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Abstract. Biclique cryptanalysis was proposed by Bogdanov et al. in Asiacrypt 2011 as a new tool
for cryptanalysis of block ciphers. A major hurdle in carrying out biclique cryptanalysis is that it has
a very high query complexity (of the order of 288 for AES-128, 280 for AES-192 and 240 for AES-256).
This naturally puts a big question mark over the practical feasibility of implementing biclique attack in
real world. In this work, we re-evaluate the security of full round AES against biclique cryptanalysis. We
describe an alternate biclique construction with signi�cantly reduced query complexity (of the order of 224

for AES-128, 232 for AES-192 and 28 for AES-256) at the expense of a slightly increased computational
cost. In our approach, we use independent biclique technique to launch a chosen ciphertext attack against
AES.
Keywords: AES, block ciphers, cryptanalysis, biclique, meet-in-the middle, key recovery.

1 Introduction

AES (Advanced Encryption Standard), standardized by the US NIST in October 2000, has been
accepted and adopted worldwide thereafter. It remains the most favored cryptographic scheme in
both software and hardware applications. Despite the design having been subjected to tremendous
scrutiny in the past 12 years, it has remained remarkably immune to all cryptanalytic attacks of
practical signi�cance.

Single key recovery attacks such as multiset attack [1], square attack [1], boomerang attack [2,
3], impossible di�erentials [4, 5], algebraic attack [6, 7] etc. could break only a limited number of
rounds of AES (for all versions of AES). Related key attack models [8�10] delivered better results
comparatively as they could be applied to breach the security guarantee of full rounds of AES-192
and AES-256. However, related key models require multiple pairs of related keys (keys which have
some kind of common relation between them) which is practically a very strong requirement and
hence is not considered a big threat to AES in real world [11].

Until recently, there was no single key model attack known which could break full AES-128 better
than brute force attack. In Asiacrypt, 2011 Bogdanov et al. [11] proposed a novel idea called biclique
attack which allows an attacker to recover AES secret key up to 3-5 times faster than exhaustive
search. Biclique cryptanalysis had earlier been introduced by Khovratovich et al. in [12] for pre-image
attack on hash functions Skein and SHA-2. The approach is a variant of the meet-in-the attack. The
concept was taken over by Bogdanov et al. to AES cryptanalysis and has been subsequently adopted
to break many other block ciphers such as ARIA [13], SQUARE [14], TWINE [15], HIGHT [16],
PRESENT [17] etc. Though Bogdanov et al. successfully demonstrated that biclique attack reduced
key recovery e�ort, it su�ered from high data complexity (more so for AES-128 and 192) rendering
it ine�ective for practical implementations.

The ultimate value of any cryptanalysis technique lies in its successful real-world deployment.
Biryukov et al. [10] stress upon the importance of practical feasibility of various cryptanalytic models
while designing various attacks. They discuss several factors such as number of ciphertexts/plaintexts
required (the lesser the better), known plaintext attack vs. chosen plaintext attack (former being more
favored), single key model vs. related key model (single key model preferred ) etc. which should be
taken into consideration while developing the attacks. Though relative importance of a speci�c factor
changes from scenario to scenario, all of them impact the total running time and data complexity of



an attack. Many a times theory suggests that an attack is possible but it never gets used in practice
because the attack demands resources which are not within reachable bound limits. Unfortunately,
biclique attack too falls under the bracket of such practically restricted techniques. Conventionally in
an exhaustive key search, searching 2k keys (where k is the size of the key in bits) for the actual key
can be achieved with a single plaintext-ciphertext pair. If multiple key candidates satisfy the given
pair then we need to make just one more encryption query (in the worst case few pairs of plaintext-
ciphertext would su�ce) and check the plaintext-ciphertext pairs to �nd the right key amongst the
possible candidates. Overall the query complexity is very small (not more than 4-5 queries). On the
other hand, biclique technique requires very high number of oracle queries (of the order of 288 for
AES-128 and 280 for AES 192) making it unreachably huge even for an attacker having unlimited
computational power. Bogdanov et.al in [11] state that, �We notice that the data complexity of key
recovery can be signi�cantly reduced by sacri�cing only a small factor of computational advantage".
However, no details or further explanation is provided on how and by what quantity can this reduc-
tion be obtained. This and the high data complexity in [11] motivated us to construct an alternate
biclique and di�erential trail which brings the data complexity of this attack technique against AES
to practical limits.

Our contribution: We use the independent biclique approach proposed in [11]. We slide the biclique
construction of [11] down by one round in our attack. We observe that doing so not only brings a
change in the di�erential trail and the key trail, but also produces a signi�cant reduction in the total
number of ciphertexts required for decryption oracle at the cost of a diminutive increase in the total
running time.

� We construct a 2-round biclique for AES-128. Using this biclique, our attack against full round
AES-128 has a total time complexity of 2126.5 and requires 224 ciphertexts.

� We construct a 3-round biclique for AES-192. Using this biclique, our attack against full round
AES-192 has a total time complexity of 2190.5 and requires 232 ciphertexts.

� We construct a 3-round biclique for AES-256. Using this biclique, our attack against full round
AES-256 has a total time complexity of 2254.72 and requires 28 ciphertexts.

We also �nd a couple of discrepancies in [11] in evaluating the cost of the attacks. The time
complexity for attacking AES-192 and AES-256 has been given as 2189.74 and 2254.42 whereas our
calculations peg these at 2190.13 and 2254.6 respectively.

Table 1 summarizes our attacks on AES and compares the complexity with the previous biclique
attack on AES.

The paper is organized as follows. Section 2 gives a brief description of AES followed by Section 3
which explains the biclique key recovery attack. In Section 4 we present a biclique attack for the
full round AES-128. Section 5 and 6 cover the biclique attack on full round AES-192 and AES-256
respectively. In Section 7 we summarize and conclude our paper.

2 Description of AES

AES is a block cipher which adopts the classical substitution-permutation network structure. The
AES speci�cation de�nes 3 key sizes - 128 bit, 192 bit and 256 bit with block size limited to a �xed
128 bit size for all the three alternatives. By design, AES is byte-oriented and follows operations
in GF(28). Each AES variant has di�erent number of rounds per full encryption, i.e. 10, 12 and 14
rounds for AES-128, AES-192 and AES-256 respectively. Each round consists of 4 steps: SubBytes,
ShiftRows, MixColumns and AddRoundKey. AES operates on a state array of 4× 4 byte matrix and
key array of 4× 4, 4× 6 and 4× 8 byte size respectively. For further information on AES, please refer
to [1].



Table 1. Summary of our results and comparison with [11].

Algorithm Rounds Data Computational Biclique Reference
Complexity Complexity rounds

AES-128 10
288 2126.1 3 [11]

224 2126.5 2 This work, � 4

AES-192 12
280 2189.74† 4 [11]

232 2190.5 3 This work, � 5

AES-256 14
240 2254.42‡ 4 [11]

28 2254.72 3 This work, � 6

† Our analysis at the end of � 5 estimates the cost as 2190.13.
‡ Our analysis at the end of � 6 estimates the cost as 2254.6.

To avoid confusion and facilitate comparison, we follow the same notation as adopted in [11].
Brie�y, in a di�erential path # 1, #2 represent the state before SubBytes and after MixColumns for
Round 1, #3, #4 represent the state before SubBytes and after MixColumns for Round 2 and so
on. The 128 bit subkeys are denoted as $0, $1, $2 .... and so on. Bytes are addressed column-wise
(0-3#�rst column), (4-7#second column), (8-11#third column) and (12-15#fourth column). The ith

byte in state S is represented as Si. The i
th byte in subkey $ K is represented as $Ki.

3 Biclique Cryptanalysis

Biclique attack is a kind of divide-and-conquer approach. To �nd an unknown key, all possible keys
are partitioned into a set of groups. This is possible because AES subkeys only have small di�erences
between all rounds. One can then perform a smaller search for the full key because partial bits
of the key can then be reused in later phases of the computation thus enhancing the e�ciency of
computation. In this section we give a brief overview of the key concepts used in biclique cryptanalysis.

3.1 Biclique Structure

Let f be a subcipher that maps an internal state S to a ciphertext C under the key K, i.e. fK(S) = C.
Suppose f connects 2d intermediate states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]} where,

{K[i, j]} =

 K[0, 0] · · · K[0, 2d − 1]
...

...
...

K[2d − 1, 0] · · · K[2d − 1, 2d − 1]

.
The 3-tuple of sets [{Sj}, {Ci}, {K[i, j]}] is called a d-dimensional biclique, if

∀i, jε{0, ......., 2d − 1} : Ci = fK[i,j](Sj).

Considering key length of k bits, initially the key space is partitioned into 2k−2d groups of 22d keys
each. Each key in a group can be represented relative to the base key of the group i.e., K[0, 0] and
two key di�erences ∆k

i and ∇kj such that: K[i,j] = K[0,0] ⊕∆k
i ⊕∇kj .

The cipher B is considered as a composition of three parts, B = f ◦g ◦h, where h is the subcipher
that maps a plaintext P to an internal state V , g is the subcipher that maps V to another internal



state S and f maps internal state S to a ciphertext C i.e., P
h−→ V

g−→ S
f−→ C. Once a biclique is

constructed for an arbitrary part of the cipher, meet-in-the middle attack is used for the remaining
part to recover the key.

3.2 Independent Bicliques

In this paper we use independent biclique construction to attack AES. For each group we choose a

base computation i.e., S0
K[0,0]−−−−→
f

C0. Then Ci and Sj are obtained using 2
d forward di�erentials ∆i i.e.

S0
K[0,0]⊕∆k

i−−−−−−−→
f

Ci and 2d backward di�erentials ∇j i.e. Sj
K[0,0]⊕∇k

j←−−−−−−−
f−1

C0. If the above two di�erentials

do not share active nonlinear components for all i and j, then the following relation is satis�ed [11]:

S0 ⊕∇j
K[0,0]⊕∆k

i⊕∇k
j−−−−−−−−−−→

f
C0 ⊕∆i.

3.3 Matching with precomputations

In this approach, �rstly, the adversary precomputes and stores in memory 2d+1 full computations
upto a matching state v:

∀i, Pi
K[i,0]−−−→ −→v and ∀j,←−v K[0,j]←−−−− Sj .

Apart from this, the adversary also precomputes and stores K[i, 0] and K[0, j] values for the entire
∆i and ∇j trails and not till state v. Since in a group, K[i, 0] and K[i, j] values do not change much
except for the parts a�ected by i (same holds true for K[0, j] and K[i, j]), in particular for i and j,
the adversary checks the matching at v by recomputing only those parts of the cipher which di�er
from the stored ones. In general, matching is done only in a part of state i.e. a single byte v to reduce
memory storage and computations.

3.4 Key Recovery

For each group of keys the adversary builds a structure of 2d plaintexts Pi which map to 2d inter-
mediate states Sj with respect to the 22d keys. She then obtains plaintext Pi from ciphertexts Ci
through the decryption oracle. If a key in a group satis�es the following relation:

Pi
K[i,j]−−−→
h

−→v =←−v K[i,j]←−−−
g−1

Sj ,

then she proposes a key candidate. If a right key is not found in the chosen group then another group
is chosen and the whole process is repeated.

3.5 Complexity Calculation

The full complexity of independent biclique attacks is calculated as:

Cfull = 2k−2d(Cbiclique + Cprecompute + Crecompute + Cfalsepos︸ ︷︷ ︸
T ime−Complexity

+ Cdecrypt︸ ︷︷ ︸
Data−Complexity

),

where,

� Cbiclique is the computation cost for constructing a biclique.
� Cprecompute is the cost complexity for calculating v for 2d+1.
� Crecompute is the cost complexity of recomputing v for 22d times.
� Cfalsepos is the complexity to eliminate false positives.
� Cdecrypt is the data complexity of oracle to decrypt 2d ciphertexts.

As mentioned in [11], the full key recovery complexity is dominated by 2k−2d × Crecomp.



4 Modi�ed Biclique Attack on Full AES-128

In this section we describe the independent biclique construction on full AES-128. We are able to
achieve a data complexity of 224 ciphertexts and computation cost of 2126.5 with this construction
as against 288 data complexity and 2126.1 time complexity described in the previous biclique attack
in [11]. The slight increase in computational costs is attributed to small increase in active S-boxes
in $ 0 subkey (10 active boxes compared to 9 boxes in [11]) which further a�ect the active S-boxes
needed to be recomputed in later stages of the di�erential trail and also due to the change in the
biclique trail itself.

4.1 Key Space Partitioning

We divide the 128-bit key space into 2112 groups with 216 keys in each group. The ninth round subkey
($ 9) is taken as the base key (K[0, 0]) with 2 bytes (16 bits) �xed to 0 and remaining 14 bytes (112
bits) taking all other possible values. Precisely, we take K[0, 0] = (∗ 0 ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | 0 ∗ ∗ ∗).
Each 2112 possible bit combinations de�ne the unique base key for 2112 possible groups respectively.
All other subkeys can be uniquely determined by the ninth round subkey. The 216 keys (K[i, j]) in
each group (with respect to base key) are derived using two related key di�erentials - ∆k

i and ∇kj as
follows:

K[i, j] = K[0, 0]⊕∆k
i ⊕∇kj (0 ≤ i, j ≤ 28 − 1),

where, ∆k
i = (0 0 0 0 | 0 0 0 0 | i 0 0 0 | i 0 0 0) and ∇kj = (0 j 0 0 | 0 0 0 0 | 0 j 0 0 | 0 0 0 0). It is

to be noted that ∆k
i and ∇kj are not di�erences but actual numerical values.

4.2 2-Round Biclique of Dimension 8

We construct a biclique over the last two rounds (round 9 and 10) of AES-128 as shown in Fig. 1.
Due to sliding down, on a change of two bytes in base key ($ 9), ∆i di�erential a�ects only 6 bytes
of the ciphertext Ci with the rest 10 bytes having the same value. Further, ∆K

i ($103) = ∆K
i ($107)

= ∆K
i ($1011) = ∆K

i ($1015), hence ciphertext bytes C3,7,11,15 always share the same value i.e., Ci =
(0 0 0 m | 0 0 0 m | p 0 0 m | q 0 0 m) where (0 ≤ p, q,m ≤ 28 − 1) .

4.3 Matching over 8 rounds

We apply matching with precomputations over the remaining rounds of the cipher. (Fig. 2 and Fig. 3)
illustrate the matching part for rounds 1-3 in the forward direction and rounds 4-8 in the backward
direction. Matching is done on the 0th byte of state v after round 3. The full recomputations required

is depicted in Fig. 11. The di�erence in computation between Pi
K[i,0]−−−→ −→v and Pi

K[i,j]−−−→ −→v is deter-
mined by the in�uence of di�erences between K[i, 0] and K[i, j]. Similarly, di�erence in computation

between ←−v K[0,j]←−−−− Sj and
←−v K[i,j]←−−− Sj is determined by the in�uence of di�erences between K[0, j]

andK[i, j]. E.g. in Fig. 11, consider $8i (violet-colored i.e.K[8, 0]) and $8j (yellow-colored i.e.K[0, 8])
subkeys. If we map these two on one another we get K[i, j] i.e. K[8, 8]. Now the di�erence between
K[0, 8] and K[8, 8] i.e. K[8, 0] is re�ected upon state #14 (8th byte) of the cipher. Similarly we can
�nd the other parts to be recomputed.

In the forward part from Pi to
−→v there are 10+16+4+1 = 31 active S-boxes in the states. In the

backward part from ←−v K[i,j]←−−−
g−1

Sj there are 4+16+16+4 = 40 active S-boxes. Since AES key schedule

uses only 4 S-boxes per round [1] we also need to calculate active S-boxes in them. There are two
active S-boxes in key schedule in Fig. 11($112 and $215) that need to be recomputed. Hence in total,
there are 73 S-Boxes that need to be recomputed.
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Fig. 1. 2-round Biclique for AES-128

4.4 Complexity Calculations

As discussed in [11], Crecomp complexity calculation is majorly driven by the SubBytes operation
(as Mix Columns and XOR operation do not contribute much compared to the SubByte operation),
hence we calculate Crecomp based on total active S-boxes in the SubByte operation only. In AES-128,
S-box operation is applied 16 times in each of the 10 state rounds. Hence in total we have 160 S-boxes.
Similarly in each key schedule round, S-box is applied 4 times i.e. 10×4 = 40 S-boxes. As each group
has 216 keys, therefore, for each group Crecomp = 216 × 73

200 = 214.5. Since we match 1 byte i.e. 8 bits
in v, we have 28 false positives on an average. Similarly Cbiclique = 26.68 ≈ 29 × 2

10 and Cprecomp =
27.68. Hence, total running complexity is:

Ctime−complexity = 2112 × (26.68 + 27.68 + 214.5 + 28) = 2126.5.

As mentioned in Sec. 4.2, in all 2112 groups Ci's only di�er in 6 bytes (Fig. 1) out of which 4 bytes
have the same value (m), hence e�ectively Ci's di�er only in 3 bytes (i.e., p, q and m). Rest 10 bytes
have the same �xed value i.e., all 0's. As a result data complexity does not exceed 224 ciphertexts
which is signi�cantly lesser than 288 ciphertexts required for previous biclique analysis in [11].The
memory required to store one biclique is 29 blocks of ciphertexts and intermediate states. The memory

requirement for storing precomputations needs 28 full computations of (Pi
K[i,0]−−−→ −→v ) for 3 rounds

and (←−v K[0,j]←−−−− Sj) for 5 rounds (Fig. 11).
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5 Modi�ed Biclique Attack on Full AES-192

In this section we describe independent biclique attack on full AES-192. The key trail and ∆i and ∇j
trail gets completely modi�ed due to the sliding down. We are able to achieve a data complexity of
232 ciphertexts and computation costs of 2190.5 with this construction. The increase in computational
costs as compared to [11] is due to change in number and position of active S-boxes in $ 0 subkey
which considerably a�ects the active boxes needed to be recomputed in later stages of the di�erential
trail and also due to change in biclique trail. The new di�erential trail is shown in Fig. 5. We also
note a few errors in the complexity calculations for this case in [11] which we describe at the end of
this section.

5.1 Key Space Partitioning

We divide the 192-bit key space into 2176 key groups with 216 keys in each group. A part of tenth
round subkey and full eleventh round subkey i.e. ($10R||$11) are together taken as the base key
K[0, 0] with 2 bytes �xed to 0 while the remaining 22 bytes are allowed to take all possible values.
Precisely, K[0, 0] = (∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ 0 ∗ 0 | ∗ ∗ ∗ ∗). All other subkeys can be
uniquely determined by $10R||$11. The 216 keys K[i, j] (with respect to base key) are derived as:

K[i, j] = K[0, 0]⊕∆k
i ⊕∇kj (0 ≤ i, j ≤ 28 − 1),

where, ∆k
i = (0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 i1 i2 0) and ∇kj = (0 0 0 0 | 0 0 0 0 | 0 0

0 j | 0 0 0 0 | 0 0 0 j | 0 0 0 0). ∆k
i de�nes a tuple (i1,i2) where i1 and i2 take all possible values (0 ≤

i1 , i2 ≤ 28-1)such that after applying the inverse MixColumn operation, it yields a single di�erence
having value i.1 It is to be noted that ∆k

i and ∇kj are not di�erences but actual numerical values.

5.2 3-Round Biclique of Dimension 8

We construct a biclique of dimension 8 over the last three rounds (rounds 10-12) as shown in Fig. 4.
Due to the slide transition, on a change of 2 bytes in base key ($10R||$11), the di�erential ∆i a�ects
only 4 bytes of the ciphertext Ci while the rest of the bytes share the same value i.e., Ci = (0 0 0 0
| 0 0 0 0 | 0 i1 x 0 | 0 y i2 0) where (0 ≤ i1, i2, x, y ≤ 28 − 1). There is complete change in ∆k

i and
∇kj key trail due to which ∆i and ∇j trail signi�cantly changes impacting a considerable reduction
in data complexity (see Fig. 12 in the Appendix for the full trail).

5.3 Matching over 9 rounds

Fig. 5 and Fig. 6 illustrate the matching part. The full recomputations required is depicted in Fig. 12
in the Appendix. There are 4+13+4+1= 22 active S-boxes in the forward part from Pi to

−→v . On the

other hand, there are 4+16+16+16+6 = 58 active S-boxes in the backward part from ←−v K[i,j]←−−−
g−1

Sj .

There are no active S-boxes in the key schedule. Hence, overall there are 80 S-boxes which need to
be recomputed.

1 It can be seen that there is a one-to-one mapping between i and (i1,i2) i.e. for 28 i's, we have 28 di�erent values of
the tuple (i1,i2).
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5.4 Complexity Calculations

In AES-192, one full one encryption requires 12×16 = 192 (state rounds) and 8×4 = 32 (key rounds)
S-boxes. Hence, in total we have 224 S-boxes. For each group, we have Crecomp = 216 × 80

224 = 214.5,
Cbiclique = 27, Cprecomp = 27.58 and Cfalsepos = 28. Hence, total running complexity is:

Ctime−complexity = 2176 × (27 + 27.58 + 214.5 + 28) = 2190.5.

As mentioned in Sec. 5.2, in all 2176 groups Ci's di�er only in 4 bytes (x , y , i1 , i2). Rest 12 bytes
have the same �xed value i.e., all 0's (Fig. 4). Hence, data complexity does not exceed 232 ciphertexts.
The memory required to store one biclique is 29 blocks of ciphertexts and intermediate states. The

memory requirement for storing precomputations needs 28 full computations of (Pi
K[i,0]−−−→ −→v ) for 3

rounds and (←−v K[0,j]←−−−− Sj) for 6 rounds (see appendix Fig. 12).
Discrepancies: We would like to point here a calculation mistake in [11]. The required S-box calcu-
lation is given as 2.8125 Sub-Bytes operations (45 S-boxes operations) i.e. 213.68 runs of full AES-192
whereas it should be 3.8125 Sub Byte operations (61 S-boxes) i.e. 214.13 runs of full AES-192. As a
result, the full computational complexity in [11] should be 2176 × 214.13 = 2190.13.

6 Modi�ed Biclique Attack on Full AES-256

In this section we describe independent biclique attack on full AES-256. Due to sliding down of the
biclique, we get a data complexity of just 28 (as compared to 240 in [11]) with time complexity of
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2254.72 (as compared to 2254.42 reported in [11]). The increase in computation cost is attributed to
change in the number and position of active S-boxes in $ 0 subkey which further a�ects the active
boxes needed to be recomputed in the later stages of the di�erential trail (shown in Fig. 8 in the
Appendix) and and also due to changes in the biclique trail. We also �nd an errror in the di�erential
trail and complexity calculations described in [11] which we explain at the end of this section.

6.1 Key Space Partitioning

We divide the 256-bit key space into 2240 key groups with 216 keys in each group. Twelveth and
thirteenth round subkeys i.e. ($12||$13) are together taken as the base key K[0, 0] with 2 bytes �xed
to 0 while the remaining 30 bytes are allowed to take all possible values. Precisely, K[0, 0] = (∗ ∗ ∗
∗ | ∗ ∗ ∗ ∗ | ∗ 0 ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ 0 ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗ | ∗ ∗ ∗ ∗). All other subkeys can be uniquely
determined by $12||$13. The 216 keys K[i, j] are derived as:

K[i, j] = K[0, 0]⊕∆k
i ⊕∇kj (0 ≤ i, j ≤ 28 − 1),

where ∆k
i = (0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 i 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0) and ∇kj = (0 0 0

0 | 0 0 0 0 | 0 j 0 0 | 0 j 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0). It is to be noted that ∆k
i and ∇kj

are not di�erences but actual numerical values.

6.2 3-Round Biclique of Dimension 8

We construct a biclique of dimension 8 over the last three rounds (rounds 12-14). The biclique is
shown in Fig. 7. Due to the sliding down of the biclique, on a change of 1 byte in base key ($12||$13)
the di�erential ∆i a�ects only 1 byte of the ciphertext Ci while rest of the bytes share the same value
i.e., Ci = (0 0 0 0 | 0 0 0 0 | 0 0 r 0 | 0 0 0 0) where (0 ≤ r ≤ 28-1).

6.3 Matching over 11 rounds

Fig. 8 and Fig. 9 illustrate the matching part. The full recomputations required is depicted in Fig. 13
in the Appendix. There are 5+13+4+1= 23 active S-boxes in the forward part from Pi to

−→v . On
the other hand, there are 4+16*5+8 = 92 active S-boxes in the backward part from ←−v K[i,j]←−−− Sj .
There are no active S-boxes in key schedule. Hence, overall there are 115 S-boxes which need to be
recomputed.
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6.4 Complexity Calculations

One full encryption in AES-256 requires 14×16 = 224 (state rounds) and 6×8+4 = 52 (key rounds)
S-boxes. Hence in total we have 276 S-boxes. For each group, we have Crecomp = 216 × 115

276 = 214.75,
Cbiclique = 26.98, Cprecomp = 28.65 and Cfalsepos = 28. Hence, total running complexity is:

Ctime−complexity = 2240 × (26.98 + 28.65 + 214.75 + 28) = 2254.72.



As discussed in Sec. 6.2, in all 2240 groups Ci's di�er only in 1 byte (r). Rest all 15 bytes have the
same �xed value i.e., all 0's. Hence, the data complexity does not exceed 28. The memory required
to store one biclique is 29 blocks of ciphertexts and intermediate states. The memory requirement for

storing precomputations needs 28 full computations of (Pi
K[i,0]−−−→ −→v ) for 3 rounds and (←−v K[0,j]←−−−− Sj)

for 8 rounds (see appendix Fig. 13).
Discrepancies: We would like to point certain discrepancies in [11]. Firstly, in their Fig. 12, $ 0
and $ 1 subkeys have been wrongly marked as $1 and $2 subkeys respectively. Secondly, the authors
in [11] state that whitening subkeys di�er in 1 byte only, whereas they di�er in 4 bytes. Thirdly, as
a consequence of the second discrepancy the number of active S-boxes shown in #1, #2 and #3 in
their Fig. 12 are less. According to our calculations, the correct trail should be as follows:
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Fig. 10. Corrected AES-256 forward computation.

Hence the required S-box calculation should be 6.3125 Sub-Bytes operation (101 S-boxes) i.e. 14.6
runs of full AES-192 as against 5.4375 Sub-Bytes operations (87 S-boxes operations)2. As a result,
the full computational complexity in [11] should be 2240 × 214.6 = 2254.6.

7 Conclusion and Discussion

In this work, we have attempted to overcome the inherent disadvantage of very high query complexity
associated with the technique of biclique cryptanalysis when applied to AES. We show that instead
of solely focusing on maximizing the rounds over which a biclique can be constructed in order to
reduce the key recovery e�ort to minimum, a better approach is to construct bicliques such that
a good balance is obtained between computational complexity and data complexity. Through our
new biclique construction, we could bring down the oracle queries needed to decrypt the ciphertexts
to a signi�cantly lower limit which can be achieved by an attacker having reasonable computing
power within reasonable period of time. We agree that computational costs do slightly increase in
this construction but when compared to previous attack, the increase is very diminutive making our
biclique construction more viable for practical implementations. Reducing both data complexity and
the query complexity while using the technique of biclique cryptanalysis seems di�cult and is an
interesting open problem.

2 [11] reports two di�erent values of total active S-boxes (5.4375 and 5.625) in the same paragraph.
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Fig. 11. Precomputations and Recomputations required in AES-128. The violet and green colored boxes show the precomputations required in ∆i

trail and ∇j trail respectively. The gray colored boxes show the recomputations required in ∆i ⊕∇j for matching.
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Fig. 12. Precomputations and Recomputations required in AES-192. The violet and green colored boxes show the precomputations required in ∆i

trail and ∇j trail respectively. The gray colored boxes show the recomputations required in ∆i ⊕∇j for matching.
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Fig. 13. Precomputations and Recomputations required in AES-256. The violet and green colored boxes show the precomputations required in ∆i

trail and ∇j trail respectively. The gray colored boxes show the recomputations required in ∆i ⊕∇j for matching.


