
Secure Design and Instantiation of Trapdoor-less

Truncated Hash Functions

Student Name: Tarun Kumar Bansal

IIIT-D-MTech-CS-IS-11-014
July 1, 2013

Indraprastha Institute of Information Technology
New Delhi

Thesis Committee
Dr. Somitra Sanadhya (Chair)

Dr. R.K. Agrawal
Dr. Sanjit K. Kaul

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Information Security

c©2013 Tarun Kumar Bansal
All rights reserved

Keywords: hash function and family, secure instantiation, block cipher, trapdoor, truncation,
design, implementation .

Certificate

This is to certify that the thesis titled “Secure Design and Instantiation of Trapdoor-less
Truncated Hash Functions” submitted by Tarun Kumar Bansal for the partial fulfilment
of the requirements for the degree of Master of Technology in Computer Science & Engineering
is a record of the bonafide work carried out by him under my guidance and supervision in the
Security and Privacy group at Indraprastha Institute of Information Technology, Delhi. This
work has not been submitted anywhere else for the reward of any other degree.

Dr. Donghoon Chang
Indraprastha Institute of Information Technology, New Delhi

Dr. Somitra Kumar Sanadhya
Indraprastha Institute of Information Technology, New Delhi

Abstract

In this work, we throw light on gaps between theoretical construction of cryptographic primitives
and their practical instantiation. It is assumed that cryptographic primitives will not have any
trapdoors in the given design. It is also assumed that security of a cryptographic construction
should remain the same in practice as proven in theory. We show how a designer can act as
adversary if he doesn’t follow some basic paradigms while designing. To ensure that the basic
assumptions, made while providing security proof of cryptographic construction, remain true
and doubt free, we show that order of defining the underlying primitives of security protocols
are important.

We use Hash-then-Truncate(HtT) construction as an example. While discussing security of HtT
construction we show that order of defining hash and truncation function is important. We
also show that by providing choices of hash functions from a hash family to a user, we can
securely instantiate the HtT construction. In this way, we can bridge the gap between design
and practice.

Acknowledgments

There are many people who helped in different ways to make this thesis possible. I would like to
thank them all for their suggestions and advise throughout of my tenure Masters studies. I would
like to express my deepest gratitude to my advisor Dr. Donghoon Chang for his guidance and
all kinds of support. His great teaching motivated me to initiate my research in cryptography.
His teaching style, creativity and extreme energy have always been a source of motivation for
me. I am extremely lucky to have a work with him.

I would also like to thank Dr. Somitra Sanadhya for numerous invaluable advice and help during
my research. Every discussion with him inspire me to work hard.It is my honour to have worked
as a part of the Cryptology Research Group at IIIT-Delhi. I would like to thank every member
of CRG@IIITD including Ms. Vartika Srivastva.

Last but not least I would like to thank my family and all my friends for being with me at each
step when I need their support. This thesis would never be successful without your support and
love.

i

Contents

1 Introduction 1

1.1 Motivation . 2

2 Definitions and Construction 4

2.1 Indifferentiability . 4

2.2 Random Oracle Model . 4

2.3 View . 4

2.4 Truncation function . 5

2.5 Hash-then-Truncate Construction . 5

3 Indifferentiability Proof of HtT Construction 7

4 Collision Attacks on HtT Construction in the RO model 11

4.1 In Case when Any Truncation Function is allowed 11

4.2 In Case when Only Continuous Truncation Function is allowed 14

5 Secure Instantiation of HtT construction 16

5.1 General Approach . 17

5.2 Construction . 18

6 Conclusion 24

ii

List of Figures

2.1 Hash-then-Truncate (HtT) construction based on H and T 6

3.1 (H̃,H) and (R,S) . 8

5.1 Modified Hash-then-Truncate (HtT) construction-Domain Extension 19

iii

Chapter 1

Introduction

Cryptographic primitives, such as hash functions and block ciphers are integral components in

the design of practical cryptographic schemes. By using such primitives, cryptosystem can be

constructed in secure and efficient manner. Such construction of cryptosystem is easier compared

to designing such systems from scratch based on complexity theoretic assumptions. The usual

design procedure involves a proposed construction that uses an abstract function/permutation

family. The construction is then proven secure by making an appropriate assumption on the

function/permutation family. For instance, assuming the function family to be collision resis-

tant or the permutations to be pseudo-random permutations. In practice, these function (resp.

permutation) families are instantiated with actual hash functions (resp. block ciphers), in the

hope that these constructions will satisfy the required security notion. Depending on the re-

quirements of cryptographic schemes these primitives may need to satisfy a variety of security

notions.

The random oracle model was introduced by Bellare and Rogaway as a “paradigm for designing

efficient protocols” [2]. This model has proved extremely useful for designing simple, efficient

and highly practical solutions for many problems related to designing and security of protocols.

From a theoretical perspective, it is clear that a security proof in the random oracle model is only

an indication of the security of the system when instantiated with a particular hash function,

such as SHA-1 or MD5. In fact, many recent “separation” results [1, 7] illustrated that various

cryptographic systems are secure in the random oracle model but completely insecure for any

concrete instantiation of the random oracle. In the random oracle model, one proves that the

system is at least secure with an “ideal” hash function H (under standard assumptions), instead

of making a highly non-standard (and possibly unsubstantiated) assumption that “this system

is secure with this specific H” (e.g., H being SHA-1). Such formal proof in the random oracle

model is believed to indicate that there are no structural flaws in the design of the system, and

thus one can heuristically expect that no such flaws will appear with a particular “well designed”

function H. However, it may not guarantee anything about the lack of structural flaws in the

design of H itself.

The security proof of a construction as shown in [10] results in a family of collision resistant hash

1

functions following that construction. The author of [10] claim that a hash function randomly

chosen from the hash family along with a random initial string uniformly from the available

space can be used as collision resistant hash function.

A hash construction may be of type Hash-then-Truncate(HtT), where first a hash function is

applied on input then truncation is applied on output of hash function before producing final

output. For example SHA-224 is HtT type construction where internally SHA-256 is used with

different IV and output of SHA-256 is truncated to 224 bits. Another example is Chop-Hash

construction [9] such as chop-MD.

The HtT construction depends upon a Hash function H and a truncation function T. The

truncation function T can be define before defining the H or after it. When T is defined before

H, T and H show independence from each other. On the other hand T is defined after H, T may

be dependent on H because the definition of T might take care of H properties. This possibility

of dependency can raise an question on the randomness of H. This also raises the concern that

if truncation depends on H then H may have security flaws or trapdoors; and truncation might

have been performed to hide those flaws and trapdoors.

Still, if HtT construction is trapdoor free, the problem of instantiation remains with it. So along

with a good design paradigm we also need a secure instantiation methods to have clear security

terms. We will explore this need and provide a bridge between theory and practice.

Our Contribution We discuss the design paradigm and security of HtT construction in two

different scenarios. In first scenario, hash function H is defined prior to defining the truncation

function T and in second scenario T is defined prior to defining H. We prove that first scenario

is indifferentiable from random oracle while in second scenario we show attacks by showing an

efficient adversary. Next we provide procedure to securely instantiate an HtT construction. In

this way, we can also securely instantiate a block cipher based construction.

1.1 Motivation

In SHA-1 the initial chaining vector used is IV= 67452301 EFCDAB89 98BADCFE 10325476

C3D2E1F0. Apparently NIST has taken this IV from MD5. However, how this IV is chosen

for MD5 is not well documented. Cryptographers believe that NIST considered some universe

of hash functions {HIV : IV ∈ IV} while choosing the hash function and randomly selected

this one design SHA-1, from it. But, NIST never indicated that they did any such thing; all we

know is that they selected this one hash function. Theory advocates random sampling to be a

crucial element to a valid definition, whereas no random sampling apparently took place in this

case.

Similarly, in past too, trust concerns were raised on the definition of S-boxes in DES. Later when

differential attack [5] was found on DES, it was realised that the DES designers knew of these

attacks already [19].

2

Attacks like partial collision, near collision, near collision to full collision [11–14] force one to

consider evaluation of designing methods, e.g, order of hash function and truncation function

definitions in case of HtT construction. All these issues raise doubts on trustworthiness of the

designer. Is there some possibility of trapdoor possibility in design?

John Black in [6] showed that instantiated form of a block cipher no longer remains secure

because there is always a distinguisher that exists for instantiated block cipher; a fact which is

also supported by Phillip Rogaway [18].

To reduce the trust gap between user and designer, we analyse design paradigm taking the

order of defining truncation function and hash function as the base. Then we provide a way for

secure instantiation of the block cipher along with HtT by utilizing design principle for hash

function [10].

3

Chapter 2

Definitions and Construction

2.1 Indifferentiability

The indifferentiability framework has been introduced by Maurer et al. [15] as a generic tool

to study the security of cryptosystems, and its application to the field of hash functions has

been first proposed by Coron et al. [9]. Let F be the function that based on an ideal primitive

f and R be a random oracle, and S be a simulator with access to R. Then, we say that F f

is indifferentiable from R if for any distinguisher D, there exists an efficient simulator S with

negligible probability as follows:

Advindiff
F f ,RS

(D) = |Pr[DF,f = 1]− Pr[DR,S = 1]| < ε.

2.2 Random Oracle Model

R is said to be a random oracle from a set X to set Y if for each x ∈ X the value of R(x) is chosen

randomly from Y. More precisely, Pr[R(x)=y|R(x1) = y1, R(x2) = y2, ...R(xq) = yq] = 1
M , where

x /∈ {x1, x2, . . . xq}, y, y1, . . . , yq ∈ Y , |Y | = M and q is the total number of queries. If R accepts

the variable length input it is consider as VIL Random Oracle

2.3 View

View v is a tuple which consists of pairs (X,Y), where X is of arbitrary length and Y can be of

some fixed lengths l or n. More precisely, we can describe view as follows

v = ((X1, Y1), . . . , (Xi, Yi)), for j ≤ i, Xj ∈ {0, 1}∗ and Yj ∈ {0, 1}l or {0, 1}n,

and V is the set of all views. We consider a distinguisher D which has access of two oracles O1

and O2. We assume all quires are distinct and D makes at most qi queries to oracle Oi. Suppose

D makes Mi as O1-queries and obtains responses hi ∈ {0, 1}l, 1≤i≤ q1. Similarly, D makes mi

4

as O2-query and obtains responses zi ∈ {0, 1}n, 1 ≤ i ≤ q2. The obtained after interacting with

O1 and O2 can be denoted by vO1,O2 . We can also denote i-th query-response pair by (Xi, Yi),

where (Xi, Yi) = (Mj , hj) for a 1 ≤ j ≤ q1 OR (mj , zj) for a 1 ≤ j ≤ q2 . So we can define

the first i query-response pairs of the tuple v by vi = ((X1, Y1), . . . , (Xi, Yi)), where v0 is the

empty string. Depending on the view v, the distinguisher D finally outputs 1 or 0.We define

α(v) = Pr[(D(vi−1) = Xi, for all 1 ≤ i ≤ q1 + q2)&(D(v) = 1)]. Next we define βO1,O2(v) as

the probability that

βO1,O2(v) = Pr[O1(Mi) = hi ∧ O2(mj) = zj , for 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2] (2.1)

Then Pr[DO1,O2=1] can be also described as follows,

Pr[DO1,O2 = 1] =
∑
v∈V

α(v) · βO1,O2(v) =
∑
v∈V

α(v) · Pr[vO1,O2 = v]. (2.2)

2.4 Truncation function

For any positive integer a and b such that a ∈ {0, 1}b, we represent ith index bit of a as a[i]

where 1 ≤ i ≤ b.
Truncation function. Let Ĩ = {1, 2, . . . , l}. A truncation function T I : {0, 1}l → {0, 1}n,

where I ⊂ Ĩ with |I| = l − n, 1≤n≤ l, is defined in Algorithm 1:

Algorithm 1: Truncation function: T I(z) = h

1 Initialise: h=empty-string, k=1;
2 for i = 1→ l do
3 ifi /∈ I h[k] = z[i];
4 k = k + 1

5 return h;

Continuous truncation function: We say a truncation function T I : {0, 1}l → {0, 1}n is

continuous if there exists k, where 1 ≤ k ≤ (l−n+1), such that I = Ĩ−{k, k+1, . . . , k+n−1}.

2.5 Hash-then-Truncate Construction

Hash-then-Truncate: In the Hash-then-Truncate(HtT) construction as shown in Figure 2.1,

H̃ : {0, 1}∗ → {0, 1}n is a function representing HtT construction that accepts a message M∈
{0, 1}∗ and gives output h∈ {0, 1}n. H̃ based on H : {0, 1}∗ → {0, 1}l and T I : {0, 1}l → {0, 1}n.

H accepts the input M from H̃ and gives output z∈ {0, 1}l. Truncation function T I using

specified Index set I takes input z∈ {0, 1}l gives output h∈ {0, 1}n. In short H̃(M) = T (H(M)).

5

TH h

M

n
z

l

H̃

Figure 2.1: Hash-then-Truncate (HtT) construction based on H and T

HtT: H̃(M) = h

00 z=H(M)

01 h = T (z)

02 return h

6

Chapter 3

Indifferentiability Proof of HtT

Construction

In this chapter we discuss about the indifferentiability of HtT construction. Security of HtT

construction depends upon H and T . We use the indifferentiability framework of Maurer along

with the concepts of view and interpolation probabilities to provide indifferentiability. We follow

the approach of indifferentiability proof as explained in [3,8,16] in combine and simple manner.

We show that HtT construction is indifferentiable from random oracle when truncation is given.

Theorem 1. Let T I be any truncation function as described in Chapter 2.4. After T I is defined,

then independent random oracles H:{0, 1}∗ → {0, 1}l and R:{0, 1}∗ → {0, 1}n are defined. Let

H̃ : {0, 1}∗ → {0, 1}n be the function that based on H and T I , and S is a simulator as described

in Figure 3.1.For any distinguisher D with maximum queries q=q1 + q2 following equation holds

for advantage of distinguisher as follows:

Advindiff
H̃H ,RS

(D) = |Pr[DH̃,H = 1]− Pr[DR,S = 1]| = 0 (3.1)

where simulator S has oracle access to R (but does not see the queries of the distinguisher D to

R). The distinguisher D makes at most q1 queries to H̃ or R and at most q2 queries to H or S

Proof : In Figure 3.1, we have described the (H̃,H) and R,S.

1. Complexity of Simulator S : Here complexity is defined by (O(q), O(q)) for any distinguisher

D with the query-memory-complexity. As shown in Fig. 3.1, the simulator make a query

to the random oracle R only when the S -query is requested. So, the maximum number of

queries of any adversary D is q, so that of the simulator is also O(q). In case of memory,

simulator is maintaining a set X, which will have maximum number of elements O(q).

2. Using same notation defined in Chapter 2.3.

From Equation 2.2 we can write

Pr[DH̃,H = 1] =
∑
v∈V

α(v) · Pr[vH̃,H = v] and Pr[DR,S = 1] =
∑
v∈V

α(v) · Pr[vR,S = v]

7

Algorithm (H̃,H): Algorithm R,S :

Initialise a set X=∅
10 On H̃ −QueryM 100 R- Query M
11 z=H (M); 110 h=R(M);
12 h=T(z); 200 S - Query M
13 return h. 210 If M is repeated query then return z form X where {(M,z)}∈X.
20 On H -Query M 220 h=R(M);

21 z=H (M); 230 p
$←− {0, 1}t for a given Truncation function T I and t = l − n

22 return z; 260 k=j=0;
270 for i=0 to l.
271 if i∈I, then z[i] = p[k] and k++;
272 else z[i] = h[j] and j++;
280 X=X

⋃
(M, z)

290 return z.

Figure 3.1: (H̃,H) and (R,S)

Therefore,

Advindiff
H̃H ,RS

(D) = |Pr[DH̃,H = 1]− Pr[DR,S = 1]|
= |

∑
v∈V

α(v) · Pr[vH̃,H = v]−
∑
v∈V

α(v) · Pr[vR,S = v]|

=
∑
v∈V

α(v)(|Pr[vH̃,H = v]− Pr[vR,S = v]|)

=
∑
v∈V

α(v)(0) From Claim 1

=0

Claim 1: For any view v ∈ V , where V is the set of all possible as view described in

Chapter 2.3

Pr[vH̃,H = v] = Pr[vR,S = v], (3.2)

Proof of Claim 1: We have assumed that there is no repetition of query to oracle O1

and O2 respectively, but a same query can be queried to both oracle O1 and O2. From

Chapter 2.3, a typical view of DO1,O2 is a tuple vO1,O2 = ((X1, Y1), . . . , (Xq1+q2 , Yq1+q2)),

where (Xi, Yi) = (Mk, hk) or (mk′ , zk′), 1 ≤ k ≤ q1 and 1 ≤ k′ ≤ q2, where O1(Mk) = hk ∈
{0, 1}n, O2(mk′) = zk′ ∈ {0, 1}l, l > n, q1 and q2 are the number of queries to O1 and O2

respectively.

Firstly we define two sets of views- possible views Vpos and impossible views Vimp such that

V = Vpos
⋃
Vimp and Vpos

⋂
Vimp = ∅.

• We say a view v is impossible view if ∃((Mk, hk), (mk′ , zk′)) in v s.t. (Mi = mj) and

T(zj) 6= hi.

• We say a view v is possible if v /∈ Vimp.

(a) q′ are the number of queries common to O1 and O2 with Mk = m′k more precisely we

can say q′ = |{(i, j) : Xi = Xj for 1 ≤ i < j ≤ q1 + q2}|.

8

(b) (q1 − q′) are the number of queries only to O1 : (q1 − q′) = |{i : (Xi = Mk) and Xi 6=
Xj ∀j, where 1 ≤ i ≤ q1 + q2, 1 ≤ j ≤ q1 + q2, i 6= j and 0 ≤ k ≤ q1}| .

(c) (q2− q′) are the number of queries only to O2 : (q2− q′) = |{i : (Xi = mk′) and Xi 6=
Xj ∀j, where 1 ≤ i ≤ q1 + q2, 1 ≤ j ≤ q1 + q2, i 6= j and 0 ≤ k′ ≤ q2}| .

Here O1 can either be H̃ or R and O2 can either be H or S. We know from Equation 2.1 and

2.2 Pr[vO1,O2 = v] = Pr[O1(Mk) = hk ∧ O2(mk′) = zk′ , for 1 ≤ k ≤ q1 and 1 ≤ k′ ≤ q2],

i) In case of v /∈ Vimp
a) For Pr[vH̃,H = v]: Here O1 is H̃ and O2 is H. if v /∈ Vimp then, for Mk =

mk′ , T (zk′) = hk will always hold.

In case of Random Oracle H, for each new query 1
2l

possible values are available,

so for (q2 − q′) number of queries to H there will be Pr[H(mk′) = zk′∀ k′, 0 ≤
k′ ≤ (q2 − q′)] = 1

2(q2−q
′)·l .

Similarly for H̃, for every new query H̃ calls H then gives n bit output, so

Pr[H̃(Mk) = hk∀ k, 0 ≤ k ≤ (q1 − q′)] = 1
2(q1−q

′)·n .

For q′ number of queries where Mk = mk′ , T (zk′) = hk will be satisfied because

v /∈ Vimp. Therefore, if H̃ is queried first followed by H, then n bits are chosen

randomly in H̃ and only (l − n) bits have to be chosen randomly by H because n

bits are already known. Similarly, if H is queried first followed by H̃ then l bits

have to be chosen randomly by H as n-bits are already known to H̃. Therefore,

Pr[H̃(Mk) = hk∧H(mk′) = zk′ for Mk = mk′ and T (zk′) = hk] = 1
2n·q′
× 1

2(l−n)·q′
=

1
2q′·l

Therefore,

Pr[vH̃,H = v] =
1

2(q1−q′)·n
× 1

2(q2−q′)·l
× 1

2q′·l
(3.3)

b) For Pr[vR,S = v]: if v /∈ Vimp then, for Mk = mk′ , T (zk′) = hk will always hold.

In case of Random Oracle R , for every new query R gives n bit output, so

Pr[R(Mk) = hk ∀ k, 0 ≤ k ≤ (q1 − q′)] = 1
2(q1−q

′)·n .

For simulator S at line 220 for each new query 1
2l

possible values are available, so

for (q2 − q′) number of queries to S there will be Pr[S(mk′) = zk′ ∀ k′, 0 ≤ k′ ≤
(q2 − q′)] = 1

2(q2−q
′)·l .

For q′ number of queries where Mk = mk′ , T (zk′) = hk will be satisfied because

v /∈ Vimp. Therefore, if R is queried first followed by S, then n bits are chosen

randomly in R and only (l−n) bits have to be chosen randomly by S at line 240 in

Figure 3.1 because n bits are already known at line 220 in Figure 3.1. Similarly, if

S is queried first followed by R then l bits have to be chosen randomly by S at line

220 in Figure 3.1 as n-bits are already known to R. So Pr[R(Mk) = hk ∧S(mk′) =

zk′ for Mk = mk′ and T (zk′) = hk] = 1
2n·q′
× 1

2(l−n)·q′
= 1

2q′·l
. Therefore,

Pr[vR,S = v] =
1

2(q1−q′)·n
× 1

2(q2−q′)·l
× 1

2q′·l
(3.4)

9

ii) In case of v ∈ Vimp

a) For Pr[vH̃,H = v]:if v ∈ Vimp, then for common number of queries q′, Pr[H̃(Mk) =

hk∧H(mk′)=zk′ for Mk = mk′ and T (zk′) = hk] = 0, since forMk = mk′ , T (zk′) 6=
hk as per definition of Vimp. Therefore,

Pr[vH̃,H = v] = 0 (3.5)

b) For Pr[vR,S = v]: if v ∈ Vimp, then for common number of quires q’ Pr[R(Mi) =

hi ∧ S(mj) = zj for Mi = mj and T (zj) = hi] = 0, since for v ∈ Vimp Mi = mj

and T (zj) 6= hi as per definition of Vimp. Therefore,

Pr[vR,S = v] = 0 (3.6)

Then, For two cases for any v.

(a) v /∈ Vimp: Pr[vH̃,H = v] = Pr[vRO,S = v] = 1
2(q1−q

′)·n × 1
2(q2−q

′)·l × 1
2q′·l

From Equation

3.3 and 3.4

(b) v ∈ Vimp: Pr[vH̃,H = v] = Pr[vRO,S = v] = 0 From Equation 3.5 and 3.6

Therefore for any v ∈ V Claim 1 holds

10

Chapter 4

Collision Attacks on HtT

Construction in the RO model

In Chapter 3 we had discussed the security of HtT construction when T is defined followed by

H. Now in this chapter we discuss about the security of HtT construction when H is defined

first then T is defined. We will show collision attack on HtT construction when truncation

function is allowed to choose after hash function definition.

In this chapter we show that if designer is allowed to choose truncation function T after definition

of H, then designer can act as adversary to construct a truncation function such that collision

can be found on H and may be used as a trapdoor in H̃.

4.1 In Case when Any Truncation Function is allowed

For any hash function based on random oracle model, there is always a truncation function

present which can lead to collision. But for a truncation function it is very negligible to lead

collision for all or any one hash function from a set of available hash function.

We can construct an adversary that can make a truncation function using near-collision approach

to find partial collision in the H. Here we try to find n-bit collision in l bit output of H and

then use (l−n) bit’s index to construct truncation function so that T (H(M)) = T (H(M ′)) can

happen and then we can say collision has happened in H̃ or in HtT construction. To explain

this we firstly explain some terms briefly that are related to near-collision. This will clear how

to find n-bit collision via finding t = (l − n) bit near collision.

A t-bit near collision means that only t-bits are different in hash output of two different messages.

A hash function for which an efficient algorithm is known to construct near-collisions, can no

longer be considered to be ideal. A practically more relevant consequence is that for several

designs, near-collisions for the compression function can be converted to collisions for the hash

function.

Some notations that we use are as follows:

11

l hash function output size, n Truncated output size, t Maximum distance for near-collisions,

Me memory size.

A T I have index set I that provide t = l − n number of index that have to be truncate.

We can define Hamming Weight function HW such that HW(Y)=|{Yi : Yi = 1, binl(Y) =

Y1, Y2, . . . , Yl for 1 ≤ i ≤ l}|.The probability that a random message M,M ′ pair results in a

t-near collisions is Bt(l)/2l, where Bt(l) is Hamming ball [11] of radius t. Bt(l) = #{x ∈ {0, 1}l :

HW (x) ≤ t} =
t∑
i=0

(
l
i

)
and l is final output of H.

There are different approach to find near collisions that are briefly explained as follows:

Memory-full algorithm. Here Me has no bound. Compute the hash function on random

different inputs a large number of times , and compute the Hamming distance between each pair

of outputs. After i evaluations of the hash function, one can test i(i − 1)/2 pairs, and a pair

gives a t-near-collision with probability Bt(l)/2l. The expected number of computation before

finding a near-collision is i =
√
π/2 · 2lBt(l).

Using collisions in a truncated hash function. The hash function is truncated to s = l− t
bits, and any collision in the truncated version will give a t-near-collision for the full hash

function. More interestingly, if the hash function is truncated to s = l − 2t − 1 bits, a s-bit

collision will give a t-near-collision of the full hash function with probability 1/2 [12]. This

gives a near-collision algorithm with expected complexity
√
π/2 · 2l−2t using a small amount of

memory. Generally, one can truncate τ bits, find collisions in a l − τ -bit function, and check

the Hamming weight of the τ truncated bits. This will give a t-near-collision with probability

Bt(τ)/2τ . The optimal value of τ can be found by evaluating the complexity for all choices of τ .

We will treat τ as near-collision truncation parameter. This problem is discussed more formally

in [13].

Using covering codes. A more efficient approach is to use covering codes, as proposed by

Lamberger et al. [12,13]. The idea is to use a covering code with radius t/2, i.e. a set a codewords

C such that for any point x ∈ {0, 1}l, there exists a codeword c(x) ∈ C with HW(x⊕ c(x))≤t/2.

If c(H(M)) = c(H(M ′)), then H (M) and H (M’) are decoded to the same keyword c; we have

HW(H(M) ⊕ H(M ′)) ≤HW(H(M) ⊕ c)+HW(H(M ′) ⊕ c) ≤ t, which gives a t-near-collision.

With a code of dimension k, the attack has a complexity of
√
π/2 · 2k. Finding the optimal τ

and building a corresponding code is a hard problem. This problem is discussed by Lamberger

et al. in the context of near-collision attacks [12, 13] using a concatenation of Hamming codes.

With a given length l, Covering Radius R = t/2

k = l −R · j − r

where, j := blog2(lR + 1)c and r := b l−R(2j−1)
2j

c.

Theorem 2. Let l and n be non-zero positive integer such that l > n and t=(l − n).Given

Random Oracle H:{0,1}∗ →{0,1}l,We can construct an adversary that can find a truncation

12

function T:{0,1}l →{0,1}n and M, M ′ such that M 6= M ′ and T(H(M))=T(H(M ′)) with time

complexity

Ct ≤
[(√

π
2 + 5

√
2τ/Bt−2R(τ)

Me

)
·
√

2k·2τ
Bt−2R(τ)

]
and memory complexity Cm = Ct · Bt(τ) where, Me

is available memory, k is the code of dimension, τ is optimal near-collision truncation parameter,

R is covering radius.

Proof : Adversary can follow following steps to make a truncation function.

1 Calculate a pair of Message M,M ′ such that it will give t-near collisions. Adversary can
use either Memory Full Algorithm [14], Using Combined approach [14] of Collisions in a
truncated hash function [12,13] and Covering Codes [11,12]. Using any mentioned
method depending upon adversary power and resources, Adversary will have a Message
pair M,M ′;

2 Initialise: I=∅;
3 Calculate h=H(M), h′=H(M ′) and h̄ = h⊕ h′;
4 for i = 0→ l do
5 if h̄[i] = 1 then
6 I=I

⋃
{i}

7 if |I| < t then
8 for i = 1→ (t− |I|) do

9 i
$←− Ĩ \ I;

10 I = I
⋃
{i};

11 Now truncation function is T I which will follow Index set I.;

12 Calculate h=T(H (M)) and h́=T(H (M ′)), here h = h′;

Complexity for Adversary: For adversary main complexity part is to get a message pair M,M ′

such that HW(H (M)⊕H(M ′))≤t, Which similar is similar to find t bit near collision. From

[14], [11], [12], [13] in which a significant work has been done regarding finding efficient near

collisions. We have following methods to find M and M ′:

1. From [14], if we use Memory Full Algorithm with unbounded available memory Me then

5
√

2τ/Bt−2R(τ)
Me

become negligible, τ = l,and R=0. The number of hash evaluations needed

for any near collision algorithm: we need atleast i =
√
π/2 · 2l/Bt(l). After i evaluations,

one cant test i(i− 1)/2 pairs, and a pair gives a t-near collision with probability Bt(l)/2l.
This requires i · Bt(l) = Ω(

√
2l · Bt(l)) memory acess to a table of size i = Ω(

√
2n/Bt(l)).

2. From [14], in which they have combined the covering-codes and truncation approach tech-

nique. To find t-near collisions, truncate hash function to l − τ and complexity will be(√
π
2 + 5

√
2τ/Bt−2R(τ)

Me

)
·
√

2k·2τ
Bt−2R(τ) , where k is the code of dimensions as explained in [12]

which are related to t-near collision.

Example 1: In case of SHA-224, there is 32 bit truncation done on SHA-256. We can find a

truncation which enables the attacker to find a collision with approximately 275 complexity in

13

case of memory full algorithm and near around 283.7 complexity when 1MB memory complexity,

which is less than the birthday attack complexity.

4.2 In Case when Only Continuous Truncation Function is al-

lowed

In chapter 4.1, we have considered truncation function that truncate any bit position combination

from z, now we consider continuous truncation function that will output only continuous n no.

of bits from z. Such truncation is more in practical use where after hash computation continues

n-bit gives as output.

Depending upon the value of l and n, an adversary can construct a truncation function such that

H(M)⊕H(M ′) will give continues n-bit collisions. The probability that H(M)⊕H(M ′)results

in n-bit continuous collisions is ict/2
l

ict =

l−n∑
i=0

di × 2l−n−i. (4.1)

where, d0 = 1, di = 2i −

[
i∑

j=1
2〈

i−j
n
〉 · dj−1

]
and 〈·〉 shows positive integer value.

Theorem 3. Let l and n be non-zero positive integer such that l > n and t=(l − n). Given

random oracle H:{0,1}∗ →{0,1}l, we can construct an adversary that can find continuous t bit

truncation function T:{0,1}l →{0,1}n and M, M ′ such that M 6= M ′ and T(H(M))=T(H(M ′))

with time complexity Cct ≥
√
π/2 · 2l/ict and memory complexity (Cct · ict).

where, ict =
l−n∑
i=0

di × 2l−n−i, d0 = 1 and di = 2i −

[
i∑

j=1
2〈

i−j
n
〉 · dj−1

]
.

Proof : Adversary can follow following steps to make a truncation function.

Complexity of Attack : For adversary main complexity part is to get a message pair M,M ′ such

that HW(H (M)⊕H(M ′))≤ (l−n) and continuous n-bit collision out of l bit. After s evaluation

one can test s(s − 1)/2 pairs and a pair will give n-bit continues collision with probability

ict/2
l. The expected number of computation before finding a n-bit continuous collision is s =√

π/2 · 2l/ict. This will give a lower bound on the number of hash evaluations needed for n-

bit continuous collision we need atleast
√
π/2 · 2l/ict evaluations with non-negligible probability.

This approach will require s.ict memory access to a table of size Ω(
√

2l/ict). So if we assume each

hash computation as unit one the time complexity of finding Continuous Truncation function

will have lower bound
√
π/2 · 2l/ict and memory complexity will be Ω(

√
2l/ict).

Example 2: In case of SHA-224, there is 32 bit truncation done on SHA-256. We can find

a truncation which enables the attacker to find a collision with 2110.6 complexity, which is less

than the birthday attack complexity.

14

1 Calculate a pair of Message M,M ′ such that it will give n-bit continuous collisions after
H (M), H(M ′). Adversary can use Equation 4.1. Adversary will have a Message pair
M,M ′;

2 Initialise: I=∅, x=1, c=0;
3 Calculate h̄ = H(M)⊕H(M ′);
4 for i = 0→ l do
5 if h̄[i] = 0 then
6 if c = n then
7 x=i-1;
8 end for;

9 c+ +;

10 else
11 if c = n then
12 x=i-1;
13 end for;

14 c=0;

15 k=x-n+1;

16 I=Ĩ − {k, k + 1, . . . , k + n− 1};
17 Now truncation function is T I which will follow Index set I.;
18 Calculate h=T(H (M)) and h′=T(H (M ′)), here h = h′.;

15

Chapter 5

Secure Instantiation of HtT

construction

In [6], author showed that a block-cipher based hash function is provably-secure in ideal cipher

model but trivially insecure when instantiated by any block-cipher. In fact, many results [1, 7]

illustrated various cryptographic systems secure in the random oracle model but completely inse-

cure for any concrete instantiation of the random oracle. They have raised questions on wisdom

of security proofs of block ciphers which might get failed once block cipher get instantiate.

We can go back to 90’s when Damgard [10] gives the design principle for hash function, in paper

they have proved the security of hash family from which a hash function is chosen randomly and

used. Similarly, in [18] Rogaway raised a question concerns how SHA-1 is said to be randomly

selected from universe of hash function. They have selected only one hash function out of hash

family. Rogaway also said that there always exist a adversary that can find collision in a hash

function, its just a human that can’t actually write the program for it, this statement was

supported by Jhon Black in [6] by proving insecurity of a hash function once it get instantiated.

Protocol uses crypto hash functions are often proved secure in RO model [2]. In such a case,

when one replace the RO with a concrete hash function(like SHA-1) one would like to preserve

the function’s domain and range; H:X→Y for X,Y⊆ {0, 1}∗. So replacing a RO by a concrete

hash function always takes you away from hash-family setting. All security proofs of schemes

are done for a hash family and that proof’s result is used for a single instantiated hash function

assuming the instantiated scheme is secure as long as instantiated hash function behaves “like

a random oracle”, which is not secure and might even have trapdoor. So what’s the solution?

How we can achieve proved security? How we can trust the designer that he doesn’t put any

trapdoors.

A possible solution is as follows; after security proof and before instantiate block cipher there

should be a step of choosing a hash function from a hash family for user in between, this will

also lead to independence of truncation from hash function which is proved to be secure. This

generate a need of “having a hash family”.

16

5.1 General Approach

Now we will give some general approach for creating a hash family. Suppose we have a finite

index space C. We define a Hash Family H̄ = {Hc : {0, 1}∗ → {0, 1}l}c∈C . Here Hash function

Hc uses a value c ∈ C internally, where c might be an initial value, constant value, key value,

chaining value etc.

1. Changing Initial Value Used: We can denote the initial value as IV , then we can treat

hash family as H̄ = {HIV : {0, 1}∗ → {0, 1}l}IV ∈C names a function HIV (·) = H(IV, ·), l
is the output length of Hash function H.

For example in Keccak-1600 [4], H̄ = {Hc : {0, 1}∗ → {0, 1}l}c∈C , where C = {c : c ∈
{0, 1}1600}. Here size of hash family will be 21600. But Keccak uses only the 01600 value

from the C.

If designer restricts the user to some specific initial value then it can raise the question

on randomness and values distribution of hash function and there is chance of having

trapdoors in construction. After having choice of hash function from hash family user can

freely choose any H and along with public IV. Here each H ∈ H̄ use same instantiation

but different starting point, so user can freely start using randomness distribution of

instantiated hash function. But still the control of instantiation is with designer because

we have not modified the instantiation part. It is very likely that any method would cause

collisions in one Keccak instantiation with respect to the actual Initial Value(IV) would

work for other IV values too. Intuitively we can say that if there is trapdoor with one

single starting point i.e, IV value then there can also be trapdoors on other IV values too.

As instantiation part is not changed so we can not justify the secure instantiation. Now

we will discuss second approach.

2. Changing constant value: A Message M after padding pad(M) = (m1‖m2‖ . . . ‖mk),

where pad(M) ∈ ({0, 1}b)k, mi ∈ {0, 1}b and k is called as number of blocks of M after

padding. Given a function f : {0, 1}l+b → {0, 1}l we define

Hf (m1,m2, . . . ,mk) = f(f(. . . f(f(IV,m1),m2), . . .),mk)

where H is Hash function with underlying compression function f , having an initial value

IV . We can define the family of function f̄ = {fc : c ∈ C} where each f uses some

constant c ∈ C internally. Further, if function f uses a randomly chosen constant c ∈ C
we will denote that as fc, otherwise for a function using fixed constant c we will denote it

as simple f . We will now define a Hash Family H̄ = {Hf,fc : {0, 1}∗ → {0, 1}l}c∈C , where

Hash function H is based on combination of f and fc.

Once the instantiated scheme is proposed, we use a random value of c
$←− {0, 1}l that will

be used in fc to randomise the instantiation of f and H, simultaneously decreasing the

possibility of presence of trapdoors in instantiation. Different f can have different c value

depending upon provided instantiation.

17

For example in MD5 [17] for single block message processing, there will be total 64 rounds

of f , depending upon round, different fixed constant c is used in different rounds of f,

like for round 0 to 3, f[0,...,3] uses [0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee]. It

is already assumed that these constants are fixed but chosen randomly. Now according

to our approach in-spite of using all fixed constant proposed by instantiated scheme, we

randomly choose constant c in some f and denote them as fc. Here each constant size is

32-bit, therefore hash family size will be 232 if we use only one fc, which is still not enough.

We can increase the family size by including more then one fc, then size of hash family

will be 232∗(#fc).(# number of)

Now we will give a definition of adversary that will find the truncated collision of hash family

and truncation family, as follows.

Definition 1. Let T̄ = {T : {0, 1}l → {0, 1}n} be a truncation function family for positive

integer l > n. We have a Message space M = {M ∈ {0, 1}∗}. We assume that M contains

some string of length greater then l and that X ∈ X implies every string of length |M | is in M.

Let H̄ is the family of hash function such that H̄ = {Hf,fc : {0, 1}∗ → {0, 1}l}c∈C , where H is

a hash function with underlying compression function f, fc ∈ f̄ = {fc : {0, 1}b+l → {0, 1}l}c∈C ,

C is the finite index set, b is the message block size taken by f and l is the output length of

hash function H. After choosing an arbitrary truncation function T ∈ T̄ by adversary A then

advantage of Adversary A with respect to truncated collision resistant for a randomly chosen

hash function H ∈ H̄ is given by

Advt−coll
H̄,T̄

(A) = Pr[T
arb.←−− A;H

$←− H̄;M,M ′ ← A : T (H(M)) = T (H(M ′)) ∧M 6= M ′] (5.1)

In further chapter we will provide a construction as an example of second approach.

5.2 Construction

Here we will provide a Hash-then-Truncate construction as shown in Figure 5.1 as an example

of second approach described above, which can be securely instantiated.

First we define the mechanism. Let f : {0, 1}b+l → {0, 1}l be an hash function, called a

compression function, and define from it the Hash function H : {0, 1}∗ → {0, 1}l as follows. On

input M ∈ {0, 1}∗, H partitions message M using padding function pad(M)=M‖0p‖[|M |]b into

b-bit strings m1, . . . ,mk where p ≥ 0 is the least non-negative number such that |M | + p is a

multiple of b. We have a finite index set C = {c : c ∈ {0, 1}l}. For some initial value IV ∈ C we

can more formally say that

Hf,fc(m1,m2, . . . ,mk) = fc(mk, f(. . . f(m2, f(m1, IV))))

Here construction will use fc function only for processing the last message block mk, which means

only for last message block mk function f will use a randomly chosen constant c internally while

18

fc TIV

m1

hz
n

ll

b

ff

m2 mk

c
H

H̃

l

Figure 5.1: Modified Hash-then-Truncate (HtT) construction-Domain Extension

for rest function f will use some fixed constant. So here we have an Hash Family H̄ = {Hf,fc :

{0, 1}∗ → {0, 1}l}c∈C , of size |C|. Then, letting z0 = IV , define zi−1 = f(mi−1, zi−2) for each

i ∈ [2..k] and then zk = fc(mk, zk−1). So H(M) returns zk. Now we have a truncation function

as per defined in chapter 2.4 . Let Ĩ = {1, 2, . . . , l}. A truncation function T I : {0, 1}l → {0, 1}n,

where I ⊂ Ĩ with |I| = l − n, 1≤ n ≤ l. After choosing an arbitrary Truncation function T I

first and then choosing a random Hash function H
$←− H̄ , we can define a Hash-then-Truncate

construction H̃ : {0, 1}∗ → {0, 1}n, based on Hash function H and a truncation function T I .

More formally H̃(M) = T (H(M)).

Algorithm 2: Modified Hash-then-Truncate HtT construction

1 Initialise:z0 = IV ;T
$←− T̄ ; fc

$←− f̄
2 for any M , T (Hf,fc(M)) = h is calculated as follows: do
3 pad(M)=m1,m2,m3, . . . ,mk, where |mi| = b , i ∈ [1, . . . , k]
4 for i = 1→ (k − 1) do
5 zi = f(mi, zi−1)

6 h = T (fc(mk, zk−1))
7 Return h

Now we give an experiment where any adversary A finds the collision on given construction

following Definition 1. In experiment adversary chooses truncation function T arbitrary from T̄ .

Then adversary chooses a hash function H
$←− H̄, where H is based on compression function f

and fc. A tries to return a colliding message pair M,M ′ such that T (Hf,fc(M)) = T (Hf,fc(M ′)).

We have Event 1 and Event 2 as follows:

Definition 2. Event 1 is the event that there exists a collision pair of f(·, ·) from a message

pair (M,M ′) generated by adversary A

Definition 3. Event 2 is the event that there exists a collision pair of T (fc(·, ·)) from a message

pair (M,M ′) generated by adversary A

Following Construction as per Algorithm 2 and Definition 1, if adversary A succeeds in getting

19

two message M,M ′ as colliding pair then collision happen either due to f(·) or T (fc(·)). See

after message length padding

pad(M) = m1,m2, . . . ,mk

pad(M ′) = m′1,m
′
2, . . . ,m

′
k′

1. If M,M ′ is collision of T (Hf,fc(·)) and |M | 6= |M ′|, then always mk 6= m′k′ due to message

length padding and (mk, zk), (m
′
k′ , z

′
k′) will result in collision of T (fc(·, ·))

2. If M,M ′ is collision of T (Hf,fc(·)) and |M | = |M ′|, then

T (fc(mk, zk−1)) = H̃(M)

=H̃(M ′)

=T (fc(m
′
k′ , z

′
k′−1))

Either here (mk‖zk−1) 6= (m′k′‖z′k′−1) means we have found collision on T (fc(·))
Or (mk‖zk−1) = (m′k′‖z′k′−1) then we go more backward

f(m′k′−1, z
′
k′−2) = z′k′−1

=zk−1

=f(mk−1, zk−2)

Either here (mk−1‖zk−2) 6= (m′k′−1‖z′k′−2) means collision of f

Or (mk−1‖zk−2) = (m′k′−1‖z′k′−2) then we go more backward with zk−2 = z′k′−2 until

(mi−1‖zi−2) 6= (m′j′−1‖z′j′−2) where i ∈ [k−1, . . . , 1] and j ∈ [k′−1, . . . , 1] which will show

definitely collision on f due to equality of truncated hash output.

Precisely we can say, since A finds H̃(M) = H̃(M ′), where H̃ is based on T and Hf,fc , therefore

collision on H̃ is due to collision on H or T (H(·)).

Further H is based on f and fc. So collision on H either due to internal collision on f or fc.

If collision is not due to internal collision on f, fc, then (l − n)-bit near collision on fc output

z will lead to collision after truncation function T . If we combine overall then collision on H̃

either due to collision on f(·) or T (fc(·)). Therefore truncated collision will be only due to f or

T (fc(·)). Therefore we can write Equation 5.1 as follows

Advt−coll
H̄,T̄

(A) = Pr[T
arbiratory←−−−−− A;H

$←− H̄;M,M ′ ← A : T (H(M)) = T (H(M ′)) ∧M 6= M ′]

= Pr[Event 1 or Event 2]

≤ Pr[Event 1] + Pr[Event 2]

Advt−coll
H̄,T̄

(A) ≤ Pr[Event 1] + Pr[Event 2] (5.2)

20

Definition 4. Let B be an adversary for attacking f : {0, 1}b+l → {0, 1}l,meaning an algorithm

that outputs a pair of strings (m, z), (m′, z′). We let the advantage of B in finding collision in f

as

Advcolf (B) = Pr[(m, z), (m′, z′)← B : [f(m, z) = f(m′, z′)] ∧ [(m, z) 6= (m′, z′)]]

that measure the chance that B finds a collision.

We will represent col as collision on function and coll as collision on function family [18].

Claim 2: When adversary A succeeds in generating a colliding pair message M,M ′, then a

collision finding adversary BA can exist on f , explicitly given in proof where Pr[Event 1] =

Advcolf (BA).

Proof of Claim 2: We have an adversary A output a colliding Message pair M,M ′, for H̃(·) =

T (Hf,fc(·)) given T and Hf,fc ∈ H̄. Now we can construct a collision finding adversary BA on

f that will return ((m, z), (m′, z′)) as follows Algorithm 3.

Algorithm 3: Adversary BA
1 z0 = z′0 = IV , T ← A
2 BA chooses c randomly from set C and return c to A
3 Hf,fc is given to A
4 M,M ′ ← A
5 if |M ′| = |M | then
6 pad(M) = m1,m2, . . . ,mk and pad(M ′) = m′1,m

′
2, . . . ,m

′
k′

7 if mk = m′k′ then
8 for i = 1→ (k − 1) do
9 zi = f(mi, zi−1)

10 z′i = f(m′i, z
′
i−1)

11 for i = (k − 1)→ 1 do
12 if (m′i 6= mi) ∧ (z′i = zi) then
13 Return :((m′i, z

′
i−1), (mi, zi−1))

14 Fails;

15 else
16 Fails;

17 else
18 Fails;

In Algorithm, adversary A chooses a truncation function T ∈ T̄ and get a c ∈ C from B. Using

c, f and T , A get Hf,fc ∈ H̄ and find a message colliding pair M,M ′ on H̃ = T (Hf,fc(·)). Now

B uses M,M ′ to find the existence of collision on f . After padding M and M ′ have k and k′

number of b−bit blocks respectively assuming k′ ≤ k.

If |M | 6= |M | and mk 6= m′k′ then collision will be Event 2 and it is not the intrest case of

BA. So if |M | = |M | and mk = m′k′ then only collision will be Event 1. As k′ = k, we start

21

from i = (k − 1) to check collision is happening on f or not. If for any i ∈ [(k − 1), . . . , 1]

(m′i 6= mi) ∧ (z′i = zi) happens will result in collision on f at ((m′i, z
′
i−1), (mi, zi−1)).

So advantage of adversary B have that will give probability of Event 1 happening

Pr[Event 1] = Advcolf (BA)

Advcolf (BA) = Pr[H
$←− H̄; (m, z), (m′, z′)← BA : [f(m, z) = f(m′, z′)] ∧ [(m, z) 6= (m′, z′)]]

Claim 3:When adversary A succeed in generating a colliding pair message, then a collision

finding adversary CA can exist on T (fc(·)), explicitly given in proof where Pr[Event 2] =

Advt−coll
f̄ ,T̄)

(CA)

Proof of Claim 3: We have an adversary A that will output a Message pair M,M ′ as a

truncated-colliding pair, for a given T (Hf,fc(·)). Now we can construct collision finding an

adversary CA on fc that will return ((m, z), (m′, z′)) as follows Algorithm 4.

Algorithm 4: Adversary CA
1 z0 = z′0 = IV , T ← A and return T to CA
2 c is given to CA, where c

$←− C and return c to A
3 M,M ′ ← A
4 if |M ′| > M then
5 Swap(M,M ′)

6 pad(M) = m1,m2, . . . ,mk and pad(M ′) = m′1,m
′
2, . . . ,m

′
k′

7 for i = 1→ (k − 1) do
8 zi = f(mi, zi−1)

9 for j = 1→ k′ − 1 do
10 z′j = f(m′j , z

′
i−1)

11 if mk 6= m′k′ ∨ zk−1 6= z′k′−1 then

12 if T (fc(mk, zk−1))) = T (fc(m
′
k′ , z

′
k′−1)) then

13 Return ((mk, zk−1), (m′k′ , z
′
k′−1))

14 else
15 Fails;

16 else
17 Fails;

In algorithm, if mk 6= m′k′ then it definitely means collision on T (fc(·, ·)). If mk = m′k′ ∧ zk−1 6=
z′k′−1 then T (fc(mk, zk−1)) = T (fc(m

′
k′ , z

′
k′−1)) must happen in order to satisfy collision pair

M,M ′ of T (H(·)) given by adversary A. As explained earlier in construction c
$←− C will result

into fc
$←− f̄ . Therefore advantage of adversary C will give the probability of Event 2 as follows.

Pr[Event 2] = Advt−coll
f̄ ,T̄

(CA)

=Pr[T
arb.←−− A; fc

$←− f̄ ; (m, z), (m′, z′)← CA : [T (fc(m, z)) = T (fc(m
′, z′))] ∧ [(m, z) 6= (m′, z′)]]

We now show that if f, f̄ is collision resistant then H̄ is truncated-collision resistant family for

22

any given T ∈ T̄ .

Theorem 4. There exists algorithm B and C, explicitly given in the proof of this theorem. such

that for a Truncation family T̄ = {T : {0, 1}l → {0, 1}n} and Hash Family H̄ = {Hf,fc :

{0, 1}∗ → {0, 1}l}c∈C , given a Index set C = {c : c ∈ {0, 1}l}, a compression family f̄ = {fc :

{0, 1}b+l → {0, 1}l}c∈C , and any adversary A, adversaries BA and CA satisfy

Advt−coll
H̄,T̄

(A) ≤ Advcolf (BA) +Advt−coll
f̄ ,T̄

(CA) (5.3)

Proof. From Definition 1,

Advt−coll
H̄,T̄

(A) = Pr[T
arb.←−− A;H

$←− H̄;M,M ′ ← A : T (H(M)) = T (H(M ′)) ∧M 6= M ′] (5.4)

If Adversary A succeed then collision can be happen at either f or truncated collision on fc. So

we can use Equation 5.2

Advt−coll
H̄,T̄

(A) ≤ Pr[Event 1] + Pr[Event 2]

Using Claim 2 and Claim 3 we can say that

Advt−coll
H̄,T̄

(A) ≤ Advcolf (BA) +Advt−coll
f̄ ,T̄

(CA)

We have shown that whenever A outputs a collision of H̄, either adversary BA or CA outputs

collision on f and truncated collision on fc respectively.

Finally in this chapter we showed that we need a family of hash functions to guarantee the

security against the truncated collision-finding attackers, where advantage of adversary should

be negligible over truncation family and hash family. Without hash family, we cannot expect

any security proof for any truncation because of instantiation problem. So we gave hash domain

extension of truncated hash function along with the reduction proof. We can provide a hash

family where we can instantiate the hash family by changing constants.

23

Chapter 6

Conclusion

For practical usage of designs and there security proof, we need a hash family that can be

instantiated and then be ready for use by choosing a random hash function from that. For

creating a hash family we can use changing constant method. In similar way we can instantiate

a Hash-then-Truncation construction along with following correct order of defining hash function

and truncation function. All these basic norms can help in proposing trusty design along with

robust security.

24

Bibliography

[1] Bellare, M., Boldyreva, A., and Palacio, A. An uninstantiable random-oracle-

model scheme for a hybrid-encryption problem. In Advances in Cryptology - EUROCRYPT

2004, C. Cachin and J. Camenisch, Eds., vol. 3027 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2004, pp. 171–188.

[2] Bellare, M., and Rogaway, P. Random oracles are practical: A paradigm for designing

efficient protocols. In ACM Conference on Computer and Communications Security (1993),

D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, Eds., ACM, pp. 62–73.

[3] Berstein, D. J. A short proof of the unpresdictability of cipher block chaning. http:

//cr.yp.to/antifrogery/easycbc-20050109.pdf.

[4] Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V. On the indifferentiability

of the sponge construction. In EUROCRYPT (2008), N. P. Smart, Ed., vol. 4965 of Lecture

Notes in Computer Science, Springer, pp. 181–197.

[5] Biham, E., and Shamir, A. Differential cryptanalysis of des-like cryptosystems. In

CRYPTO (1990), A. Menezes and S. A. Vanstone, Eds., vol. 537 of Lecture Notes in

Computer Science, Springer, pp. 2–21.

[6] Black, J. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash

function. In FSE (2006), M. J. B. Robshaw, Ed., vol. 4047 of Lecture Notes in Computer

Science, Springer, pp. 328–340.

[7] Canetti, R., Goldreich, O., and Halevi, S. The random oracle methodology, revis-

ited. J. ACM 51, 4 (July 2004), 557–594.

[8] Chang, D., and Nandi, M. Improved indifferentiability security analysis of chopmd hash

function. In FSE (2008), K. Nyberg, Ed., vol. 5086 of Lecture Notes in Computer Science,

Springer, pp. 429–443.

[9] Coron, J.-S., Dodis, Y., Malinaud, C., and Puniya, P. Merkle-damg̊ard revisited:

How to construct a hash function. In CRYPTO (2005), V. Shoup, Ed., vol. 3621 of Lecture

Notes in Computer Science, Springer, pp. 430–448.

25

http://cr.yp.to/antifrogery/easycbc-20050109.pdf
http://cr.yp.to/antifrogery/easycbc-20050109.pdf

[10] Damg̊ard, I. A design principle for hash functions. In CRYPTO (1989), G. Brassard,

Ed., vol. 435 of Lecture Notes in Computer Science, Springer, pp. 416–427.

[11] Lamberger, M., Mendel, F., Rijmen, V., and Simoens, K. Memoryless near-collisions

via coding theory. Des. Codes Cryptography 62, 1 (2012), 1–18.

[12] Lamberger, M., and Rijmen, V. Optimal covering codes for finding near-collisions. In

Selected Areas in Cryptography (2010), A. Biryukov, G. Gong, and D. R. Stinson, Eds.,

vol. 6544 of Lecture Notes in Computer Science, Springer, pp. 187–197.

[13] Lamberger, M., and Teufl, E. Memoryless near-collisions, revisited. Inf. Process. Lett.

113, 3 (2013), 60–66.

[14] Leurent, G. Time-memory trade-offs for near-collisions. IACR Cryptology ePrint Archive

2012 (2012), 731.

[15] Maurer, U. M., Renner, R., and Holenstein, C. Indifferentiability, impossibility

results on reductions, and applications to the random oracle methodology. In TCC (2004),

M. Naor, Ed., vol. 2951 of Lecture Notes in Computer Science, Springer, pp. 21–39.

[16] Nandi, M. A simple and unified method of proving indistinguishability. In INDOCRYPT

(2006), R. Barua and T. Lange, Eds., vol. 4329 of Lecture Notes in Computer Science,

Springer, pp. 317–334.

[17] Rivest, R. The md5 message-digest algorithm, 1992.

[18] Rogaway, P. Formalizing human ignorance. In VIETCRYPT (2006), P. Q. Nguyen, Ed.,

vol. 4341 of Lecture Notes in Computer Science, Springer, pp. 211–228.

[19] Wikipedia. Data encryption standard. http://en.wikipedia.org/wiki/Data_

Encryption_Standard.

26

http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard

	Introduction
	Motivation

	Definitions and Construction
	Indifferentiability
	Random Oracle Model
	View
	Truncation function
	Hash-then-Truncate Construction

	Indifferentiability Proof of HtT Construction
	Collision Attacks on HtT Construction in the RO model
	In Case when Any Truncation Function is allowed
	In Case when Only Continuous Truncation Function is allowed

	Secure Instantiation of HtT construction
	General Approach
	Construction

	Conclusion

