico-second), it is difficult

to achieve synchronization between ADCs. Second, due to the processing of di-

rect radio frequency (RF) signal, ADCs require high analog bandwidth. Third,

the number of ADCs increases with an increase in frequency bands in a wide-

band spectrum. But due to the sparse nature of the wideband spectrum, the

minimum sampling rate required to perform blind (i.e. the location of carrier

frequencies is unknown) reconstruction of the spectrum is twice Landau’s rate,

i.e. equal to the occupied bandwidth in the spectrum [57]. Thus, to perform dig-

itization below the Nyquist rate, several sub-Nyquist sampling techniques have

been studied.
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Figure 2.1: Block diagram of time interleaved ADC [64].

2.1.2 Multi-Coset Sampling (MCS)

MCS [58, 59] uses the concept of time interleaved ADCs [64] to generate sub-

Nyquist samples of a wideband signal, x(t). As shown in Fig. 2.2, MCS uni-

formly samples x(t) via K parallel ADCs at a rate of B = 1
NT where K << N .

All ADCs are synchronized with each other and samples at a distinct time offset,

ck ∈ {1, 2, .., N} ∀ k = {1, 2, · · · , K} w.r.t. initial sample. The sub-Nyquist

samples generated by the kth ADC can be represented as

yk[n] = x(nT )
∑
m∈Z

δ(n− (mN + ck)) 1 ≤ k ≤ K (2.1)

where δ(.) is a Kronecker delta function. For a given ck, the output of each

ADC is an active coset of Nyquist rate samples. For example, as shown in

Fig. 2.3, the output of three ADCs will be samples produced at time instances,

t = {0, 5 ∗ T, 10 ∗ T, 15 ∗ T, ...}, t = {2 ∗ T, 7 ∗ T, 12 ∗ T, 17 ∗ T, ...} and

t = {3 ∗ T, 8 ∗ T, 13 ∗ T, ...}„ where T = 1
fs

. Using the Poisson summation

formula, the discrete time Fourier transform (DTFT) of kth active coset, yk[n],
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Figure 2.2: Block diagram of multi-coset sampler [60].

can be computed as

Yk(e
j2πfT ) =

1

NT

N−1∑
i=0

X

(
f +

i

NT

)
ej2πcki/N (2.2)

The DTFT of all active cosets can be represented as

Y(f) = AX(f) ∀f ∈
[
0,

1

NT

)
(2.3)

where Y(f) represents K × 1 vector with Yk(ej2πfT ) as its kth row, A is K ×N

matrix with 1
NT e

(j2πcki/N) as (k, i)th element and X(f) is a N × 1 vector with

Figure 2.3: MCS for N = 5, K=3 and ck = {0, 2, 3}.
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X
(
f + i

NT

)
as its ith row.

Although MCS performs digitization at a sub-Nyquist rate, it suffers from

similar drawbacks as TI-ADCs. Furthermore, the number of ADCs increases

proportionately with the number of occupied frequency bands (or channels).

Random demodulator, discussed in the next section, overcomes some of these

limitations.

2.1.3 Random Demodulation (RD)

RD [65] is another SNS digitization technique that aims to achieve Landau’s

rate. As shown in Fig. 2.4, the block diagram of RD has a pseudo-random se-

quence generator, a mixer, an accumulator and an ADC. The RD demodulates a

multi-tone wideband signal, x(t), by mixing it with a pseudo-random sequence

of ±1 generated at a Nyquist rate, fs, of x(t). The demodulated signal is then

passed through an accumulator and ADC to generate sub-Nyquist samples at a

rate of R Hz, which is defined as

R ≥ CM(log fs)
6 (2.4)

where C is a positive constant, M is the maximum possible number of active

tones in x(t). The accumulation step corresponds to an integrate and dump

operation where the demodulated signal is integrated for the duration, 1
R , and

then reset to its initial value. The major limitation of RD is that it is valid only

for a multi-tone signal. Since wideband signals are analog in nature and contain

an infinite number of tones, RD based digitization becomes computationally
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expensive. A modulator wideband converter overcomes this drawback of RD.

2.1.4 Modulated Wideband Converter (MWC)

MWC [60] is another blind SNS technique that works on the concept of RF

demodulation. As shown in Fig. 2.5, it multiplies the received wideband sig-

nal, x(t), with K parallel mixing functions, mk(t), 1 ≤ k ≤ K, in the analog

front-end. The mk(t) is a digital signal of amplitude either +1 or -1 and is pe-

riodic with a period, Tp = 1
fp
≤ N

fs
. Being a periodic signal, the Fourier series

expansion of mk(t) is given as

mk(t) =
+∞∑
i=−∞

bk,ie
j2πifpt (2.5)

where bk,i is the Fourier series coefficient. The Fourier transform of the mixed

Pseudo-random 

Sequence Generator

ADC of 

Rate 

𝑥(𝑡) 𝑦[𝑛]  

𝑡

𝑡−
1
𝑅

 
= 𝑅 𝐻𝑧 

Figure 2.4: Block diagram of random demodulator [65].
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Figure 2.5: Block diagram of modulated wideband converter [60].

signal at kth branch will be

Ỹk(f) =

∫ +∞

−∞
x(t)

(
+∞∑
i=−∞

bk,ie
j2πifpt

)
e−j2πftdt

=
+∞∑
i=−∞

bk,i

∫ +∞

−∞
x(t)e−j2π(f−ifp)tdt

=
+∞∑
i=−∞

bk,iX(f − ifp)

(2.6)

It can be observed from Eq. 2.6 that the output of the kth multiplier is the

linear combination of the shifted copies of spectrum, X(f), where every shift is

an integer multiple of fp andX(f) is the Fourier transform of the received wide-

band signal, x(t). The mixed aliased signal is then bandlimited to [−fp/2, fp/2]

via a low pass filter (LPF) to remove the higher frequency components. All syn-

chronized ADCs of K branches now perform uniform sampling at a rate of fp.

As shown in Fig. 2.6, the DTFT of the sub-Nyquist samples obtained at every
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kth branch contains the aliased images of all N frequency bands and is defined

as

Yk(e
j2πfTs) =

+N
2∑

i=−N2

bk,iX(f − ifp), f ∈ [−fp/2,+fp/2] (2.7)

The DTFT of the output of all ADCs can be written as

Y(f) = AX(f) (2.8)

where Y(f) represents K× 1 vector with Yk(ej2πfTs) as its kth row, A is K×N

matrix with bk,i as (k, i)th element and X(f) is a N × 1 vector with X (f − ifp)

as its ith row.

  0       f         2f         3f      (N-1)f     Nf

X(f)

B

`

      

f

MWC

X(f)

Figure 2.6: Input and output spectrum of three branch MWC.

2.1.5 Finite Rate of Innovation (FRI)

Similar to MWC, the FRI sampling technique [62] uses RF analog front end.

But unlike MCS and MWC, FRI allows sampling over non-contiguous fre-

quency bands of a wideband signal. As shown in Fig. 2.7, the FRI architec-

ture consists of K parallel branches where a wideband signal, x(t), is passed
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through a branch dependent analog mixing function, mk(t), given by

mk(t) =
∑
i∈β

αk,i e
−j2π(i−1)Bt (2.9)

where β is a set of frequency bands (or channels) over which SNS is to be

performed, αk,i is a unique scaling coefficient of β frequency bands, and B is

the bandwidth of a frequency band. The Fourier transform of a mixed-signal,

ỹk(t) = x(t) mk(t), produced at the output of kth mixer can be written as

Ỹk(f) =
∑
i∈β

αk,i

∫ +∞

−∞
x(t)e−j2π(f+(i−1)B)tdt (2.10)

=
∑
i∈β

αk,iX(f + (i− 1)B) (2.11)

where X(f) is the Fourier transform of x(t). Since the mixed-signal, as shown

in Fig. 2.8, is an aliased signal of β frequency bands, the mixed-signal ỹk(t)

is then bandlimited by an LPF followed by the digitization via ADCs of rate

B = 1
NT Hz. The DTFT of samples generated at the kth ADC is given by

Yk(e
j2πfT ) =

∑
i∈β

αk,iX

(
f +

(i− 1)

NT

)
∀f ∈

[
0,

1

NT

]
(2.12)

The sub-Nyquist samples of all K ADCs can be collectively represented as

Y(f) = AXβ(f) ∀f ∈
[
0,

1

NT

]
(2.13)

where Xβ(f) represents |β|×1 vector containing Fourier transform of β fre-
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Figure 2.7: Block diagram of finite rate of innovation based SNS [63].
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Figure 2.8: FRI based SNS for multiband signal.

quency bands and A is a K × |β| matrix containing αk,i as its (k, i)th entry.

However, the main challenge in the FRI SNS technique is the determination of

the frequency band set β.

The summary of the wideband signal digitization techniques is discussed

in Table 2.1. It can be observed that to sample a wideband signal of N fre-

quency bands, TI-ADC requires N ADCs of sampling rate B Hz. Hence, the

TI-ADC sampling technique can be applied to both sparse and non-sparse sig-
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Table 2.1: Comparison of state-of-the-art wideband techniques.

Sampling Number Sampling ADC Analog Sampling Characterization
Techniques of ADCs Rate Bandwidth Strategy Failure

TI-ADC N B fs Contiguous No
MCS K B fs Contiguous M > K

RD 1 R < fs R < fs Contiguous Eq. 2.4 not valid
MWC K B B Contiguous M > K

FRI K B B Non-Contiguous Mβ > K

nals. Whereas MCS, MWC and FRI employ K < N ADCs of sampling rate

B Hz. Hence, they can be applied to the sparse wideband signal. Unlike TI-

ADC, MCS, MWC and FRI, RD uses one ADC of sampling rate, R < fs

(defined in Eq. 2.4). But RD can work only for multi-toe signal, and hence, it

is not applicable for analog signal which has an infinite number of tones. The

analog bandwidth of ADCs in TI-ADC and MCS sampling techniques is the

same as the Nyquist frequency, fs. But in the case of MWC and FRI techniques,

the ADC analog bandwidth is B = fs
N . Hence, making MWC and FRI better

sampling techniques than TI-ADC and MCS. It can be observed that MCS and

MWC follow the contiguous sampling approach. Hence, they incur characteri-

zation failure whenever the number of active transmissions, M goes beyond K.

To overcome this drawback of MWC, FRI based sampling techniques performs

digitization over the selected subset of frequency bands, β and hence, incurs fail-

ure only when the number of active transmissions in β, i.e. Mβ is higher than

K. However, the selection of β is a critical step because if we increase the size

of β, then the throughput (i.e. the number of vacant bands in β) may increase,

but it also increases the probability of characterization failure. Thus there is a

need for a decision making algorithm to select the best frequency bands subset.
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2.2 Learning and Decision Making (LDM) Algorithms

The decision of selecting the best subset of frequency bands (or channels) re-

quires prior knowledge of the spectrum statistics like occupancy probabilities

of frequency bands. Since the information of spectrum statistics is unknown

to WSA, a learning and decision making (LDM) algorithm capable of learn-

ing statistics as well as making the decision of best channel subset is desired.

Multi-Armed Bandits (MAB) algorithms are extensively studied LDM algo-

rithms [66–68]. The performance of these algorithms is expressed in terms

of regret. Regret is defined as a difference between cumulative throughput ob-

tained by MAB algorithms and an oracle policy that plays the optimal frequency

band in each time slot. By accurately learning the spectrum statistics, these al-

gorithms select the best frequency band. But the accurate learning requires the

MAB algorithms to explore each frequency band sufficiently. This leads to the

selection of sub-optimal frequency bands (also referred to as arms in MAB algo-

rithms) for a larger duration, incurring higher regret. However, the exploitation

of a good quality frequency band from the beginning of the learning process will

reduce the exploration duration and hence, results in lower regret. But lower ex-

ploration duration might also lead to incorrect selection of band if the learning

is incorrect and therefore collects a linear regret, which is undesired. Thus,

there is a need for the MAB algorithm, which balances the trade-off between

the exploration and exploitation duration. Furthermore, the MAB algorithms

select only a single frequency band. The extensions of MAB, named as Multi-
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Play MAB (MPMAB) and combinatorial MABs (CMAB) [69, 70, 75, 76], are

proposed where in each time slot, an LDM is applied on a subset of frequency

bands to learn the optimal subset.

Upper confidence bound (UCB) based algorithms for multi-play scenario is

developed in [69]. Here the players can select a subset of frequency bands in

each time slot. The authors show that their algorithm, named CMAB, achieves

logarithmic regret. However, the constant terms match the lower bound. [70]

extends Thompson sampling for multi-players setting when the learner can

play a subset of fixed size in each time slot. The authors show that when

the throughput (also called as reward in MAB algorithms) distributions are

Bernoulli, their Multi-Play Thompson Sampling (MP-TS) algorithm achieves

optimal regret. [75] generalizes the work of [70] by allowing subsets of size

less than a specific size in each time slot. Using the matroid bandits set-up,

they show that the regret bound of their algorithm matched with that in [70].

Furthermore, [75] considers the prior distribution of the means of all frequency

bands as the beta distribution, and its extension in [76] provides the tight regret

bounds for multi-variate Gaussian distribution priors of frequency bands.

All the MPMAB algorithms (also referred to as CMAB in the literature)

[69,70,75,76] consider fixed-size subsets, sayK. The main assumption in these

works is that whenever a subset is played, throughput from all the frequency

bands in the subsets are observed, i.e., there is no loss of feedback. However,

in the SNS based WSA with K ADCs, the selection of a subset of size larger

than K may lead to the reconstruction failure. Hence, resulting in the collection
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Figure 2.9: Various wideband spectrum characterization techniques.

of no feedback. Thus the algorithm developed for MPMAB or combinatorial

bandits cannot be directly applied to our setting.

2.3 Wideband Spectrum Characterization at WSA

The sub-Nyquist samples generated in the previous section can be utilized in

different ways to perform the characterization of a wideband signal. The char-

acterization aims to estimate parameters like occupancy status of the frequency

bands of a wideband spectrum and transmission directions, i.e., the direction of

arrival (DoA) and modulation scheme of occupied frequency bands of a wide-

band spectrum at sub-Nyquist rate. Fig. 2.9 shows the various SNS based wide-

band spectrum characterization techniques. In the following sub-sections, we

discuss these characterization techniques in detail.
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2.3.1 Wideband Spectrum Sensing (WSS)

The determination of the occupancy status of the frequency bands of a wideband

signal is referred to as wideband spectrum sensing (WSS) [20, 21]. The SNS

based WSS approaches studied in the literature are:

2.3.1.1 Compressive Sensing

The next step after performing SNS is the reconstruction of the wideband signal

in the digital domain. Various reconstruction approaches have been explored

in the literature [77]. We can broadly classify these approaches into three cat-

egories: 1) Greedy algorithms [78], 2) l1−minimization algorithms [78], and

3) Bayesian algorithms [79]. The l1−minimization based algorithms like ba-

sis pursuit and LASSO (least absolute shrinkage and selection operator) offer

better reconstruction and hence, wideband sensing accuracy than greedy and

Bayesian algorithms. But l1−minimization is not feasible for real-time appli-

cations due to high computation time and complexity. Bayesian algorithms of-

fer lower computational complexity than l1−minimization algorithms and have

better reconstruction accuracy than greedy algorithms [80]. But Bayesian algo-

rithms require prior knowledge of the probability distribution of the information

signal transmitted in the wideband spectrum.

The greedy algorithm, such as orthogonal matching pursuit (OMP) [81], is

widely used due to lower computational complexity. OMP follows the itera-

tive approach where each iteration performs four operations: 1) Matching, 2)
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Identification, 3) Least squares, and 4) Approximation. Deep learning based

OMP methods have been proposed in [82–84] to improve the performance of

OMP. [82], [83] and [84] methods replace the matching operation of OMP with

convolutional deep stacking networks (CSDN), multi-layer deep neural network

(DNN) and long short term memory (LSTM) deep learning approaches, respec-

tively. But all these algorithms [81–84] require prior knowledge of the number

of occupied bands. The compressive WSS method discussed in [85] performs

blind SNS sensing. Here, a residual energy-based detector is proposed, which

uses the derived decision threshold to make a series of binary hypotheses.

The Bayesian approach is used in [86] for WSS. It divides the wideband

range into multiple bands, creates an observation window, and applies random

sampling. [86] reconstructs the frequency spectrum for every observation peri-

ods and takes their average to perform spectrum estimation and sensing. Finally,

the status of the spectrum bands is determined by applying classical binary hy-

pothesis testing on every frequency sub-band.

2.3.1.2 Feature Detection

Feature-based WSS has two significant advantages over compressive recon-

struction based spectrum sensing. Firstly, the signal transmitted over an occu-

pied frequency band exhibits unique features like modulation scheme, stationary

and cyclostationary properties. These features have a fewer degree of freedom

than the reconstruction of the signal. Hence, feature-based WSS is applicable

even if the signal’s sparsity is low. Secondly, features are more robust to noise,
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such as the cyclostationary feature is independent of the stationary noise and

hence, can work under low SNR. Recently, SNS based feature detection has

been proposed [30–41] to reconstruct features from the sub-Nyquist samples

followed by the parameter estimation technique [51–53] to determine the car-

rier frequency and bandwidth of occupied frequency bands.

Power spectrum based WSS [31–35] assume the transmissions in a wideband

signal are uncorrelated wide-sense stationary. In [30], the wideband spectrum

is divided into multiple sub-bands, and wavelet transform is applied on each

sub-band to detect the irregularities in the power spectral densities of the sub-

bands. [31] employs binary hypothesis testing on the power spectrum of each

frequency band of a wideband spectrum. The performance of the power detec-

tor is analyzed with simple FFT, windowed FFT and multitap windowed FFT

for frequency domain power detection. [31] is extended to a multitap power de-

tector with adaptive sensing time and threshold [32]. But, both [31] and [32] re-

quire high Nyquist rate ADCs for digitization. To overcome this drawback, [33]

introduces a minimum sparse ruler based multicoset sampling and performs

the recovery of the power spectrum of the wideband spectrum from the sub-

Nyquist samples. Similar to [33], [34, 35] also perform the direct recovery of

the power spectrum from the sub-Nyquist samples. But unlike [33], [35] pro-

vides the proof for the universal sampling pattern of multicoset sampling. It

considers both sparse and non-sparse signal models and derives the minimum

sampling rate for perfect power spectrum reconstruction. Furthermore, [35] also

presented the WSS techniques to achieve the minimum sampling rate.
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Cyclostationary based WSS takes advantage of the statistical periodicity of

the modulated signal because of which the signal behaves as a cyclostationary

process [36, 37, 40, 41]. Thus by finding the spectral correlation, the desired

signal can be separated from the noise making the cyclostationary based WSS

more robust to noise. The sub-Nyquist sampling based cyclostationary detector

presented in [36] is the first work that utilizes the sub-Nyquist samples gen-

erated via MCS or MWC sampling technique. Whereas [37] performs the re-

construction of the two-dimensional Nyquist spectral correlation function from

the sub-Nyquist samples. To reconstruct the spectral correlation function, [37]

uses regularized least square approach. The reconstruction of the sparse two-

dimensional cyclic spectrum does not follow linear recovery relation with the

sub-Nyquist samples.

In [38], the vectorized cyclic spectrum is reformulated into linear autocorrela-

tion of the sub-Nyquist samples. Furthermore, a cyclic feature based detector ca-

pable of simultaneously identifying all active transmissions is developed in [38].

The sampling rate compression is done in [37, 40] depend on the second-order

statistics. But in [39], the prior spectral information of active frequency bands is

also exploited along with the second-order statistics to reduce the sampling rate

further. Similar to [37–39], [40] also reconstruct the spectral correlation func-

tion from the sub-Nyquist samples. But [40] performs reconstruction of both

sparse and non-sparse signals and develops the blind and non-blind detection

method for sparse signal. Apart from reconstructing the cyclic spectrum, [41]

number of active transmissions in a wideband signal and their carrier frequen-
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cies and bandwidth. Also, [41] derives the lower bound on the sampling rate

to reconstruct the cyclic spectrum perfectly. It is shown that for a non-sparse

and sparse wideband signal, the minimum sampling rate required to reconstruct

the cyclic spectrum perfectly is 4/5 times of the Nyquist rate and 8/5 times

of the Landau’s rate, respectively. The wideband receiver impairments due to

low noise amplifier and mixer are analyzed in [42]. It is shown that due to

the nonlinearities of the receiver, the performance of WSS suffers degradation.

The impact of cyclic frequency and sampling clock offsets on the conventional

cyclostationary WSS detector is examined in [43]. A multi-frame test statistic

determining the optimal frame length such that the detection performance can

be maximized for the given sensing time is proposed to reduce the effect of

these offsets.

2.3.1.3 Collaborative WSS

The sensing performance of the spectrum analyzer degrades under shadow-

ing/deep fading scenarios. To improve the sensing accuracy in such situations,

collaborative spectrum sensing, which collectively processes the sensing infor-

mation from different sensor nodes, has been studied [44]. The collaborative

spectrum sensing can be performed in two manners: 1) Centralized collabora-

tive sensing where sensing information of each node is sent to a fusion center

to make the final decision; 2) Decentralized collaborative sensing where each

node makes its own decision and share the results with the neighbouring nodes.

But due to hardware limitations, it is not possible to perform WSS at every sen-
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sor node. Various collaborative WSS techniques have been studied in the last

decade [45–49]. [45] proposes to use a frequency-selective filter at every sensor

node and send the linear combined multi-channel information to the fusion cen-

ter. Thus, the fusion center gets the diverse information of all channels in the

wideband signal from the sensor nodes to decide on spectrum occupancy status.

SNS based collaborative spectrum sensing is discussed in [46–48]. Each sen-

sor node has a wideband filter to remove the undesired frequency component

followed by the sub-Nyquist sampler. The sampling rate of each sampler is de-

cided by the fusion center, which is relatively prime among all the nodes. Then

the FFT and energy detector blocks determine the energy of the sub-Nyquist

samples. The energy output of each sensor node is sent to the fusion center

to determine the occupancy status of all bands of a wideband spectrum. [47]

extends the work of [46] to perform multi-rate SNS based collaborative spec-

trum sensing under Rayleigh and log-normal fading channel distributions. [48]

also performed SNS based collaborative spectrum sensing, but its every node

performs MCS with relatively prime sampling rate followed by signal recov-

ery. The recovery block takes the multi-coset samples and the recovered carrier

frequencies and power spectral densities of neighbouring sensor nodes to de-

termine the average carrier frequency and power spectral density information.

In [49], the superposition property of the wireless channel is utilized to reduce

the computational cost at the fusion center. Here, the sensor nodes perform in-

terleaved sampling at a low rate. The sensor nodes then perform modified DFT

and transmit the samples in a synchronized manner. The transmitted samples
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are then combined over the air and processed by the fusion center to perform

WSS. The work presented in [50] exploits the spectrum occupancy behaviour to

perform cooperative WSS. By utilizing the block-like spectrum occupancy, [50]

uses machine learning with the proposed weighted compressive sampling to de-

termine the wideband occupancy information efficiently.

2.3.2 Wideband Angular Spectrum Sensing (WAS)

Determination of the direction of users is a critical step to perform spatial mul-

tiplexing. Thus apart from performing WSS in the temporal domain, there

is a need for wideband angular sensing (WAS) techniques that can perform

spectrum sensing in both temporal and spatial domains. The work presented

in [22–27] explored WAS. [22] proposes a distributed WAS where every base

station of a small cell is assigned a set of spectrum for spatio-temporal sensing.

Then the base stations share the sensing report to other base stations to obtain

the occupancy status of a wideband spectrum. The work presented in [23–27]

performed a joint estimation of the carrier frequency and directional of arrival

(DoA) of active transmissions present in the sensed spectrum. The WAS re-

quires multi-antenna SNS architecture for the digitization of wideband signal,

x(t). In this discussion, we consider the L number of antennas in the receiver

architecture. A nested array architecture with a delayed branch at every an-

tenna of the dense array is proposed in [23]. Though it offers wideband spec-

trum digitization via low-rate ADCs, there are two major drawbacks: 1) The

delay in each branch must be identical and of the order of Nyquist period (i.e.
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in nano seconds), and 2) Each antenna needs two ADCs (one at delayed and

direct branch) of an analog bandwidth of Nyquist rate, which is significantly

wide. Both the requirements are difficult to meet in AFE, making [23] diffi-

cult to realize in practice. The condition of identical delay in each branch is

relaxed in [24]. Compressed carrier and DoA estimation (CASCADE) architec-

ture based on well-known MWC [60] based SNS overcomes drawbacks [25].

CASCADE uses an L-shaped antenna array, and similar to MWC, the AFE of

each antenna consists of an analog mixing function followed by an LPF and

ADC. Since the mixer down-coverts each frequency band to the baseband, the

analog bandwidth of ADC is reduced to the bandwidth of a frequency band. All

these works [23–25] are based on contiguous SNS, which may not be suitable

for next-generation wireless networks.

Ideally, digitization architecture should characterize as many busy frequency

bands in the digitized spectrum as possible. However, SNS restricts the number

of allowable busy frequency bands in the digitized spectrum for a given num-

ber of antennas. For example, the number of busy bands must be less than the

number of antennas in [23–25]. By creating the virtual antennas, the architec-

tures in [26, 27] allow characterization of the higher number of busy frequency

bands than the number of antennas. To achieve this, [26] uses a uniform rectan-

gular array having L antennas with one antenna containing K multiple delayed

branches. On performing 3-D spatial smoothing and rank enhancement, [26]

creates Ls > L antennas (i.e. the sum of physical and actual antennas) and

allows sensing of up to KL
4 busy frequency bands. In [27], the architecture is
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based on the integration of ULA with MCS [59]. It sparsely activates only a

few antennas of ULA to estimate DoA. The hardware complexity comparison

of the existing WAS methods [23–27], when they are implemented on the AFE,

is shown in Table 2.2. It can be observed that for M number of active trans-

missions, [26] and [27] require fewer antennas and ADCs. This happens due to

the sparse antenna architecture of WAS receiver architecture of [26] and [27].

Also, because of the sparse antenna array, [26] and [27] incur characterization

failure only when the number of active transmissions is higher than the total

number of antennas, i.e. M > Ls. But since [25] uses MWC based AFE, it

does not require precise delay elements of the order of nano-seconds. Further-

more, the analog bandwidth of the ADCs of [25] is as low as the bandwidth of

a frequency band, i.e. B = fs
N , whereas in [23,24,26,27], the analog bandwidth

is as high as the Nyquist frequency, fs. But all the WAS techniques [23–27] are

based on contiguous SNS. Thus, there is a need for an architecture that allows

non-contiguous SNS based WAS.

Table 2.2: Hardware complexity comparison of different UWASS approaches.

Characteristics [23] [24] [25] [26] [27]

Number of
M + 1 M + 1 2M + 1 4M/K < M + 1

Antennas

Number of
2M + 1 M + 1 2M + 1 (4M +K − 1)/K < (M + 1)K

ADCs

Analog BW
High High Low High High

of ADCs

Precise delay Required Not required Not required Required Required

Sensing Failure
Fails Fails Fails

Fails when Fails when

(M ≥ L) M ≥ Ls M ≥ Ls
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2.3.3 Automatic Modulation Classifier (AMC)

In the underlay dynamic spectrum sharing approach, the information of param-

eters like power, modulation schemes, etc., of licensed users is desired to keep

the inference level below the acceptable threshold [87]. In this section, we dis-

cuss the various automatic modulation classification (AMC) techniques such

as likelihood ratio based classifier [91], feature-based classifier [92, 93] and in-

telligent learning classifiers [94–107] to determine the modulation schemes of

the active transmissions present in the wideband signal. Likelihood ratio based

classifiers [91] treat AMC as a multiple-composite hypothesis testing problem,

and parameters are determined by applying the maximum likelihood estimation

(MLE) criteria. The drawback of this approach is that the accuracy depends

on the knowledge of the distribution of active transmissions and noise, which

vary dynamically in the real environment. Feature-based classification meth-

ods [88–90] are explored to overcome this drawback. This classification method

analyzes a variety of statistical features such as higher-order moments, cumu-

lants [88] and cyclostationary features [93] of the received spectrum. Extensive

research has been focused on the usefulness and performance analysis of these

methods for AMC [92, 93]. In [92], various normalized fourth-order cumulants

are explored. Then the relationship between these cumulants and multipath

fading effects is developed to improve the AMC performance for the fading

channel condition. The performance of various algorithms using the cyclosta-

tionary feature is reviewed in [93]. Later, the cyclostationary feature is utilized
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by different classifiers like neural networks and hidden Markovian models to

perform AMC.

Recently, various intelligent learning based AMC exploiting features along

with learning algorithms such as support vector machine (SVM) [94], k-nearest

neighbor (KNN) [95], random forest (RF) [96] and neural networks [94–107]

has shown to offer a significant improvement in performance with limited prior

knowledge of spectrum. An SVM classifier based AMC for varying channel

noise is explored in [94]. In this, twenty five types of features are extracted, out

of which four features that are insensitive varying channel noise are selected

for the training of the SVM classifier. Genetic programming along with the

KNN classifier is used in [95] to classify BPSK, QPSK, QAM16 and QAM64.

Cumulants features are used for genetic programming to distinguish between

BPSK, QPSK and QAM. After that, KNN is used to further improve the perfor-

mance by classifying QAM16 and QAM64. A random forest machine learning

classifier is studied in [96] to classify various analog and digital modulation

schemes for various SNR ranges. A dictionary learning based AMC is studied

in [97]. A block coordinate descent dictionary learning is proposed to learn a

sparse dictionary for modulation classification, and it is shown to outperform

other machine learning AMCs like SVM [94] and KNN [95]. Among various

intelligent learning classifiers, neural networks based AMC are state-of-the-art

classification methods [98–107]. Neural networks are DL models which work

as function approximators and extract desirable patterns from the underlying re-

lationships in data. A MAXNET neural network consisting of a multilayer lin-
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ear perceptron network for every modulation scheme class is discussed in [98].

The performance of a dense neural network is analyzed for AMC application

in [99]. Twenty-one features with widely separated distribution are considered

an input to the dense neural network with three hidden layers. Its trained model

considers samples from all channel conditions, i.e. additive white Gaussian

noise and Rician fading channel. A state-of-the-art neural network architec-

ture, i.e. a convolutional neural network (CNN) model, with only two layers is

studied in [103]. It is shown that the proposed CNN based AMC significantly

outperforms the expert feature-based AMC methods. In [100, 101], the prin-

ciple architectures used for image recognition are utilized for the AMC along

with an extensive analysis to study the effect of network depth, filter sizes and

the number of filters on the accuracy of classification.

The representation of input signal for DL algorithms is analyzed in [102], and

it is shown that the use of amplitude-phase samples with LSTM learning algo-

rithm outperforms the real and imaginary sample based CNN AMC [103]. The

time-frequency feature is also considered as an input to the CNN model in [104]

to improve the accuracy. Thus, the selection of an appropriate input format is

essential for AMC. A fusion-based CNN AMC is considered in [105] to im-

prove the accuracy of simple CNN-based classification. Three fusion methods,

namely: voting based fusion, confidence based fusion and feature based fusion

methods, are employed in [105] to improve classification performance. Simi-

larly, another feature fusion method for AMC using CNN is studied in [106].

It uses eight handcrafted features and two image features extracted by apply-
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ing smooth pseudo Wigner Ville and Born-Jordan time-frequency distribution

to CNN models. These ten features are then used by multi-modality fusion

to improve AMC performance. Although the intelligent learning based AMC

has higher performance than conventional AMCs, they have high computational

complexity. [107] presents the light weight AMC, which offers a smaller model

size and faster computation speed. It determines the redundant neurons of CNN

and removes them. This results in a slight reduction of the performance of AMC,

but it significantly reduces the model size and accelerates the computation.

All the AMC methods studied above [91–107] work on the Nyquist samples

and hence, they are applicable only for a narrowband signal. The extension of

narrowband AMC to wideband AMC is non-trivial due to the need for SNS, dig-

ital reconstruction, channelization and characterization algorithms, and integra-

tion. [54,55,108,109] are the only work that consider wideband AMC. But they

do not consider state-of-the-art SNS approaches and need tunable channelizers

to convert wideband spectrum to multiple narrowband signals for characteriza-

tion using narrowband methods. Thus, wideband AMC is needed to determine

the modulation schemes of all occupied frequency bands concurrently.

2.4 Hardware Implementation

This section presents the hardware implementation of the MWC SNS tech-

nique of wideband signal digitization and various wideband characterization

algorithms like MAB learning algorithm, WSS, WAS and AMC techniques.
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2.4.1 MWC Digitization Implementation

MWC is the only SNS technique that has been implemented and successfully

tested on the real-time wideband signal [61]. The hardware testbed of MWC

is able to process a wideband signal of Nyquist frequency, fs = 6 GHz and

spectrum occupancy of 200 MHz at a sampling rate of 480 MHz. The block

diagram of the hardware prototype of MWC is shown in Fig. 2.10. The received

RF signal first passed through the splitter and preprocessor, which duplicates

the RF signal for four parallel RF chains and preprocesses it to perform equal-

ization, impedance correction and gain adjustment. The preprocessed signal is

then amplified by a low noise amplifier (LNA). The amplified signal of every RF

branch is then modulated by a unique mixing sequence of ±1 such that all mix-

ing functions are uncorrelated. Now, the modulated signal is passed through an

anti-aliasing LPF followed by an amplifier and attenuator. Finally, to generate

sub-Nyquist samples, the filtered signal is digitized by the synchronized ADCs

of RF branches. The digitized low rate samples are then fed to software-defined

digital signal processing block to perform digital processing tasks like signal

recovery, detection, demodulation, etc., as per the application.

2.4.2 LDM Algorithms Implementation

Various experiments implementing MAB algorithms have been performed to

select the best frequency band from a set of frequency bands [110–113]. The

USRP and GNU radio hardware demonstration performed in [110] shows the
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Figure 2.10: Hardware prototype of MWC.

learning capability of the UCB algorithm on the real radio environment. The

demonstration allows the secondary/unlicensed user to pick the frequency band

of maximum probability of vacancy by learning the occupancy statistics. Sim-

ilarly, an intelligent IoT network is developed in [111, 112]. They create a de-

centralized learning mechanism where multiple intelligent users can improve

access to the available network spectrum. A trekking based multi player dis-

tributed algorithm is developed in [113], and it is shown that the algorithm

offers a significantly lower number of secondary users collision while select-

ing the best frequency bands. All the demonstrations performed in [110–113]

aim to either select a single best quality frequency band or multiple good qual-

ity frequency bands for more than one secondary user. No demonstration is

done to validate the selection of a set of frequency bands which is the primary

requirement of the non-contiguous wideband signal digitization.

2.4.3 WSS Implementation

Various spectrum sensing methods are being developed and validated on the

hardware testbeds [61, 114–121]. In [114], a histogram based spectrum seg-
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mentation method is proposed to detect the spectral boundaries of primary (or

licensed) users. Whereas the performance of spectrum sensing methods like dis-

criminant analysis [115], energy detector and cyclo-stationary detector [116] are

validated in [115, 116]. Furthermore, the performance of the cyclo-stationary

detector for LTE SC-FDMA signal is analyzed for different channel conditions

in [117]. The hardware set-up used in [114–117] consists of a vector signal gen-

erator to generate the licensed user traffic signals. Then via the Ethernet cable,

this signal is then passed to the processing unit and vector signal analyzer to per-

form spectrum sensing. For validating the performance of the energy detector

under the non-ideal behaviour of the AFE of the receiver, [118] uses software

defined radio for the reception of signal. But similar to [114–117], [118] also

performs wired transmission of the signal. To analyze spectrum sensing per-

formance for over the air transmission, [119, 120] use USRPs for the wireless

transmission and reception of the signal. In [119], a cognitive radio network

is developed to perform spectrum sensing, followed by dynamic spectrum ac-

cess on the detected spectrum opportunities. In contrast, a method identify-

ing the secondary (unlicensed) user, which does not contribute to collaborative

spectrum sensing, is proposed in [120]. In [121], a spectrum sensing receiver

with Analog Devices frontend AD9361RF and Xilinx Kintex-7 FPGA is de-

veloped. The analog frontend allows the sensing of frequency bands in the

range of 70 MHz to 6 GHz, and the energy detector based spectrum sensing

is implemented on FPGA in the pipelined manner. Although the spectrum sens-

ing methods discussed in [114–121] validate different spectrum sensing meth-
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ods under various channels conditions and non-ideal behaviour of transmitter

and receiver RF AFE, they all assume the Nyquist sampling based digitization.

Hence, [114–121] are not applicable to perform WSS. A BigBand technology

capable of sensing a wideband spectrum in real-time via low rate ADCs is de-

veloped in [122]. It senses a wideband spectrum of 0.9 GHz bandwidth via 3

USRPs with SBX daughter board. To sense the wideband bandwidth, the low

pass filter of daughter board is removed. The sampling rate of all synchronized

ADCs of three USRPs is set to 50MS/s. Thus, the sampling rate is six times

slower than the sensing bandwidth. The MWC prototype developed in [61] is

also extended to perform WSS. But both [61, 122] implement contiguous SNS

followed by determining the status of every frequency band.

2.4.4 WAS Implementation

The main role in WAS is to determine the carrier frequency and DoA of the

active transmissions present in the occupied frequency bands of the wideband

signal. In [123, 124], the localization of a single transmission under various

hardware impairments like multi-path channel, non-ideal antenna array and non-

ideal RF AFE is discussed. To perform this task, single input multiple output

testbed is developed for the DoA estimation. In [125], DoA estimation at high

altitude is accomplished via a multi-antenna spherical array testbed. In [126],

an interesting DoA estimation approach via a single antenna receiver on the

high-speed train environment is demonstrated. By considering the uniform

speed of the train, virtual ULA is realized by considering the samples received
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at different time instants along with space alternating generalized expectation-

maximization principle [127] for DoA estimation. For DoA estimation, MUSIC

and ESPIRIT are widely used algorithms, and among them, MUSIC is shown

to offer higher accuracy [128]. All these methods [123–128] perform DoA esti-

mation of only single-user transmission, i.e. narrowband DoA estimation.

Very few works consider the DoA estimation of the wideband spectrum and

prototype design. The hardware testbeds discussed in [123–129] use the uni-

form array for the DoA estimation and hence can not determine the DoAs when

the number of transmissions is more than the number of antennas. In [129],

DoA estimation testbed for two and three transmissions with the help of four

and eight antennas ULA respectively is demonstrated. It employs Cholesky and

LDL decomposition on the FPGA platform. [130] uses a co-prime antenna array

to receive the signal and employs MUSIC, Capon and Least Absolute Shrink-

age and Selection Operator (LASSO) methods to perform DoA estimation. Al-

though [130] considers DoA estimation of multi-tone signal, all the tones have

the same DoA.

To summarize, existing works can perform the DoA estimation on Nyquist

sampled signal and have limitations on the digitization bandwidth and the num-

ber of possible DoAs. Furthermore, none of the existing works offers an end-to-

end prototype for WAS.
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2.4.5 AMC Implementation

The blind estimation of the modulation scheme is a key requirement of future

generation intelligent radios. Various AMC methods have been studied in the

literature to meet this demand, and a few works have been done to validate these

AMC methods on the real radio signals [131–134]. A NI-LabVIEW and USRP

hardware testbed for cyclostationary feature based AMC is developed in [131].

Upon receiving the modulated signal, the receiver extracts the cyclostationary

feature and apply the trained neural network to classify BPSK, QPSK, FSK

and MSK modulation scheme. A centralized framework for AMC is developed

in [132]. Multiple sensors send the information to the fusion center, which

applies likelihood ratio classification to determine the modulation scheme.

A hardware demonstration of blind hierarchical AMC is studied in [133]. It

applies the energy detector to perform coarse estimation of the signal and then

applies cumulants, cyclostationary detector and Kupier test to detect amplitude

modulation (AM), frequency modulation (FM), and QAM, PAM and PSK mod-

ulation schemes, respectively. An artificial neural network based AMC hard-

ware testbed is developed in [134] to enhance classification accuracy. It em-

ploys Nesterov accelerated adaptive moment estimation technique to enhance

the performance of the developed AMC further. All the AMC testbeds devel-

oped in [131–134] utilize the Nyquist rate samples and are applicable for a

single modulated signal. But due to SNS based digitization of a wideband sig-

nal, there is a need to develop an AMC testbed that can perform simultaneous
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AMC on all the active transmissions of a wideband signal.

2.5 Summary

In this chapter, a brief review of the existing wideband spectrum digitization

and characterization techniques is presented. We also discuss the hardware pro-

totype of the wideband signal digitization method and various testbeds for the

validation of the wideband spectrum characterization techniques.

Future generation radios are expected to perform dynamic spectrum sharing

over a wide range of non-contiguous unlicensed and shared spectrum. In or-

der to provide the area, power and cost effectively wideband signal digitization,

several sampling techniques employing low rate analog to digital converters

(ADCs) are studied in the first section of the chapter. In which we have re-

viewed time interleaved ADC (TI-ADC), multi-coset sampling (MCS), random

demodulator (RD), modulated wideband converter (MWC), and finite rate of

innovation (FRI) based sub-Nyquist sampling (SNS) techniques, which employ

low rate ADCs for the digitization of wideband signal. It is shown that TI-ADC,

MCS, RD and MWC techniques perform the digitization of the entire wideband

spectrum, which is not desired. Hence, the FRI SNS technique, which can per-

form non-contiguous digitization of the spectrum, is explored in the latter part

of the first section.

While FRI SNS technique is most compatible with the wideband signal dig-

itization for future generation wireless networks, it requires the intelligence
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of selecting non-contiguous frequency bands for digitization. The multi-play

multi-armed bandit (MPMAB) algorithms, which provide this decision mak-

ing capability, is discussed in the second section of the chapter. The existing

MPMAB algorithms select a set of best frequency bands, but all these algo-

rithms select a fixed number of frequency bands and always receive feedback

on the frequency band selection. Whereas for the desired non-contiguous SNS

set-up, the wireless network incurs a loss of feedback (i.e. reconstruction or

characterization failure) when the number of active transmissions is higher than

the number of ADCs. Hence, the need for a new MPMAB algorithm is also

discussed in detail.

Next, various wideband spectrum characterization techniques, including wide-

band spectrum sensing (WSS), wideband angular sensing (WAS) and automatic

modulation classification (AMC) technique, are presented in the third section

of the chapter. Under WSS, we have discussed compressive sensing and feature

based spectrum sensing techniques. Here, we have reviewed the compressive

sensing methods like l1−minimization, Bayesian and greedy algorithms, which

determine the status of frequency bands of the wideband spectrum directly from

the sub-Nyquist samples. Whereas in feature based WSS, we have discussed cy-

clostationary feature and power spectrum based WSS methods. The comparison

is made on the various multi-antenna WAS architectures to extend the WSS in

the spatial domain. Here, we have classified the WAS architectures into MCS

and MWC SNS based WAS approaches. But both the WAS approaches are

dependent on the number of antennas. So, the need for an intelligent and recon-
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figurable WAS receiver architecture is discussed at the end of WAS techniques.

Finally, various AMC techniques to blindly detect the modulation schemes of

the active transmissions present in the wideband spectrum are reviewed. Here,

we have discussed several feature based AMCs, including likelihood ratio, cyl-

costationary feature, cumulants and intelligent machine/deep learning methods.

However, in the literature, the performance analysis of all these AMCs is lim-

ited to the classification of narrowband signals. So, the need for SNS based

AMC is discussed at the end of the third section of the chapter.

Lastly, we have done a detailed review of the existing hardware prototypes

of the wideband signal digitization and characterization techniques in the fourth

section. It is shown that MWC is the only SNS technique that is success-

fully implemented and tested on the real-time wideband signal. Finally, we

have explained the various universal software radio peripheral (USRP) hard-

ware testbeds for signal characterization techniques. These testbeds comprise

WSS hardware testbeds for cognitive radio and IoT networks, multi-antenna

hardware testbeds for the direction of arrival estimation for WAS, and hardware

prototypes for cyclostationary feature, cumulant and artificial neural network

based AMCs. Although various hardware testbeds are developed to validate

existing characterization algorithms, all these testbeds are validated on Nyquist

sampled signal and hence, applicable for narrowband signals.

In the next chapter, we discuss the proposed MPMAB algorithms, which

incorporate the feedback loss due to the characterization failure and their hard-

ware validation on the developed USRP hardware testbed.
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Chapter 3

MPMAB Algorithms for Non-Contiguous

Channels Selection

The non-contiguous wideband signal digitization demands learning the channel

(or frequency band) occupancy status as the selection of channels is not fixed

and varies based on licensed user activity. Further, the identification of channel

status (reconstruction) can fail when the number of non-vacant channels in a

selected channel subset is higher than that of ADCs. This failure probability

increases with the subset size. Whenever a failure occurs, the channel state is

unknown. Thus the goal is to identify a subset with more vacant channels on

average without a reconstruction failure for sparse wideband spectrum. The

problem of learning the best subset is modelled as a Multi-Play Multi-Armed

Bandit (MPMAB). This chapter focuses on developing subset learning and se-

lection algorithms that balance the trade-off between the subset size and recon-

struction failure for two different channel statistics: 1) Bernoulli distribution

model and 2) Markov decision process. Later, we develop a USRP hardware
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testbed to validate the efficacy of the proposed MPMAB algorithms on the real

radio environment.

3.1 System Model: Bernoulli Distribution Model

Consider an ultra-wideband spectrum consisting of N non-overlapping chan-

nels (or frequency bands). The occupancy status of the channels is modelled as

independent Bernoulli distribution as in [68–70,75,76]. Let p be a vector storing

the vacancy probabilities of N channels and is unknown to the wideband signal

analyzer (WSA). Let a set of channels be denoted by [N ] = {1, 2, . . . , N}.

WSA is based on the FRI digitization approach with a fixed number of ADCs,

K. In each time slot, WSA selects a subset of channels from the wideband spec-

trum, digitizes them and updates the channel occupancy estimates. Let β be a

subset storing the indices of selected channels, and |β| denotes its size. Let s

be a 1 × N binary vector storing the occupancy status of all N channels. If ith

channel is vacant, then s(i) = 0. Otherwise, s(i) = 1. Then, sβ ⊂ s is a 1× |β|

vector storing the occupancy status of all channels in β. We denote a power set

containing all possible realizations of sβ as Qβ. Thus the number of elements in

Qβ is 2|β|. As the occupancy status of channels is independent, the realization

sβ occurs with probability P(sβ) =
∏

i∈β ((1− s(i))p(i) + s(i)(1− p(i))).

The mean throughput (or reward) of a subset β is defined as the expected
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number of vacant channels observed by WSA, given by

T (β) =
∑

sβ∈Qβ

P(ζsβ = 0) ||1− sβ||1 (3.1)

where ||1 − sβ||1 gives the number of vacant channels in β and P(ζsβ = 0) is

probability successful reconstruction, i.e.,

P(ζsβ = 0) =


0, if ||sβ||1> K

P(sβ) otherwise.
(3.2)

The aim of the WSA is to select a subset that maximizes the expected through-

put, i.e., β∗ expressed as

β∗ = arg max
β⊂[N ]

T (β). (3.3)

The size of the optimal channel subset β∗ can have any value between K and

N . Learning the optimal subset β∗ is a non-trivial task. When selected subset

β is such that |β|> K, reconstruction failure could occur and no feedback (or

throughput) is observed if the number of occupied channels in β is more than

K, i.e., ||sβ||1> K. Hence, resulting in collection of no throughput i.e. loss

of feedback. On the other hand, if the selected subset β is such that |β|≤ K,

no reconstruction failure occurs and feedback is observed, but subsets of size

K need not be optimal, resulting in the collection of lower throughput (i.e. the

number of vacant channels in the sensed wideband spectrum).

An oracle with prior knowledge of p can compute the optimal value of β∗
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using Eq. 3.3 and play it in each time slot to get the best possible throughput.

Whereas a learner having no prior knowledge of spectrum statistics estimates p

by repeated selection of the subsets. Let βts denote the selected subset at time

slot ts. We compare the performance of the learner over P time slots in terms

of the regret defined as follows:

R = PT (β∗)−
P∑
ts=1

T (βts), (3.4)

where the first term denotes the cumulative throughput/reward obtained from

the oracle and the second term denotes the cumulative throughput/reward ob-

tained by the learner. The goal of the learner is to minimize the expected regret,

E[R], where the expectation is with respect to randomness in the selection of βts

induced by the channel status observed. For simplicity of expressing the results,

we assume that the spectrum statistics, p, are arranged in the descending order

of their probability of vacancy. This ordering is unknown to the learner.

Next, we discuss the proposed algorithms which offer better performance

and compare their computational complexity. For the ease of exposure, first

algorithm is where the learner selects subsets of size K in each time slot so that

there is no feedback loss. Then the next algorithm selects subsets of a size larger

than K and carefully handles the issue of feedback loss.
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3.1.1 K-Subset Learning (K-SL) Algorithm

The proposed K-SL algorithm aims to identify the optimal subset among all

subsets with the channel subset size fixed to K. Let a power-set of all possible

subsets consisting of K channels be denoted by S. Hence, the number of such

subsets, |S|, is given by

|S|= C(N,K) =
N !

K! (N −K)!
(3.5)

The K-SL algorithm is inspired by the multi play Thompson sampling (MP-

TS) algorithm [70]. Its pseudo-code is given in Algorithm 1. In each time slot,

the quality index, Qc, of all the channels are calculated via Thompson Sampling

based MAB approach, i.e. using the beta distribution Beta(Xc(n), Tc(n)) [71]

(Algorithm 1: Line 2). Here Xc(n) denotes the reward collected over the nth

channel till time slot ts and Tc(n) denotes the number of times nth channel is

selected for digitization till time slot ts. Using Xc and Tc, the quality index,

Qs, of all subsets in S are calculated (Algorithm 1: Line 3). Then, the subset

with the maximum value of Qs is selected, and all the channels in the selected

subset are digitized via FRI based approach. The selected subset is denoted by

β. Next, an energy detector (ED) based sensing is used to estimate the status,

sβ, of channels present in β. The estimated status, ŝβ, is used to determine the

number of vacant channels, Vβ, in β, and is calculated as the l1 norm of the

complement of ŝβ. At the end of the time slot, parameters such as instantaneous

throughput, T (ts), Xc and Tc are updated.
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Algorithm 1 K-SL Algorithm
Input:P,N, [N ],S
Initialize: Xc = [1]1×N , Tc = [1]1×N
Output: β (for digitization)

1: for ts = 1, 2, · · · , P do
2: Update Qc(n) ∼ Beta(Xc(n), Tc(n)) ∀ n ∈ [N ]
3: Determine Qs(v) =

∑
n∈S(v)Qc(n) ∀ v ∈ {1, 2, · · · , |S|}

4: Select a subset, β, of maximum value of Qs
5: Determine ŝβ , of β channels via ED
6: Determine the number of vacant channels, Vβ = ||1− ŝβ||1
7: Store indices of vacant channels of β in βv
8: T (ts) = Vβ/N . Instantaneous throughput
9: Xc(n) = Xc(n) + 1 ∀ n ∈ βv

10: Tc(n) = Tc(n) + 1 ∀ n ∈ β
11: end for

3.1.1.1 Regret Analysis

Since no feedback loss occurs when subsets of size K are selected, K-SL is

same as the MP-TS algorithm. Then the analysis in [70] yields the following

result.

Theorem 1 Under the bounded reward and error free sensing, the regret of K-

SL is upper bounded as

E(R(P )) ≤ O

 ∑
i∈[N ]\β∗

∆i,K log(P )

d(pi, pK)

 , (3.6)

where d(pi, pK) = pi log(pi/pK) + (1 − pi) log((1 − pi)/(1 − pK)) is the KL

divergence between the two Bernoulli distributions of mean pi and pK , ∆i,K =

pK − pi is the increase in regret when instead of Kth optimal channel, ith sub-

optimal channel is drawn, and pi and pK are the vacancy probability of ith and

Kth channel, respectively. The performance of K-SL is optimal as the above
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upper bound matches with the lower bound for MPMAB in [72]. Hence, the

K − SL algorithm will converge at time, t→ inf.

When the spectrum is sparse, restricting the channel subset size to K may

not result in optimal throughput as the size of optimal β∗, i.e. |β∗|, could be

larger than K. The Fig. 3.1 shows the regret comparison of K-SL for two

instances: 1) When |β∗|= K and 2) When |β∗|> K. The comparison is done

for number of bands, N = 8, number of ADCs, K = 4, and number of times

slots, P = 5, 00, 000.

In both cases, the oracle plays an optimal subset. As seen, the regret of theK-

SL algorithm saturates when |β∗| is K, thereby demonstrating the learnability

of the optimal subset. For the second scenario, K-SL incurs linear regret as it

restricts subset size to K while the optimal subset size is K + 1. On increasing

the optimal subset size beyond K + 1, the slope of linear regret also increases.

To exploit the sparsity of spectrum, we next allow a subset of size larger than K

to be played in each time slot. However, in this case, feedback loss occurs, and

one needs to use the available feedback efficiently to identify the optimal subset

quickly.

3.1.2 K+-Shared Subset Learning (K+-SSL) Algorithm

K+-Shared Subset Learning (K+-SSL) is a variant of K-SL, where any subset

of sizeK or higher can be selected in each time slot. Let |S| denotes the number
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Figure 3.1: Regret plot of K-SL algorithm when |β∗| is K (sub-linear regret) and K + 1 (linear regret).

of such subsets and is given as

|S|= 2N −
K−1∑
k=0

C(N, k) (3.7)

With respect to the K-SL algorithm, the K+-SSL algorithm differs in cal-

culating the subset quality index. Instead of individual channel quality index,

the subset quality index is calculated via Thompson Sampling based MAB al-

gorithm. Specifically, Qs is calculated for all subsets in S via beta function i.e.

Beta(Xs(v), Ts(v)), where Xs(v) is the reward collected over the vth subset

when it was selected Ts(v) number of times. Furthermore, subset parameters

Xs(v) and Ts(v) are also updated whenever a subset containing common chan-

nels is selected for the digitization. The proposed K+-SSL algorithm is given

in Algorithm 2. It consists of the characterization stage (Line 2) to determine

the appropriate subset followed by the update parameter stage to update the

channel parameters of the selected subset (Lines 4-9) and subset parameters of

the subsets having at least one common channel with the selected subset (Lines
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11-26).

The characterization stage described using Subroutine 1 calculates the qual-

ity index, Qs, for all |S| subsets, selects a subset having the highest Qs and

determines the status of the channels in the selected subset along with the num-

ber of occupied and vacant channels. Initially, each subset is selected once

(Subroutine 1: Lines 1-2). After |S| number of time slots, the quality index of

each subset is determined using Thompson Sampling based MAB (Subroutine

1: Line 4). Then, the subset with the highest value of Qs is selected for digitiza-

tion via FRI based approach. The selected subset is denoted by β, i.e. β stores

the indices of channels present in the selected subset (Subroutine 1: Line 5).

After digitization, the status, ŝβ, of selected channels is determined as follows:

ŝβ =


ED |β|≤ K

BMP otherwise
(3.8)

When |β|≤ K, the SNS sampled signal present in the occupied channels of

β is reconstructed directly via inverse operation, and ED is applied to determine

their status [73]. When |β|> K, spectrum reconstruction is formulated as a

sparse signal recovery problem [77]. Since the spectrum statistics, p̂ = Xc

Tc

is learnt, the Bayesian Matching Pursuit (BMP) algorithm [74] is applied for

sparse signal recovery and determination of the channel status. In the end, the

number of occupied channels, Oβ, and the number of vacant channels, Vβ, are

calculated for β(Subroutine 1: Lines 8-9). After the characterization stage, the
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Algorithm 2 K+-SSL Algorithm
Initialize: Xs=[1]1×|S|, Ts=[1]1×|S|, Xc=[1]1×N , Tc=[1]1×N
Input: P,K,N,S
Output: β (for digitization)

1: for ts = 1, 2, · · · , P do
2: [β, ŝβ, Oβ, Vβ] = Characterization(ts, Xs, Ts,S)
3: Form a set βv containing vacant channels of β
4: if Oβ ≤ K then . Reconstruction Success
5: T (ts) = Vβ/N and Xc(n) = Xc(n) + 1 ∀ n ∈ βv
6: else . Reconstruction Failure
7: T (ts) = 0
8: end if
9: Tc(n) = Tc(n) + 1 ∀ n ∈ β

10: for i = 1 : |S| do . Update: Subset Parameters
11: Update γ with common channels in β and S(i)
12: if |γ|> 0 then
13: if Oβ ≤ K then . Reconstruction Success
14: Determine Oγ = ||̂sγ ||1 for γ subset
15: Update a subset γc with {S(i)} − {γ} channels
16: Find p̂γc =

Xc(γc)
Tc(γc)

of γc channels
17: Oγc = Shared_Occupancy(γc, p̂γc)
18: Calculate S via Eq. 3.12
19: Xs(i) = Xs(i) + S · 1Oγc+Oγ≤K , Ts(i) = Ts(i) + 1
20: else . Reconstruction Failure
21: Find p̂s =

Xc(S(i))
Tc(S(i)) of S(i) channels

22: F = Shared_Failure(S(i), β, p̂s)
23: Ts(i) = Ts(i) + F
24: end if
25: end if
26: end for
27: end for

Subroutine 1: Characterization
Input: ts, Xs, Ts,S
Output: β, ŝβ, Oβ, Vβ

1: if ts ≤ |S| then
2: Select a subset, β, as S(ts)
3: else
4: Update Qs(v) ∼ Beta(Xs(v), Ts(v)) ∀ v ∈ {1, 2, · · · , |S|}
5: Select a subset, β, having maximum value of Qs
6: end if
7: Determine ŝβ via Eq. 3.8
8: Determine the number of occupied channels, Oβ = ||̂sβ||1
9: Determine the number of vacant channels, Vβ = ||1− ŝβ||1
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selected subset’s channel parameters are updated depending on reconstruction

status (Algorithm 2: Lines 4-9).

Next, the parameters of subsets having common channels with the selected

subset are updated (Algorithm 2: Lines 11-26). Let γ contains the indices of

common channels between β and ith subset, S(i). When |γ|> 0 and reconstruc-

tion of β channel subset is successful, then Xs(i) and Ts(i) of ith subset of S

are incremented by S and 1, respectively. On the other hand, when |γ|> 0 and

reconstruction of β channels fails, only Ts(i) is incremented by F .

To calculate parameter S for S(i), we find the number of occupied channels,

Oγ, in γ and set of channels, γc, present in S(i) but not in γ. Using the learnt

probability, p̂γc, of γc channels, the estimate of the number of occupied chan-

nels, Oγc, in γc is calculated using Subroutine 2. To estimate Oγc, a power-set,

Qγc, containing all possible status of γc channels is considered (subroutine 2:

Line 1). A random variable, Yγc, denoting the number of occupied channels in

γc is generated. Thus, the possible values of Yγc are {0, 1, .., |γc|}. Now, the

probability mass function (PMF ) of Yγc is calculated as

P(Yγc = y) = PMF (y,Qγc, p̂γc) =
∑

q∈Qγc ,
||q||1=y

P(q) (3.9)

where P(q) is the probability of getting the status q for γc channels. Note that

similar to sβ, q is a binary vector storing the status of γc channels. Thus, P(q) is
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calculated as

P(q) =

|γc|∏
j=1

(1− q(j))p̂γc(j) + q(j)(1− p̂γc(j)) (3.10)

Based on the PMF , the probability regions are defined in Fig. 3.2. The Re-

gion y corresponds to the P(Yγc = y) (i.e. the probability of y number of

occupied channels in γc), and their decision boundaries are calculated as

∆y =

y∑
k=0

P(Yγc = k) (3.11)

The number of occupied channels,Oγc, in γc is y whenever a uniform random

variable ρ lies in Region y. If (Oγ + Oγc) ≤ K (i.e. successful sensing) then

the throughput, S, is calculated as

S =
Vγc + Vγ

N
(3.12)

where Vγc = |γc|−Oγc and Vγ = |γ|−Oγ are the number of vacant channels in

γc and γ.

The calculation of the parameter F is explained using Subroutine 3. When

S(i) is the same as the selected subset β, then F = 1 indicating reconstruction

ℙ(𝑌 = 0) 

Δ𝑜  Δ1 Δ2 0 

Region 0 Region 1 Region 2

Figure 3.2: Probability region.

63



Subroutine 2: Shared_Occupancy
Input: γc, p̂γc
Output: Oγc

1: Let Qγc stores all possible status of γc channels
2: Let Yγc be a random variable of values {0, 1, ..., |γc|}
3: Determine P(Yγc = y) = PMF (y,Qγc , p̂γc) ∀ y ∈ {0, 1, ..., |γc|} as per Eq. 3.9
4: Generate ρ from uniform distribution of range [0, 1]
5: Define probability regions as per Eq. 3.11 and Fig. 3.2.
6: if ρ lies in Region y where y ∈ {0, 1, .., |γc|} then
7: Oγc = y
8: end if

failure. F is determined based on the learnt probability of vacancy, p̂s, of S(i)

subset channels for other subsets. Similar to Subroutine 2, a power-set,Qs, con-

taining all possible status of S(i) channels and a random variable, Ys, denoting

the number of occupied channels in S(i) are defined. The possible values of

Ys are {0, 1, .., |S(i)|}. Now, based on the P (Ys = y) = PMF (y,Qs, p̂s), the

Failure probability, fp, is determined as

fp =

|S(i)|∑
y=K+1

P(Ys = y) (3.13)

If a random variable, ρ, generated from the uniform random distribution is

lower than fp, then F = 1, otherwise F = 0.

As N increases, the number of subsets increased exponentially, resulting in

a significant rise in exploration time and poor regret performance, as demon-

strated later in Section 3.1.4. From an architecture perspective, many subsets

result in a significant increase in memory requirements since the parameters of

each subset need to be stored separately. A subset elimination approach has

been explored to gradually reduce the number of active subsets (Refer to Sec-
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Subroutine 3: Shared_Failure
Input: S(i), β, p̂s
Output: F

1: if S(i) is same as β then
2: F = 1
3: else
4: Let Qs stores all possible status of S(i) channels
5: Let Ys be a random variable of values {0, 1, ..., |S(i)|}
6: Determine P(Ys = y) = PMF (y,Qs, p̂s) ∀ y ∈ {0, 1, ..., |S(i)|} as per Eq. 3.9
7: Determine failure probability, fp, as per Eq. 3.13
8: Generate ρ from uniform distribution of range [0, 1]
9: if ρ < fp then . Failure Estimation

10: F = 1
11: else
12: F = 0
13: end if
14: end if

tion 3.1.4 for more details). But from the computational complexity perspective,

the subset learning approach incurs huge complexity due to quality index calcu-

lation and parameter update requirement for each subset in each time slot. To

overcome these issues and develop a low complexity hardware-friendly algo-

rithm for WSA, a novel approach to estimate the subset size has been proposed.

The analysis of MAB of multi play and combinatorial bandits cannot be

adapted to K+-SSL due to the feedback loss incurred. One needs to take into

the impact of feedback loss carefully and how it affects the learning rate. The

analysis of K+-SSL algorithm has been left for future work, and its empirical

performance is evaluated in Section 3.1.4.

3.1.3 K+-SSL via Subset Size Estimation (K+-SSLE)

The main idea behind K+-SSLE is to decide the subset size at the beginning

of each time slot and then, among the subsets of the chosen size, select the
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one with the highest quality index. The optimum subset size, |β∗|, needs prior

knowledge of channel statistics, and it is given as

|β∗|= arg max
|β′ |≥K

∑
s
β
′∈Qβ

P(ζs
β
′ = 0) ||1− sβ′ ||1 (3.14)

where P(ζsβ = 0) is calculated as in Eq. 3.2. Once |β∗| is calculated, the number

of candidate subsets is reduced from 2N −
∑K−1

k=0 C(N, k) to S = C(N, |β∗|).

Furthermore, as discussed in the K-SL algorithm (Algorithm 1), the quality in-

dex of each subset is the normalized sum of the quality index of all the channels

in that subset. Thus, the proposed approach reduces the number of quality in-

dex calculations per slot from |S| to at most N , resulting in huge savings in

complexity and latency.

The challenge in the above approach is that the channel statistics, p, are

unknown. To learn the channel statistics accurately, the pure exploration phase

is introduced where the subsets of size K are sequentially chosen as follows:

β = {(i− 1)K + 1, (i− 1)K + 2, · · · ,min{iK,N}} (3.15)

where i is reset to 1 whenever min{iK,N} = N . Since the subset size is

the same as the number of ADCs, there is no reconstruction failure, and hence,

channel feedback is guaranteed. As shown in Theorem 2, the duration of the

exploration phase, W , is selected such that it guarantees µ-correct estimation of

p with δ probability and it is given by, W = 2
µ2 ln

(
2N
δ

)
time slots, where µ is a

lower bound on the smallest optimally gap.

66



Theorem 2 : If the minimum gap between pm and pn is µ, ∀m,n ∈ {1, .., N}

and m 6= n, then the exploration time slots, W ≥ 4
µ2

⌈
N
K

⌉
ln
(
2N
δ

)
to achieve

µ−correct estimation with a probability of at least 1− δ.

Proof: Let J be an event denoting each band has been observed minimum Q

times. Then we can upper bound the probability of no µ−correct estimation

given the event J as

P (No µ− correct estimation|J) < δ (3.16)

Mathematically, it can be represented as

P
(
∃ n ∈ {1 · · ·N} s.t. |p̂n − pn|>

µ

2
| J
)

≤
N∑
n=1

P
(
|p̂n − pn|>

µ

2
| J
)

(By Union Bound)

=
N∑
n=1

∞∑
q=Q

P
(
|p̂n − pn|>

µ

2

)
P (q observations|q ≥ Q) (3.17)

≤
N∑
n=1

2 exp

(
−Qµ2

2

) ∞∑
q=Q

P (q observations|q ≥ Q)

(By Hoeffding’s inequality)

≤ 2N exp

(
−Qµ2

2

)
(3.18)
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From Eq. 3.16, the above equation can be written as

2N exp

(
−Qµ2

2

)
< δ =⇒ Q >

2

µ2
ln

(
2N

δ

)
(3.19)

Since P(No µ−correct estimation|J) < δ implies P(µ−correct estimation|J) ≥

1 − δ, therefore Q should be greater than 2
µ2 ln

(
2N
δ

)
for µ−correct estimation.

As in every 2
⌈
N
K

⌉
time slots, only one observation of each frequency band is

obtained. Thus the number of time slots required to obtain Q observations of

all bands (i.e. µ−correct estimation), W ≥ 2Q
⌈
N
K

⌉
.

Once all channels are sampled W times, the subset size is calculated via

Eq. 3.14, by using the learnt statistics. Then we update the power-set, S, with

the subsets of size |β|. Next, the quality index,Qc, of every channel is calculated

via the beta function i.e. Beta(Xc(n), Tc(n)). Then the quality index, Qs, of

all subsets of S is determined (Algorithm 3, line 9). Finally, the subset having

the highest quality index is selected for sensing. Similar to Algorithm 2, K+-

SSLE determines the status, sβ, as shown in Eq. 3.8, and similar to Algorithm 1,

it determines the number of vacant bands, Vβ, and updates the instantaneous

throughput, T (ts), Xc and Tc.

3.1.4 Simulation Results: Bernoulli Distribution Model

The performance metrics used for the comparison are Reward/throughput, T ,

and regret, R, collected over the entire time horizon, P . An illustrative com-

parison of the proposed algorithms is shown in Table 7.1. In addition to the
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Algorithm 3 K+-SSLE Algorithm
Initialize: Xc=[1]1×N , Tc=[1]1×N
Input: P,W,K,N,S, [N ]
Output: β (for digitization)

1: for ts = 1, 2, · · · , P do
2: if ts < dN/Ke ∗W then
3: |β|= K . Exploration phase
4: Select a subset, β, via Eq. 3.15
5: else
6: Determine the subset size, |β|, via Eq. 3.14 and p̂
7: Update the power-set, S, with subsets of size |β|
8: Update Qc(n) ∼ Beta(Xc(n), Tc(n)) ∀ n ∈ [N ]
9: Determine Qs(v) =

∑
n∈S(v)Qc(n) ∀ v ∈ {1, 2, · · · , |S|}

10: Select a subset, β, of maximum value of Qs
11: end if
12: Determine the status, ŝβ , via Eq. 3.8
13: Determine number of occupied channels, Oβ = ||̂sβ||1
14: Determine number of vacant channels, Vβ = ||1− ŝβ||1 and store their indices in βv
15: if Oβ ≤ K then . Reconstruction Success
16: T (ts) = Vβ/N and Xc(n) = Xc(n) + 1 ∀ n ∈ βv
17: else . Reconstruction Failure
18: T (ts) = 0
19: end if
20: Tc(n) = Tc(n) + 1 ∀ n ∈ β
21: end for

proposed K-SL, K+-SSL and K+-SSLE algorithms, two other algorithms are

also considered: 1) K+-SL and 2) K+-RSSL. K+-SL is an extension of K-SL

with subset sizes ranging fromK toN , and does not include shared subset learn-

ing. WhereasK+-RSSL is an extension ofK+-SSL where the number of active

subsets is reduced dynamically over time using the Eliminate subroutine given

in Subroutine 4. The first step is to determine the mean reward of all subsets,

P(S) = Xs/Ts. Then, the size of power-set, S, is reduced by eliminating half

of the subsets having the lowest P(S). In the end, parameters Xs, Ts and [N ]

are updated. We consider the following parameters for comparison:

• Subset Size (|β|): All algorithms except K−SL explore subsets of size
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Table 3.1: Comparison of various subset learning algorithms.

Parameters K-SL K+-SL K+-SSL K+-RSSL K+-SSLE
Subset Size, |β| K K ≤ |β|≤ N K ≤ |β|≤ N K ≤ |β|≤ N K ≤ |β|≤ N

No. of Subsets,
C(N, k)

2N− 2N− • 2N− • Depends on
|S|

∑K−1
k=0 C(N, k)

∑K−1
k=0 C(N, k)

∑K−1
k=0 C(N, k) |β|, Eq 3.14

after W time slots • Reduces by 50%

|β| Estimation No No No No Yes
No. of Subset One i.e. One i.e

All All
One i.e

updates in β subset β subset β subset
each slot
Complexity Lowest High Highest High Low

ranging from K to N compared to the fixed subset size of K in K−SL.

• Number of Subsets, |S|, and |β| Estimation: K+−SL, K+−SSL and

K+−RSSL explore the maximum number of subsets and hence, need large

exploration time compared toK+−SSLE, which minimizes the exploration

time via a novel subset size estimation approach.

• Number of Subset Updates: K+−SSL and K+−RSSL algorithms need

to update the parameters of multiple subsets in each time slot. This makes

them computationally complex. With an increase in N , the number of

subsets increases substantially, leading to a significant increase in the com-

plexity ofK+−SL,K+−SSL andK+−RSSL compared to theK+−SSLE

algorithm.

First we present the simulation results comparing the regret performance of

the proposed algorithms. We consider the four cases:

Case 1: N = 8, K = 2, p = [0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]

Case 2: N = 8, K = 4, p = [0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
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Subroutine 4: Eliminate
Input: S, [N ], Xs, Ts
Output: S, [N ], Xs, Ts

1: Determine P(S) = Xs/Ts

2: Update I with indices of
⌈
|S|
2

⌉
maximum values of P(S)

3: Update S = S(I)
4: Update Xs = Xs(I)
5: Update Ts = Ts(I)
6: [N ] = channels present in S

Case 3: N = 12, K = 2, p = [0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.85 0.9 0.95]

Case 4: N = 12, K = 4, p = [0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.85 0.9 0.95]

.
The regret comparison for Case 1 to Case 4 is shown in Fig. 3.3. These

results are averaged over ten experiments, and each experiment consists of

P = 1, 00, 000-time slots. As expected, K-SL offers poor performance since

optimal |β|> K in all cases. Furthermore, K+-SL offers sub-linear regret in

Case 1 and Case 2, indicating the identification of the optimal subset, but its

performance degrades for Case 3 and Case 4. As discussed in Section 3.1.2,

this happens because the number of subsets grows from 503 to 4083 when N

increases from 8 to 12 with K = 2. Thus, resulting in a large exploration

time. Due to the proposed shared subset learning, K+-SSL, K+-RSSL, and

K+-SSLE outperform conventional subset learning approaches.

Among K+-SSL and K+-RSSL, the regret of the latter algorithm is slightly

better than the former due to the subset elimination approach resulting in further

savings in exploration time. The performance of the K+-SSLE improves with
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Figure 3.3: Regret analysis of K-SL, K+-SL, K+-SSL, K+-RSSL and K+-SSLE for a) Case 1 (i.e. N = 8,
K = 2) (b) Case 2 (i.e. N = 8, K = 4) (c) Case 3 (i.e. N = 12, K = 2) and (d) Case 4 (i.e. N = 12, K = 4).

an increase inN due to the novel subset size estimation approach. Due to the ini-

tial exploration phase, K+-SSLE regret is higher when N is small. In practice,

N is expected to be greater than 10 for WSA deployed in ultra-wideband spec-

trum. Next, the above simulations are repeated for four cases with randomly

chosen spectrum statistics, p in each experiment. All the results are averaged

over 100 experiments, and the average regret is shown in Fig. 3.4. The results

are similar to Fig. 3.3, validating the performance of the proposed algorithms in

a wide variety of spectrum environments.
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Figure 3.4: Regret of random values of p for (a) N = 8 and K = 2, (b) N = 8 and K = 4 (c) N = 12 and K = 2,
(d) N = 12 and K = 4 and (e) N = 14 and K = 4.

The final throughput achieved at the end of the horizon for a different number

of channels, N , and ADCs, K, is shown in Fig. 3.5(a) and (b), respectively. As

73



1 2 3

Number of Channels

0

2

4

6

T
o

ta
l 

T
h

ro
u

g
h

p
u

t

10
4

IP

K
+
-SL

K
+
-SSL

K
+
-RSSL

K
+
-SSLE

8                    12                    14

(a)

1 2

Number of ADCs

0

1

2

3

4

5

T
o

ta
l 

T
h

ro
u

g
h

p
u

u
t

10
4

IP

K
+
-SL

K
+
-SSL

K
+
-RSSL

K
+
-SSLE

2                                  4

(b)

Figure 3.5: Total throughput achieved for different values of (a) channels, N and (b) ADCs, K.

expected, ideal policy (IP) achieves the highest throughput due to prior knowl-

edge of channel statistics and hence, there is no loss due to exploration. Among

the algorithms, the throughput of the K+−SSLE is highest due to the subset

size estimation, and hence, it incurs lower regret. Due to the fewer subsets,

K+−RSSL offers higher throughput than the K+−SSL algorithm. K+−SL

achieves the lowest throughput due to the large number of subsets, which in

turn needs long exploration. Furthermore, it can be observed that the through-

put of all algorithms increases with an increase in K. Whereas, it decreases

with the increase in N . It happens because the number of reconstruction fail-

ures increases with N , which further leads to a decrease in the throughput of

all algorithms, including IP. Furthermore, the throughput increases with K, be-

cause the size of β, i.e. |β| increases with K. This allows sensing of a higher

number of channels, leading to an increase in throughput.

In Table 3.2, the number of reconstruction failures is compared, i.e. number

of time slots out of 104 slots during which digitization fails. Hence, WSA cannot
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Table 3.2: Comparison of number of reconstruction failures.

Spectrum
K-SL K+-SL K+-SSL K+-RSSL K+-SSLE

Statistics

Case 1 0 14120 14200 16370 13960

Case 2 0 1215 1311 1311 1315

Case 3 0 30040 14650 14390 14050

Case 4 0 4090 9765 9638 9113

find spectrum opportunities for potential users. As expected, K-SL algorithm

does not incur reconstruction failure, but its regret is high. Also, in Case 4, due

to the selection of the lower number of channels than the optimal subset size,

K+-SL faces a lesser number of reconstruction failures but incurs high regret.

The K+-SSLE algorithm incurs the lowest number of reconstruction failures

and lower regret (for large N ), indicating accurate learning of channel statistics

and subset size.

3.2 System Model: Markovian Decision Process

The signal model considered in this section is similar to the signal model dis-

cussed in Section 3.1, except each channel follows an independent stationary

Markovian channel statistics. Thus, the channel statistics of nth channel is

based on the transition probability, pu,v(n) = P(sn(ts) = v|sn(ts − 1) = u)

where u, v ∈ {0, 1} are the vacant and occupied states of the channel. Hence,

75



the instantaneous probability of vacancy, ωωω, at tths time slot is defined as

ωts+1(n) =


p̂10(n), if n ∈ β, ŝn(ts) = 1, ζsβ = 0

p̂00(n), if n ∈ β, ŝn(ts) = 0, ζsβ = 0

φts+1(n), if n /∈ β or ζsβ = 1

(3.20)

where ωts+1(n) is the updated instantaneous probability of nth channel, φts+1(n) =

(1− ωts(n))p̂10(n) + ωts(n)p̂00(n) and p̂uv(n) is the estimated transition proba-

bility. In the next section, two algorithms, which are the extension ofK+-SSLE,

have been proposed for Markovian statistics.

3.2.1 K+- ε SSLE

As shown in Algorithm 4, theK+- ε SSLE algorithm consists of two phases: 1) Ex-

ploration phase to learn the spectrum statistics of allN channels and 2) Exploita-

tion phase to exploit |β| best channels. The algorithm explores channels with

the probability ε and exploits with the probability (1 − ε) as shown in Algo-

rithm 4 (line 3), where the value of ε is calculated as

ε = 1−min

{
1,

t

M

}
(3.21)

whereM < P . The higher the value of P , the higher is the number of times

each band is explored. The value ofM depends on the minimum gap between

statistics of any two channels and is chosen empirically.

Similar to K+-SSLE, the exploration phase is executed till all the channels
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are sensed W times, i.e. till Tc(n) < W ∀ n ∈ [N ]. In the exploration phase

(line 3-12), the K+- ε SSLE algorithm learns the transition probability, puv, by

sequentially selecting K bands for two consecutive time slots. As shown in the

Subroutine 5 (Markov_Characterizaton), by choosing the same channels in the

consecutive time slots (i.e. iter = 2), the characterization phase learns the tran-

sition probability. It first estimates the status, ŝβ via Eq. 3.8. After determining

ŝβ for two consecutive time slots, the transition counters, Cn
u,v, which keep the

count of u to v state transition are updated for every n ∈ {1, 2, ..., N} channels.

Based on Cn
u,v, the transition probability, p̂u,v(n), and the immediate probability

of vacancy, ωωω, are updated as shown in the Eq. 3.22 and 3.20, respectively.

p̂u,v(n) =
Cn
u,v

Cn
u,v + Cn

u,u

(3.22)

The exploitation phase (line 14-19) is executed either with a probability of

1 − ε or when Tc(n) > W . Based on the learnt statistics, p̂uv, the optimum

subset size, |β| is determined as (line 14, Algorithm 4)

|β|= arg max
|β′ |≥K

∑
s
β
′∈Qβ

P(ζs
β
′ = 0) ||1− ŝβ′ ||1 (3.23)

where the probability of successful reconstruction is determined as discussed in

Eq. 3.2 and the probability of occurrence of sβ is updated with the instantaneous
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Algorithm 4 K+-ε SSLE algorithm
Initialize: Xc = [1]1×N , Tc=[1]1×N , ωωω = [0.5]1×N , Cuv = [1]1×N , p̂uv = [0.5]1×N ∀ u, v ∈ {0, 1}
and i = 1
Input: P,W,K,N,S, [N ]
Output: β (for digitization)

1: for ts = 1 . . . P do
2: Set ε as per Eq. 3.21
3: if (rand < ε and Tc(n) ≤W ∀ n ∈ [N ]) then . Explore
4: Set |β|= K
5: Select a subset, β, via Eq. 3.15 and set iter = 2
6: [Xc, Tc, T (ts), ŝβ] = Markov_Characterization(β,Xc, Tc, N,K, iter)
7: Update Cuv, p̂uv and ωωωts via Eq. 3.22 and 3.20
8: if i < dNK e then
9: Set i = i+ 1

10: else
11: Set i = 1
12: end if
13: else . Exploit
14: Determine the subset size, |β|, via Eq. 3.23 and ωωωts
15: Update the power-set, S, with subsets of size |β|
16: Update Qc(n) via Eq. 3.25
17: Determine Qs(v) =

∑
n∈S(v)Qc(n) ∀ v ∈ {1, 2, · · · , |S|}

18: Select a subset, β, of maximum value of Qs and set iter = 1
19: [Xc, Tc, T (ts), ŝβ] = Markov_Characterization(β,Xc, Tc, N,K, iter)
20: end if
21: end for

Subroutine 5: Markov_Characterization
Initialize: ŝβ = NULL and T = 0
Input: β,Xc, Tc, N,K, iter
Output: Tc, Xc, T , ŝβ

1: for j = 1 to iter do
2: Perform SNS and determine the status, ŝjβ via Eq. 3.8

3: Determine number of occupied channels, Oβ = ||̂sjβ||1
4: Determine number of vacant channels, Vβ = ||1− ŝjβ||1 and store their indices in βv
5: if Oβ ≤ K then . Reconstruction Success
6: T = T + Vβ/N and Xc(n) = Xc(n) + 1 ∀ n ∈ βv
7: else . Reconstruction Failure
8: T = T
9: end if

10: Tc(n) = Tc(n) + 1 ∀ n ∈ β
11: ŝβ = [̂sβ; ŝjβ]
12: end for

probability of vacancy, ωωωts as

P(sβ) =
∏
n∈β

((1− s(n))ωωωts(n) + s(n)(1−ωωωts(n))) (3.24)
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Now, similar to K+-SSLE, the power-set, S, of possible subset is reduced to

the subsets of size |β| and the subset, β, is selected based on the updated value

of Qc and Qs where the value of Qc can be updated via upper confidence bound

(UCB) as

Qc(n) =
Xc(n)

Tc(n)
+

√
γucb log(ts)

Tc(n)
(3.25)

where Xc(n) denotes the reward collected over the nth channel till time slot

ts and Tc(n) denotes the number of times nth channel is selected for digiti-

zation till time slot ts and γucb is the exploration coefficient. At the end, the

reward/throughput, T , is determined as shown in Subroutine 5.

3.2.2 K+-BSSLE (K+- Blind SSLE)

The previous learning algorithm suffers from three drawbacks: 1) All channels

are selected uniformly in the exploration phase leading to the frequent selection

of sub-optimal bands, 2) Need prior knowledge of the difference in statistics to

determine the minimum duration of the exploration phase, and 3) When learn-

ing of transition probabilities is difficult, i.e. when bands do not switch states

frequently, the duration of the exploration phase is significantly longer. The pro-

posed K+-BSSLE algorithm overcomes these drawbacks. The proposed algo-

rithm is based on the observation that the transition probability based selection

always offers higher throughput than the stationary probability based selection.

In the beginning, K+-BSSLE sets |β|= K and sequentially chooses all chan-

nels according to Eq. 3.15 (line 3) for once. Then similar to K+-ε SSLE, K+-
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Algorithm 5 K+-BSSLE
Initialize: Xc = [1]1×N , Tc=[1]1×N , ωωω = [0.5]1×N , Cuv = [1]1×N , p̂uv = [0.5]1×N ∀ u, v ∈ {0, 1}
Input: P,K,N,S, [N ]
Output: β (for digitization)

1: for ts = 1 . . . P do
2: if ts < dN/Ke then
3: Set |β|= K
4: Select a subset, β, via Eq. 3.15 and set iter = 2
5: [Xc, Tc, T (ts), ŝβ] = Markov_Characterization(β,Xc, Tc, N,K, iter)
6: Update Cuv, p̂uv and ωωωts via Eq. 3.22 and 3.20
7: else
8: Update Qc(n) via Eq. 3.25
9: Update β1 with best K channels as per Qc

10: Update β2 with best K channels as per ωωωts
11: if β1! = β2 then
12: Set |β|= K
13: Select a subset, β, via Eq. 3.15 and set iter = 2.
14: else
15: Determine the subset size, |β|, via Eq. 3.23 and ωωωts
16: Update the power-set, S , with subsets of size |β|
17: Determine Qs(v) =

∑
n∈S(v)Qc(n) ∀ v ∈ {1, 2, · · · , |S|}

18: Select a subset, β, of maximum value of Qs and set iter = 1
19: end if
20: [Xc, Tc, T (ts), ŝβ] = Markov_Characterization(β,Xc, Tc, N,K, iter)
21: Update Cuv, p̂uv and ωωωts via Eq. 3.22 and 3.20
22: end if
23: end for

BSSLE uses Markov_Characterization subroutine to learn the transition channel

statistics, puv, and instantaneous vacancy probability (line-5 and 6).

After the initial phase, the algorithm can be in one of the two states: 1)

State 1 (line 11): Learning is not accurate, and hence, |β|= K. This means,

reconstruction is always successful, but throughput is not optimal. 2) State 2

(line 15): Learning is sufficiently accurate, and hence, |β|≥ K. In this case,

reconstruction can fail, but optimal throughput may be achieved.

In each time slot, the algorithm identifies the state based on the parameters,

β1 (line 9) and β2 (line 10). The parameter β1 refers to the K best chan-
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nels selected based on the highest value of channel quality index, Qc(n) ∼

Beta(Xc(n), Tc(n)) ∀ n ∈ [N ]. The parameter β2 refers to the K best channels

selected based on the highest value of the learned immediate vacancy proba-

bility, ωts(n). When both parameters select identical channels, the algorithm

switches to State 2. There it estimates |β| via Eq. 3.23 (line 15) followed by the

reduction in the size of power-set, S and then it selects the best subset having

the highest value of subset quality index, Qs. Otherwise, it goes to State 1 and

hence, |β|= K. Then, |β| channels are chosen based on the Qc (line 16). The

same process is repeated in each time slot.

3.2.3 Simulation Results: Markovian Decision Process

This section compares the performance analysis of the proposed K+-εSSLE

and K+-BSSLE algorithms for Markovian channel distribution. The regret is

calculated as the difference between the throughput achieved by the oracle pol-

icy, referred to as ideal policy (IP) and the proposed algorithms. To check the

performance of stationary probability based channel subset selection under the

Markovian channel model, the comparison is done with an ideal stationary (IS).

IS assumes the prior knowledge of the stationary probability, i.e. probability of

vacancy, pv =
p10

p01+p10
, and determines the subset size via Eq. 3.14 with P(sβ)

given as:

P(sβ) =
∏
n∈β

((1− s(n))pv(n) + s(n)(1− pv(n))) (3.26)

The simulation results presented here are averaged over ten independent ex-
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Figure 3.6: Comparison of total regret with respect to IP [63] at 20 dB SNR for (a) Case 1 (b) Case 2, (c) Case3 (d)
Case 1 with different values of N and K.

periments and compared for different sets of spectrum statistics given as:

Case 1: p10 = [0.95 0.9 0.85 0.8 0.75 0.7 0.6 0.5],

p01 = [0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5]

Case 2: p10 = [0.45 0.425 0.4 0.375 0.35 0.325 0.3 0.275],

p01 = [0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375]

Case 3: p10 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6],

p01 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6]
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Figure 3.7: (a)Total throughput comparison for different cases and time horizon of 20,000 slots, and (b) Total
throughput comparison for various values of SNRs with statistics in Case 1.

From the spectrum statistics, we can observe that Case 1 corresponds to the

sparse spectrum whereas, Case 2 and Case 3 correspond to the non-sparse spec-

trum. However, Case 3 offers sparsity in the transition characteristics due to

higher p01 and p10. The regret comparison is shown in Fig. 3.6 and it can be

observed that: 1) Positive regret indicates that the transition probability based

selection in IP offers the highest throughput in all cases, 2) IS algorithm does

not perform well in Case 2 and 3, i.e. when the spectrum is non-sparse, and

thus, stationary probability based channel selection is not optimal, and 3) Pro-

posed K+-BSSLE offers lower regret (i.e. higher throughput) than K+-εSSLE

in all three cases. Next, the regret comparison is done for different values of N

and K in Fig. 3.6(d). Since the learning time increases with an increase in N

and decrease in K, the total regret of all three algorithms also increases with an

increase in N and decrease in K. The K+-BSSLE offers better performance

with a larger N validating the efficacy of the proposed learning approach.

Since the throughput is an important parameter in wireless communications,
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we compare the actual throughput of various algorithms for different cases in

Fig. 3.7(a) and different SNRs in Fig. 3.7(b). As expected, the goverall through-

put is highest in Case 1 due to the sparse spectrum. At low SNRs, the energy

detector performs poorly, which leads to inaccurate learning and lower through-

put for K+-BSSLE and K+-εSSLE. However, the performance improves with

SNR. Nevertheless, in all cases, K+-BSSLE offers better throughput than K+-

εSSLE.

3.3 Experimental Set-Up

A hardware testbed, as shown in Fig. 3.8, is developed to validate the effective-

ness of the proposed learning and decision-making algorithms in the real radio

signal. Two National Instruments (NI) based USRP-2922 with VERT900 anten-

nas are used for the wireless transmission and reception of a multi-band signal.

Baseband signal processing for both transmitter and receiver is performed us-

ing the LabView environment from NI. Since the Markovian channel model

is more practical than the Bernoulli channel distribution, the validation is per-

formed forK+-εSSLE andK+-BSSLE algorithms. Next, the transmitter model

and receiver model are discussed in detail.

3.3.1 Transmitter Model

The task of the transmitter is to generate a multi-band signal such that each fre-

quency band evolves as an independent Markovian chain followed by its trans-

mission over the desired carrier frequency. As shown in Fig. 3.9, the transmitter
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Figure 3.8: USRP testbed for validating the proposed learning and decision making algorithms.

consists of three blocks: 1) The first block configures the transmission parame-

ters such as IQ sampling rate, carrier frequency, antenna gain and transmission

port of USRP, 2) The second block generates the multi-band signal and 3) The

third block continuously transmits the signal at the specified IQ sampling rate

and the desired carrier frequency. An orthogonal frequency division multiplex-

ing (OFDM) waveform has been used for the generation of multi-band signal.

Sub-carriers of OFDM are divided into the desired number of frequency bands.

For example, as shown in Fig. 3.10, for 1024-point OFDM signal, eight bands

are formed by combining 112 sub-carriers in a band with two sub-carriers as a

guard band. Depending upon the transition probability of each channel, either

data or null is transmitted over the respective sub-carriers. To maintain syn-

chronization between transmitter and receiver, the first frequency band switches

between occupied and vacant states at every alternate time slot.

3.3.2 Receiver Model

The task of the receiver is to tune the analog front-end of the USRP to the

desired carrier frequency and perform learning and subset selection for the non-
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Figure 3.9: Block diagram of the transmitter model.

  1     2          112              115  116       226                                       913  914     1024

Band 1 Band 8
Synchronizing 

Band

Guard

Band 

OFDM Subcarriers

Figure 3.10: Multiband signal formation from OFDM waveform.

contiguous SNS. Similar to the transmitter, the receiver configures the receiver

parameters like IQ sampling rate, reception frequency, antenna gain and recep-

tion port of the USRP, which aid in the continuous reception of the multi-band

signal. As shown in Fig. 3.11, energy detection is performed on the first fre-

quency band to achieve synchronization between the receiver and transmitter.

Then as discussed in Section 3.2.1 and 3.2.2, the proposed K+-εSSLE and

K+-BSSLE algorithms are implemented on the received synchronized signal

to learn the spectrum statistics and select the best channel subset.
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Figure 3.11: Block diagram of the receiver model.

3.3.3 Experimental Analysis

Performance comparison of theK+-εSSLE andK+-BSSLE algorithms in terms

of the throughput and regret is shown in Fig. 3.12. The transmitter and receiver

antenna gains are set to 0 dB and 10 dB, respectively. Two spectrum statistics

are considered for the analysis:

Case 1: p10 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6]

p01 = [0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4]

Case 2: p10 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6]

p01 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6]

It can be observed from Fig. 3.12 that the throughput of IP is maximum, fol-

lowed by those of K+-BSSLE and K+-εSSLE. This happens because IP has

the prior knowledge of spectrum statistics, and thus it always selects the op-

timal subset size |β∗| and optimal subset. Whereas K+-BSSLE has a higher

throughput than K+-εSSLE, validating the simulation results presented in Sec-
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tion 3.2.3. Similar observations can be verified from regret plots in Fig. 3.12

where instantaneous regret becomes zero (i.e. no increase in cumulative re-

gret) after initial learning and accurate estimation of |β|. Zero instantaneous

regret guarantees the convergence of the K+-BSSLE and K+-εSSLE to the IP,

which is the desired requirement of the proposed algorithm. This also validates

the functionality of the proposed algorithms in the real-radio environment com-

pared to existing simulation-based analysis. Note that the throughput achieved

by all the algorithms is higher for Case 1 than Case 2. It occurs because the

spectrum in Case 1 is more sparse and hence offers higher transmission oppor-

tunities than Case 2. This is evident from the stationary probability of vacancy,

pv =
p10

p10+p01
, which is higher in Case 1 than Case 2.

3.4 Summary

In this chapter, a novel channel subset selection algorithms, namely K−SL

(K−Subset Learning), K+−SSL (K+−Shared Subset Learning), K+−SSLE
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Figure 3.12: Throughput, T and Regret,R achieved by the proposed K+− εSSLE and K+−BSSLE for (a) Case 1,
and (b) Case 2.
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(K+−SSL with subset size estimation) for the Bernoulli channel distribution

model, and K+ − εSSLE and K+−BSSLE (K+−Blind SSLE) for Markovian

decision process channel model, under the feedback loss condition are pre-

sented. The feedback loss arises due to reconstruction (or characterization) fail-

ure, which occurs whenever the number of occupied channels is higher than the

number of ADCs, K, of a sub-Nyquist sampling (SNS) set-up.

To show that the subset selection problem is learnable, the K−SL algorithm

selecting a subset having K best channels is proposed. But since the optimal

size of the selected channel subset, which results in maximum throughput, is

always greater than K, the K−SL algorithm is extended to K+−SSL algo-

rithm, where a subset size can range from K to the total number of channels,

N . Due to the analysis of every channel subset sharing a common channel with

the selected subset, K+−SSL is computationally complex. Further, the com-

plexity of K+−SSL increases with N . To reduce the complexity, we proposed

K+−SSLE. At the beginning of every time slot, it first determines the optimal

channel subset’s size and then only analyses the subsets of the calculated sub-

set size. The simulation results show that the proposed K+−SSLE achieves

the minimum regret. The gap between the regret of K+−SSLE and other algo-

rithms increases withN . It is also studied that the performance of all algorithms,

including ideal policy, which always selects optimal channel subset, increases

with an increase in K and decreases with an increase in N .

To have more similarity with the real radio signal, where a channel occu-

pancy status depends on its previous state, we have presented the K+ − εSSLE
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and K+−BSSLE algorithms. Similar to the K+−SSLE, K+ − εSSLE and

K+−BSSLE algorithms determine the size of the optimal channel subset. To

have accurate learning of channel statistics, K+ − εSSLE algorithm explores

the channel subsets of K with the ε probability. It calculates the optimal sub-

set size for remaining time slots and selects the best subset based on the learnt

statistics. For avoiding the linear regret collected during the exploration phase

of K+ − εSSLE algorithm, the K+−BSSLE algorithm is proposed. If the sub-

set selected via transitional and stationary quality indexes are different, then

K+−BSSLE selects a subset of size K. Otherwise, it selects a subset of size

ranging fromK toN . For the validation ofK+−εSSLE andK+−BSSLE algo-

rithms on the real-radio signals, an USRP-hardware testbed is developed in the

latter part of the chapter. It is shown that the proposed K+−BSSLE algorithm

offers the minimum regret.

In the next chapters, the wideband signal characterization techniques utiliz-

ing the proposed channel subset learning algorithm to perform non-contiguous

SNS are discussed.
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Chapter 4

Reconfigurable and Intelligent

Ultra-Wideband Angular Sensing

The non-contiguous sub-Nyquist sampling (SNS) based wideband spectrum an-

alyzer (WSA) needs to be reconfigurable and intelligent. The reconfigurability

allows the WSA to select non-contiguous channels for digitization. At the same

time, online learning and decision making based intelligence enable the WSA to

learn spectrum statistics and choose the frequency bands (or channels) to maxi-

mize the throughput. Since beamforming and MIMO are de-facto standards in

next-generation networks, WSA should perform spectrum sensing in temporal

and spatial domains. This chapter focuses on ultra-wideband angular spectrum

sensing (UWASS ) on the ultra-wideband non-contiguous spectrum (UWNS)

not only in the time domain but in the spatio-temporal domain, i.e. along with

the identification of vacant and occupied frequency bands in the frequency do-

main, the determination of the direction of arrival (DoA) of occupied bands is

also performed in the spatial domain. To perform UWASS , we first discuss a
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novel antenna array and SNS based wideband receiver architecture. Later we

discuss the efficacy of the proposed UWASS over state-of-the-art approaches

via hardware complexity comparison and simulation results.

4.1 Signal Model

Consider a wideband signal consisting of a finite number of far-field, uncorre-

lated and narrowband transmissions. The wideband signal, x(t), at time t is

given as

x(t) =
M∑
i=1

ci(t)e
j2πfit + η(t) (4.1)

where M denotes the unknown number of narrowband/active transmissions at

time t s.t. M ≤ N , ci(t) is the amplitude of the ith active transmission of

a carrier frequency, fi, and η(t) is an additive white Gaussian noise. Similar

to [24, 26, 63], the following assumptions have been made on x(t).

1. The spectrum of x(t) is bandlimited to fmax and is divided into N fre-

quency bands (or channels) of uniform bandwidth B = fmax
N .

2. Each active transmission, ci(t), has a maximum possible bandwidth of

B Hz and occupies orthogonal frequency bands.

3. The status ofN frequency bands evolves as an independent two-state Marko-

vian chain where the two states are vacant and busy.

A time-slotted communication has been assumed where the status of all fre-

quency bands remains static for a time slot, ts. Let s = [sn(ts)]
N
n=1 be a bi-
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nary support vector denoting the vacant and busy status of frequency bands, i.e.

sn(ts) = 0 (or 1) implies the vacant (or busy) status of nth frequency band for a

time slot, ts.

4.2 Proposed Ultra-Wideband Angular Sensing (UWASS )

The proposed UWASS approach aims to select a subset of non-contiguous fre-

quency bands from the wideband spectrum, sample and digitize them via SNS

followed by digital reconstruction and the estimation of carrier frequencies and

DoAs of occupied bands with an objective to maximize the throughput. The

process is repeated in each time slot, and it involves four blocks as shown in

Fig. 4.1: 1) Multi-antenna non-contiguous SNS, 2) Reconstruction and char-

acterization, 3) Joint angular spectrum sensing and 4) Learning and Decision

Making (LDM).

The SNS block consists of L antennas, out of which the first antenna has

K branches, whereas other antennas have a single branch. Each branch digi-

tizes a set of frequency bands chosen by the LDM block. Let β be a vector

storing the indexes of these selected frequency bands. Using the digitized sam-

ples, y1,k[n], obtained from the k ∈ {1, · · · , K} branches of the first antenna,

the reconstruction and characterization block determines the status, sβ ∈ s, of

selected frequency bands. The output of all antennas, yl,1[n], l ∈ {1, L}, along

with the estimated status, ŝβ ∈ s is then utilized by the joint angular spectrum

sensing block to estimate the carrier frequency, fi and corresponding DoA, θi
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Figure 4.1: Proposed UWASS sensing model.

for active transmission in β. Simultaneously, by using ŝβ and learned frequency

band statistics, the LDM block updates β to be used in the subsequent time slot.

Next, the functioning of each block is discussed in detail.

4.2.1 Multi-antenna Non-contiguous SNS

The proposed receiver architecture, shown in Fig. 4.2, considers a planar an-

tenna array, which includes various possible geometries such as L-shaped, rect-

angular, circular, etc. [136]. From Fig. 4.2, it can be observed that the first

antenna of an antenna array has K analog branches (where K � N ) and other

antennas have a single branch. The signal received at the lth antenna can be

written as

xl(t) =
M∑
i=1

ci(t+ τl(θi))e
j2πfi(t+τl(θi)) + ηl(t) (4.2)

Due to the narrowband signal assumption, Eq. 4.2 can be approximated as

xl(t) =
M∑
i=1

ci(t)e
j2πfi(t+τl(θi)) + ηl(t) (4.3)

where θi is DoA of the ith active transmission, τl(θi) is the time delay observed

at the lth antenna with respect to the reference antenna (i.e. the first antenna),
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and it depends on θi and geometry of the antenna array.
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Figure 4.2: Proposed multi-antenna non-contiguous SNS architecture.

To perform SNS over non-contiguous frequency bands, the finite rate of inno-

vation (FRI) based architecture has been considered [62]. Since all K branches

of the first antenna observe the same signal, x1(t), the low rate samples, y1,k(t),

obtained at these branches are a function of center frequencies, fi only. Thus,

the samples y1,k(t) of first antenna branches are utilized to identify busy fre-

quency bands in β. To perform SNS over β frequency bands, the wideband

signal, x1(t), received at the first antenna is passed through a unique mixing

function, mk(t) =
∑

n∈β αk,ne
−j2π(n−1)Bt of all K branches. Under the noise-

less case, the Fourier transform of the mixed signal, ỹ1,k(t) = x1(t)mk(t), pro-
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duced at the kth branch of the first antenna can be written as

Ỹ1,k(f) =

∫ ∞
−∞

x1(t) mk(t) e
−j2πftdt (4.4)

Since, mk(t) =
∑

n∈β αk,ne
−j2π(n−1)Bt, the Eq. 4.4 can be expanded as

Ỹ1,k(f) =

∫ ∞
−∞

x1(t)
∑
n∈β

αk,n e
−j2π(f+(n−1)B)tdt (4.5)

As summation is a linear operator, it can be taken outside the integration. Thus,

Eq. 4.5 can be re-written as

Ỹ1,k(f) =
∑
n∈β

αk,n

∫ +∞

−∞
x1(t)e

−j2π(f+(n−1)B)tdt (4.6)

From Eq. 4.6, it can be observed that
∫ +∞
−∞ x1(t)e

−j2π(f+(n−1)B)tdt is the frequency-

shifted Fourier transform of x1(t). Hence, it can be written as

Ỹ1,k(f) =
∑
n∈β

αk,nX1(f + (n− 1)B) (4.7)

where X1(f) is the Fourier transform of x1(t). It can be observed from Eq. 4.7

that the mixed signal, Ỹ1,k(f) is an aliased signal containing shifted and scaled

images of all active transmissions in x(t). But it can be noticed that the base-

band images (i.e. within f ∈ [0, B]) present in Ỹ1,k(f) belongs to the active

transmissions present in β. To filter out the unwanted images present at a higher
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frequency, Ỹ1,k(f) is bandlimited by a LPF of bandwidth B Hz as

Y1,k(f) =


∑
n∈β

αk,nX1(f + (n− 1)B) if f ∈ F = [0, B],

0 if f /∈ F
(4.8)

The filtered signal is then digitized via ADC of rate fsns ≥ B Hz. The low rate

samples, y1,k[n] obtained at the K branches of the first antenna correspond to

only β frequency bands. The DTFT of these samples can be written as

Y1,k(e
j2πf/B) =

∑
n∈β

αk,nX1(f + (n− 1)B) ∀f ∈ F (4.9)

Thus, for all K branches above equation can be represented as

Y(f) = A X1(f) f ∈ F (4.10)

where Y(f) represents K × 1 vector such that its kth entry is the DTFT of

samples obtained at the kth branch of the first antenna, A is a K × |β| sensing

matrix which contains αk,n as its (k, n)th entry and X1(f) is a |β|×1 vector con-

taining X1(f + (n− 1)B) ∀ n ∈ β. To determine the status of frequency bands,

the sub-Nyquist samples are passed to the reconstruction and characterization

block.

4.2.2 Reconstruction and Characterization

The aim of this block is to determine the status, sβ, of β frequency bands dig-

itized via SNS. To guarantee a unique solution of sβ, Eq. 6.3 should satisfy
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Theorem 1.

Theorem 1: For the sampling architecture as shown in Fig. 4.2, a unique solu-

tion of sβ is possible if

1. fsns ≥ B

2. Kruskal rank of A 1, i.e. krank(A) > ‖sβ‖0

Proof: From Eq. 4.7 , it can be observed that Ỹ1,k(f) contains every frequency

band of β in the frequency range of [0, B]. Thus, to get a single image of these

bands in X1(f) of Eq. 6.3, fsns ≥ B [137]. The second condition follows

directly from the unique recovery condition of a sparse infinite measurement

vector signal [138, Theorem 11.26] i.e.

‖sβ‖0≤
krank(A) + dim(span(X1(f)))

2
(4.11)

As dim(span(X1(f))) = ‖sβ‖0, hence, krank(A) ≥ ‖sβ‖0.

�

To satisfy Theorem 1, the sensing matrix A is taken as independent and iden-

tically distributed (i.i.d.) Gaussian matrix, and an LDM algorithm is designed

such that β has at most K busy bands.

We can directly use the energy detector to determine the status of digitized

frequency bands when |β|≤ K. But there is a need for a sparse recovery algo-
1A matrix having a Kruskal rank of k is defined as the maximum value of k, such that every k columns of a matrix are

linearly independent
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rithm in the case of |β|> K. As discussed in Section II.A, Bayesian algorithms

have better recovery accuracy than greedy algorithms (like orthogonal match-

ing pursuit (OMP) [81]) and have lower computational complexity than l1 norm

minimization algorithms (like basis pursuits [79]). However, the only draw-

back of the Bayesian approach is that it requires prior knowledge of occupancy

statistics of frequency bands. Since the LDM block in the proposed UWASS

approach aims to learn frequency bands statistics, the Bayesian recovery algo-

rithm becomes a good fit. Hence, we explore the Bayesian matching pursuit

(BMP) algorithm [74, 139].

Consider a vector ωωω(ts) storing the immediate probability of vacancy of all

N frequency bands for a ts time slot and can be defined as

ωωω(ts) = [ω1(ts), ω2(ts), ....., ωN(ts)] (4.12)

where ωn(ts) = P[sn(ts) = 0] is an immediate vacancy probability of the nth

band. The BMP algorithm utilizes ωωω(ts), which is updated by the LDM block

at every time slot. For mathematical simplicity, the proposed UWASS method

considers every frequency band, X(f + (n − 1)B) where f ∈ F and n ∈

[0, N ], to be generated from a Gaussian distribution, i.e. X(f +(n−1)B)|sn ∼

N (0, σsn) ∀ n ∈ [1, N ] similar to [63,74,139]. However, the detection method is

also applicable to other distribution models. For modeling the sparse signal, we

consider σsn=0 = 0 ∀ n ∈ [1, N ]. With this probability model, the probability
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distribution of the sub-Nyquist samples of β frequency bands will become

Y(f)|sβ ∼ N (0,AR(s)AT ) (4.13)

where R(s) = diag({σsn}n∈β) is a covariance matrix. Now to determine the

status, sβ, we can perform maximum a posteriori estimate of sβ as

sβ = arg max
s′β∈ S

P(s′β|Y) (4.14)

where S is a set containing all possible values of sβ. By applying Bayes rule on

the posterior P(sβ|Y), we get

P(sβ|Y) =
P(Y|sβ)P(sβ)∑

s′β∈ S P(Y|s′β)P(s′β)
(4.15)

Since
∑

s′β∈ S P(Y|s′β)P(s′β) remains same for all possible values of sβ in S,

estimation of P(sβ|Y) can be reduced to the estimation of P(Y|sβ)P(sβ). Hence,

Eq. 4.14 can be re-written as

ŝβ = arg max
s′β∈ S

P(Y|s′β)P(s′β) (4.16)

For simplification, we convert above maximization in the logarithmic domain

ŝβ = arg max
s′β∈ S

lnP(Y|s′β) + lnP(s′β) (4.17)

Let

λ(sβ) = lnP(Y|sβ) + lnP(sβ) (4.18)
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The above equation can be expanded as

λ(sβ) = lnP(Y|sβ) +
∑
n∈β

lnP(sn) (4.19)

= lnP(Y|sβ) +
∑
n∈β

(1− sn) lnP(sn = 0) +
∑
n∈β

sn lnP(sn = 1) (4.20)

As an immediate probability of vacancy vector, Ω(ts), defines the probability

of vacancy of all N frequency bands, hence, P(sn = 0) = ωn and P(sn = 1) =

1− ωn. Therefore,

λ(sβ) = lnP(Y|sβ) +
∑
n∈β

ln(ωn) +
∑
n∈β

sn ln

(
1− ωn
ωn

)
(4.21)

λ(sβ) = −K
2

ln 2π − 1

2
ln det(φ(sβ))− 1

2
YTφ(sβ)−1Y

+
∑
n∈β

ln(ωn) +
∑
n∈β

sn ln

(
1− ωn
ωn

)
(4.22)

where φ(sβ) = AR(sβ)AT . Now, to determine sβ, Eq. 4.22 needs to be maxi-

mized, and it is performed by employing the proposed BMP algorithm, shown

in Algorithm 1. Similar to [74], BMP is a greedy method that works iteratively

(line 4-12). For the first iteration, i.e. i = 0, it generates sβ,j vectors where

j ∈ J = {1, ..., (|β|−i)} (line 5) and initialize them to ŝβ, i.e. a NULL vector

at i = 0 (line 6). Note that each entry of sβ,j represents the status of the nth
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Algorithm 6 Proposed BMP algorithm

1: Input: β (from LDM), ε
2: Output: Status of selected bands, ŝβ
3: Initialization: Set i = 0, error ≥ ε, ŝβ = [0]|β|×1, λp = 0, U = ∅
4: while error≥ ε do
5: Generate a set of binary vectors, sβ,j of size |β|×1 where j ∈ J = {1, ..., (|β|−i)}
6: Initialize sβ,j = ŝβ ∀ j ∈ J
7: Determine a band index, kj ∈ {1, .., |β|}\U for all sβ,j vectors s.t. all kj are orthogonal.
8: Set sβ,j(kj) = 1 ∀j ∈ J .
9: Find ŝβ = argmaxsβ,j λ(sβ,j) and λc = λ(ŝβ).

10: Update error = λc − λp and Set λp = λc.
11: Update U = find(ŝβ == 1) and i = i+ 1.
12: end while

frequency band in β. Next, for all (|β|−i) vectors, sβ,j, one frequency band

∈ {1, .., |β|}\U is made busy (i.e. made 1) such that all the selected bands are

orthogonal (line 7-8). At the end (line 9-11), ŝβ is determined by maximizing

λ(sβ,j) over sβ,j followed by updating the error and U (which contains a set of

detected frequency bands). This process is repeated at every iteration until the

error becomes less than ε.

4.2.3 Joint Angular Spectrum Sensing

The task of the angular spectrum sensing block is to estimate carrier frequencies,

fi, and corresponding DoAs, θi, of active transmissions present in β frequency

bands. This is accomplished using the estimated status, ŝβ and the sub-Nyquist

samples, yl,1[n], i.e. samples generated at the first branch of the first antenna

and the rest of the (L − 1) antennas. The number of antennas, L, depends on

the number of branches in the SNS architecture of the first antenna. It is shown

in in Theorem 2 that for K branches at the first antenna, the proposed receiver

architecture must have at least L = K + 1 antennas for the successful recovery
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of fi and θi. Furthermore, it is shown in proposition 1 that in the case of sensing

more than K bands, the probability of successful recovery of fi and θi becomes

P(ζsβ = 0), where ζsβ is a reconstruction/sensing failure event and is described

in detail in Chapter 3.

The Fourier transform of the signal, ỹl,1(t), obtained at the output of mixer

of the lth antenna, under the noiseless condition, is given as

Ỹl,1(f) =

∞∫
−∞

M∑
i=1

ci(t)e
j2πfi(t+τl(θi))

∑
n∈β

αne
−j2π(n−1)Bte−j2πftdt (4.23)

=
M∑
i=1

∑
n∈β

αne
j2πfiτl(θi)

∞∫
−∞

ci(t)e
j2π(fi−(n−1)B)te−j2πftdt (4.24)

=
M∑
i=1

ej2πfiτl(θi)
∑
n∈β

αnCi(f − (fi − (n− 1)B)) (4.25)

where Ci(f) is the Fourier transform of an active transmission ci(t). Note that

since k = 1, αn is same for all the antennas. From the above equation, it can be

observed that the mixed signal, ỹl,1(t), contains the images of ith active trans-

missions at every fi − (n− 1)B position. For illustration, consider a wideband

signal, shown in Fig. 4.3(a) where β = {1, 2, 4, 5, 6, 7, 8, 9}, which means all

bands except the third one are digitized and, hence, the sparsity of digitized

spectrum is 25%. Then, the images of the first active transmission, c1(t) whose

radio frequency representation is crf1 (t) = c1(t)e
j2πf1t are present at locations

C1(f − f1), C1(f − (f1 − B)), C1(f − (f1 − 3B)), C1(f − (f1 − 4B)) and

so on (same is shown in Fig. 4.3(b)). Similarly, the images of active transmis-

sions c2(t) and c3(t) are shown in Fig. 4.3(c) and Fig. 4.3(d), respectively. From
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Fig. 4.3(e), we can see that only the digitized active transmissions (i.e. present

in 2nd and 5th bands) have baseband images in F = [0, B Hz]. Then ỹl,1(t) is

passed through a low pass filter (LPF) of bandwidth B Hz to remove unwanted

images present outside F . Thus the output of the LPF can be written as

Yl,1(f) =
∑
b∈βbusy

αbCb(f − (fb − (b− 1)B))ej2πfbτl(θb) f ∈ F (4.26)

where βbusy = {βi | ŝβi = 1 where βi and ŝβi indicate the ith element of set β

and ŝβ, respectively} (For example in Fig. 4.3, sβ = {0, 1, 0, 1, 0, 0, 0, 0}, so,

βbusy = {2, 5}) and Cb represents the Fourier transform of an active transmis-

sion present in the bth frequency band with fb and θb as its carrier frequency and

DoA, respectively. Let Mβ = |βbusy|= ||sβ||0 be the number of bands in the set

βbusy.

The filtered signal, yl,1(t), is then sampled at a low sampling rate of fsns ≥

B Hz. Thus, the DTFT of samples obtained at the output of the first branch of

every antenna can be represented as

Yl,1(f) = EC(f) f ∈ F (4.27)

where Yl,1 is an L × 1 vector containing DTFT, Yl,1(ej2πf/B) of samples ob-

tained at the lth antenna, E is a L ×Mβ steering matrix with a steering vector,

e(fb, θb) = [ej2πfbτ1(θb) .... ej2πfbτL(θb)]T as its bth column and C(f) is a Mβ × 1

vector containing αbCb(f − (fb − (b− 1)B)) as its bth entry.

Now, to determine the carrier frequencies and respective DoAs of βbusy fre-
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Figure 4.3: N = 9 frequency bands with β = {1, 2, 4, 5, 6, 7, 8, 9}, sβ = {0, 1, 0, 1, 0, 0, 0, 0} and crfi (t) =
ci(t)e

j2πfit. (a) Fourier transform of the wideband signal, x(t), (b) Images of first active transmission when passed
through the mixing function, (c) Images of second active transmission, (d) Images of third active transmission and
(e) Output of the mixer (Note that since β does not include third frequency band, c2(t) does not appear in [0, B]).

quency bands, grids are made in the spatio-temporal domain. Since the carrier

frequency of an active transmission will be nearest to the center frequency of

its corresponding detected busy frequency band, refining is performed over the

center frequency to determine the exact value of carrier frequency. To perform

this task, an overcomplete steering matrix, EC , which contains a steering vector
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for every potential value of fb and θb is defined.

Let center frequencies ofN frequency bands be denoted by a set {ψ1, ψ2, ..., ψN}.

Since the spectrum sensing block detects busy frequency bands, a set ψbusy =

{ψb, b ∈ βbusy} is formed. For making an over complete steering matrix, EC , the

steering vectors are generated over frequency grid,ψψψb, and spatial grid, θθθ, where

ψψψb = {(ψb − q
2∆) .... ψb ..... (ψb + q

2∆)} ∀ ψb ∈ ψbusy and θθθ = [θ1, θ2......θ180].

Here, ∆ denotes the frequency grid size, q denotes the number of frequency

grids, and θdeg represent deg◦.

As the first step in the joint estimation of carrier frequency and DoA, an

auto-covariance matrix,RY(f) = E
[
Yl,1(f)YH

l,1(f)
]
, of size L×L is generated.

By performing the singular value decomposition on RY(f) and observing the

eigenvalues, the basis vector corresponding to signal sub-space, say Us and its

orthogonal noise sub-space, say Un can be separated. Since Un and Us are

orthogonal and the potential steering vectors in EC and Us span the same sub-

space, the correlation between EC and Un will generate nulls at potential values

of actual fb and θb. The MUSIC spectrum is generated for every b ∈ βbusy as

~pb =
1

EH
C (ψψψb, θθθ)UnU

H
n EC(ψψψb, θθθ)

(4.28)

where EC(ψψψb, θθθ) = [ej2πψψψbτ1(θθθ)...... ej2πψψψbτL(θθθ)]T is a steering matrix correspond-

ing to ψψψb and θθθ. The maximum value in ~pb will corresponds to the carrier fre-

quency and DoA of the first busy frequency band in βbusy. Similarly, the MUSIC

spectrum for every b ∈ βbusy will generate carrier frequencies and DoAs of all
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sensed active transmissions. It can be noted that with the proposed approach,

the frequency search grid size is reduced to the bandwidth of MβB which is

unlike [27] stretches the grid size to the entire Nyquist bandwidth fs = NB.

Hence, the proposed approach leads to the reduction in the computational load

by N
Mβ

times (where Mβ << N ) as compared to the conventional MUSIC algo-

rithm.

Theorem 2: Under the no noise condition, assuming the Theorem 1 holds, the

sufficient conditions for the unique estimation of fi and its corresponding θi for

the proposed UWASS algorithm are

1. L ≥ K + 1

2. krank(EC) ≥ ‖sβ‖0

Proof: As with K branches at first antenna, maximum K busy frequency bands

can be detected during sensing and reconstruction block. Thus, with MUSIC

algorithm, the determination of fi and their θi for K busy bands can be done

if the number of antennas, L ≥ K + 1 [141]. The second condition directly

follows from Theorem 1. �

Remark: Note that the proposed UWASS is independent of antenna array ar-

rangement, hence, we employ MUSIC method (which can be generalized to

any antenna array geometry) for the estimation of carrier frequencies and their

DoAs. However, the proposed approach can also be extended to other ap-

proaches like ESPIRIT where one fixes the geometry of the antenna array as

described in [25, 29].
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Proposition 1: Assume Theorem 1 and Theorem 2 hold for the sensed β fre-

quency bands, then the proposed UWASS method successfully determines fi

and their θi of K busy frequency bands with a probability of P(ζsβ = 0).

Proof: When |β| increases beyondK then the probability of successful sensing,

P(ζsβ = 0), decreases from 1 to
∑K

i=0 P(||sβ||0= i). Since the determination

of fi and corresponding θi are possible only if sensing of β frequency bands

is successful, the probability of successful determination of fi and θi becomes

same as the probability of successful sensing. �

4.2.4 Learning and Decision Making

The learning and decision making (LDM) block aims to determine the optimal

number of frequency bands, |β| and their locations, β, for the digitization by

SNS block at every time slot. The selection of |β| and β is to be made to

maximise the throughput. This problem is the same as the MPMAB problem

discussed in Chapter 3. Hence, the proposedK+-BSSLE algorithm is employed

in the LDM block.

4.3 Simulation Results

This section compares the hardware complexity and performance of the pro-

posed UWASS method with the existing WAS methods [25, 29].
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4.3.1 UWASS Architecture Comparison: Complexity

In Table 4.1, the complexity of state-of-the-art UWASS approaches in [25] (re-

ferred to as CASCADE) and [29] (referred to as Joint frequency and DOA es-

timation, JFDE) is compared with the proposed approach. It is assumed that

each architecture can digitize a maximum K active transmissions. For such a

requirement, the proposed approach requires a fewer number of antennas and

ADCs. Furthermore, the proposed approach does not need prior knowledge of

the number of active transmissions, M , in the entire wideband spectrum. As

expected, existing approaches fail whenever M > K. On the other hand, the

proposed approach fails only when a number of active transmissions in β (i.e.

bands selected by the LDM block) is higher than K. Hence, sensing failure is

Table 4.1: Comparison of UWASS architectures for digitizing K active transmissions.

Characteristics CASCADE JFDE Proposed

SNS
MWC MCS FRI

Architecture
Low analog High analog Low analog
BW ADCs BW ADCs BW ADCs

No. of
2K + 1 K + 1 K + 1

Antennas (L)
No. of )

2K + 1 2(K + 1) 2K
ADCs (J)
No. of Need prior Need prior No need of prior
transmissions (M ) knowledge knowledge knowledge

Sensing Failure
Yes Yes Yes

(Mβ > K)
Sensing Failure

Yes Yes No
(M > K)

Carrier frequency
No No

Active transmission

constraints constraints
is confined to
a single band
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independent of the number of active transmissions in the spectrum, making it

feasible in sparse as well in a non-sparse spectrum. The proposed UWASS ap-

proach only assumes that the wideband spectrum is divided into multiple bands

of B Hz, and each active transmission is confined to a single band. However,

the center frequency of the band and transmission may not be the same. Such

an assumption is valid since all communication standards either have predefined

carrier frequencies or fixed resolutions between adjacent carrier frequencies.

Next, we discuss the computation complexity comparison of the proposed

UWASS method with the existing CASCADE and JFDE mehtods.

CASCADE Method: It involves the following five operations:

1) Cross-Covariance of complexity O(4K2Q)

2) Singular Value Decomposition of complexity O((4K)3)

3) Pseudo-Inverse of complexity O(6K3)

4) Eigenvalue Decomposition of complexity O(K3)

5) Matrix multiplication of complexity: O(7K2M)

Hence, the total computational complexity of CASCADE is O(K2Q+K2M +

K3). Since M ≤ K, the complexity can be approximated to O(K2Q+K3).

JFDE Method: It involves the following four operations:

1) Correlation of complexity O(2K2Q).

2) Singular value decomposition of complexity O(K3).
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3) Eigenvalue calculation of complexity O(K3).

4) MUSIC spectra generation of complexity O(MθθθK2).

Hence, the total computational complexity of JFDE is O(MθθθK2 +K3 +K2Q)

and it can be approximated to O(θθθK3 +K3 +K2Q).

Proposed UWASS Method: As shown in Fig. 4.1, the proposed method in-

volves the following three tasks:

1) Reconstruction and characterization task uses the fast Bayesian matching

pursuit algorithm of complexity O(KMNQ)

2) Joint angular spectrum sensing involves the following operations

2.1) Correlation of complexity O(2K2Q)

2.2) Singular value decomposition of complexity O(K3).

2.3) MUSIC spectra generation of complexity O(MθθθK2)

Thus, the total complexity of the second task is O(K2Q+K3 +MθθθK2)

3) Learning and decision making (LDM) task has the complexity of O(P )

The LDM algorithm aims to learn the spectrum statistics and utilize the learnt

statistics to select the optimal channel subset. Hence, it selects the best chan-

nel subset at every time slot and performs reconstruction and characterization

followed by joint angular spectrum sensing tasks to determine the DoA and

carrier frequency of occupied bands in the selected channel subset. Hence,

for every time slot, the computation complexity of the proposed method is
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O(KMNQ+K2Q+K3+MθθθK2) ≈ O(K2NQ+K2Q+K3+θθθK3). To deter-

mine the carrier frequency and DoA at every time slot, CASCADE and JFDE

methods have the complexity of O(K2Q + K3) and O(θθθK3 + K3 + K2Q),

respectively. From the complexity analysis, we can say that the CASCADE

method has the lowest complexity. Due to the presence of an additional K2NQ

term, the proposed UWASS method has higher complexity than JFDE. Thus

we can say that the proposed method has higher computation complexity than

CASCADE and JFDE methods. This is a minor penalty paid to perform blind

UWASS compared to the existing non-blind UWASS methods, which require

prior knowledge of the number of active transmissions in the spectrum.

4.3.2 UWASS Architecture Comparison: Performance

In this sub-section, the performance comparison of the proposed UWASS method

is done with [25] and [29]. The considered spectrum has N = 16 frequency

bands of spectrum statistics:

p10 = [0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.6 0.65 0.7 0.75 0.8]

p01 = [0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.4 0.35 0.3 0.25 0.2]

Three performance metrics are used for the performance analysis: 1) Normal-

ized carrier frequency estimation error (NCEE), 2) Normalized DoA estimation

error (NDEE), and 3) Total throughput. Parameters, NCEE and NDEE, are cal-

culated as:

NCEE =
1

M

M∑
i=1

|fi − f̂i|
fs

(4.29)
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NDEE =
1

M

M∑
i=1

|θi − θ̂i|
180◦

(4.30)

These metrics are compared for different values of SNRs, number of ADCs,

J and number of samples, Q. In Fig. 4.4, the comparison is done in the terms

of above three performance metrics for different values of SNRs ranging from

0− 50 dB along with J ∈ {10, 14} and Q = 512.

Note that [25] and [29] fail whenever the number of active transmissions, M ,

is more than 4 for J = 10. On the other hand, failure in the proposed UWASS

method depends on the bands selected by the LDM block. Overall, the proposed

method offers lower error and higher throughput than others. Even though [26]

offers lower NCEE at 0 dB, its throughput is inferior to the proposed method.

Next, we perform the comparison for different number of ADCs with 20 dB

SNR andQ = 256. As shown in Fig. 4.5, the proposed method offers better per-

formance at all J . At lower J (fewer ADCs), the performance of the proposed

method is significantly better than others. For instance, to achieve a throughput

of 7, 600, the proposed method requires four antennas, whereas [25] and [29] re-

quire five and eleven antennas, respectively. Thus, the proposed method is both

power and cost efficient. Hence, it is preferred, especially when the number of

resources (area, power) is limited.

In Fig. 4.6, the effect of Q on the performance of all three methods is ana-

lyzed. As expected, the performance improves as Q increases. Moreover, at a

lower Q of 256 samples, the proposed method offers 26% to 8% lower NCEE
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Figure 4.4: (a) NCEE, (b) NDEE, and (c) Total throughput for different values of SNRs, J ∈ {10, 14} andQ = 512.

and 10% to 8% lower NDEE as compared to [25] and [29]. Hence, in practice,

the proposed method enables faster sensing, which allows the receiver to adapt

to the dynamically changing spectrum quickly. Also, fewer samples can lead to

114



10 15 20

No. of ADCs

0

0.2

0.4

0.6

N
C

E
E

Proposed

JFDE

CASCADE

(a)

10 15 20

No. of ADCs

0

0.2

0.4

0.6

N
D

E
E

Proposed

JFDE

CASCADE

(b)

 6  8 10

No. of ADCs

0

0.5

0.76

1

1.5

T
o
ta

l 
T

h
ro

u
g

h
p

u
t

Proposed

JFDE

CASCADE

x 10
4

(c)

Figure 4.5: (a) NCEE, (b) NDEE, and (c) Total throughput for different values of ADCs, J , with 20 dB SNR and
Q = 256.

significant savings in power and area requirements.
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Figure 4.6: (a) NCEE, (b) NDEE, and (c) Total throughput for different number of samples, Q, with 20 dB SNR
and J = 10.

4.4 Summary

In this chapter, an intelligent and reconfigurable multi-antenna wideband re-

ceiver architecture capable of ultra-wideband angular spectrum sensing (UWASS
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) is designed to determine the transmission opportunity in both spatial and tem-

poral domains. Here, the reconfigurable architecture is introduced by perform-

ing finite rate of innovation based non-contiguous sub-Nyquist sampling. At the

same time, the intelligence of selecting non-contiguous channels is achieved via

the channel subset selection algorithm discussed in the previous chapter. Due

to the intelligence and non-contiguous digitization, the proposed wideband re-

ceiver is independent of the number of active transmissions in the spectrum.

The sub-Nyquist samples produced at the output of the wideband receiver

are utilized to determine the status of selected frequency bands. A Bayesian

matching pursuit algorithm is introduced, which takes the sub-Nyquist sam-

ples, and spectrum statistics learnt via the channel subset selection algorithm,

to determine the occupancy status of selected frequency bands. The informa-

tion of occupied frequency bands is then utilized to jointly estimate their carrier

frequency and direction of arrival (DoA). The carrier frequency and DoA are

determined by applying the multiple signal classification (MUSIC) algorithm

with a double grid structure on the possible frequency and DoA range.

In the latter part of the chapter, we compared the architecture and perfor-

mance of the proposed UWASS approach with the existing multi-coset sampling

(MCS) and modulated wideband converter (MWC). It is shown that the pro-

posed UWASS requires a lesser number of ADCs and does not need prior knowl-

edge of the number of active transmissions. Also, the proposed UWASS incurs

a lesser number of sensing failures as compared to the other two wideband an-

gular sensing architectures. It is also observed that due to the non-contiguous
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digitization, the proposed UWASS has lower normalized carrier frequency and

DoA error for different values of antennas, analog to digital converter (ADCs)

and signal to noise ratio (SNR). In the next chapter, we develop a multi-antenna

USRP testbed to validate the proposed UWASS in a real radio environment.
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Chapter 5

Reconfigurable and Intelligent UWASS:

Prototype Design and Validation

The performance analysis of various ultra-wideband angular spectrum sensing

(UWASS) approaches in the real-radio environment is critical to their practical

realization. However, there is limited work in this direction. For instance, the

hardware prototypes of SNS in [61, 73] are state-of-the-art, but they consider

wideband spectrum sensing only in the temporal domain. The extension of the

temporal to spatial sensing demands multi-antenna transceivers which signifi-

cantly increases the design complexity. Few prototypes to estimate the DoA

of a user signal via multi-antenna receiver have been discussed in [123–130].

All these works are focused on the narrowband spectrum and employ Nyquist-

sampling based digitization. The main objective of this chapter is to design and

develop an end-to-end prototype demonstrating reconfigurable and intelligent

UWASS along with the experimental validation in the real-radio environment.

In the proposed prototype, all baseband algorithms are realized using LabVIEW
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NXG and USRPs for over the air communication.

5.1 Proposed Prototype Design

Various building blocks of the proposed prototype of reconfigurable and intel-

ligent UWASS are shown in Fig. 5.1. The prototype consists of three mod-

ules: 1) Dynamic Wireless traffic generator, 2) Phase reference generator, and

3) UWASS receiver. The design details of each module are presented in the

subsequent sections. The hardware units, i.e. USRPs and octo-clock, are shown

using yellow-coloured blocks with a dotted border. USRPs are used for the

transmission and reception of the wireless RF signals, while the octo-clock is

used for clock synchronization at the receiver. The blue-coloured blocks with

dashed border correspond to various signal processing, machine learning and

wireless physical layer algorithms of the proposed UWASS, and they are real-

ized using LabVIEW NXG.

Dynamic wireless traffic generator module emulates the multi-directional

multi-user traffic in the wideband spectrum. For each user, LTE based SC-

FDMA is used for baseband waveform modulation at the physical layer. The

traffic of each user is beam-formed to a chosen direction via directional HORN-

antennas integrated with USRPs. The transmit direction may change over time,

distinct for each user and is chosen randomly. However, while performing the

experiment, the dynamic wireless traffic generator is geometrically fixed by the

HORN antenna locations, and the receiver antenna array is rotated to gener-
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Figure 5.1: Proposed UWASS prototype consisting of 1) Dynamic wireless traffic generator, 2) Phase reference
generator, and 3) UWASS receiver.

ate different DoAs. Since single NI-USRP 2944R has two transmitter/receiver

ports, M/2 USRPs and M directional antennas are needed for the transmission

of RF signal, am(t), where m ∈ {1, 2, ...,M}, in M directions. Furthermore,

the carrier frequencies of users vary dynamically according to the probability

distribution, which maintains the sparsity of the wideband spectrum. Similar to

the UWASS work discussed in Chapter 4, time-slotted communication is con-

sidered here. The time-slotted communication makes the carrier frequency and

beam-direction of each user constant over a given time slot, ts, and may change

them dynamically from one slot to another.

The UWASS receiver receives the multi-directional multi-user traffic signal,

xl(t) where l ∈ {1, 2, .., L} and L is the number of antennas at the receiver,

via the designed sparse antenna array (SAA). Since the received signal phase
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is critical for accurate DoA estimation, the phase reference generator module

generates the reference signal, p(t), combined with xl(t) and is responsible

for performing phase calibration among the signals received at various anten-

nas. L/2 number of NI-USRPs 2944R are used for digitizing the L combined

signals, zl(t). These USRPs receive the common clock signal and pulse per

second (PPS) signal from the octo-clock unit to synchronize their local oscilla-

tors and ADCs. The signals, zl[n], received from the USRPs are digitized and

downconverted to the desired sampling rate.

In the baseband operation of UWASS, five tasks are performed in every

time-slot, ts: 1) Phase calibration and synchronization, 2) FRI based recon-

figurable SNS, 3) Spectrum sensing, 4) DoA estimation and, 5) Learning and

decision making (LDM). Since UWASS requires the phase information of the

signals impinging on the antenna array, the phase calibration of zl[n] removes

the phase offset produced due to the independent RF channels of the receiver

USRPs. Subsequently, the filtering operation is performed to remove the ref-

erence signal, p(t), and other synchronization signals to obtain the user data

signal, z̃l[n], for subsequent digitization and characterization. The USRP per-

forms digitization of the entire received signal at the Nyquist rate. Hence, to

perform non-contiguous UWASS over the selected frequency bands, a set of

desired frequency bands, β, storing the indices of selected frequency bands, are

extracted from z̃l[n] via FRI based reconfigurable SNS. The samples, y[n], cor-

respond to the sub-Nyquist samples of frequency bands present in β. y[n] is

passed to the spectrum sensing unit to determine the occupancy status vector,
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ŝβ ∈ {0, 1}|β|, of β frequency bands, followed by the DoA estimation for the

busy frequency bands. At the same time, the learning and decision making unit

updates the learned parameters and selects the β frequency bands to be digitized

in the subsequent time slot.

5.2 Multi-User Traffic and Phase Reference Generation

This section discusses the design details of dynamic wireless traffic and phase

reference generator modules.

5.2.1 Dynamic Wireless Traffic Generator

The dynamic wireless traffic generator, shown in Fig. 5.2, consists of three sub-

blocks. The first sub-block is the uncorrelated SC-FDMA signal generator. As

shown in Fig. 5.2, it generates a multiband signal, u(t), which consists of N +2

frequency-bands, out of which one is reserved for the phase reference signal

(more details are given in the next sub-Section) and another is reserved for the
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Figure 5.2: Dynamic wireless traffic generator.
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synchronization signal (SS). The remaining N frequency bands (i.e. U1 to UN )

are used for the user data communication and referred to as a user data signal

(UDS). Similar to the synchronization burst in the 4G/5G, the SS is used for

frame and symbol synchronization over the downlink. The SC-FDMA signal

generator block first generates the N + 1 uncorrelated LTE SC-FDMA signals,

ci(t) where i ∈ {0, 1, ..., N}, for SS and U1 to UN frequency bands, and then

modulates them to a carrier frequency of fi. The bandwidth, B, of each SC-

FDMA signal, i.e. each user, can be varied between 1.4 MHz − 20MHz,

similar to 4G. Mathematically,

u(t) =
N∑
i=0

ci(t)e
j2πfit (5.1)

The second block is the set-reset bit generator block, and it generates a bi-

nary status vector, b = [b0, b1, ..., bN ], consisting of masking bits for SS and U1

to UN frequency bands. The occupancy of U1 to UN frequency bands is decided

based on the independent Markovian decision process (MDP). In MDP, the im-

mediate occupancy status depends on the transition probabilities of each of the

N frequency bands. Let puv, where u, v ∈ {0, 1} denotes the {vacant, busy}

status, be a vector storing the transition probabilities of N frequency bands.

Thus, puv is an input to the second block. However, the status of these N fre-

quency bands changes only when the masking bit of the SS i.e. b0 changes its

status. To achieve this, the masking bit, b0 is implemented as a square wave

of 50% duty cycle. So, whenever the status of b0 changes, the masking bits

bi ∀ i ∈ {1, ..., N} are updated according to the input puv.
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Since the designed multi-user traffic signal generates the directional traf-

fic only in M directions, the third block, which performs masking operation,

generates M masking vectors, b̃m ∈ {0, 1}N ∀ m ∈ {1, 2, ...,M} such that

the output signals, ãm(t), contain the information of bands {SS, U1, .., Uq−1},

{Uq, .., U2q−1}, ....., {UN+1−q, ...., UN}, where q = N+1
M . Thus, b̃m = [01×(m−1)q,

b(m−1)q, ..., bmq−1, 01×(N+1−mq)] where 01×q denotes a 1× q size vector of zeros.

Mathematically, the output signal, ãm(t), of this block is written as

ãm(t) =
N∑
q=0

b̃m(q)cq(t)e
j2πfqt (5.2)

where b̃m(q) denotes the qth entry of b̃m.

Now, theM channels of M2 NI-USRP 2944R receive the signal ãm(t), ∀m ∈

{1, 2, ...,M} from the processing unit. Then they transmit the up-converted RF

signals, am(t) ∀ m ∈ {1, 2, ...,M}, over the air via M HORN antennas. Refer

to Appendix A for the LabVIEW NXG based implementation flow graph of the

dynamic wireless traffic generator.

5.2.2 Phase Reference Generator

The UWASS receiver, shown in Fig. 5.1, receives the multi-directional multi-

user traffic signal, xl(t) where l ∈ {1, 2.., L}, from a sparse antenna array of

size L. The output of the antenna array is passed through independent AFE of

the receiver USRPs for digitization. Since the AFE introduces phase distortion,

we add a phase reference signal (PRS), p(t), which can be used later to compen-
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sate for this distortion [135]. In the designed prototype, the signal received from

the antenna is combined with PRS via SMA cables. PRS is generated entirely

independent of the dynamic wireless traffic generator at the transmitter. Note

that in the existing 4G/5G system, there is a separate phase-tracking reference

signal (PTRS) which is used to phase synchronize base-station and mobile ter-

minals. As discussed in the next section, the prototype also has a similar signal

and p(t) is an additional signal to overcome the phase distortion of the receiver

USRPs. The reference signal, p(t), is based on the sinusoidal wave, as shown

in Fig. 5.3, where two sinusoidal signals of carrier frequency 200 kHz and a

phase shift of 0° and 90° are generated. These in-phase and quadrature-phase

sinusoidal signals are then combined and passed through the USRP N200 for

the baseband to RF conversion followed by interfaced with UWASS receiver

via SMA cables.

USRP 
N200

Sinusoidal Wave 
at 200 kHz

𝑝(𝑡) 

Sinusoidal Wave 
at 200 kHz

𝜃 = 0°  

𝜃 = 90°  

Figure 5.3: Phase reference signal generator.

5.3 UWASS Receiver

The UWASS receiver, shown in Fig. 5.1, receives the multi-directional multi-

user traffic signal, x(t), from the antenna array of size L. The received signal

is then combined with p(t). The resultant signal, z(t), is passed through the
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NI-USRP 2944R for digitization and downconversion to obtain the multiband

signal, z[n], as shown in Fig. 5.1 and Fig. 5.4. The signal y[n] consists of

three types of signals (also referred to as channels in 3GPPP 3G/4G standards):

1) Phase reference signal (PRS), p(t) equivalent to PTRS in 4G/5G, 2) Syn-

chronization signal (SS) equivalent to a primary synchronization signal (PSS)

and secondary synchronization signal (SSS) in 4G/5G and 3) Multi-directional

user-data signal (UDS) similar to physical downlink shared channel (PDSCH)

in 4G/5G. The distance between adjacent antennas of L-antenna array is care-

fully chosen to be integer multiple of d = c
2ft

, where c is the speed of light

and ft is the transmission frequency. This results in a sparse antenna array of

length Ls > L, which in turn leads to a higher number of active DoA estima-

tions for a given L. Refer to Section 5.3.2.2 for more details. To characterize

UDS, as shown in Fig. 5.1, the design of the UWASS receiver consists of two

units: 1) Phase calibration and synchronization unit, and 2) Reconfigurable and

Intelligent WAS unit. Refer to Appendix B for the LabVIEW NXG based im-

plementation flowgraph of the UWASS receiver.

5.3.1 Phase Calibration and Synchronization Unit

The phase calibration and synchronization unit, as explained in Fig. 5.4, consists

of 1) Synchronization block, 2) Phase offset calculation block and 3) Phase

calibration block. The first task of the synchronization block is to detect the SS

signal and identify the slot boundary. Based on the slot boundary, it generates

the pulse signal, pb(t), which is needed for WAS unit to differentiate between
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adjacent time slots and learn the spectrum statistics, i.e. puv. In the proposed

prototype, the SS signal is first filtered via band pass filter of cut-off frequencies

fprs and fr = fprs + B followed by an energy detection based approach to

detect its status (vacant/occupied) and generate an appropriate pulse signal. The

second task of the synchronization block is to filter z[n] to obtain the UDS signal

z̃f [n] and forward it to the phase calibration block.

The phase offset calculation block generates the phase offset vector, φφφ ∈

R1×L, containing phase offset at L receiver channels. φφφ is used by phase cali-

bration block to eliminate the phase distortions caused by the different AFE of

L−channels receiver USRPs. The PRS, p(t), is filtered out from z[n] via LPF

of cut-off frequency fprs to determine φφφ. The phase information of the filtered

reference signal corresponds to the phase offset, φφφ.

Next, the phase calibration block receives the filtered UDS, z̃f [n] and the

phase offset, φφφ, to perform phase calibration on z̃f [n]. Here, the contribution of

phase offset is removed from z̃f [n]. For the lth signal, the phase calibration is

𝒛 𝑛 =  

𝑧1[𝑛]
𝑧2[𝑛]

⋮
𝑧𝐿[𝑛]

  

Phase Offset 
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𝑓

[𝑛]) 

𝑓𝑟  

UDS UDS

Figure 5.4: Phase calibration and synchronization unit of the UWASS receiver.
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performed as

z̃l[n] = z̃fl [n]e−jφl (5.3)

Hence, the phase of z̃[n] only contains the phase information introduced by the

sparse antenna array. The signal, z̃[n], is then passed to the reconfigurable and

intelligent WAS block for subsequent baseband processing and learning tasks.

5.3.2 Reconfigurable and Intelligent WAS Unit

The signal, z̃[n], received from the phase calibration and synchronization unit,

comprises of the wideband spectrum samples. The signal z̃[n] is passed through

FRI based SNS architecture, as shown in Fig. 5.5, to realize the reconfigurable

SNS. Mathematically, the wideband signal consisting of transmission from mul-

tiple users at the lth AFE can be represented as

z̃l[n] =
N∑
q=1

sq(ts)cq[n]ej2πfq(n+τl(θq)) + ηl[n] (5.4)

𝑧 1[𝑛] 
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𝑧 𝐿[𝑛] 
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Figure 5.5: FRI based reconfigurable SNS.
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where sq(ts) ∈ b is the transmission/occupancy status of qth frequency band

at a time instant ts, with sq(ts) = 0 denotes no transmission, and sq(ts) = 1

denotes the transmission of active SC-FDMA signal. Note that as discussed in

Section 5.2.1, sq(ts) is unknown at the receiver. For the simplicity of notations,

let sq(ts) be denoted by sq. cq[n] is a discrete-time SC-FDMA signal transmitted

at the qth frequency band of a center frequency, fq, θq is the direction of arrival

of cq[n], τl(θq) is the time difference between the reception of signal, cq[n] at the

lth antenna and the reference antenna, and ηl[n] is the additive white Gaussian

noise at the lth received signal. Note that τl(θq) is dependent on θq and the

antenna array structure. The DTFT of z̃l[n] is given as

Z̃l(e
j2πf) =

N∑
q=1

sqe
j2πfiτl(θi)Cq(e

j2π(f−fq)) + ηl(e
j2πf) (5.5)

where Ci(ej2πf) is the DTFT of ci[n]. To generate samples corresponding to a

set of specific frequency bands (of indices are stored in β), z̃l[n] ∀ l ∈ {1, .., L},

is passed through a mixing unit. The mixing function, mk[n], is defined as

mk[n] =
∑
i∈β

αk,ie
−j2π((i−1)B+fr)n (5.6)

where αk,i is a mixing coefficient and is generated randomly from Gaussian

distribution, fr is the frequency offset due to PRS and SS, and B is the band-

width of a frequency band or an SC-FDMA signal. It can be noted that the

system model considered in this chapter incorporates the impairments due to

practical hardware implementation. Hence, PRS is required due to which the
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mixing function introduces an additional e−j2πfrn term as compared to the mix-

ing function used in the UWASS method discussed in Chapter 4. Thus, under

the noiseless condition, the DTFT of the output of the mixing unit will become

Ỹk,l(e
j2πf) =

+∞∑
n=−∞

N∑
q=1

sqcq[n]ej2πfq(n+τl(θq))
∑
i∈β

αk,ie
−j2π((i−1)B+fr)n e−j2πfn

(5.7)

=
N∑
q=1

ej2πfqτl(θq)sq
∑
i∈β

αk,i

+∞∑
n=−∞

cq[n]e−j2π(f−(fq−(i−1)B−fr))n

(5.8)

=
N∑
q=1

ej2πfqτl(θq)sq
∑
i∈β

αk,iCq(e
j2π(f−(fq−(i−1)B−fr))) (5.9)

For illustration, consider a scenario as shown in Fig. 5.6(a) where N = 8

and at a given time slot, ts, b = {0, 0, 1, 0, 0, 1, 0, 1} and β = {1, 2, 3, 4, 5, 7, 8}.

LetNbusy be a set containing the indices of the busy frequency band in z̃[n], and

βbusy = β ∩ Nbusy contains busy bands of β. This means Nbusy = {3, 6, 8}

and βbusy = {3, 8}. Thus, as discussed in Eq. 5.9, Ỹk,l(ejω) will contain the

contribution of only those bands for which si = 1 where si ∈ b, i.e. for Nbusy

frequency bands. Therefore, Eq. 5.9 is written as

Ỹk,l(e
j2πf) =

∑
q∈Nbusy

ej2πfqτl(θq)
∑
i∈β

αk,iCq(e
j2π(f−(fq−(i−1)B−fr))) (5.10)

Fig. 5.6(b)-(d) show Eq. 5.10 for all i ∈ Nbusy (i.e. i ∈ {3, 6, 8}), and it can be

observed that only for βbusy bands, i.e. U3 and U8, Ci is present in the frequency

range B = [0, B]. However, it is noticed from Fig. 5.6(e) that Eq. 5.10 contains
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images outside B. Thus, after applying LPF on Ỹk,l(ej2πf) over B, the DTFT of

the output is

Yk,l(e
j2πf) =

∑
q∈βbusy

ej2πfqτl(θq)αk,q Cq(e
j2πf) (5.11)
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Figure 5.6: DTFT of the (a) lth output of phase calibration and synchronization unit i.e. ỹl[n], (b) z̃k,l[n] for i = 3
in Eq. 5.10, (c) z̃k,l[n] for i = 6 in Eq. 5.10, (d) z̃k,l for i = 8 in Eq. 5.10 and (e) z̃k,l[n] and output of LPF zk,l[n]
(in red box).
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Now, to perform WAS, the samples yk,1[n] ∀ k ∈ {1, ..., K} are passed to the

spectrum sensing unit to determine the estimated status, ŝβ of β frequency bands

selected by LDM algorithm and digitized by reconfigurable SNS. Further, the

samples y1,l ∀ l ∈ {1, .., L} are passed to the DoA estimation unit to estimate

the DoA of detected busy bands in β.

5.3.2.1 Spectrum Sensing Unit

The aim of spectrum sensing (SS) unit is to estimate the status, sβ∈ {0, 1}|β|, of

β frequency bands. Since SS uses the output, yk,l[n] where k ∈ {1, ..., K} and

l = 1, Eq. 5.11 can be represented as

Yk,1(e
j2πf) =

∑
q∈βbusy

αk,qC̃
(
qe
jω) ≡

∑
q∈β

αk,qC̃q(e
jω) (5.12)

where C̃q(ej2πf) = ej2πfqτ1(θq) Cq(e
j2πf) ∀ q ∈ βbusy and is 0 otherwise. For all

values of k, Eq. 5.12 can be written in the matrix form as

Yk = αααC̃ (5.13)

where ααα is a K × |β| matrix with αk,q as its {k, q}th entry and C̃ ∈ C|β|×Q is a

sparse matrix with |βbusy| non-zero rows and Q samples. Thus, the estimation

of sβ∈ {0, 1}|β| from Eq. 5.13 can be treated as compressive sensing problem.

The LDM learns the spectrum statistics, i.e. the prior probability, puv, which

makes the BMP algorithm best fit for the determination of C̃. But BMP also

requires the knowledge of probability distribution function of P (C̃|s). As SC-
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FDMA signal is transmitted in the multi-user traffic, this parameter is unknown

for the considered signal model. Hence, we apply the OMP algorithm [81] to

determine the estimated status, ŝβ∈ {0, 1}|β|, of β frequency bands.

5.3.2.2 DoA Estimation Unit

This unit aims to estimate the DoA of detected busy frequency bands, i.e. βbusy.

To perform this task, DoA unit utilizes the estimated status, ŝβ and the samples

y1,l ∀ l ∈ {1, ..., L}. For the DoA estimation, Eq. 5.11 can be rewritten as

Y1,l(e
j2πf) =

∑
q∈βbusy

ej2πfqτl(θq)Dq(e
j2πf) (5.14)

where Dq(e
j2πf) = α1,q Ci(e

j2πf). All l ∈ {1, ..., L} can be represented in the

matrix form as

Yl = E D (5.15)

where E is a L× |βbusy| steering matrix with ej2πfqτl(θq) as its {l, q}th entry and

D∈ C|βbusy|×Q contains Dq(e
j2πf) as qth row.

The proposed UWASS receiver uses minimum sparse ruler of length Ls to

design sparse antenna array. Thus, with L number of physical antennas, the

proposed UWASS allows DoA estimation of Ls − 1 busy bands where L < Ls.

For example, as shown in Fig. 5.7, for L = 3 and 4 physical antennas, the total

number of actual antennas that can be utilized for DoA estimation will be 4 and

6, respectively [77].

For the purpose of exposition, consider L = 4 antennas for sparse antenna
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Figure 5.7: Sparse antenna array arrangement for (a) L = 3 and (b) L = 4.

arrangement. Therefore, τl(θi) = dl
c cos(θi), where dl = [0 d 3d 5d]. Thus, the

steering matrix E for sparse array will be

E =



1 1 · · · 1

ej2πf1
d
c cos(θ1) ej2πf2

d
c cos(θ2) · · · ej2πfM

d
c cos(θM )

ej2πf1
3d
c cos(θ1) ej2πf2

3d
c cos(θ2) · · · ej2πfM 3d

c cos(θM )

ej2πf1
5d
c cos(θ1) ej2πf2

5d
c cos(θ2) · · · ej2πfM 5d

c cos(θM )


(5.16)

Now, in order to estimate more DoAs than the number of antennas, L, the

procedure similar to [77] is followed. But, here, DoA estimation is performed

at sub-Nyquist rate and in contrast to [77], both temporal and spatial sparsity is

explored. So, the auto-correlation of Yl will be

Ry,y =

∫
f∈B

Yl(e
j2πf)YH

l (ej2πf)df = EDDHEH (5.17)

= ERd,dEH (5.18)

Since the SC-FDMA signals transmitted at every frequency band are uncorre-

lated, Rd,d is a diagonal matrix. Hence, by applying Kronecker and Khatri-Rao
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properties of vectorization on Eq. 5.18 , we get

vec(Ry,y) = E∗ ⊗ E vec(Rd,d) (5.19)

= E∗ � E pd (5.20)

where pd = diag(Rd,d), and ⊗ and � are Kronecker and Khatri-Rao operators.

The E∗ � E is a L2 × M matrix, but it contains L2 − (2Ls − 1) redundant

rows. Thus by removing the redundant rows and re-arranging Eq. 5.20 in the

ascending order of steering vector, we get

r−(Ls−1)

...

r0

...

rLs−1


=



ej2πf1
−(Ls−1)d

c cos(θ1) · · · ej2πfM
−(Ls−1)d

c cos(θM )

... ... ...

1 · · · 1

... ... ...

ej2πf1
(Ls−1)d

c cos(θ1) · · · ej2πfM
(Ls−1)d

c cos(θM )


︸ ︷︷ ︸

Enew

pd (5.21)

where Enew is a steering matrix of size (2Ls − 1) ×M . Now, similar to [77],

Ls vectors are generated for every rls = [rls−(Ls−1), · · · , rls−1, rls]T ∀ ls =

{0, · · · , Ls − 1}. Subsequently, a sample average of the auto-correlation of

these vectors is calculated as

RLs =
1

Ls

Ls−1∑
ls=0

rlsr
H
ls

(5.22)

Finally, MUSIC algorithm [141] is applied on RLs to determine the DoAs of

βbusy frequency bands.
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Note that once the status, ŝβ∈ {0, 1}|β|, is estimated in the SS unit, the

next task is to determine the carrier frequency of the user for which ŝβ = 1.

For simplicity of our analysis, the carrier frequency of an SC-FDMA signal

is considered in the Ui frequency band is same as its center frequency, i.e.

fi = fr + iB2 ∀ i ∈ {1, 2, ...., N}. However, as done in Chapter 4, this as-

sumption can be removed by applying the MUSIC algorithm on the possible

sets of carrier frequencies of βbusy frequency bands.

Now to determine θi ∀ i ∈ βbusy , the MUSIC algorithm is applied. Here an

over-complete steering matrix, Ec, is generated where θ varies from 0° to 180°

with a grid size of 0.5° for every fi. Then the MUSIC spectrum is generated as

P (θ) =
1

e(θ)HVnVH
n e(θ)

(5.23)

where e(θ) is a steering vector of Ec for a particular θ, and Vn is the noise

subspace of the auto-correlation of RLs. The peaks in the MUSIC spectrum

correspond to the DoAs of transmissions present in the sensed spectrum. For

example, two and three peaks in the MUSIC spectrums shown in Fig. 5.8 denote

two busy bands with DoAs 18° and 62°, and three busy bands with DoAs 42°,

87° and 145°, respectively.

5.3.2.3 LDM Unit

To sense a large number of frequency bands, the size of the selected subset, β,

should be as large as possible. But as discussed in Chapter 4, for ULA antenna

arrangement, the UWASS incurs characterization failure if the number of busy
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Figure 5.8: MUSIC spectrum (a) For two directional users and (b) For three directional users.

bands, i.e. |βbusy|≥ L. In the case of the proposed sparse UWASS and as

mentioned in Lemma 1, |βbusy|< Ls for the successful sensing of ŝβ and θi of

βbusy bands.

Lemma 1: If Ls is the length of the minimum sparse ruler then under the

noiseless condition, the perfect recovery of the occupancy status and DoA of

βbusy bands is possible only if

1. K ≥ Ls − 1

2. ||sβ||0< Ls i.e. |βbusy|< Ls

In order to learn the spectrum statistics and determine the best subset, three

MPMAB algorithms: 1) Ideal Policy (IP) 2) K+-εSSLE and 3) K+-BSSLE

have been integrated in the proposed UWASS testbed.

5.4 Experimental Performance and Complexity Analysis

This section presents extensive experimental results in real-radio conditions us-

ing the proposed testbed along with the hardware complexity analysis. The
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prototype setup in Fig. 5.9 demonstrates the UWASS receiver and phase refer-

ence generator while a dynamic wireless traffic generator is placed at distant

locations to generate multi-directional multi-user traffic. As shown in Fig. 5.10,

for all the results presented in this section, the dynamic wireless traffic gener-

ator module consists of two NI-USRP 2944R with M = 3 active transmission

directions via three directional HORN-antennas DP240-AB. Since the phase

reference generator module outputs a common reference signal, p(t), to all the

AFE of the receiver, only one Ettus USRP N200 is used. The UWASS receiver

module consists of two NI-USRP 2944R to provide four AFEs integrated with

L = 4 omni-directional VERT2450 antennas of the phase antenna array. For

sparse antenna array (SAA) arrangement, the antenna spacing, dl = ld where

l ∈ {1, 2, 3}, is considered to be integer multiple of d = c
2ft

= 3×108
2×2.4×109 . Var-

ious parameters of different blocks of the proposed prototype are given in Ta-

ble 5.1.

Figure 5.9: Proposed prototype setup consisting of phase reference generator and UWASS receiver.

The effect of antenna array arrangement, i.e. ULA [140] (work presented

in Chapter 4) and proposed SAA based UWASS on the throughput for various

MPMAB algorithms, are compared in Fig. 5.11. The analysis is done with a

139



receiver gain of 10 dB for both antenna array arrangements. 2, 3 and 4 antenna

ULA are considered, and they are referred to as 2-ULA, 3-ULA and 4-ULA, re-

spectively. For sparse arrangement, 3 and 4 antenna sparse array are considered,

and they are referred to as 3-SAA and 4-SAA, respectively. For 3-SAA, anten-

nas are placed at location {0, 1, 3} whereas for 4-SAA, antennas are present at

locations {0, 1, 3, 5}, thereby enabling the sensing for 3 and 5 directional sig-

nals, respectively. Due to the increase in the number of antennas from 2-ULA

to the 4-SAA array, the throughput of the intelligent UWASS also increases.

Furthermore, since the number of possible antennas in the 4-ULA and 3-SAA

are the same (i.e. 4), the throughput of all LDM methods also remains the same

for both 4-ULA and 3-SAA antenna arrangement.

The hardware analysis of the proposed UWASS is compared with [140] (re-

ferred to as Proposed-ULA) and [77] (referred to as NS-SAA) in Fig. 5.12. Note

that the proposed UWASS methods discussed in Chapter 4 and this Chapter

are referred as Proposed-ULA and Proposed-SAA, respectively. Since [77] as-

sumes the prior knowledge of the carrier frequency, for the fair comparison
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Figure 5.10: Graphical representation of the experimental set-up.
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Table 5.1: Transmission and reception parameters.

Parameters Value

Dynamic Wireless

N 8

Traffic Generator

M 3

Module

B 1.4MHz

fr 1.4MHz

Guard Band 400MHz

fmax 13MHz

Resource blocks in SC-FDMA 6

Antenna Gain 0 dB

IQ Sampling Rate 13Msps

Transmission Frequency, ft 2.4 GHz

Phase Reference
Carrier frequency 200 kHz

Module
fprs 400 kHz

Antenna Gain 0 dB

IQ Sampling Rate 13Msps

Transmission Frequency, ft 2.4 GHz

UWASS Receiver

L 2, 3 and 4

Module

Ls 4 and 6

K 3 and 5

Common Clock 10MHz

PPS Signal 1 pulse/second

Antenna Gain 0 dB, 2 dB, 6 dB and 10 dB

IQ Sampling Rate 13Msps

Reception Frequency, ft 2.4 GHz

with [140] and proposed work, an energy detector is applied to determine the

status of frequency bands followed by the DoA estimation method presented

in [77]. Note that similar to the spectrum occupancy detection algorithms used

in the proposed work and [140], the performance of the energy detector im-

proves with an increase in antenna gain. It can be observed from Fig. 5.12(a)
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Figure 5.11: Throughput achieved by the MPMAB algorithms for various arrangements of the antenna array.

that the number of characterization failures is highest for NS-SAA [77], fol-

lowed by Proposed-ULA [140] and the proposed-SAA method. This happens

because NS-SAA uses the Nyquist sampling (NS) method for UWASS. Since it

senses all frequency bands, characterization failure occurs whenever the number

of busy frequency bands in the spectrum is higher or equal to the total number

of antennas. Whereas proposed-ULA and the proposed-SAA works employ re-

configurable SNS based UWASS, which dynamically selects a set of frequency

bands for sensing and allows learning and decision making unit to ensure that

the number of busy bands in the sensed spectrum is less than the total number

of antennas.

Fig. 5.12(b) shows the comparison of total throughput achieved by NS-SAA

[77], Proposed-ULA [140] and proposed-SAA methods. Since the proposed-

SAA method and NS-SAA can sense a higher number of frequency bands

than [140], they receive higher throughput. The proposed method achieves a

higher throughput than NS-SAA [77] because it faces higher number of charac-
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Figure 5.12: Comparison of the proposed reconfigurable UWASS with [140] and [77] for different values of receiver
antenna gain (a) Throughput, (b) Number of characterization failure and (c) DOA Estimation Error.

terization failures, as discussed in Fig. 5.12(a), which leads to lower throughput

than the proposed method. The DoA estimation error is shown in Fig. 5.12(c).

Since the total number of antennas in the proposed-ULA is less than that of NS-

SAA and proposed-SAA methods, the DoA error is highest for proposed-ULA.

The DoA error of the proposed method is slightly higher than NS-SAA, and it

happens because NS-SAA works on the Nyquist samples, whereas the proposed

method works on the sub-Nyquist samples.

Note that the DoA estimation error reported in Fig. 5.12(c) does not consider

the DoA estimation error incurred due to the reconstruction failure. As dis-
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cussed in Section 4.3.2, the DoA estimation error performance of the proposed

UWASS method is better than the state-of-the-art wideband angular spectrum

sensing methods when the effect of reconstruction failure is included in the DoA

error performance analysis.

Next, the DoA estimation error of the UWASS receiver is compared with

ULA and sparse array for the different number of directional user signals and

sampling methods, i.e. SNS and Nyquist sampling (NS). At the transmitter, the

DoA of each user is randomly selected. The DoA estimation errors for one, two

and three directional user signals are shown in Fig. 5.13-5.15, respectively. It

can be validated that the DoA estimation error decreases with an increase in

the number of antennas. As 4-SAA creates two more virtual antennas, the DoA

error is minimum for 4-SAA arrangement. It is also validated that the DoA

estimation error increases when the number of directional users increases from

1 to 3. Furthermore, since the strength of the received signal increases with

antenna gain, the DoA estimation error decreases significantly. Similarly, with

an increase in the gain, the performance of SNS based UWASS approaches to

NS based UWASS.

The deviation in DoA measurement, ∆, is shown in Fig. 5.16(a)-(c) for one,

two and three directional user signals, respectively. For one user, the deviation

of SNS and NS based WAS is the same; hence, the deviation for only one case,

i.e. NS based WAS, is shown. It is observed that for one user signal, the devia-

tion becomes zero for 4-ULA and 4-SAA. When the number of DoA sources in-

creased from 1 to 3, the deviation becomes non-zero, and since 4-SAA creates a
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total of 6-antennas, the deviation is minimum for the 4-SAA case. Furthermore,

for a given number of antennas, the deviation increases with the number of user

signals. For example, for the 3-ULA arrangement, the deviation increases as

20, 70 and 150 when the number of user signals increases from one, two and

three, respectively.

The value of actual DoA and estimated DoA for different antenna array ar-

rangements of the reconfigurable UWASS is shown in Table 5.2. It can be

observed that there is a difference between the true and estimated value of DoA.

This difference is maximum for 3-SAA than 4-ULA and 4-SAA. It happens due

to the antenna pattern fluctuations, which depend on the hardware equipment
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Figure 5.13: DoA estimation error in case of single directional user signal for (a) ULA antenna arrangement and (b)
SAA arrangement.
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Figure 5.14: DoA estimation error in case of two directional user signals for (a) ULA antenna arrangement and (b)
SAA arrangement.

surrounding the antenna array. Furthermore, it is also observed that the differ-

ence between the true and estimated DoA is smaller for 4-SAA when compared

to 4-ULA. The happens because 4-ULA provides 4 antennas for DoA estima-
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Figure 5.15: DoA estimation error for three directional user signals.
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Figure 5.16: The deviation in DoA measurement for (a) One directional user signal, (b) Two directional user signals
and (c) Three directional user signals.

tion, whereas 4-SAA provides total 6 antennas (i.e. 4 actual and 2 virtual anten-

nas). Due to an increase in the total number of antennas, 4-SAA gives the best

performance.
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Table 5.2: True and estimated DoAs for different antenna array.

True DoA
Antenna Array Arrangement

Angle 4-ULA 3-SAA 4-SAA

0° 0° 0° 0°

30° 34.59° 33.97° 31.57°

52° 54.28° 60.89° 53.81°

110° 114.30° 116.83° 112.44°

155° 156.37° 161.73° 157.74°

180° 180° 180° 180°

5.4.1 Hardware Complexity Analysis

This section compares the hardware complexity of the proposed and existing

UWASS methods [23–27, 29, 140] when implemented on the AFE. Table 7.2

compares the hardware complexity of these UWASS methods for seven dif-

ferent parameters. For M number of users in the wideband spectrum, the

number of antennas and ADCs required in all approaches is given in the first

two rows. It can be observed that the proposed approach, along with [24]

and [26] offer a lower number of antennas and ADCs compared to other ap-

proaches [23, 25, 27, 29, 140]. This results in a huge savings in the AFE, which

consumes significant area and power of the wireless receiver and offers limited

flexibility and upgradability. Although compared to [24] and [26], the proposed

UWASS utilizes a slightly higher number of antennas and ADCs, the analog

bandwidth of ADCs used in [24] and [26] is equal to the Nyquist rate. In con-

trast, the analog bandwidth in our proposed UWASS is N times lower. Fur-

thermore, unlike [26], the proposed approach does not require a precise delay

element in AFE making it possible to realize in hardware for UWASS.
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Next, the comparison of characterization failure is made. As shown in the

fifth row of Table 5.3, UWASS approaches in [23–25] and [26,27] incur failures

whenever M ≥ L and M ≥ Ls, respectively, i.e. whenever the number of ac-

tive transmissions/users in the wideband spectrum is higher than the number of

antennas. Since the wideband spectrum ranges over a few GHz, and L can have

a limited value ranging from 1−64, the probability of characterization failure is

very high in existing methods due to the contiguous sensing approach. This is

because the wideband spectrum may have users from other services such as nar-

rowband IoT, WLAN and applications in the unlicensed spectrum. Due to the

augmentation of LDM with non-contiguous digitization, the characterization

failure in the proposed reconfigurable SNS does not depend on the occupancy

of the wideband spectrum. Instead, the characterization failure happens when

βbusy ≥ Ls and hence, the design of the LDM unit is critical in the proposed

approach. The only limitation of the proposed UWASS method is that a user

can be present only in a single frequency band and thus limits its carrier fre-

quency. But this assumption is valid and practical as per 3GPP communication

standards where carrier frequencies can take only predefined values as per the

defined carrier frequency raster.

5.4.2 Hardware Feasibility of Proposed UWASS

This work uses the USRP based hardware prototype for developing the UWASS

testbed. Since the USRPs have inbuilt ADC tightly integrated with antennas,

SNS is employed at the received digitized signal to perform UWASS at a sub-
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Table 5.3: Hardware complexity comparison of different UWASS approaches.

Characteristics
[23] [24] [25] [26] [27]

Proposed Proposed

ULA SAA

Number of
M + 1 M + 1 2M + 1 4M/K < M + 1 M + 1 < M + 1

Antennas

Number of
2M + 1 M + 1 2M + 1 4M +K − 1/K < (M + 1)K 2M − 1 < 2M − 1

ADCs

Analog BW
High High Low High High Low Low

of ADCs

Precise
Required Not

Not
Required Required

Not Not

delay Required Required Required Required

Characteriza-

Yes Yes Yes
Only if Only if

No Notion Failure
M ≥ Ls M ≥ Ls

(M ≥ L)

Characteriza-

Yes Yes Yes Yes Yes Yes

Only if

tion Failure βbusy ≥ Ls
(βbusy ≥ L)

Constraint
No No No No No Yes Yes

on fi

Nyquist rate. To enable SNS on the frequency bands spaced across an ultra-

wideband RF signal, the AFE similar to [61] needs to be designed. The AFE of

these two differs mainly in the generation of the mixing function. This is not

challenging since it requires minor changes in the RTL code of the generator.

Furthermore, the proposed UWASS is capable of performing non-contiguous

wideband sensing and DoA estimation of the occupied frequency bands, whereas

[61] only performs contiguous wideband spectrum sensing. Thus, to develop

end-to-end hardware without USRP, AFE integration with a multi-antenna ar-

ray and its calibration is also an important task.
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5.5 Summary

In this chapter, a multi-antenna USRP testbed is developed to perform wideband

angular spectrum sensing over a non-contiguous wideband spectrum. To the

best of our knowledge, it is the first work that demonstrates wideband angular

sensing on the sub-Nyquist sampled non-contiguous spectrum. To generate an

M -directional traffic signal, M
2 NI-USRP 2944 are used as a transmitter. The

directional traffic signal is generated in the form of a multiband signals whose

occupancy status follows the unknown Markovian decision process. Similar

to 5G, an uncorrelated single carrier frequency divison multiple access (SC-

FDMA) is transmitted on each occupied frequency band of a multiband signal.

Next, we discussed the design of a wideband receiver to perform ultra-wideband

angular spectrum sensing (UWASS). The multi-antenna receiver USRPs receives

the multiband traffic signal. But since the received signal passes through the dif-

ferent analog front ends of the receiver USRP ports, a random phase offset is

added to each received signal. A phase synchronization signal is combined with

the output of the receiver antennas to monitor and remove these phase offsets

continuously. Then finally, the phase calibration is performed on the output

signal of the receiver USPRs followed by the implementation of an intelligent

reconfigurable UWASS.

As the proposed UWASS can be applied to any antenna array, the experiment

is performed for uniform linear antenna array (ULA) and sparse antenna array

(SAA) with L number of physical antennas. The SAA antenna arrangement is
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discussed in the latter part of the chapter to sense more than L − 1 signals. Fi-

nally, in the end, the experimental analysis is performed in terms of throughput,

number of failures and deviation in the DoA estimation for different antenna

array configurations. As expected, the performance of SAA is better than ULA

due to higher number of total antennas, and it improves with an increase in L.

In the next chapter, we discuss another wideband signal characterization that

determines the modulation schemes of the occupied frequency bands at sub-

Nyquist rate.
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Chapter 6

Automatic Modulation Classification for

Wideband Spectrum Analyzer

An automatic modulation classifier (AMC) aims to estimate the modulation

scheme of the received signal blindly. As discussed in the previous chapters, fu-

ture generation wideband receiver requires sub-Nyquist sampling (SNS) based

wideband spectrum characterization. This chapter focuses on determining one

of the characteristics, i.e. the modulation scheme of the detected occupied fre-

quency bands from the sub-Nyquist samples of a wideband spectrum. Due to

recent advances in the classification accuracy of deep learning based classifiers,

here, we explored the performance of deep learning based AMC (DLMC) on

the sub-Nyquist sampled wideband spectrum. Firstly, we discuss the DLMC

to determine the modulation scheme of every detected occupied band sequen-

tially. The performance of the proposed sequential AMC is validated on the

USRP hardware testbed. A single unified pipeline to simultaneously determine

the occupancy status and modulation schemes of all occupied frequency bands
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is presented in the latter part of the chapter.

6.1 Signal Model

Consider a wideband spectrum consisting of multiple disjoint (i.e. distinct cen-

tral frequency) narrowband signals of maximum possible bandwidth, B Hz.

Mathematically, the received wideband signal, y(t), can be modelled as

x(t) =
M∑
i=1

hi(t) ∗ ci(t)ej2π(fi+fd)t + η(t) (6.1)

where M is the maximum possible number of narrowband signals in x(t), ci(t)

is the ith modulated narrowband signal of carrier frequency fi, hi(t) is the chan-

nel response faced by the ith signal, fd is the Doppler frequency, η(t) is additive

white Gaussian noise (AWGN) and ∗ is a convolution operator. The modulated

narrowband signal, ci(t), can be represented as

ci(t) =
V∑
v=1

g(t− vTs)bmv (6.2)

where g(t) is the impulse response of a root raised cosine pulse shaping filter,

Ts is the symbol period, bmv is the vth modulated symbol of mth modulation

scheme and V is the length of symbol sequence. Similar to the assumptions

made in previous chapters, the following realistic assumptions have been made

on the wideband signal:

1. The received wideband spectrum, X(f), of Nyquist frequency, fs, is di-

vided into N frequency bands of bandwidth, B = fs
N .
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2. The bandwidth of a narrowband signal, ci(t), does not exceed B Hz.

6.2 Proposed Sequential DLMC

The proposed classifier consists of two main stages: 1) Digitization and 2) Clas-

sification. As shown in Fig. 6.1, the digitization stage digitizes the wideband

signal, x(t), via SNS based RF to digital conversion block followed by the re-

construction of the Nyquist rate signal, x̂[n], from the sub-Nyquist samples,

y[n]. The output is then passed to the deep learning based AMC (DLMC),

which identifies the modulation schemes of various occupied frequency bands

in the digitized signal. We employ non-contiguous SNS and orthogonal match-

ing pursuit (OMP) to perform digitization and reconstruction, respectively [81].

For determining the modulation schemes, DLMC is applied sequentially on all

the reconstructed occupied frequency bands. The CNN [103] and LSTM neu-

ral networks [142] are widely used for classification in signal processing and

have shown good modulation classification accuracy on Nyquist sampled data.

Hence, this work explores the performance of these DL classifiers on the sub-

Nyquist sampled data.

Sub-Nyquist 

Sampling
Reconstruction

Deep 

Learning 

based AMC

Digitization

𝑥(𝑡) 𝒚[𝑛] 

Wideband 

Spectrum

Modulation 

Scheme

𝑥 [𝑛] 

Figure 6.1: Block diagram of the proposed SNS-AMC.
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6.3 Implementation Details and Dataset Generation

The DL models work in two modes: 1) Offline training mode and 2) Online

inference mode (i.e. testing mode). Offline training mode provides the learned

network parameters, which are then used by the inference mode to determine

the modulation schemes of the signals present in the occupied frequency bands.

The implementation details of the CNN and LSTM classifiers are given below:

6.3.1 CNN Model

Similar to [103], the CNN model consists of three convolution layers with 256,

80 and 32 filters of size 1× 3, 2× 3 and 3× 3, respectively. The model also has

2 fully connected (FC) layers with 256 and 7 neurons, respectively. All layers

have a ReLU activation function except the last dense layer, which has a soft-

max activation function [143]. Regularization technique like dropout of 60% is

used to prevent the model from overfitting.

6.3.2 LSTM model

The architecture of the LSTM network model is similar to that used in [142].

It consists of two LSTM layers and a dense layer with seven neurons. This

dense layer has a softmax activation function. Here, dropout of 50% and batch

normalization are used in the LSTM layers.
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6.3.3 Dataset Generation

The dataset is generated synthetically using the MATLAB tool. It consists of

seven widely used modulation schemes: BPSK, QPSK, 16-QAM, 64-QAM,

128-QAM, 256-QAM and 8-PAM. The dataset is keyed by both modulation

schemes and signal to noise ratio (SNR). The SNR range from−10 dB to 25 dB

at a step size of 5 dB is considered. The datasets used for comparison are:

DIQ: The time-domain IQ sample vectors of a narrowband signal extracted

from the reconstructed wideband signal are considered. The length of IQ sam-

ples is 256 units. The IQ sample vector is separated into two vectors containing

in-phase and quadrature-phase components. Hence, the dataset has a shape of

2 × 256 where the in-phase and quadrature-phase components form the two

rows, respectively.

DAP: It comprises time-domain amplitude-phase vectors (i.e. polar represen-

tation of IQ samples) of a narrowband signal extracted from the reconstructed

wideband signal. The length of the vector is 256 units. The data has a shape of

2× 256, where the amplitude and phase parts form two rows. The amplitude is

l-2 normalized, and phase (in radians) is normalized between the range -1 and

1 [142].

Furthermore, in each case, two types of wireless channels are considered:

1) AWGN (DIQ1 and DAP1) and 2) AWGN channel and Rayleigh fading (DIQ2

and DAP2). Each dataset consists of 112, 000 examples, out of which 75% (i.e

84, 000 examples) is used for training and remaining (i.e 28, 000 examples) is
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used for testing.

6.4 Performance Analysis

This section analyzes the proposed sequential DLMC over various datasets that

correspond to different channel conditions. Classification accuracy of the pro-

posed CNN based DLMC and LSTM based DLMC is compared with other clas-

sifiers in Fig. 6.2. It can be observed that the accuracy of the proposed DLMC,

i.e. CNNSNS and LSTMSNS (trained on the sub-Nyquist samples) approaches

to CNNNS and LSTMNS (trained on the Nyquist samples) with an increase in

SNR.

Classification accuracy ofCNNSNS andLSTMSNS on dataset DIQ1,CNNNS

and LSTMNS (trained on the Nyquist IQ samples), and other machine learning

classifiers (trained on higher order cumulants obtained from the sub-Nyquist

samples) are shown in Fig. 6.2(a). It is observed that at high SNR, bothCNNSNS

andLSTMSNS achieves an accuracy of 100%, whereas at a low SNR of−10 dB,

CNNSNS obtains an accuracy of 63.5% and LSTMSNS obtains 56.5%.

Classification accuracy on dataset DAP1 is shown in Fig. 6.2(b). Here, it

can be observed that the performance of LSTMSNS remains the same as it

was on dataset DIQ1, whereas the performance of CNNSNS degrades. The

applicability of LSTMSNS and CNNSNS models on dataset DIQ2 and DAP2 is

shown in Fig. 6.2(c). Here, it can be observed that due to the time dependency of

samples during flat fading scenario, LSTMSNS performs better than CNNSNS
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Figure 6.2: Classification accuracy of the proposed CNNSNS and LSTMSNS for (a) Dataset DIQ1, (b) Dataset
DAP1 and (c) DIQ2 and DAP2.
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and achieves the highest average classification accuracy of 87.3% on dataset

DAP2. Whereas for dataset DIQ2, the CNNSNS model performs better than

LSTMSNS but its average accuracy is 83.6%, i.e., less than the accuracy of

LSTMSNS on dataset DAP2. Hence, for the hardware validation, the proposed

LSTMSNS model is used.

6.5 Experimental Analysis

A USRP testbed has been developed to validate the performance of the proposed

DLMC on the real-time dataset. As shown in Fig. 6.3 , the testbed consists of

two NI-USRP 2922 with VEERT900 antennas to perform wireless RF transmis-

sion and reception. The baseband signal processing for both the transmitter and

receiver is performed in the LabVIEW environment. The transmission/recep-

tion parameters used in the testbed are: Carrier frequency of 935MHz and IQ

sampling rate of 1 Msps. Since LSTMSNS performs better than CNNSNS,

next we discuss the performance analysis of the proposed LSTMSNS on the

experimental dataset.

Figure 6.3: USRP testbed of the proposed SNS based DLMC.

Similar to the synthetic dataset, the following datasets consisting of amplitude-
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phase components of the signal reconstructed from the sub-Nyquist samples are

considered:

DH1: It consists of the line of sight (LoS) and multi-path signals generated

in the indoor environment.

DH2: It consists of only multi-path signal components.

Classification accuracy of the proposed LSTMSNS is compared with other

machine learning classifiers for a transmitting range of 1m to 70m. It can be

observed in Table 6.1 that the LSTMSNS outperforms machine learning clas-

sifiers. Furthermore, due to the presence of a LoS signal, the performance for

dataset DH1 is higher than the dataset DH2 for all classifiers.

Table 6.1: Average % classification accuracy for dataset DH1 and dataset DH2.

Modulation

Average % Classification Accuracy

Classifier
Distance = 1m Distance = 10m Distance = 40m Distance = 70m

DH1 DH2 DH1 DH2 DH1 DH2 DH1 DH2

LSTMSNS 100 99 99 99 99 98 97 92

RF-150 96 95.7 95.9 95.5 90 57.3 67 38.7

RF-10 85.4 78 79.8 72.7 64 40 40.7 25.8

DT 69.5 56.9 63.4 50.6 47 35.8 31.2 23.5

6.6 Proposed Unified Model for DLMC

The proposed unified model for DLMC provides an end-to-end pipeline to si-

multaneously determine occupancy status and modulation schemes of all occu-
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pied frequency bands. The architecture of the proposed unified model, as shown

in Fig. 6.4, can be divided into three sections: 1) AFE for analog signal condi-

tioning, 2) SNS for digitization, and 3) DFE comprising of the proposed DL

based reconstruction and classification.

The main task of AFE is to perform impedance matching, low noise amplifi-

cation and equalization on the received RF wideband signal, x
′
(t) [61]. For the

simplicity of analysis, we assume the output, x(t), of AFE is approximately the

same as x
′
(t). The next step is SNS based digitization using multiple low-speed

ADCs. As discussed in Chapter 2, various SNS architectures like MCS and

MWC can be used to digitize contiguous wideband spectrum and FRI-based

SNS for non-contiguous spectrum. The DTFT of sub-Nyquist samples, y[n],

can be represented as

Y(f) = AX(f) ∀ f ∈ [0, B] (6.3)

where A is a K×N sensing matrix corresponding to the used SNS architecture

and X(f) contains X(f − nB) as the nth row with n ∈ {1, 2, ..., N} and f ∈
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Figure 6.4: Proposed deep learning based architecture for end-to-end unified model of DLMC.
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[0, B]. Here K << N is the number of ADCs used in the SNS, and N is the

number of sensed frequency bands that, in the contiguous sensing case, is the

same as the total number of bands in x(t).

Since the sampling rate of each ADC is B << fs, all N frequency bands

get aliased at the baseband, i.e. in the frequency range of [0, B] as shown in

Fig. 6.4. The aliased sub-Nyquist samples, Y(f), and the SNS specific sensing

matrix, A, are passed to the proposed unified DLMC, which identifies the vacant

bands and the modulation scheme of occupied bands. The unified model for

DLMC consists of three stages: 1) DL based digital reconstruction (DLDR)

and 2) (Optional) Symbol recovery and 3) DL based modulation classification

(DLMC). Various operations in three stages are shown in Fig. 6.4 and described

using Algorithm 7.

The sub-Nyquist samples, Y(f), and sensing matrix, A, are inputs (line 1),

while the occupancy status, ŝ, and identified modulation schemes, ŵ, of occu-

pied bands are the outputs (line 2). The inputs, Y(f) and A are first processed

to obtain a pseudo-reconstructed signal, X̃(f), (line 3), as

X̃(f) = A†Y(f) (6.4)

where † denotes the pseudo-inverse operator. Since X̃(f) is a complex signal

of dimension N × Q and can not be feed to the DL model directly, X̃(f) is

reshaped to a higher dimensional matrix, X̃d(f), of size N × Q × 2 (line 4),

where the third dimension represents the real and imaginary values of X̃(f).
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Algorithm 7 Proposed Unified model for DLMC
Input: A,Y(f)
Output: ŝ, ŵ

1: X̃(f)← A†Y(f)
2: X̃d(f)← Concatenate(X̃real(f), X̃img(f))
3: X̃n(f)← Normalize(X̃d(f))
4: φss ← DLWSS(X̃n(f), s) . Training mode
5: ŝ← DLWSS(X̃n(f), φss) . Inference mode
6: Anew ← Select columns of A corresponding to occupied bands
7: Determine X̂(f) according to Eq. 6.5
8: X̂s ← Symbol Recovery of X̂(f) . Optional Step
9: φc ← DLMC(X̂s,w) . Training mode

10: ŵ← DLMC(X̂s, φc) . Inference mode

For the faster convergence of the training process, the higher dimensional

pseudo-reconstructed matrix, X̃d(f), is normalized between [0, 1] (line 5). The

normalized matrix, represented by X̃n(f), is fed to DL based wideband spec-

trum sensing (DLWSS) block. The DLWSS is based on a CNN and its architec-

ture along with the ablation study is discussed later in Section 6.7. The output

of the DLWSS is ŝ which contains the status of each digitized frequency band.

Note that ŝn = 0 (or 1) denotes that nth band is vacant (or occupied).

The offline training mode of DLWSS provides the learned network parame-

ters, φss (line 6), which are then used to determine occupancy status, ŝ (line 7)

of frequency bands in the digitized spectrum, X̃n(f). Since the reconstruction

noise is very high in the pseudo-reconstructed signal, X̃(f), we perform the

signal reconstruction (line 8-9), and the corresponding architecture is shown in

Fig. 6.5. Here, the occupancy status vector, ŝ, determined by the DLWSS block,

the sub-Nyquist samples, Y(f) and the sensing matrix A are taken as inputs.

First, we generate a new sensing matrix Anew by selecting the columns of A

corresponding to the occupied frequency bands (line 8) followed by the recon-
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Figure 6.5: Wideband signal recovery in the DLDR block.

struction of the wideband signal (line 9). Mathematically, the reconstruction

step can be written as

X̂(f) =


A†newY(f) for occupied bands,

0 for vacant bands
(6.5)

where X̂(f) is the reconstructed wideband signal, Anew is of size K × ||̂s||0 and

Y(f) is the DTFT of sub-Nyquist samples. For the simplicity of analysis, we

refer X̃n(f), X̂(f) and Y(f) as X̃n, X̂ and Y, respectively.

After reconstruction, the next step is the modulation classification of all the

occupied bands present in the digitized wideband spectrum. As discussed be-

fore, the proposed DLMC performs simultaneous multi-band classification in-

stead of sequential single band classification discussed previously. In this direc-

tion, we consider two scenarios:

6.6.1 Scenario 1

In the first scenario, symbol recovery is employed on each occupied frequency

band before the modulation classification. The output of this block, as shown in

Fig. 6.4, is represented as X̂s and is of sizeN×V where V is the number of mod-

ulated symbols and bmv is the vth modulated symbol of mth modulation scheme.
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To recover the modulation symbols from X̂, we first perform the interpolation on

X̂ of every occupied band followed by the root raised cosine filtering. Depend-

ing on the requirement, the modulated symbols are represented in two forms:

1) Real and imaginary, and 2) Amplitude and phase. This is followed by the

proposed narrowband DL-based modulation classifier (NDLMC) that explores

a new formulation of the cross-entropy loss function to simultaneously classify

multiple frequency bands in the wideband signal compared to the sequential sin-

gle band classification in existing approaches [54,55,100–103,108,109]. Thus,

the proposed approach is more sophisticated than a Velcro approach of stacking

multiple classifiers in parallel.

6.6.2 Scenario 2

Since the symbol recovery on each occupied frequency band incurs significant

computational complexity, direct classification of the reconstructed wideband

signal, X̂ via new wideband DLMC (WDLMC), is discussed later in Section 6.8.

Another benefit of WDLMC is its architecture similarity with DLWSS making

the complete architecture a good candidate for reconfigurable platforms such as

Zynq SoC.

6.7 Proposed DLWSS Architecture

The proposed DLWSS is based on CNN1. The existing DL based iterative spec-

trum sensing methods [82–84] handle a single band at a time and involve com-
1The CNN is preferred over LSTM based on in-depth study and comparison for a wide variety of DLWSS datasets.

166



ConvNet

Fully connected/

Sigmiod

Input 

Signal

Vacant/

Occupied
2QN

0
1
0

1
0

0

1N

Pseudo 

inverse

Select Columns 

corrosponding to 

occupied bands

𝑨𝑛𝑒𝑤  

𝑨 𝒁 

𝑨𝑛𝑒𝑤
†  𝑿  

(a) (b)

𝒔  𝒔  

Figure 6.6: CNN architecture for DLWSS.

puting the residual, solving a least-squares problem at each iteration until con-

vergence. Thus, they have high computational and time complexity. The pro-

posed DLWSS generates the status of all bands simultaneously and does not

require any prior knowledge of the sparsity of the spectrum. CNN is chosen for

this task since it is good at capturing spatial correlation in input signals which is

important for the considered signal model. Furthermore, parameter sharing al-

lows them to operate with fewer parameters enabling the network to be memory

efficient and a good candidate for hardware realization.

The CNN architecture for DLWSS and its ablation study are shown in Fig. 6.6

and Fig. 6.7, respectively. As discussed in Section 6.6, offline training is per-

formed first to learn the network parameters, φss, followed by testing real-time

pseudo-reconstructed signal in the inference/testing mode. Algorithm 8 shows

the offline training process with the dataset, DWSS = {(X̃n,1, s1), (X̃n,2, s2),

....., (X̃n,U , sU)} where U denotes the number of observations (or examples)

over which training is performed. X̃n,u ∈ RN×Q×2 is the uth normalized and

pseudo-reconstructed signal and su ∈ {0, 1}N×1 is the label of uth observation

indicating actual occupancy status of all N frequency bands of X̃n,u (line 5-7).
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The training process involves minimizing a loss function, which is a measure

of inconsistency between the predicted and actual label. Since more than one

frequency band can be occupied in a wideband spectrum, the problem is for-

mulated as a multi-label binary classification with binary cross-entropy as the

training loss function. It is calculated as

LBCE(pŝ, s) = −
N∑
i=1

s(i) log pŝ(i) + (1− s(i)) log(1− pŝ(i)) (6.6)

where s(i) ∈ s is the actual occupancy status of ith frequency band and pŝ(i) is

the predicted occupancy probability of ith frequency band (line 8). Furthermore,

the learnable network parameters, φss, are optimized using a stochastic gradient

descent algorithm such that the training loss, LBCE, is minimized. Mathemati-

cally, it is represented as

φss = φss − ξ∇φssLBCE (6.7)

where ξ is the learning rate. Here, the loss gradients, ∇φssLBCE, are backprop-

agated and used to update the learnable network parameters at each iteration

(line 9). This process is repeated until the validation loss no more decreases (i.e.

until the model converges). The final output is the optimized parameters, φss.

After the training mode, the CNN model is used in the inference mode to find

the occupancy status of unknown wideband spectrum in real-time.

The ablation study of the DLWSS CNN model is shown in Fig. 6.7. The

experiments are performed for different network depths and filter settings. The
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Algorithm 8 DLWSS Training Mode

Input: Dataset= {X̃n,u, su}∀u ∈ {1, U}, ξ, t = 0
Output: φss Initialize: φss = N (0, 1)

1: while not converge do
2: t = t+ 1
3: Sample batch of data-points {X̃n,u, su}
4: ŝ← CNN(X̃n,u, φss)
5: Calculate LBCE as per Eq. 6.6
6: Update φss as per Eq. 6.7
7: end while
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Figure 6.7: Classification accuracy of CNN based DLWSS for different values of n− taps.

filters used are of the form 1× n− taps where n− taps denote the width of the

convolution filter in all layers. The number of filters is fixed to 64 in all layers to

perform the ablation for filter size. It is observed that filters with a larger width

perform better as compared to those with a smaller width and saturates when the

width is increased further. The same has been shown in Fig. 6.7 for three-layer

CNN. Here, NT tells the n− taps values for the three layers of CNN. The best

classification accuracy is obtained when NT = {150, 100, 51}. Furthermore,

then the filter sizes are fixed to the best case, and the number of filters is varied

in each layer. The best performing CNN architecture is shown in Table 6.2. The

same architecture has been selected for the rest of the discussion.
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6.8 Proposed DLMC Architecture

As discussed in Section 6.6, to perform DLMC, two scenarios have been con-

sidered: 1) NDLMC, and 2) WDMLC. Their corresponding architectures are

presented below.

6.8.1 CNN Architecture for NDLMC

As shown in Fig. 6.4, the output of the DLDR block, X̂, is processed via symbol

recovery to obtain X̂s of size N × V . Three types of datasets are considered in

the literature: 1) IQ (in-phase and quadrature-phase) samples [100, 101, 103],

2) AP (amplitude-phase) samples [102], and 3) Constellation diagram images

of modulation schemes [17] to perform AMC on this processed baseband spec-

trum. Since the received wideband spectrum is represented using complex sam-

ples, IQ and AP datasets are readily available in the wireless receiver without

additional processing in the physical layer compared to the constellation im-

age based processing. Hence, we restrict the discussion to IQ and AP samples

of X̂s. Furthermore, our models are designed considering the various studies

which show that the CNN and LSTM models are more suited for IQ and AP

Table 6.2: CNN architecture for the proposed DLWSS.

Layers Filter Size Number of Filters Output Dimension
Input − − N ×Q× 2

Conv/relu 1x150 256 N × 150× 256
Conv/relu 1x100 128 N × 51× 128
Conv/relu 1x51 64 N × 1× 64

Custom pool − − N × 1× 64
FC/sigmoid − − N
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samples, respectively, [100–103].

Algorithm 9 shows the steps involved in the training of NDLMC. Inputs to

this classifier are X̂s and the labels of modulation schemes, w. Since W modu-

lation schemes are considered for the classification for each of the N frequency

bands, the output of the classifier is a vector, ĥw of un-normalized log proba-

bilities and has the size of 1 ×W . The values in vector ĥw are converted into

probabilities by applying a softmax activation function, which for a particular

frequency band, is calculated as

p̂w(i) = softmax(ĥw(i)) =
exp(ĥw(i))∑
j exp(ĥw(j))

(6.8)

where p̂w(i) is the predicted probability of the ith modulation scheme for a

frequency band. Thus for all N bands, this gives an output vector of size N ×

W (line 5-7). Next, similar to the CNN modelling for DLWSS, to optimize

the learnable network parameters for the modulation scheme classifiers, we use

a stochastic gradient descent algorithm to minimize the training loss. As the

training loss for a particular frequency band depends on the status of the band,

we define it as the categorical cross entropy if the band is occupied and zero

if the band is vacant. Mathematically, loss of the nth frequency band can be

defined as

Ln =


−
∑
i

pw(i)log(p̂w(i)) if ŝ(n) = 1,

0 if ŝ(n) = 0

(6.9)

where ŝ(n) is the estimated occupancy status (i.e. 0 for vacant and 1 for occu-
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Algorithm 9 NDLMC Training Mode

Input: Dataset= {X̂s,u,wu} ∀ u ∈ {1, U} ξ, t = 0
Output: φc
Initialize: φc = N (0, 1)

1: while not converge do
2: t = t+ 1
3: Sample batch of observations {X̂s,u,wu}
4: ŵ← Classifier(X̂s,u, φc)
5: Calculate Lc as per Eq. 6.10
6: Update φc as per Eq. 6.11
7: end while

pied) of the nth band, and pw(i) and p̂w(i) are the actual and predicted probabil-

ity of the ith modulation scheme for the nth frequency band.

To determine the complete loss function (line 8), we concatenate the esti-

mated band status vector, ŝ with the detected modulation scheme vector, ŵ, and

it can be expressed as

Lc =
N∑
n=1

−ŝ(n)

(∑
i

pw(i) log ˆpw(i)

)
(6.10)

where ŝ(n) is the nth entry of ŝ. Now, similar to DLWSS, the network learnable

parameter, φc, is updated as (line 9)

φc = φc − ξ∇φcLc (6.11)

The next step is to finalize the architectures of the CNN model. Since the

proposed NDLMC is the first work that handles simultaneous classification of

multiple bands of a wideband signal in a single forward pass, we perform an

ablation study to decide the NDLMC architecture.

To start with the ablation study, we first establish a simple baseline CNN
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model (referred to as CNNBaseline) and discuss it in detail. As the proposed

NDLMC aims to classify all frequency bands in the multiband input simul-

taneously, we need deeper and more complex architectures to capture spatial

correlation in the signal. However, deeper models result in vanishing gradi-

ents, making it difficult for the network to learn optimal parameters. Thus, in

addition to CNNBaseline, we analyze four approaches, namely: 1) Network in

Network(NiN) [144], 2) Inception network [145], 3) Residual network (ResNet)

[146], and 4) Densenet network [147], to enhance the AMC performance. These

models enable us to capture better spatial correlation, which is integral for si-

multaneous multiband classification. Also, they alleviate the gradient vanishing

issues to a large extent allowing us to train deeper models. Note that in the

proposed setup, the final outcome is of the form N × (W + 1), comprising the

status of N bands and modulation schemes of occupied bands.

The CNNBaseline architecture is shown in Table 6.3. We studied the clas-

sification performance to decide our baseline model architecture for different

filter sizes (i.e. n − taps), number of filters and depth of the network. Fig. 6.8

(a) shows the classification performance for various values of n − taps, (NT ).

We notice that smaller filters (i.e. for NT = 3, 5) perform better than the larger

filters. This is an important observation as it is not valid in the case of WDLMC

discussed later. Thus, we use small filter sizes with NT = 3 in the CNNBaseline.

Furthermore, the results obtained by varying the number of filters are very

similar to the ones obtained in [101]. Thus, 64 number of filters is considered

for further analysis as it is efficient from both computation, memory and perfor-
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Table 6.3: CNNBaseline architecture for NDLMC.

Layers Filter Size Number of Filters Output Dimension
Input - - N × V × 2

Conv/relu 1× 3 64 N × V × 64

Conv/relu 1× 3 64 N × V × 64

Conv 1× 1 W + 1 N × V × (W + 1)

Custom pool/softmax - - N × (W + 1)
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Figure 6.8: Ablation study for CNNBaseline on IQ samples for different values of (a) n− taps, and (b) Layers.

mance point of view. Also, as shown in Fig. 6.8 (b), we observe no significant

performance improvements when we increase the number of layers with a 1×3

filters beyond 2. Hence, the CNNBaseline has two convolution layers with 1× 3

filter size, a convolution layer of filter size 1 × 1, and a custom average pool/-

softmax activation layer at the end. The last convolution layer of filter size 1×1,

along with the custom pool layer aim to match the dimension of the output la-

bel (i.e. W + 1) and it is performed by averaging the input along the column

dimension (i.e. V ). Note that the softmax activation layer associates the output

with the probability of occurrence of every modulation scheme.

Next, we extend the proposed baseline model for NiN [144], Inception net-

work [145], ResNet [146], and Densenet network [147] and their performance
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Table 6.4: Modulation classification accuracy of various variants of CNN model for NDLMC and WDLMC.

DLMC
Classifiers

AWGN Rician Fading with Doppler Rayleigh Fading with Doppler
Methods −10 dB −6 dB 0 dB 4 dB 14 dB −10 dB −6 dB 0 dB 4 dB 14 dB −10 dB −6 dB 0 dB 4 dB 14 dB

NDLMC

Baseline 56.4 72.3 85.1 89.2 96.4 45.4 59.3 72.6 74.7 77.1 43.2 58.7 71 71 76.8
NiN 58.4 72.3 84.5 91.7 99.9 45.1 59.7 72.9 78.1 89.1 44.02 59.4 74.1 79.1 89.6

ResNet 58.5 72.9 84.6 91.4 99.9 45.9 61.6 74.5 79.1 89.7 46.2 61.2 73.4 79 89.1
Densenet 57.1 72.9 85.3 90.2 99.8 46.8 61.8 75.9 79.8 90 45.8 60.9 73.5 79 90

Inception-SNS 59 73.7 84.4 91.7 99.8 47.5 62.3 74.8 79.8 89.4 45.3 61.6 73.4 78.5 90.3
Inception-NS 68.6 81.5 90.1 97.7 100 54.6 68.3 79.5 86 93.5 57.2 68.6 78.3 83.3 91.1

WDLMC
CNN-SNS 42 49.7 67.1 75.4 82.7 34.8 39.7 45.9 52.6 52 34.3 37.9 42.1 46 47.7
CNN-NS 43.8 58.1 74.5 79.1 83.2 34.4 44.7 50.2 51.5 53.2 33.1 42.1 45.4 47.8 48.3

analysis for different channel conditions, i.e. AWGN, Rayleigh and Rayleigh

with a Doppler shift is shown in Table 6.4. It can be observed that Inception of-

fers better performance than other architectures, and hence, it is chosen for the

NDLMC task with IQ-samples as input. Note that the performance of NDLMC

improves if Nyquist sampling is used. Table 6.5 and Fig. 6.9 show the corre-

sponding architecture of Inception model for NDLMC and Inception block.

In addition to the CNN architecture, we also design a novel LSTM based

architecture for NDLMC. Similar to the proposed CNN based NDLMC, it si-

Table 6.5: Architecture of Inception model for NDLMC.

Layer Output dimension
Input N × V × 2

Inception Block N × V × 192
Inception Block N × V × 192
1× 1 Conv/Relu N × V × (W + 1)

Custom pool/softmax N × (W + 1)

CONV 1x3
ReLU

CONV 1x1
ReLU

CONV 1x5
ReLU

CONV 1x1
ReLU

CONV 1x1
ReLU
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Figure 6.9: Architecture of Inception block.
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multaneously classify various frequency bands of a multiband. The proposed

LSTM based NDLMC architecture with ablation study are discussed in the next

sub-section.

6.8.2 LSTM Architecture for NDLMC

Various studies in the literature have shown that the LSTM based architecture

offers slightly better performance for datasets with AP samples [102]. We have

also explored LSTM architecture with AP samples for NDLMC and WDLMC

tasks with SNS based digitization. The proposed novel architecture, shown

in Fig. 6.10, consists of N parallel (one for each frequency band) neural net-

work based prediction modules and these modules share the learned parameters.

Note that the LSTM block in Fig. 6.10 comprises V LSTM cells. Thus, the

proposed architecture can directly process a signal of dimension N × V × 2.

With reference to NS based LSTM classifier in [102], the proposed architecture

can process the multi-band signal simultaneously without increasing the weight

complexity.

For this architecture, we perform the ablation study for selecting the appro-

priate value of the hidden state vector (HSV) hyper-parameter [102]. As shown

in Fig. 6.11, we choose HSV of 64 as it offers better performance than HSV= 32

and lower computational time than HSV= 128.

Note that both the proposed CNN and LSTM models employ weight shar-

ing and do not use any special training strategy for optimization other than the
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proposed multiband classification loss. Hence, the proposed NDLMC method

has time and computational complexity comparable to any other recently single

band classification models at training and test times [100–103].

6.8.3 CNN Architecture for WDLMC

Next, we consider AMC of the wideband spectrum directly from the recon-

structed wideband signal, X̂ (i.e. raw samples). The training of the WDLMC

follows the same approach as that of NDLMC in algorithm 9 except that X̂ is

used instead of X̂s in Line 1. In the end, we have estimated network learnable

parameters, φc, via the steepest descent method (line 8-9). To decide the archi-

tecture for the CNN classifier for WDLMC, we conduct an ablation study, as

shown in Fig. 6.12. We further design the architecture such that it is similar to
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Figure 6.10: LSTM architecture for NDLMC.
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Figure 6.11: Ablation study of LSTM based NDLMC on AP samples of X̂s.
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Figure 6.12: Ablation study of CNN based WDLMC architecture for different values of n-taps.

DLWSS architecture, enabling the proposed model well-suited for realization

on the reconfigurable hardware. The chosen WDLMC architecture is given in

Table 6.6. Note that the additional convolution layer of filter size 1 in the archi-

tecture is to match the output of the model to the dimensions of the ground-truth

label, which is N × (W + 1).

The performance of WDLMC for different wireless channels is shown in the

last rows of Table 6.4, along with its performance for Nyquist sampled data.

Notice that the performance of the proposed architecture for Nyquist and sub-

Nyquist sampled data becomes almost identical as SNR increases showing the
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Table 6.6: CNN architecture for the proposed WDLMC.

Layers Filter Size Number of Filters Output Dimension
Input N ×Q× 2

Conv/ReLu 1× 150 256 N × 150× 256
Conv/ReLu 1× 100 128 N × 51× 128
Conv/ReLu 1× 51 64 N × 1× 64
Conv/ReLU 1× 1 W + 1 N × 1× (W + 1)

Custom pool/softmax N × (W + 1)

strength of the proposed signal reconstruction and classification methodology.

As expected, the performance of WDLMC is lower than NDLMC, especially

for wireless channels with Rayleigh and Rician fading. This indicates that the

design of WDLMC architectures for these channels is itself a challenging re-

search problem. This problem is important from the architecture perspective as

the design of intelligent and reconfigurable physical layer is one of the critical

research areas. In this direction, the significant similarity between our proposed

WDLMC and DLWSS architecture in terms of number of layers, number of

filters and size makes the proposed unified model of DLMC well-suited for

realization on the reconfigurable hardware. For example, via dynamic partial

reconfiguration capability of Zynq SoC, on-the-fly switch between DLWSS and

WDLMC can significantly reduce area and power complexity and cost benefits

due to the reduction in the chip area. Thus, the proposed WDLMC approach is

a novel state-of-the-art contribution in the design of a reconfigurable wideband

spectrum analyzer.

In the next sub-section, we show the performance of the proposed LSTM

based WDLMC architecture.
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6.8.4 LSTM Architecture for WDLMC

We use the LSTM architecture shown is Fig. 6.10 for WDLMC. However, every

LSTM block consists of Q LSTM cells. Thus, the architecture takes the direct

wideband signal of dimensionN×Q×2 as input. We perform an ablation study

for the different sizes of HSV as shown in Fig. 6.13. It is found that similar to

the NDLMC case, HSV= 64 gives better performance.
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Figure 6.13: Ablation study of LSTM based WDLMC on the dataset X̂.

6.9 Simulation Setup

In this section, we discuss the proposed datasets for training and verification of

DLWSS and DLMC. The proposed datasets are generated synthetically using

MATLAB and are the only available datasets for SNS based wideband spectrum

characterization. Each dataset is keyed with a modulation scheme and SNR. We

consider seven widely used modulation schemes (BPSK, QPSK, 16-QAM, 64-

QAM, 128-QAM, 256-QAM, 8-PAM) and SNR ranging from−10 dB to 20 dB
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with an interval of 2 dB. We consider N = 14 frequency bands and FRI based

SNS for digitization consisting of 7 ADCs and hence, has a compression ratio

of 0.5. For every characterization, we take Q = 299 samples from each ADC.

To ensure the considered datasets resemble real-world conditions and our model

can generalize well to different channel variations, we consider various versions

of datasets for Rayleigh and Rician fading channels with a Doppler shift. Next,

we explain the details of the dataset. All datasets are free and available online

at [148].

6.9.1 DWSS: DLWSS Dataset

The DWSS dataset is generated using the complex-valued normalized pseudo

reconstructed signal, X̃n of size N × Q × 2. For generating this dataset, real

and complex parts of X̃ are separated and then normalized in the range [0, 1] as

shown in Fig. 6.4. Since this dataset is used for spectrum sensing, the label, s

of each frequency band will either be vacant (i.e. s(n) = 0) or occupied (i.e.

s(n) = 1) for nth frequency band.

6.9.2 DNMC: NDLMC Dataset

The DNMC dataset uses X̂s, which is generated by passing the reconstructed

wideband signal via symbol recovery. It is different from [102, 103], where a

single frequency band is considered compared to N bands simultaneously in

our dataset depicting a real wideband spectrum. Thus, the label, ŵ is of size

N × 1, where its ith entry, ŵ(i) ∈ {0, 1, ...,W}. Here, ŵ(i) = 0 denotes
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that the ith frequency band is vacant and ŵ(i) ∈ {1, ...,W} denotes that the

ith frequency band is occupied with any one of the W modulations schemes.

For performance analysis in various scenarios, DNMC is further divided into two

sections: 1) DNMC_IQ: Time domain IQ samples of X̂s, and 2) DNMC_AP: Time

domain amplitude-phase samples (i.e. polar representation of IQ samples) of

X̂s.

Each dataset has a shape of N × V × 2, where V = 256 is the number of

modulated symbols. In DNMC_IQ, the two vectors of the third dimension denote

in-phase and quadrature-phase components of X̂s. We normalize this dataset

in the range [0,1] before passing it to the DL models. Similarly, in DNMC_AP,

amplitude and phase form two vectors of the third dimension. The amplitude is

normalized via l2 norm, and phase (in radians) is normalized in the range [−1, 1]

as in [102].

Furthermore, in each case, we consider three types of wireless channels: 1)

AWGN (DNMC_IQ1 and DNMC_AP1), 2) AWGN channel and Rayleigh fading with

a Doppler shift (DNMC_IQ2 and DNMC_AP2), and 3) AWGN channel and Rician

fading with a Doppler shift (DNMC_IQ3 and DNMC_AP3).

6.9.3 DWMC: WDLMC Dataset

The DWMC dataset is generated directly from the complex valued reconstructed

wideband signal, X̂ of size N × Q. This dataset is also separated into real

and imaginary parts and hence, it is of size N × Q × 2. Since the dataset
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classifies the modulation schemes of all N frequency bands, the dataset DWMC

has labels, ŵ ∈ {0, 1, ..,W} as in DNMC. Likewise, we consider three types of

wireless channels: 1) AWGN (DWMC1), 2) AWGN channel and Rayleigh fading

with a Doppler shift (DWMC2), and 3) AWGN channel and Rician fading with a

Doppler shift (DWMC3).

6.9.4 Training Parameters and Tools

The neural networks are implemented using Keras [149] with Tensorflow back-

end on Nvidia Cuda enabled Quadro P4000 GPU. The weights of the models

are initialized using default Keras initializers. We use an Adam optimizer whose

parameters are set as β1 = 0.9 and β2 = 0.999 [150].

6.10 Performance Comparison

In this section, we present results to compare the performance of the proposed

architectures with the state-of-the-art works in literature. From a wireless com-

munication perspective, we consider two parameters: 1) Spectrum sensing ac-

curacy, which in turn guarantees accurate spectrum reconstruction from sub-

Nyquist samples, 2) Modulation classification accuracy for a wide range of

SNRs and wireless channels.
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6.10.1 Spectrum Sensing Performance Analysis on DWSS

In Fig. 6.14, we compare the spectrum sensing accuracy of the proposed DL-

WSS architecture with the conventional OMP based approach [81], which, un-

like DLWSS, requires the prior knowledge of the number of occupied frequency

bands. The analysis is performed for three different wireless channels. As ex-

pected, DLWSS outperforms OMP at low SNRs. Furthermore, at a low SNR

of −10 dB, the accuracy is 5.02%, 5.53% and 3.04% higher than OMP for

AWGN, Rayleigh and Rician fading channels, respectively. Thus, as discussed

in Section 6.7, the proposed DLWSS method, in addition to being more ef-

ficient and less computationally intensive than OMP based spectrum sensing,

DLWSS also improves the performance. Furthermore, switching from OMP to

DLWSS based spectrum reconstruction also allows a reconfigurable architec-

ture via a single unified pipeline due to similarity between DLWSS, NDLMC

and WDLMC building blocks.
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Figure 6.14: Spectrum sensing accuracy of the proposed DLWSS and existing OMP method for various channel
models.
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6.10.2 Modulation Classification Accuracy Comparison

For modulation classification, we compare the performance of the proposed

NDLMC and WDLMC architectures for various IQ and AP datasets discussed

in Section 6.9. We consider the comparison with various approaches such as

SVM classifier with linear function kernel (referred as P-SVM) and random for-

est with 10 and 150 trees in [102, 103] (referred as P-RF10/150). Since these

approaches demand Nyquist-sampled signal, we apply the proposed DLWSS

based DLDR for reconstruction. Furthermore, these approaches cannot charac-

terize the multiband signal directly. Hence, we sequentially pass the detected

occupied bands via symbol recovery compared to simultaneous classification

in the proposed approach. Thus, only occupied frequency bands were consid-

ered while calculating modulation classification accuracy. In addition, we also

considered the SVM classifier (with radial basis kernel) used in [55], but its

performance is similar to P-RF150. Hence, it is not included in the plots.

The CNNNS approach in Fig. 6.15 and Fig. 6.18 denotes the proposed

NDLMC and WDLMC applied on the symbols obtained from the Nyquist sam-

ples (NS) and directly on the wideband NS of signal, X, respectively. Also,

CNNNS requires prior knowledge of occupied frequency bands [103]. In con-

trast,CNNOMP represents NDLMC (for Fig. 6.15) and WDLMC (for Fig. 6.18),

applied on the signal reconstructed via OMP instead of DLWSS. Similarly, the

LSTMNS approach in Fig. 6.19 is the proposed WDLMC applied directly on

the NS.
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Note that the NS approach needs additional signal processing operation be-

fore classification.

6.10.2.1 DNMC_IQ

The modulation classification accuracy of the proposed NDLMC on the CNN

classifier for AWGN, Rayleigh and Rician channels for dataset DNMC_IQ are

shown in Fig. 6.15 (a) and (b). As shown in Fig. 6.15 (a), for AWGN channel,

i.e., with a dataset DNMC_IQ1, the average accuracy is 88.95% and 96.42% for

the SNR range of -10 dB to 20 dB and 0 dB to 20 dB, respectively. At high SNR,

the accuracy of the proposed NDLMC architecture is the same as NS based ap-

proaches while this is not true for CNNBaseline approach. As discussed before,

CNNBaseline also demands additional complex signal processing between the

reconstruction and classification stages. Next, in Fig. 6.15 (b), we consider

the challenging Rayleigh and Rician wireless channels and corresponding clas-

sification accuracy for datasets DNMC_IQ2 and DNMC_IQ3, respectively. Here,

RayleighNS and RicianNS use the CNN classifier on the symbols obtained

from the NS of the received wideband signal. Overall, the average accuracy

of RayleighNDLMC and RicianNDLMC is 77.40% and 77.72%, respectively,

along with closed match between SNS and NS approaches.

To understand the classifier performance and inter-class discrepancies better,

we analyze the confusion plots of the proposed NDLMC for CNN classifier at

an SNR of 0 dB and 18 dB for all three channel models in Fig. 6.16. For all

the channel models, at an SNR of 18 dB, we can see a sharp diagonal with
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Figure 6.15: Modulation classification accuracy of (a) CNN based NDLMC and other classification methods for the
dataset DNMC_IQ1 (i.e. IQ samples of AWGN channel) (b) CNN based NDLMC and NS NDLMC on Rayleigh (i.e.
dataset DNMC_IQ2) and Rician (i.e. dataset DNMC_IQ3) channel models.

187



(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Confusion plots of NDLMC for (a) AWGN channel i.e. DNMC_IQ1 at SNR = 0 dB (b)AWGN channel i.e.
DNMC_IQ1 at SNR = 18 dB (c) Rayleigh channel i.e. DNMC_IQ2 at SNR = 0 dB (d) Rayleigh channel i.e. DNMC_IQ2
at SNR = 18 dB (e) Rician channel i.e. DNMC_IQ3 at SNR = 0 dB (f) Rician channel i.e. DNMC_IQ3 at SNR = 18 dB.
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almost perfect classification except for 16-QAM and 64-QAM. As the SNR

reduces, the sharpness of the diagonal further reduces in the 16/64/128-QAM

region. Since a similar observation is also valid for NS based classifier, we

observed that classification of QAM schemes at low SNR is challenging, and

there is a scope for improvement. Nonetheless, the proposed solution offers

better performance than existing state-of-the-art approaches [55, 101–103] and

directions for future work.

6.10.2.2 DNMC_AP

The modulation classification accuracy of the proposed NDLMC on the LSTM

classifier for AWGN, Rayleigh and Rician fading channel models are shown in

Fig. 6.17 (a) and (b). As shown in Fig. 6.17 (a), for the AWGN channel with

dataset DNMC_AP1, the average accuracy is 87.96% and 95.83% for the SNR

range of -10 dB to 20 dB and 0 dB to 20 dB, respectively. Similar to NDLMC

on the CNN classifier, at a SNR of 10 dB, its classification accuracy becomes

100%. Fig. 6.17 (b) shows the classification accuracy for Rayleigh and Rician

fading channels for dataset DNMC_AP2 and DNMC_AP3, respectively. The average

accuracy for the Rayleigh fading channel is 76.4%, whereas it is 79.66% for

the Rician fading channel. Note that RayleighNS and RicianNS use the LSTM

classifier of the architecture shown in Fig. 6.10 on the symbols recovered from

the Nyquist samples of a wideband signal.

Since LSTM and CNN perform best in AP and IQ dataset, the Table 6.7

shows the average classification performance comparison of NDLMC when
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Figure 6.17: Classification accuracy of LSTM based NDLMC on AP samples for (a) AWGN channel i.e. DNMC_AP1
(b) Rayleigh channel i.e. DNMC_AP2 and Rician channel DNMC_AP3.

CNN classifier and LSTM classifier are used on dataset DNMCIQ and DNMCAP ,

respectively. It is observed that the classification accuracy of NDLMC with

CNN and LSTM classifier is almost same for AWGN and Rayleigh fading chan-

nel whereas LSTM classifier performs better than CNN classifier for Rician

fading channel.
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Table 6.7: Average percentage classification accuracy comparison of LSTMNDLMC on DNMC_AP and CNNNDLMC
on DNMC_IQ.

Method AWGN Rayleigh Rician
LSTMNDLMC 88 76.4 79.9

CNNNDLMC 88.7 77.7 77.4

6.10.2.3 WDLMC

Next, we consider the WDLMC scenario for the same three channels. The

corresponding results are shown in Fig. 6.18 (a) and (b) for dataset DWMC. Since

the direct wideband signal classification has not been done in the literature, there

is no baseline architecture for comparison. As shown in Fig. 6.18 (a), for the

AWGN channel, i.e. for dataset DWMC1, the average accuracy of the CNN based

WDLMC is 70% and 78% for SNR range of −10 dB to 20 dB and 0 dB to

20 dB, respectively. At high SNR, the accuracy of the proposed architecture is

the same as NS based approach, i.e. CNNNS.

Classification performance of datasets DWMC2 and DWMC3 is shown in Fig. 6.18

(b). Here RayleighNS and RicianNS use CNN classifier directly on the wide-

band signal, x(t). Although the performance of the proposed SNS based WDLMC

approaches to that of Nyquist sampling based DLMC (i.e. RayleighNS and

RicianNS) but as expected, both NS and SNS based modulation classifier per-

formance is lower than the NDLMC based classification as shown in Fig. 6.15 (b).

This is a small penalty incurred to reduce the complexity of additional signal

processing between reconstruction and classification stages, along with making

the architecture reconfigurable.
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Figure 6.18: Modulation classification accuracy of (a) CNN based WDLMC and other classification methods
for the dataset DWMC1 (i.e. AWGN channel) (b) CNN based WDLMC and NS WDLMC on Rayleigh (i.e. the
dataset DWMC2) and Rician (i.e. the dataset DWMC3) channel models.

Next, we show the classification performance comparison of LSTM based

WDLMC and other algorithms on the reconstructed wideband signal, X̂. Here,

LSTMWDLMC and CNNWDLMC represent the performance of the LSTM and

CNN, respectively, on the signal X̂. As shown in Fig. 6.19, the average ac-

curacy of LSTMWDLMC for the AWGN channel, i.e. for dataset DWMC1 is
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Figure 6.19: Modulation classification accuracy of CNN based WDLMC (i.e. CNNNS for Nyquist samples and
CNNWDLMC for SNS) and LSTM based WDLMC (i.e. LSTMNS for Nyquist samples and LSTMWDLMC for
SNS) on AWGN channel i.e. dataset DWMC1.

67.7% for the SNR range of −10 dB to 20 dB, which is poorer than that of

the CNNWDLMC model (i.e. 70%). Note that the performance of the pro-

posed CNNWDLMC model is better than the LSTMWDLMC , especially at low

SNR. However, at a very high SNR, i.e. above 12 dB, the performance of

LSTMWDLMC is found to be slightly better than CNNWDLMC .

To summarize, LSTM based WDLMC does not significantly improve per-

formance compared to CNN based WDLMC. Moreover, CNN based WDLMC

offers higher accuracy at lower SNR. Thus, we conclude that CNN based clas-

sifier is the preferred approach for SNS based unified DLMC and offers recon-

figurable architecture due to similarity with DLWSS block.
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6.11 Summary

In this chapter, another wideband signal characterization parameter, i.e., the

identification of the modulation schemes of the occupied frequency bands, is

presented. Two deep learning based modulation classification (DLMC) models,

i.e., 1) Sequential DLMC model and 2) Unified DLMC model, which use sub-

Nyquist samples, are proposed.

A sequential determination of the modulation schemes of occupied frequency

bands is performed in the sequential DLMC model. It uses the recovered sym-

bols of an occupied frequency band, which is reconstructed from the sub-Nyquist

samples. Two deep learning methods, the convolutional neural network (CNN)

on the in phase-quadrature phase (IQ) samples and long short term memory

(LSTM) on the amplitude-phase (AP) samples of the recovered symbols, are

explored. The classification accuracy of the proposed DLMC is compared with

the machine learning (ML) classifiers and the Nyquist sampled dataset. It is

observed that the proposed DLMC has higher classification accuracy than ML

classifiers, and their accuracy approaches that of Nyquist sampled signal with an

increase in signal to noise ratio (SNR). As for the Rayleigh fading channel, the

LSTM classifier has 4.2% higher classification accuracy than the CNN classifier.

Hence, the experimental analysis of the LSTM based DLMC is performed on

the developed USRP-testbed.

A unified DLMC model allows simultaneous determination of the occupancy

status of all frequency bands and modulation schemes of occupied bands. Here,

194



the sub-Nyquist samples are passed directly to the CNN based deep learning

wideband spectrum sensing (DLWSS) classifier to determine the occupancy

status of all frequency bands simultaneously. Then the wideband signal is re-

constructed to classify the modulation scheme of all occupied bands simulta-

neously. We considered two scenarios of the unified DLMC model. The nar-

rowband DLMC (NDLMC) used the recovered symbols of all frequency bands.

To remove the extra overhead of the interpolation and filtering operations of

NDLMC, the wideband DLMC directly passed the reconstructed wideband sig-

nal to the classifier.

The performance of both DLMCs is verified for CNN and LSTM classifiers.

For NDLMC, it is observed that both classifiers have comparable performance.

Whereas for WDLMC, CNN offers 2.3% higher classification accuracy than

LSTM for low SNR. Furthermore, it is noticed that, as expected, NDLMC has

higher classification accuracy than WDLMC. But since WDLMC avoids the

extra overhead of interpolation and filtering operations of NDLMC, and both

DLWSS and WDLMC have a similar architecture of CNN classifier, the CNN

classifier is the preferable choice of the proposed unified DLMC.
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Chapter 7

Conclusions and Future Works

In this chapter, a brief synopsis of the contributions as well as conclusions of

the work presented in this thesis is done. Some directions for future work in

this research area are also identified.

7.1 Conclusions

This thesis addressed the challenges of non-contiguous ultra-wideband spec-

trum characterization. The analysis of an ultra-wideband spectrum requires a

very high Nyquist rate analog to digital converter (ADC), which is area, power

and cost hungry. To overcome this issue, the current implementations either per-

form serial digitization and analysis of every desired frequency bands (i.e. chan-

nels) or apply multiple low rate ADCs in parallel to individually digitize and

analyze each frequency band. The serial frequency band analysis approach can

not be applied in the next-generation wireless network, requiring ultra-reliable

low latency communication. Also, the parallel ADCs approach follows a Velcro
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approach that is not reconfigurable and hardware inefficient due to the sparse na-

ture of a wideband spectrum.

By utilizing the sparse characteristics of a wideband spectrum, the existing

works propose sub-Nyquist sampling (SNS) techniques for the digitization of

a wideband signal via low rate ADCs. The multi-coset sampling (MCS) and

modulated wideband converter (MWC) are state-of-the-art SNS techniques and

have been studied to perform wideband signal characterization. But these SNS

and their corresponding characterization techniques are applicable on a contigu-

ous wideband spectrum. Since the next-generation wireless network works on

a non-contiguous ultra-wideband spectrum, the existing characterization tech-

niques can not be applied. For example, to support various use cases of 5G, non-

contiguous spectrum bands such as 700, 3300-4200, 4400-5000, 2500-2690,

2300-2400, 5925-7125 MHz, and 24.25-29.5 and 37-43.5 GHz are being ex-

plored. Also, IEEE 802.15.4 for industrial internet-of-things (IIoT) networks

have channels in three non-contiguous ranges: 1) One channel in 250-740 MHz,

2) Four channels in 3.1-4.8 GHz, and 3) Eleven channels in 6 - 11.6 GHz. To

deal with this issue, finite rate of innovation (FRI) based SNS technique has

been studied recently, but it requires an intelligence unit to determine a set of

channels to perform digitization and characterization.

The first contribution of this thesis is a channel subset selection algorithms

for Bernoulli channel distribution [J5]. Unlike the existing learning algorithms,

the proposed algorithms are the first of their kind, which has considered feed-

back loss due to reconstruction failure. It is shown that throughput achieved by
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the proposed algorithms increases with an increase in the number of ADCs but

decreases with an increase in the number of channels, N , in a wideband spec-

trum. Furthermore, among all the proposed algorithms, the K+−SSLE (K+−

Shared Subset Learning via channel estimation) performs the best due to chan-

nel subset size estimation. Also, the regret gap between K+−SSLE and other

algorithms increases with an increase in N .

Next, we have proposed subset learning algorithms for the Markovian de-

cision process channel model, and it is the second contribution of the thesis

[J2,J3]. The K+ − εSSLE algorithm performing exploration by selecting sub-

sets of size K with ε probability and exploitation by selecting subsets of size

between K and N with a probability 1 − ε, was studied in [J2]. It is shown

that the regret achieved by K+ − εSSLE saturates with time slots indicating se-

lection of best subset. In [J3], we have proposed K+−BSSLE (i.e. K+−Blind

SSLE) for the learning and decision making unit. Unlike the K+ − εSSLE, the

K+−BSSLE algorithm does not require prior knowledge of the minimum gap

between channel statistics (i.e. probability of vacancy). It is shown that, since

the K+−BSSLE, performs the exploitation based on the transitional and sta-

tionary quality index, the K+−BSSLE has a lower regret than the K+− εSSLE

algorithm. By developing the USRP hardware testbed, the performance of the

proposed algorithms is also validated on the real-radio signal.

By utilizing the proposed channel subset selection algorithm, ultra-wideband

signal characterization is performed in the rest of the work. The development

of an SNS based intelligent reconfigurable ultra-wideband angular spectrum
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sensing (UWASS) receiver is the third contribution of the thesis [J2,C1]. The

proposed UWASS is able to determine the carrier frequency and direction of

arrival (DoA) jointly, Unlike the existing SNS based wideband angular sens-

ing, the proposed UWASS is independent of the number of active transmissions

in the spectrum. Thus, it faces a lower number of characterization failures as

compared to the existing methods. Furthermore, to determine the occupancy sta-

tus of channels selected by the K+−BSSLE algorithm, the occupancy statistics

learnt by theK+−BSSLE are used as an input to the Bayesian matching pursuit

algorithm. Finally, to determine the characteristics of the occupied frequency

band, a double grid approach is applied to the frequency bands and DoAs. The

simulation results showed that as the proposed UWASS faces a lesser number

of failures, it has lower normalized DoA and carrier frequency estimation error

and higher throughput than the existing wideband angular sensing methods. The

work presented in [J2] is applicable for any uniform antenna array configuration.

In [C1], we extended the UWASS for the sparse antenna array configuration and

performed rank enhancement on the received non-contiguous sub-Nyquist sam-

pled data followed by joint estimation of carrier frequency and DoA.

A multi-antenna USRP hardware testbed was developed to validate the func-

tionality of the proposed intelligent reconfigurable UWASS method, and it is

the fourth contribution of the thesis [J1,D1,D2]. Multiple transmitter USRPs are

used to generate a multi-directional multi-band wireless traffic signal. Depend-

ing on the occupancy probability of every frequency band, an SC-FDMA signal

is transmitted over each occupied band. Among the wireless multi-directional
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multi-band traffic signal, a phase synchronization signal is also received by ev-

ery antenna of the developed multi-antenna receiver. The proposed intelligent

and reconfigurable UWASS technique [J2] and its extension for sparse antenna

array are then implemented on the LabVIEW tool for validation. The exper-

imental analysis is done for throughput, DoA Estimation Error and Deviation

from true DoA for various antenna gain values and antenna array configurations.

It is shown that throughput achieved by 4-antenna sparse antenna array is higher

than 4-antenna uniform linear array, and it happened due to the addition of 2 vir-

tual antennas at the sparse array. It is also proved that the DoA estimation error

decreases with an increase in the number of antennas.

In the next works, the identification of another wideband spectrum character-

ization parameter, i.e. modulation schemes, is performed. An intelligent SNS

based sequential automatic modulation classifier (AMC) is explored in [P1],

and it is the fifth contribution of the thesis. Here, recovered symbols of every

occupied frequency band are passed sequentially to a long short term memory

(LSTM), and convolution neural network (CNN) based deep learning modula-

tion classifiers (DLMC). The performance comparison is made with existing

machine learning based SNS-AMC [J4, C5]. It is shown that the proposed

SNS-DLMC has 29.5% higher classification accuracy at −10 dB and 16.3%

higher average accuracy than the machine learning based random forest classi-

fier. Since the performance of LSTM based DLMC (LSTM-DLMC) is 4.2%

higher than the CNN based DLMC, the validation of only LSTM-DLMC is

performed on the developed USRP hardware testbed. Similar to the simulation
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results, it is observed that the classification accuracy of the proposed SNS based

LSTM-DLMC approaches to the Nyquist sampling based LSTM-DLMC with

an increase in antenna gain (or SNR, for simulation results).

To simultaneously determine the occupancy status and modulation schemes

of occupied bands, a unified DLMC model is proposed in [J6], and it is the

sixth contribution of the thesis. The proposed unified DLMC is the first to pro-

vide an end-to-end model for deep learning based wideband spectrum sensing

(DLWSS), followed by reconstruction and DLMC. CNN model is utilized to

perform DLWSS simultaneously on all frequency bands, and its comparison is

made with the conventional orthogonal matching pursuit (OMP) algorithm. At

a low SNR of−10 dB, the proposed DLWSS has 5%, 5.53% and 3%higher clas-

sification accuracy than OMP for AWGN, Rayleigh and Rician fading channel

models. Two different DLMC techniques are proposed in [J6], i.e. Narrowband

DLMC (NDLMC) and Wideband DLMC (WDLMC), to perform simultaneous

AMC on all occupied frequency bands. It is shown that since the recovered

symbols of all frequency bands are passed to DLMC, the NDLMC has higher

classification accuracy than the WDLMC, which directly used the reconstructed

wideband signal for DLMC. But since WDLMC avoids the extra overhead of

interpolation and filtering operations and has the similar CNN architecture to

DLWSS, the CNN based WDLMC is a preferable choice for developing an end-

to-end prototype of unified DLMC.

For an easy evaluation, the summary of comparison between the existing and

proposed subset learning algorithms presented in this thesis is given in Table
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Table 7.1: Comparison of various subset learning (SL) algorithms.

Proposed Subset Size, |β| Number of Subsets, |S| Estimate Subset Complexity
SL of |β| updates in
Algorithms each slot

K-SL K
C(N,K)

No One i.e. β

subset Lowest

K+-SL K to N
2N −

∑K−1
k=0 C(N, k)

No One i.e. β High

subset

K+-SSL K to N 2N −
∑K−1

k=0 C(N, k) No All Highest

K+-RSSL K to N • 2N −
∑K−1

k=0 C(N, k) No
All

High

• Reduces by 50%

after W rounds

K+-SSLE •K for W slots • Depends on |β| Yes One i.e. β Low

•K to N subset

K+ε-SSLE •K with ε • C(N,K) Yes One i.e. β

probability subset Low

•K to N with • Depends on |β|
1− ε probability

K+-BSSLE K to N • Depends on |β| Yes One i.e. β Low

subset

7.1. Similarly, the summary of comparison between existing wideband angular

sensing and UWASS presented in this thesis is given in Table 7.2.

7.2 Future Works

In this thesis, subset learning algorithms for non-contiguous channels selection,

SNS based UWASS technique for carrier frequency and DoA estimation, and

SNS based DLMC to identify the modulation schemes of occupied channels

were proposed. Along with these low-rate wideband spectrum characterization,

USRP hardware testbeds were also developed for the validation of the proposed

wideband spectrum characterization techniques. Some research problems to
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Table 7.2: Hardware complexity comparison of different UWASS approaches.

UWASS Number of Number of Analog BW Precise Sensing Failure

Techniques Antennas ADCs of ADCs Delay M ≥ L βbusy ≥ L

[23] M + 1 2M + 1 High Required Fails Fails

[24] M + 1 M + 1 High Not Required Fails Fails

Required

[25] 2M + 1 2M + 1 Low Not Fails Fails

Required

[26] 4M
K

4M+K−1
K High Required Fails when Fails

M ≥ Ls
[27] < M + 1 < (M + 1)K High Required Fails when Fails

M ≥ Ls
[J2] M + 1 2M − 1 Low Not Required Does not Fails

Fail

[C1] < M + 1 < 2M Low Required Does not Fails when

Fail βbusy ≥ Ls
[J1] < M + 1 < 2M − 1 Low Not Required Does not Fails when

Fail βbusy ≥ Ls

pursue the discussed work further are discussed in the following sub-sections.

7.2.1 Wideband Spectrum Characterization Under Frequency Hopping Signal Model

Frequency hopping (FH) is widely used in wireless standards to mitigate inter-

ference, channel fading and jamming effects. The exiting wideband spectrum

characterization techniques studied in the previous chapters consider a simple

scenario where users transmit only at a particular frequency. But in the FH sig-

nal model, users switch their carrier frequencies many times throughout their

transmission period, hence, reduces the sparsity. For example, let there are FH

users, as shown in Fig. 7.1. If the sensing time is for only 3 time slots, then

out of 8 available frequencies, only 2 are occupied. But if the sensing time is
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8 time slots, then 5 out of 8 frequencies becomes occupied, making the signal

non-sparse. Thus, the SNS based low rate digitization can not be applied even

when the number of active transmissions is sparse in a single time slot.
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 FH User 1 

 FH User 2 

Sensing Time 

Figure 7.1: Spectrum utilization under FH use case.

The existing SNS based digitization and signal reconstruction technique ei-

ther requires the prior knowledge of frequency hopping interval or performs

reconstruction of the spectrum at every time slot, increasing the signal process-

ing time and hence, sensing time. Hence, there is a need for an efficient SNS

and characterization technique for an FH signal model.

7.2.2 Task based Quantization for Massive-Multiple Input Multiple Output

The massive MIMO (mMIMO) system has a large number of antennas and thus

the number of ADCs in the analog front end. The power and cost of mMIMO

systems depend on the operating signal bandwidth and the number of quan-

tization bits required by the ADCs. By applying the SNS based digitization,

the work focused in the thesis, considers the operating signal bandwidth aspect.

However, there is a need to look into the low-level quantization. But with a

lesser value of quantization bits, the quantization noise gets added to the digi-
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tally converted signal. This permanently distorts the information present in the

actual signal.

Recently, a task based quantization is being studied [151]. Instead of per-

forming characterization on the recovered signal, it aims to jointly develop a

quantization system and characterization task module. To perform this, it uses

the prior knowledge of statistical model relating the input analog signal and

output characterization task. However, the ADCs considered in the task based

quantization use the wideband signal as an input. Thus, there is a need for

a power and cost efficient digitization technique that consider both, the input

signal bandwidth and the number of quantization bits, aspects to perform char-

acterization in mMIMO system.

205



References

[1] M. Labib, V. Marojevic, J. H. Reed and A. I. Zaghloul, “Extending LTE

into the Unlicensed Spectrum: Technical Analysis of the Proposed Vari-

ants,” in IEEE Communications Standards Magazine, vol. 1, no. 4, pp. 31-

39, Dec. 2017.

[2] F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths and L. Hanzo, “Joint

Radar and Communication Design: Applications, State-of-the-Art, and the

Road Ahead,” in IEEE Transactions on Communications, vol. 68, no. 6,

pp. 3834-3862, June 2020.

[3] M. K. Waidhuba, S. S. Tiang, S. Manzoor and M. V. Hong, “A Wire-

less Backhaul using a Massive MIMO - 5G NR HetNet design; at Sub-

6GHz and MillimetreWave Frequencies,” in IEEE International Confer-

ence on Smart Computing & Communications (ICSCC), pp. 1-5, Sep. 2019,

Sarawak, Malaysia.

[4] W. S. H. M. W. Ahmad et al., “5G Technology: Towards Dynamic Spec-

trum Sharing Using Cognitive Radio Networks,” in IEEE Access, vol. 8,

pp. 14460-14488, Jan. 2020.

206



[5] H. Hu, H. Gao, Z. Li and Y. Zhu, “A Sub 6GHz Massive MIMO System

for 5G New Radio,” in IEEE 85th Vehicular Technology Conference (VTC

Spring), pp. 1-5, Nov. 2017, Sydney, Australia.
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Appendix A

In this section, we describe the LabVIEW-NXG block diagram of the dynamic

wireless traffic generator module. The functionality of this module, as shown

in Fig. 2, can be divided into six sub-blocks. The first sub-block creates the

transmission session for the specified USRP device Ids and defines the trans-

mission parameters like transmission frequency, IQ sampling rate, antenna gain,

RF channel number and transmission port. The second sub-block generates a

multiband signal, xu(t), of ten frequency bands. The first band is a NULL band

and is reserved for the phase reference signal, p(t), whereas the second band

is reserved for the synchronization signal (SS). The rest of the eight bands, i.e.

U1 to U8, carries the user data signal (UDS). In xu(t), the SS and U1 to U8

frequency bands consist of uncorrelated LTE SC-FDMA signals of bandwidth,

B = 1.4 MHz.

Since the occupancy status of U1 to U8 frequency bands vary according to

probability statistics, we make the transition probabilities, i.e. p01 and p10,

as user-defined parameters in the sub-block 3. As we consider N = 8 fre-

quency bands, the size of vectors p10 and p10 is 1 × 8 and the same is shown

in sub-block 3. The multiband signal, xu(t) from sub-block 2 and puv, where
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u, v ∈ {0, 1}, from sub-block 3 are utilized by the sub-block 4 to generate an

M -directional multi-user traffic signal. The sub-block 4 generates the masking

bits for U1 to U8 according to puv. However, the masking operation is performed

when the SS changes its status. While designing, we consider M = 3. Hence,

masking is performed such that three directional output signals of sub-block

4 contain the information of {SS, U1, U2}, {U3, U4, U5} and {U6, U7, U8}

frequency bands. These directional multi-user signals are then passed to the

sub-block 5, which is responsible for the real-time transmission of these sig-

nals via three channels of the two NI-USRP 2944R transmitters. Finally, the

sub-block 6 closes the transmitter session for the specified device Ids.

Sub-Block 1 

Sub-Block 2 

Sub-Block 3 

Sub-Block 4 

Sub-Block 5 Sub-
Block 6 

Figure 2: LabVIEW block diagram of dynamic wireless traffic generator module.
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Appendix B

Here, we present the LabVIEW-NXG block diagram of the UWASS receiver

module. As shown in Fig. 3, the design of the receiver module for UWASS

consists of nine sub-blocks. The sub-block 1 creates the receiver session for

the specified USRP device Ids and configures the receiver USRPs parameters

like receiver channel sequence, external reference clock signal and PPS sig-

nal, antenna ports, antenna gains, reception carrier frequency, IQ sampling rate

and timestamp. Once these parameters are initialized, sub-blocks 2 to 8 run

continuously in two while loops. The first while loop performs the continu-

ous reception of the RF wideband signal, y[n] = x[n] + p[n] in sub-block 2.

Since while designing UWASS receiver we consider L = 4 antenna array,

y[n] = [y1[n] y2[n] y3[n] y4[n]]T consists of signals received via four channels

of two NI-USRP 2944R. The sub-block 3 stores the received y[n] into the queue

via enqueue operation.

Now, the second while loop first performs the dequeue operation in sub-

block 4. Here it extracts the four-channel data from the queue. Next, in sub-

block 5, the synchronization signal from the received y[n] is used to detect

the change of status of U1 to U8 bands. As discussed in Section V-A, to per-
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Figure 3: LabVIEW block diagram of UWASS receiver module.

form this, we filter out the SS band from y[n] and check the status of the SS

band via energy detector. It generates a pulse signal, pb(t), whenever the SS

band changes its status, which thereby tells the change of status of U1 and U8

bands. Along with the execution of sub-block 5, sub-block 6 determines the

phase offset and performs phase calibration, as discussed in Section V-A. In

this sub-block, the received phase reference signal (PRS) is extracted from y[n].

The phase of received PRS corresponds to the phase offset, φφφ, incurred in the

received UDS due to the independent channel noise of the receiving channels of

USRP-2944R. This phase offset is removed from the received UDS signal, and
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the phase calibrated UDS signal, ỹ[n] is passed to the sub-block 7.

Note that the sub-blocks 7 and 8 perform execution whenever the sub-block 5

generates the pulse signal, pb(t). The sub-block 7 implements the reconfig-

urable and intelligent UWASS unit via various LDM methods. Here, each LDM

method determines the |β| and β, as discussed in Section V-B3 and [63,73,140],

followed by the digitization and UWASS of β frequency bands. The sub-block 8

calculates and displays the final output, i.e. throughput (total number of va-

cant opportunities), occupancy status of frequency bands and DoA of occupied

bands. Finally, the sub-block 9 closes the receiver session, which is created by

the sub-block 1.
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