
INTELLIGENT CAMERA SELECTIONS IN A CAMERA NETWORK

BY

ANIL SHARMA

Under the supervision of Dr. Saket Anand and Dr. Sanjit Krishnan Kaul

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

JULY, 2022

AG929UE
Typewriter
 MT12063

INTELLIGENT CAMERA SELECTIONS IN A CAMERA NETWORK

BY

ANIL SHARMA

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Doctor of Philosophy

COMPUTER SCIENCE AND ENGINEERING

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

JULY, 2022

AG929UE
Typewriter
MT12063

Certificate

This is to certify that the thesis titled Intelligent Camera Selections in a Camera

Network being submitted by Anil Sharma to the Indraprastha Institute of Infor-

mation Technology Delhi, for the award of the degree of Doctor of Philosophy,

is an original research work carried out by him under my supervision. In my

opinion, the thesis has reached the standard fulfilling the requirements of the

regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to

any other university or institute for the award of any degree or diploma.

July, 2022

Dr. Saket Anand

Dr. Sanjit Krishnan Kaul

Indraprastha Institute of Information Technology Delhi

New Delhi 110020

Abstract

Surveillance camera networks are a useful monitoring infrastructure that can be
used for various visual analytics applications, where high-level inferences and
predictions could be made based on target tracking across the network. Most
multi-camera tracking works focus on re-identification problems and trajectory
association problems. However, as camera networks grow in size, the volume of
data generated is humongous, and scalable processing of this data is imperative
for deploying practical solutions. One common task in a camera network is
inter-camera tracking (ICT). In ICT, once a target leaves a camera’s field of view,
it needs to be re-identified in the new camera feed after the transition. However,
the relative distances between cameras and indeterminate target-transition time
make the re-identification (Re-ID) based ICT problem very challenging. With
increase in number of Re-ID queries, there is an increase in false alarms as well
as the computation time, which can adversely affect tracking performance. In
this dissertation, we ask the crucial question of whether to make a Re-ID query
or not and selecting which camera to query at each time-step. Our formulation
of this decision making problem naturally fits a Reinforcement Learning (RL)
framework, which is then solved using a DQN approach for making camera
selection decisions. We show that an RL policy reduces unnecessary Re-ID
queries and therefore the false alarms, scales well to larger camera networks,
and is target-agnostic. We learn a policy for camera selections directly from the
data and it has no reliance on the camera network topology.

We further demonstrate that by using learned state representations, as op-
posed to hand-crafted state variables, we are able to achieve state-of-the-art
results on camera selection, while reducing the training time for the RL pol-
icy. And we train the DQN in a semi-supervised way to reduce dependence on
per frame reward. We use accumulated discounted reward to train DQN and
show that it achieves comparable performance to DQN when trained with per
frame reward. We demonstrate that using camera selections in a camera network

i

benefits applications such as multi-target multi-camera (MTMC) tracking and
multi-camera target forecasting (MCTF). We report our results on four datasets:
NLPR_MCT, DukeMTMC, CityFlow dataset, and WNMF dataset.

Along with it, we also propose a new experience replay method for DQN
to work with imbalance replay buffer. We analyze why DQN fails to learn a
better policy for longer transitions of a target in a camera network and show the
limitations of DQN when the replay buffer is imbalanced with the most frequent
action. In this direction, we propose modification to existing replay method by
using the reward received for the each experience. We show that the proposed
experience replay method (named SER) helps to create a diverse mini-batch
to train DQN and achieves better performance than existing experience replay
methods.

�

ii

Acknowledgements

My PhD journey had many ups and downs and throughout this journey, many
people supported my efforts and motivated me to do good research. First of all,
I acknowledge Infosys Center for Artificial Intelligence (CAI) at IIIT-Delhi and
the UGC Junior Research Fellowship (JRF) by Government of India which pro-
vided me consistent funding support without which it would have been difficult
to complete this research.

I would like to express my sincere gratitude towards my supervisors, Prof.
Saket Anand and and Prof. Sanjit K. Kaul for their constant support throughout
my PhD. I would also like to thank them for making my life easy at IIIT Delhi as
they have always encouraged me during this journey. I would also like to thank
my PhD monitoring committee for their consistent feedback having, formerly,
Prof Chetan Arora, Prof P.B. Sujit and later, Prof A V subramanyam and Prof
Pravesh Biyani.

I would also like to thank several other people who kept me motivated in
this journey especially people whom I met during conferences and workshops.
First of all, Prof. Shivaram Kalyanakrishnan from IIT-Bombay whom I met in
IIT-Kanpur during a workshop and he suggested to use contextual bandits for
my work. Only after this, we started working on reinforcement learning and
published a few papers. Then, Dr. Parthasarathy Sriram from Nvidia whom I
met at IJCAI-2018 and he was very excited seeing my work. He showed what
Nvidia is working on for multi-camera vehicle tracking. That discussion was
a source of motivation for me because of which I kept working on the same
problem to solve a few more challenges.

I would also like to extend my deepest gratitude to my peers and lab mates,
Lokender, Manoj, Milan, Haroon, Pravin, and Tanya with whom I have made
several technical discussions on my research work and gave good feedback. I
am also thankful to Ankita, Anupriya, Sharat, Mayank, Parikshit, Alvika for

iii

their consistent support during my PhD. I would also like to thank Krishan,
Rahul, Omkar, Kaushik for being with me in exploring several parts of North
and east India. I would also like to thank Dr Arun Balaji at IIIT-Delhi for hav-
ing a great discussion on one of my problem and as a result of this discussion
we had an extended abstract in AAMAS-2018. I would also like to thank my
other friends whom I met during conferences and made several talks post con-
ference as well especially, Neeraj, Shalini, Joseph, Sai, Phaniraj, Shakti, Laxmi
Narayana. Having friends like them is a blessing, they were always available
for making a technical discussion.

Last but not the least, I express my deepest appreciation for my parents and
my sisters for their unconditional support and belief in me. They have supported
me in all aspects because of which I was able to finish my Ph.D. stress free. I
am also thankful to my friends at Iskcon especially Sadbhuj Gaur and Arindam
(Ananda Keshva) for showing me a different perspective of life.

iv

Anil Sharma

Publications directly related to the thesis

Refereed Journals

• Anil Sharma, Saket Anand, and Sanjit K. Kaul. "Intelligent querying for
target tracking in camera networks using deep q-learning with n-step boot-
strapping." Image and Vision Computing 103 (2020): 104022.

Refereed Conferences

• Anil Sharma, Saket Anand, and Sanjit K. Kaul. "Intelligent Camera Se-
lection Decisions for Target Tracking in a Camera Network." to appear
In IEEE Winter Conference on Applications of Computer Vision (WACV)
2022.

• Anil Sharma, Mayank K. Pal, Saket Anand, and Sanjit K. Kaul. "Strat-
ified Sampling Based Experience Replay for Efficient Camera Selection
Decisions." In 2020 IEEE Sixth International Conference on Multimedia
Big Data (BigMM), pp. 144-151. IEEE, 2020.

• Anil Sharma, Saket Anand, and Sanjit K. Kaul. "Reinforcement learn-
ing based querying in camera networks for efficient target tracking." In
Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 29, pp. 555-563. 2019.

v

Other Publications during Ph.D.
• Anil Sharma, and Sanjit Kaul. "Two-stage supervised learning-based method

to detect screams and cries in urban environments." IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing 24, no. 2 (2015): 290-
299.

• Anil Sharma, and Arun Balaji Buduru. "Foresee: Attentive future pro-
jections of chaotic road environments." In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, pp.
2073-2075. 2018.

• Mayank K. Pal, Rupali Bhati, Anil Sharma, Sanjit K. Kaul, Saket Anand,
and P. B. Sujit. "A reinforcement learning approach to jointly adapt ve-
hicular communications and planning for optimized driving." In 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), pp.
3287-3293. IEEE, 2018.

vi

Contents

Abstract i

Acknowledgements iii

Publications v

List of Tables xi

List of Figures xv

List of Acronyms xix

1 Introduction 1

1.1 Tracking in a Camera Network 1

1.2 Camera Selections for Querying in a Camera Network 4

1.3 Summary of Contributions . 6

1.3.1 Querying in a Camera Network for Efficient Target Track-
ing . 7

1.3.2 Stratified Sampling Based Experience Replay 8

1.3.3 State Representation Learning Based Camera Selection
Decisions . 9

1.4 Challenges and Assumptions 10

vii

1.5 Dissertation Organization . 11

2 Literature Survey 14

2.1 Tracking in a Camera Network 14

2.2 Deep Reinforcement Learning for Visual Tracking 17

3 Querying in a Camera Network for Efficient Target Tracking 18

3.1 Introduction . 19

3.2 Proposed Methodology . 23

3.2.1 Problem Formulation 23

3.2.2 System Architecture 28

3.3 Experiments and Results . 28

3.3.1 Dataset and Evaluation Metric 29

3.3.2 Experiments . 32

3.4 Discussion . 40

4 Intelligent Querying in a Camera Network Using Deep Q-learning
with n-step Bootstrapping 41

4.1 Introduction . 42

4.2 Proposed Methodology . 46

4.2.1 System Overview . 46

4.2.2 Markov Decision Process and Q-learning 47

4.2.3 Camera Selection Decisions using Deep-Q Network . . 54

4.3 Evaluation and Results . 59

4.3.1 Dataset and Evaluation Metric 59

4.3.2 Camera Selection Performance of the Learned Policy . . 61

viii

4.3.3 Impact of Camera Selection Decisions on Target Track-
ing in Camera Networks 68

4.3.4 Comparison with State-of-the-art methods 70

4.4 Limitations . 71

4.5 Discussion . 72

5 Stratified Sampling Based Experience Replay 73

5.1 Introduction and Motivation 74

5.2 Background and Related Work 77

5.3 Formulation as an MDP . 79

5.4 Proposed Approach . 82

5.4.1 Problem Statement . 82

5.4.2 Proposed Experience Replay Approach 84

5.5 Experiments and Results . 87

5.5.1 Experimental Setup . 88

5.5.2 Performance comparison 91

5.5.3 Analysis of Sampled Transitions 93

5.6 Discussion . 95

6 State Representation Learning Based Camera Selection Decisions 96

6.1 Introduction . 97

6.2 Proposed Method . 100

6.2.1 Camera Selection as an MDP 101

6.2.2 System Architecture 103

6.2.3 Camera Selection Policy Model 105

6.3 Results . 109

6.3.1 Experimental Setup . 110

ix

6.3.2 Camera Selection Decisions 113

6.3.3 Scalable Camera Selection Decisions 118

6.3.4 Benefits of Camera Selection Decision in a Camera Net-
work . 119

6.4 Discussion . 125

7 Conclusion and Future Work 127

References 129

x

List of Tables

3.1 Details of NLPR-MCT dataset [1], which has four subsets. The
table shows number of cameras (#Cameras), duration of the cap-
ture, frame rate (FPS) and the number of people (#People) cap-
tured in each subset. 29

3.2 Table is showing confusion matrix of the camera selections made
by the proposed policy for DB-3. Rows are the ground truth
cameras and columns are the cameras polled by the policy. Val-
ues are percentages rounded off to third decimal. 30

3.3 Table showing average time taken (in the number of frames) by
all targets from camera Ci (row) to camera Cj (column). The
values (g, p) are ground truth (g) time and time taken by the
policy (p) to find the target in the next camera. The values are
averaged over all targets in the test set of sub-dataset 3. 30

3.4 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the proposed method and baseline approaches
for NLPR dataset for ICT alone and for both SCT with ICT. . . 32

3.5 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the proposed method and baseline approaches
for NLPR dataset for ICT alone and for both SCT with ICT. . . 33

3.6 The table is showing average MCTA values (higher is better)
for inter-camera tracking (ICT) and both SCT-ICT on the test
set of NLPR-MCT dataset. The related approaches are multi-
camera multi-target tracking approaches taken from the bench-
mark dataset [2]. The last 5 rows show the MCTA values for
the proposed approach with simulated Re-ID errors from 0% to
20%. 36

xi

4.1 Details of the datasets used for performance evaluation. The
table shows the number of cameras (#Cameras), duration of the
videos, frame rate (FPS) and the number of people (#People)
captured in each dataset. 59

4.2 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the proposed method and baseline approaches
for NLPR dataset for the case of Inter-Camera Tracking (ICT). . 61

4.3 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the proposed method and baseline approaches
for NLPR dataset for the case of both ICT and SCT together. . . 62

4.4 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the proposed method and baseline approaches
for DukeMTMC dataset for both ICT alone and ICT-SCT to-
gether. The Gaussian approach is not defined for SCT+ICT case.
In the table, OM signifies Out-of-Memory error. 62

4.5 The table is showing average MCTA values (higher is better)
for inter-camera tracking (ICT) on the test set of NLPR-MCT
dataset. The related approaches are multi-camera multi-target
tracking approaches taken from the benchmark dataset [2]. The
last 10 rows show the MCTA values for the proposed approach
with simulated re-identification errors from 0% to 20% for both
Exact RL and Deep RL implementations. 67

4.6 The table is showing average MCTA values (higher is better)
for SCT and ICT together case on the test set of NLPR-MCT
dataset. The related approaches are multi-camera multi-target
tracking approaches taken from the benchmark dataset [2]. The
last 10 rows show the MCTA values for the proposed approach
with simulated re-identification errors from 0% to 20% for both
Exact RL and deep RL implementation. 67

4.7 The table is showing average MCTA values (higher is better) for
both SCT+ICT and ICT alone case on the DukeMTMC dataset.
OM signifies Out-of-Memory error. There are no related ap-
proaches that define the tracking performance on DukeMTMC
dataset using MCTA scores. 69

xii

5.1 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the different methods on various camera net-
work datasets. SER is our proposed experience replay method. . 90

5.2 Table is showing camera selection accuracy (A), precision (P)
and recall (R) for the different methods on various camera net-
work datasets. SER is our proposed experience replay method. . 91

6.1 Details of the datasets used for training and performance eval-
uation. The table shows the number of cameras (#Cameras),
duration of the videos, frame rate (FPS), the number of targets
(#Target) captured in each dataset. 111

6.2 Camera Selection performance of our proposed method and its
comparison with state-of-the-art approaches for NLPR-set1,2,3.
The best results are shown in bold and second-best results are
italicized. 112

6.3 Camera Selection performance of our proposed method and its
comparison with state-of-the-art approaches on NLPR-Set4 and
DukeMTMC dataset. The best results are shown in bold and
second-best results are italicized. 113

6.4 Testing loss on different datasets with different LSTM size. The
corresponding epoch number is indicated in brackets. 114

6.5 Percentage Camera Handovers (PCH) (higher is better) on NLPR-
Set4 when trained without AE and with AE. AE(same) repre-
sents AE is trained on same dataset, AE (N) represents that AE
is trained on a bigger dataset with sequence length N 115

6.6 Camera selection performance for semi-supervised training on
NLPR Set-4. 118

6.7 The camera selection performance on two scenarios of the CityFlow
dataset. 119

xiii

6.8 Average MCTA values (higher is better) for ICT alone case on
NLPR-MCT and DukeMTMC dataset. The results are sepa-
rated based on the type of association method. Self means a
method uses its own association, GT represents ground truth,
and Re-ID signifies that a Re-ID method is used for association.
We used ABDNet [3] for Re-ID. 120

6.9 Average MCTA values (higher is better) for both SCT-ICT case
on NLPR-MCT and DukeMTMC dataset. The results are sep-
arated based on the type of association method. Self means a
method uses its own association, GT represents ground truth,
and Re-ID signifies that a Re-ID method is used for association.
We used ABDNet [3] for Re-ID. 120

6.10 The camera selection performance on WNMF dataset. The base-
line methods are taken from dataset baselines [4] and LSTM
(Cam. Sel.) is a camera selection based baseline. 122

xiv

List of Figures

1.1 Summary of contributions in this thesis. 7

1.2 Top view of DukeMTMC dataset [5]. The figure shows the top
view of the camera network with field-of-view of all the eight
cameras. The camera network is deployed in Duke university
campus. 10

3.1 Camera topology of NLPR-MCT dataset-4 [2]. The figure shows
the trajectories of person 5 and 6 across different cameras. The
camera network is deployed in a parking area and all cameras
have non-overlapping view. 20

3.2 The cells in the grid capture the spatial location of the target.
The image is first discretized in 8 × 8 grid, and all cells are
numbered sequentially in row-major order. The cell number on
the target position is used as the spatial location of the target
named rt at time t. One cell value among all rt is used in the
state vector. 26

3.3 The proposed architecture using reinforcement learning. The
architecture shows two blocks, block Q and block presence.
Block Q learns a policy to select a new camera using current
state and block presence verifies whether the target is present in
the camera frame chosen. 27

3.4 The figure shows the transitions for 4 targets in the testing set
of dataset-3. GT is the sequence of cameras in ground-truth,
Sel is the sequence of cameras selected/polled by the policy.
Horizontal axis is the time. White color is the time when the
target is transitioning between cameras and colorbar depicts the
camera numbers in the plot. 33

xv

3.5 The figure shows the learned topology for set 4 (5 cameras) and
3 (4 cameras). A black arrow indicates the correct prediction
and red arrow indicate a false positive. 35

3.6 Boxplot of number of frames polled (metric F, see equation 3.9)
on two datasets of NLPR dataset for our proposed policy and
other baseline approaches. 36

4.1 The neural network model that learns the state-action values
using Q-learning. The model learns a policy that makes the
camera selection decisions. This is the implementation of the
Q block of the architecture shown in Figure 3.3 on page 27 in
Chapter 3. 55

4.2 Analysis of training strategy. First, shows the varying epsilon
value during training on NLPR DB-3. Second, the running re-
ward during the training on NLPR DB-4. 58

4.3 The figure shows confusion matrix of the camera selections
made by the proposed policy for DukeMTMC dataset. Rows
are the ground truth cameras (GT) and columns are the cam-
eras polled by the policy. Values are percentages rounded off to
third decimal. 66

4.4 The figure shows the transitions for 7 targets in the testing set of
dataset-3. On y-axis, GT is the sequence of cameras in ground-
truth, Sel is the sequence of cameras polled by the policy. Hori-
zontal axis is the time. White color is the length of the transition
during camera handovers and colorbar depicts the camera num-
bers in the plot. 66

4.5 Number of frames polled (F, equation 3.9) on DukeMTMC dataset
for our deep RL based policy and its comparison with other
baseline approaches. 70

5.1 Example camera transitions for 3 targets P1, P2, and P3. 76

xvi

5.2 The figure shows the training time on x-axis and the number of
samples of each transition type on y-axis. The transition type is
shown in the legend. The replay memory is dominated by the
most frequent action C×. 83

5.3 Overview of the proposed experience replay method. Rf , R−,
and R+ are the different replay memories to store frequent, neg-
ative reward, and positive reward transitions respectively. 86

5.4 Qualitative performance of different ER methods. In the figure,
each color represents a specific camera FOV and time gap be-
tween colors show the transition time of the camera handover.

. 89

5.5 Percentage Camera handovers (PCH) (higher is better) captured
by different ER methods. SER is largest for all datasets. 90

5.6 Number of spurious frames polled (F in equation 3.9) on a NLPR_-
Set4 dataset and b DukeMTMC dataset. The figure also shows
the comparison of our proposed policy and other baseline ap-
proaches . 92

5.7 Figure showing reward diversity in the sampled minibatch of
different ER methods for Set-3 for PER, ER-Uniform, and ERO.
Results for PER on Set-4 are also shown. 94

6.1 A) The architecture of the LSTM based autoencoder that is used
to encode the action history in a fixed length latent representa-
tion (Z). B) The DQN architecture used to learn the camera se-
lection policy. The neural network model that learns the policy
takes as input the different state variables and the action history
(ht) encoded using the LSTM based Autoencoder (E-Encoder,
D-Decoder). 100

6.2 Figure shows the modification in the reward function (equa-
tion 6.1) for semi-supervised training. 110

6.3 Figure shows the qualitative performance of the proposed cam-
era selection method for two targets. 113

xvii

6.4 The re-identification calls made by different methods on DukeMTMC
dataset. 116

6.5 Figure compares the Percentage Camera Handover (PCH) of
our method with the state-of-the-art method. 118

6.6 Ground Truth topology and predicted topology of the DukeMTMC
dataset. Both axes show the camera index and color intensity
represents the number of transitions in a ci − cj transition. . . . 119

6.7 Figure shows the difference in the transition time captured of
multiple tracks/targets of WNMF dataset. 125

6.8 Figure shows the difference in the transition time captured of
multiple tracks/targets of WNMF dataset. 126

xviii

List of Acronyms

Re-ID Re-identification

SCT Single Camera Tracking

ICT Inter Camera Tracking

FOV Field of View

FPS Frames Per Second

MDP Markov Decision Process

RL Reinforcement Learning

DukeMTMC Duke Multi Target Multi Camera Dataset

NLPR-MCT NLPR Multi Camera Tracking Dataset

DQN Deep Q Network

SER Stratified Sampling Based Experience Replay

LSTM Long Short Term Memory

AE Auto Encoder

MCTA Multi Camera Tracking Accuracy

GT Ground Truth

TD Temporal Difference

A Accuracy

P Precision

R Recall

F1 F1 score

F Spurious Frames Queried

IDP ID Precision

xix

IDR ID Recall

IDF1 ID F1 Score

ER Experience Replay

PPO Proximal Policy Optimization

PER Prioritized Experience Replay

ERO Experience Replay Optimization

SRL State Representation Learning

MTMC Multi Target Multi Camera Tracking

MCTF Multi Camera Tracking Forecasting

WNMF Warwick-NTU Multi-camera Forecasting database

MSE Mean Square Error

IOU Intersection Over Union

PCH Percentage Camera Handover

xx

Chapter 1

Introduction

1.1 Tracking in a Camera Network

Camera networks have emerged as a preferred sensing infrastructure for mon-

itoring and surveillance of public spaces. Camera networks are used for var-

ious practical applications like assisted living facilities, environmental moni-

toring, monitoring of vehicles from cameras on road intersections, etc. These

applications are driven by state-of-the-art visual detection, tracking and re-

identification techniques that are robust to lighting variations, background clut-

ter, occlusions, and non-overlapping fields of view of cameras in the network. In

order to track the target in multiple cameras, the camera network is queried sev-

eral times to re-identify the target during the duration of target’s transition from

source camera to destination camera. A false alarm from wrong re-identification

(Re-ID) will severely degrade the performance and hence it is crucial to reduce

re-identification queries for performance to track a particular target. Large num-

ber of Re-ID queries will also result in large computation time. This compu-

1

tational challenge is exacerbated by the deluge of video data generated from

a network of cameras, making it challenging to implement these applications

at scale. The number of cameras at an airport, railway station, malls, etc. has

rapidly increased, which makes automated tracking an essential task for visual

analytics. The camera networks generate an enormous amount of video data

which makes it difficult to process all video frames in real-time. Finally, in

many scenarios, the camera network topology is not known, and the tracking

algorithm should be able to track the target in the absence of this knowledge.

In this thesis, we look into camera selections which selects a camera where the

target is likely to be present in the camera network. We will show that the cam-

era selections improve tracking performance by reducing candidates for Re-ID

query and also benefits in the computational time.

Re-identification (Re-ID) and data-association are conventional ways [5, 6]

used to associate individual tracklets from different cameras to form the multi-

camera trajectory of a particular target. These methods doesn’t incorporate

the indeterminate and unknown transition time of the target. Methods[7, 8, 9]

have shown the tracking performance by modeling the transition time using

static models such as Gaussian distribution and Parzen window. Many of

these approaches for multi-camera target tracking employ a two-step frame-

work [7, 1, 5, 10]. First, SCT (Single-Camera Tracking) to find the target’s

trajectory within each camera. Second, ICT (Inter-Camera Tracking), to asso-

ciate the SCT trajectories corresponding to the same identity across camera after

the target has transitioned from one camera’s FOV to another.

2

The Re-ID or association based tracking methods rely excessively on the per-

formance of Re-ID. A small false alarm in Re-ID can create huge performance

failures in the target tracking. For example, if we consider a conservative case

of a camera network with 5 cameras and only 3 persons per camera. In this case,

one minute of 10 FPS of this dataset generates around 9000 person bounding

boxes. To look for the trajectory of the target, a basic Re-ID based tracking

method would query 9000 times to the camera network using a re-identification

method and 1% false alarm in the re-identification method can severely fail to

generate the target’s trajectory. Along with the performance failures, the Re-ID

is computationally expensive in terms of all-pair matching. Therefore, there

are a few questions that should be answered for efficient target tracking. For

example, do we need to perform all-pair matching (or matching to the linked

cameras)? Do we need to match a candidate template all times when the target

leaves a camera FOV and transitioning to another camera’s view? Can we scale

the same solution easily for tracking targets in a large campus like IIIT-Delhi

where there are hundreds of cameras and thousands of people roaming around?

The answer to these questions is obviously computationally expensive using

existing methods and these questions are crucial to say how efficiently can we

track targets in the camera network. Therefore, we need an intelligent method

that relies less on querying the camera network all times. To achieve this, we

propose camera selections in a camera network where an intelligent policy can

keep track of the camera where the target is expected to be present. The objec-

tive of this thesis is to propose an efficient approach to use the multiple video

3

streams of a camera network. In this thesis, we investigate intelligent camera

selection and focus on tackling the problem of camera-handovers, as we scale

to larger camera networks.

1.2 Camera Selections for Querying in a Camera Network

One common task in a camera network is inter-camera tracking (ICT). In ICT,

once a target leaves a camera’s field of view, it needs to be re-identified in the

new camera feed after the transition. However, the relative distances between

cameras and indeterminate target-transition time make the re-identification (Re-

ID) based ICT problem very challenging. With increase in number of Re-ID

queries, there is an increase in false alarms as well as the computation time,

which can adversely affect tracking performance. Therefore, to make the query-

ing efficient, we can ask a crucial question whether to make a Re-ID query

or not. If a query needs to be made then in which camera the target is likely

to be present? To achieve this, we formulate this decision making problem

as a Markov Decision Process (MDP) and use Q-learning, a famous reinforce-

ment learning based method, to learn a policy for making camera selection de-

cisions. We will show that an RL policy reduces unnecessary Re-ID queries

and therefore the false alarms, scales well to larger camera networks, and is

target-agnostic. We will further demonstrate that by using a state representa-

tion based method, as opposed to hand-crafted state variables, we can learn a

policy faster. We will also show that using reinforcement learning can help to

4

reduce the dependence on frame level annotation for training the Q-learning

agent . We will show that our reward structure to the learning agent reduces

dependence on the frame level annotations and helps to train the policy with

limited supervised data. Additionally, the RL method helps us to learn a pol-

icy without any information from the camera network (such as camera network

topology) and a policy is learned directly from the data. Along with these, the

RL approach effectively makes camera selection in indefinite transition times

and avoid modeling of the transition time using any static distribution.

It should be noted that we do not rely on the camera network topology and

we solve a more general problem where such an information is rarely available.

It can be noted that this is a static information and one-time overhead to obtain

this information. We will show that having this information is not sufficient for

making camera selection decisions or target tracking using conventional meth-

ods. The more challenging aspect is the target transition time which is indefinite

and not known in advance as it depends on various factors such as target’s speed,

its destination, congestion, etc. We will show that modeling it as a static distri-

bution does not provide better performance whereas we use a state vector to

capture the target’s movement automatically. We use the target’s last seen loca-

tion, the time information, and the subsequent selected camera history. Using

these variables in the state, we are able to track the transition time of the target

effectively. Along with it, we will also show that our learned policy implicitly

learns the camera network topology and hence we do not rely on this informa-

tion.

5

The reinforcement learning based policy is an ideal solution to track targets

in the camera network as it relies less on the re-identification. To clarify the

objective of this thesis, we don’t propose any changes to the re-identification

whereas our framework can make use of any public re-identification based

method once a successful query is made to the camera network. We will

show through various experiments that camera selections are very crucial

and improves the tracking performance as compared to using only a re-

identification based approach. We will use a pre-trained re-identification

method on DukeMTMC dataset [5] and will use the same model for other

datasets as well. Using our proposed method, we make only one Re-ID query

or no-query at a time to the camera network for tracking one target whereas the

existing two-step method will make several Re-ID queries (equal to the number

of cameras multiplied by the number of targets to re-identify the target in the

camera network after the transition). This makes our method highly efficient

in terms of number of queries made to the camera network. Our experiments

quantify that this is more than 100x improvement in the number of queries on

the DukeMTMC dataset. Hence, the RL policy helps to scale the target tracking

on larger camera networks.

1.3 Summary of Contributions

In this section, we have provided a detailed summary of contributions. We have

highlighted a brief summary of the contributions in Figure 1.1.

6

Figure 1.1: Summary of contributions in this thesis.

1.3.1 Querying in a Camera Network for Efficient Target Tracking

Target tracking in a camera network was previously looked from various as-

pects like using features of target’s appearance, context information, modeling

the transition time of the target, etc. These methods work in a two step man-

ner, first to identify the trajectory of the target in a single camera, second to

associate these single camera tracks to identify the multi-camera trajectory of

the target. These methods perform all-pair matching of target position which is

highly computationally expensive. This all-pair matching excessively relies on

the re-identification which substantially degrades the tracking performance. In

this dissertation, we will first show that camera selections are essential for effi-

cient target tracking in a camera network. In this chapter, our focus is to show

the efficacy of camera selection decisions for efficient querying in the camera

7

network. We model the camera selection approach using reinforcement learning

and learn a policy that picks an action of querying one of the candidate cameras

or not querying any camera. The learned RL policy implicitly discovers the

camera network topology, with our only assumption about the network being

that all cameras are static. In our experiments, we evaluate our approach with

real data (NLPR-MCT dataset [2]) where the targets are restricted to pedestri-

ans, and compare them to the state-of-the-art. In Chapter 4, we will then scale

the camera selection approach using Deep Q-learning (or Deep Q network or

DQN), a neural based implementation of the Q-learning algorithm. Using time-

limits[11] and n-step bootstrapping, we will show that our method works ef-

fectively for making camera selection decisions in a larger camera network and

handles indefinite transition times, while still maintaining the MDP formulation

and learn the policy using DQN.

1.3.2 Stratified Sampling Based Experience Replay

The camera selection in a camera network are highly effective in reducing re-

liance on the re-identification. It improves the performance and reduces the

number of queries to the camera network. We point out that the number of cam-

era handovers are very less than the the time instances when the target is tran-

sitioning between cameras. In Chapter 5 of this dissertation, we will show that

the camera selection approach is highly imbalanced towards one action of de-

ciding when to query a camera. This is an important observation with respect to

training a deep RL model, which requires appropriately handling of imbalanced

8

state transitions during experience replay. We will analyze why traditional deep

Q-learning fails to learn a good policy for larger transition times and propose

a modification to the experience replay method for handling the imbalance in

exploration of actions. Our proposed approach, referred to as Stratified Experi-

ence Replay (SER) resolves this challenge by sampling in the imbalanced replay

memory created by the different episodic runs of the agent-environment interac-

tion. We will show on various datasets that SER with Q-learning learns a better

policy for camera selections than existing experience replay methods.

1.3.3 State Representation Learning Based Camera Selection Decisions

We observe that in the absence of knowledge of the camera topology, the camera

history is an important state variable. It holds information about the sequence of

previously queried cameras, which influences the decision of which camera to

select for the next query. For larger camera networks, retaining longer history of

camera selection is necessary to make well-informed camera selection decisions

but retaining that as one-hot vector is computationally expansive. In this work,

we argue that hand-crafted state variables may not be representative enough

and hinder the scalability of such an approach. Therefore, we instead propose

a state representation learning [12] based approach and modify the state-vector

accordingly. A representation helps to learn the variations in the environment

in a low dimension vector. Our final state vector leverages an LSTM-based

autoencoder (AE) to summarize the camera history of Re-ID queries. We fur-

ther show various advantages of using a learned state representation, including

9

Figure 1.2: Top view of DukeMTMC dataset [5]. The figure shows the top view of the camera network with
field-of-view of all the eight cameras. The camera network is deployed in Duke university campus.

generalization across camera-network datasets, accommodating a generic DQN

architecture across datasets and most importantly reduced training speeds. We

will show that the AE trained once on a larger dataset works for all smaller

datasets as well. In addition to this, we leverage the reward structure to train it

in a semi-supervised manner. We will show that providing an annotation every

fifth frame achieves comparable performance with all frame annotation. This

is a good step toward thinking of an approach which does not fully rely on all

frame annotations.

1.4 Challenges and Assumptions

To understand the challenges of tracking a target in a camera network, let’s con-

sider the camera network shown in Figure 1.2. The figure shows the top view

of the cameras installed in DukeMTMC dataset. There are 8 cameras and the

colored polygons show the FOV of these cameras. The one of the common chal-

10

lenge is the unconstrained path and unknown camera network topology. Many

of the datasets do not have the network topology information and hence the

tracking algorithm should be able to track the targets even when this informa-

tion is not available. Another challenge is the non-overlapping field of views

(FOVs) and hence there are blind spots between cameras where the target is not

visible in any of the cameras. The target transition time is indefinite and hence

the tracking algorithm should be vigilant of when the target will re-appear in

the camera network to make the tracking task efficient. The tracking algorithm

should also track the target when it is occluded in the single camera view. Along

with these challenges, the camera networks generate huge amount of data and

hence the tracking algorithm should be efficient enough to track the target.

We make an assumption that the camera network doesn’t change during or

after training which means that no camera is removed or added to the camera

network. We also assume that all camera are static. Apart from it, we don’t use

any information of the camera network. One common limitation of our method

is that the learned policy cannot adapt to the changes in the camera network

and a separate policy needs to be trained. Despite this limitation, we showed

that our methods perform better on several datasets and achieve state-of-the-art

performance.

1.5 Dissertation Organization

The rest of this dissertation is organized into following chapters:

11

• Chapter 2 provides a brief survey of the related methods on target tracking

algorithms in a camera network. The chapter will also describe the deep

reinforcement learning based literature for visual tracking. The literature

survey describes both deep learning and earlier methods in computer vision

that use target features and context information for tracking targets.

• Chapter 3 proposes camera selection decisions for querying in a camera

network. In this chapter, we describe the camera selection method and

provide details to learn a policy using tabular Q-learning method . We will

show that our method achieves better performance than several baseline

methods.

• Chapter 4 provides the formulation of camera selection decisions using a

Markov Decision Process (MDP). In this chapter, we will provide details

to learn a policy using deep Q-learning method for larger camera networks.

• In Chapter 5, we will show the limitations of deep Q-learning in learning

an optimal policy for larger camera networks. We will then propose a new

experience replay method named Stratified Experience Replay to sample a

diverse minibatch from the replay buffer.

• In Chapter 6 , we show the efficacy of state-representation learning to learn

a policy faster by encoding the action history in a small latent representa-

tion. Using LSTM based encoder helps to reduce the training time of the

policy and achieves better camera selection performance. We will show

that our method reduces reliance on frame level annotation for learning a

12

camera selection policy.

• In Chapter 7, we conclude this thesis and provide future directions for ex-

tending our work for camera selection and target tracking in a camera net-

work.

�

13

Chapter 2

Literature Survey

2.1 Tracking in a Camera Network

Multi-camera tracking is looked from various viewpoint in both overlapping

and non-overlapping cameras. Initially, 3D coordinates of the target’s location

were used for tracking targets in multiple cameras . Works such as [13, 14,

15, 16, 17] assumed overlapping camera field-of-views (FOVs). These require

camera calibration and knowledge of camera network topology to obtain the 3D

coordinates. Few other works use network flow graph [14], Kalman filter [15]

on the 3D coordinates. Tracking in overlapping cameras is relatively simple

because non-overlapping cameras require to handle the blind spot areas between

cameras.

To resolve camera handovers in non-overlapping FOVs, a few initial works

have created a social group model [18] to associate target tracklets, affinity

model [19] of target’s appearance for inter-camera association. Other works

14

formulate various data association methods [20, 21, 22] to resolve camera

handovers and use graph [18, 1, 23, 24, 25, 26] based approaches for inter-

camera tracking. Spatio-temporal contextual information [10], clique based

methods [27, 28], part based model [29, 30] are also a few other common ap-

proaches. Many work perform pairwise matching [31, 32, 33, 34, 35, 36] of the

templates to form trajectories. Template re-identification [37, 36] approaches

are leading for matching target’s template with other candidate templates. To

resolve the all pair matching issues, multiple method [5, 38] associate only time

consecutive templates to reduce computational complexity [5]. In this regard,

works [8, 20] use the travel time of the target to estimate the transition time of

the camera handover. Works [7] have estimated a transition time distribution

using a Gaussian distribution. In comparison to these works, to handle the in-

determinate transition times, we propose a reinforcement learning based policy

that selects a camera index where the target is expected to reappear after han-

dover. In our experiments, we will show that using such a policy reduces the

number of search queries made to the camera network.

To tackle the illumination variation, many works [39, 14, 22] have proposed

features using color [14, 8, 19, 40, 25], texture [22, 21, 18], color normaliza-

tion [10], shape [22, 7], brightness transfer [8, 40, 41, 42], and learning based

methods [5]. These appearance features are combined with spatio-temporal

reasoning [13, 19], graph based methods [1] to perform the association. The

appearance features were also used with Bayesian inference [43] by integrating

the features of color and size of the target but this is limited to two camera setup

15

and multi-camera setup using Bayesian inference in [44].

Association based works perform multi-camera target tracking in a uni-

fied way. Many recent works perform tracking task in a two step framework.

First, they perform single camera tracking (SCT) and second, inter-camera

tracking (ICT) to resolve the camera handover separately. Works such as

[7, 1, 10, 38, 5, 45] use such a two step framework for tracking in multiple

cameras. [7] has proposed an online method to track multiple targets in SCT

and ICT separately. They used sophisticated features of human appearance such

as head pose and color along with segmentation using change point detection

to perform SCT. To perform ICT, they estimate a camera link model using

the human appearance features and estimate the travel time using a Gaussian

distribution. Other common approaches estimate entry-exit points across cam-

eras [20, 10]. Tracking, searching and ending track approach is used in [46].

Current state-of-the-art in appearance features re-identify a target in different

cameras using deep learning based methods [37, 5, 6] including deep feature rep-

resentation learning, deep metric learning and ranking optimization. [5] learn

the correlation features using combinatorial optimization. They have proposed

a weighted triplet loss to learn better features of target’s appearance. However,

their approach tracks a target in an offline fashion and makes a very large num-

ber of re-identification queries to the camera network. We use [3] in our work

to re-identify a target in any camera. In this thesis, we will show that camera

selection decisions are crucial to enable tracking in camera networks and such

a policy queries the camera network a very few number of times.

16

2.2 Deep Reinforcement Learning for Visual Tracking

Many vision problems [47, 48, 49, 50, 51, 52, 53, 54, 55] have been formulated

using Markov Decision Process (MDP) [56]. Formulating the tracking problem

using MDP is effective because the agent learns to take actions sequentially,

which implicitly model the target’s motion. In our formulation, we have used

MDP for camera selection decision to enable single target tracking in multiple

cameras which can easily be extended to tracking multiple targets by simultane-

ously running multiple policies. Deep-Q learning [51] has shown human level

performance in playing Atari games using visual frames. Such methods use

one-step reward during the training process, however, n-steps reward [57] (refer

Chapter 7) can help in faster convergence by bootstrapping states for multi-step

reward. Time limits [11] in reinforcement learning has shown that randomizing

the state vector after a time limit achieves better performance.

Recently, deep reinforcement learning techniques were applied for visual ob-

ject detection [58] and tracking [48, 59, 60]. These approaches are applied for

single object/target tracking in a single camera field-of-view. We have shown

[9, 61, 62, 63] that a policy learned using reinforcement learning can intelli-

gently poll cameras to reduce the number of frames required for target’s tem-

plate matching. In our approach, we have used deep-Q learning [51] to learn a

policy to poll a camera frame at any time-step to look for the presence of the

target.

�

17

Chapter 3

Querying in a Camera Network for

Efficient Target Tracking

Over the past few decades, computer vision research has seen tremendous

progress in solving problems like visual object tracking and object Re-ID. How-

ever, there is a little attention given to tracking in a camera network and the

current research is highly computationally expensive due to its reliance on Re-

ID to a great extent which also degrades the tracking performance. Hence, target

tracking in a camera network still remains a challenging task. In this chapter,

we will show that camera selections are essential for efficient target tracking

in a camera network. We will give a brief overview of tracking in a camera

network in section 3.1. This is followed by problem formulation, system ar-

chitecture for camera selections and target tracking in section 3.2. We then

describe the dataset, evaluation metric and experimental results in section 3.3

before concluding the chapter in section 3.4. In our experiments, we evaluate

our approach with real data (NLPR_MCT dataset [2]) where the targets are re-

18

stricted to pedestrians, and compare them to the state-of-the-art methods.

3.1 Introduction

Camera networks have emerged as a preferred sensing infrastructure for moni-

toring and surveillance of public spaces. With advances in visual analytics, we

see an increasing number of practical applications like footfall estimation and

prediction, crowd and traffic flow analysis, content based retrieval for forensics.

These applications are driven by state-of-the-art visual detection, tracking and

Re-ID techniques that are robust to lighting variations, background clutter, oc-

clusions, and non-overlapping fields of view of cameras in the network. An

example of a camera network and trajectories of different targets is shown in

Figure 3.1. State-of-the-art techniques that have shown promise in overcoming

these challenges often rely on deep learning architectures that are computation-

ally expensive and have substantial hardware requirements like GPUs to run at

an acceptable frame rate. This computational challenge is exacerbated by the

deluge of video data generated from a network of cameras, making it challeng-

ing to implement these applications at scale.

While many vision techniques have been developed to tackle the problems of

tracking and Re-ID under illumination variations, clutter and occlusions, there

is a much smaller body of work that addresses the problem of camera selection

to efficiently identify target handovers across cameras. Inter-camera handovers

are resolved by matching the current target’s template with potential target in-

19

Figure 3.1: Camera topology of NLPR-MCT dataset-4 [2]. The figure shows the trajectories of person 5 and 6
across different cameras. The camera network is deployed in a parking area and all cameras have non-overlapping
view.

stances detected in candidate cameras, and is typically handled using visual

Re-ID techniques. This problem of correctly resolving handovers is difficult,

especially when candidate cameras have non-overlapping FOVs, implying that

a target’s transition time between two FOVs is non-deterministic and unknown.

Ideally, no Re-ID queries should be made during the target’s transition period, as

a larger number of queries result in an increased chance of false alarms, which

can severely deteriorate the overall tracking performance. An auxiliary conse-

quence of a higher number of queries is significantly higher computational cost.

As the transition time is not deterministic, in order to minimize the false alarms,

it is important to devise a camera selection policy that intelligently schedules

camera Re-ID queries.

Target tracking in a camera network has been explored extensively in the past

using various approaches [64, 10, 7, 1, 18, 19, 22]. Most of these approaches

track targets in a two-step framework. First, single camera tracking (SCT) is

applied to identify the trajectory of the target within a single camera’s FOV.

Second, inter-camera tracking (ICT) is performed to resolve handovers by find-

20

ing associations for the target tracked by SCT. In addition to handovers, ICT

is also invoked during SCT for handling periods of occlusion, which may vary

significantly depending on the targets’ speed and path. ICT requires search-

ing targets in multiple cameras at different time instances, by making repeated

Re-ID queries until the target is found and SCT is invoked for the identified

cameras. In order to reduce the search space for ICT, most existing techniques

limit the set of candidate cameras to be queried by assuming knowledge of the

camera network topology [1], while some attempt to model the transition time

as a random variable [7, 8].

Recently, [7] proposed a method that discovers a camera-link model that

identifies candidate cameras for ICT based on appearance based features. They

model the inter-camera transition time using a Gaussian distribution, which is

used during test-time to generate a sample transition time for which their sys-

tem waits before initiating Re-ID queries. Not surprisingly, this approach for

ICT shows an improvement over exhaustive search and nearest neighbor based

search, however, it is not clear if a static distribution of transition time is the

best model choice.

In this chapter, we argue that the transition time distribution is conditioned

on the target instance and its properties like speed, which itself may be time-

varying. Consequently, our proposed ICT approach is a policy for scheduling

candidate cameras for Re-ID queries based on the target’s most recent SCT tra-

jectory, as well as the history of candidate cameras queried. We model our ICT

approach as a reinforcement learning (RL) problem and learn a policy that picks

21

an action of querying one of the candidate cameras or not querying any cam-

era. The learned RL policy implicitly discovers the camera network topology,

with our only assumption about the network being that all cameras are static.

Also, We train separately for every dataset with different camera network topol-

ogy. Since the focus of our work is on the camera selection policy for ICT, our

state representation abstracts out the visual appearance based features and only

retains spatial information from SCT. In our experiments, we evaluate our ap-

proach with real data (NLPR_MCT dataset [2]) where the targets are restricted

to pedestrians, and compare them to the state-of-the-art.

The NLPR-MCT records real-world scenarios in four different sub-datasets.

This dataset has both indoor and outdoor cameras deployed in a campus build-

ing, in parking areas, and along footpaths. We will be using this dataset for

training and testing of our proposed approach. We will also compare our results

with state of the art methods on this dataset. Figure 3.1 shows a sub-dataset of

NLPR-MCT dataset.

In this context, our specific contributions are:

• We propose an intelligent camera selection approach for inter-camera track-

ing in a camera network. The goal is to learn a policy that schedules the

Re-ID query by selecting the next candidate camera where the target is

likely to appear.

• We formulate the camera selection as a reinforcement learning problem

and learn the policy using Q-learning [57], without any knowledge of the

22

camera network topology.

• We demonstrate that the camera selection policy queries a very small num-

ber of frames by making a small trade-off on the recall values.

• We demonstrate our Q-learning based approach on NLPR-MCT [2] dataset

implicitly learns the network topology.

3.2 Proposed Methodology

In this section, we formulate the camera selection approach and present an archi-

tecture that integrates camera selections with Re-ID to enable target tracking.

3.2.1 Problem Formulation

Target tracking in a camera network needs to handle inter-camera handovers

by resolving associations between the tracked target and potential targets de-

tected across all candidate cameras. This association problem is typically done

by visual Re-ID or verification methods. When camera networks have disjoint

FOVs, a target may only reappear in another candidate camera after a certain

transition time, which in turn depends on various factors like inter-camera dis-

tance and target speed, where the latter would typically be target-dependent and

time-varying. Re-ID queries made at times when a target is unlikely to appear in

a candidate camera can lead to unnecessary false associations, deteriorating the

tracking performance. To counter this challenge of handling the time-varying

nature of inter-camera transitions, we attempt to schedule the Re-ID queries by

23

intelligently selecting a candidate camera or waiting. Due to its time-varying na-

ture, a befitting model for this problem is a reinforcement learning (RL) based

camera selection policy that identifies a candidate camera or decides to wait.

Thus the task is to learn the policy π(st) = p(at|st) at time t, where st is the

current state (detailed in next paragraph), at is the action taken at time t, which

corresponds to selecting one of the N cameras or to wait (by picking a dummy

camera).

Algorithm 1 Target tracking in a camera network using proposed RL based method. π is camera selection
policy. c,b are current camera and corresponding bounding box for target location.

1: procedure TRACK(c,b, π)
2: traj← [] . Stores computed trajectory
3: traj.append((c,b))
4: h← ZEROS . Initialize history with ZEROS
5: τ ← ZERO . Initialize telapse to ZERO
6: rt← getRT(b) . Discretize the frame to get region of target’s location
7: s← [c,rt,h, τ] . Concatenate location and history
8: while True do
9: cprob← π(s) . Get distribution using policy

10: if all(cprob(:) == cprob(1)) then
11: c = randi(length(cprob))
12: else
13: c = argmax (cprob)
14: b← get the bounding box location
15: if b is not empty then
16: rt← getRT(b)
17: traj.append((c,b))
18: τ = 0
19: else
20: τ+ = 1

21: h.append(c)
22:
23: s← [c,rt,h, τ]

24: return traj

To model the RL problem, we will define the state space, action space, and

the training methodology.

State: The state st at time t captures the spatial and temporal information

of the target. The spatial information include the position rt of the target in the

24

current camera FOV and the temporal information include camera history ht,

and time elapsed τ . The state vector is following,

st = (xt, ht, τ). (3.1)

The individual elements of the state space are following:

1. xt: it is the last seen location of the target. It consists of (c, r), where c is

the last seen camera and r is the spatial location of the target in camera c.

To compute r, the input image is divided into a 8× 8 grid, and all the cells

are numbered in row-major order. The cell numbers corresponding to the

target’s bounding box are identified and one of these is used as r as shown

in Figure 3.2.

2. ht: it represents the history of the cameras polled by the learned policy in

past N time steps, where N is the number of cameras.

3. τ : it captures the time elapsed since the target was last seen in a camera.

The elapsed time is discretized with a step size of 0.25 sec and with every

time step that the target is not found, the value of τ increments by 1. It

resets to 0 once the target is found.

Actions: The action at at time t is encoded by N + 1 dimension vector,

where N is the number of cameras in the camera network. The action N + 1 is

selected when the policy selects no camera, i.e., the target is not visible in all

the cameras.

25

Figure 3.2: The cells in the grid capture the spatial location of the target. The image is first discretized in 8× 8 grid,
and all cells are numbered sequentially in row-major order. The cell number on the target position is used as the
spatial location of the target named rt at time t. One cell value among all rt is used in the state vector.

State evolution: After deciding an action at, the next state st+1 is decided

by following state evolution function:

st+1 = f(st, at) (3.2)

The function appends the selected camera ct to the camera history. If the target is

found in polled camera then last seen location is updated to new (c, r) otherwise

telapse is incremented accordingly.

Reward: The reward function R(s) is defined for each state irrespective of

the action a. At time t, it is the following:

R(st) =


+1 if the target is present in st

−1 otherwise

(3.3)

Training procedure: We define state-action value function Q to estimate the

values (reward) of actions at a given state. The estimates will then be used to

make the action selection decision. The function Q(s, a) estimates the value of

state action pair (s, a). The goal is to learn optimal state-action functionQ∗ [57].

26

Figure 3.3: The proposed architecture using reinforcement learning. The architecture shows two blocks, block Q
and block presence. Block Q learns a policy to select a new camera using current state and block presence verifies
whether the target is present in the camera frame chosen.

Traditionally, the Q-functions are iteratively learned using Q-learning [57] as

shown below:

Q(st, at)⇐Q(st, at) + α

(
R(st+1)+

γmax
at+1

Q(st+1, at+1)−Q(st, at)

) (3.4)

Where α is the learning rate, and γ is the discount factor. We use epsilon-

greedy exploration strategy [57] with epsilon annealing to explore the state-

space.

Policy: The policy π selects an optimal action from the learned Q-functions.

After learning, given the target state, it selects an optimal action in-state st as:

π∗t (st) = argmax
a
Q∗(st, a) (3.5)

27

3.2.2 System Architecture

The system architecture is shown in Figure 3.3. The architecture consists of two

blocks, first, block Q which learns a policy π to select the next camera where

the target will appear given target’s current state. Second, the presence block

which will verify whether the target is present in the camera selected by the

policy at that time frame. The presence block takes as input the selected camera

frame and will return 1 if the target is present along with the bounding box

otherwise it returns a 0. The presence block can be implemented using person

Re-ID [65]. In this chapter, we simulate the presence block with errors to falsely

identify the presence. Details of this block are given in the results sections.

The policy (block Q) takes as input the current state of the target (the spatial

information and the temporal history) and selects a camera where the target is

likely to appear. The policy is learned using Q-learning [57]. Algorithm 1 show

the pseudo-code for tracking a target using the proposed method.

3.3 Experiments and Results

In this section, we present details of the dataset used, the evaluation metric and

the experimental results.

28

Table 3.1: Details of NLPR-MCT dataset [1], which has four subsets. The table shows number of cameras
(#Cameras), duration of the capture, frame rate (FPS) and the number of people (#People) captured in each subset.

Set1 Set2 Set3 Set4

#Cameras 3 3 4 5
Duration 20 min 20 min 3.5 min 24 min

FPS 20 20 25 25
#People 235 255 14 49

3.3.1 Dataset and Evaluation Metric

Dataset: We have used NLPR-MCT data set [2] for training and testing of our

proposed approach. The dataset consists of four sub-datasets each having 3− 5

cameras with a resolution of 320 × 240. Details of the dataset are given in Ta-

ble 3.1. The dataset comprises cameras installed in both indoor and outdoor

environments with significant illumination variation across different cameras.

The set-1 and set-2 of the dataset have the same environment and network topol-

ogy. The set-3 was captured in an office building, and the set-4 was captured

in a parking area. We learn a separate policy for set-1, set-3, and set-4. Since

the camera network in set-2 is same as set-1, we use the same policy for both

subsets. The training and the testing sets are constructed by randomly selecting

half the people for training and the remaining half for testing for each dataset.

We expect the policy to implicitly learn the network topology, and so long as the

network is static, the policy should work for all new, unseen target individuals.

Typically, CCTV network topologies in the real-world are seldom modified.

We define evaluation metrics over the entire sequence of frames generated

by the camera network. The sequence is indexed by time-steps correspond-

ing to the time of frame capture for the cameras. Since the cameras operate

29

on the same frame rate for a given subset, we can ignore any synchronization

errors without any significant impact on the camera selection and tracking per-

formance.
Table 3.2: Table is showing confusion matrix of the camera selections made by the proposed policy for DB-3. Rows
are the ground truth cameras and columns are the cameras polled by the policy. Values are percentages rounded off
to third decimal.

↓ GT/p→ C1 C2 C3 C4 C×

C1 0.91 0.003 0.005 0.002 0.081
C2 0.006 0.796 0.008 0.011 0.178
C3 0.015 0.02 0.828 0.015 0.120
C4 0.003 0.005 0.004 0.767 0.219
C× 0.08 0.08 0.079 0.072 0.685

Evaluation Metric: To evaluate the camera selection performance, we report

camera selection accuracy, precision, and recall computed over the entire se-

quence of each subset. In order to consider instances when the target is not

visible in any of the cameras, we introduce a dummy null camera and denote it

by C×. Given a target, let the ground truth sequence of cameras in which it ap-

pears be contained in the vector g and sequence of cameras polled by the policy

be in vector p with the ith element indicated using a subscript. The Accuracy

(A), precision (P), and recall (R) are defined as following for a single target

Table 3.3: Table showing average time taken (in the number of frames) by all targets from camera Ci (row) to
camera Cj (column). The values (g, p) are ground truth (g) time and time taken by the policy (p) to find the target
in the next camera. The values are averaged over all targets in the test set of sub-dataset 3.

Camera C1 C2 C3 C4

C1 (57,71) (100,105) (0,0) (0,0)
C2 (77,88) (20,0) (282,288) (0,0)
C3 (0,0) (78,119) (5,40) (275,280)
C4 (0,0) (0,222) (51,98) (190,329)

30

A =

∑
i(pi == gi)

Length(g)
(3.6)

P =

∑
i((pi == gi) ∧ (pi! = C×))∑

i(pi! = C×)
(3.7)

R =

∑
i((pi == gi) ∧ (gi! = C×))∑

i(gi! = C×)
(3.8)

The final value for each of these metrics is reported as an average computed

over all targets. Along with A,P,R, we also report number of frames polled

(F) during an inter-camera transition of the target. It is defined as

F =
∑
i

((gi == C×) ∧ (pi! = C×)) + (3.9)

∑
i

((pi! = gi) ∧ (gi! = C×) ∧ (pi! = C×))

F is an important measure because with a large number of frames polled, the

chance of false alarms during a Re-ID query as well as the computational com-

plexity is substantially increased. Lower the value of F is better in performance

comparison.

We also evaluate the overall performance of target tracking in a camera net-

work when our camera selection policy is used for ICT. We use the standard

Multi-Camera Tracking Accuracy (MCTA) which gives a single scalar value

for all components involved in multi-camera tracking, i.e., F1-score for detec-

tion, number of target handovers for single camera tracking, and the number of

31

Table 3.4: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and
baseline approaches for NLPR dataset for ICT alone and for both SCT with ICT.

Set-1 Set-2
A ↑ P ↑ R ↑ A ↑ P ↑ R ↑

Inter-camera Tracking (ICT)
Exhaustive 0.025 0.008 1.0 0.019 0.007 1.0
Neighbor 0.025 0.013 1.0 0.019 0.009 1.0
Gaussian 0.435 0.215 0.127 0.40 0.16 0.195
Proposed 0.85 0.042 0.31 0.86 0.037 0.31

Single-camera tracking + Inter-camera Tracking
Exhaustive 0.72 0.24 1.0 0.65 0.22 1.0
Neighbor 0.72 0.36 1.0 0.65 0.32 1.0
Proposed 0.91 0.95 0.83 0.88 0.94 0.78

handovers in inter-camera tracking. The metric is defined as

MCTA =

(
2PTRT

PT +RT

)
︸ ︷︷ ︸

F1−score

(
1−

∑
t µ

s
t∑

t tp
s
t

)
︸ ︷︷ ︸
within−camera

(
1−

∑
t µ

c
t∑

t tp
c
t

)
︸ ︷︷ ︸
cross−camera

(3.10)

where PT is the precision, RT is recall for target IDs. The number of target-ID

mismatches at time t is given by µt and tpt is the number of true positives in

a single camera at time t. The superscripts s and c denote the single camera

tracking (SCT) or cross-camera tracking (ICT) scenario. Readers are requested

to see [28, 2] for details about the MCTA metric.

3.3.2 Experiments

We design three experiments to evaluate our camera selection approach inde-

pendently as well as a part of a target tracking framework. As in most tracking

settings, we assume the initial location of the target to be known as given by the

camera and a bounding box around the target.

Experiment-1: Evaluation of Camera Selection:

32

Figure 3.4: The figure shows the transitions for 4 targets in the testing set of dataset-3. GT is the sequence of
cameras in ground-truth, Sel is the sequence of cameras selected/polled by the policy. Horizontal axis is the time.
White color is the time when the target is transitioning between cameras and colorbar depicts the camera numbers in
the plot.

Table 3.5: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and
baseline approaches for NLPR dataset for ICT alone and for both SCT with ICT.

Set-3 Set-4
A ↑ P ↑ R ↑ A ↑ P ↑ R ↑

Inter-camera Tracking (ICT)
Exhaustive 0.008 0.002 1.0 0.017 0.003 1.0
Neighbor 0.008 0.003 1.0 0.017 0.006 1.0
Gaussian 0.36 0.007 0.571 0.33 0.0078 0.168
Proposed 0.685 0.026 0.929 0.519 0.027 0.808

Single-camera tracking + Inter-camera Tracking
Exhaustive 0.42 0.10 1.0 0.56 0.11 1.0
Neighbor 0.42 0.14 1.0 0.56 0.18 1.0
Proposed 0.76 0.64 0.86 0.77 0.61 0.91

In this experiment, we initialized the state of a target with its initial location

and used the learned policy to poll cameras at subsequent time steps. Based

on the presence or absence of the target, the state vector is appropriately up-

dated. In this experiment, we use the ground truth location for determining the

presence of the target. We make this simplifying choice in this experiment to

eliminate the uncertainty introduced due to the Re-ID performance. The pol-

icy continues polling of cameras until the target exits the camera network or

33

the sequence terminates. Metrics like accuracy, precision, and recall encap-

sulate overall performances and allow comparative analysis as shown in Ta-

ble 3.4 and 3.5, which reports the camera selection performance. In addition

to the proposed policy’s performance, we also compare with exhaustive search

and nearest neighbor search as used in multiple related works discussed in the

following text. The Exhaustive approach is a brute-force approach which polls

each camera at all time steps until the target is found in one of the cameras. The

tables (3.4 and 3.5) shows that it has 100% accuracy but poor precision. The

Neighbor approach assumes that the camera network topology is known and

searches the target by polling only in the neighboring cameras. Approaches pro-

posed in [18, 38] searches the target in the adjacent cameras and hence process

the same number of frames as the neighbor search approach. Along with these

two approaches, we also compare camera selection performance with a method

proposed in [7]. The approach proposed in [7] first estimates the distribution

of the camera transitions assuming the fact that the multiple targets generally

follow same paths and then samples a transition time to reduce the number of

frames to be processed. They estimate a Gaussian distribution and hence we

named this approach as Gaussian. After the transition time, they start search-

ing the target in cameras using a camera link model which will link different

cameras having a path for transition. We repeated their experiment by estimat-

ing a Gaussian distribution from the train set and sampling a transition time for

each person in the test set. The camera link model is used as set of neighboring

cameras. The metrics computed in Table 3.4 and 3.5 are reported for two cases:

34

Figure 3.5: The figure shows the learned topology for set 4 (5 cameras) and 3 (4 cameras). A black arrow indicates
the correct prediction and red arrow indicate a false positive.

For ICT, the metrics are computed using equations (3.6, 3.7, and 3.8) but only

using the time instances when the target is transitioning from one camera to the

other. For SCT + ICT, the entire sequences are used. As expected, we see that

the proposed policy has better precision than the other competing approaches.

The Gaussian method is excluded in case of SCT + ICT because the distribution

is only defined for the ICT case.

While the A, P, and R measures indicate the overall performance of camera

selection, a confusion matrix shows the pairwise miss-classification in camera

selection. Based on the cameras being polled by our policy at various time steps,

we report a confusion matrix for DB-3 as shown in Table 3.2.

Figure 3.4 show the sequence of cameras polled by the policy as compared

to what is seen in the ground truth. Horizontal axis is time and vertical axis

shows the camera schedules in ground truth (GT) and polled by policy (Sel).

The dark colors are camera schedules (mapped with colormap) and white is the

transition time. The figure reflects that the policy starts polling the camera early

when the transition time is large and skips few frames while selecting a correct

35

Figure 3.6: Boxplot of number of frames polled (metric F, see equation 3.9) on two datasets of NLPR dataset for
our proposed policy and other baseline approaches.

Table 3.6: The table is showing average MCTA values (higher is better) for inter-camera tracking (ICT) and both
SCT-ICT on the test set of NLPR-MCT dataset. The related approaches are multi-camera multi-target tracking
approaches taken from the benchmark dataset [2]. The last 5 rows show the MCTA values for the proposed approach
with simulated Re-ID errors from 0% to 20%.

Inter-camera tracking (ICT) Single-camera tracking + ICT
Approach Set-1 Set-2 Set-3 Set-4 Set-1 Set-2 Set-3 Set-4

[10] 0.9152 0.9132 0.5163 0.7152 0.8831 0.8397 0.2427 0.4357
[2] 0.7425 0.6544 0.7369 0.3945 0.7477 0.6561 0.2028 0.2650
[64] 0.6617 0.5907 0.7105 0.5703 0.6903 0.6238 0.0848 0.1830
[2] 0.3203 0.3456 0.1381 0.1562 0.8162 0.7730 0.1240 0.4637
[7] 0.9610 0.9264 0.7889 0.7578 - - - -
[1] 0.835 0.703 0.742 0.385 0.8525 0.7370 0.4724 0.3778

RL+Re-ID-0 0.8210 0.7498 0.9099 0.8993 0.8235 0.7503 0.9134 0.9118
RL+Re-ID-5 0.8188 0.7481 0.8766 0.8137 0.7778 0.7064 0.7949 0.7338
RL+Re-ID-10 0.8219 0.7511 0.8848 0.7140 0.7355 0.6635 0.6791 0.6769
RL+Re-ID-15 0.8171 0.7468 0.7862 0.7128 0.7004 0.6160 0.6229 0.5879
RL+Re-ID-20 0.8203 0.7519 0.7101 0.6625 0.6281 0.5323 0.5541 0.5288

camera when target enters a new camera FOV. This is because of varying speed

of different target individuals.

Experiment-2: Evaluation of Inter-Camera Tracking:

In this experiment, we evaluate only inter-camera tracking (ICT) of our pro-

posed method to capture the performance when the target is navigating from

one camera FOV to another. Unlike experiment-1, ICT includes ground truth

sequence during SCT. For ICT, it is not only required to find the next camera

36

where the target is likely to move but also the transition time the target will take

before appearing in the next camera. The transition time is critical because it

will increase the number of search operations until the target is found. In this

experiment, the single-camera tracking is taken from ground-truth. In our ap-

proach, we use the learned policy to select a camera at any given time using the

current state of the target and when the target is located in a camera frame then

ground truth results are used until it disappears from the camera FOV either

due to an occlusion or a possible transition. Unlike [7], we do not model the

transition time explicitly. However, the policy implicitly captures the transition

time by selecting a camera at all times. The policy selects action N + 1 when

the target is not visible in all the N cameras of the camera network otherwise

it selects an action from 1 to N . The sequence of (N + 1)th action selection

gives us the transition time of the target. Using this experiment, we will show

that the learned policy can learn the camera network topology and captures the

transition time of the target and hence is able to reduce the number of frames to

be processed (i.e., number of Re-ID calls) at any given time. Visually, it can be

seen in the Figure 3.4. The length of white color in GT is the actual transition

time between any two cameras and in the same time duration the length of white

color in Sel gives the length of transition time captured by the policy.

For the experiment, the state is initialized with the initial position of the

target. Whenever the target moves out of the current camera FOV, the pol-

icy selects a camera (equivalently, selects an action in reinforcement learning)

where the target is expected to appear. As discussed earlier, the policy selects

37

(N + 1)th camera when the target is expected to be absent in all camera FOVs.

The selected camera frame is then used by the presence block to find whether

the target is present in the frame (in camera N + 1, the target is always absent).

As stated earlier, the presence block can be implemented using Re-ID and we

will simulate different kinds of errors in Re-ID. The tracking performance is

reported in terms of MCTA metric in Table 3.6. The related methods are taken

from the dataset benchmark available at [2]. These approaches are for multi-

camera multi-target tracking and hence we have used our policy for multiple

targets to make it a multi-target tracking approach. For ICT, the tracking per-

formance is reflected only for the duration of transition till the right camera is

predicted/selected. We have simulated errors in a typical Re-ID pipeline from

0% (no error) to 20% (high error). In the table, the set-1 and set-2 show approx.

same values for all percentage of errors in Re-ID and this is because the many of

the target individuals are only in the single camera view and making the average

value for all target high for all cases.

During training, we did not assume the camera network topology, and the pol-

icy learns the links. The transition time is recorded from the frame when the tar-

get disappears from current camera FOV to the camera frame where it is found

present by the presence block. Table 3.3 show the time taken in the ground

truth and identified by the policy for different camera transitions in dataset-3.

The values in the table are the number of frames during camera transitions as

found in ground truth and by the policy. Based on these transitions captured

by the policy , we have made a graph of the camera network which depicts the

38

camera network topology. The predicted camera network topology is shown

in Figure 3.5 for sub-dataset 4 (5 cameras) and 3 (4 cameras). A black arrow

in the figure shows the right prediction by the policy; red arrow show a link is

predicted by the policy but it does not exist in ground truth. The figure shows

that the policy learns most of the links and hence the target’s current state helps

in finding the next camera. There are false positives and false negatives due to

scheduling queries of different target individuals. Camera schedules of target 2

in Figure 3.4 shows that the transition at time frame 3500 is missed and hence

this has generated a false positive in DB-3 topology.

One crucial aspect of target tracking is the number of frames polled (the

number of Re-ID calls) because a large number of frames will incur a more

considerable delay in locating the target. For single camera tracking (SCT), the

target will be searched only in the same camera whereas, for ICT, it will be

searched across multiple cameras which will increase the number of frames to

be polled to find the right camera where the target has appeared. The number

of Re-ID calls or the number of frames polled (F) are shown in Figure 3.6.

The proposed policy queries approx. 10 times less number of camera frames

compared to other baseline methods (explained earlier in experiment-1).

Experiment-3: Evaluation of Complete Pipeline: In this experiment, we

evaluate our proposed policy during ICT along with single-camera tracking

(SCT) for multi-camera multi-target tracking. The experimental setup is same

as experiment-2 but camera sequence during SCT is taken from policy as com-

pared to the ground truth. Table 3.6 show the comparison of our approach with

39

other related methods for this experiment. Unlike previous experiment, both

SCT and ICT performance is compared. The Re-ID is simulated with error

from 0% to 20%. The policy outperforms many methods and for set-3 and set-4,

it has best best performance even at high error in Re-ID.

3.4 Discussion

This chapter presented a novel method to identify the camera schedule of a tar-

get’s motion in a network of cameras. For this, we have learned a reinforcement

learning based policy to select the next camera where the target is likely to ap-

pear at next time. We showed that ICT is very challenging and existing methods

has to poll a large number of frames to search the target after a transition. We

showed that camera selections provide better tracking performance and queries

fewer frames in the camera network. We showed through various experiments

that the proposed approach is also useful to capture the transition time required

by a target to move from one camera FOV to other camera.

There are a few limitations of the proposed method. One, it doesn’t scale

to a larger camera network because the exact RL method goes out of memory.

Second, the tracking performance is highly sensitive to the Re-ID performance.

Along with these, the proposal needs evaluation on larger camera networks.

�

40

Chapter 4

Intelligent Querying in a Camera Network

Using Deep Q-learning with n-step

Bootstrapping

In this chapter, we will propose a camera selection approach using Deep Q-

learning (or also referred to as Deep Q network or DQN), a neural network

based implementation of the Q-learning algorithm. This is essential for making

camera selections for larger camera networks. Using time-limits [11] and n-

step bootstrapping [57], we will show that our method works effectively for

making camera selection decisions. We modify the state vector proposed in the

previous chapter to handle larger networks and use time-limits [11] to handle

indefinite transition times, while still maintaining the MDP formulation and

learn the policy using DQN.

In this chapter, we will first give a brief overview of tracking in a larger

camera network, limitations of existing methods. We will then give proposed

41

system overview, problem formulation using Markov Decision Process (MDP),

and training of the proposed method using Deep Q-learning in section 4.2. This

is followed by evaluation methodology, results, and comparison with state-of-

the-art methods in section 4.3. We will point out the limitation of the proposed

method in section 4.4.

4.1 Introduction

Camera networks are becoming ubiquitous in smart cities where monitoring of

urban environments has numerous applications like traffic management, law en-

forcement and security, and automated surveillance. In these scenarios, camera

sensors are deployed in public spaces like road intersections, common areas

in residential, commercial and government complexes to collect data, which is

transmitted, stored and analysed by the government or local authorities. For

example, surveillance cameras in residential and commercial complexes can be

used to identify and track trespassers and unauthorized personnel or for forensic

analysis during investigation.

For these applications, tracking targets across the network of cameras is im-

portant and most approaches for multi-camera tracking are driven by the state-

of-the-art visual object detection, tracking and re-identification methods. While

single-camera tracking poses challenges like appearance, lighting, viewpoint

and background variations and occlusions, multi-camera tracking with non-

overlapping fields-of-view (FOV) poses a different challenge of re-identification

42

of targets across cameras. Since camera networks often have units that are

spatially distant, transition times from one FOV to another may take several

seconds or minutes or even longer depending on the scale of the camera net-

work. Depending on network size and the cameras’ FPS, these networks gen-

erate a deluge of video frames which are potential query candidates for the

re-identification module. For handling such volumes, scalable methods are of

vital importance. One common approach is to select the potential camera feeds

where the target is likely to be present. This approach can benefit both manual

and automated surveillance as fewer frames need to be processed for tracking

targets of interest. Along the same lines, we investigate camera selection deci-

sions to identify the most likely camera frame where the target may reappear at

the next time instance.

The inter-camera target handovers are typically resolved using visual re-

identification (Re-ID) techniques, where the current template of the target is

matched against all target candidates in all candidate cameras. Even for small

camera networks with non-overlapping camera FOVs, this association problem

becomes very challenging because of the non-deterministic and unknown time a

target takes to transition between two non-overlapping FOVs. This uncertainty

results in a large number of candidate frames, each with possibly many target

candidates. Since most Re-ID or verification approaches work at an operating

point chosen based on a fixed False Alarm Rate (FAR), the number of false

alarms will depend on the number of frames processed for Re-ID. Re-ID false

alarms could be very detrimental to the tracker’s performance. Hence minimiz-

43

ing the number of frames that undergo a Re-ID query is critical to the tracking

performance in camera networks, as well as reduce the computational complex-

ity necessary to reduce the processing of frames not queried. An intelligent

camera frame selection strategy could benefit both the accuracy and efficiency

of a multi-camera target tracking system.

In this chapter, we highlight this important problem of camera selection in

multi-camera target tracking. Ideally, none of the camera frames should be

selected for a Re-ID query during a target transition period. Consequently, we

propose to learn a camera selection policy that intelligently schedules Re-ID

queries to resolve inter-camera handovers. We design our approach in a manner

that the learning strategy directly leverages the video data and does not depend

upon the network topology. We will show experimentally that our proposed

method makes very few queries to the network as compared to the baseline and

other competing methods used in the literature.

Based on the observation that target appearance in a camera is time-varying,

it is natural to model the camera selection problem for scheduling Re-ID queries

as a Markov Decision Process (MDP), which was investigated in the previous

chapter by employing the Q-Learning method to exactly solve the MDP. How-

ever, exact methods are hard to scale for larger camera networks, which have

larger state and action spaces. Therefore, in this chapter, we present it’s ex-

tension and show that deep learning based approximate methods like Deep Q-

Networks (DQN) [51] can be effectively used to scale up our camera selection

approach to larger camera networks. In addition to the datasets used in the previ-

44

ous chapter like NLPR-MCT [2], we also evaluate the approximate approaches

with larger camera networks like the Duke MTMC dataset [28]. The learned

camera selection policy is used for inter-camera tracking (ICT) to generate an

action that corresponds to waiting for the next time step by selecting a dummy

camera or selecting one of the real cameras to make a Re-ID query. Finally, the

policy is learned directly from the videos captured from the camera units and

does not assume the knowledge of the underlying network topology. Nonethe-

less, in our experiments, we observe that the policy implicitly learns the network

topology anyway.

The specific contributions in this chapter are:

1. We highlight the importance of camera selection decisions to enable accu-

rate and efficient target tracking in a network of cameras.

2. We extend our approach of reinforcement learning (RL) based intelligent

Re-ID query scheduling in camera networks (using exact Q-learing from

the previous chapter) to use deep neural network based approximate tech-

niques, which enables the learned policy to scale to larger camera networks

where the exact methods fail.

3. We modify the state vector proposed in our previous approach in Chap-

ter 3 to handle larger networks and use time-limits [11] to handle indefinite

transition times, while still maintaining the MDP formulation and learn the

policy using DQN, an approximate method (Details in Sec. 4.2.2).

4. We demonstrate over multiple real-world datasets pertaining to both indoor

45

and outdoor environments that the learned camera selection policy queries

a very small number of frames with a small trade-off on the recall values.

4.2 Proposed Methodology

In this section, we will provide the details of the system architecture and the

reinforcement learning formulation for the camera selection decision problem.

4.2.1 System Overview

Figure 3.3 on page 27 in Chapter 3 shows our system architecture, which con-

sists of two blocks: First, block Q which learns a policy π to select the next cam-

era where the target is likely to appear given target’s current state. The second

block verifies the presence of the target in the selected camera frame. In surveil-

lance, this is usually done manually using human input or automatically using

re-identification [66, 65] based approaches. We named this presence block. The

presence block verifies the presence of the target in the selected camera frame

and will return 1 if the target is present in the camera frame along with the cor-

responding bounding box location, otherwise it returns a 0. As our focus is on

learning the policy for camera selection, we begin with the assumption that the

presence block is perfect, and then investigate the impact of error in presence

prediction. We achieve this by using ground truth labels for simulating a per-

fect Re-ID approach, and then induce random matching errors at different levels,

in effect simulating outputs from Re-ID models at different levels of accuracy.

46

This setting is followed in order to systematically evaluate the strength of our

camera selection policy in the presence of Re-ID noise.

The block Q, takes as input the current state (detailed in next subsection)

and selects a camera index which will be polled to search the target using the

presence block. The policy selects one of the N + 1 actions, where N is the

number of cameras. The first N actions correspond to each camera and the N +

1th action is to be selected when the target is transitioning from one camera’s

FOV to another. The sequence of selected cameras gives the target’s trajectory

in terms of the cameras in which the target appears temporally. This is a non-

trivial task due to the unknown and non-deterministic transition time of each

target during camera transitions and any error in re-identifying the target will

propagate to the following frames. Hence it also requires to correct any wrong

re-identification made at previous timestamps. The policy is implemented using

a neural network model. The network parameters are learned using deep Q-

learning [51] with n-steps bootstrapping (refer Chapter 7 in the book [57]). In

the subsequent subsection, we will provide details of the training and testing

algorithm for camera selection decisions.

4.2.2 Markov Decision Process and Q-learning

The goal of reinforcement learning is to learn a policy that decides sequen-

tial actions specific to the target’s state by maximizing a cumulative reward

function [57]. Our system architecture uses deep Q-learning to learn a policy

to make camera selection decisions. A decision problem can be formulated

47

using a Markov Decision Process (MDP). The MDP is defined by the tuple

(S,A, f,R, γ), where S the set of states, A is the set of actions, f(st, st+1) is

the state transition function, R(s, a) is the reward function that determines the

reward that the environment provides when an agent takes an action a ∈ A in

state s ∈ S and γ is the discount factor. We define a state-action value function

Q to estimate the expected value of the return for taking action a in state s by

Q(s, a). Return Rt at time t is defined as the discounted sum of future rewards

Rt = rt+1 + γ ∗ rt+2 + γ2 ∗ rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (4.1)

where γ is the discount factor which is typically included to make the return

bounded. We use state-action value function Qπ(s, a) to learn the expected

return starting at state s and taking action a and using policy π for the following

time-steps (we will use Q(s, a) in place of Qπ(s, a) for all following text). The

value function will tell us the expectation of how good (in terms of reward) the

current state and action will result in future given the current policy.

Q(s, a) = E
[∞∑
k=0

γkrt+k+1|St = s, At = a
]

(4.2)

The goal is to learn the optimal state-action value function Q∗ which we learn

using Q-learning because it is an off-policy and model-free algorithm.

We formulate the camera selections as a decision problem where querying

each camera is considered as a separate action. As noted by related works [5],

searching the target in all cameras at all times is NP-hard and therefore, this

48

intelligent querying becomes important to reduce the number of search opera-

tions while tracking a target across the multiple cameras. Also, the cameras in

a typical camera network are deployed far apart and hence exhaustive searching

may be prohibitively computationally expensive and inconsequential when the

target is transitioning between cameras. To ensure this, we propose a policy that

learns to select a camera where the target is likely to be present and select an ac-

tion (named C×) to indicate that the target is transitioning. Therefore, the task

is to learn a policy π(st) at agent’s state st which will give the probability of

selecting a camera (equivalently selecting an action) given the current state i.e.,

p(at|st), where at is the action (or equivalently camera in the context of camera

selection decisions). We will show that this policy can be learned directly from

data using the trial-and-error based approach i.e., by taking feedback from the

environment.

However, this problem doesn’t map to the MDP directly because of the tar-

get’s partial observability like occlusion from other targets or the target not

present in the selected camera. For example, if the policy selects camera ci

but the target is present in the FOV of camera cj. The observation that the learn-

ing agent gets from the environment is partially observable due to occlusions

and indeterminate movement of the target. For this, history of observations is

included in the state vector which becomes intractable due to very large state

space [57].

In addition to the observations, we keep the action history and time elapsed

in the state vector. To read more about the partial observable problem, readers

49

are encouraged to read Sec 17.3 in [57]. The individual components of the state

vector are defined in the following text:

State: The state st at time t captures the observations of the target and the

history of cameras ht selected by the policy, and time elapsed τ .

The individual elements of the state space are following:

1. xt: An observation of the target’s location is its spatial location in a par-

ticular camera frame, i.e., (c, b) where c is the camera index and b is the

bounding box in the camera c. We keep last 3 observations of the target

to estimate the next location (for example, using kalman filter). The last 3

observations form the vector xt. In which c is encoded as a one-hot vector

and b is encoded by normalizing the bounding box location i.e., x, y, w, h.

(x, y) are the pixel coordinates of the upper left corner of the bounding box

and (w, h) are corresponding width and height respectively. The bounding

box values are normalized by dividing the pixel coordinates by the corre-

sponding image dimensions.

2. ht: The action at next time-steps depends on the current action and the

previous actions selected by the policy. Hence, we have included the pre-

viously selected actions to the state vector. ht represents the history of the

cameras selected by the learned policy. The history of cameras is encoded

as a sequence of one-hot vectors.

3. τ : It captures the time elapsed since the target was last seen in any camera.

This captures the time ticks since the target was not observed. Motivated

50

from time-limits in reinforcement learning [11], we have included τ to

work with indefinite transition times.

Actions: The action at at time t is encoded by N + 1 dimension vector,

where N is the number of cameras in the camera network. An optimal policy

should select an action a from the first N actions when the target is visible in

the camera index a. The action N + 1 is selected when the policy selects no

camera, i.e., the target is not visible in any of the camera.

State transition function: After deciding an action at at time t, the next

state st+1 is decided by the following state evolution function:

st+1 = f(st, at) (4.3)

The function appends the one-hot encoding of the selected camera ct to the

camera history vector. If the target is found in selected camera then last seen

observation vector xt is updated by including new (c, b) otherwise τ is incre-

mented by 1.

Reward: The reward function r(s, a) is defined for each state and action

pair. In the previous chapter, we provided a binary reward function and here

we use a dense reward. A dense reward helps because it gives the direction

when a transition is ending. We have also observed that this dense reward helps

improve performance by giving smaller reward to the most frequent action (C×).

51

Let policy selects a camera c at time t, the reward is defined as the following:

r(st, a) =



1
Tc

if the target appears in c at time Tc

0.1 if the target is transitioning

−1 otherwise

(4.4)

Assumptions: We assume that all the cameras of the camera network are

uniquely identifiable and the camera network topology doesn’t change during

testing phase (the CCTV network infrastructure doesn’t frequently change in

the real world too).

Policy: The policy π selects an optimal action from the learned Q-value

functions. After learning, given the target state, it selects an optimal action

using the learned Q-value function in-state st as:

π∗t (st) = argmax
a
Q∗(st, a) (4.5)

Q-learning: Q-learning is a temporal-difference (TD) learning algorithm

which learns directly from state-space exploration without knowing a state-

transition model. The Q-learning learns an optimal Q-value function by iter-

atively updating the values using the following bellman equation independent

52

of the policy being followed:

Q(st, at)⇐Q(st, at) + α

(
r(st+1)+ (4.6)

γmax
a
Q(st+1, a)−Q(st, at)

)

Where α is the learning rate and γ is the discount factor. At state st, the learn-

ing agent performs an action at and then the environment responds with a new

state st+1 and a reward value. We used epsilon-greedy exploration strategy [57]

for state-space exploration with epsilon annealing. We are incorporating n-step

rewards to update the value function.

Q-learning with n-step bootstrapping: The Q-learning update equation

(4.6) updates the value function at next time using one step reward. In n-step

reward, we update the value of a state after receiving rewards for n time steps.

For example, taking n = 3, would change the Q-learning bellman equation 4.6

to:

Q(st, at)⇐Q(st, at) + α

(
r(st+1) + γr(st+2) + γ2r(st+3)

+ γ3 max
a
Q(st+3, a)−Q(st, at)

)
(4.7)

53

4.2.3 Camera Selection Decisions using Deep-Q Network

In the previous chapter, we proposed a Q-learning based method for camera

selection decisions where we discretized the state because of a very large state

space but using deep learning we can learn features even from the continuous

and larger state space. Neural networks were found to map the states to reward

values in many related works [51, 67, 68]. The parameters of the neural network

can be updated using gradient descent based backpropagation algorithms [69].

For all implementation of exact RL method, we have used a server machine with

128 GB RAM, 5GB GPU (Nvidia Tesla K20m) and Matlab-16b [70] version.

For implementation of neural networks, we have used a workstation with 8GB

GPU (Nvidia GeForce GTX-1080), 16GB RAM and in pytorch. The exact RL

method worked only for NLPR MCT datasets and goes Out-of-Memory (OM)

for DukeMTMC dataset.

Neural network model: Our neural network model is shown in Figure 4.1.

For the neural network, we will find the optimal weights which will help the

learning agent to get maximum reward. For the reward based learning, we have

used deep Q-learning [51] algorithm to update the neural network weights based

on the reward received from the environment. The first three hidden layers of the

network have relu activation and the last layer, outputs the Q-values correspond-

ing to each individual action and has linear activation. The output is a N + 1

dimension vector, where N is the number of cameras in the camera network.

Each output corresponds to an action ai that reflects the Q-value Q(s, ai) for

54

Figure 4.1: The neural network model that learns the state-action values using Q-learning. The model learns a
policy that makes the camera selection decisions. This is the implementation of the Q block of the architecture
shown in Figure 3.3 on page 27 in Chapter 3.

the input state s. The action corresponding to maximum Q-value of the output

layer is selected by the policy (equation 4.5). The selected camera frame is then

passed to the presence block of the system to find the bounding box location of

the target in the selected camera. The state-transition function determines the

next state and then the whole process repeats again.

Training procedure: During training, a replay buffer is maintained to store

the transitions explored by the DQN agent. To train the network, a minibatch s

sampled from the replay buffer to compute the loss. The output of the network

at state st is Q(st, at) ∀at ∈ A and the corresponding target is the discounted

future reward for n-steps. For simplicity, taking n = 1, the target yt for state st

after receiving a reward rt+1 from environment is rt+1 + γmaxaQ(st+1, a). We

have used mean-square error to compute loss at each time-step. Hence, when

action ai is taken at state st, the loss (corresponding to action ai) can be written

as:

55

Algorithm 2 Deep Q-network training procedure with n-step bootstrapping. π is the policy to make
camera selection decisions. c,b is the initial location of the target with c as the current camera and b as
the corresponding bounding box location.

1: procedure TRAIN(c,b, π)
2: Initialize replay memory M with capacity D
3: Initialize deep-Q network with random weights
4: h, τ ← ZEROS . Initialize history and time-elapse with ZEROS
5: s← initialState(c,b,h, τ) . Concatenate location and history
6: while True do
7: With probability ε, choose action c uniformly at random, and with

probability 1− ε, choose action using the policy in equation 4.5
8: bb← getBoundingBox(c) . get the bounding box from presence block
9: if rand() < 0.5 then . random steps are taken for exploration

10: rsteps← randint(20)

11: if bb is NOT EMPTY then . update last seen observation vector if target is present in c
12: xt← (c,bb)
13: τ ← ZERO
14: else
15: τ + = rsteps

16: h← updateHistory(h,c)
17: s′ ← f(xt, h, τ) . observe the next state and reward
18: r ← getReward(s,c)
19: Append transition (s, c, s′, r) to replay memory M, pop last element if

overflow
20: if s′ is terminal then break
21: s← s′

22: Sample a random minibatch B from M
23: For each sample (si, ai, s

′
i, ri) in minibatch, compute the n-step target yi = ri+

γmaxaQ(s′i, a) . For brevity, target value is shown for 1-step reward
24: Update the Q-network using Adam algorithm [69] on the minibatch and

repeat until convergence
25: return π

56

L(st, ai) =
(
Q(st, ai)− (rt+1 + γmaxaQ(st+1, a))

)2 (4.8)

The loss term for actions other than ai will be zero (there are N + 1 actions).

The term in brackets is also known as TD (Temporal Difference) error. In the

loss for n-step bootstrapping, we replace the next (one) step reward with the

n-step return. The step by step training procedure is shown in algorithm 2.

Algorithm 3 Camera selection decisions using deep Q learning.

1: procedure SELECTIONDECISIONS(c,b, π)
2: h, τ ← ZEROS . Initialize history and time-elapse with ZEROS
3: s← initialState(c, b, h, τ) . Create initial state using history and location
4: while in the video sequence do:
5: c = argmax(π(s)) . Choose an action using the learned policy
6: Select a random c, if τ reaches the max time-limit
7: b← get the bounding box using presence block
8: if b is not empty then
9: Update xt ← (c,b) and τ ← ZERO

10: else
11: τ+ = 1

12: h← updateHistory(h,c) . Update history at every time-step
13: s← f(xt, h, τ) . Observe next states
14: Append (c,b) to trajectory

15: return trajectory

Note that the training procedure is same irrespective of whether the target

is inside a camera field-of-view or transitioning between cameras. For training

the neural network, we initialized the state vector with the initial location of

the target and history vector to all zeros. The selected action (camera index) is

then used to verify the presence of the target (see section 4.2.1). The state is

accordingly updated using the state transition function. At any particular time,

a target can see occlusion during SCT (Single Camera Tracking) and hence to

simulate such cases, we randomly removed a few locations from the target’s

trajectory. To remove a few locations from the trajectory, we have randomly

57

Figure 4.2: Analysis of training strategy. First, shows the varying epsilon value during training on NLPR DB-3.
Second, the running reward during the training on NLPR DB-4.

sampled number of frames uniformly between 0 − 20 (for details, see Algo-

rithm 2). During training, τ increments by 1 when presence block cannot find

the target due to removal of the location. If the target is found, τ is reset to 0.

Each transition is stored in a replay memory until the end of the episode. When

an episode ends, a small minibatch is sampled randomly from the replay mem-

ory for backpropagation using the Adam optimizer [69]. The training process is

repeated until convergence. Instead of fixing a value for the epsilon in epsilon

greedy exploration, we start with a value of 1 and decrements it as training pro-

gresses. The epsilon is set using 1/log(epoch_number). The training progress

is shown in Figure 4.2 which shows the percentage random actions selected us-

ing epsilon greedy exploration as training progresses. The figure also shows the

reward accumulated during the training phase on NLPR Set-4. For a new target,

the complete procedure to perform target tracking using the learned policy is

shown in the Algorithm 3.

58

Table 4.1: Details of the datasets used for performance evaluation. The table shows the number of cameras
(#Cameras), duration of the videos, frame rate (FPS) and the number of people (#People) captured in each dataset.

NLPR_Set1 NLPR_Set2 NLPR_Set3 NLPR_Set4 DukeMTMC

#Cameras 3 3 4 5 8
Duration 20 min 20 min 3.5 min 24 min 1hr 25min

FPS 20 20 25 25 60
#People 235 255 14 49 2834

4.3 Evaluation and Results

In this section, we present details of the datasets used, the evaluation metric and

the experimental results of the proposed architecture on the used datasets.

4.3.1 Dataset and Evaluation Metric

Dataset: We have used NLPR-MCT data set [2] and DukeMTMC [28] dataset

to evaluate the proposed architecture for camera selections in multi-camera net-

work for single target tracking. The NLPR-MCT dataset consists of four sub-

datasets each having 3 − 5 cameras with a resolution of 320 × 240. Details

of the dataset are given in Table 4.1 and in section 3.3.1 of Chapter 3. The

DukeMTMC dataset consists of 8 cameras deployed in Duke University cam-

pus. To date, DukeMTMC dataset is the benchmark dataset for multi-target

multi-camera (MTMC) tracking. The details of the dataset are given in Ta-

ble 4.1.

The training and the testing sets are constructed from each datasets by ran-

domly selecting half the people for the training and the remaining half for test-

ing. However, the evaluation benchmark of DukeMTMC dataset doesn’t pro-

59

vide platform for camera selection performance and hence to train the policy

and to evaluate the performance, we have divided the available training set into

two parts by splitting person identities in two sets. Therefore, for camera se-

lection decisions, we are reporting performance on the sub-part of the actual

training set. The two sets contain mutually exclusive person identities. We

expect the policy to implicitly learn the network topology, and so long as the

network is static, the policy should work for all new, unseen target individuals.

Typically, CCTV network topologies in the real-world are seldom modified.

We define evaluation metrics over the entire sequence of frames generated

by the camera network. The sequence is indexed by time-steps correspond-

ing to the time of frame capture for the cameras. Since the cameras operate

on the same frame rate for a given subset, we can ignore any synchronization

errors without any significant impact on the camera selection and tracking per-

formance.

Evaluation Metric: To evaluate the camera selection performance, we re-

port camera selection accuracy, precision and recall computed over the entire

sequence of each subset as explained in section 3.3.1 in Chapter 3.

We perform evaluation in two parts, one for ICT alone and another for ICT

along with SCT. For ICT alone case, we do not consider the frames when the

target was seen in a single camera field-of-view. We also evaluate the overall

performance of target tracking in a camera network when our camera selection

policy is used for ICT. We use the standard Multi-Camera Tracking Accuracy

60

Table 4.2: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and
baseline approaches for NLPR dataset for the case of Inter-Camera Tracking (ICT).

A ↑ P ↑ R ↑ A ↑ P ↑ R ↑ A ↑ P ↑ R ↑ A ↑ P ↑ R ↑
NLPR DB-1 NLPR DB-2 NLPR DB-3 NLPR DB-4

Exhaustive 0.025 0.008 1.0 0.019 0.007 1.0 0.008 0.002 1.0 0.017 0.003 1.0
Neighbor 0.025 0.013 1.0 0.019 0.009 1.0 0.008 0.003 1.0 0.017 0.006 1.0
Gaussian 0.435 0.215 0.127 0.40 0.16 0.195 0.36 0.007 0.571 0.33 0.0078 0.168
Exact RL 0.85 0.042 0.31 0.86 0.037 0.31 0.685 0.026 0.929 0.519 0.027 0.808
Deep RL 0.44 0.026 0.73 0.45 0.02 0.73 0.58 0.02 0.88 0.76 0.03 0.83

(MCTA), which gives a single scalar value for all components involved in multi-

camera tracking, i.e., F1-score for detection, number of target handovers for

single camera tracking, and the number of handovers in inter-camera tracking.

The metric is defined in section 3.3.1 in Chapter 3.

We have proposed a single target tracking approach that tracks the given

target across multiple cameras whereas the related approaches on the bench-

mark datasets are multi-target multi-camera. To make a fair comparison with

related approaches, we have created a multi-target version of our algorithm. To

compute multi-target tracking results, we are running multiple pipelines of our

approach for multiple targets. In our approach, the tracking performance of

one target does not depend on another and hence, the approach can be easily

extended to multi-target tracking problem.

4.3.2 Camera Selection Performance of the Learned Policy

In this subsection, we will describe the performance of the learned policy for

camera selection decisions. There are two cases for tracking a target in a camera

network. First, ICT (Inter-Camera Tracking) where the task is to identify the

correct camera handovers that the target performs. Second, SCT+ICT (Single

61

Table 4.3: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and
baseline approaches for NLPR dataset for the case of both ICT and SCT together.

A ↑ P ↑ R ↑ A ↑ P ↑ R ↑ A ↑ P ↑ R ↑ A ↑ P ↑ R ↑
NLPR DB-1 NLPR DB-2 NLPR DB-3 NLPR DB-4

Exhaustive 0.72 0.24 1.0 0.65 0.22 1.0 0.42 0.10 1.0 0.56 0.11 1.0
Neighbor 0.72 0.36 1.0 0.65 0.32 1.0 0.42 0.14 1.0 0.56 0.18 1.0
Exact RL 0.91 0.95 0.83 0.88 0.94 0.78 0.76 0.64 0.86 0.77 0.61 0.91
Deep RL 0.84 0.76 0.90 0.80 0.69 0.84 0.73 0.60 0.88 0.93 0.73 0.84

Table 4.4: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and
baseline approaches for DukeMTMC dataset for both ICT alone and ICT-SCT together. The Gaussian approach is
not defined for SCT+ICT case. In the table, OM signifies Out-of-Memory error.

ICT alone SCT + ICT
A ↑ P ↑ R ↑ A ↑ P ↑ R ↑

Exhaustive 9.6*10−4 1.2*10−4 1.0 0.334 0.042 1.0
Neighbor 9.6*10−4 2.4*10−4 1.0 0.334 0.042 1.0
Gaussian 0.26 1.9*10−4 0.58 - - -
Exact RL OM OM OM OM OM OM
Deep RL 0.81 6.7*10−3 0.74 0.869 0.49 0.768

Camera Tracking + ICT) where the task is to identify the correct cameras when

the target is moving in a single camera field-of-view along with the camera

handovers.

To perform this experiment, we have initialized the initial state of the target

with its initial location with history vector being all zeros. At each time-step,

the learned policy selects a camera index where the target is likely to be present.

The selected camera is then queried to identify whether the target is present in

the selected camera field-of-view. The presence of the target is used to locate its

spatial location (bounding box) in the selected camera frame. For surveillance,

this task is usually performed by human agents who continuously watch the

camera feed. Alternatively, this task can be achieved by re-identification based

methods to automatically identify the presence of the target. Such methods use

visual template matching to re-identify an object in different camera feeds given

62

the visual template of the target. To evaluate the camera selection decisions, we

use correct presence of the target from the ground truth data. We make this sim-

plifying choice in this experiment to eliminate the uncertainty introduced due to

the re-identification performance. The policy continues polling of cameras until

the target exits the camera network or the sequence terminates. The complete

procedure to perform target tracking using the learned policy is shown in the

Algorithm 3. For infinite horizon problems, time limits [11] in reinforcement

learning have shown on various applications that randomizing the state vector

(even during testing) after a time period provides better performance because

larger time steps may end up in a bad state. Randomizing the state vector will

help the policy to select actions from another state and eventually results in bet-

ter performance. Similarly, in our case, when τ reaches a predefined maximum

value, we select a random camera index to update the state vector and let the pol-

icy continue from that point to make camera selection decisions. For example,

for NLPR DB-3, without using time limits, we got camera selection accuracy

of 0.69 whereas by setting a time limit of 250 time-steps we got an accuracy

of 0.73. We observed similar case of other datasets and used a different time

limit for all datasets. All further results are reported with time limits of 800

for NLPR DB-1 and 2, 250 for NLPR DB-3, 500 for NLPR DB-4, and 600 for

DukeMTMC dataset.

Metrics like accuracy, precision and recall encapsulate overall performances

and allow comparative analysis as shown in Table 4.2, 4.3 and 4.4 which reports

the camera selection performance on each dataset. Table 4.2 shows accuracy

63

(A), precision (P), and recall (R) for NLPR MCT dataset for ICT case only.

Table 4.3 shows A, P, R for NLPR MCT dataset for both SCT and ICT and

Table 4.4 shows the camera selection decision performance for DukeMTMC

dataset for both cases, ICT alone and SCT and ICT together.

In addition to the proposed policy’s performance, we are comparing the cam-

era selection performance of the policy with three baseline approaches used in

related works. The Exhaustive approach is a brute-force approach which polls

each camera at all time steps until the target is found in one of the cameras.

The table shows that it has 100% accuracy but poor precision. The Neighbor

approach assumes that the camera network topology is known and searches

the target by polling only in the neighboring cameras. Approaches proposed

in [18, 38] searches the target in the adjacent cameras and hence process the

same number of frames as the neighbor search approach. Along with these two

approaches, we also compare camera selection performance with a method pro-

posed in [7]. The approach proposed in [7] first estimates the distribution of the

camera transitions assuming the fact that the multiple targets generally follow

same paths and then samples a transition time to reduce the number of frames to

be processed. They estimate a Gaussian distribution and hence we named this

approach as Gaussian. After the transition time, they start searching the target

in cameras using a camera link model which will link different cameras having

a path for transition. We repeated their experiment by estimating a Gaussian dis-

tribution from the train set and sampling a transition time for each person in the

test set. The camera link model is used as set of neighboring cameras. The met-

64

rics computed in each table are reported for two cases: For ICT, the metrics are

computed using the same performance metric, but only using the time instances

when the target is transitioning from one camera to the other. In case of SCT

+ ICT, the entire sequences are used. As expected, we see that the proposed

policy has better precision than the other competing approaches. The Gaussian

method is excluded in case of SCT + ICT, as the distribution is only defined for

the ICT case. While the A, P and R measures indicate the overall performance

of camera selection, a confusion matrix shows the pairwise miss-classification

in camera selection. Based on the cameras being polled by our policy at vari-

ous time steps, we report a confusion matrix for DukeMTMC dataset as shown

in Table 4.3. The Q-learning implementation presented in the previous chap-

ter goes out of memory for this dataset due to a very large state space. The

confusion matrix is computed using deep learning based approximation of the

Q-learning algorithm.

Figure 4.4 show the sequence of cameras polled by the policy as compared to

what is seen in the ground truth. Horizontal axis is time and vertical axis shows

the camera schedules in ground truth (GT) and polled by policy (Sel). The dark

colors are camera schedules (mapped with colormap) and white color shows the

length of the transition. The figure reflects the performance of deep RL policy

for making camera selection decisions. One important aspect of target track-

ing in multiple cameras is computational time. Many related methods match

target template across neighboring cameras [18, 38], all cameras [10, 5] for of-

fline tracking. However, such approach will require a large amount of frames to

65

Figure 4.3: The figure shows confusion matrix of the camera selections made by the proposed policy for DukeMTMC
dataset. Rows are the ground truth cameras (GT) and columns are the cameras polled by the policy. Values are
percentages rounded off to third decimal.

Figure 4.4: The figure shows the transitions for 7 targets in the testing set of dataset-3. On y-axis, GT is the
sequence of cameras in ground-truth, Sel is the sequence of cameras polled by the policy. Horizontal axis is the
time. White color is the length of the transition during camera handovers and colorbar depicts the camera numbers
in the plot.

66

Table 4.5: The table is showing average MCTA values (higher is better) for inter-camera tracking (ICT) on the test
set of NLPR-MCT dataset. The related approaches are multi-camera multi-target tracking approaches taken from
the benchmark dataset [2]. The last 10 rows show the MCTA values for the proposed approach with simulated
re-identification errors from 0% to 20% for both Exact RL and Deep RL implementations.

Inter-camera tracking (ICT)
Approach DB-1 DB-2 DB-3 DB-4

[10] 0.9152 0.9132 0.5163 0.7152
[2] 0.7425 0.6544 0.7369 0.3945
[64] 0.6617 0.5907 0.7105 0.5703
[7] 0.9610 0.9264 0.7889 0.7578
[1] 0.835 0.703 0.742 0.385

Exact RL-0 0.8210 0.7498 0.9099 0.8993
Deep RL-0 0.9016 0.8741 0.9038 0.8074
Exact RL-5 0.8188 0.7481 0.8766 0.8137
Deep RL-5 0.7869 0.6994 0.6971 0.6118

Exact RL-10 0.8219 0.7511 0.8848 0.7140
Deep RL-10 0.7293 0.5985 0.4390 0.5673
Exact RL-15 0.8171 0.7468 0.7862 0.7128
Deep RL-15 0.7043 0.5147 0.3658 0.3946
Exact RL-20 0.8203 0.7519 0.7101 0.6625
Deep RL-20 0.6543 0.4540 0.3516 0.4680

Table 4.6: The table is showing average MCTA values (higher is better) for SCT and ICT together case on the test
set of NLPR-MCT dataset. The related approaches are multi-camera multi-target tracking approaches taken from
the benchmark dataset [2]. The last 10 rows show the MCTA values for the proposed approach with simulated
re-identification errors from 0% to 20% for both Exact RL and deep RL implementation.

SCT + ICT
Approach DB-1 DB-2 DB-3 DB-4

[10] 0.8831 0.8397 0.2427 0.4357
[2] 0.7477 0.6561 0.2028 0.2650
[64] 0.6903 0.6238 0.0848 0.1830
[1] 0.8525 0.7370 0.4724 0.3778

Exact RL-0 0.8235 0.7503 0.9134 0.9118
Deep RL-0 0.9018 0.8806 0.9058 0.7871
Exact RL-5 0.7778 0.7064 0.7949 0.7338
Deep RL-5 0.6654 0.5585 0.2210 0.4624

Exact RL-10 0.7355 0.6635 0.6791 0.6769
Deep RL-10 0.5846 0.4184 0.1333 0.3660
Exact RL-15 0.7004 0.6160 0.6229 0.5879
Deep RL-15 0.5123 0.3130 0.1176 0.3084
Exact RL-20 0.6281 0.5323 0.5541 0.5288
Deep RL-20 0.4096 0.2194 0.1196 0.2324

be processed for template matching. Using the proposed policy, this template

matching will be limited to a single camera per time-step per person. In Fig-

67

ure 4.5, we have compared the number of frames to be processed of various

such approaches. The figure shows the boxplot of F -metric scores computed

over all targets using the deep RL policy and various baseline approaches on

DukeMTMC dataset.

4.3.3 Impact of Camera Selection Decisions on Target Tracking in Camera Networks

Now we will show the effectiveness of the camera selection decisions to enable

target tracking in a camera network. To complete the tracking pipeline, we sim-

ulate the presence block of our proposed architecture. To simulate the presence

block errors in a typical re-identification pipeline are generated by wrongly iden-

tifying the target with other available objects. We will compare the performance

with state-of-the-art tracking methods.

To perform this experiment, we have initialized the state vector with the ini-

tial location of the target and history vector being all zeros. The learned policy

then polls a camera frame which is looked for the presence of the target using

presence block (refer to section 4.2.1). Unlike previous experiment, we are sim-

ulating a real re-identification pipeline for the presence block by adding errors

to the presence decision. For example, to simulate x% error in re-identification,

with probability x, we are taking another target’s bounding box otherwise we

are using the correct bounding box of the target. Once the presence is identi-

fied, the state vector is updated using the state-transition function. The updated

state vector is then used by the policy to poll another camera and the process

repeats till the end of the target’s trajectory or the end of the sequence. The

68

predicted trajectory is the sequence of (c,b) i.e., camera and bounding box val-

ues. The predicted trajectory of the target is then used to compute the MCTA

metric scores. We have compared the performance of the policy with simulated

re-identification errors with various state-of-the-art methods on the NLPR MCT

dataset. The MCTA scores are shown in the Tables 4.5 and 4.6 for ICT alone

case and SCT+ICT case respectively. In Table 4.5, we have shown MCTA val-

ues for inter-camera tracking (ICT) only where the single-camera trajectory of

the target is taken from the ground-truth. In Table 4.6, shows the overall per-

formance of the various methods i.e., during both single-camera tracking (SCT)

and inter-camera tracking (ICT). The same experiments are reported by the re-

lated methods on NLPR dataset. In comparison to other methods, our approach

performs better in most cases at 0% error in re-identification. For higher errors,

our method (especially deep RL) starts performing worse than others. Also,

the related approaches are multi-target and multi-camera (MTMC) tracking ap-

proach whereas ours is single-target and multi-camera tracking. Therefore, to

make a fair comparison, we have extended our approach to MTMC as explained

in section 4.3.1. Similarly, results for DukeMTMC dataset are shown in the Ta-

ble 4.7.
Table 4.7: The table is showing average MCTA values (higher is better) for both SCT+ICT and ICT alone case
on the DukeMTMC dataset. OM signifies Out-of-Memory error. There are no related approaches that define the
tracking performance on DukeMTMC dataset using MCTA scores.

Approach ICT alone SCT + ICT

Exact RL OM OM
Deep RL-0 0.8027 0.8191
Deep RL-5 0.6438 0.6215
Deep RL-10 0.6140 0.5417
Deep RL-15 0.5879 0.4768
Deep RL-20 0.5493 0.4357

69

Figure 4.5: Number of frames polled (F, equation 3.9) on DukeMTMC dataset for our deep RL based policy and its
comparison with other baseline approaches.

4.3.4 Comparison with State-of-the-art methods

The tracking performance and it’s comparison on all dataset of NLPR-MCT

dataset is shown in Table 4.5 and Table 4.6 by simulating errors in re-

identification method. We are showing the comparison for tracking perfor-

mance on different error thresholds of a typical re-identification method to show

the impact of error in Re-ID on the camera selection performance. Similarly,

for DukeMTMC dataset, we show tracking performance using MCTA metric.

State-of-the-art method report ID tracking performance in terms of IDP (ID

Precision), IDR (ID Recall), and IDF1 (ID F1-scores) [71]. Since original test-

ing set of this dataset is not public making a comparison with state-of-the-art

method is not fair but we are reporting average IDP, IDR, and IDF1 scores to

compare the average tracking performance. The (IDP, IDR, IDF1) of the state-

of-the-art methods [71, 28] on easy test set of DukeMTMC dataset is 68.3, 53.5,

70

60 (for [71]) and 67, 48.4, 56.2 (for [28]) whereas our method achieves 97.2,

73.7, 83.9 (with 0% error in Re-ID) and 90.8, 51.1, 65.4 (when Re-ID has 10%

error). Our IDP and IDF1 is better than both the methods when we assume a

10% error in re-identification.

4.4 Limitations

The related works perform multi-camera target tracking using data association

and re-identification based methods. This re-identification or association is per-

formed either exhaustively or only in the neighboring (or linked) cameras which

impacts the tracking performance. In comparison to these, in this chapter, we

proposed to perform re-identification intelligently to a camera frame where the

target is likely to be present. We showed through various experiments that

our method presents higher tracking performance than other methods and also

makes a very few re-identification queries.

The deep RL implementation make better camera selection decisions and can

be used with larger camera networks. However, there are a few limitations of

the proposed deep RL approach. First, the performance of deep RL approach

is sensitive to errors in Re-ID. This requires investigations in training the deep

learning based policy with a real re-identification so that the policy can learn

how to handle errors during tracking. Second, large transition times results in a

policy that has heavily imbalanced action distributions, e.g., C× becoming the

most frequent action. Hence, efforts should be applied in exploring methods

71

to handle imbalanced action space. Third, the indefinite transition time of a

target makes exploration difficult in deciding whether the target goes out of the

camera network or will appear again.

4.5 Discussion

In this chapter, we highlighted that Re-ID queries for target tracking across

a camera network can become a performance and computational bottleneck for

practical systems. In this regard, we proposed a solution that intelligently makes

these queries by selecting cameras that are more likely to contain the target at

a given time. We proposed a reinforcement learning based approach that learns

a policy for making camera selection decisions. We empirically show on two

benchmark datasets that the proposed approach achieves better camera selection

performance than baseline methods. We also showed that our trained policy

substantially reduces the number of Re-ID queris. Lastly, we showed that the

proposed approach can be used on larger datasets like DukeMTMC dataset and

showed tracking performance with varying Re-ID performance.

�

72

Chapter 5

Stratified Sampling Based Experience

Replay

In the previous chapters, we presented a novel camera selection method and

showed that it helps to efficiently track a target in a camera network. In this

chapter, we will highlight one important limitation of deep Q-learning (or also

referred to as deep Q network or DQN) which makes it select the most frequent

action when the transitions are highly imbalanced. To handle this limitation,

we will now introduce a new experience replay method (named Stratified Expe-

rience Replay, SER) to handle the limitation of deep Q-learning method. We

will show that introducing this method significantly improves the camera se-

lection performance in various camera networks. In this chapter, we will first

give the motivation in section 5.1 to use a different experience replay method

by highlighting the indefinite transition time degrades DQN performance. We

will then talk about the literature of different RL and different experience replay

methods in section 5.2. This is followed by formulation of the problem as MDP

73

in section 5.3 and the proposed experience replay approach in section 5.4. In

section 5.5, we present difference experiments to validate our claims.

5.1 Introduction and Motivation

Reinforcement learning (RL) combined with deep learning has achieved great

success in learning control policies for tasks with large state space, e.g., in game

playing [72], different robotic tasks [73, 74], etc. Recently, these deep RL

frameworks also showed efficacy in learning control policies for various real

applications like urban traffic control [75], camera selection [9], planning [76]

in both model-free and model based settings.

Many of the deep RL methods require a buffer (often called as replay mem-

ory) to store state transitions during agent-environment interaction so that at

train time, a diverse set of transitions can be sampled from this replay memory

to construct a better minibatch for backpropagation. Experience replay (ER) is

one such approach that help these methods to store and reuse the past informa-

tion for learning decision policies and plays a crucial role in stabilizing learning

of approximate solutions using deep neural architectures [72]. Usually, these

stored state transitions are sampled uniformly to create a minibatch, however, it

has been noted that uniform sampling from the replay memory may fail to create

a diverse minibatch, in turn limiting the generalizability of the underlying neural

network [77]. Therefore, it becomes essential to strategically sample important

experiences from the replay memory. To ensure sampling of important expe-

74

riences, many variants of ER [78, 77, 79] are proposed. A similar behavior is

observed in the supervised learning domain [80] when the dataset is imbalanced.

To handle the imbalanced data, a common approach is to present fewer samples

of what the model has already learned well and more samples of what it has not.

Inspired by the observation that frequent repetition in imbalanced dataset help

effective learning, we hypothesize that the model should be exposed to such ex-

periences more regularly. This repetition was achieved by performing dynamic

sampling to handle data imbalance in a supervised learning setting in [81].

Tracking targets across a network of cameras is one such practical applica-

tion, where state transitions could be heavily imbalanced. Most practical cam-

era networks have cameras placed in unconstrained environments with vary-

ing lighting and camera orientations as well as non-overlapping fields of view

(FOVs). In order to handle target handovers, as it moves from one FOV to

another, visual re-identification (Re-ID) approaches are used for data associ-

ation. In the previous chapters, we pointed out that a relatively unexplored,

yet an important aspect of multi-camera tracking systems is the problem of se-

lecting cameras to schedule Re-ID queries. The selection of cameras and the

frequency of such queries determines the number of false alarms, which in turn

directly impacts the tracking performance. We also demonstrated that using

an RL framework outperforms previous model based approaches to determine

which cameras to select for a Re-ID query. To appreciate the challenge in cam-

era selection, consider the example in Figure 5.1. In a typical setting, there

are multiple targets (P1 − P3) moving across the FOVs of different cameras

75

Figure 5.1: Example camera transitions for 3 targets P1, P2, and P3.

(C1 − C5). As a target transitions from one camera’s FOV to another, a Re-

ID query needs to be made to resolve target handovers. However, as shown

in Figure 5.1, P1 may take longer to transition from C3 to C2, while P2 may

have a shorter transition time, implying the target would not be visible for an

indeterminate duration. A similar issue may arise due to occlusion of the target

while it still remains in the FOV (P2 in C2), thus making camera selection rele-

vant for occlusion handling. This non-deterministic nature of the transition time

makes the camera selection problem a crucial one. Selecting a spurious camera

(where the target is not present) increases the risk of a false alarm by Re-ID and

therefore is detrimental to the overall tracking performance.

In this work, we point out that the number of camera handovers are fewer

than the number of instances when the target is not visible in any camera (i.e.,

selecting action C×). It generates an imbalanced action space and is an im-

portant observation with respect to training a deep RL model as it requires ap-

propriately handling of imbalanced transitions during experience replay. Our

proposed approach, referred to as Stratified Experience Replay (SER) resolves

this challenge by sampling in the imbalanced replay memory created by the

different episodic runs of the agent-environment interaction.

76

In this context, our specific contributions are the following:

1. We propose a novel experience replay method to segregate transitions into

multiple replay memories. Our investigations show that stratified sampling

helps learning a better policy for camera selection in a camera network.

2. We will show that existing replay methods impact the minibatch and even-

tually effects the performance of the RL algorithm.

3. We compare the performance of DQN with our SER and other ER methods

on various camera networks. We also compare performance with state-of-

the-art camera selection methods on the same datasets.

5.2 Background and Related Work

Experience replay has been incorporated in many deep reinforcement learning

methods to memorize and replay past experiences of the agent-environment in-

teraction. It has been observed that ER stabilizes the training process by break-

ing the temporal correlations of the sequential online transitions [72]. Uniform

sampling is the most common approach for sampling the transitions from the re-

play memory. However, researchers have demonstrated that uniform sampling

fails to create a diverse minibatch for many applications [77] and hence the RL

algorithms fails in such scenarios.

To tackle this problem, many variants of ER have been proposed aiming to

create a diverse minibatch. Schaul et al. [77] proposed prioritized experience

77

replay in which each sample is assigned a probability of sampling based on

the ability of approximation architecture to correctly predict the Q-estimate. A

transition is sampled from the replay using the assigned probabilities. Many

other approaches are known to exist which indirectly prioritize the transitions

by forgetting and remembering transitions [82]. Zha et al. [78] proposed expe-

rience replay optimization (ERO) where a separate a replay policy was learned

to decide which samples to select to create a minibatch. In [76], a re-weighted

experience model for planning domains for incremental and data efficient learn-

ing was proposed. Foerster et al. [83] proposed a variant of ER for multi-agent

environment for independent Q-learning. On the other hand, Zhao et al. [84]

proposed another ER method for multi-goal environment using maximum en-

tropy. Our empirical results show that these ER methods do not provide better

sampling when the replay memory is imbalanced.

It has been shown that parallel workers for on-policy RL algorithms like

PPO [85] provide better performance than using ER with off-policy algo-

rithms [86]. In this chapter, we demonstrate that when SER applied to DQN,

it performs better than PPO for our target application of camera selection. Ad-

ditionally, we empirically found that SER applied to DQN learns a better policy

than other ER methods. We demonstrated our results on various camera net-

works datasets which pertain to many real environments like parking, office

building, university campus, footpath etc.

We have shown in the previous chapters that the camera selections are im-

portant for multi-camera target tracking. In Chapter 3, we used hand crafted

78

features for state representation and using table-based Q-learning to learn a pol-

icy which doesn’t not scale to camera networks with more than 6 cameras. In

Chapter 4, we proposed an extension using deep-Q learning and n-step boot-

strapping. In this chapter, we will show that deep Q-learning with proposed

stratified experience replay performs better than both of the methods.

5.3 Formulation as an MDP

In the previous chapter, we modeled the camera selection problem as a Markov

Decision Process (MDP), which was solved using deep Q-Learning. Here, we

propose changes in the reward structure and the state variable for learning a

better policy.

To formulate the camera selection problem as an MDP, the initial location

of the target in terms of its in-frame location and the corresponding camera is

provided, which is used to create the state vector. The learned policy uses this

state vector at a given time step to select an action that identifies a camera that

may contain the target. The action may correspond to one of the N cameras, for

which a Re-ID query can be made or it may correspond to the null camera C×

where the policy decides to skip the Re-ID query. A reward is assigned based on

whether the Re-ID query was successful or not, thus penalizing incorrect cam-

era selections where the Re-ID would fail. We emphasize that like in [9], our

focus is on camera selection and not on the specific Re-ID algorithm, and hence

we use ground-truth annotations to determine the failure or success of a Re-ID

79

query. Based on this agent-environment interaction, we formulated an MDP

(S,A, f, R, γ), where S is the state space, A is the action space, f(st, st+1) is

the state transition function, R(s, a) is the reward function and γ is the discount

factor. Each element is described below:

State: As the target is not always observable, e.g., during transitions or occlu-

sions, the state at time t captures three elements to handle this partially observ-

able state of the target:

1. xt: the last observed location of the target and is given by (c, b), where c

is the camera index and b is the in-frame bounding box within camera c. c

is encoded as a one-hot vector. The vector b = (x, y, w, h) is the bounding

box location with (x, y) as the top left pixel coordinates and (w, h) as the

corresponding width and height respectively. The values are normalized in

the range (0, 1) by the image size. Additionally, we also include the first

order difference in the bounding box of the target, i.e., ∆bt = bt+1 − bt,

which captures the direction of motion and bt is the bounding box location

of the target at time t. We include these variables in to the state vector, to

make the Markovian assumption on the location of the target.

2. ht: the action history that maintains a list of previously selected actions by

the policy. The history is stored as a list of cameras encoded as a one-hot

vector.

3. τ : This is the time-elapsed vector that captures the time since the target’s

most recent observation by the agent in any camera.

80

Action: there areN+1 actions, whereN is the number of cameras in the camera

network. The N + 1th action, denoted by C×, implies the target is transitioning

and is not visible in any of the cameras.

Reward: Let yt is the correct camera at time t and agent selects an action at in

state st at time t. The reward function is defined as:

r(st, at) =



+1 at = yt and τ > 20

+0.5 at = yt and τ ≤ 20

0.01 at = yt = C×

−1 otherwise

(5.1)

where yt is the correct camera where the target is present and τ is the transi-

tion time since last appearance of the target. This reward function is adopted

to counter for the stark difference in frequency of the action C× versus other

camera selections, which are relatively rare in real world camera networks. A

similar observation is made in [87]. A rare transition is the transition when the

target appears and disappears from a camera field-of-view. We point out that

the number of instances of camera handovers (instances of appearing or disap-

pearing for a camera) are fewer than the number of instances when the target is

not visible in any camera (i.e., selecting action C×). It generates an imbalanced

action space. In this work, the instances of appearance and disappearance of a

target are termed as rare.

State transition function: After deciding an action at at time t, the next state

81

st+1 is decided by the state transition function. In the next state vector, the

selected action is appended to the history vector. If the target is absent, τ is

incremented by 1, otherwise it is reset and the observation vector is updated

with the new camera index c, location b and ∆b.

5.4 Proposed Approach

In this section, we will describe the problem statement and the proposed experi-

ence replay method.

5.4.1 Problem Statement

We model camera selection decision as a finite horizon discounted sum reward

problem, where an RL agent is responsible for deciding the presence of a tar-

get given a camera frame at a discrete time step t. At each time step, the

agent receives the location of the target to be tracked contained in st. The

agent needs to select one of the cameras represented using the action space

A = {0, 1, . . . , N, C×}. The agent interacts with the environment E by select-

ing an action at ∈ A. As a consequence, the environment E transitions into next

state st+1 and returns a 3-tuple containing next state, reward and termination

status of the episode represented as (st+1, rt+1, dt). This approach of modeling

the camera selection problem, leads to a finite Markov Decision Process (MDP)

and permits the use of standard Reinforcement Learning algorithms.

We define the optimal Q-value of a state Q∗(s, a), as the maximum expected

82

Figure 5.2: The figure shows the training time on x-axis and the number of samples of each transition type on y-axis.
The transition type is shown in the legend. The replay memory is dominated by the most frequent action C×.

discounted sum reward which agent can collect with its interaction to E over

the set of all possible admissible policies π, after performing action a in state

s. As our state-space can be very large, we represent this function using a

paramertized function Q∗(s, a|θ) such as deep neural networks.

According to Bellman equation,Q∗(s, a|θ) can be written in a recursive form

as shown in eqn. 5.2, which is approximated by minimizing the expected loss

over the collected transitions. However, the transitions are correlated in time.

Therefore, a replay memory of size R is used, which stores the last |R| tran-

sitions. A batch of size B transitions is sampled randomly from this replay

to break the correlation. Deep Q learning is widely used for game playing in

reinforcement learning [51].

Q∗(st, at) = Est+1

[
rt+1 + γmax

ā
Q∗(st+1, ā)|st, at

]
(5.2)

83

5.4.2 Proposed Experience Replay Approach

Agent stores the visited transitions in a replay memory from which transitions

are replayed later for learning. For learning, a diverse minibatch must be sam-

pled. However, for camera selections, there is a large dominance of one action.

Figure 5.2 shows how the replay is populated during the training process for

NLPR set-3. The figure shows the training time on x-axis and the number of

samples of each transition type on y-axis. The transition type is shown in the

plot legend. We can see that with time, the replay gets dominated by the tran-

sitions of action C×. Please note that state-of-the-art replay methods use single

replay memory with recommended size of 106. Initially during exploration, the

replay gets filled with negative reward transitions but it has to learn more of

C× transitions and hence over time the learning is dominated by such frequent

transitions.

It makes the neural network training biased toward the most frequent action,

which is C×. Therefore, an optimal policy cannot be learned by the neural

network because of the poor minibatch presentation to the network for learning.

The similar behavior is observed in the supervised learning (SL) domain [80]

to handle the imbalanced data for classification. In SL, the minibatch is often

created by undersampling the frequent class and oversampling the rare class.

General practice is to present fewer samples of what the network has learned and

more samples of what the network needs to learn. It cognates to human learning

where human tends to learn some tasks very easily if it gets repeated more often.

84

Hence to learn a new task, they need exposure to the difficult task regularly.

[81] showed this repetition by performing dynamic sampling to handle data

imbalance in supervised learning.

Algorithm 4 DQN with Stratified Experience Replay.

1: procedure SER
2: Initialize experience replay memories R+, R−, Rf .
3: Initialize estimate of state-action value function Q with random θ.
4: Initialize target function QT with weight θ− = θ.
5: while episodeCount < numEpisodes do
6: Initialize start state s0 = reset()
7: while episodeSteps < numSteps do
8: Select an action at using ε-greedy policy using Q(st, a|θt).
9: Execute the action at in environment.

10: Observe next state st+1, reward rt+1 and episode termination status dt.
11: Create transition τ = (st, at, rt+1, st+1, dt).
12: if rt+1 < 0 then
13: Store transition τ in R−.
14: else
15: if rt+1 > 0.1 then
16: Store transition τ in R+.
17: else
18: Store transition τ in Rf .

19: Sample a batch B from replays R+, R−, Rf .
20: for b = (s, a, r, s̄, d) in B do d == True
21: set y = r
22: set y = r + γmaxāQT (s̄, ā|θ−t)
23:

24: Perform gradient descent on {y −Q(s, a|θt)}2

25: Copy θ− = θ, after every C steps.

We observed that ER methods that use single replay gets dominated by the

most frequent action. As also observed by [78], the temporal difference error is

not the right criterion to decide the probabilities for the sampling of the stored

transitions. Therefore, we have segregated transitions into multiple replay mem-

ories to enable sampling of all kinds of transitions to create the minibatch. Also

as observed in supervised learning, we need present the rare transitions more

often to the network. To ensure efficient sampling of rare and other transi-

85

Figure 5.3: Overview of the proposed experience replay method. Rf , R−, and R+ are the different replay memories
to store frequent, negative reward, and positive reward transitions respectively.

tions, we segregate transitions in different replay memories to compensate for

searching in significantly large replay memory. We create three replay memo-

ries named Rf , R+, and R−. Given the three replay memories, we sample a

minibatch B = (s, a, s̄, r) which is is used to generate an empirical estimate

of the expected loss L(θit), as shown in eqn. 5.3 as commonly used in deep

learning [63, 52].

L(θt) =
1

|B|

|B|∑
i=0

[yi −Q∗(s, a|θt)] (5.3)

where yi = r+ maxā∈A γQ
∗(s̄, ā|θt) and B = {Bf ∈ Rf ∪B+ ∈ R+∪B− ∈

R−}.

The overview of the proposed method is shown in the Figure 5.3. We create

3 replay memories for storing the transitions from agent-environment interac-

tion. The multiple replays are; Rf , which stores the transitions which pertain

86

frequently occurring action C×; R−, which stores the transitions that receive a

negative reward, and R+ which stores the transitions that receive a positive re-

ward. In the system overview, the agent selects an action at in the environment

and then the environment returns the corresponding reward rt+1 and the next

state st+1. This transition (st, at, st+1, rt+1) is stored in a replay which satisfies

the above criteria for segregation. For learning, a minibatch is prepared from

the stored transitions in the multiple replays. The transitions are sampled uni-

formly from Rf and R− replay. R+ stores both rare and other positive reward

transitions, it follows a prioritized sampling. For priority sampling, a higher

weight is assigned to the rare transitions and a lower weight to other transitions.

A probability value is assigned to ith transition as wi∑
wi

, where wi is the weight

assigned to the ith transition. The minibatch is used to learn the policy. The

training pseudo-code is shown in Algorithm 4 which takes the training target

trajectories and learns a policy to select cameras for each time instant. The

training algorithm is a deep Q-learning method [88] with a target network to

avoid maximization bias.

5.5 Experiments and Results

In this section, we will be comparing performance of different ER methods ap-

plied to off-policy DQN. We will also show that state-of-the-art replay methods

fail to create a good minibatch which eventually impacts the policy.

87

5.5.1 Experimental Setup

We evaluate our approach on five camera network datasets collected in an indoor

office building, outdoor parking space, footpath, and duke university campus.

These datasets are available in [2, 5] We compared our approach against the

following methods:

• PPO [85]: On-policy RL algorithm.

• ER-unif [72]: DQN with Experience replay, where data is sampled uni-

formly.

• PER [77]: Prioritized experience replay which prioritizes the transitions in

the replay memory using temporal difference error.

• ERO [78]: Learning a policy to sample batch from replay buffer.

• CamSel [9] and nSteps [63]: state-of-the-art camera selection method us-

ing reinforcement learning for querying in camera networks. In nSteps,

we investigated DQN based methods with n-step bootstrapping to learn the

long transition times.

Implementation: We have implemented the DQN algorithm in Pytorch on a

server with 128-GBs of RAM and 11-GB Nvidia RTX 2080 Ti GPU for training.

For PPO implementation, we utilized the rllib library build upon ray frame-

work [89] with TensorFlow as the backend to train the policies. To accelerate

the learning process, we utilized 16-cores of the machine, each running three

instances of an environment. For the proposed method, we used three replays

88

to separate the rare transitions, where the size of each replay was set to 103 ac-

quired via hyperparameter tuning. As recommended, replay memory size for

other ER methods is set to 106. For DQN, we used the epsilon-greedy policy

as an exploration strategy during training. To train the model, we employ a

deep neural network with three hidden layers (4096-1024-256) to approximate

the DQN based policy. For other replays, we used a grid-based hyperparameter

tuning to search the hyperparameter space. The subsequent sections present the

performance on the best parameters.

Performance Metric: We use accuracy (A), precision (P), and recall (R)

metric to quantify the performance for selecting cameras. C× represents the

instances when the target is not visible in any of the cameras. Let for a specific

target, vector g hold the true sequence of cameras in which the target appears,

Figure 5.4: Qualitative performance of different ER methods. In the figure, each color represents a specific camera
FOV and time gap between colors show the transition time of the camera handover.

89

Table 5.1: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the different methods on
various camera network datasets. SER is our proposed experience replay method.

Set-1 Set-2 Set-3
A ↑ P ↑ R ↑ A ↑ P ↑ R ↑ A ↑ P ↑ R ↑

PPO 0.95 0.94 0.93 0.94 0.94 0.91 0.80 0.73 0.82
CamSel 0.91 0.95 0.83 0.88 0.94 0.78 0.76 0.64 0.86
nSteps 0.84 0.76 0.90 0.80 0.69 0.84 0.73 0.60 0.88

ER (Unif.) 0.95 0.94 0.95 0.94 0.95 0.93 0.82 0.73 0.75
PER 0.92 0.91 0.88 0.91 0.90 0.86 0.87 0.81 0.89
ERO 0.90 0.95 0.89 0.92 0.95 0.90 0.86 0.83 0.83

SER (ours) 0.95 0.92 0.97 0.95 0.93 0.96 0.89 0.81 0.93

and p contains the cameras selected by the learned policy. The performance

metrics are defined in section 3.3.1 in Chapter 3.

For inter-camera tracking (ICT), we define the measure Percentage Camera

Handover (PCH) as the percentage of target transitions (from Camera Ci to Cj,

i 6= j) that are correctly detected by using the learned policy. Missing more

target transitions hurts overall tracking performance, and increases the chance

of not finding the target again. This is a crucial metric to compare the number

of transitions recovered. Higher value is better for this metric in performance

Figure 5.5: Percentage Camera handovers (PCH) (higher is better) captured by different ER methods. SER is largest
for all datasets.

90

Table 5.2: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the different methods on
various camera network datasets. SER is our proposed experience replay method.

Set-4 Duke MTMC
A ↑ P ↑ R ↑ A ↑ P ↑ R ↑

PPO 0.90 0.70 0.72 0.92 0.81 0.49
CamSel 0.77 0.61 0.91 Out of Memory
nSteps 0.93 0.73 0.84 0.869 0.49 0.768

ER (Unif.) 0.90 0.82 0.63 0.96 0.89 0.73
PER 0.87 0.84 0.65 0.95 0.85 0.81
ERO 0.89 0.81 0.60 0.94 0.94 0.53

SER (ours) 0.92 0.74 0.84 0.96 0.84 0.87

comparison.

5.5.2 Performance comparison

Table 5.1 and 5.2 shows the camera selection performance of our proposed

method and other RL based approaches. There are five datasets for comparison,

Set-3 consists of four cameras (hence five actions) in an indoor office build-

ing where target transition times are not very long. Consequently, we see ap-

proaches other than SER too were able to learn many transitions for this dataset.

The camera selection method [9] fails to learn a policy for the Duke dataset (8

camera network), because it stores the Q-values in table and goes out of memory

for larger datasets. SER significantly outperforms all the ER methods and the

on-policy RL algorithm PPO in terms of A and R on all datasets, with the ex-

ception of Set-4 where we are second. The proposed approach also outperforms

our previous work where we use a DQN architecture with n-step bootstrapping.

Figure 5.4 shows the qualitative results of our proposed method and its com-

parison with other ER methods on Set-4. The figure shows the camera transi-

91

(a) (b)

Figure 5.6: Number of spurious frames polled (F in equation 3.9) on a NLPR_Set4 dataset and b DukeMTMC
dataset. The figure also shows the comparison of our proposed policy and other baseline approaches

tions of a particular target for various methods. For each method, there are two

sequence of cameras (ground truth is shown by the sequence GT and cameras

selected by the policy are shown by Sel). In a sequence, different cameras are

shown in different colors with one color for each camera (refer the colorbar for

camera index). The camera sequence shows that the length of transition is very

large when compared to the total length of in-camera instances. SER enables

the RL agent to capture most of the transitions whereas uniform sampling could

not capture many transitions and hence it fails heavily in this case. PER cap-

tures many transitions and PPO fails to capture many transitions. PPO learns a

stochastic policy and hence it’s behavior is more random whereas for SER the

policy start early prediction of the right camera. To quantify the average number

of transitions learned by different methods, we plot the bar graph of the average

number of transitions captured by each method in Figure 5.5. This figure shows

that SER outperforms all other methods and captures the maximum number of

transitions. The other approaches fail because the replay is highly imbalanced.

PER performs better on first three datasets but fails on Set-4 and Duke dataset

because of very large transition time of the targets. The Set-4 shows the lowest

92

performance due to the highly dynamic parking area environment.

Figure 5.6 shows the number of re-identification queries made by different

methods on the NLPR-Set4 and DukeMTMC datasets. The figure shows the

boxplot of the number of re-identification queries (metric F in equation 3.9 on

page 31 in Chapter 3) by each target in the corresponding dataset. We show

a comparison with the baseline methods Exhaustive, Neighbor, and Gaussian

which are the the different ways of querying the camera network as specified

in [9]. We also compare the querying performance with our previous meth-

ods [9, 63] and SER is the proposed method with SER. The figure shows that

our learned policy performs better than all baseline and related methods.

5.5.3 Analysis of Sampled Transitions

For further understanding of the proposed method and earlier results, we store

the diversity of minibatch at each training epoch. To measure diversity, we com-

pute the number of transitions corresponding to each reward. Again we make

three categories, positive reward transitions, negative reward transitions, and

C× transitions. The diversity of minibatch of each replay method is shown in

Figure 5.7 where for each method the diversity in terms of the three categories

is shown as the training progresses. The results are shown for Set-3. Uniform

sampling makes the learning highly biased towards C× whereas PER is some-

what stable for this set and hence captures a good number of transitions (refer

Figure 5.4). However, it also fails to create a diverse minibatch on Set-4 (Fig-

ure 5.7). This justifies that having a poor minibatch effects the policy learning

93

for the off-policy RL algorithm. Please note that for SER minibatch stays static,

that means the number of transitions of each reward stay same throughout the

training process and hence diversity plot is not shown. This stable minibatch

helps in learning larger number of rare transitions.

We also learn a stochastic policy using PPO algorithm for our problem. How-

ever, we found that the sampling from a stochastic policy leads to unnecessary

switching of actions. To validate our claim, we calculated the mean entropy of

the learned policy and found it to be much higher than true entropy, computed

using the ground truth values.

Figure 5.7: Figure showing reward diversity in the sampled minibatch of different ER methods for Set-3 for PER,
ER-Uniform, and ERO. Results for PER on Set-4 are also shown.

94

5.6 Discussion

In this chapter, we proposed a novel experience replay approach, SER, for cam-

era selection where the replay memory is highly imbalanced due to frequently

occurring actions. We observed that stratified sampling help to create a diverse

minibatch which help learn a better policy in off-policy DQN. We showed that

SER applied to DQN outperform other ER methods on various camera network

datasets. Our experiments showed that SER based DQN resulted in high re-

call even in camera networks that have long transition times, thus showing that

SER successfully balanced rare and frequent actions while learning a policy for

camera selection. We showed that our method makes a very few number of

re-identification queries than other camera selection methods.

�

95

Chapter 6

State Representation Learning Based

Camera Selection Decisions

In the previous chapters, we presented a novel camera selection method and

proposed a modification in experience replay method that helped to learn a pol-

icy in biased action space. In this chapter, we will show that the action history

used in the previous method is an important state variable and it influences the

policy’s decision of which camera to select next. But retaining longer history

as one-hot vector is computationally expensive. We will now present a new

method using state representation learning for making camera selection deci-

sions. We will also present a modification in the training method which reduces

the reliance on frame level annotation data. This modification skips the reward

for a few frames and takes a reward for every 5th frame from the ground truth.

Using reward accumulation, we provide discounted reward to each step of train-

ing and learn a policy using Deep Q network (DQN). This is an important to

see how RL can be used to train algorithm with less annotated data. We will

96

demonstrate the performance of our method on several real datasets.

6.1 Introduction

Camera networks are pervasive and frequently used for various visual analytics

applications like video surveillance, crowd behavior analysis, etc. The number

of cameras at an airport, train station, malls, etc. has rapidly increased, which

makes automated tracking an essential task for visual analytics. These camera

networks generate an enormous amount of video data which makes it difficult

to process all video frames in real-time.

We have seen that camera selection decision [9] is an effective approach in

handling a large number of cameras for enabling target tracking in a camera

network. In this chapter, we leverage state representation learning (SRL) to

encode the state’s history and will show that it enables scalable camera selection

decisions in a larger camera network.

Re-identification (Re-ID) and data-association are conventional ways [5, 6]

used to associate individual tracklets from different cameras to form the multi-

camera trajectory of a particular target. Longer transition times result in more

uncertainty about the target’s location, necessitating more Re-ID queries and

thereby increasing the number of false alarms. For a multi-camera tracking

application, false alarms are severely detrimental, as they lead to incorrect target

association resulting in tracking an irrelevant target. On the other hand, a false

negative from a Re-ID algorithm in a camera frame may not be detrimental so

97

long as the target is re-identified in one of the subsequent frames of the camera.

Therefore, to deal with longer transition times, it is important to decide at every

time step whether to make a Re-ID query or not, and if the former, which camera

feed(s) to query. As we have seen in the previous chapters, such an intelligent

camera selection strategy is likely to reduce false alarms at an increased risk

of missing the target. It has been shown that reducing redundant querying can

benefit the multi-camera tracking performance [7, 8, 9] in both, manual and

automated surveillance applications. We further investigate intelligent camera

selection and focus on tackling the problem of camera-handovers1, as we scale

to larger camera networks.

In the previous chapters, we showed the efficacy of using DQN for making

camera selection decisions. We observe that in the absence of knowledge of

the camera topology, the camera history is an important state variable. It holds

information about the sequence of previously queried cameras, which influences

the decision of which camera to select for the next query. For larger camera

networks, retaining longer history of camera selection is necessary to make well-

informed camera selection decisions. In this chapter, we argue that hand-crafted

state variables may not be representative enough and hinder the scalability of

such an approach. Therefore, we instead propose a state representation learning

[12] based approach and modify the state-vector accordingly. A representation

helps to learn the variations in the environment in a low dimension vector. Our

final state vector leverages an LSTM-based autoencoder (AE) to summarize
1We will use words camera-transition and camera-handover interchangeably.

98

the camera history of Re-ID queries. We will also show advantages of using

a learned state representation, including generalization across camera-network

datasets, accommodating a generic DQN architecture across datasets (unlike

[63]), and most importantly reduced training speeds. We will show that the AE

trained once on a larger dataset works for all smaller datasets as well.

In this context, our specific contributions are summarized below:

1. We propose a novel method for making camera selection decision using

state representation learning (SRL). We employ an LSTM based autoen-

coder (AE) for latent representation of history vector in the state. We

will show empirically that learned state representation, as opposed to hand-

crafted state variables, achieve state-of-the-art results as train faster.

2. We show benefits achieved using SRL for tracking targets in a camera net-

work. For example, the latent representation helps to use the same network

architecture (unlike [63]) to larger camera networks and achieves state-of-

the-art in camera selection performance.

3. We use a reward function that helps to reduce the amount of supervision

in training the policy and the proposed method can be trained in a semi-

supervised manner by discounted reward given after skipping some frames.

We will show that this achieves comparable performance with the super-

vised policy.

4. We will show that our proposed method for camera selection decision ben-

efit real applications like multi-target multi-camera (MTMC) tracking and

99

Figure 6.1: A) The architecture of the LSTM based autoencoder that is used to encode the action history in a fixed
length latent representation (Z). B) The DQN architecture used to learn the camera selection policy. The neural
network model that learns the policy takes as input the different state variables and the action history (ht) encoded
using the LSTM based Autoencoder (E-Encoder, D-Decoder).

multi-camera trajectory forecasting (MCTF) in a camera network.

5. We demonstrate the camera selection performance on four real datasets,

NLPR MCT dataset [2], Duke MTMC dataset [5], WNMF dataset [4], and

CityFlow dataset [90, 91]. The extensive experiments show that the pro-

posed method is superior than most state-of-the-art methods and is target

agnostic.

6.2 Proposed Method

In this section, we will explain the proposed method, the formulation of camera

selection decisions using Markov Decision Process (MDP), the neural network

model for camera selection policy and its training.

100

6.2.1 Camera Selection as an MDP

An MDP (Markov Decision Process) is defined as a tuple of elements

(S,A, f, R, γ), where S is the state space, A is the action space, f(st, st+1) is

the state transition function, R(s, a) is the reward function and γ is the discount

factor. We model the camera selection problem as a finite horizon discounted

sum reward problem. The state variable has changed from previous Chapter 5

and the individual elements of the MDP are described below:

State: In the camera network, we have access to the location (bounding box)

of the target in a given camera frame. The last seen location of the target is

represented as (c, b), where c is the camera index (encoded by a one-hot vec-

tor) and b is the bounding box (represented as [x, y, w, h]>). To include the

direction of motion of the target, we include the deltas of the bounding box

(∆bt = bt − bt−1) in the state vector. As the target is moving across differ-

ent cameras, it may not be visible at all times, for example, during an occlu-

sion or when it is transitioning between camera FOVs. To handle inter-camera

transitions of the target, we include a time-progress variable τ that monitors

the number of timesteps elapsed since the last time the target was observed.

Additionally, we also maintain a history of past actions (camera selections) as

part of the state vector (which is represented as a sequence of one-hot vectors

in the previous method in Chapter 5) representing which cameras have been

queried by the policy in the last 20 timesteps. The final state is given by the

set st = (c, b,∆b, τ, ht). It is worth emphasizing that the camera history in its

101

raw form is a sequence of one-hot encoded vectors representing the cameras

queried, so we use an autoencoder model to learn latent embeddings that are

fixed-length representations for this state variable. It also doesn’t change the

size of state variable in regard to the history vector.

Action: The action space is encoded as A = {0, 1, . . . , N − 1, C×}, where

N is the number of cameras and an action C× is included as a ‘null camera’,

suggesting that the target is making an handover and is not visible in the camera

network. The policy selects an action C× to indicate that no Re-ID queries need

to be made.

Reward: We define a reward function for each state action pair. A smaller

reward value is taken for the action C×, which happens to be the most frequent

action for ICT. A similar observation is made in [87] to include higher reward

for rare transition and lower for frequent.

rt+1(st, at) =



+1 at = yt & τ > 20

+0.5 at = yt & τ ≤ 20

0.01 at = yt = C×

−1 otherwise

(6.1)

at is the action taken and yt is the ground truth camera. τ is the transition

time and it is thresholded to distinguish in-camera occlusions and the camera

handovers which are rare and hence a higher reward is provided.

State transition function: With st as the state at time t, the policy selects an

102

action at ∈ A. The next state is updated based on the camera selection action.

If the target is found at the selected camera, then the location (c, b) is updated. If

not, then τ is incremented and the last policy decision is appended to the history

ht. The latent representation of ht is used in the state vector.

Q-learning: In reinforcement learning, an agent interacts with its environment

by executing an action at ∈ A at time t by which the environment transitions

into the next state st+1 and provides a reward rt+1 to the agent. We use Q-

value function Q(st, at) which is the expected discounted sum reward which

the agent receives starting from state st and taking action at at time t. The

optimal Q-values Q∗(st, at) are defined when an optimal policy π∗ is followed.

Our state-space is continuous and huge and hence we learn a parameterized

Q-values Q∗(s, a|θ) using a neural network.

The optimal Q-values are learned by iteratively updating the parameters θ

using deep Q-learning [51] (or also referred to as Deep Q network or DQN).

An optimal policy utilizes these Q-values to select an optimal action given the

target current state as:

π∗t (st) = argmax
a
Q∗(st, a) (6.2)

6.2.2 System Architecture

The proposed architecture is shown in Figure 6.1 to enable target tracking in the

camera network. The architecture consists of three important parts. First, the

auto-encoder based learned state representation vector, obtained by encoding

103

the action history into a single fixed length vector. Second, the neural network

based policy function, which learns to select a camera given the initial loca-

tion of the target. Third, the re-identification (Re-ID) algorithm which utilizes

the policy-based camera selection to find whether the target is present in the

selected camera frame. For this, the current Re-ID features of the target’s lo-

cations are matched with the template features using threshold based cosine

similarity. The threshold and other parameters are explained in the results sec-

tion. Note that the Re-ID algorithm is external to our work. There are many

well-developed existing solutions and we use one such state-of-the-art Re-ID

algorithm ABDNet [3].

Learned State Representation. State representation learning (SRL) learns

a representation of the agent’s state vector into a low dimension vector. This

information evolves through time with the actions of the agent in the environ-

ment. A representation helps to learn the variations in the environment and the

low dimension state-space can be explored faster and overcomes the curse of di-

mensionality. We found that SRL improves the policy performance for camera

selection decisions and speeds up the training process. It also helps to train a

policy for larger camera networks (for example, Duke MTMC, CityFlow, and

WNMF datasets).

The state variable capturing the past action history of the current policy is

an important part of our model. The history encodes previous camera selec-

tion decisions that were made, and a long history helps in training the policy.

However, with N + 1 actions, and the sequence length going in to thousands

104

for small length sequences makes it difficult to use the history in its raw form

(sequence of one-hot encoded vectors). Therefore, we make use of an LSTM-

based autoencoder to learn a fixed-vector representation for this sequence of

past actions. This architecture is inspired by the success of encoder-decoder

architectures [92]. Through our experiments, we find that using such a state rep-

resentation improves the performance of the policy as well as improves training

time. Moreover, we train it on the largest dataset and show that it can be used

on all other datasets without any fine-tuning. Refer to Sec. 6.3.2 for a detailed

analysis of our state representation learning approach.

Policy Learning. To select a camera, the state vector is constructed based

on the initial location, time since observation and the past action history. This

state vector is passed through the policy network to select an action (camera

index). If the selected action (or camera index) is not C×, then a Re-ID query

is made, upon which the Re-ID algorithm determines the presence of the target

in the selected camera. If the target is found, then the state is updated with the

location (c, b) of the target and history ht and τ is reset. If the target is absent,

then the τ and ht are updated to obtain the next state vector. This is repeated

until the video sequence ends. The resulting reward is then used to train the

policy using deep Q-learning [51].

6.2.3 Camera Selection Policy Model

The architecture in Figure 6.1 shows the neural network model which repre-

sents the policy for camera selections. The neural network model contains three

105

Algorithm 5 Training procedure for learning the policy. π is the policy to make camera selection decisions.
c,b is the initial location of the target with c as the current camera and b as the corresponding bounding
box location.

1: procedure TRAIN(c,b, π)
2: Initialize replay memory MC× ,M+,M− with capacity D
3: Initialize deep-Q network Q with random weights θ
4: Initialize target network QT with weights θ′ = θ
5: τ ← ZEROS . Initialize time-elapse with zeros
6: h← ZEROS . Initialize history vector of length L with zeros
7: Zh ← latentRepresentation(h)
8: s← initialState(c,b, τ, Zh) . Concatenates location and history
9: while True do

10: With probability ε, choose action c uniformly at random, and with
probability 1− ε, choose action using the neural network based policy

11: box← getBoundingBox(c) . get bounding box using re-identification
12: if box is NOT EMPTY then . if target is re-identified in selected camera
13: xt← (c,box)
14: τ ← ZERO
15: else
16: τ + = 1

17: h.append(c)
18: Zh ← latentRepresentation(h)
19: s′ ← f(xt, Zh, τ) . observe the next state and reward
20: r ← getReward(s,c) . Using equation 6.1
21: if r > 0.1 then
22: Append transition (s, c, s′, r) to replay memory M+

23: else if r < 0 then
24: Append transition (s, c, s′, r) to replay memory M−
25: else
26: Append transition (s, c, s′, r) to replay memory MC×

27: if s′ is terminal then break
28: s← s′

29: Sample a random minibatch B equally from M+,M−,MC×

30: For each sample (si, ai, s
′
i, ri) in minibatch, compute target value yi = ri +

γmaxaQT (s′i, a)
31: Update the Q-network using adam algorithm [69] on the minibatch and

repeat until convergence
32: return π

106

fully-connected layers with size (2048,1024,256) and ReLu activation func-

tion. The output layer is equal to the number of actions (N + 1) with linear

activation which represents the Q-value function Q(st, a),∀a ∈ A. We use

the MSE loss to learn the optimal weights for the policy using deep-Q learn-

ing. The action history of the policy is represented using LSTM based 2-layer

sequence-to-sequence encoder decoder architecture (AE) which is trained sep-

arately from the policy network. The AE structure is shown in Figure 6.1, and

it is trained using the cross-entropy loss. The input given is an action sequence

a1:T = c1, c2, . . . , cT , where each ci is a one-hot encoded vector. The latent vec-

tor is the last layer’s cell state at time T . The latent vector preserves the infor-

mation of the sequence, which is used to reconstruct the input using the decoder.

The sequence is decoded in the reverse order i.e., â1:T = ĉT , ĉT−1, . . . , ĉ1 and

then cross entropy loss is computed between the input sequence and the output

sequence (after reverse order taken into account). The loss is back-propagated

to learn the optimal weights for the AE. Once trained, the AE can encode the

action history into a fixed representation which can directly be used in the state

vector to learn the policy. We need not retrain or fine-tune the AE for another

dataset, as we established during our experiments that the AE generalizes well

across different datasets. The only requirement is that at test time, the number

of cameras Ntest, should be smaller than that at train time Ntrain. We can then

encode the past action history by zero-padding the one-hot encoded vector to

make it of size Ntrain.

The policy is learned using deep Q-learning with experience replay (ER).

107

In deep Q-learning, the agent interacts with the environment and executes an

action given its state. ER is a technique to store the previous experiences (state-

action-reward pair) of the policy to prevent catastrophic forgetting in the neural

networks. While back-propagation, these experiences are sampled from the

replay buffer to create a minibatch to replay the previous experiences to learn an

optimal policy. In case of camera selections, we observed that the experiences

corresponding to the action C× were repeated too many times which creates

an imabalanced minibatch and hence biases the policy to the most frequently

occurring action. For this, we proposed a new experience replay method (named

SER) in the Chapter 5 which creates a diverse minibatch. To create a diverse

minibatch, we segregated the replay buffer into three buffers, first, to store the

experiences from the most frequent action C×, second, to store the experiences

which resulted into a positive reward and third, to store the experiences which

resulted in a negative reward. Then we sampled the experiences uniformly from

all replay buffers to create a diverse and balanced minibatch of all possible

experiences. The minibatch is replayed and MSE loss is computed. Let the

minibatch be B = (s, a, s̄, r) which is used to generate an empirical estimate of

the expected loss L(θt), as shown in eqn. 6.3

L(θt) =
1

|B|

|B|∑
i=0

[(rt+1 + γmaxaQ(st+1, a))−Q(st+1, a|θt)]2 (6.3)

where (rt+1 +γmaxaQ(st+1, a)) is the target and Q(st+1, a) is the output of the

neural network.This error is also referred to as TD (temporal-difference) error

and is minimized by backpropagation to learn the optimal weights of the policy

108

network. The training algorithm is shown in algorithm 5.

Semi-supervised Training To train the neural network model without full

supervision, the reward function in equation 6.1 is modified keeping other vari-

ables same for training. The reward is given after skipping a few frames. For

example, if the reward is given after n frames then the discounted reward is

accumulated to the previous n− 1 frames. The discounted reward is computed

using discount factor γ = 0.9. The Figure 6.2 shows the reward given to the neu-

ral network during training phase. The figure shows 10 steps of training phase

and cameras selected by the policy in the second row. The third row shows

the reward given after every 5 frames (n = 5) using reward function defined

in equation 6.1. The last row shows the reward is discounted for all previous

frames where a reward is not given. At any time step ti, a discounted reward

(γn−i.r) is given if policy selects same camera as the camera where reward (r)

is given otherwise a 0 reward is given. The impact of number of frame-skip

is shown in the next section. A Re-ID method is also not used during training

when a reward is not given, where a bounding box is picked using intersection-

over-union (IOU). A bounding box in the current frame which has 0.6 or more

IOU with the previous frame’s bounding box is selected for that frame.

6.3 Results

In this section, we will describe the experimental setup, performance evaluation

for camera selection and target tracking.

109

Figure 6.2: Figure shows the modification in the reward function (equation 6.1) for semi-supervised training.

6.3.1 Experimental Setup

Datasets: We have used NLPR-MCT data set [7], DukeMTMC [28],

CityFlow [90, 91], and WNMF [4] dataset to evaluate the proposed method for

camera selections in multi-camera networks. These datasets are detailed in the

Table 6.1. Details of NLPR dataset and DukeMTMC dataset are given in sec-

tion 3.3.1 of Chapter 3 and section 4.3.1 of Chapter 4. The CityFlow dataset is

divided into multiple scenarios, we select two large scenarios (scenario 4 having

25 cameras and scenario 5 having 19 cameras) to demonstrate scalability of our

proposed framework for making camera selection decisions. WNMF dataset

is consists of 15 cameras and recording is captures for 20 days (600 hours of

video footage, but only small tracks of movement are annotation and provided

for use). The dataset is collected for trajectory forecasting in a camera network.

Through various experiments, we will show that the proposed method can

make camera selection decisions for target types like people/pedestrians (NLPR

and DukeMTMC dataset) and vehicles (CityFlow dataset). To demonstrate that

110

Table 6.1: Details of the datasets used for training and performance evaluation. The table shows the number of
cameras (#Cameras), duration of the videos, frame rate (FPS), the number of targets (#Target) captured in each
dataset.

#Cam Duration FPS #Target
NLPR-Set1 3 20 min 20 235
NLPR-Set2 3 20 min 20 255
NLPR-Set3 4 3.5 min 25 14
NLPR-Set4 5 24 min 25 49

DukeMTMC 8 1hr 25min 60 2834
CityFlow S04 25 17.97 mins 10 71
CityFlow S05 19 2hr 3mins 10 337

WNMF 15 600 hrs 5 -

the proposed method scales to larger camera networks, we will show the efficacy

of our method on relatively larger datasets (DukeMTMC and CityFlow dataset).

The training set, testing set and evaluation experiments are taken from the

state-of-the-art methods [7, 9, 63]. We show performance comparison with var-

ious methods through these experiments. A separate policy is trained for each

dataset for making camera selection decisions. The DukeMTMC dataset has

gone offline due to privacy reasons [93] and hence comparison for tracking

according to benchmark cannot be done due to non-availability of the ground

truth for computing metric values. Thus, we make a comparison according to

the training and testing split provided by [63] for camera selection decisions

and tracking. For WNMF dataset, we used first 15 days as the training set and

remaining 5 days of recording as testing set.

Performance metric: We evaluate camera selection, inter-camera tracking, and

multi-camera multi-target tracking performance separately. To evaluate cam-

era selection performance, we use precision (P), recall (R), and F1 scores [9].

To evaluate the inter-camera tracking and multi-camera tracking performance,

111

Table 6.2: Camera Selection performance of our proposed method and its comparison with state-of-the-art ap-
proaches for NLPR-set1,2,3. The best results are shown in bold and second-best results are italicized.

NLPR Set-1 NLPR Set-2 NLPR Set-3
P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

Exhaustive 0.24 1.0 0.37 0.22 1.0 0.34 0.10 1.0 0.19
Neighbor 0.36 1.0 0.37 0.32 1.0 0.34 0.14 1.0 0.25

CamSel [9] 0.95 0.83 0.86 0.94 0.78 0.82 0.64 0.86 0.72
nStep [63] 0.76 0.90 0.75 0.69 0.84 0.81 0.60 0.88 0.70

Ours 0.92 0.95 0.92 0.92 0.95 0.93 0.68 0.88 0.76
Ours-SemiSup 0.86 0.95 0.89 0.82 0.95 0.86 0.66 0.90 0.75

we use commonly used Multi-Camera Tracking Accuracy (MCTA) metric [7].

The computational performance is quantified using number of spurious frames

queried (named metric F). These performance metrics are explained in sec-

tion 3.3.1 in Chapter 3.

For inter-camera tracking (ICT), we define the measure Percentage Camera

Handover (PCH) as the percentage of target transitions (from Camera Ci to Cj,

i 6= j) that are correctly detected by using the learned policy. Missing more

target transitions hurts overall tracking performance, and increases the chance

of not finding the target again.

Implementation: We implemented the DQN algorithm using PyTorch frame-

work and utilized a server with 128-GBs of RAM and a 11-GB Nvidia RTX

2080 Ti GPU for training. We used the epsilon-greedy policy as an exploration

strategy during training. To train the model, we employ a deep neural network

with three hidden layers (4096-1024-256) with Adam optimizer. The subse-

quent sections present the performance on the best parameters.

112

Table 6.3: Camera Selection performance of our proposed method and its comparison with state-of-the-art ap-
proaches on NLPR-Set4 and DukeMTMC dataset. The best results are shown in bold and second-best results are
italicized.

NLPR Set-4 Duke MTMC
P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

Exhaustive 0.11 1.0 0.19 0.042 1.0 0.11
Neighbor 0.18 1.0 0.29 0.042 1.0 0.33

CamSel [9] 0.61 0.91 0.66 Out of Memory
nStep [63] 0.73 0.84 0.78 0.49 0.768 0.546

Ours 0.72 0.76 0.71 0.91 0.92 0.91
Ours-SemiSup 0.62 0.84 0.68 0.87 0.96 0.90

6.3.2 Camera Selection Decisions

6.3.2.1 Impact of State-Representation on Performance

In this experiment, we study the state-representation in detail by observing the

impact of sequence length and auto-encoder on the camera selection perfor-

mance. For this, we generate all possible sequences of length 10, 20, and 50

on various datasets to train the LSTM based encoder-decoder architecture. We

observed that AE trained on the sequences of larger dataset (CityFlow with 40

cameras) can also encode the sequences of the smaller datasets (DukeMTMC

and NLPR). Hence, we train the AE only once on CityFlow dataset and use it

for all the experiments. For this, we generated sequences from CityFlow dataset

Figure 6.3: Figure shows the qualitative performance of the proposed camera selection method for two targets.

113

Table 6.4: Testing loss on different datasets with different LSTM size. The corresponding epoch number is indicated
in brackets.

Size NLPR Set-4 DukeMTMC CityFlow
64 0.041 (5000) 0.098 (621) 0.001 (6586)
128 0.045 (2000) 0.062 (76) 0.001 (270)
256 0.041 (400) 0.008 (130) 0.001 (140)

with epsilon-greedy exploration [94]. To use AE on smaller datasets trained on

CityFlow, zeors are padded to the one-hot vector representing a camera index.

To evaluate the efficacy of AE, the generated sequences are divided into train-

ing and testing sets by selecting random half in each set. Table 6.4 shows the

impact of LSTM node size to encode the camera history. We evaluated for three

node sizes 64, 128, and 256. The loss value is the mean cross entropy value for

the testing set. The loss value didn’t improve beyond 0.001 for CityFlow and

hence we use an encoding length of 256. The AE trained on CityFlow is used

for all datasets in further experiments for camera selection and tracking.

Table 6.5 shows the impact of sequence length on the camera selection per-

formance on NLPR-Set4. We quantify the impact in terms of PCH metric on

the testing set and the number of episodes required to train the policy. We cre-

ated multiple configurations like training the policy without AE (no AE in the

table), using AE trained on the training set of the same dataset which is named

as AE(same), finally using AE which is trained on a larger dataset named as

AE(Num), where Num is the sequence length of that particular configuration. In

the table, we show the number of episodes (in RL, all states between initial and

terminal state is one episode, for example, one game of chess) the policy trained

using a particular configuration and the corresponding PCH on the testing set.

114

Table 6.5: Percentage Camera Handovers (PCH) (higher is better) on NLPR-Set4 when trained without AE and
with AE. AE(same) represents AE is trained on same dataset, AE (N) represents that AE is trained on a bigger
dataset with sequence length N .

Configuration Episodes PCH↑
Without AE 25587 53.6
AE (same) 21704 65

AE (10) 25588 62.4
AE (20) 24883 64
AE (50) 25549 64.8

We choose final sequence length to be 20 for all further experiments. This is be-

cause PCH for sequence length 20 and 50 is very close but recall for length 20

(78%) is higher than length 50 (74%). PCH without AE didn’t improve beyond

53.6 but using AE it reached significant high value in approx. same number

of episodes. This means that using state-representation learning not only pro-

vides better PCH but also helps in learning the policy faster. Next, we will

show the camera selection performance on various datasets and will show that

SRL achieves better camera selection performance on relatively larger datasets

(CityFlow dataset).

6.3.2.2 Camera Selection Performance

We first evaluate the performance of our camera selection policy in terms of Pre-

cision (P), Recall (R), F1-score (F1) metrics. For this experiment, we use the

initial location of the target to make the initial state and AE is initialized with a

sequence of all zeros. The proposed policy selects a camera from the initial state

and then if the target is found in the selected camera then the state is updated ac-

cordingly using the state-transition function. The selected camera is appended

in the action history and a representation is taken from AE for next decision. For

115

Figure 6.4: The re-identification calls made by different methods on DukeMTMC dataset.

this experiment, the target is re-identified using ground truth to test the camera

selection decisions alone. The camera selection performance is shown in the Ta-

ble 6.2 and 6.3. We compare the performance with state-of-the-art methods [9]

and [63] and other baseline methods Neighbor, Exhaustive. Exhaustive queries

all cameras at all times. Neighbor assumes that the camera network topology

is known and queries only the neighboring cameras. As expected, the Neigh-

bor and Exhaustive have perfect recall (please note that ground truth is used for

re-identification in this experiment) but poor precision and the false alarms are

detrimental to the performance if there are errors in re-identification. Hence, not

selecting a camera at times will be beneficial (see section6.3.4). Our proposed

policy performs better on various cases as shown in the table. The Figure 6.4

shows the number of re-identification calls made by different methods and our

proposed policy makes very fewer calls as compared to the related and baseline

methods. CamSel [9] goes out of memory on DukeMTMC dataset and hence

the results are not reported in the figure.

The qualitative performance for camera selections is shown in Figure 6.3 for

116

NLPR-Set4 for two targets. The figure shows the number transitions captured

by different methods where each color depicts a particular camera FOV and the

white color depicts the target is transition between two cameras. For each target,

there are two sequences, Sel and GT. The top is the ground truth sequence of

cameras (GT) and lower is the selected sequence of cameras (Sel). The figure

shows that the policy helps to capture all the camera handovers made by the

targets. The Figure 6.5 shows the PCH captured by our method and nSteps [63]

which is the state-of-the-art camera selection method on these dataset. PCH is

computed as the percentage of target transitions (from Camera Ci to Cj, i 6= j)

that are correctly detected by using the learned policy. Missing more target

transitions hurts overall tracking performance, and increased chances of not

finding the target again. The figure shows that our proposed method leads to

an absolute improvement of 39% for NLPR-Set4 and 35% for DukeMTMC

datasets over nSteps method. This increase is substantial for NLPR-Set4 and

DukeMTMC that have higher target transition times.

6.3.2.3 Semi-supervised Training

To show that camera selection policy can be trained with limited supervision,

we provide reward after skipping a few frames as explained in section 6.2. In

this experiment, we will first show the impact of number of frames skipped

before reward is given for NLPR-Set4 and then the policy’s performance on all

datasets.

Table 6.6 shows the Precision (P), Recall (R), F1-scores (F1), and Percentage

117

Figure 6.5: Figure compares the Percentage Camera Handover (PCH) of our method with the state-of-the-art
method.

Table 6.6: Camera selection performance for semi-supervised training on NLPR Set-4.

FPS (frame-skip) P↑ R↑ F1↑ PCH↑
0.5 (20) 0.498 0.569 0.507 0.6
1 (10) 0.594 0.752 0.634 0.592
2 (5) 0.621 0.839 0.677 0.736
5 (2) 0.67 0.84 0.72 0.728

camera handover (PCH) for different number of frames skipped before provid-

ing reward. Finally, a frame-skip value of 5 is used for all datasets. By using

a reward every 5 frames, the annotation cost is reduced by 5 times. The perfor-

mance on all datasets is shown in Table 6.2 and 6.3.

6.3.3 Scalable Camera Selection Decisions

In this subsection, we will show experiments which show that the proposed

method is scalable to larger camera networks. Figure 6.6 shows the learned

topology of the DukeMTMC dataset as a colormap. Both axes are camera num-

bers which shows whether a link ci − cj exist between the two cameras indices.

The color intensity shows the number of transitions present in ground truth and

118

Figure 6.6: Ground Truth topology and predicted topology of the DukeMTMC dataset. Both axes show the camera
index and color intensity represents the number of transitions in a ci − cj transition.

Table 6.7: The camera selection performance on two scenarios of the CityFlow dataset.

Scenario 5 Scenario 4
P↑ R↑ F1↑ P↑ R↑ F1↑

Neighbor 0.32 1.0 0.49 0.22 1.0 0.36
nsteps 0.40 0.42 0.40 0.45 0.52 0.48
Ours 0.82 0.87 0.81 0.84 0.92 0.84

in the predicted trajectories. The PCH for Duke dataset is shown in Figure 6.5.

Above results indicates that our proposed method achieves state-of-the-art on

DukeMTMC dataset.

The camera selection performance for CityFlow dataset is shown in Table 6.7

that shows significantly larger values for all performance metrics. We do not

include comparison on CityFlow dataset as no benchmark algorithm exists for

this dataset for camera selections.

6.3.4 Benefits of Camera Selection Decision in a Camera Network

In this subsection, we include two experiment to show how camera selection de-

cision benefit different applications. We will show benefits in multi-target multi-

119

camera tracking (MTMC), and multi-camera trajectory forecasting (MCTF).

Table 6.8: Average MCTA values (higher is better) for ICT alone case on NLPR-MCT and DukeMTMC dataset.
The results are separated based on the type of association method. Self means a method uses its own association,
GT represents ground truth, and Re-ID signifies that a Re-ID method is used for association. We used ABDNet [3]
for Re-ID.

Inter-camera tracking (ICT)
Approach Association Set-1 Set-2 Set-3 Set-4 Duke

[10] Self 0.9152 0.9132 0.5163 0.7152 -
[2] Self 0.7425 0.6544 0.7369 0.3945 -
[64] Self 0.6617 0.5907 0.7105 0.5703 -
[38] Self 0.3203 0.3456 0.1381 0.1562 -
[7] Self 0.9610 0.9264 0.7889 0.7578 -
[1] Self 0.835 0.703 0.742 0.385 -

CamSel [9] GT 0.8210 0.7498 0.9099 0.8993 Mem
nSteps [63] GT 0.9016 0.8741 0.9038 0.8074 0.8027

Ours GT 0.968 0.963 0.914 0.759 0.902
Neighbor Re-ID 0.6405 0.3627 0.2618 0.5386 0.6784

Ours Re-ID 0.9292 0.8806 0.8426 0.7808 0.8855

Table 6.9: Average MCTA values (higher is better) for both SCT-ICT case on NLPR-MCT and DukeMTMC dataset.
The results are separated based on the type of association method. Self means a method uses its own association,
GT represents ground truth, and Re-ID signifies that a Re-ID method is used for association. We used ABDNet [3]
for Re-ID.

Single-camera tracking + ICT
Approach Association Set-1 Set-2 Set-3 Set-4 Duke

[10] Self 0.8831 0.8397 0.2427 0.4357 -
[2] Self 0.7477 0.6561 0.2028 0.2650 -
[64] Self 0.6903 0.6238 0.0848 0.1830 -
[38] Self 0.8162 0.7730 0.1240 0.4637 -
[1] Self 0.8525 0.7370 0.4724 0.3778 -

CamSel [9] GT 0.8235 0.7503 0.9134 0.9118 Mem
nSteps [63] GT 0.9018 0.8806 0.9058 0.7871 0.8191

Ours GT 0.966 0.961 0.906 0.776 0.894
Neighbor Re-ID 0.5119 0.2564 0.1445 0.4426 0.5487

Ours Re-ID 0.7639 0.7594 0.3547 0.5258 0.7308

6.3.4.1 Multi-Camera Target Tracking

In this experiment, we will show the tracking performance while tracking the

target using the learned policy for camera selections. We will also compare the

tracking performance with state-of-the-art methods on NLPR and DukeMTMC

120

datasets using MCTA metric. For this experiment, the initial position of a tar-

get and the state representation of zero-initialized action history are used to

make the initial state. The initial state is then used by the learned policy to se-

lect a camera where the target is expected to reappear at the next time instant.

If the target is present in the selected camera frame then the location of the

target is updated accordingly in the state vector otherwise the time-elapse (τ)

is updated. The procedure is repeated until the video sequence ends. For re-

identification, we have used pre-trained model of ABDNet [3] for DukeMTMC

dataset. We used same model for all datasets of NLPR to avoid re-training for

re-identification. Please note that our method is single target multi-camera track-

ing approach and to make it work for multiple targets, we run multiple parallel

pipeline of our method starting from the initial location of the target.

Camera selections inherently improves the tracking performance as shown

in the Table 6.8 and 6.9 which shows tracking performance on NLPR and

DukeMTMC dataset using MCTA metric. The methods in the table are sepa-

rated based on how these methods resolve the camera handover (re-identifying

the target). In the tables (6.8 and 6.9), Self means that the methods have pro-

posed their own approach to resolve the camera handover, GT signifies that

methods use ground truth for resolving the handover, and Re-ID means that a

re-identification method in [3] is used. There are two experiments as used in

the literature [7, 38, 64, 1, 10]. In experiment-1, only the inter-camera tracking

(ICT) performance is evaluated. For this, detection and single camera tracking

are taken from the ground truth. The camera selection decisions are taken at

121

Table 6.10: The camera selection performance on WNMF dataset. The baseline methods are taken from dataset
baselines [4] and LSTM (Cam. Sel.) is a camera selection based baseline.

Accuracy(%)
Model Top 1↑ Top 3↑

Shortest real-world distance 46.8 92.2
Most frequent transition 65.7 91.8
Most similar trajectory 69.7 94.5
Hand-crafted features 70.7 94.1

Fully-connected network 73.4 95.1
LSTM (Pred.) 74.4 94.2
GRU (Pred.) 75.1 94.9
Ours (Pred.) 79 94

LSTM (Cam. Sel.) 63.1 91.5
Ours (Cam. Sel.) 93.28 96.27

all times during ICT and a re-identification query is made when a non-C× cam-

era is selected. In experiment-2 (ICT+SCT), only the detections are taken from

ground truth. The policy is used at all times both when the target is transitioning

and moving in a particular camera FOV. A re-identification query is resolved ac-

cordingly using ABDNet [3]. The table shows that our method is better on most

of the datasets especially on the datasets that have higher number of cameras.

The approach Neighbor is a baseline method where we assume that the camera

topology is known and the neighboring cameras are queried to resolve the cam-

era handover, our policy achieves better performance than this baseline method

on all cases and hence not selecting cameras during camera handover improves

the tracking performance. The dashed values in the table means that a method

doesn’t report those results.

122

6.3.4.2 Multi-Camera Trajectory Forecasting

In this section, we will be showing an additional application where our frame-

work can be used. Multi-Camera Trajectory Forecasting (MCTF) is a task

where the future trajectory of an object is predicted in a network of cameras [4].

An effective MCTF model should proactively anticipate where and when a per-

son will re-appear in the camera network after departure from another camera

in the same camera network. This requires the MCTF model to identify the next

camera where the target will re-appear, the transition time, and the location in

the identified camera.

Our original framework is for making camera selection decisions and not

MCTF but we claim that our framework can be used for MCTF to predict the

next location in a sequential manner. The length of the camera selected as c× is

the transition time, and the camera selected as non-c× is the next camera (where

the target is re-identified). The location in the next camera will be taken care

by a re-identification method [37]. Our framework is used in the same manner

as used in target tracking in a camera network in section 6.3.4.1. The camera

selection policy gives the next camera where the target will re-appear, the length

of C× selection gives the transition time, and the re-identification block gives

the location of the target in next camera.

We compare the performance with several baseline methods as described

in [4]. These baselines focus only on the next camera prediction and ignore the

transition time. Hence, we introduce another baseline method where we use an

123

LSTM based approach for making camera selection decisions in a sequential

manner as compared to direct prediction. This baseline is trained as an encoder-

decoder using supervised learning. It selects a camera each timestep and if the

selected camera is c× then nothing changes otherwise the bounding box location

of the target is picked using a Re-ID method. This baseline is named LSTM

(cam. sel.).

The performance comparison of these baselines with our method is shown in

Table 6.10. The table shows top-1 and top-3 accuracy for next camera predic-

tion. The table shows all baselines from the dataset results [4] and our methods.

LSTM (pred.) is a method which predicts the next camera using an LSTM,

Ours (Pred.) is our method used for prediction which achieves 4% better top-1

accuracy than other baselines in prediction. In this, the first non-c× camera is

used as the next camera from the sequence of selected cameras. Whereas, when

our method is used as a selection framework (Ours (cam. sel.) in table) then its

top-1 accuracy is 18% more than the second best baseline.

Figure 6.7 shows the camera transition for 5 targets in the WNMF dataset.

In the figure, the ground truth and selected camera sequences for one target

are shown in the same plot. Each color represents a camera index and white

space represents the transition time. Colorbar and y-axis gives information of

the camera index and ground truth sequence respectively. The first plot in the

figure show a little occlusion in the sequence of cameras and the learned policy

effectively works during that period as well. For all other targets, the next cam-

era is well identified and corrected when a wrong decision is made (target 1 and

124

Figure 6.7: Figure shows the difference in the transition time captured of multiple tracks/targets of WNMF dataset.

4 in the figure).

Another important task to perform in MCTF is identifying the transition time.

The total time-steps when c× is selected by the policy or till when the target is

not re-identified is the transition time for our method. This is shown in Fig-

ure 6.8. It shows the ground truth (oval markers) and predicted transition time

(cross marker) for a few good and bad tracks (or targets). The difference in

transition time is represented by vertical lines. Overall, 80% of the tracks have

a difference of less than 10 frames.

6.4 Discussion

In this chapter, we proposed a method to make camera selection decisions us-

ing state representation learning and DQN approach in reinforcement learn-

ing. We encoded the action history using LSTM based Auto-Encoder (AE) that

125

Figure 6.8: Figure shows the difference in the transition time captured of multiple tracks/targets of WNMF dataset.

helped to learn the policy faster as compared to one-hot encoding. We showed

that making fewer re-identification queries are crucial for tracking performance.

Through various other experiments on NLPR and DukeMTMC datasets, we

also showed that our policy achieves better camera selection performance and

better tracking performance than various state-of-the-art methods. Later, we

showed that our method scales to larger camera networks such as DukeMTMC

and CityFlow dataset for making camera selection decisions.

�

126

Chapter 7

Conclusion and Future Work

The number of cameras at an airport, railway station, malls, etc. has rapidly

increased and they produce a deluge of data. In this dissertation, we pro-

posed several methods to make camera selection decisions using DQN approach

in reinforcement learning. The proposed methods reduces the number of re-

identification queries required to enable automated tracking in a camera net-

work. We also proposed a stratified sampling based experience replay method

that help to create a diverse minibatch for DQN. We showed that making fewer

re-identification queries are crucial for tracking performance. Through various

other experiments on NLPR and DukeMTMC datasets, we also showed that our

policy achieves better camera selection performance and better tracking perfor-

mance than various state-of-the-art methods. Later, we showed that our method

scales to larger camera networks such as DukeMTMC and CityFlow dataset for

making camera selection decisions.

We used state-representation learning with DQN which helps to train the

127

policy faster and easily scales to larger camera networks. We also showed a

semi-supervised training of DQN which achieved comparable performance than

the supervised training of DQN. We showed that using camera selections ben-

efit several applications in a camera network such as multi-target multi-camera

(MTMC) tracking and multi-camera trajectory forecasting (MCTF).

In this dissertation, we addressed the camera selection tasks that are crucial

to effectively use the multiple video streams of a camera network. We also

suggest the possible future extensions of our work. We validated our work on

several datasets and showed that the proposed approaches are target agnostic.

However, for generalization and to minimize the training overhead on a new

camera network, transfer learning based method can be explored. This will

also be beneficial when the camera network topology changes by adding or

removing a camera from the camera network. To facilitate this, one may also

use the camera network topology as a prior and explore similar transitions made

by other targets in the network.

�

128

References

[1] L. C. W. Chen, X. Chen, K. Huang, K. Huang, and K. Huang, “An equal-

ized global graph model-based approach for multicamera object tracking,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 27,

no. 11, pp. 2367–2381, Nov 2017.

[2] W. Chen, X. Chen, and K. Huang, “Multi-Camera Object Tracking (MCT)

Challenge,” http://http://mct.idealtest.org/Datasets.html/, 2014.

[3] T. Chen, S. Ding, J. Xie, Y. Yuan, W. Chen, Y. Yang, Z. Ren, and Z. Wang,

“Abd-net: Attentive but diverse person re-identification,” 2019.

[4] O. Styles, T. Guha, V. Sanchez, and A. Kot, “Multi-camera trajectory fore-

casting: Pedestrian trajectory prediction in a network of cameras,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), 2020, pp. 4379–4382.

[5] E. Ristani and C. Tomasi, “Features for multi-target multi-camera tracking

and re-identification,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018.

129

http://http://mct.idealtest.org/Datasets.html/

[6] N. Jiang, S. Bai, Y. Xu, C. Xing, Z. Zhou, and W. Wu, “Online

inter-camera trajectory association exploiting person re-identification

and camera topology,” in Proceedings of the 26th ACM International

Conference on Multimedia, ser. MM ’18. New York, NY, USA:

Association for Computing Machinery, 2018, p. 1457–1465. [Online].

Available: https://doi.org/10.1145/3240508.3240663

[7] Y. Lee, Z. Tang, J. Hwang, and Y., “Online-learning-based human track-

ing across non-overlapping cameras,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 28, no. 10, pp. 2870–2883, Oct 2018.

[8] O. Javed, K. Shafique, Z. Rasheed, and M. Shah, “Modeling

inter-camera space-time and appearance relationships for tracking

across non-overlapping views,” Comput. Vis. Image Underst., vol.

109, no. 2, pp. 146–162, Feb. 2008. [Online]. Available: http:

//dx.doi.org/10.1016/j.cviu.2007.01.003

[9] A. Sharma, S. Anand, and S. Kaul, “Reinforcement learning based query-

ing in camera networks for efficient target tracking,” in Proceedings of

the Twenty-Ninth International Conference on Automated Planning and

Scheduling, 07 2019.

[10] G. M. Y. Cai, “Exploring context information for inter-camera multiple

target tracking,” in IEEE Winter Conference on Applications of Computer

Vision, March 2014, pp. 761–768.

130

https://doi.org/10.1145/3240508.3240663
http://dx.doi.org/10.1016/j.cviu.2007.01.003
http://dx.doi.org/10.1016/j.cviu.2007.01.003

[11] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits

in reinforcement learning,” in Proceedings of the 35th International

Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan,

Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 4045–4054. [Online].

Available: http://proceedings.mlr.press/v80/pardo18a.html

[12] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state repre-

sentation learning into deep reinforcement learning,” IEEE Robotics and

Automation Letters, vol. 3, no. 3, pp. 1394–1401, 2018.

[13] R. Hamid, R. K. Kumar, M. Grundmann, K. Kim, I. Essa, and J. Hodgins,

“Player localization using multiple static cameras for sports visualization,”

in 2010 IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition, June 2010, pp. 731–738.

[14] S. Zhang, Y. Zhu, and A. Roy-Chowdhury, “Tracking multiple

interacting targets in a camera network,” Computer Vision and Image

Understanding, vol. 134, pp. 64 – 73, 2015, image Understanding

for Real-world Distributed Video Networks. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1077314215000168

[15] S. Khan and M. Shah, “Consistent labeling of tracked objects in multiple

cameras with overlapping fields of view,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1355–1360, Oct

2003.

131

http://proceedings.mlr.press/v80/pardo18a.html
http://www.sciencedirect.com/science/article/pii/S1077314215000168
http://www.sciencedirect.com/science/article/pii/S1077314215000168

[16] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, and O. I. Camps, “Dynamic

subspace-based coordinated multicamera tracking,” in 2011 International

Conference on Computer Vision, Nov 2011, pp. 2462–2469.

[17] M. Bredereck, X. Jiang, M. Körner, and J. Denzler, “Data association

for multi-object tracking-by-detection in multi-camera networks,” in 2012

Sixth International Conference on Distributed Smart Cameras (ICDSC),

Oct 2012, pp. 1–6.

[18] S. Zhang, E. Staudt, T. Faltemier, and A. K. Roy-Chowdhury, “A cam-

era network tracking (camnet) dataset and performance baseline,” in 2015

IEEE Winter Conference on Applications of Computer Vision, Jan 2015,

pp. 365–372.

[19] C.-H. Kuo, C. Huang, and R. Nevatia, “Inter-camera association of

multi-target tracks by on-line learned appearance affinity models,” in

Proceedings of the 11th European Conference on Computer Vision Part I,

ser. ECCV2010. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 383–396.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1886063.1886093

[20] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between cameras,” in

Proceedings of the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, June 2004, pp.

II–205–II–210 Vol.2.

[21] X. Chen, L. An, and B. Bhanu, “Multitarget tracking in nonoverlapping

cameras using a reference set,” IEEE Sensors Journal, vol. 15, no. 5, pp.

132

http://dl.acm.org/citation.cfm?id=1886063.1886093

2692–2704, May 2015.

[22] S. Daliyot and N. S. Netanyahu, “A framework for inter-camera associa-

tion of multi-target trajectories by invariant target models,” in Computer

Vision - ACCV 2012 Workshops, J.-I. Park and J. Kim, Eds. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2013, pp. 372–386.

[23] K. W. Chen, C. C. Lai, P. J. Lee, C. S. Chen, and Y. P. Hung, “Adap-

tive learning for target tracking and true linking discovering across multi-

ple non-overlapping cameras,” IEEE Transactions on Multimedia, vol. 13,

no. 4, pp. 625–638, Aug 2011.

[24] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people track-

ing with a probabilistic occupancy map,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 30, no. 2, pp. 267–282, Feb 2008.

[25] J. Wan and Liu Li, “Distributed optimization for global data association in

non-overlapping camera networks,” in 2013 Seventh International Confer-

ence on Distributed Smart Cameras (ICDSC), Oct 2013, pp. 1–7.

[26] Li Zhang, Yuan Li, and R. Nevatia, “Global data association for multi-

object tracking using network flows,” in 2008 IEEE Conference on Com-

puter Vision and Pattern Recognition, June 2008, pp. 1–8.

[27] E. Ristani and C. Tomasi, “Tracking multiple people online and in real

time,” in Computer Vision – ACCV 2014, D. Cremers, I. Reid, H. Saito,

and M.-H. Yang, Eds. Cham: Springer International Publishing, 2015,

pp. 444–459.

133

[28] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance

measures and a data set for multi-target, multi-camera tracking,” in Euro-

pean Conference on Computer Vision workshop on Benchmarking Multi-

Target Tracking, 2016.

[29] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part-based

multiple-person tracking with partial occlusion handling,” in 2012 IEEE

Conference on Computer Vision and Pattern Recognition, June 2012, pp.

1815–1821.

[30] Bo Wu and R. Nevatia, “Detection of multiple, partially occluded humans

in a single image by bayesian combination of edgelet part detectors,” in

Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol-

ume 1, vol. 1, Oct 2005, pp. 90–97 Vol. 1.

[31] V. Chari, S. Lacoste-Julien, I. Laptev, and J. Sivic, “On pairwise costs for

network flow multi-object tracking,” 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 5537–5545, 2015.

[32] R. T. Collins, “Multitarget data association with higher-order motion mod-

els,” in 2012 IEEE Conference on Computer Vision and Pattern Recogni-

tion, June 2012, pp. 1744–1751.

[33] A. Das, A. Chakraborty, and A. K. Roy-Chowdhury, “Consistent re-

identification in a camera network,” in Computer Vision – ECCV 2014,

D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer

International Publishing, 2014, pp. 330–345.

134

[34] A. Dehghan, S. M. Assari, and M. Shah, “Gmmcp tracker: Globally opti-

mal generalized maximum multi clique problem for multiple object track-

ing,” in 2015 IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2015, pp. 4091–4099.

[35] Shafique and Shah, “A non-iterative greedy algorithm for multi-frame

point correspondence,” in Proceedings Ninth IEEE International Confer-

ence on Computer Vision, Oct 2003, pp. 110–115 vol.1.

[36] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple people track-

ing by lifted multicut and person re-identification,” in 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.

3701–3710.

[37] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep learning

for person re-identification: A survey and outlook,” 2020.

[38] X. Chen and B. Bhanu, “Integrating social grouping for multitarget track-

ing across cameras in a crf model,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 27, no. 11, pp. 2382–2394, Nov 2017.

[39] S. Sunderrajan and B. S. Manjunath, “Multiple view discriminative appear-

ance modeling with imcmc for distributed tracking,” in 2013 Seventh In-

ternational Conference on Distributed Smart Cameras (ICDSC), Oct 2013,

pp. 1–7.

[40] A. Gilbert and R. Bowden, “Tracking objects across cameras by incremen-

tally learning inter-camera colour calibration and patterns of activity,” in

135

Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 125–136.

[41] T. D’Orazio, P. L. Mazzeo, and P. Spagnolo, “Color brightness transfer

function evaluation for non overlapping multi camera tracking,” in 2009

Third ACM/IEEE International Conference on Distributed Smart Cameras

(ICDSC), Aug 2009, pp. 1–6.

[42] B. Prosser, S. Gong, and T. Xiang, “Multi-camera matching using bi-

directional cumulative brightness transfer functions,” in Proc. BMVC,

2008, pp. 64.1–64.10, doi:10.5244/C.22.64.

[43] T. Huang and S. Russell, “Object identification in a bayesian context,” in

In Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence (IJCAI-97. Morgan Kaufmann, 1997, pp. 1276–1283.

[44] H. Pasula, S. Russell, M. Ostland, and Y. Ritov, “Tracking many

objects with many sensors,” in Proceedings of the 16th International

Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’99.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,

pp. 1160–1167. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1624312.1624384

[45] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah, “Multi-

target tracking in multiple non-overlapping cameras using constrained

dominant sets,” CoRR, vol. abs/1706.06196, 2017. [Online]. Available:

http://arxiv.org/abs/1706.06196

136

http://dl.acm.org/citation.cfm?id=1624312.1624384
http://dl.acm.org/citation.cfm?id=1624312.1624384
http://arxiv.org/abs/1706.06196

[46] K. Yoon, Y. Song, and M. Jeon, “Multiple hypothesis tracking algorithm

for multi-target multi-camera tracking with disjoint views,” IET Image Pro-

cessing, vol. 12, no. 7, pp. 1175–1184, 2018.

[47] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-

object tracking by decision making,” in 2015 IEEE International Confer-

ence on Computer Vision (ICCV), Dec 2015, pp. 4705–4713.

[48] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, “Action-decision networks

for visual tracking with deep reinforcement learning,” in 2017 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), July 2017,

pp. 1349–1358.

[49] L. Paletta, G. Fritz, and C. Seifert, “Q-learning of sequential attention

for visual object recognition from informative local descriptors,” in

Proceedings of the 22Nd International Conference on Machine Learning,

ser. ICML ’05. New York, NY, USA: ACM, 2005, pp. 649–656. [Online].

Available: http://doi.acm.org/10.1145/1102351.1102433

[50] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects and

scenes,” in 2014 IEEE Conference on Computer Vision and Pattern Recog-

nition, June 2014, pp. 572–579.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. A. Riedmiller, “Playing atari with deep

reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].

Available: http://arxiv.org/abs/1312.5602

137

http://doi.acm.org/10.1145/1102351.1102433
http://arxiv.org/abs/1312.5602

[52] A. Sharma and A. B. Buduru, “Foresee: Attentive future projections of

chaotic road environments,” in Proceedings of the 17th International Con-

ference on Autonomous Agents and MultiAgent Systems, ser. AAMAS ’18.

Richland, SC: International Foundation for Autonomous Agents and Mul-

tiagent Systems, 2018, p. 2073–2075.

[53] A. Sharma and P. Kumar, “Foresee: Attentive future projections of chaotic

road environments with online training,” CoRR, vol. abs/1805.11861,

2018. [Online]. Available: http://arxiv.org/abs/1805.11861

[54] A. Sharma, “Intelligent querying in camera networks for efficient target

tracking,” in Proceedings of the 28th International Joint Conference on

Artificial Intelligence. AAAI Press, 2019, pp. 6458–6459.

[55] M. K. Pal, R. Bhati, A. Sharma, S. K. Kaul, S. Anand, and P. B. Sujit, “A re-

inforcement learning approach to jointly adapt vehicular communications

and planning for optimized driving,” in 2018 21st International Confer-

ence on Intelligent Transportation Systems (ITSC), 2018, pp. 3287–3293.

[56] R. BELLMAN, “A markovian decision process,” Journal of Mathematics

and Mechanics, vol. 6, no. 5, pp. 679–684, 1957. [Online]. Available:

http://www.jstor.org/stable/24900506

[57] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.

138

http://arxiv.org/abs/1805.11861
http://www.jstor.org/stable/24900506

[58] S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for

visual object detection,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016, pp. 2894–2902.

[59] J. S. S. III and D. Ramanan, “Tracking as online decision-making:

Learning a policy from streaming videos with reinforcement learning,”

CoRR, vol. abs/1707.04991, 2017. [Online]. Available: http://arxiv.org/

abs/1707.04991

[60] W. Luo, P. Sun, Y. Mu, and W. Liu, “End-to-end active object tracking

via reinforcement learning,” CoRR, vol. abs/1705.10561, 2017. [Online].

Available: http://arxiv.org/abs/1705.10561

[61] A. Sharma, M. K. Pal, S. Anand, and S. K. Kaul, “Stratified sampling

based experience replay for efficient camera selection decisions,” in 2020

IEEE Sixth International Conference on Multimedia Big Data (BigMM),

2020, pp. 144–151.

[62] A. Sharma, S. Anand, and S. K. Kaul, “Intelligent camera selection deci-

sions for target tracking in a camera network,” in 2022 IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV), 2022, pp. 3083–

3092.

[63] ——, “Intelligent querying for target tracking in camera networks using

deep q-learning with n-step bootstrapping,” Image and Vision Computing,

2020.

139

http://arxiv.org/abs/1707.04991
http://arxiv.org/abs/1707.04991
http://arxiv.org/abs/1705.10561

[64] W. Chen, L. Cao, X. Chen, and K. Huang, “A novel solution for multi-

camera object tracking,” in 2014 IEEE International Conference on Image

Processing (ICIP), Oct 2014, pp. 2329–2333.

[65] Z. Zheng, L. Zheng, and Y. Yang, “A discriminatively learned cnn

embedding for person reidentification,” ACM Trans. Multimedia Comput.

Commun. Appl., vol. 14, no. 1, pp. 13:1–13:20, Dec. 2017. [Online].

Available: http://doi.acm.org/10.1145/3159171

[66] B. Lavi, M. F. Serj, and I. Ullah, “Survey on deep learning techniques for

person re-identification task,” CoRR, vol. abs/1807.05284, 2018. [Online].

Available: http://arxiv.org/abs/1807.05284

[67] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,

S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,

T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,

“Mastering the game of go with deep neural networks and tree

search,” Nature, vol. 529, pp. 484–503, 2016. [Online]. Available:

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[68] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially

observable mdps,” CoRR, vol. abs/1507.06527, 2015. [Online]. Available:

http://arxiv.org/abs/1507.06527

[69] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

140

http://doi.acm.org/10.1145/3159171
http://arxiv.org/abs/1807.05284
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://arxiv.org/abs/1507.06527

[70] MATLAB version 9.10.0.1613233 (R2016b), The Mathworks, Inc., Natick,

Massachusetts, 2016.

[71] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah, “Multi-target

tracking in multiple non-overlapping cameras using fast-constrained dom-

inant sets,” International Journal of Computer Vision, vol. 127, no. 9, pp.

1303–1320, 2019.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,

“Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, p. 529, 2015.

[73] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and S. Levine,

“Path integral guided policy search,” in 2017 IEEE International Confer-

ence on Robotics and Automation (ICRA), May 2017, pp. 3381–3388.

[74] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,

B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight experi-

ence replay,” in Advances in Neural Information Processing Systems, 2017,

pp. 5048–5058.

[75] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement

learners for traffic light control,” in NIPS’16 Workshop on Learning,

Inference and Control of Multi-Agent Systems, Dec. 2016. [Online].

Available: https://sites.google.com/site/malicnips2016/papers

141

https://sites.google.com/site/malicnips2016/papers

[76] Y. Pan, M. Zaheer, A. White, A. Patterson, and M. White, “Organizing

experience: a deeper look at replay mechanisms for sample-based planning

in continuous state domains,” in Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence, 2018, 7 2018, pp.

4794–4800. [Online]. Available: https://doi.org/10.24963/ijcai.2018/666

[77] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” in International Conference on Learning Representations, Puerto

Rico, 2016.

[78] D. Zha, K.-H. Lai, K. Zhou, and X. Hu, “Experience replay optimization,”

in Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence, IJCAI-19, 7 2019, pp. 4243–4249. [Online].

Available: https://doi.org/10.24963/ijcai.2019/589

[79] M. Fang, C. Zhou, B. Shi, B. Gong, W. Xi, T. Wang, J. Xu, and

T. Zhang, “DHER: Hindsight experience replay for dynamic goals,” in

International Conference on Learning Representations, 2019. [Online].

Available: https://openreview.net/forum?id=Byf5-30qFX

[80] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class

imbalance,” Journal of Big Data, vol. 6, no. 1, p. 27, 2019.

[81] S. Pouyanfar, Y. Tao, A. Mohan, H. Tian, A. S. Kaseb, K. Gauen, R. Dai-

ley, S. Aghajanzadeh, Y. Lu, S. Chen, and M. Shyu, “Dynamic sampling in

convolutional neural networks for imbalanced data classification,” in 2018

142

https://doi.org/10.24963/ijcai.2018/666
https://doi.org/10.24963/ijcai.2019/589
https://openreview.net/forum?id=Byf5-30qFX

IEEE Conference on Multimedia Information Processing and Retrieval

(MIPR), April 2018, pp. 112–117.

[82] G. Novati and P. Koumoutsakos, “Remember and forget for experience

replay,” CoRR, vol. abs/1807.05827, 2018. [Online]. Available: http:

//arxiv.org/abs/1807.05827

[83] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr,

P. Kohli, and S. Whiteson, “Stabilising experience replay for deep

multi-agent reinforcement learning,” in Proceedings of the 34th

International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, vol. 70. International Convention Centre,

Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1146–1155. [Online].

Available: http://proceedings.mlr.press/v70/foerster17b.html

[84] R. Zhao, X. Sun, and V. Tresp, “Maximum entropy-regularized multi-

goal reinforcement learning,” in Proceedings of the 36th International

Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, vol. 97. Long Beach, California, USA: PMLR, 09–15 Jun

2019, pp. 7553–7562. [Online]. Available: http://proceedings.mlr.press/

v97/zhao19d.html

[85] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,

2017. [Online]. Available: http://arxiv.org/abs/1707.06347

143

http://arxiv.org/abs/1807.05827
http://arxiv.org/abs/1807.05827
http://proceedings.mlr.press/v70/foerster17b.html
http://proceedings.mlr.press/v97/zhao19d.html
http://proceedings.mlr.press/v97/zhao19d.html
http://arxiv.org/abs/1707.06347

[86] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep

reinforcement learning,” in Proceedings of The 33rd International

Conference on Machine Learning, ser. Proceedings of Machine Learning

Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New

York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1928–1937. [Online].

Available: http://proceedings.mlr.press/v48/mniha16.html

[87] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for imbalanced

classification,” CoRR, vol. abs/1901.01379, 2019. [Online]. Available:

http://arxiv.org/abs/1901.01379

[88] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].

Available: http://arxiv.org/abs/1509.06461

[89] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Gold-

berg, and I. Stoica, “Ray rllib: A composable and scalable reinforcement

learning library,” arXiv preprint arXiv:1712.09381, 2017.

[90] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Ku-

mar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale bench-

mark for multi-target multi-camera vehicle tracking and re-identification,”

in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

144

http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1901.01379
http://arxiv.org/abs/1509.06461

[91] M. Naphade, Z. Tang, M.-C. Chang, D. C. Anastasiu, A. Sharma, R. Chel-

lappa, S. Wang, P. Chakraborty, T. Huang, J.-N. Hwang, and S. Lyu, “The

2019 ai city challenge,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, June 2019.

[92] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-

ing of video representations using lstms,” in International Conference on

Machine Learning, 2015, pp. 843–852.

[93] J. Harvey, Adam. LaPlace. (2019) Megapixels: Origins, ethics, and

privacy implications of publicly available face recognition image datasets.

[Online]. Available: https://megapixels.cc/duke_mtmc/

[94] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.

145

https://megapixels.cc/duke_mtmc/

	Abstract
	Acknowledgements
	Publications
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Tracking in a Camera Network
	Camera Selections for Querying in a Camera Network
	Summary of Contributions
	Querying in a Camera Network for Efficient Target Tracking
	Stratified Sampling Based Experience Replay
	State Representation Learning Based Camera Selection Decisions

	Challenges and Assumptions
	Dissertation Organization

	Literature Survey
	Tracking in a Camera Network
	Deep Reinforcement Learning for Visual Tracking

	Querying in a Camera Network for Efficient Target Tracking
	Introduction
	Proposed Methodology
	Problem Formulation
	System Architecture

	Experiments and Results
	Dataset and Evaluation Metric
	Experiments

	Discussion

	Intelligent Querying in a Camera Network Using Deep Q-learning with n-step Bootstrapping
	Introduction
	Proposed Methodology
	System Overview
	Markov Decision Process and Q-learning
	Camera Selection Decisions using Deep-Q Network

	Evaluation and Results
	Dataset and Evaluation Metric
	Camera Selection Performance of the Learned Policy
	Impact of Camera Selection Decisions on Target Tracking in Camera Networks
	Comparison with State-of-the-art methods

	Limitations
	Discussion

	Stratified Sampling Based Experience Replay
	Introduction and Motivation
	Background and Related Work
	Formulation as an MDP
	Proposed Approach
	Problem Statement
	Proposed Experience Replay Approach

	Experiments and Results
	Experimental Setup
	Performance comparison
	Analysis of Sampled Transitions

	Discussion

	State Representation Learning Based Camera Selection Decisions
	Introduction
	Proposed Method
	Camera Selection as an MDP
	System Architecture
	Camera Selection Policy Model

	Results
	Experimental Setup
	Camera Selection Decisions
	Scalable Camera Selection Decisions
	Benefits of Camera Selection Decision in a Camera Network

	Discussion

	Conclusion and Future Work
	References

