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Abstract
Over the past decade with the explosion of smartphones and pervasive usage of data

connectivity, location-based services have increasingly become popular. As a result, Location-
based Social Network(LBSN) such as Foursquare, Facebook Places, Brightkite and Gowalla
have emerged. These platforms provide users not only to connect, share, and interact but
also allow users to share their check-in information with their friends. These networks typ-
ically do not expose the check-in information of users due to privacy concerns. Although,
popular LBSNs such as Foursquare and Brightkite have their datasets publicly available
but are anonymized, wherein only the latitude and longitude of each check-in are avail-
able. The latitude and longitude information only provides users’ spatial preferences but
to know their taste, knowing the location type such as restaurant, multiplex, fitness cen-
ter, etc. would be essential. In the previous work, the location categories (e.g. restaurant,
multiplex, etc.) were overlooked because of the unavailability of this information. In this
thesis, we brought in the new direction of inferring categories and leveraging them for
Location-based applications such as Location Prediction, Location Promotion, Influence
Maximization, and Community Detection.

We align the location information in different networks to infer categories first at a
coarse level (i.e. multiple categories for a location) for the publicly available datasets.
Moreover, we also collect LBSNs data from Foursquare through Twitter spatio-temporal
posts, where we also obtain the categories along with check-in location, time, and users’
social connections. The dataset1 is released publicly for researchers. We call it the fine-
grained category information as we have a single category associated with each location.

The crucial task at hand is to model all this heterogeneous information i.e. spatial, tem-
poral, and categorical to leverage it for location-based applications. We propose models
that jointly model spatial, temporal, and categorical features together, and show that the
use of auxiliary information and joint modeling provides improvement over state-of-the-
art methods. In this thesis, we propose three semi-supervised machine learning models:
1) Category Language Model for next location prediction, 2) LoCaTe and LoCaTe+ for
quantifying the influence between two users, and 3) CoLAB for determining implicit com-
munities and to model the information diffusion process in LBSNs.

1https://goo.gl/ayzehx
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Chapter 1

Introduction

1.1 Location Based Social Networks

A social network is a social structure made up of individuals connected by one or more

specific types of inter-dependency, such as friendship, common interests, and shared knowl-

edge. Generally, a social networking service builds on and reflects the real-life social net-

works among people through online platforms such as a website, providing ways for users

to share ideas, activities, events, and interests over the Internet. The increasing availability

of location-acquisition technology (for example GPS1 and Wi-Fi) empowers people to add

a location dimension to existing online social networks. For example, Location-based So-

cial Networks(LBSNs) such as Foursquare 2, and Facebook Places 3 provide platforms to

users not only to connect, share and interact but also to share their check-in (or visit) infor-

mation with their friends. Typical Location-Based Social Networks (LBSNs) allow users

to simply share the location of their visit in a check-in post, optionally allowing one to aug-

ment the check-in with additional text and/or media. Figure 1.1 illustrates the central role

played by the location information in Foursquare, a popular LBSN. The check-in history

in the leftmost screen is represented as a sequence of locations along with the timestamp,
1https://en.wikipedia.org/wiki/Global
2https://foursquare.com/
3https://www.facebook.com/
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Figure 1.1: Location Usage in Foursquare

the categories of the locations indicated in the icon. The middle screen represents a typ-

ical search scenario in Foursquare, involving a purpose with the location. This implicitly

become as the primary factor for the search that filters out other locations except eating

out places that provide lunch. The third screen indicates a listing of connections sorted

according to the distance from the user.

The three major components of LBSNs include4:

1. Social drives traffic through interaction and sharing information among connections.

Smartphone users spend the bulk of their time on social networks which can drive a

lot of retail traffic. 80% of smartphone users access social networking sites on their

devices and 55% of smartphone users access social networking sites at least once per

day on their devices. Figure 1.2 shows the average minutes per week smartphone

users spend on social networking sites.

2. Local implies venues, check-ins, and deals. Local drives action such as users look at

what’s nearby and then make their visits as shown in figure 1.3

3. Mobile drives opportunity as anywhere, anytime an action can be taken. Most of
4http://www.cruc.es/the-retailers-guide-to-solomo-infographic/
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Figure 1.2: Average minutes per week smartphone users spend on social networking sites
(http://www.cruc.es/the-retailers-guide-to-solomo-infographic/)

the LBSNs have mobile applications which makes it more engaging. 81.5 % of

smartphone users spend time using mobile apps while only 18.5 % of smartphone

users spend time using mobile web browsers. Thus, whenever a user visits a location,

makes a check-in on the mobile apps of LBSNs.

The LBSNs have gained attention because 1) users’ check-in bridges the Geo-social

gap between the real world and the online social network 2) easy accessibility to spatio-

temporal mobility data. Users choose to broadcast their check-ins to Twitter while using a

mobile-based app from Foursquare, Swarmapp. This provides us an opportunity to capture

their check-ins by crawling tweets with the keyword swarmapp.com on the Twitter public

streaming API 5. We collect the data by first extracting the user-IDs from these check-in

tweets and using it to harvest more check-ins of the user by crawling their tweet timelines

with Twitter API 6. As a result, enormous amounts of users’ spatio-temporal mobility in-

formation is available - e.g., Foursquare announced in early 2018 that it collects more than

3 billion locations “check-ins” every month from its more than 25 million users 7

5https://developer.twitter.com/en/docs
6https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user timeline.HTML
7https://bit.ly/2BdhnnP (accessed in February 2019)
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Figure 1.3: Users’ search for what’s nearby and then plan their visits
(http://www.cruc.es/the-retailers-guide-to-solomo-infographic/)

1.2 Applications

The availability of enormous spatio-temporal mobility data has attracted a lot of researchers

in mining LBSN data. Applications of mining spatio-temporal data (available from dis-

parate sources) are divided into two broad categories based on the scope of the application

i.e. for a single user or a mass of users as follows:

1. Micro Level :

• Location / Event recommendation: This includes a recommendation for restau-

rants, museums, or other points of interest or events near the user’s location.

Most of the recommender systems make use of users’ check-in history available

from LBSNs and current location from a mobile device, for the recommenda-

tion.

• Targeted marketing and location promotion: For example, knowing that a spe-

cific user’s next check-in is likely to be at a cinema could be used to prioritize

movie ticket offers to be sent to her.
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• Wearable devices application: Wearable devices such as smart bands and smart-

watches connected with smartphones and mobile devices are used to collect

data and process it to extract information such as daily physical activities and

health conditions. These include application in healthcare domain [23, 128,

142].

2. Macro Level : For macro level applications data is mostly collected using GIS (Ge-

ographical Information Systems) and sometimes using mobile devices as well.

• Urban Computing : Applications such as identifying functional regions, and

diagnosing transportation problems [87, 55] .

• Disaster Management : For resource distribution and rescue planning mobile

information of users through crowd sourcing is made use of [78].

• Environmental Informatics : To detect air and noise pollution mobile informa-

tion along with weather conditions are utilized [24].

In this work, we only focus on a micro-level application that focuses more on a sin-

gle user rather than a mass of users. For example, we focus on applications such as next

location prediction of a user, quantifying influence between two users, and community de-

tection. Moreover, the data for all these applications is collected from LBSNs and not from

social theories, geographical information systems, and sensor networks. In this work, we

only focus on the users’ interplay with their online social networks and their geographical

footprints.

1.3 Challenges Involved

Mining spatio-temporal, contextual and social information from LBSNs creates new op-

portunities, but its unique properties also bring new challenges. In this section, we present

some of the challenges addressed in this thesis:
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1.3.1 Location Context Awareness

1. Granularity of location information: A user’s current location can be represented

at different levels of granularity (the hierarchical property of locations). Choosing

a proper granularity for the recommendation scenario is important and challenging.

For instance, we should use a finer granularity when recommending restaurants to

a user, while a relatively coarse granularity (like in a city or state) for local news

recommendations.

2. Distance based context of location: People are more likely to visit nearby locations

than distant ones. However, the quality of location (for example, a restaurant), user

preferences, and influence from friends also matter. For example, the user might be

recommended beaches when traveling to Goa, even though the user prefers indoor

activities more than beaches typically.

3. Sequential property of locations: A user’s current location affects future travel deci-

sions. For instance, the majority of people visiting Gateway Of India, Mumbai will

subsequently visit Taj Hotel, Mumbai or a dessert recommendation may be appro-

priate after visiting certain restaurants. Discovering these sequential relations and

incorporating them into prediction or recommendation tasks presents subtle chal-

lenges.

4. User’s preferences: A user’s preferences span multiple kinds of interests, such as

shopping, cycling, and arts. Also, user’s preferences have hierarchies and granularity,

such as ”Food”→ ”Italian food”→ ”White Sauce pasta”. Thus, we can observe that

user’s preferences are constantly evolving (and are location-dependent).

5. Data Sparsity: As users do not share their locations everywhere, a full set of a user’s

location history does not exist. Learning a user’s preferences from sparse location

data is a challenging task.
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1.3.2 Heterogeneous Feature Set

A location is not only an additional dimension of information about the user but also an

important object in the LBSN. Inferring the similarity or correlation between two objects in

a heterogeneous graph must incorporate the information from related nodes of other types.

For instance, determining the connection between two users in an LBSN needs to involve

the user-location and location-location relations in addition to the user-user relation. A

location shared by two users could be an evidence of similarity, or it could simply indicate

that a location is very popular. Only a careful analysis can determine which case holds, and

to what extent it should influence the strength of the connection between the users.

1.4 Contributions

The key contributions made in this thesis include:

• We bring in the new direction of inferring categories (i.e. type of location such as

restaurant, club, cinema, gym etc.) and leveraging it for Location based applications

such as location prediction[70], location promotion[67], influence maximization[68]

and community detection[69].

• We align location in different networks to infer categories at a coarse level (i.e. mul-

tiple categories for a location) for the existing publicly available data sets. Moreover,

we also collect LBSNs data from Foursquare through Twitter spatio-temporal posts

(as discussed in the later chapter), where we also obtain the categories along with the

check-in location, time, and user’s social connections. The data set is made publicly

available 8. We call it fine-grained category information as we have a single category

associated with each location.

• The crucial task at hand is to model all these heterogeneous information i.e. spatial,

8https://goo.gl/ayzehx
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temporal, and categorical to leverage it for location-based applications. We propose

models that jointly model spatial, temporal, and categorical features together, and

show auxiliary information and joint modeling provides improvement over state-of-

the-art methods.

• In this work, we propose semi-supervised machine learning models: 1) Category

Language Model for next location prediction, 2) LoCaTe and LoCaTe+ for quanti-

fying influence between two users, and 3) CoLAB for determining implicit commu-

nities and to also model the information diffusion process. LoCaTe+ and CoLAB

are mutually exciting point process[40] based techniques, using which we can model

the influence of one user on another user by explicitly modeling different types of

triggering events for a user to check in at a location.

1.5 Problems Addressed

At a high level, in this work, we identified the potential of using auxiliary features such as

the category of location (e.g. restaurant, coffee shop) to model users’ interests for a location

along with spatial and temporal footprints and showed its applicability on problems such

as location prediction, location promotion, location recommendation, and influence maxi-

mization. Later, we also utilize these features to come up with a model that could model

the diffusion process of location adoption behavior and identify communities in LBSN.

The key questions addressed in this thesis are:

• Q1. How to effectively collect and curate spatio-temporal data with auxiliary infor-

mation?

• Q2. How to improve the quantification of influence strength between users through

auxiliary data?
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• Q3. How to identify the latent community of users based on their check-in spatio-

temporal data?

1.5.1 Effective Spatio-Temporal Data Augmentation

Q1. How to effectively collect and curate spatio-temporal data with auxiliary information?

Building sophisticated models for Location-based services, by enriching the check-in

data by combining them with the information from other sources is challenging due to the

limited data that these LBSNs expose due to privacy concerns. In Chapter 3, we propose

a framework to use the location data from LBSNs, combine it with the data from maps for

associating a set of venue categories with these locations. For example, if the user is found

to be checking in at a mall that has cafes, cinemas, and restaurants according to the map,

all this information is associated. This category information is then leveraged to predict

the next check-in location by the user. Our experiments with publicly available check-in

data set show that this approach improves on the state-of-the-art methods for the location

prediction task.

1.5.2 Influence Modeling with Augmented Spatio-Temporal Data

Q2. How to improve the quantification of influence strength between users through auxil-

iary data?

Quantifying influence between users in LBSNs is useful in various settings such as

location promotion, personalized recommendations, mobility pattern prediction, etc. In

Chapter 4, we develop a model to quantify the influence specific to a location between a

pair of users. Specifically, we develop a framework called LoCaTe, that combines (a) a

user mobility model based on kernel density estimates; (b) a model of the semantics of

the location using topic models; and (c) a user correlation model that uses an exponential

distribution. We further develop LoCaTe+, an advanced model within the same framework

where user correlation is quantified using a Mutually Exciting Hawkes Process. We show
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the applicability of LoCaTe and LoCaTe+ for location promotion and location recommen-

dation tasks using LBSNs. Our models are validated using a long-term crawl of Foursquare

data collected between Jan 2015 - Feb 2016, as well as on other publicly available LBSN

datasets. Our experiments demonstrate the efficacy of the LoCaTe framework in captur-

ing location-specific influence between users. We also show that our models improve over

state-of-the-art models for the task of location promotion as well as location recommenda-

tion.

1.5.3 Latent Community Mining from Spatio-Temporal Activity

Q3. How to identify the latent community of users based on their check-in spatio-temporal

data?

The large traces of users’ spatio-temporal footprints often manifest in hidden (pos-

sibly overlapping) communities of users with similar interests. Inferring these implicit

communities is crucial for forming user profiles for improvements in recommendation and

prediction tasks. In Chapter 5, we propose a model based on spatio-temporal point pro-

cesses in continuous time but discrete space of locations that simultaneously models the

implicit communities of users based on their check-in activities, without making use of

their social network connections. This model captures the semantic features of the location,

user-to-user influence along spatial and temporal preferences of users. To learn the latent

community of users and model parameters, we propose an algorithm based on stochas-

tic variational inference. To the best of our knowledge, this is the first attempt at jointly

modeling the diffusion process with activity-driven implicit communities. We demonstrate

its effectiveness through improvements in location prediction tasks over geo-tagged event

traces collected from Foursquare check-ins.
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Chapter 2

Related Work

2.1 Network Alignment

People nowadays usually participate in multiple online social networks simultaneously to

enjoy more social network services. Besides the common users, social networks providing

similar services can also share many other kinds of information entities, e.g., locations,

reviews, videos, and products. The network Alignment problem aims at aligning different

networks across common entities. However, these shared information entities in different

networks are mostly isolated without any known corresponding connections. Thus, net-

work alignment becomes a research problem in determining such potential corresponding

connections linking multiple kinds of shared entities across networks simultaneously.

This problem, has been studied in various areas, e.g., protein-protein interaction net-

work alignment in bio informatics [46, 53, 117], chemical compound matching in chem-

istry [118], data schema matching data warehouse [83], ontology alignment web semantics

[22], graph matching in combinatorial mathematics [80], and figure matching and merging

in computer vision [19, 2].

Several variants of the node alignment [158, 155] problem have been studied in the

literature, also known as link inference/prediction [52, 113], correlating accounts [35], user
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identity linkage (UIL) [74], etc. In this work, we align locations based on coordinates of

the location, name, and type of location. This is different from the user identity linkage

problem primarily because of the fact location coordinates are available and thus similarity

measures defined essentially consider the Euclidean distance as one of the factors.

The existing research efforts can be broadly classified into two main categories: profile-

based and network-based identity linkage.

2.1.1 Profile-based methods

Profile-based methods leverage user’s profile information (e.g., username [148], spatio-

temporal patterns [108], posts [35], writing style [90], etc.) to link accounts across differ-

ent sites. For instance, Reza et al. find correlating accounts using user names by modeling

the naming process and rules from the perspective of information redundancy [148]. How-

ever, user names can be deliberately selected and modified at any time, which increases

the difficulty of completing the User Identity Linkage (UIL) task. Writing style identi-

fication is another promising way to localize multi-account users while revealing various

camouflage behaviors[90]. Arvind et al. used the writing style of user-generated text, e.g.,

grammatical structure and frequency of letters to identify users [90]. However, this method

results in over-fitting, especially for short texts such as tweets, because it involves too many

features. Recent research results investigated the security issues of multi-accounts. For

instance, Jiang et al. propose a semi-supervised transfer learning method to predict cross-

platform behaviors through sparse overlapped crowds [107]. Qian et al. protect against

de-anonymization attack by discovering the approach for inferring privacy using knowl-

edge graphs [103]. Luo et al. present a uni-class classification-based approach to detect

multi-account users across OSN sites [135]. Riederer et al. use the timestamped location

data generated by users to infer the user identities across the OSNs [108]. Zhang et al.

present an energy-based model to link user identities by extracting distance-based profile

features [160].
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Almost all previous methods focus on either writing-style analysis or user behavior in-

ference – however, in addition to the risk(s) of privacy leakage [103], they have a drawback

in terms of coping with potential inconsistencies [115].

2.1.2 Network-based methods

Network-based methods are becoming increasingly promising in tackling the UIL problem

and have received much attention because they only require structural information to align

networks based on anchor nodes. For instance, BIG-ALIGN [53] introduces the problem of

aligning bipartite graphs and proposes a gradient-descent-based solution. In [119], Tan et

al. model user relationship using a hyper-graph and project the manifolds of two OSNs onto

a common embedded space to correlate accounts. Neighborhood-based features seem like a

natural choice for the UIL problem [160, 89, 149], relying on computing the Adamic/Adar

scores to measure the neighborhood similarity [168]. CLF [154] predicts both anchor nodes

and social links by transferring information related to social links formed by anchor nodes

in the source network to the target network.

Inspired by word embedding techniques (e.g., word2vec [85] and Glove [98]) in natural

language processing, a number of approaches have been proposed to embed the graph, e.g.,

DeepWalk [99], Line [120], SDNE [126], SDAE [9], node2vec [37], MM-DeepWalk [124],

M-NMF [129], TransNet [125], CANE [123] – to name a few. Recently, some researchers

have exploited Convolutional Neural Networks (CNN) and spectral graph theory to learn

the representation of arbitrary networks, such as Planetoid [140], GraphCNN [21], Patchy-

SAN [94], GCN [50], etc.

In the context of the UIL task, Man et al. [79] used network embedding techniques

to capture latent structural regularities of observed anchor links and further learn a cross-

network mapping for predicting anchor links. Liu et al. proposed IONE which also embeds

two OSNs onto a common space to capture the social contacts of users [72]. PCT [156]

aims at inferring potential corresponding connections linking multiple kinds of shared en-
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tities across networks simultaneously through a combination of both profile and network

features.

Existing network-based methods embed structures of nodes from their local context

by preserving the first and/or second-order proximity to link accounts across OSNs. The

local structure of a network contains rich information for a group of nodes, but it is hard

for existing UIL algorithms to discriminate the real user identity from its neighborhoods.

Previous works only leverage the partial anchor nodes for supervised training, including

embedding and network alignment while using the rest for testing which incurs insufficient

training and inefficient linking. Moreover, many UIL algorithms including IONE use an-

chor nodes to embed and align non-anchor nodes [72]. However, their anchor nodes may

become deviated (not aligned anymore) after training.

In this work, we do node alignment across location nodes to obtain location information

such as categories, reviews, tips, etc. We mostly use spatial coordinates and the name as

our feature set to extract the location information.

2.2 Geo-Social Link Prediction

2.2.1 Social-Link Prediction

Who is most likely to interact with a given user in the future? For example, friend sug-

gestions on Facebook. In geo-social media, we can further improve the performance of

link prediction using the info from the geographical activities of users. Scellato et al. in

[111] have shown that more popular of a place visited by two users, the average probability

of being friends decreases. For example, public places: touristic places, airports, stations.

Unpopular places (less common number of check-ins) are likely to be of significant impor-

tance for them. For example, private houses. Wang et al. in [127] have shown that jointly

using social graph and mobility features (i.e. high degree of overlap among trajectories)

yields better performance. Thus, jointly using social graph features, geosocial features, and
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human mobility features can improve the performance of link prediction.

2.2.2 Location Prediction

POI recommendation and prediction are two different but related and extensively studied

topics in LBSN: the former usually learns users’ preferences over POIs while the latter

is more interested in mobility pattern recognition. In this section, we first categorize the

location prediction models based on the algorithms used, as described in [134]:

• Content based Methods: Content-based methods learn the content correlation or

location transition probability, based on the assumption that the current user loca-

tion is related to the previous location. To this end, researchers often construct a

data structure to store content, then match the content to predict location [73]. The

Markov model is a typical strategy that uses content information to predict a future

state. Occasionally Markov models are combined with recommendation methods to

establish a location prediction system. For example, in the Collaborative Exploration

and Periodically Returning (CEPR) model, Lian et al. [63] solved the problem of

location prediction based only on context.

• Distribution based Methods: Distribution-based methods model user movement as

a distribution with location and time as two random variables. In this method, the

probability of a random variable is computed and then ranked to predict a location.

Cho et al. [16] discovered that human movement in daily life is influenced by the

factors, of geographical limitations and social relations. The authors identified: 1)

social relationships account for just 10-30% of users’ daily life movement, and 50%

of their periodic activity. Based on this finding the authors proposed a location pre-

diction method: the Periodic and Social Mobility Model (PSMM) which describes

human mobility based on periodic short-range travel and social network structures. 2)

Most people visit their workplace during the workweek daytime hours and their place
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of residence on work nights and weekend day times. Based on this finding, they pro-

posed the Periodic Mobility Model (PMM) for predicting future user location states

(based on partitions of all locations visited by users, both work and home-related).

• Preference based Methods: User location history can be used to generate a ma-

trix and then matrix factorization can be used to capture user movement preferences.

A tensor is an extension of the matrix. Bhargava et al. [3] used tensor factoriza-

tion methods in multi-dimensional collaborative filtering to predict location via user

profiles, user’s short message in social network, and user location and temporal in-

formation.

• Social-relation based Methods: Gao et al.[34] proposed a geo-social correlation(gSCorr)

model to solve the cold start problem based on social information. The gSCorr model

determines the correlation between a social network and geographical distance and

defines a complex matrix of four relationships between social information and dis-

tance.

• Time-dependent Methods: Du et al.[25] proposed the Recurrent Marked Temporal

Point Process (RMTPP) to simultaneously model visiting time and location. The

basic concept of RMTPP is to model movement history using a nonlinear function.

RMTPP also uses a recurrent neural network to automatically learn a representation

of influences from a user mobility history. In addition, Zarezade et al. [150] proposed

a probabilistic model based on point process, in which a periodic kernel function is

used to capture the user period and multi-nominal distribution of locations. The

whole framework is similar to that of the RMTPP.

• Representation based Methods: Noulas et al. [95] regarded the location prediction

problem as a ranking problem, whereby every check-in associated location and time

is defined as a tuple < `, t >, ranking at the highest possible location in a user his-

torical list of visited locations. Prediction features can be classified as user mobility,
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global mobility, or temporal features. Recently, deep learning techniques – espe-

cially LSTM [112] and GRU[18] – have been widely used to capture the long-term

sequential influence and mobility patterns. Spatial-Temporal Recurrent Neural Net-

works (STRNN) [73] extend the RNN model by incorporating temporal and spatial

context in each time unit for predicting next POIs. A unified RNN-based framework

jointly learning the embedding of multiple factors (e.g., user identity, location and

time, etc.), was presented in [141]. However, these methods do not explicitly model

user’s historical visit patterns and personal preferences, but greatly focusing on cur-

rent locations and short-term dependencies among POIs. More recently, [27] propose

an attentional recurrent network for mobility prediction from lengthy and sparse tra-

jectories, where two RNN models – learning the current and the historical trajectory,

respectively – together exploit user’s mobility and location preference with attention

on multi-level periodicity of historical trajectories. However, it is complicated to

train due to the relatively high density of historical trajectories.

• Semantics based Methods: The aforementioned approaches often focus on spa-

tiotemporal space, however, few researchers have paid attention to the trajectory of

semantic space. Semantics-based predictors enable better reasoning and therefore

better location prediction results. Ying et al. [146] proposed a semantic framework

for location prediction via semantic pattern mining, called SemanPredict.

2.3 Location Recommendation

Location recommendation is one of the most important tasks in LBSNs, which helps users

discover new interesting locations in the LBSNs. Location recommendation typically

mines users’ check-in records, venue information such as categories, and users’ social re-

lationships to recommend a list of locations where users most likely check-in in the future.

Location recommendation not only improves user viscosity to LBSN service providers
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but also benefits advertising agencies with an effective way of launching advertisements

to potential consumers. Specifically, users can explore nearby restaurants and downtown

shopping malls in Foursquare. Meanwhile, the merchants can make the users easily find

them through location recommendations. Ye et al. [143] first propose POI recommenda-

tions for LBSNs such as Foursquare and Gowalla. After that, more than 50 papers about

the problem are published in top conferences and journals, including SIGKDD, SIGIR,

IJCAI, AAAI, WWW, CIKM, ICDM, RecSys, TIST, TKDE, and others. In this section,

we briefly overview the existing techniques on location or POI(Point Of Interest) recom-

mendation. Note that, similar categorization of the related work is followed for the location

prediction models. Early studies in POI recommendation focus mainly on estimating users’

preferences using Collaborative Filtering (CF), especially Matrix Factorization (MF) based

techniques [144, 13, 64, 32, 104]. These methods can only model users’ static preferences.

For example, when a user living in New York travels to Hawaii for a holiday, these types

of recommenders may still recommend POIs located in New York since they are unable to

capture the dynamics of user preferences.

Deep Learning based Models: More recently, deep learning based methods, such

as embedding learning [28, 114, 159], attention based models GeoSAN [62] and ASPPA

[162], neural CF [42, 145], deep latent factor model [15], and metric learning [121] models,

achieve promising performance in many recommendation systems. Researches on next-

POI recommendation pay more attention to users’ dynamic preference modeling. The pi-

oneering work by Cheng et al. [14] proposes a matrix factorization method to embed the

personalized Markov chains and the localized regions. Inspired by the success of RNN in

sequential data modeling [10, 11, 44], RNN based methods become pervasive in the field of

next-POI recommendation [73, 81, 27, 61]. For example, the ST-RNN model [73] extends

RNN to model local temporal and spatial contexts. CARA [82] captures users’ dynamic

preferences by exploiting GRU’s gate mechanism. TMCA [61] and STGN [163] adopts the

LSTM-based and gated LSTM framework to learn spatial-temporal contexts, respectively.
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DeepMove [27] designs a multi-modal RNN to capture the sequential transition.

2.4 Geo-Social Influence Maximization

Given a limited budget for initial advertising, the goal is to identify a small set of influential

customers (as seeds), such that by convincing them to adopt the product and finally trigger

a larger cascade of influence. This has application in the viral marketing of a product. This

problem is different from Social Influence Maximization as spatial factors also contribute

to determining the seeds.

Influence maximization is a well-studied problem (e.g., [47, 48, 12, 36]), the geo-seeded

instantiation motivated by LBSNs has gathered attention only recently [130, 167, 109, 7,

59, 100, 153, 169, 170]. Apart from the location promotion problem where we start with

a specific target location, there have been studies on region promotion, where the target is

a larger geo-region [7]. Also, there exist recent studies on determining top-k influential

locations [109] and product promotion in the context of location [167]. Recently, Jin et al.

in [45] have also studied the problem of using the LBSN data to find the most influential

geo-social object. Users’ geo-location affinities have been modeled by either associating

one specific geo-location with each user (usually the most frequently one visited by the

user) [59, 153, 130] or a set of geolocations or only the social network structure [7]. In a

similar way, the user-user pairwise influence propagation probabilities are estimated either

using just the (social) network structure [7, 59, 153] or taking into consideration the seed

location/region [169, 170]. To the best of our knowledge, only the recent work in [100], has

looked at defining user-user pairwise influence in spatio-temporal context, but for identify-

ing follow-ship. A summary of important previous techniques categorized along the above

dimensions appears in Table 2.1. In our empirical evaluation, we compare against the most

recent work by Zhu et al. [169, 170], that associates a set of locations for each user and

considers the influence between two users to be dependent on the location. Note that in
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Technique Spatial Target User Location Pairwise User Influence

Loc-IM [59] Location Single Location Location-independent
Loc Promotion [169] Location Set of Locations Location-dependent
Reg IM [7] Region Set of Locations Location-independent
Geo Soc Inf [153] Location Single Location Location-independent

Table 2.1: Summary of Related Work (adapted from [58]) in Influence Models for Location
Promotion

their paper, Zhu et al., have presented results using only two popular target locations (the

Central Park in New York City, and Cal-Train Station in San Francisco). Our evaluation,

on the other hand, considers a much broader set of locations that could be the subject of

user check-ins.

2.5 Community Detection

Detecting communities has attracted much research attention within general online social

networks, but there have been much fewer efforts in looking at the task within the context of

LBSNs. The bulk of work on LBSNs has been on characterizing location adoption by users,

across a variety of task formulations such as location prediction, recommendation, and

promotion. We briefly review existing literature under the heads of community detection

and characterization of location adoption.

Within general social networks, there has been much work on detecting communities as

overlapping or non-overlapping clusters of users such that there is a high degree of connect-

edness between them. Techniques have largely considered social network connectedness

as the main driver in forming communities. Community detection techniques could adopt

a top-down approach starting from the entire graph and form communities by separating

them into more coherent subsets that would eventually become communities. Methods

from this school include those that use graph-based methods [102] and filtering out edges

based on local pieces of information such as the number of mutual friends [161]. Analo-
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Features
Clustering for LBSN Community Detection

Spectral[96] M2 [132] Entropy-based [71] COLAB (Chapter 5)

venue-categories X X
venue-temporal X X
user geo-span X X
user social-status X
structure-based X
location-based X X

Table 2.2: Summary of Features used for Community Detection

gously, community discovery could proceed bottom-up by aggregating proximal nodes to

form communities. Techniques within this category have explored methods such as merg-

ing proximal cliques [54] or by grouping nodes based on affinities to ’leader’ nodes [49].

Point processes[20], which are popular models for sequential and temporal data, have been

recently explored for community detection in general social networks[122]. NetCodec,

the method proposed therein, targets to simultaneously detect community structure and

network infectivity among individuals from a trace of their activities. The key idea is to

leverage the multi-dimensional Hawkes process to model the relationship between network

infectivity vis-a-vis community memberships and user popularity, to address the commu-

nity discovery and network infectivity estimation tasks simultaneously. Our task of com-

munity detection within LBSNs is understandably more complex due to the primacy of

spatial information in determining LBSN community structures.

LBSN Community Detection: There have been existing work on community detection in

LBSNs that leverage a variety of user features in determining community structure within

clustering formulations. Table 2.2 summarizes the feature set used by the three recent

techniques proposed for community detection in LBSNs, viz., [96, 132, 71]. Our method

models a wider variety of features, incorporating both spatio-temporal check-in information

as well as venue category information, in inferring communities and user-user influence.
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2.6 Location Adoption Characterization

With each LBSN check-in being associated with a location, the location information is

central to LBSNs. There has been much research into modeling user-location correlations

in various forms, which may be referred to as Geo-Social Properties & Measures in general.

2.6.1 Geo-Social Properties & Measures

Properties of users’ check-ins

Friendship vs. Distance Cho et al. in [16] have figured out that people tend to move to

nearby places on weekdays and to distant places on weekends, and the weekends’ check-

ins are influenced by social factors. Scellato et al. in [14] friends tend to be much closer

than random users i.e. about 50 % of social links span less than 100km, while about 50 %

of users are more than, 4000km apart. Thus, users who live closer have a higher probability

to create friendship links.

Power Law Distribution of Check-ins Gao et al. in [33] have shown that users’ check-

ins follow power-law distribution i.e. a user goes to few places many a time while to many

places a few times.

Temporal Periodic Patterns Cho et al in [16] and Gao et al. in [31] talks about users’

temporal patterns that people commute to and from work at roughly the same time dur-

ing the workdays, as opposed to the weekend when peoples travel and schedules are less

predictable.

Spatio-Temporal Multi-Centre Distribution Cho et al. in [16] have also observed

that Prob. of visiting regular location centers on certain time periods and decreases during

other time periods, and also centers on certain location areas (for example, home and work).

Lichman et al. in [66] have used kernel density-based estimations for modeling multiple

centers of the mobility patterns.
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Complex Sequential Transition Regularities: Feng et al. in [27] figured out the

irregularities in human mobility patterns and the incapability of Markov models to capture

them. For example, the probability of moving from home to office for a commuter is higher

in workday mornings but often low on weekend mornings. Meanwhile, the transition may

not follow the simple and exact Markov chain assumption, as people can go to different

places (e.g., breakfast places) in their commute routes, which leads to high-order and ir-

regular transition patterns. Moreover, they also mention that mobility periodicity is often

complex and multi-level, involving daily routines, weekend leisure, yearly festivals, and

even other personal periodic activities.

Measures of users’ check-ins

Scellato et al. in [110] have defined two geo-social metrics: 1) Node Locality that mea-

sures how close are the neighbors of a given node to the node itself. 2) Geographic Clus-

tering Coefficient that measures how spatially interconnected are the node’s neighbors.

Thus node locality highlight short-range social connections and geographic clustering co-

efficient highlight short-range social-triangles. Node locality test on geo-social networks

shows that users with more connections have friends further away, and geographic clus-

tering co-efficient shows that users with fewer friends tend to generate social triangles on

a smaller geographic scale, while users with many friends belong to triangles with longer

links. This shows that there is a connection between the social properties of a given user

and the geographic distance of his/her friendship connection.

2.7 Summary

In this chapter, we summarized the important related work in the area of Location-based

social networks. Location-based services such as Foursquare, Brightkite, Gowalla provides

users the platform to share their live location with their friends online. The location data
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bridges the gap between the online and offline worlds and enables a deeper understanding of

users’ preferences and behavior. The availability of users’ geo-tagged temporal footprints

has enabled the outset of research in this direction. Targeted advertisements and marketing

is the primary motivation of the majority of the work in this area. Targeted advertising is

a way of placing ads based on demographics, on the consumers’ previous buying history,

or behavior. In LBSNs based on users’ locations visit, discounts on restaurant bills and

movie offers are posted on their online profile wall to attract them to visit. Online location

promotion and targeted advertisement have emerged over the past decade only with the

widespread usage of smartphones.

In the first half of the decade (i.e. from 2011 - 2015) majority of the focus of the exist-

ing work had been on exploiting features of spatio-temporal data using statistical machine

learning techniques. For example, Cho et al. in [16] used Gaussian distribution, [66] kernel

density estimates, [33] power-law distribution to model users’ geographical movements.

collaborative filtering [165] and matrix factorization [13] based models have also been ex-

ploited for modeling users’ preferences using their spatio-temporal footprints. While the

latter half of the decade (i.e. from 2016 - 2020) the focus has shifted towards deep learning-

based techniques such as RNN [27], LSTM, etc. There has also been some work related to

point process-based techniques [17] for modeling users’ check-ins. Du et al. in proposed

RMTPP [25] which makes use of deep learning-based techniques along with point process-

based modeling. Deep learning and point process-based techniques have shown promising

results in this area.

Top conferences and journals, such as SIGKDD, SIGIR, IJCAI, AAAI, WWW, CIKM,

ICDM, RecSys, TIST, TKDE, etc. have papers in this area. In this work, we have reviewed

over 50 papers and summarized them in table 2.3.
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Conference 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
KDD 1 3 2 2 1 1
CIKM 2 2 1 1 2
IJCAI 1 1 1 2 1 1
AAAI 1 1 1 1
SIGIR 1 2
ECIR 1
ICDE 2 1
ICDM 1 2
SDM 1 1
WSDM 1 1 1
WWW 2 1 2
SIGSPATIAL 1 1 1
Journal
TIST 1 2 1 1
TKDE 1 1 1
TKDD 1

Table 2.3: Summary of papers published in LBSN area in top conferences and journals in
the past decade
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Chapter 3

Data Augmentation

3.1 Introduction

Location-based Social Networks have emerged as a major source of information about

users and locations with the potential for various industrial-based applications. The popular

LBSNs such as Foursquare, Brightkite, and Gowalla typically do not expose the check-in

information of users; because of privacy concerns. Foursquare, Brightkite, and Gowalla

have their data sets publicly available but are anonymized, wherein only the latitude and

longitude of the region of each check-in are available, and users are completely anonymized.

For example, to anonymize the location information the check-in information is available

as: a user has checked in a shopping complex. The shopping complex spans a large area

and also contains various types of venues such as Saloon, Gym, Mart, etc. Therefore, it

becomes difficult to identify where exactly the user checked in. Moreover, the category

information is also not associated with each region. Thus, the first task at hand is to com-

bine the location information from publicly available datasets with the data from maps for

associating a set of venue categories with each region/location. We call this coarse-grained

category information because multiple categories are associated with a location.

Next, we consider the problem of leveraging this coarse-grained category information
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Figure 3.1: Spatial, Temporal and Categorical Features mapped together in LBSNs

extracted for locations from publicly available LBSN datasets, to improve location pre-

diction in LBSNs as shown in figure 3.1. To the best of our knowledge, this is the first

work that exploits such coarse-grained category information for the next check-in location

prediction. Our experiments with publicly available check-in datasets mapped with cate-

gorical information show that this approach improves over the state-of-the-art methods for

the location prediction task.

3.2 Data Augmentation and Location Alignment

We use publicly available annonymised check-in datasets [33, 16] where each check-in has

only a lat-long representation. We associate each check-in l = [lat, long] with a set of

venue categories (i.e. gym, restaurant, coffee-shop etc.) using Foursquare APIs1. We map

1https://developer.foursquare.com/
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all the venues from Foursquare that are within 50 meters radius of the location as shown

in figure 3.1. i.e., cat(l) = {v.category|distance(v, l) ≤ 50m}, where, v represents

venue, l represents location, and cat(l) represents categories associated with a location.

Empirically, we found that each location gets associated with approximately k categories.

The average value of k for the three data sets i.e. Foursquare (Mar’10-Jan’11), Foursquare

(Jan’11-Dec’11) and Brightkite (Mar’08-Oct’10) is 22, 13 and 9, respectively.

3.3 Related Work

3.3.1 Data Curation

The check-ins data collection using Foursquare and Twitter is a commonly followed mech-

anism for carrying out analytics on LBSNs. Yang et al. in [137] collected data using

Foursquare and Twitter for the period of April-2012 to September-2013.

Liu et al. in [75] and [76] collected dataset from Gowalla, a popular location-based

social network, which has more than 600,000 users since November 2010 and was acquired

by Facebook in December 2011. The authors used the Gowalla APIs to collect the user

profiles, user friendship, location profiles, and users’ check-in history made before June 1,

2011. Finally, they obtained 36,001,959 check-ins made by 319,063 users over 2,844,076

locations.

Liu et al. 2 collected data from Wee places, a website that aims to visualize users’

check-in activities in location-based social networks (LBSN). It is now integrated with the

APIs of other location-based social networking services, e.g., Facebook Places, Foursquare,

and Gowalla. Users can log in at Wee places using their LBSN accounts and connect with

their friends in the same LBSN who have also used this application. All the crawled data

is originally generated in Foursquare. This dataset contains 7,658,368 check-ins generated

by 15,799 users over 971,309 locations.

2https://www.yongliu.org/datasets/

38

https://www.yongliu.org/datasets/


The other publicly available data sets are from Foursquare3 and BrightKite4 data.

3.4 LBSN Data Collection

Given two LBSNs: Twitter T and Foursquare F where V ∈ (T , F ) = (Vu, V`) and E ∈ (T ,

F ) = (Eu−u, Eu−`), then the goal is to determine Vu ∈ T (Vu) ∩ F (Vu).

• First, for check-in information, it may be noted that Foursquare users’ check-in in-

formation is visible only within their respective social circles. However, users can

choose to broadcast their check-ins to Twitter while using the mobile-based app from

Foursquare, Swarm app. This provides us an opportunity to capture their check-ins

by crawling tweets with keyword swarmapp.com on the Twitter public streaming API

5. This limits our data set to Foursquare check-ins that are also posted via Twitter. We

improve the coverage by first extracting the user IDs from these check-in tweets and

using it to harvest more check-ins of the user by crawling their tweet timelines with

Twitter API6.

• In the second step, we get the location information by following the Foursquare URL

in the tweet that leads to the Foursquare location page. We parse this web page to get

the information about the checked-in location. Specifically, we scrape the category

information from this page and augment it to the location. Thus, we were able to get

a single fine-grained category for each location against the others for which we use

approximate spatial joins to infer categories.

• Thirdly and lastly, for gathering social graph information, Foursquare poses the same

restriction, due to privacy reasons, as for check-ins, since it limits the connection

3http://www.public.asu.edu/$\sim$hgao16/dataset.html
4http://snap.stanford.edu/data/loc-brightkite.html
5https://dev.twitter.com/streaming/public
6https://developer.twitter.com/en/docs/tweets/timelines/api-reference/

get-statuses-user_timeline.HTML

39

http://www.public.asu.edu/$\sim $hgao16/dataset.html
http://snap.stanford.edu/data/loc-brightkite.html
https://dev.twitter.com/streaming/public
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.HTML
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.HTML


Figure 3.2: Methodology for Data Collection

information to just the users’ social circles. We circumvent this again using Twitter,

crawling Twitter connection information among users in our check-in data set by

using Twitter API7. While the resulting social graph is not expected to be identical

to the original Foursquare graph, but it is a subset where each user has their Twitter

profile public and have linked with the Foursquare profile. To extract the check-in

details of friends we crawl tweets on their timeline in the same manner as above.

Figure 3.2 summarizes and illustrates these steps diagrammatically.

Some key characteristics of the resulting combined data set, which we denote as FSq’16,

along with the other public data sets that are augmented with category information as de-

scribed in section 3.2 we use, is shown in Table 3.1.

Data set FSq’16 FSq’11 FSq’10 Brightkite Gowalla

Duration Jan’15 - Feb’16 Jan’11 - Dec’11 Mar’10 - Jan’11 Apr’08 - Oct’10 Feb’09 - Oct’10
#users 119, 756 11, 326 18, 107 58, 228 196, 591
#check-ins 9, 317, 276 1, 385, 223 2, 073, 740 4, 491, 143 6, 442, 890
#unique locations 183, 225 187, 218 43, 064 772, 966 1, 280, 970
#unique categories 734 638 624 683 680
#friendship-links 1, 308, 337 47, 164 115, 574 214, 078 950, 327
avg. degree 21.85 8.33 12.76 7.35 9.66
Mean(#categories / location) 1.00 12.12 20.47 8.38 1.28

Table 3.1: Statistical properties of the data sets

7https://developer.twitter.com/en/docs/accounts-and-users/
follow-search-get-users/api-reference/get-friends-list
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XXXXXXXXXXXXfeatures
techniques

PMM and PSMM [16] SHM [33] SHM+T [31] M5 Trees [95] gSCorr [34]

Social Correlation X X X X X
Geographic Distance X X X

User Mobility X X X X X
Category Information X

Periodic Patterns X X X

Table 3.2: List of features used in different techniques

3.5 Leveraging Category Information for Next Location

Prediction

The location prediction problem in LBSNs has been widely studied in recent years. This

has applications in areas such as targeted advertisements, influence maximization and com-

munity detection. For example, knowing that a specific user’s next check-in is likely to be

at a cinema then this information could be used to prioritize movie ticket offers to be sent to

her. In this chapter, we consider the problem of leveraging the coarse-grained category in-

formation extracted for publicly available LBSN data set (as discussed in the section above)

to improve location prediction in LBSNs. The location prediction model in general does

not perform well because of sparsity in the check-in data. Therefore, analysis of sparse

and anonymized data is useful to achieve at least some improvement. To the best of our

knowledge, this is the first work that exploits such coarse-grained category information for

the next check-in location prediction.

3.6 Preliminaries for Next Location Prediction

In Table 3.2 we have broadly divided and summarized the feature space that has been used

for location prediction problems by state-of-the-art Markov-based methods. It can be seen

from table 3.2 that only Noulas et al in [95] have explored the category information in pre-

dicting where the user would go next. However, [95] assume that the check-in information
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contains not only fine-grained category information (e.g., restaurant, cinema, etc.) but also

contains information about the precise venue the user has checked-in, i.e., the name of the

restaurant or cinema. Thus, this technique is impractical in common cases where we have

check-ins specified only at the lat-long level. The other methods listed in Table 3.2 can

work with check-in data at the level of lat-long information.

3.7 Location Prediction Model

We briefly describe the SHM+T model proposed in [33] and then describe our method

that extends SHM+T by exploiting category information to improve location prediction

accuracy.

We denote the set of categories associated with a location l as Cl. If the last location

is l′, we find a likely category c′ for l′. Then we determine a category c that is likely to be

followed after c′ (for example, restaurant after cinema, dessert after restaurant, etc.). Lastly,

we find a location l that is likely for the category c. This is aggregated over multiple values

for c and c′ to associate a probability with each value of l, as follows:

PC(l) =
∑
c,c′

Pu(l|c).(α ∗ Pu(c|c′) + (1− α) ∗ Pg(c|c′)).P (c′|l′), (3.1)

where Pu(c|c′) and Pg(c|c′) denote the probability of the user visiting a location of category

c right after visiting one of category c′, as estimated using the user’s own check-in history,

and the global check-in history across all users respectively. α is an interpolation parameter

that determines the relative weighting of Pu and Pg. We estimate P (c′|l′) and P (l|c) as

follows:

P (c′|l′) =
number of venues of category c close to l

total number of venues close to l

P (l|c) =
number of venues of category c close to l∑
loc number of venues of category c close to loc
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We will call PC(.) as the category language model location prediction method; as in the

case of other models, once this distribution is estimated, the most probable location could

be recommended.

3.7.1 Category Language Model (CLM)

Using just the category language model for location prediction is not likely to be effective

since it does not model other aspects of user movement. Thus, we devise a method to

leverage CLM with SHM+T [31], a state-of-the-art model for location prediction that uses

social, historical, and temporal information. The SHM+T model may be simplistically

represented as a function P (l|t,Hu,t, Su,t) that estimates a probability distribution of next

location using: (1) t, the time of the day and week, (2) Hu,t, the user’s check-in history and

(3), Su,t, the user’s social circle.

We combine SHM+T and CLM by estimating the combined distribution as a weighted

sum of the distributions by the individual models, with the relative weighting determined

by λ as follows::

PSHM+T+CLM(l) = λ ∗ P (l|t,Hu,t, Su,t) + (1− λ) ∗ PC(l) (3.2)

3.8 Experimental Evaluation

3.8.1 Implementation Details:

We have tested the proposed model over all the users who have made at least 10 check-

ins. For each test user, we divide her check-in history into 4:1, where 80% of check-ins

are used for training and the rest 20% are used for testing. Note that, check-ins are sorted

chronologically. Accuracy is used as the evaluation metric.
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``````````````̀Datasets
Techniques

SHM CLM
SHM +T

SHM+CLM
(SHM+T)+CLM

SHM+D SHM+W SHM+DW (SHM+D)+CLM (SHM+W)+CLM (SHM+DW)+CLM
FSq’10 22.45 23.50 23.70 23.52 23.81 24.96 24.98 24.87 24.88
FSq’11 30.45 24.87 31.59 31.31 32.03 31.32 32.36 32.21 32.74

Brightkite 23.25 21.22 24.21 24.51 24.61 24.38 25.74 25.54 25.57

Table 3.3: Comparison in terms of Accuracy (in %) for different models

3.8.2 Results

The results are reported in table 3.3. Note that, we have only reported results for three

datasets out of five. For FSq’16, we have results in next chapter, as this study focuses

only on leveraging coarse-grained category information, and for Gowalla, the category

information obtained is quite sparse (i.e. only for few locations we have categories, while

for most of the locations we didn’t obtain the category information from the Foursquare

APIs). T in table 3.3 denotes the periodic patterns i.e. Daily(D), Weekly(W) and Daily-

Weekly(DW). For CLM and SHM+T+CLM model. It can be observed that SHM+T+CLM

achieves 1-2 % of improvement over SHM+T, that is similar to quantum of improvement

that SHM+T has achieved over SHM in [31].

3.8.3 p-value test

In this section, we investigate the significance of adding the category language model to

the existing SHM+T model by conducting the adjusted R2 and F-statistic based statistical

significance test [30]. We consider two models:

• Model-1: includes all predictors i.e. SHM+T and CLM

• Model-2: includes only SHM+T as predictor

Note that, we provide as input the probability belief obtained from SHM+ T model and

CLM model. Next, we compare the adjusted R2[86] and p-value[51] scores of both the

models as shown in table 3.48. It can be observed that Adjusted R2 values for Model-1 is

8The scores are calculated using broom library in R.
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higher than Model-2 indicating that CLM also has strong correlation with the predicated

values. p-values for both the models is ¡ 0.05 indicating that these are significant results.

Techniques Test Model
Datasets

FSq’10 FSq’11 Brightkite

(SHM+D)+CLM
Adjusted R2

Model-1 0.6713 0.7103 0.6348
Model-2 0.4572 0.4824 0.5046

p-value
Model-1 0.0253 0.0219 0.0304
Model-2 0.0315 0.0248 0.0315

(SHM+W)+CLM
Adjusted R2

Model-1 0.7049 0.6261 0.7031
Model-2 0.5281 0.4581 0.5684

p-value
Model-1 0.0321 0.0272 0.02451
Model-2 0.0314 0.0283 0.0328

(SHM+DW)+CLM
Adjusted R2

Model-1 0.7150 0.6319 0.8021
Model-2 0.4826 0.5827 0.6043

p-value
Model-1 0.0245 0.0264 0.1892
Model-2 0.0389 0.0263 0.0224

Table 3.4: Comparison in terms of Adjusted R2 and p-value for Model-1 and Model-2

3.8.4 Tuning Parameters

We use α = 0.6 and λ = 0.7 in equations 3.1 and 3.2 respectively. At these values we

obtain the best performance as shown in figure 3.4 and figure 3.3. For α the smoothing is

contributing in assigning probabilities to the locations that are new and doesn’t exist in the

training dataset of a single user. Therefore, learning from global users’ data is important,

firstly for not having zero probabilities for new locations, and secondly for learning the

global category sequence trend. For λ it can be observed that the distance and time are

given more weightage as distance and time plays a critical role but we can observe that

category information also plays an important role in prediction, because when λ = 1 (i.e.

only SHM+T) the accuracy falls drastically. Hence, category information helps in modeling

users’ preferences, and especially for non-periodic check-ins that are apart from locations

near work and home.
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Figure 3.3: λ at 0.7 gives highest accuracy for FSq10, FSq11 and Brightkite datasets
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Figure 3.4: α at 0.6 gives highest accuracy for FSq10, FSq11 and Brightkite datasets
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3.9 Conclusion

In this chapter, we developed a method to infer coarse-grained category information and

have leveraged this information for enhancing the performance of the existing state-of-the-

art methods for the next check-in location prediction task. In continuation of this work,

we would like to explore fine-grained information that can be used to improve the current

state of the art. Since we observed that with coarse-grained category information we only

obtained delta improvement but it shows that categorical information holds potential to

model users’ interest which can be leveraged for location-based applications.

47



Chapter 4

Influence Quantification between users

in LBSNs

4.1 Introduction

Determination of user influence on social networks is often seen as a tool for viral market-

ing [88]. Understanding of social media influence has been exploited for legitimate pur-

poses such as promotion of health-information [91], as well as for misleading users through

campaigns such as political astroturfs [105]. In the scholarly community, the problem of

influence maximization has attracted much attention. Influence maximization [7, 59, 133]

is the task of finding a set of users who have a strong influence in the social network; these

users are potentially good seed users to run promotion campaigns that try to maximize the

reach of the campaign.

With social media yielding eminently to broad-based social campaigns such as those

around health and politics, generic social networks are less suited to localized campaigns

by businesses such as salons, fitness clubs, restaurants, and others, since information about

user locations is not as pervasive within them. Location-based social networks such as
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Foursquare1, on the other hand, consider location information as a first-class citizen, with

most user activity within them involving the sharing of user location. This makes them a

suitable platform for hosting localized marketing and advertising information, probably the

category of most advertising information that we, as humans, come across in real life. The

pervasiveness of GPS2 within current-day smartphones has led to significant improvements

in the penetration of location-based social networks.

As a simple example of usage of marketing campaigns within Foursquare, consider a

restaurant that might want to have their business listed at the top of the search results, or as

an advertisement banner along with the search results, for dining searches by users in their

vicinity. On the user side, on the other hand, one may want the search to be specialized

to prefer the restaurants that her friends have visited frequently and recently and also rated

highly. Check-ins of connections have been shown to influence the check-in preferences

of LBSN users; for example, [16, 144] have reported evidence of geographical influence

over social linkages in LBSNs.

The primacy of locations in LBSNs has sparked interest in location-seeded variants of

general influence problems that have been studied for generic social networks. Locations,

for LBSNs, include any geo-localized entity that could be the subject of a check-in. This

may include particular businesses, e.g., XYZ Restaurant, public amenities such as railway

stations, as well as things such as parks that have a wider location spread. The location

promotion problem [169] in LBSNs is the location-seeded version of the influence max-

imization problem. This task instantiates the influence maximization task on a specified

target location (e.g., a particular restaurant), with the intent of finding a set of seed users

who are well-positioned for the promotion of the business operating at that location [169].

Once a set of seed users is identified, it can be used to issue targeted special offers to

encourage them to visit the location/business being promoted. Once these users visit the

business, their check-ins would be expected to consequently attract other users, those over

1https://foursquare.com/
2https://en.wikipedia.org/wiki/Global Positioning System
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whom they have influence. The location promotion problem is of significant importance

for launching effective campaigns to help small businesses gather more customers.

We now outline the task of influences quantification as a basic building block for a va-

riety of tasks in LBSNs, including the task of location promotion. Influence quantification

is the task of quantifying the influence that a user has over another user, within the context

of a location, often modeled probabilistically [36, 153]. Thus, this task associate a triplet,

[u, v, l] with a score that indicates the influence of user u over v in the context of the lo-

cation l. We now motivate as to why influence quantification may be seen as a generic

building block for influence tasks in LBSNs. Once the scores for [u, v, l] triplets are rolled

up (aggregated) across various v’s using a suitable aggregation function, we achieve a score

for [u, l] pairs that indicate the influence of u in the network, for the location l. The top-

scoring u’s may then be chosen as a result set for location promotion. This roll-up may be

performed on different facets, leading to intuitive solutions for respective problems. For

example, the scores for [u, v, l] triplets may be aggregated over multiple locations in a city,

to get an estimate of the influence of u over v within the city. Further, an aggregation of

influence scores over multiple locations within a category (for example, restaurants or hos-

pitals) would lead to an estimate of a category-specific influence between u and v. As an

example, a user might be influenced by one connection for food recommendations, but by

another for outdoor activities, and a third for medical purposes. Aggregating the [u, v, l] for

a particular user v over the various connections of her (as us) who have recently visited l,

achieves a quantification of the likelihood of v to visit l; this could be used to order the rec-

ommendations to offer personalized LBSN search for user v. Thus, influence quantification

forms a critical and basic building block for various LBSN tasks.

Influence quantification can take into consideration a variety of information that an

LBSN offers:

• geographic features: user’s mobility over different locations,

• semantic features: type/category of location (e.g., restaurant, cafe),
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• social correlation: the relationship between users in the social network, and

• temporal correlation: the degree to which a user’s movement is correlated with the

movement of another user.

Previous work on influence quantification for location promotion has mostly focused on

modeling geographic features and social correlation [169]. Studies on semantic features

such as category have been limited primarily since datasets containing such information

have been scarce [16, 33]; such deficiencies are being addressed recently (e.g., in [70, 41,

137]). The temporal correlation of users’ behavior has been modeled previously in online

social networks, but not in LBSN as we will model in our task. The socially induced

follow-ship based on temporal correlation has been of interest in LBSN studies in other

contexts [100].

4.1.1 Contributions

In this thesis, we develop a novel model called LoCaTe for quantifying the location-specific

influence between a pair of users who are connected in a social network. LoCaTe combines

geographic features of the location, the semantics associated with the location, and tempo-

ral aspects of social following. Specifically, LoCaTe incorporates –and derives its name

from– the following aspects of check-in information in LBSNs:

• Location affinity: The mobility patterns of users that hold cues to whether they fre-

quent the proximity of the target location.

• Category affinity: The affinity of a user to the semantic categories of the location.

• Temporal correlation: The temporal correlation of movements between the user and

the candidate seed set, thus modeling time-conditioned social follow-ship.

While in its basic form the LoCaTe model uses exponential distribution to quantify

temporal correlation across all locations checked in by the user, we also propose the Lo-
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CaTe+ model which makes use of advanced, location-specific modeling of temporal corre-

lations (involving more parameters to learn) based on mutually exciting Hawkes processes

(meHP) [38, 138]. In order to illustrate the general-purpose utility of LoCaTe and LoCaTe+

for various LBSN tasks, we empirically evaluate our approach not only over the location-

specific influence quantification task but also for the more general problem of location

promotion.

Our algorithms are evaluated over large-scale real-world LBSN datasets. We conduct

a large Foursquare check-in crawl spanning more than one year for use in all our experi-

ments and also have made the collection available for other researchers. We also use the

publicly available collections of LBSN data that are commonly used by others in the area.

Unfortunately, these previously used collections do not have semantic category information

associated with each location. We overcome this limitation by a spatial join with categor-

ical information obtained through separate Foursquare APIs. The LBSN data collected in

our crawls, as well as the category mappings to check-in locations in other crawls used in

our experiments, are made publicly available.

Our experimental evaluation establishes the utility of our LoCaTe models in accurately

quantifying the influence between users in the context of specific locations.

In summary, the contributions we make in this work are three-fold:

1. We propose a novel model that combines spatial, temporal, and location semantics

in the LBSN domain for location-based influence quantification.

2. We demonstrate the applicability of our influence quantification models for identify-

ing the k (user-specified input) seed users for the promotion of a location.

3. We conduct experimental evaluation over real datasets and show that our proposed

model achieves high accuracy, outperforming state-of-the-art influence quantification

models.

The remainder of the chapter is organized as follows: Section 4.2 formally defines the
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influence quantification problem within the larger context of location promotion. Section

4.3 discusses the modeling methodology, and section 4.6 shows how to evaluate the pro-

posed influence quantification model and the experimental results obtained. Finally, section

4.7 concludes the work and outlines possible future directions.

4.2 Problem Statement

In this section, we provide a formal definition of the influence quantification problem in an

LBSN. Table 4.1 lists a set of notations that will be used. We model a location as having

a fixed geographic coordinate as well as a set of categories associated with it. This allows

for modeling of locations such as movie multiplexes that would screen movies as well as

contain eateries. This is consistent with conventions for location representation in other

domains such as OpenStreetMap3, where multiple tags4 may be attached to one location.

In the following narrative, we use location and venue interchangeably; though we feel the

venue is a more appropriate word, location corresponds to the convention in the existing

literature.

Influence quantification is the task of quantifying the influence of a user over another in

the context of a location. For most usage scenarios, we would like to quantify the influence

as the likelihood of a user visiting the location given the visit to the same location by

another (i.e., seed) user. We now use this perspective to provide a formal definition.

Definition 4.2.1 (Influence quantification). Given an LBSN G, a target location `, a seed-

user u (usually a user who has previously visited `), the influence quantification problem is

to quantify the likelihood P ( `, u, v|G ), the likelihood that any user v among u’s connec-

tions is likely to visit `. �

There are two implicit assumptions in this definition. First, that the seed user u has

visited the location `; this is typically justified since some evidence of an association be-
3https://www.openstreetmap.org/
4http://wiki.openstreetmap.org/wiki/Tags
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Symbol Description

G A location based social network
U Set of users in G
E Set of connections from ui to uj s.t.

ui, uj ∈ U and ui 6= uj
` A location specified by a triple

(x, y, C`), where x,y correspond to
geo-coordinates and C` to category
set of `

〈u, `, t, C`〉 A check-in record of user u at time t
at location ` that has a category set C`

Mu set check-in records of user u
〈u, `, t, C`〉

M set of all check-in records
L A set of locations
C A set of categories

Table 4.1: Notations used in this chapter

tween u and ` would be necessary for the premise that u would influence v in the context of

`. Second, most LBSNs, like general social networks, have a timeline display where each

user would be provided with (largely reverse-chronological ordering of) her connections’

recent check-ins. This is in addition to a second functionality, that of location-targeted

search, where a user pro-actively looks up the visitors of a particular location. With the

most implicit influence being through the more popular former channel, that of timelines,

we will attempt to quantify the influence between connected users, since they could figure

in the timelines of each other.

In many contexts, we may want to score target users within the context of the seed

user and chosen location. Thus, it is appropriate to model the influence quantification

as a distribution over the set of users v; accordingly, we will use P`,u(v|M) to indicate

the influence quantification for the combination [u, v, `], with M indicating the check-in

records employed to train the influence quantification model.

54



social connections

seed user

check-in records

target location

LoCaTe / LoCaTe+

p(l,u,vi,M) = f
(PL(vi,l | M) , PC(vi,Cl | M), T(u,vi | M) )

u

M = {Mu1,..,Mvi,..,
Mun,…,Mvm}

v1

1. Location Affinity
Mvi 
M

Kernel Density 
Estimations

 PL(vi,l | 
Mvi, M)

2. Category Affinity
Mvi 
M

Latent Dirichlet
Allocation

 PC(vi,Cl | Mvi, 
M)

3. Temporal Correlation
Mvi 
Mu
M

Exponential
Distribution / 

Mutually exciting 
Hawkes Process

T(u,vi | Mu, 
Mvi, M)

v2

vm

l = <lat,lon,Cl> 

seed user

u

v1

v2

vm

0.2

0.3

0.2

Figure 4.1: LoCaTe: Framework for Influence Quantification

4.3 LoCaTe Framework and Models for Influence Quan-

tification

We now outline our influence quantification framework, LoCaTe, that estimates P`,u(v|M),

a scoring that captures the likelihood that the user v from u’s connections would visit the

location ` quantified using the check-in records in the training part, denoted as M . Figure

4.1 shows the framework of LoCaTe. LoCaTe combines information from three kinds of

features to arrive at a estimation as follows:

P`,u(v|M) =

(
α PL(v, `|M)︸ ︷︷ ︸

location affinity

+ (1− α) PC(v, C`|M)︸ ︷︷ ︸
category affinity

)
× T (u→ v|M)︸ ︷︷ ︸

temporal correlation

(4.1)

such that for all the users U , locations L and the entire time range T

Pa =
∑

v∈U,`∈L

(
α PL(v, `|M)︸ ︷︷ ︸

location affinity

+ (1− α) PC(v, C`|M)︸ ︷︷ ︸
category affinity

)
= 1 (4.2)

P =

∫ T

0

Pa.T (u→ v|M) = 1 (4.3)
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PL(v, `|M) models the affinity of v to location `, and PC(v, C`|M) models the affinity

of v to the categories that are associated with the location ` (denoted as C`). These two

terms are interpolated using an interpolation parameter α. Further, T (u → v|M) captures

the temporal correlation between users u and v, a term that we model as being independent

of the location `. The first two terms quantify user’s affinity for the location using mobility

and categories respectively and are combined using a weighted sum. The third term quanti-

fying location-agnostic (in the sense that the quantification is performed over all check-ins

comprising a number of locations) user-user temporal affinity is merged using a product.

Thus, the final scoring, due to its product form, ensures that users who are strong on both

location and temporal aspects score much higher than others.

P`,u(v|M), being a normalized score, ranges between [0,1]. The usage of Location

affinity, Category affinity and Temporal correlation in our model lends the name to our

method.

4.3.1 Location Affinity

The mobility of each user is typically restricted to a few key locations, which would typ-

ically include the location of stay and work [16]. Thus, a user has an inherent preference

for some geo-locations. This inherent preference of number of geo-locations vary from

individual to individual. Thus fixing it to two or more components can lead to inability to

either capture many of high density patterns or waste considerable probability mass over

certain regions. Lichman et al. in [66] addresses the limitations of fixating the densities to

a specific number by introducing Kernel Density Estimates. Kernel Density Estimation is

a non-parametric method for estimating the density function from random sample of data

[116], and are robust to sharp transitions in spatial densities that human mobility witnesses,

especially in contexts involving travels that take users far away from their usual location of

residence.

The affinity of v to ` based on her own check-in history (i.e. E = {l1, ..., ln}, where,
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lj = < x, y > is a two-dimensional location, 1 ≤ j ≤ n) is modeled as the kernel density

estimate that quantifies the average weighted similarity between ` and each checked-in

location lj , using a hyper-parameter k signifying the number of nearest neighbors.

PL (v, `|Mv) = fKD (l|Mv, k) =
1

|Mv|

|Mv |∑
j=1

κj,k (`, `j) (4.4)

κj,k (·, ·) estimates the similarity between locations as inversely related to the Euclidean

distance between them:

κj,k (`, `j) =
1

2π hj,k
exp

(
− 1

hj,k
‖`− `j‖

)
(4.5)

Here, hj,k is a location-dependent scalar factor that is set to be the Euclidean distance of `j

to it’s kth nearest neighbor, and ‖`− `j‖ =
√

(`.x− `j.x)2 + (`.y − `j.y)2. The bandwidth

hj,k adapts according to the kth nearest neighbor, thus facilitating robustness towards vary-

ing densities. For example, setting a bandwidth value very high in urban areas where events

are densely populated within a small region will lead to over smoothing, while setting the

bandwidth to a small value in sparsely populated areas will lead to over fitting. Thus, band-

width computed using the nearest neighbors approach ensures the bandwidth computation

is sensitive to differential densities of locations in urban and rural areas.

Mixture of Kernel Density models

The location affinity for a user v is learned using v’s check-in records. But, for some

users we have very little data to make predictions. To overcome this data sparsity issue

we interpolate individual user’s model with the kernel density model learned over check-in

records of all users, as follows:

P k
L (v, `|M) = βvfKD (`|Mv, k) + (1− βv) fKD (`|M,k) , (4.6)
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where, βv is a user-specific mixing weight, determining the relative influence between the

user model and the global model. We will denote this as PL(., .) when the value of k is

clear. We will estimate both k and βv using the corpus of check-in records, as we describe

later in section 4.3.4.

Note that, in the above model we have used only two components in the mixture model,

where first component models individual’s check-ins and second component models full-

population check-ins. But, the intermediate components between these two can be defined

at different spatial scales such as neighborhoods, cities, states, and even countries. More-

over, the users’ connections can also be exploited at different spatial scales. In this thesis,

instead of fine tuning to different levels of smoothing we have kept a simplified model with

two components, since this is an orthogonal research to our current work.

4.3.2 Category Preference

Locations often record correlated check-in behavior across LBSN users. For example, a

restaurant might be better off targeting a user who frequently checks in to food places

due to the correlation across various categories of food joints. As an example, consider

two users in Figure 4.2 represented by the word cloud of the categories of their checked-

in locations (larger font indicates higher frequency); User A evidently exhibits affinity

towards visiting restaurants while user B prefers gym and fitness centers. We use topic

modeling to identify such higher-level contexts, and exploit it to model the user-category

affinity term, PC (v, C`|M).

For topic modeling, we use Latent Dirichlet allocation (LDA) [6] which models se-

mantic matching between text documents by learning latent topics, each of which is a

probability distribution over the set of words. The LDA model ensures that words that are

semantically related would have high probabilities associated with the same topic(s). In

our adaptation of LDA for modeling topical contexts across check-in categories, each user

v is treated as a document constructed as a bag of categories vC (i.e., each category as a
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(a) User A (b) User B

Figure 4.2: Category wise check-in Distribution

word) of checked-in locations. These documents across the users in the population form a

document corpus. We apply LDA on this document corpus, to learn topics which are prob-

ability distributions over the set of categories. We then use the learned topics to estimate

the user’s affinity to the set of categories associated with the location of interest:

PC (v, C`|M) =
∑

Z∈Topics(M)

P (C`|Z)× P (v|Z) , (4.7)

where Topics(M) is the set of topics learned as described, and Z represents a topic from the

learnt topic-set. P (v|Z) and P (C`|Z) quantify how well the category distribution associ-

ated with Z match against those of the check-ins of v and the categories of ` respectively.

High values of PC (v, C`|M) are achieved when the user’s category distribution and that of

the location under consideration are correlated with the same set of topics.
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4.3.3 Temporal User Correlation

We now turn our attention to the temporal correlation term, T (u→ v|G), that quantifies

the extent of influence that u has over v. This primarily accounts for the socially induced

follow-ship in our Influence Quantification model. The task at hand is to quantify the

chance that v will follow u in checking-in to a location, such that (u, v) ∈ E. We target to

arrive at a quantification based on historical check-ins of the users, so that cases where a

user u has been closely followed by v historically yields a high value for the T (u→ v|G).

We first empirically analyze the behavior of general inter-arrival times (in days) of users in

the LBSN at a given location, without distinguishing whether they are connected to each

other in the LBSN network or not; we call this the time lag distribution across userbase.

The analogous time lag distribution across connections considers the distribution of the

time duration elapsed between two users who are connected to each other, visiting the

location in question.

These two different distributions of time lags are given in Figure 4.3, where u3 and

u4 are the followers of u1. We collect these time lag distributions across all locations

in the LBSN and study their frequency distribution using a histogram-style analysis. As

expected, the general across userbase time lag distribution follows a classical Heavy Tailed

distribution (see Figure 4.4(a)). However, the across connections time lag distribution (in

Figure 4.4(b)) does not quite follow a power law distribution despite exhibiting a monotonic

decay with increasing values of time lag. It may also be noted that the across connections

data is much sparser than across userbase; this is so since there are a significantly fewer

number of occurrences of connected users visiting the same location.

These observations lead us to a natural model of time lag distribution between users

that uses an exponential distribution, used in similar settings elsewhere [100]. Despite its

simplicity, this formulation is surprisingly effective in practice as seen in our experiments.

However, the above model of temporal correlation or time lag distribution of check-
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Figure 4.3: Depicting the time lag between check-ins at a location for connected and non-
connected users, u3 and u4 are followers of u1

ins at a location between socially connected users using exponential distribution makes a

rather strong assumption that events (i.e., check-ins) arrive at a constant rate, λ, throughout

the time of observation. In reality, however, that is rarely the case. For instance, when

there are well-advertised promotions at a location we can expect checkin activity of each

user to show a bursty behavior with higher rates of check-ins, and consequently shorter

time-lags, than during regular times. In our second model, we incorporate changing inten-

sity of check-ins by using nonhomogenous Poisson processes (NPP) to model the check-in

behavior. Specifically, we use a class of NPPs, viz., the mutually-exciting Hawkes pro-

cesses [38, 138] (meHP), which has been successfully used to model contagions in Finan-

cial markets [8] as well as in Social media [138]. Note that we found the use of meHP

particularly attractive because it allows for a clean modeling of “self-excitation” of a user

independent of the influence of another user in the LBSN (as in the case of a well-promoted

location given above). Thus, the resulting temporal user correlation is capable of more ac-

curately modeling the true follow-ship strength between users.

We call the full influence quantification model (Ref. Eq. 4.1) that uses the exponential

distribution for estimating user correlation as LoCaTe and the one that uses mutually ex-

citing Hawkes process modeling as LoCaTe+. We provide the details of the temporal user

correlation models in separate subsections herein.
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Figure 4.4: Time lag (in days) probability distribution plot

Modeling using exponential distribution

According to the exponential distribution modeling , the weight associated with any value

of time lag, denoted δt, would be quantified as the following:

p(δt) = λte
−λtδt (4.8)

We set λt is the inverse of the mean time lag between check-ins by connected users:

λt = 1/avg {|t2 − t1||∃〈u, ·, t1, ·〉 ∈M ∧ ∃〈v, ·, t2, ·〉 ∈M ∧ (u, v) ∈ E} , (4.9)

where the 〈u, ·, t, ·〉 implies that we consider all check-ins by u at time t irrespective of the

location of the check-in or the set of categories associated with the location. This feeds into

our user correlation estimate T (u→ v|G) which is modeled as the cumulative weight of v

checking in at a location visited by u after a time lag of any t ≥ tminu,v :

T (u→ v|G) =

∫ ∞
tminu,v

λte
−λtδtd(δt) (4.10)

= −e−∞ + e−λtt0 = e−λtt
min
u,v (4.11)

tminu,v = min {(t2 − t1) | ∃〈u, ·, t1, ·〉 ∈M ∧ ∃〈v, ·, t2, ·〉 ∈M}
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As indicated above, we set tminu,v to be the earliest time that v has checked in after u at the

same location, according to training data; this ensuring that T (u→ v|G) reflects the extent

of correlation between u and v, since T (u→ v|G) would have a high value for those user

pairs where the latter follows the former (temporally) closely.

Modeling using Mutually Exciting Hawkes Processes

We define, for a user v, the activity of checking in to location ` at time t as a function of

three components:

1. µv: user’s base (location-agnostic) intensity of checking in,

2. αv
∑

ti∈Hv(t) exp(−ηvv(t − ti)): self excitation or the component that accounts for

repeated check-ins by the user to the same location,

3. αu→v
∑

tj∈Hu(t) exp(−ηuv(t− tj)): excitation caused by neighbors/ friends checking

into the location.

In the above, Hu(t) and Hv(t) indicates all check-in event timestamps prior to current

time t of user u and v respectively. Although we can parameterize the influence impulse

responses for each pair of users, for the sake of model simplicity we set all of them to a

common user-specific kernel exp(−ηv(∆t)). Thus, λ(t, `) can be written as:

λv(t, `) = µv+αv
∑

ti∈Hv(t)

exp(−ηv(t−ti)) I(li = `)+αu→v
∑

tj∈Hu(t)

exp(−ηv(t−tj)) I(lj = `),

(4.12)

where the first, second and third terms account for base intensity, self-excitation and neigh-

bors’ excitation respectively. For parameter estimation under this model, we outline the

likelihood expression (of a set of check-ins for the model parameters), which we would

like to maximize over the entire observed set of check-ins. The design of the model allows
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us to break down the likelihood expressions into a product of likelihood expressions, one

expression for each user that specifically deals with parameters that relate to the user.

L (µ, α,A, η) =
∏
v

Lv (µv, αv,A∗→v, ηv) , (4.13)

where, µ, α and η are vectors of user-specific parameters, A is a user-user influence weight

(i.e. αu→v above) matrix and A∗→v is a row of all influence weights for a user v. Each

Lv(·) can now be optimized separately. According to the meHP model, their construction

is as follows:

Lv (µv, αv,A∗→v, ηv) =
Nv∏
n=1

λv (tn, ln)×
(∫ T

0

exp (−ηv (t, ln))

)
dt (4.14)

where product is over the Nv check-ins made by the user v, and with tn and ln denoting

the time and location associated with the nth check-in. After optimization procedure, we

are ready to quantify the user correlation using the parameter estimates αu→v. Once user

u checks-in at a location, there is a time lag for the check-in information to propagate to

v before the latter can make an influenced check-in. Let this time-lag be tminu,v as in the

case with exponential distribution modeling in the previous section. The temporal user

correlation is simply the estimation of how likely v is, to check in at a location visited by u

after a time lag of t ≥ tminu,v , solely by virtue of influence from u:

T (u→ v|G) =

∫ ∞
T

αu→v
∑

tj∈Hu(t)

exp (−ηv (t− tj)) dt

=
∑
tj<T

(
αu→v
ηv

)
exp (−ηv(T − tj)) ,

(4.15)

where, T is given as:

T = tu + tminu,v (4.16)

tu is the time u checked-in in the test data and tminu,v is estimated as in the case of the
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k 2 3 4 5 6 7 8 9 10

Fsq’16 -2.032 -1.804 -1.704 -1.640 -1.670 -1.687 -1.722 -1.744 -1.817
Fsq’11 -2.711 -2.640 -2.063 -1.726 -0.939 -0.738 -0.677 -0.794 -0.851
Fsq’10 -1.283 -1.251 -1.233 -1.211 -1.225 -1.231 -1.246 -1.260 -1.278

Brightkite -1.915 -1.869 -1.836 -1.789 -1.779 -1.821 -1.850 -1.879 -1.897
Gowalla -1.978 -1.896 -1.847 -1.804 -1.825 -1.854 -1.877 -1.890 -1.931

Table 4.2: Log-likelihood at different values of k

exponential distribution-based modeling:

tminu,v = min {(t2 − t1) | ∃〈u, ·, t1, ·〉 ∈M ∧ ∃〈v, ·, t2, ·〉 ∈M} .

4.3.4 Parameter Estimation

There are multiple parameters to be estimated α, βv, k, µv, αv, αu→v, and ηv where βv

and k are the parameters specific to Location Affinity model and α is the mixing weight

parameter of Location and Category affinity. The parameters (µv, αv, αu→v, and ηv) are

associated to the meHP based Temporal Correlation and are learned jointly by maximizing

the likelihood function for each user v given in Equation 4.14 using the simplex method

[92]. The parameters βv and k are learnt using the likelihood function defined in equation

4.6. The hyper-parameter k is estimated as the value that maximizes the likelihood of

check-ins in the training set. Thus, we set k to the value that maximizes the following:

k = arg max
k′

∑
〈v,`,·,·〉∈V

log
(
P k′

L (v, `|M)
)

(4.17)

The distribution of log-likelihood across various values of k are shown in Table 4.2;

accordingly, we chose k = 5 for usage in our method.

Note that, k is estimated based on all data points in the training set (i.e., not an

individual-level model).

We use EM-algorithm for estimation of parameters βv and α. The EM algorithm to
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dataset FSq’16 FSq’11 FSq’10 BrightKite Gowalla

α 0.90 0.95 0.92 0.93 0.94
βv 0.78 0.86 0.85 0.91 0.90

Table 4.3: α and βv values

used learn α is as follows:

• E-step: Here, we compute a data point specific α whose estimate at the ith iteration

is denoted as α(i)
p . Note that α(i)

p ∈ [0, 1]. This is done for each data point in the vali-

dation set, a held-out part of the check-ins, denoted as N . The other parameters i.e.

βv and k are kept as constant and are learnt separately using the likelihood function

defined in equation 4.6

• M-step: The data point specific weights are then aggregated to arrive at a revised

overall estimate for α for this iteration, denoted as α(i). This is done as follows:

α(i) =

∑
p∈N α

(i)
p

|N |
(4.18)

• With α(i), the new likelihood is computed. For convergence we check the difference

between the old likelihood and the new likelihood is less than the threshold set to

0.01. Upon convergence, α(i) is output as the value for the α to be used for the

dataset.

For βv, similar procedure is followed and k is treated as constant. The only difference is

that it is done over the training dataset, and not on validation set since there are many users

who do not have any check-ins in the validation set (i.e. the heldout part from training and

testing). Table 4.3 shows values of βv and α learned for different datasets.

The parameters of the meHP model of temporal user correlation (i.e., µv, αv, αu→v,

and ηv) are learned jointly by maximizing the likelihood function for each user v given in

Equation 4.14 using the simplex method [92].
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4.4 Applications Using the LoCaTe Influence Quantifica-

tion Models

The LoCaTe models may be used for the fine-grained task of predicting the set of v’s

connections who would check-in into a location ` shortly after v’s check-in. However,

this task in itself is not of enough utility to allow for practical use cases such as those

allowing businesses to intervene into the market and focus their activities towards achieving

desirable effects on their clientele. The estimates from the influence quantification model,

as observed in the introduction, could be aggregated along different facets, for a variety

of interesting tasks in LBSNs, including those that allow for interventions. We consider

the usage of influence quantification models such as LoCaTe/LoCaTe+ in two scenarios:

location promotion and personalized location recommendations. Our empirical evaluation

is limited to the location promotion task since that can be evaluated using the datasets

without expensive user studies.

4.4.1 Location Promotion

We first start with a definition of the location promotion problem.

Definition 4.4.1 (Location Promotion). Given an LBSN G, a target location `, whose cat-

egory set is C`, the location promotion problem is to select a small set of seed users S,

S ⊆ U , such that seed users corresponding to S lure other users to the target location `

maximally. The task typically uses a hyper-parameter τ , that limits the number of seed

users in the output, to τ . �

Figure 4.5 illustrates the schematic of a location promotion framework using the Lo-

CaTe models. We first localize our interest to the location that forms the target, i.e., the

one to be promoted. The chosen LoCaTe model is run just for the location of interest,

to arrive at a set of user-user edge-weights represented in the bottom right corner. These
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Figure 4.5: Location Promotion Framework

Algorithm 1: Influence Maximization
Data: Target Location `, τ , Influence Quantification Model M , threshold ρ
Result: τ seed users, denoted as S
initialize S ← φ ;
initialize I ← φ ;
while |S| < τ do

u’← arg max∀u∈visited(`) {v|v 6∈ I ∧ P`,u (v|M) ≥ ρ} ;
S ← S ∪ u′ ;
I ← I ∪ {v|P`,u′ (v|M) ≥ ρ} ;

end
return S

weights can then be consumed by a greedy algorithm for influence maximization that we

outline in Algorithm 1. In Algorithm 1, we use a threshold ρ to determine the users who

influence others; in other words, we estimate v to be influenced by u for the location ` if

P`,u(v|M) ≥ ρ is satisfied. The greedy strategy is then straightforward in that it builds a

set S of potential seed users, and the corresponding set of influenced users I . Both these

sets are initialized to null; at each iteration, the user who can bring in the largest number of

new users to I is chosen for inclusion in S. This seed user accumulation stops on reaching

the desired output size τ , upon which the set of chosen seed-users S is output.
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4.4.2 Personalized Location Recommendations

A user u, who is at a particular geo-position p, may be interested in getting a list of person-

alized recommendations of locations to visit, based on her interests and the interests of her

connections in the LBSN. In such a scenario, it is likely that the user is interested in loca-

tions that are (i) proximal (i.e., geographically closer), (ii) in line with her interests, and (iii)

are aligned with the interests of her connections. Accordingly, the scoring for a location

may be arrived at using separate modeling of each of these factors, and then aggregated

using a weighted sum; this, followed by the choice of the top-k scored locations, would

complete a solution to the location recommendation problem. This leads to the following

scoring function:

Su,p(`) = γ1 × Proximity (`, p) +

γ2 ×
(
αPL (u, `|M) + (1− α)PC (u,C`|M)

)
+

γ3 ×
∑

v,[u,v]∈E

P`,v (u|M) (4.19)

The first term quantifies the proximity between the location and the user’s position

using a suitable geo-similarity measure, whereas the second term uses the same models

as in LoCaTe/LoCaTe+ to quantify the user’s likely interest in the location ` using both

location and category affinities. The third term is where the influence quantification model

gets plugged in, whereby the scoring is boosted based on the influence from connections

of the user who have previously visited `, the extent of the boosting determined by the

estimate from the influence quantification. The parameters γ1, γ2 and γ3 are estimated in

the same manner as we estimate the weight parameters for the chosen LoCaTe model using

EM-algorithm, as described in section 4.3.4. This is followed by choosing the locations

with the top-k scores to be displayed to the user in a scored list. The usage of the influence
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models is intuitively expected to cause desirable deviations from a simple scoring such as

one based on just the user interests and proximity, leading to enhanced user satisfaction and

reliance on the search interface.
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4.5 Influence Maximization

In this section, we outline the Influence Maximization step (as shown in figure 4.5) in detail.

Once we have the scores or propagation probabilities between each and every pair of users

in the social network (from the influence quantification step). The next step is to determine

the τ seed users set for the promotion such that the total number of users influenced is

maximized. Kempe et al. in [47] has shown the finding the optimal solution for the IM

problem is NP-Hard, and proved that simple Greedy-algorithm can provide best approxi-

mation in polynomial time. They incorporated the use of diffusion models for information

propagation, followed by most of the subsequent work. The two most well studied infor-

mation diffusion models are: (1) Linear Thresholding (LT) and (2) Independent Cascade

(IC).

1. Linear Thresholding (LT): Under the LT model, every node v contains an activation

threshold θv, which is chosen uniformly at random from the interval [0, 1]. Fur-

ther, LT dictates that the summation of all incoming edge weights is at most 1, i.e.,

∀u ∈ In(v)W (u, v) ≤ 1. v gets activated if the sum of weights W (u, v) of all the

incoming edges (u, v) originating from active nodes exceeds the activation threshold

θv. Mathematically,

∀u∈In(v)W (u, v) ≥ θv

2. Independent Cascade (IC): Under the IC model, time unfolds in discrete steps. At

any time-step i, each newly activated node u ∈ Va gets one independent attempt to

activate each of its outgoing neighbors v ∈ Out(u) with a probability W (u, v). In

other words, W (u, v) denotes the probability of u influencing v

Using the LT/IC model, the influence spread i.e. the expected number of activated users

are computed given a seed users set.
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4.6 Experimental Evaluation

In this section, we evaluate the effectiveness of both our proposed models, viz., LoCaTe and

LoCaTe+, against state-of-the-art influence quantification models, those from [169, 170].

We perform empirical evaluation over the influence quantification task, as well as over

the more coarse-grained tasks of location promotion, and location recommendation. In

addition to the comparative evaluation, we also present trends across varying values of cut-

off thresholds used to discretize the influence scoring to the sets of influenced and other

users.

4.6.1 Datasets

We tested over 5 datasets as shown in Table 4.4, of which FSq’16 is the one that we col-

lected using Twitter and Foursquare APIs, and rest are publicly available datasets [16, 33],

for which the category information is inferred as explained in chapter 3. For the ease of

reference we are reporting the full table with some key characteristics of the datasets in

Table 4.4.

In our method, we make use of check-in histories, social connections as exemplified in

the social graph, as well as the categories associated with each location. There are some

recently released Foursquare datasets (e.g.,[137]) which could not be used in our experi-

ments since they do not have even the social graph information, making them unsuitable in

tasks relating to social influence.

Train-Test Partitioning

For each dataset, we assign a cut-off timestamp, the data prior to it is used for training the

influence models and rest of the check-ins for testing the validity of their predictions. The

cut-off timestamp is chosen such that 80% of total checkins are used for training.
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Dataset FSq’16 FSq’11 FSq’10 Brightkite Gowalla

Duration Jan’15 - Feb’16 Jan’11 - Dec’11 Mar’10 - Jan’11 Apr’08 - Oct’10 Feb’09 - Oct’10
#users 119, 756 11, 326 18, 107 58, 228 196, 591
#check-ins 9, 317, 276 1, 385, 223 2, 073, 740 4, 491, 143 6, 442, 890
#unique locations 183, 225 187, 218 43, 064 772, 966 1, 280, 970
#unique categories 734 638 624 683 680
#friendship-links 1, 308, 337 47, 164 115, 574 214, 078 950, 327
avg. degree 21.85 8.33 12.76 7.35 9.66
#users (training records > 10) 78, 312 11, 324 17, 369 23, 356 72, 925
A(`, u) 55, 884 15, 951 4, 056 2, 642 88, 865
cut-off timestamp 1/12/2015 1/10/2011 1/12/2010 1/5/2010 1/6/2010
Mean(#categories / location) 1.00 12.12 20.47 8.38 1.28
Mean(#categories / topic) 330.23 305.12 319.45 249.92 352.56

Table 4.4: Statistical properties of the datasets

4.6.2 Implementation Details

We implemented our model and the baselines in Java. Whenever specific building blocks

were available off-the-shelf, we made use of those; this includes the kernel density estima-

tion code from the UCI Datalab website (http://www.datalab.uci.edu/resources)

and the topic modeling implementation from Mallet (http://mallet.cs.umass.

edu/topics-devel.php). We ran all algorithms on a server with 6-core 2.5GHz In-

tel Xeon CPU with 64GB of RAM. The source code and the datasets used are made publicly

available at https://goo.gl/ayzehx.

4.6.3 Influence Quantification Models

We compare our proposed LoCaTe models with three baseline methods;

1. Distance-based mobility models (DMM) [169, 170],

2. Gaussian-mixture models (GMM) [16, 169, 170] and

3. a Baseline model that brings together mobility, categorical and temporal features

using a simple aggregation.

The first and second methods yield variants based on the usage of social connections and

location categories; however, they do not use any form of user correlation information.
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Thus, we compare against the third method that uses a simplistic temporal user correlation

modeling, to illustrate the effectiveness of our method.

1. GMM: It models user’s mobility patterns using a Gaussian mixture model. Each

user’s check-in records can be represented using several states, and each state can

be modeled using Gaussian distribution. In our experiments we choose two states:

home and work states as suggested in [16, 169]

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
p(x) =

K∑
k=1

πkN (x|µk,Σk)

where, π1...πk, are the mixture weights of the states, µ1...µk, the mean of each state

and Σ1...Σk, the variance of each state.

GMM-category: Zhu et. al. in [170] extends the basic GMM model to incorporate

category information as follows:

p(`|u) = P (x, y, C`|u) = p(x, y|C`, u) p(C`|u)

To derive p(x, y|C`, u), u’s check-in records that belong to C` are selected to build

the Gaussian distribution if u has a sufficient number (i.e., larger than θC`) of check-

in records that belong to C`. Otherwise the check-ins under category C` in the region

Rx,y,r, i.e., p(x, y|C`, Rx,y,r), is used instead of directly calculating P (x, y|C`, u),

where Rx,y,r is a circular region with center (x, y) and radius r.

p (x, y |C`, u) =


N (µu,C` ,Σu,C`) , if

∣∣{(u, ` = (x, y, C`) , t) |u,C`}
∣∣ > θC`

p (x, y|C`, Rx,y,r) = N
(
µRx,y,r,C` ,ΣRx,y,r,C`

)
, otherwise
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θC` and r is set to 10 and 1 km, respectively as used in [170].

2. DMM: Distance based mobility model, models the probability of a user moving

from visited locations to the target location.

DMM Basic: Pareto distribution [93] is used for modeling the distances between

the checked-in locations of a user.

pu(`) =
∑
l

P (u is at l) P (u moves distance d(l, `) from l)

=
∑
l

pu,lαM
(d (l, `) + 1)αM

DMM Social: It models user’s and user’s friends mobility patterns using Pareto dis-

tribution as above and the resulting model is the mixture of individual’s distance

density and social distance density as follows:

Pu(`) =
∑
l

pu,l

[
p(M)αM

(d(l, `) + 1)αM
+

p(S)αS
(d(l, `) + 1)αS

]

where, p(M) and p(S) are mixing components and αM and αS are the Pareto

distribution parameters learned using individual and social data, respectively.

DMM Category: Similar to GMM Category, DMM Category is adopted from DMM Basic

as follows:

p(x, y|C`, u) =


∑

l

pu,lαu,C`
(d(l,`)+1)

αu,C`
, if

∣∣(u, ` = (x, y, C`) , t) |u,C`
∣∣ > θC`

p(x, y|C`, Rx,y,r) =
∑

l

pu,lαRx,y,r,C`

(d(l,`)+1)
αRx,y,r,C`

, otherwise

3. Baseline: In equation (1) in section 4.3 we plugin most frequent checkins as the

location model, simple category distribution as the category model and average time

lag based exponential distribution as the temporal model. These are combined in

exactly the same way as the analogous terms are combined within the LoCaTe model,
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i.e.:

P`,u(v|M) =

(
α

I`
|Mu|

+ (1− α)
IC`∑|Mu|
i=1 |Ci|

)
× exp

(
−∆tu,v

)
,

where, I` is the number of instances when u has checked-in at `, IC` is the number of

instances when u has checked-in at category set C`, and ∆tu,v is the average of time

lag between u and v check-ins in the training data.

4.6.4 Evaluation on Influence Quantification Task

For evaluation on Influence Quantification task, we use the same framework as used in an

earlier work [169]. Consider a particular instance of the influence quantification problem

for location ` and a seed-user u; the influence quantification output would be an ordered list

of u’s connections, ordered in the decreasing (non-increasing) order of estimated likelihood

to visit `. This list can be cut-off using a threshold ρ to identify a set of users who are

deemed to be highly likely to visit ` - this set forms the predicted set, PS(`, u, ρ |G). The

ground truth activated set,A(`, u), is the subset of u’s connections who have actually visited

` after the cut-off timestamp (i.e., from the test set). The match between PS(`, u, ρ |G)

and A(`, u) measured at various values of the threshold ρ quantifies the goodness of the

influence quantification method employed. Any measure of match between sets can be

aggregated over all users (i.e., by iterating u over the set of LBSN users) to get a single

goodness value for the combination [`, ρ]. We use the ROC curve (generated by varying ρ)

to compare our method against baselines in our empirical evaluation.

Now, to arrive at a set of target locations for ` to perform the aforementioned ROC

curve evaluation, we identify a set of locations from the dataset where there are many users

checking-in before the train/test cut-off timestamp, and their followers checking-in after

the cut-off timestamp. This will ensure that there are enough users in the respective A(`, u)

sets formed for the location, to alleviate sparsity issues in the evaluation. Table 4.4 shows

the number of test cases, A(`, u), along with the cut-off timestamp for each dataset.
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Figure 4.6: ROC for different influence quantification models (AUC is in table 4.5)

ROC and AUC

Figure 4.6 shows ROC curves and table 4.5 shows AUC (Area Under the Curve) of differ-

ent influence quantification models on different datasets along with the F-statistic based

significance test [30] where, p-value < 0.05 indicating that the results are significant.

It can be observed that the LoCaTe models outperform DMM Basic, DMM Social and

DMM Category models quite significantly on FSq’16 dataset, where we have accurate lo-

cation category information. Even on the other datasets, we observe that LoCaTe models

outperform DMM Basic, DMM Social and DMM Category models by moderate to large

margins, illustrating the effectiveness of our influence modeling framework. Moreover, the

LoCaTe+ model further outperforms LoCaTe model, as the temporal correlation modeled

in LoCaTe+ is specific to the location thus it is better in capturing the influence as com-

pared to LoCaTe. The efficacy of the LoCaTe models is not only contributed by additional

knowledge we gain from categories, but also due to the usage of temporal user-user corre-

lation, modeled using exponential distributions and mutually exciting Hawkes processes.
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Datasets
Techniques

Baseline GMM GMM category DMM basic DMM social DMM Category LoCaTe LoCaTe+

Fsq’16 0.582 0.599 0.473 0.521 0.568 0.573 0.839 0.857∗∗
Fsq’11 0.721 0.716 0.605 0.727 0.716 0.579 0.789 0.816∗∗
Fsq’10 0.575 0.718 0.717 0.699 0.588 0.671 0.741 0.781∗

Brightkite 0.517 0.526 0.534 0.601 0.627 0.494 0.707 0.746∗

Table 4.5: AUC (Area Under the Curve) of different influence quantification models over
different datasets along with ∗∗p < 0.01 and ∗p < 0.05

The Temporal correlation captures the social influence by modeling the time lag between

checkins of the connected users. To verify this claim we computed the AUC with and with-

out Te model (i.e. Temporal modeling). For FSq’16 the AUC for LoCaTe (LoCaTe+) is

0.839 (0.857) and LoCa(without Temporal modeling) is 0.752, this shows that Te model

indeed captures social followship and that the mutually exciting Hawkes process model-

ing delivers improvements over the simpler exponential distribution based modeling. From

these results, it may also be inferred that our Location model provides a better fit to the

mobility data as for each testing location the distance around it is determined using the k

nearest neighbors (from the training data). On the other hand, the distance based mobility

model (DMM) is sensitive to short distances and thus assigns a low probability to locations

at larger distances. The Lo and Te components along with semantic location modeling

using category information is seen to provide significant gains in accuracy of influence

quantification.

Parameter Tuning

Figure 4.7 (a) and (b) shows the variation in the AUC (Area Under the Curve) as the tuning

parameter α (weighted parameter for Lo and Ca in eq (4.1)) and βv (weighted parameter

for user and global KDE model in eq (4.6)) varies, respectively. It can be observed that the

highest value of AUC is achieved close to 0.90 for all the datasets, giving less weightage

to topic model. But, at α = 1 the performance decreases sharply, thus it shows topic model

is essential as it covers the zero probability cases and improves the overall performance of
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the LoCaTe (LoCaTe+) model. The peak is observed close to 0.9 because there are fewer

number of categories as compared to locations 4.4, thus probability values for category

affinity is high as compared to location affinity.
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Figure 4.7: AUC (Area Under the Curve) with varying α and βv between 0.0 – 1.0

F-measure

PS(`, u, ρ |G) and A(`, u), both being sets, allow comparing the methods based on the F-

measure [101]. The Table 4.6 shows F-measure of different influence quantification models

on different datasets along with the F-statistic based statistical significance test. F-measure

is computed as follows:

F −measure =
2.P recision.Recall

Precision+Recall

Overall, we observed that both the LoCaTe models perform better in terms of F-measure

over other influence quantification models for all the datasets, except on Brightkite where

DMM Basic is seen to be neck-to-neck with LoCaTe+. It is notable that the temporal

modeling in LoCaTe+ lead to very significant gains in F-measure over the basic LoCaTe

model. Note that, although the F-measure is less than 0.01 but the p-value< 0.05 indicates

that the results are significant.
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Datasets
Techniques

Baseline GMM GMM category DMM basic DMM social DMM Category LoCaTe LoCaTe+

Fsq’16 0.008 0.035 0.031 0.027 0.036 0.035 0.038 0.040∗∗
Fsq’11 0.003 0.016 0.018 0.014 0.022 0.021 0.023 0.033∗∗
Fsq’10 0.006 0.065 0.060 0.086 0.021 0.020 0.093 0.112∗

Brightkite 0.008 0.031 0.030 0.036 0.031 0.024 0.032 0.036∗
Gowalla 0.007 0.028 0.021 0.012 0.027 0.025 0.032 0.035∗

Table 4.6: F-measure of different influence quantification models along with p-value sig-
nificance test where ∗∗p < 0.01 and ∗p < 0.05

Datasets
Techniques

Baseline GMM GMM category DMM basic DMM social DMM Category LoCaTe LoCaTe+

Fsq’16 19.2 3.5 446.8 3.1 5.1 508.3 3.5 4.2
Fsq’11 70.2 6.9 35.5 3.2 16.7 50.2 31.5 35.3
Fsq’10 17.0 6.1 151.5 3.2 10.8 15.6 5.4 7.5

Brightkite 1003.7 46.9 2626.6 26.1 154.4 1937.8 129.4 140.8
Gowalla 24.9 3.7 130.1 2.8 27.0 141.8 5.0 8.9

Table 4.7: Average time taken in execution of a testcase in (ms) for different influence
quantification methods

Execution Time

Table 4.7 shows average execution time (in milli seconds) of each test case using different

influence quantification models on all the datasets. Overall, we observed that the LoCaTe

models run slightly slower than the simple DMM Basic, but remains faster than other meth-

ods considered. Moreover, LoCaTe+ is further slower because of the extra sophistication

involved in modeling. On the other hand, GMM Category and DMM Category are signif-

icantly slower. It may be noted that within the LoCaTe framework, the location-affinity

terms are user-specific and thus can be maintained in current state as the stream of check-

ins arrive, and they simply need to be looked up at query time; this opens up possibilities

for further efficiency improvements for the LoCaTe models, in real-time usage scenarios

(our timings were based on an offline evaluation).
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4.6.5 Evaluation on Location Promotion Task

In evaluating the location promotion task, our interest is in the quality of the set computed

using Algorithm 1 based on using various underlying influence models. Unlike the in-

fluence quantification, this task is just location-specific (and not user-specific). For each

location, based on the training data, location promotion is the task of finding a set of good

seed users S, who are likely to lure a lot of their connections to the location. More formally,

consider a target location `, and the input parameter τ (the desired size of the output seed

set, S), the influence quantification model M and the influence quantification threshold ρ

that are passed to the location promotion algorithm. The goodness of S, as estimated from

the test data, are the set of connections of S who visit the location `, in test data. This is

computed as:

I(S) = {v|(u, v) ∈ E, u ∈ S & v has visited ` in test data}

The size of the set I(S) indicates the amount of collective influence that users across S

have, in luring their connections to the target location. Accordingly, we simply use the size

of I(S), i.e., |I(S)|, as a measure of quality to evaluate the seed sets output by the various

methods for the location promotion task.

For constructing the test set of target locations `, we choose those locations that have

a sizable number of users checking-in, in the test set. This ensures that a reasonable sized

I(S) may be achieved, for good quality estimates of S, thus alleviating sparsity issues in

the evaluation.

Results

Table 4.8 reports the results of |I(S)| computed in the test data where ρ is set to 0.003.

The threshold value of 0.003 is determined using the knee-point in the curve of |I(S)| as

we vary the value of ρ, following the method suggested in [12]. We observe that both the
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Datasets
Techniques

GMM GMM category DMM basic DMM social DMM Category LoCaTe LoCaTe+

Fsq’16 18.11 14.98 18.66 33.24 30.32 32.95 35.91
Fsq’11 20.42 24.91 26.74 34.35 30.17 35.06 39.48
Fsq’10 16.52 22.05 19.38 23.14 20.67 27.61 29.33

Gowalla 7.51 26.84 21.94 35.18 36.12 39.78 43.44

Table 4.8: |I(S)| at ρ = 0.003 and τ = 5
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Figure 4.8: The size of I(S) at different thresholds with τ = 5

LoCaTe models perform better than the baselines in terms of |I(S)| on all datasets but for

FSq’16 where DMM Social scores slightly better than the basic model but is overshadowed

by LoCaTe+. The overall trends underline the effectiveness of LoCaTe framework in the

location promotion task.

Varying ρ

To understand the trends over varying ρ, we evaluate at different values of ρ (the influence

quantification threshold) ranging from 0.001 to 0.05 at two different settings of seed set

size, τ . The |I(S)| numbers are plotted in Figures 4.8, and 4.9. It can be observed that

LoCaTe models perform consistently better at all the threshold values, with the difference

being exceedingly pronounced in the Gowalla dataset. This consistent performance is con-

tributed to LoCaTe’s capability to capture the influence in a better way. The trends were

found to be similar for other values of τ ; thus, we omitted those graphs for brevity.
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Figure 4.9: The size of I(S) at different thresholds with τ = 10

4.6.6 Impact of Time Window on Location Promotion

Social Networks in general are dynamic in nature, and users’ influence strength changes

over time. For example, consider the seed user u visited the target location at time tu and

her follower visits the target location at time tv such that tv > tu. It may happen that as

tv →∞, and the seed user does not contribute anymore towards the influence process. As

a consequence of this assumption, we will end up getting seed users set which does not

hold much value in influencing and activating their followers. In the previous section, the

evaluation technique described does not consider temporal dynamics. Since the check-in

activity that we consider is time based and it is possible that a user at some time in future

may become useful/useless for the promotion of a specific location. Thus, while computing

the set of influenced users I in the algorithm 1 we consider the time-window T upto which

the influence persists, and the set of influenced users is computed as:

I = {v|Pu,`(v) > ρ & tv − tu < T},

such that (u, v) ∈ E and v has visited the target location `. Pu,`(v) is the influence score

between u and v, and tv and tu are the timestamps when v and u visited the target location

`.

For the evaluation of the time window impact, we observe that with the time window
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Figure 4.10: The size of I(S) at time windows with ρ = 0.003 and τ = 5

constraint the influence period of a seed user may intersect with the test set. Thus, in order

to make sure that the entire training data with the influence period lie within the global

cut-off timestamp limits, we use last checked-in time stamp of the seed user for training

without compromising on the test set. For instance, consider a target location `, the global

cut-off timestamp as Oct 1, 2015 and the time window T is 20 days. A candidate seed user

u visits the target location ` on Sep 20, 2015 (this is the last check-in in the training data

at ` by u) and u’s follower v visits the ` on Oct 5, 2015; the influence period of u is till

Oct 10, which intersects with the test data. If we want to choose a global cut-off timestamp

where this intersection doesn’t happen then how far we have to go backward in the training

data is a question and if we go forward in the test data then we may have to compromise

the size of the test data. Thus, for each candidate seed user u and its followers (like v) we

use the training data until last checked-in time stamp of u, as it ensures sufficient and also

same amount of data for training at all the time window sizes.

Figures 4.10, shows results of time based evaluation at different values of time window

sizes, here ρ is set to 0.003. It can be observed that as the time window size increases

from 10 to 90 days, the number of influenced users has also increased; the relative trends

show that the LoCaTe models record higher number of influenced users consistently. To

understand the phenomenon that why the number of influenced users has increased with

time window sizes, we analyze the graph structural properties of the graph formed using the

84



20 40 60 80

5
6

7
8

9
10

FSq'16

T(days)

di
am
et
er

20 40 60 80

5
6

7
8

9
10

FSq'10

T(days)

di
am
et
er

20 40 60 80

5
6

7
8

9
10

FSq'11

time_window

di
am
et
er

20 40 60 80

5
6

7
8

9
10

Gowalla

T(days)

di
am
et
er

LoCaTe+
LoCaTe

DMM_Basic
DMM_Social

DMM_Category
GMM_Category

Figure 4.11: The diameter, φ, at different time windows with ρ = 0.003 and τ = 5

set of influenced users and seed users. We analyze the graph structural properties because

we know that there exists community formation with information propagation in social

networks [1, 131, 77, 56].

Graph Structural Analyses with Time

In this section, to analyze whether a certain location becomes prevalent in a community or

does the check-in activities leads to community formation, we determine the diameter φ,

clustering coefficient C, and average Degree Centrality CD of the influencers (S) and influ-

enced users’(I(S)) graph GT (VT , ET ), where VT = I(S)
⋃
S and ET = {(u, v)|(u, v) ∈

E}.

φ and C: Figures 4.11 and 4.12 shows the results for diameter and clustering coef-

ficient of the graph GT with respect to the time window size T . It can be observed that

as T increases the clustering coefficient C increases and the diameter φ decreases. Thus,

with time as the influence propagates there exist community formation. Hence, a location

becomes prevalent amongst a group of users.

Degree Centrality Test: We analyze the average Degree Centrality CD of GT com-

puted using different quantification models to understand how much cohesive GT does

each model renders. Tables 4.9, 4.11, 4.10, and 4.12 shows that the LoCaTe models are

able to render better average degree centrality of GT . Note that, GT is an unobserved graph
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Figure 4.12: The clustering coefficient, C, at different time windows with ρ = 0.003 and
τ = 5

Time Window
Techniques

GMM GMM category DMM basic DMM social DMM category LoCaTe LoCaTe+

10 0.234 0.199 0.243 0.258 0.258 0.253 0.263
20 0.262 0.224 0.270 0.282 0.284 0.267 0.280
30 0.267 0.243 0.278 0.284 0.283 0.275 0.288
40 0.276 0.258 0.294 0.296 0.297 0.291 0.301
50 0.285 0.267 0.301 0.302 0.300 0.294 0.304
60 0.289 0.277 0.307 0.306 0.303 0.303 0.313
70 0.291 0.288 0.306 0.299 0.299 0.312 0.322
80 0.286 0.299 0.313 0.306 0.306 0.325 0.325
90 0.285 0.308 0.311 0.309 0.310 0.326 0.328

Table 4.9: Average degree centrality, CD, of the graph of influenced users for FSq’16

and is formed while testing. Thus, we can conclude that LoCaTe models provide us with

more cohesive unobserved graph as compared to other quantification models.

4.6.7 Evaluation on Location Recommendation Task

For the evaluation of the Location Recommendation Task, first of all we consider all the

locations in the training set as the candidate locations (that can be recommended), then we

assign score to each candidate location using the scoring method as described in section

4.4.2. Next, we rank the locations based on the scores obtained and compare it against the

actual checked-in location. Recall and NDCG are used as the evaluation metrics. Note

that, for computing we compare single ground truth location with the recommended rank

of the location. For measuring the efficiency of our model we compare our results against
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Time Window
Techniques

GMM GMM category DMM basic DMM social DMM category LoCaTe LoCaTe+

10 0.327 0.376 0.397 0.400 0.385 0.403 0.423
20 0.339 0.386 0.395 0.399 0.391 0.409 0.419
30 0.347 0.393 0.401 0.399 0.403 0.404 0.424
40 0.346 0.383 0.391 0.390 0.406 0.400 0.420
50 0.346 0.388 0.392 0.394 0.408 0.416 0.422
60 0.343 0.376 0.387 0.389 0.407 0.416 0.426
70 0.346 0.374 0.385 0.389 0.403 0.413 0.424
80 0.343 0.374 0.388 0.391 0.401 0.417 0.427
90 0.340 0.373 0.391 0.390 0.401 0.416 0.425

Table 4.10: Average degree centrality, CD, of the graph of influenced users for FSq’11

Time Window
Techniques

GMM GMM category DMM basic DMM social DMM category LoCaTe LoCaTe+

10 0.391 0.325 0.378 0.458 0.401 0.466 0.476
20 0.363 0.431 0.421 0.452 0.417 0.480 0.490
30 0.353 0.393 0.407 0.418 0.403 0.458 0.479
40 0.363 0.401 0.429 0.413 0.392 0.429 0.449
50 0.380 0.363 0.390 0.387 0.420 0.431 0.441
60 0.357 0.351 0.390 0.393 0.417 0.425 0.435
70 0.348 0.327 0.377 0.376 0.416 0.402 0.412
80 0.338 0.354 0.372 0.359 0.409 0.425 0.435
90 0.342 0.356 0.365 0.356 0.418 0.418 0.428

Table 4.11: Average degree centrality CD of the graph of influenced users for FSq’10

Time Window
Techniques

GMM GMM category DMM basic DMM social DMM category LoCaTe LoCaTe+

10 0.111 0.331 0.342 0.342 0.320 0.329 0.349
20 0.131 0.346 0.347 0.352 0.336 0.348 0.368
30 0.151 0.353 0.368 0.373 0.347 0.370 0.380
40 0.165 0.346 0.350 0.350 0.327 0.373 0.383
50 0.174 0.341 0.351 0.353 0.335 0.366 0.376
60 0.182 0.345 0.357 0.357 0.336 0.369 0.379
70 0.187 0.349 0.351 0.352 0.332 0.365 0.375
80 0.198 0.349 0.351 0.354 0.332 0.369 0.379
90 0.211 0.354 0.348 0.347 0.325 0.380 0.370

Table 4.12: Average degree centrality CD of the graph of influenced users for Gowalla
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Datasets
top-k FSq’16 FSq’10 FSq’11 Brightkite Gowalla

LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++
5 0.163 0.084 0.420 0.399 0.168 0.124 0.378 0.288 0.203 0.078

10 0.392 0.254 0.613 0.564 0.330 0.289 0.420 0.355 0.270 0.135
20 0.602 0.482 0.692 0.667 0.556 0.467 0.480 0.417 0.366 0.224

Table 4.13: Recall at different values of top-k for different datasets

Datasets
top-k FSq’16 FSq’10 FSq’11 Brightkite Gowalla

LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++
5 0.122 0.084 0.160 0.138 0.118 0.093 0.151 0.126 0.111 0.089

10 0.130 0.112 0.212 0.189 0.150 0.122 0.211 0.174 0.132 0.106
20 0.157 0.130 0.252 0.220 0.208 0.187 0.228 0.208 0.151 0.127

Table 4.14: NDCG at different values of top-k for different datasets

GeoMF++ (Joint Geographical model and Matrix Factorization for Location Recommen-

dation) [65]. The evaluation is performed over 2608178, 495616, 148424, 324091, and

386203 number of test cases for FSq’16, FSq’11, FSq’10, Brightkite, and Gowalla dataset,

respectively. Table 4.13 and table 4.14 reports the Recall and NDCG obtained on the Per-

sonalized Location Recommendation Task at different top−k values using LoCaTe+ model

and GeoMF++ [65], respectively. It can be observed that LoCaTe performs significantly

better than GeoMF++ over all the datasets. This we believe is because LoCaTe incorporates

additional information i.e. Category Affinity and Temporal Information, while GeoMF++

only models users’ location preferences based on its mobility. Table 4.15 report values of

tuning parameters γ1, γ2 and γ3 used for the above evaluation for all the datasets learned for

the LoCaTe+ model. We also performed grid search using grid sizes of 0.01 to demonstrate

the chosen parameter values return the best performance. Table 4.16 reports the Recall

result for the FSq’10 dataset of the grid search at different values of γ1, γ2 and γ3. We only

report few values, although an exhaustive grid search was performed.

4.7 Conclusion

In this chapter, we proposed a framework LoCaTe that incorporates not only the traditional

user mobility models but also temporal correlation within the social network of users as
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Datasets γ1 γ2 γ3
FSq’16 0.05 0.68 0.28
FSq’11 0.10 0.65 0.25
FSq’10 0.10 0.70 0.20

Brightkite 0.15 0.70 0.15
Gowalla 0.12 0.70 0.18

Table 4.15: γ1, γ2 and γ3 used for differ-
ent datasets

γ1 γ2 γ3 Recall
0.2 0.3 0.5 0.601
0.5 0.3 0.2 0.578
0.5 0.1 0.4 0.570
0.2 0.6 0.2 0.605
0.1 0.7 0.2 0.613
0.2 0.7 0.1 0.604

Table 4.16: Recall at top-10 for different
values of weight parameters for FSq’10
dataset

well as the affinity of users to a location-based on the semantics of the location (i.e., cate-

gories). We developed two models based on the framework; a basic model, also called Lo-

CaTe, that uses exponential distributions to model the temporal correlation between users,

and a more advanced model, called LoCaTe+ that makes use of mutually exciting Hawkes

processes. We empirically evaluated our approaches using the influence quantification task,

and the more general problem of location promotion over some real-world LBSN data with

a large number of users and spanning more than a year. For the influence quantification

task, we observed that LoCaTe models demonstrated more than 54% improvements over

state-of-the-art methods. Further for the location promotion setting, LoCaTe models were

seen to be able to predict the graph of influenced users with better degree centrality. The

gains transferred nicely over to the location recommendation task as well, where LoCaTe

models provided more than 50% improved recommendation over existing methods. In our

next chapter, we further explore the diffusion process of location-based influence, and also

the communities.
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Chapter 5

Information Diffusion and Community

Detection

5.1 Introduction

Proliferation of smartphone usage and pervasive data connectivity have made it possible to

collect enormous amounts of mobility information of users with relative ease. Foursquare

announced in early 2018 that it collects more than 3 billion events every month from its

25 million users1. These events generate a location information diffusion process through

an underlying –possibly hidden– network of users that determines an location adoption

behavior among users. Location adoption primarily depends upon user’s spatial, temporal

and categorical preferences. For instance, one user’s check-in at a newly opened jazz club

could inspire another user to visit the same club or a similar club in her vicinity depend-

ing upon the distance from the club and time of the day/week. These users might not be

having a social connection but it’s an implicit influence because of similar choices. This

often leads to the formation of –possibly overlapping– communities of users with similar

behavior. Detecting community of such like minded people from large geo tagged events

1https://bit.ly/2BdhnnP (accessed in February 2019)
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(a) threshold = 0.5 (b) threshold = 0.7 (c) threshold = 0.9

Figure 5.1: COLAB extracts underlying diffusion network over US data using geotagged
checkin traces. This Maximum Weighted Spanning Forest (MWSF) is constructed by vary-
ing the threshold for edge weights (i.e. influence score computed using COLAB). The
inferred influence network depicts a tree-like structure of influence.

can benefit applications of various domains such as targeted advertisements and friend rec-

ommendation. Prior work [157] also suggests that social connections are not as effective

factors for prediction tasks.

In this chapter, we move away from communities derived purely from social network

links, and instead explicitly identify spatio-temporal activity-driven communities. Eschew-

ing the reliance on social connections alone allows us to learn communities that are not

overly biased towards connected users. At the same time, it supports the use of COLAB

under settings where social network is not available – either due to privacy settings of users,

or due to other restrictions from platform.

Example 5.1.1. We illustrate the spatio-temporal activity-based network and communities

that COLAB derives using the US dataset we collected, shown in Figure 5.1. We observe

that explicit social connections, shown using black edges, are very sparse and are unable

to capture the implicit influence network. On the other hand, the latent network derived

by COLAB, shown using gray edges, can identify significantly higher number of relations

in the latent influence network. It can be observed that it not only capture the clusters but

also identifies potential influencers (and their influence networks) which can critically help

in prediction tasks.

In this work, we determine that the location adoption process and community formation
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among users can be explained by the same latent factors underlying the observed behav-

ior of users without considering their social network information. We propose COLAB

(Communities of Location Adoption Behavior) that focuses on jointly inferring location

specific influence scores between users and the communities they belong to, based solely

on their activity traces. COLAB completely disregards the social network information,

which makes it suitable for scenarios where only activity traces are available. Note that

if social network is available, it can be used as a prior or a regularization over the influ-

ence matrix we derive. Unlike the current best-performing models for location prediction

task (e.g., [151]), COLAB avoids the community formation from being biased only by the

availability of social connections. Thus we generate better communities even for users with

few or no social connections as shown in figure 5.1.

Further, we generate overlapping communities of users that take into account the spatio-

temporal patterns, and the shared special interests over location categories. Although a user

may be part of multiple communities with different special interests, we assume each event

or check-in to be associated with only one of those communities. Prior works have focused

on modeling temporal + textual together [157] or temporal + spatial features together [147],

none of the techniques to the best of our knowledge have modeled the entire combination

of temporal, spatial and location semantics in a spatio-temporal point process to infer the

underlying influence network.

Our main contributions are as follows:

1. We propose a novel model called COLAB to model activity patterns over geo-tagged

event traces. It leverages spatio-temporal Hawkes process [17] to not only construct a

information diffusion-based latent network but also recover overlapping community

structures within it.

2. We develop a novel stochastic variational inference technique to learn the latent com-

munities and model parameters.
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3. As our target is to identify communities that comprise users who share interests as

opposed to just being socially connected, there is unfortunately no gold-standard

community information to evaluate our results. Therefore, we first empirically evalu-

ate our method over synthetic data; further, results shows our inference algorithm can

accurately recover the model parameters. For communities evaluation on real data,

we make use of a joint loss function that evaluates on the basis of intra-community

properties defined in terms of users’ category affinity and spatial dispersment in their

checkin characteristics.

4. We evaluate on three real-world geo-tagged event traces collected from three coun-

tries – viz., SA (Saudi Arabia), Brazil and US. The experimental results demonstrates

that we achieve upto 27% improvement over neural network based models.

5.2 Problem Statement

Consider an geo-tagged event trace dataset S over a set of L locations L = {`k}Lk=1 =

{(xk, yk)}Lk=1, a set of I users U = {ik}Ik=1 and V categories (restaurants, entertain-

ments etc.). Let us consider there are N events, with the nth check-in denoted as En =

(tn, `n, cn, in, gn) and E = {En}Nn=1. The notation denotes that En is the check-in event in-

volving the user in checking in to location `n at time tn, with the category associated with

the location being cn and the latent community of the user associated with the check-in

is gn. The task is to learn the latent community associated with the users and effectively

model the diffusion of information among users. Towards this, we aim to learn a matrix φ

of size |U| x |M | where ith row represents community participation for the ith user (assum-

ing M communities). In addition, to model the diffusion process, we estimate matrix Aij ,

where an element aij represents the influence of ith user on jth user.
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Symbol Description

U set of I users
L set of L locations
G set of M communities (latent)
λi(t, x, y) intensity at time t and spatial coordinate x, y of user i
µi base rate of check-ins of user i
Aij influence of user i on user j
κ(t, x, y) triggering / self exciting kernel

Table 5.1: Terminology

5.3 Preliminaries

5.3.1 Hawkes Process

Point processes provides a mathematical framework to specify a distribution over points

located in space or time. They are characterized by a latent intensity function which de-

termines the occurrence of points in space or time. Temporal point processes consider the

intensity to be a function of time λ(t), and it provides instantaneous probability of occur-

rence of an event at time t. In social networks, events such as posts trigger more future

posts. It has been found that Hawkes process[39, 40] , a point process with self triggering

property, is more suited to model the occurrences of events in social media [164]. Here, the

conditional intensity as a function of time is defined as follows,

λ(t) = µ+
∑
tk<t

κ(t− tk)

where µ is the base intensity with which some events occur, and κ() (kernel function)

consider the influence of the past events on the current event. Typically, an exponentially

decaying function is considered, as the influence of previous events decays exponentially

over time.
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5.3.2 Multidimensional Hawkes Process

Events can belong to different individuals/entities (dimensions) and one entity can trigger

events belonging to other entities. Multidimensional Hawkes process models this mutu-

ally exciting property by considering time-stamped events from multiple entities [166]. It

allows explicit representation of infectivity among entities. The intensity function for an

entity i at time t depends on past events as following

λi(t) = µi +
∑
tk<t

Aikiκ(t− tk),

where (tk, ik) represents time and entity pair associated with past events, µi > 0 is the

spontaneous intensity for the ith entity and the non-negative coefficient Aij captures the

mutually-exciting property (influence) of the ith entity on the jth entity. Larger values of

Aij indicates that events associated with ith entity are likely to trigger more events in the

jth entity.

5.3.3 Spatio-Temporal Hawkes Process

The Spatio-temporal Hawkes process is an extension of temporal Hawkes process where

the events are modeled as a function of space, time and previous history of events[17, 106].

These models naturally capture triggering and clustering behavior, and have been widely

used in fields where spatio-temporal clustering of events is observed, such as earthquake

modeling, infectious disease, and crime. The conditional intensity of self exciting spatio-

temporal Hawkes process is defined as:

λ(`, t|Ht) = µ+
∑
tk<t

κ(`− `k, t− tk)

where {`1, `2, ..., `n} denotes the observed sequence of locations of events ordered chrono-

logically by time and {t1, t2, ..., tn} the observed times of these events.
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5.4 CoLAB Model

In this section we describe our model to infer the φ matrix i.e. the communities vector

inferred from check-in activities and information diffusion over the users in the network.

5.4.1 Spatio-Temporal Data Modeling

Given the check-in events E as defined earlier, for modeling time and spatial components

w.r.t. communities, we define the Hawkes process based model as follows:

Intensity Function

We model the user’s community-specific intensity using the multi-dimensional spatio-

temporal Hawkes process. Multi-dimensional because influence from other users also con-

tribute in the intensity of a user [166]. Consider the task of estimating the community-specific

intensity of a user in towards generating a check-in En = (tn, `n, cn, in, gn); the multi-

dimensional spatio-temporal Hawkes process formulation yields the following:

λin,gn(tn, `n) = µinηgn +
∑
tk<tn

Aikinκ(tn − tk, `n − `k)I(gk = gn) (5.1)

where µin is the base intensity of user in and ηgn is weight associated to gn towards

a community gn, and η = {ηg|g = 1, ...,M} with ηg ≥ 0. λin,gn(tn, `n) is community

specific intensity of user i at the nth instance. We allow historical check-ins to contribute to

the intensity - proportionate to their temporal and spatial proximity to tn and `n respectively,

and weighted using the influence between user in and ik (i.e., Aikin) - as long as they

belong to the same community, enforced by the indicator function I(gk = gn). Here,

κ(tn − tk, `n − `k) is the triggering exponential kernel which factorizes over time and

location.

κ(tn − tk, `n − `k) = κ(tn − tk) ∗ κ(`n − `k), (5.2)
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where, κ(tn − tk) = exp(−ν(tn − tk)) is the time specific triggering kernel with ν decay

and κ(`n − `k) = 1
2π h

exp
(
− ||`n−`k||

2h

)
is the location specific triggering kernel with h

bandwidth. When the decay parameter is low, the influence of the previous events is high

and similarly when the bandwidth parameter is high the influence of previous locations is

high.

In general, the intensity of a particular user i at some time t and location `, is given as

the sum of intensities that are estimated at the level of each community i.e. total intensity

λi(t, `) =
∑

g λi,g(t, `)

5.4.2 Category Distribution

The category c associated with a check-in is represented as a |V |-length vector and it rep-

resents one of V possible categories2 such as restaurant, entertainment etc. associated with

the check-in. Also, we assume that the category depends on the underlying latent commu-

nity associated with this check-in. For example, some community may be more inclined

towards restaurants while another community is oriented towards sports. The category is

modeled as a sample from a Multinomial (categorical) distribution,

c ∼Multinomial(θg) (5.3)

where θg is a |V |-length vector whose elements encode probability of each category and

which depends on the community g that the check-in belongs to. We assume a prior over

θg as a sample from Dirichlet distribution with parameters θ0. We write the conditional

distribution p(c,θg|θ0) as:

p(c,θg|θ0) = p(c|θg)p(θg|θ0) = θg,c
Γ(
∑

j θ0,j)∏
j Γ(θ0,j)

∏
j

θ
θ0,j−1
g,j (5.4)

j runs over the V categories and p(c|θg) is given as θg,c
2We overload the notation c to also represent a scalar categorical value in the set {1, . . . , V }
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5.4.3 Distribution over communities

We assume the latent variable g (the communities) associated with the user for some check-

in, is distributed as multinomial distribution parameterized by πi for a user i. πig represents

the probability user i belongs to community g.

g ∼Multinomial(πi) (5.5)

5.4.4 Generative Process

Algorithm 2: Generative Process
Initialize the number of communities M , and number of checkins Ni for each user;
Set µi proportional to Ni;
Initialize Aij as column normalized matrix;
Initialize π, η and θ as Dirichlet-Multinomial distribution ;
Initialize λi(t0, x0, y0) = µi ∀i = 1, . . . , U ;
for n = 1 to N do

Sample (tn, `n) from
∑U

i=1 λi(t, `);
Sample in from Multinomial (λ1(tn, `n), λ2(tn, `n) , ... , λU (tn, `n));
Sample gn from a Multinomial (πin);
Sample cn from Multinomial(θgn) (θg is defined in section 5.4.2);

end

Note that, for sampling (t, x, y), the thinning algorithm proposed in [57] is modified in

order to sample location coordinates from discrete “venue” set rather the continuous space.

First we consider a discrete set of locations L for the user based on her region. We sample

(x′, y′) at nth iteration, from a Gaussian distribution centered at the previous coordinates in

the (n− 1)th iteration: (xn−1, yn−1). Once (x′, y′) is sampled, the nearest coordinate in the

L is determined and returned as (xn, yn).
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5.5 Estimation and Inference

Given the multi-dimensional Hawkes process model defined above, the joint probability

density function over the check-in events E is given as:

N∏
n=1

p(tn, ln, cn, gn|in) =
N∏
n=1

(
(p(tn, ln|in, gn)× p(gn|in))× p(cn|gn, θ)

)
(5.6)

Here, p(cn|gn, θ) = θgn,cn , where cn represents the category associated with the nth

check-in, and p(gn|in) = πin,gn the probability that user in belong to the community gn.

N∏
n=1

p(tn, `n|in, gn) =
N∏
n=1

λin,gn(tn, `n) exp

(
−

U∑
i=1

T∫
0

`max∫
`min

λi(t, `)dtd`

)
(5.7)

is the likelihood (event density) of generating the observations given the community and

users in the interval [(0, `min), (T, `max)]. The first term in (5.7) provides the instantaneous

probability of occurrence of the observed events and the second term provides the proba-

bility that no event happens outside these observations (survival probability) [20]. Thus,

the complete joint log likelihood is:

LL =
N∑
n=1

(
log λin,gn(tn, `n) + log πin,gn + log θgn,cn

)

−
U∑
i=1

T∫
0

`max∫
`min

λi(t, `)dtd` (5.8)

Assuming communities are known, we can estimate the model parameters µ, η,A, θg’s and

π’s by maximum likelihood estimation. We treat the kernel parameters, and the Dirichlet

parameters as the hyper-parameters which we initialize to some fixed values. However,

the communities are latent and the maximum likelihood estimation cannot be applied di-
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rectly. This calls for the expectation maximization algorithm, where the parameters are

estimated after integrating out the latent variables from the joint likelihood using the poste-

rior distribution over the latent variables. In our case, the posterior distribution over latent

communities is given as

p(g1, . . . , gn|{tn, `n, cn, in}Nn=1)

=

∏N
n=1 p(tn, `n|in, gn)× p(cn|gn, θ)× p(gn|in)∑

g1,...,gn

∏N
n=1 p(tn, `n|in, gn)× p(cn|gn, θ)× p(gn|in)

(5.9)

The posterior distribution over the latent communities cannot be obtained in closed form

due to the intractable normalization constant (denominator term) which involves an expo-

nential number of summation terms. Markov chain Monte Carlo methods [4] can be used

to obtain samples from the posterior. However, these approaches are not scalable to large

datasets [5] and becomes computationally expensive for use in LBSNs. To overcome this,

we use a variational expectation maximization algorithm where we approximate the pos-

terior over communities using a variational distribution and estimate the model parameters

and variational parameters by maximizing a variational lower bound [152].

5.5.1 Variational Expectation Maximization

The latent variables gn’s dependent on different types of feature set i.e. space, time through

p(tn, `n|in, gn) and semantics through p(cn|gn, θ). Though the prior over gn is conjugate to

p(cn|gn, θ), it is not with respect to p(tn, `n|in, gn) and hence the posterior over gn cannot

be computed in closed form. Moreover, gn’s are inter-dependent i.e. at current step gn

it is dependent on history from g1 to gn−1 as well as the future ones i.e. gn+1. Thus

marginalizing out over such interconnected latent variables to compute the normalization

constant for the posterior is intractable. To this end we assume a variational distribution

over gn’s conditioned on the user in. The conditional variational distribution over gn is

considered to be a multinomial distribution with parametersφin . The variational parameter
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φi for a user i represents the posterior probability distributions over the communities for

the user as observed from the data.

q(gn|in) = Multinomial(gn|φin) (5.10)

The variational parameters can be learned by minimizing the KL divergence between

the variational posterior (5.10) and the exact posterior (5.9). However, a direct minimiza-

tion of KL divergence is not possible due to the intractable posterior. Following varia-

tional inference approach [5], the variational parameters are learned by maximizing a vari-

ational lower bound, Evidence Lower Bound (ELBO), which indirectly minimizes the KL

divergence. ELBO is obtained by considering an expected value of the complete joint log

likelihood w.r.t the variational distribution [5] and acts as a lower bound to the marginal

likelihood or evidence (normalization constant of the posterior). Hence, ELBO is useful to

learn the model parameters also in addition to the variational parameters. Using the varia-

tional distribution defined in (5.10) and the complete joint log likelihood (5.8), we obtain

the ELBO as:

L =
N∑
n=1

(
Eq[log λin,gn(tn, `n)] +

M∑
m=1

φin,m log πin,m +
M∑
m=1

φin,m log θm,cn

)

−
U∑
i=1

T∫
0

`max∫
`min

Eq[λi(t, `)]d`dt− Eq[log q] (5.11)

Here, Eq represents the expectation with respect to the variational distribution q defined in

(5.10). We learn the variational parameters and the model parameters by maximizing the

ELBO. Table 5.2 lists the model parameters and variational parameters to be learned using

ELBO. All the terms in the ELBO except the first term can be computed in closed form.

Since the first term in (5.11) cannot be computed in closed form, we approximate it
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Table 5.2: Parameters to be estimated and whether a Hyper parameter

Par Description H

µ Base Intensity
η Weight associated towards community
Aij Influence Matrix
h Bandwidth (KDE) X
ν Temporal Decay Parameter X
θ0 Dirichlet Prior: Category X
θg Multinomial Prior: Categories / com-

munity
π Multinomial Prior: Communities (All

users)
φ Variational Parameters: Communities

(All users)

using the samples from the variational posterior (5.10) (Monte-Carlo approximation).

Eq[log λin,gn(tn, `n)] ≈ 1

S

S∑
s=1

log λin,g(s)(tn, `n) (5.12)

where g(s) represent the vector ofN samples sampled from the joint variational distribution

over all the gn’s, i.e. q(g(s)) =
∏N

i=1 q(g
(s)
n |φin). This results in a stochastic variational

lower bound where the stochasticity arises due to the approximation of expectation using

Monte Carlo sampling [152]. We learn the model parameters µ, η,Aij , θ by maximizing the

stochastic variational lower bound [97] using gradient based methods. However learning

the variational parameters is problematic as the variational parameters does not appear

explicitly in the stochastic term but only through the samples. For determining gradient

w.r.t. φ we apply the Reinforcement trick to the stochastic term and compute the gradient

as follows [29]:

5φ Eq[log λin,gn(tn, `n)] ≈ 1

S

S∑
s=1

log λin,g(s)(tn, `n)5φ log q(g(s)) (5.13)
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5.6 Experiments

5.6.1 Baselines

Compared Baselines We empirically evaluate the performance of COLAB3 over synthetic

and real datasets with the following baselines:

• STHP: Spatio-Temporal Hawkes Process models the diffusion process across spatial

and temporal dimensions but ignores the category associated location feature. This

is the baseline derived from COLAB ignoring the categories.

• Sequence Mining [60]: First extracts frequent occuring venue category sequences

and assigns communities based on clusters with similar patterns.

• DH [26]: Dirichlet-Hawkes, clusters continuous time event streams using a modified

Hawkes model with preferential cluster assignment through Dirichlet Process.

• RMTPP:[25] Recurrent Marked Temporal Point Process model the time and the

marker information by learning a general representation of the nonlinear dependency

over the history based on recurrent neural networks. In this model, event history is

embedded into a compact vector representation which is then used for predicting the

next event time and marker type.

• LBSN2Vec: [136] is a hypergraph embedding approach designed specifically for

LBSN data. It performs random-walk-with-stay to jointly sample user mobility pat-

terns and social relationships from the LBSN hypergraph, and then learns node em-

beddings from the sampled hyperedges by preserving the n-wise node proximity cap-

tured by a hyperedge containing n nodes. For next location prediction, the similarity

between user embedding and location embedding along with time embedding and

location embedding is computed for the obtaining ranked list of locations for a user.
3We pledge to make our codes and datasets public.
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• LSTM:[43] Long Short Term Memory model the location sequence of users’ trajec-

tories

For an even comparison, we feed the check-in events to all the baselines and evaluate the

community quality formed by DH and Sequence Mining along with location prediction for

STHP and RMTPP.

5.6.2 Implementation Details

The code is based on Python v2.7 in a standard conda environment. Due to the limited scal-

ability of Hawkes process and its inference process, we parallelize each of the simulation

on the basis if Aij dimensions across each core. The results presented were obtained by

running on a linux server with 64GB memory with 36 cores: Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz.

5.6.3 Datasets

Synthetic Data

We generate synthetic data using algorithm 2 (statistics in Table 5.3). The set of locations,

#users to categories i.e. (U:V) and to the number of check-ins i.e. (U:N) are kept similar

to the real data collected from Brazil with ν (temporal decay parameter) is set to 0.01

[139] and h is picked up from the bandwidth values learned from users’ check-ins. During

inference, we use true values for all the parameters, except for the influence matrix Aij

and the user-community posterior φ which are estimated. We use RelErr(Aij, Âij) =

1
I2

∑I
i,j=1

|aij−âij |
|aij | (and similarly for φ), as the metric to evaluate the ability to recover the

true values. Table 5.4 indicates that the stochastic variational inference technique offers

considerably better reconstruction of the parameters, recording significant reductions in

the error.
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Table 5.3: Dataset Properties

Property #Users(U) #Communities(M) #Categories(V) #Check-ins(N)

Synthetic 100 10 200 9777
SA (Real) 95 - 314 15110
US (Real) 133 - 524 22059
BR (Real) 157 - 381 29354

Table 5.4: RelErr on A and φ and True Positives for Location Prediction results at Top-K
on Synthetic Data

RelErr Top K

Technique A φ 5 10

STHP 0.99174 0.13807 681 1206
COLAB 0.04813 0.07216 972 1677

Real Data

For real data, we use our crawls over Foursquare conducted between January-2015 and

March-2016 and construct three collections consisting of check-ins from Saudi Arabia

(SA), Brazil (BR) and United States (US), with details given in Table 5.3. We allocated

first 80% (as per check-in timestamp) of each dataset to training and remaining for testing.

Here, we also use temporal decay parameter as 0.01 [139] and h is learned for each user

based on Silverman’s rule of thumb in kernel density estimation [4] and is fixed during the

joint estimation.

5.6.4 Location Prediction with COLAB

For location prediction task, we predict the next location from the previously seen locations

in the training set at M(#communities) = 10 and at various top-K ranked (eq. 5.8)

cutoffs. For instance, consider a user u and Lu is the set of locations u has visited in the

training set. For predicting the next location in the test set given previous N latest check-

ins we determine the likelihood score of all the locations in set Lu and rank them based on

the scores obtained. Note that, N is set to 10 for our experiments.
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Since, DH is for clustering event streams, therefore we make use of STHP, LBSN2Vec,

LSTM and RMTPP as baselines for the Location Prediction task. Table 5.5 shows that

COLAB is able to offer significant improvements (18-37% in the top-5). As we increaseK,

these gains diminish because the number of candidate locations saturates. We also study the

effect of Aij(influence matrix) and µ (base intensity) over COLAB’s performance. It can

be observed that without Aij , the COLAB’s performance degrades signifying COLAB’s

ability to capture the underlying diffusion process well.

Neural Network based Methods: The pure neural network based methods such as

LSTM learns from the sequence of locations and predicts the next location. In case of

LBSN the checkin data for each user is sparse, thus for a single user there are fewer data

points to train upon. Therefore, these models become unsuitable for such scenarios. In

case if we use the entire data i.e. all users’ trajectories for learning as we used here to train

these models it introduces lot of noise as users’ preferences are different. For example,

some users go for dessert after a meal while others go for coffee after a meal. These

discrepancies leads to poor location prediction results. To conclude, for these model to

work well we certainly need large amount of data. Therefore, for these scenarios point

process based models seems to be promising, not only because of good results but they

also offer flexibility to model contribution towards check-in through different sources i.e.

self excitation or through influence of others.

Impact of #Communities

In figures 5.2, 5.3 and 5.4 we study the impact of M , over SA, US, and BR data we ob-

serve that with increasing M the prediction accuracy improves and then diminishes, sig-

nifying optimal value of M for better predictions. COLAB performs significantly better

than STHP, primarily due to the better estimation of Aij (influence matrix), because of the

presence of category information in the COLAB model.
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Table 5.5: Comparison of COLAB with other baselines and COLAB without Aij and µ

Dataset K STHP RMTPP LBSN2Vec LSTM COLAB COLAB COLAB
w/o Aij w/o µ

SA
(#test-
cases =
2805)

5 287 250 293 173 279 331 339
10 455 499 456 256 478 589 593
20 950 951 897 741 911 1038 1043
50 1539 1539 1574 1024 1520 1664 1666

US
(#test-
cases =
4395)

5 153 172 206 87 172 231 237
10 456 467 520 240 445 507 512
20 870 888 908 608 919 920 927
50 1700 1691 1667 1012 1759 1668 1673

BR
(#test-
cases =
3828)

5 256 223 289 186 250 278 312
10 432 445 545 234 450 512 589
20 984 973 1047 756 989 1088 1123
50 1445 1432 1390 978 1467 1464 1534
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Figure 5.2: Location Prediction Results for Varying M over SA

5.6.5 Community Assessment

We plot communities over SA and US data in Figure 5.5, where colored dots represents a

check-in. In figure 5.5, it can be observed that; (i) Overlap between communities due to

data concentration in cities. (ii) COLAB is able to capture communities across cities (e.g.

users with frequent visits to Jazz Clubs). As a consequence, clustering quality metrics such

as Silhouette score that penalize the overlapping clusters are not a meaningful option.

Unfortunately, we lack the community ground truth for users, making communities

assessment a non-trivial task. Thus, we use a metric a joint loss function for the intra-
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Figure 5.3: Location Prediction Results for Varying M over US
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Figure 5.4: Location Prediction Results for Varying M over BR

(a) SA (b) US (c) BR

Figure 5.5: Spatio-Temporal Activity-driven Latent Communities Captured by COLAB

community properties through a mixture of (i) category loss (Lcat) and (ii) location loss

(Lloc). Category Loss: We consider all categories associated to locations as independent

marks of a point process. Although this is quite unrealistic as some categories do have

more association between them (e.g. Jazz Club & Record Shop and Steakhouse & Pizza

Place). Hence to judge whether the assigned communities really do capture the category

affinity of a user, we try to estimate the similarity among the categories within each com-

munity. Hence to estimate the category affinity in a community, we consider similarity

among the check-in categories using pre-trained word embeddings [84] and devise a loss
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Table 5.6: Results for Category Loss

Dataset Kcat Sequence Mining DH STHP COLAB

Daily Weekly

SA
10 250.24 236.19 103.47 125.17 119.41
50 1118.23 1089.27 862.05 842.63 826.72
100 2007.93 2120.76 1983.61 1784.04 1749.37

US
10 248.45 217.56 98.37 118.32 113.86
50 956.87 990.45 781.83 793.07 771.15
100 1907.84 2020.49 1901.37 1605.64 1583.02

function.

Lcat =
1

|T|
∑
En∈T

∑
g∈M

{
1− vEn · µg
||vEn||2||µg||2

}
· Φ(En, g) (5.14)

where T represents test data, µg is category mean for a community g using Kcat frequent

categories, vEn is the category vector for event En; Φ(En, g) indicates whether En is as-

signed to community g, with M as all communities. Table 5.6 demonstrates COLAB’s

ability to capture category dynamics across communities. Although, it can be observed

that at Kcat = 10 Dirichlet Hawkes performs better because with most frequent categories

like restaurant, coffee shop etc. DH assigns it most of the communities. Note that, DH is

unable to capture communities with varied categories as seen at Kcat = 50 and 100, that

COLAB performs better.

Location Loss:[16] show that users tend to visit nearby locations given we ignore the bias

of loyalty. Hence ideally, a community of users not spatially dispersed in their check-

in characteristics should be distinct from another community with check-ins spanning

large distances. We capture this through a distance based k-means loss (Lloc) with cluster

means(µl) for check-in coordinates for each community. In table 5.7 we can see COLAB

performs significantly better than other baselines because COLAB can better capture the

geographical dispersion in communities.
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Table 5.7: Results for Location Loss

Datasets
Sequence Mining DH STHP COLAB

Daily Weekly

SA 600.67 547.56 413.16 306.73 298.09
US 1127.34 1067.50 1039.08 849.92 834.64

5.6.6 Qualitative Assessment

We claim that a user in a community will display an affinity towards certain categories. For

US data, figure 5.6 shows even with highly overlapping venue categories, our model finds

the intricate differences between a community with affinity to music (a) and a community

with affinity towards food/bar joints. The word clouds for SA and BR dataset shows similar

properties and have been avoided for brevity.

(a) Community A (b) Community B

Figure 5.6: Word Cloud of Categories in Two Communities from US

5.7 Conclusion

In this chapter, we presented COLAB that uses spatio-temporal Hawkes process to infer

the implicit communities using a novel stochastic variational inference technique. Em-

pirical evaluations over synthetic as well as real-world datasets highlight its prowess with

significant improvements in location and community detection tasks. This illustrates the

effectiveness of the modeling used in CoLAB in generating user communities even in the

absence of social connectedness information. In future work, we would like to explore
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scalability of COLAB through sample-based inference techniques.
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Chapter 6

Conclusion and Future Directions

6.1 Summary of Contributions

In this thesis, we have brought out the potential of exploiting a location’s categorical fea-

tures such as restaurant, club etc and its modeling aspects jointly along with spatial and

temporal features for three different problems.

• First, we exploited coarse grained category information by mapping annonymised lo-

cation information (i.e. publicly available) with category information using Foursquare

APIs. For the proof of concept: Will inferring categories would be useful? We mod-

eled the coarse grained category information for next location prediction application,

and obtained improvements over state-of-the-art methods.

• Next we curated users’ spatio-temporal footprints along with categories at a fine

grained level using FourSqaure and Twitter users’ alignment, and developed a model

to quantify the influence specific to a location between a pair of users. We collected

Foursquare data between Jan 2015- Feb 2016 using a long-term crawl.

Specifically, we developed a framework called LoCaTe, that combines (a) a user

mobility model based on kernel density estimates; (b) a model of the semantics of

the location using topic models; and (c) a user correlation model that uses an ex-
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ponential distribution. We further developed LoCaTe+, an advanced model within

the same framework where user correlation is quantified using a Mutually Exciting

Hawkes Process. We showed the applicability of LoCaTe and LoCaTe+ for location

promotion and location recommendation tasks over the above crawl as well as other

publicly available LBSN datasets. Our experiments demonstrated the efficacy of the

LoCaTe framework in capturing location-specific influence between users. We also

showed that our model improve over state-of-the-art models for the task of location

promotion as well as location recommendation.

• The location check-ins of users event-traces often manifest in hidden (possibly over-

lapping) communities of users with similar interests. Inferring these implicit com-

munities is crucial for forming user profiles for improvements in recommendation

and prediction tasks. Given only time-stamped geo-tagged traces of users, can we

find out these implicit communities, and characteristics of the underlying influence

network? Can we use this network to improve the next location prediction task? We

focused on the problem of community detection as well as capturing the underlying

diffusion process and propose a model COLAB based on spatio-temporal point pro-

cesses in continuous time but discrete space of locations that simultaneously models

the implicit communities of users based on their check-in activities, without making

use of their social network connections. This model captures the semantic features

of the location, user-to-user influence along with spatial and temporal preferences of

users. To learn the latent community of users and model parameters, we propose an

algorithm based on stochastic variational inference. To the best of our knowledge,

this is the first attempt at jointly modeling the diffusion process with activity-driven

implicit communities. We demonstrated COLAB achieves upto 27% improvements

in location prediction task over recent deep point-process based methods on geo-

tagged event traces collected from Foursquare check-ins.
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6.2 Future Directions:

We see number of open issues that can be addressed in future work:

• Set of Influential Users and Locations: Most of the existing work as well as in this

thesis we looked at the problem of influence maximization and location promotion

only by identifying influential users. An interesting direction for future work will

be to jointly identify users and locations for geo-social influence maximization and

recommendation. For example, for the promotion of a ”saloon” online, it can be

made through influencers identified and offline, it can be done at the hot locations

where the saloon clientele is expected to visit such as a cafe.

• Face-to-face Co-location Prediction: Another interesting future work would be to

predict whether, where and when two users will have offline meetings. Given the

sparsity of LBSN data this will open up further directions of curating the data from

different sources. For example, the current LBSN data has very few connections and

also trajectories of users are quite sparse therefore services such as Instagram and

Flickr can be used to extract trajectories and social connections by mining photos

and videos which users haven’t explicitly marked.

• Social Link Prediction: In this thesis, for identifying implicit communities we

didn’t make use of the social connections, and computed influence score between

two users using COLAB model. An interesting direction would be to extend this

to identify social ties. The main challenge here is the non existence of ground truth.

Therefore, the first task in hand is to curate the dataset that has rich set of connections,

which can be used as a ground truth for evaluation.
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Conference Articles
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