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ABSTRACT

Next-generation applications such as augmented reality, virtual reality, teleop-

erated driving, and video streaming, along with a wide spectrum of real-time

monitoring and actuation applications, are expected to challenge the current In-

ternet on at least two fronts. Many of these applications desire high throughput

and reliability at low end-to-end path latencies. To better support them, we must

optimize the joint use of the diversity of high link rate wireless access technologies

commonly available at end-user devices. In addition, there is a burgeoning class of

applications that requires the availability of fresh information (for example, sensor

measurements and actuation commands in IoT applications) at the destination.

The current Internet treats such applications no differently than it does those that

care for throughput. In this thesis, we address the challenges posed by these dis-

tinct requirements of high throughput and high freshness via innovations at the

transport layer of the networking stack.

We address the challenge posed by applications that require high end-to-

end throughputs via a novel cross-layer scheduler, QAware, for Multipath TCP

(MPTCP). The QAware scheduler uses local queue occupancy information for ev-

ery access network available on a user device in addition to the typically used

end-to-end round-trip delay estimates. This results in a more efficient use of the

available interfaces and considerable gains in aggregate throughput compared to

other MPTCP schedulers for a varied set of applications and over heterogeneous

access networks.

For real-time monitoring and remote sensing applications, we address the chal-

lenge of enabling freshness, as quantified by the metric of age-of-information (AoI)

over an end-to-end Internet path. Specifically, we propose and detail the Age

Control Protocol (ACP) and its improved version called ACP+. Both use ACKs

to maintain an estimate of the number of unacknowledged packets in the system
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along with the end-to-end RTT. This, together with an estimate of the time-

average age of updates is used to determine an ACP source’s update rate. We

study the efficacy of ACP and ACP+ using extensive simulations and real-world

experiments over the Internet. To gain further insight into age control, we also

empirically compare ACP+ with a mix of loss-based, delay-based, and hybrid con-

gestion control algorithms used by TCP. TCP tries to fill the network pipe using

estimates of bottleneck rate and baseline RTT, but these estimates may not shed

as much light on the age-optimizing update rate.

In our experiments over paths in the Internet, ACP+ utilizes only a fraction

of the bottleneck link rate for achieving low age. When the path had a wireless

access as its first hop that was the bottleneck link, the path beyond the access,

with links much faster than the access, was the constraining factor with regards

to minimizing age over the end-to-end path. Age being optimized at update rates

much lower than typical bottleneck access link rates has interesting consequences

for end-to-end flows sharing the wireless access to send updates to the cloud.

We experimented with a large number of ACP+ sources (up to 80 sources and

fixed physical layer rates of 6, 12 and 24 Mbps) sharing a WiFi access point to

send their updates to a cloud server over the Internet. We show that ACP+ allows

sources to share the access well. When the wireless access isn’t the constraining

factor, given the low age minimizing rate over the end-to-end path, all sources

send at the minimizing rate. As the number of sources increases, the resulting

congestion over the WiFi access has ACP+ gradually reduce the rate of updates

per source in a manner such that the sources together fully utilize the WiFi ac-

cess link rate. While fully utilizing the access like TCP, ACP+, however, keeps

age much lower than TCP congestion control algorithms. Even the packet retry

rates because of collisions over WiFi are much lower than for TCP. In fact, TCP

algorithms are unsuitable for age control, which we demonstrate using simulations

and real-experiments in this thesis. On the other hand, ACP+’s behavior, as de-

termined using controlled simulations, is in line with what would be expected of

a good age control strategy enabling sharing of access amongst multiple sources.

User devices are expected to support a mix of applications, some of which

may care for high throughput and others for the freshness of information. We
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conclude this thesis with a study on the coexistence of ACP+ and TCP flows

sharing an end-to-end Internet path over a WiFi access. In line with expectation,

ACP+ flows coexisting with TCP flows remain unaffected when assigned a higher

Differentiated Services Code Point (DSCP) priority when all flows originate in the

same device. However, the gains from prioritization vanish when the flows are

instead sharing a contended wireless access.
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Chapter 1

Introduction

The Internet has changed tremendously since its inception in the 1980s. Com-

munication technologies that provide users access to the Internet have evolved

rapidly over the last couple of decades. Not only do we have a wide variety of ac-

cess technologies, for example, cellular and WiFi, but access technologies have also

shown rapid improvements in link rates they support. Wireless access technologies

promise data rates of Gbps and low latencies of the order of milliseconds. The

Internet backbone can support hundreds of Gbps of traffic. In fact, researchers in

Japan recently broke the data transfer record by achieving petabyte/s speeds over

fiber optic network [3]. In addition, a diversity of access technologies are available

within end-user devices. The user devices come equipped with multiple network

interfaces that, in principle, allow them to utilize heterogeneous access networks

simultaneously [4].

The support for faster end-to-end paths over the Internet has coincided with

an increase in demand for next-generation applications such as augmented reality

Connected
Factories

Intelligent
Transport

Smart
Homes

Entertainment

Remote
Servers

Voice/Video
Calling

Figure 1.1: Applications with different QoS requirements connected to the Inter-
net over different access networks.
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(AR), virtual reality (VR), teleoperated driving, video streaming along with a

wide spectrum of real-time monitoring and actuation applications that are often

categorized under the Internet-of-Things (IoT) or cyber-physical systems. Fig-

ure 1.1 illustrates the diverse applications that typically share the Internet. These

user applications have come far from traditional file transfer and voice/video call-

ing. The global market share of these next-generation applications is expected to

increase manifold by 2027 [5].

Not only has the sheer variety of applications burgeoned, but they also come

with a diverse set of Quality-of-Service (QoS) requirements. Figure 1.2 illustrates

differences in the throughput-delay requirements of a variety of current applica-

tions [6, 7, 8, 9, 10]. Content delivery applications, including video streaming, so-

cial media, and large file downloads, require high throughputs between the content-

hosting server and the client for their satisfactory operation [11]. Also, while these

applications desire reliable data transfer, they are often delay-tolerant [12]. Mean-
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while, applications such as AR, VR, interactive gaming, and video calling require

low end-to-end delays and high throughputs between the user and the compute

server to maintain human immersiveness [13].

On the other hand, real-time monitoring and actuation, which spans a wide

variety of applications including smart energy, health monitoring, smart homes,

and weather monitoring, desires sensed information to be refreshed ever so often

such that it is as fresh as possible at the monitoring facility in the cloud. The

same applies to actuation commands sent on the reverse path from the monitor-

ing facility to controlled devices. Such monitoring is often highly packet error

resilient and may not impose very high throughput requirements (for example, if

the sensed updates and actuation commands lead to small data payloads). As

shown in Figure 1.1, all these next-generation applications desiring widely differ-

ent QoS operate over shared network paths where coexisting traffic from multiple

applications can result in significant performance degradation [14].

Transport protocols are responsible for supporting end-to-end communication

between interacting end hosts. They help applications achieve their operational re-

quirements while masking the underlying dynamic network conditions from them,

essentially acting as a glue between the applications and the diverse networks they

may use for communication. These protocols can provide features like reliability,

flow control, congestion control that enables sharing of networks among many

geographically distributed applications, and in-order delivery over an end-to-end

path [15]. For instance, congestion control prevents user applications from flooding

the underlying network, which could lead to significantly large packet drops and

delays. Effective transport can improve the performance of different applications.

The majority of applications that use the Internet have relied primarily on

two transport protocols – Transmission Control Protocol (TCP) [15] and User

Datagram Protocol (UDP) [16], both of which were designed almost four decades

ago. In fact, today, most applications use one of the two protocols, even though

they might not be ideal to meet the QoS requirements of the applications [17].

As such, we identify two challenges in effectively supporting the operation of such

applications on current networks. First, given that many such applications desire

high throughput and reliability at low end-to-end path latencies, we must optimize
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the use of the diversity in wireless access technologies available at end-user devices.

Second, to support the burgeoning class of applications that rely on the availability

of timely information, innovation in transport protocol is necessary to support

end-to-end information freshness inherently.

In this thesis, we aim to bridge the gap between the existing transport layer

solutions and the requirements of emerging Internet applications, given the avail-

ability of diverse communication technologies.

1.1 Research Contributions

We address the challenge posed by applications that require high end-to-end

throughputs via a novel cross-layer scheduler, QAware, for Multipath TCP (MPTCP).

Unlike the state-of-the-art MPTCP schedulers, QAware achieves significantly higher

throughputs for a varied set of content delivery applications and over heteroge-

neous access networks.

Additionally, for information freshness desiring applications, in this thesis, we

also address the challenge of enabling freshness, as quantified by the metric of

age-of-information, over an end-to-end Internet path. Specifically, we propose

the Age Control Protocol (ACP) and its improved version ACP+. We detail

its performance over real-world Internet paths and shared wireless access. We

compare and contrast it with many scheduling algorithms used over end-to-end

paths by Transmission Control Protocol (TCP). Last but not the least, we consider

the coexistence of ACP+ and TCP, as user devices will often support a mix of

applications, some of which care for high throughput and others for the freshness

of information.

1.1.1 QAware: A Cross-Layer Approach to MPTCP Scheduling

As discussed earlier in this chapter, content delivery applications desire an end-

to-end connection with high throughput and high reliability between a client and

a server. For example, the recommended average throughput required to support

a 4K video stream is ⇡14Mbps [18] and can become as high as ⇡ 40Mbps for
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streaming a 360� video [7]. Content delivery applications are also relatively delay-

tolerant. TCP is the best fit for these applications as it efficiently fills the network

pipes and ensures delivery of all the data since these applications are loss-sensitive.

As the end hosts like smartphones, laptops and servers are often equipped with

multiple access interfaces such as Ethernet, WiFi and 3G/4G, it is possible to ag-

gregate the bandwidth of multiple parallel network paths between communicating

devices. Such a configuration is quite suitable for Multipath TCP (MPTCP) [19].

MPTCP, a standardized extension to TCP, allows end hosts to utilize multiple

parallel paths for simultaneous data transfer. It achieves robustness and resilience

to link failures and provides seamless connection handovers over different network

interfaces [20]. MPTCP adds a scheduling layer over existing TCP connections

between end hosts and routes application packets to one of the subflows based on

a decision parameter. Existing schedulers typically use estimates of end-to-end

path properties, such as round-trip-delay and bottleneck bandwidth, for making

the scheduling decisions [21, 22]. In this thesis, we show that scheduling decisions

can be significantly improved by also using readily available local information

about the occupancy of device driver queues.

We propose QAware [23], a novel cross-layer approach for scheduling packets

across all available MPTCP subflows. QAware’s design is motivated by our ex-

perimental findings that combining local device driver queue occupancy with the

traditional end-to-end delay measurements yields better throughput performance.

We found that as a particular flow is used more, its end-to-end delay increases

gradually, making it less attractive to use. However, the traditional, purely end-

to-end path delay estimation-based approaches react very slowly to these changes.

QAware leverages queue theoretical insights to create a scheduling policy that com-

bines end-to-end delay estimates with local queue occupancy information. This

results in more efficient use of the available interfaces and considerable gains in

aggregate throughput. We design and evaluate QAware’s performance through

simulations and also through real experiments, comparing it to existing state-of-

the-art schedulers. We make QAware open-source and publicly available at [24].
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1.1.2 Enabling Delivery of Fresh Information Over the Internet

While innovations over MPTCP allow applications to maximize throughput across

available paths, it does not help the performance of real-time monitoring appli-

cations that desire information freshness much more than throughput or reliabil-

ity. In fact, none of the existing transport protocols like TCP, UDP, RTP and

QUIC [25, 26], which support various applications like file transfer, video stream-

ing, and voice applications, can support the requirements of such applications

that desire freshness over an end-to-end Internet path. We measure freshness at

a monitor using the metric of age. Age at the monitor is the time elapsed since

the generation time of the most recently generated update that the monitor has

received. When the monitor receives a more recently generated update, the age at

the monitor is reset to the time elapsed between the generation of the update and

its reception. In the absence of updates, the age at the monitor increases linearly

with time.

To this end, we propose the Age Control Protocol (ACP) [27, 28, 29, 30], a

novel end-to-end transport protocol that sits on top of UDP in the networking

stack and enables end-to-end freshness in a network transparent manner. ACP

adapts the rate of updates from a source to changes in the network, with the

goal of minimizing the age of information, which is the time average of age, at a

monitor. ACP does not make any assumptions about the network and does not

expect any information from any other layer in the networking stack. ACP at

the source node uses ACK (acknowledgment) packets sent to it from the ACP at

the monitor to maintain an estimate of average delays over the end-to-end path

using the round-trip time (RTT). In addition, ACP at the source maintains an

estimate of the time-average count of update packets that have been sent by it but

not yet acknowledged by the monitor. The above two estimates, together with an

estimate of the time-average age of updates at the monitor, are used by the source

ACP to update the rate of sending updates over the end-to-end path.

In the thesis, we detail ACP’s age control algorithm. We study its efficacy

using extensive simulations and real-world experiments over the Internet. To gain

further insight into age control, we also empirically compare ACP with a mix of

loss-based, delay-based, and hybrid congestion control algorithms used by TCP.
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While, as expected, state-of-the-art TCP (hybrid) congestion control attempts to

keep a number of bytes given by the product of the bottleneck rate and baseline

RTT in the network pipe, the bottleneck rate and the baseline RTT may not

shed as much light on the age optimizing rate of updates. To exemplify from

our experiments, when TCP sends segments over an end-to-end path consisting

of a 24 Mbps 802.11a link followed by an intercontinental path over the Internet,

it saturates the 802.11a link, which has the bottleneck rate for the path. Age,

however, is optimized at a much lower rate of about 1 Mbps. It turns out that the

intercontinental path, much faster than the 802.11a link is, in fact, the constraining

factor with respect to the achievable age over the end-to-end path, likely because

of the other traffic flows that utilize the intercontinental path. We also observe

that at the age optimal rate, depending on the network scenario, a source may

send multiple updates per round-trip-time (RTT) or may send an update over

many RTT. In general, the bottleneck link rate and the baseline (updates sent in

a stop-and-wait manner) RTT may not shed light on the age optimal rate.

Age being optimized at low update rates has consequences with respect to

multiple ACP end-to-end flows sharing wireless access to send updates to recipients

in the cloud. We experimented with a large number of sources (up to 80 WiFi

nodes in a high node density setting and a fixed physical layer rate of 6 Mbps,

where each node was a source using ACP) sharing an access point to send their

updates to a cloud server over the Internet. We show that ACP allows sources

to share the access well. When the wireless access isn’t the constraining factor,

given the low age minimizing rate over the end-to-end path, all sources send at

the minimizing rate. As the number of sources increases, the resulting congestion

over the WiFi access has ACP gradually reduce the rate of updates per source in

a manner such that the sources together fully utilize the WiFi access link rate.

While fully utilizing the access like TCP, ACP, however, keeps age much lower

than TCP congestion control algorithms. Even the packet retry rates because

of collisions over WiFi are much lower than for TCP. Last but not the least,

using controlled simulations, we show that ACP’s sharing behavior is in line with

what would be expected of a good age control strategy enabling sharing of access

amongst multiple sources.

We conclude the thesis with a study on the co-existence of ACP and TCP flows
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when the flows share an end-to-end Internet path over a shared WiFi access [14].

We found that ACP performance in co-existent flows can be improved by assigning

a higher Differentiated Services Code Point (DSCP) priority to the ACP flows.

However, the gains from prioritizing ACP flows vanish quickly with an increase in

contention over the shared WiFi multiaccess. ACP is publicly available at [31].

1.1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 proposes QAware, a

novel cross-layer approach for MPTCP scheduling. We find that the MPTCP

scheduling decision can be significantly improved by incorporating readily available

local information from the device driver queues in the decision-making process.

QAware uses this local queue buffer occupancy information along with the end-

to-end delay estimate (RTT). We evaluate and compare QAware’s performance

to existing schedulers through simulations and real experiments. In Chapter 3,

we describe our novel transport layer protocol, namely the Age Control Protocol

(ACP) and ACP+, that enables timely delivery of IoT updates to monitors in

a network-transparent manner. We detail the protocol and the proposed control

algorithm. We demonstrate the efficacy of our proposed protocols using extensive

simulations and real-world experiments constituting up to 80 clients and a server in

the cloud. Next, in Chapter 4, we conduct an in-depth, real-world study on ageing

of IoT updates over an end-to-end Internet path using a mix of loss-based, delay-

based and hybrid TCP congestion control algorithms. Our evaluation considers a

core network and contended and shared wireless access network. Lastly, we study

the impact of prioritizing the age-sensitive traffic in the presence of coexisting

throughput hungry traffic in Chapter 5. We find that prioritizing ACP+ has low

gains age-wise in the presence of contention. We conclude this thesis and discuss

future research directions in Chapter 6.
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Chapter 2

QAware: A Cross-Layer Approach to MPTCP

Scheduling

2.1 Introduction

The next-generation applications such as augmented reality (AR), virtual reality

(VR), teleoperated driving and video streaming demand very high throughputs

and low delays for their optimal operation. While improvements in communica-

tion technologies have increased data rates and reduced packet latencies, there

are still many challenges. There have been attempts to cater to the QoS re-

quirements of such emerging applications by designing improved TCP congestion

control protocols that adapt to network [32, 33, 34], or by adding reliability and

faster connection capability to UDP through QUIC [25, 26]. These improvements,

however, aim to maximize the end-to-end performance over a single path. If

the link characteristics over a path deteriorate, because of packet drops or ex-

cess queueing, there are little such solutions can do to improve the performance.

To this end, Multipath TCP (MPTCP), standardized in early 2013, allows de-

vices with multiple network interfaces, e.g., smartphones with WiFi and LTE, to

seamlessly form multiple parallel connections to exploit the full network capacity.

MPTCP offers increased robustness and resilience, as well as seamless handovers

and it has been proposed to be also used in datacenters [35] and opportunistic

networks [36]. Due to the performance benefits of MPTCP compared to TCP,

several known organizations have incorporated the protocol within their products

and services and its usage in the Internet has been steadily increasing [37, 38].

Apple uses MPTCP in its iOS devices to enhance the user experience surrounding

its system services, e.g., Siri, Music, Maps, Wi-Fi Assist [39]. In 2019, Apple

provided APIs to third-party developers for making use of MPTCP in non-system

iOS applications. Korea Telecom, in partnership with Samsung, uses MPTCP

to provide Gigabit speeds over Wi-Fi and LTE to its customers [40]. In Febru-
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ary 2020, MPTCPv1 was upstreamed to Linux and is now available to all users

running Linux 5.6 or newer [41].

Figure 2.1 shows the network stack of MPTCP-compliant machine. Applica-

tions utilizing MPTCP can send their data over multiple TCP subflows, where

each subflow is associated with a unique network interface. TCP packets sched-

uled over a subflow wait in the device driver queue of the corresponding network

interface before transmitting them by the network interface card (NIC). The choice

of network path for sending application data is made by the MPTCP scheduler

block and depends on the scheduling policy.

Scheduling between the multiple connections is an obvious research problem

and recently multiple proposals [42], [43], [44], [45] have emerged to improve the

default minSRTT MPTCP scheduler [21]. Typically, these schedulers use a trans-

port layer estimate of the end-to-end bandwidth/delay (for example, the smoothed

round-trip time) for each TCP subflow as an input to the scheduling policy that

decides how the application data must be assigned to the multiple subflows. How-

ever, we found that as a particular flow is used more, its end-to-end delay increases

gradually, making it less attractive. But the traditional, purely end-to-end-based

estimation reacts very slowly to these changes.

This observation acts as our main motivation to design a novel scheduler for

MPTCP, QAware, which departs from the previous scheduling proposals in a fun-

damental way. While we also use the end-to-end delay estimates, like current
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schedulers, QAware additionally considers the number of packets in the device

driver queue of the sender. This modification is motivated by our findings, which

we discuss further in Section 2.3. Additionally, utilizing queue occupancy informa-

tion allows QAware to use all available subflows optimally, especially when their

properties are highly heterogeneous. Existing proposals like [42, 45, 46], treat the

flows as separate entities and typically do not fully use all the flows. QAware

optimizes transmission over all the flows and gets a significantly higher aggregate

throughput, with no loss of performance in any situation.

The key contributions summarized in this chapter are:

1. We propose QAware, a novel cross-layer approach to scheduling packets

across all available MPTCP subflows. The design is motivated by our ex-

perimental findings; combining local device driver queue occupancy with the

traditional end-to-end delay measurements yields far superior throughput

performance.

2. We model available MPTCP subflows as multiple parallel service facilities

that can service data provided by an application. This enables us to leverage

queueing theoretical insights to create a scheduling policy that combines end-

to-end delays and device driver queue occupancy.

3. Our simulations and real-world experimentation over a wide range of ap-

plications compare QAware with the default MPTCP scheduler – minimum

SRTT (minSRTT) [21], Earliest Completion First (ECF) [45], Delay Aware

Packet Scheduler (DAPS) [44], and Blocking Estimation-based scheduler

(BLEST) [42].

4. We have implemented QAware in MPTCP v0.93 and have made our code

available [24].

2.2 Related Work

The default MPTCP scheduler (minSRTT) allocates traffic on the fastest subflow

(one with the smallest smoothed RTT) with available congestion window at each

packet arrival. Several researchers have proposed improvements to the default
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minSRTT scheduler. Most approaches leverage the difference in RTT of the sub-

flows [47, 48]. Others have also considered additional TCP-layer parameters such

as SSThresh, congestion window, selective ACK and receiver buffer size along with

RTT [49, 50, 51].

In [46], the authors introduce an additional sender queue to schedule packets

on a subflow even when it is unavailable. Delay Aware Packet Scheduler (DAPS)

[44] generates a schedule for sending future segments over subflows based on their

RTT ratios. However, this makes DAPS unable to react promptly to network

changes due to pre-computed long schedules. Blocking-Estimation-based MPTCP

Scheduler (BLEST) [42] aims to reduce head-of-line blocking by waiting for the

faster subflow despite the space availability in the congestion window of the slower

subflow. ECF [45] follows a similar principle as that of BLEST, but while BLEST

aims to reduce out-of-order delivery, assuming that the send buffer is a bottleneck,

ECF aims to minimize completion time.

Researchers have also proposed schedulers that improve MPTCP performance

for specific application use-cases. Decoupled Multipath Scheduler (DEMS) [43]

aims to reduce fixed-size file delivery time over MPTCP by estimating available

bandwidth on subflows. However, the authors rely on exact knowledge of data

chunk boundary for efficient scheduling. In [52], authors leverage application layer

information for flow scheduling decisions to provide delay-resilient video stream-

ing in MPTCP. MP-DASH [53] exploits path information from streaming client

to improve DASH video delivery. [54] labels WiFi subflow as active/inactive for

data transmission based on a minimum desired signal strength. However, unlike

other cross-layer approaches which optimize specific application performance over

MPTCP, QAware taps into lower layer information to improve performance for all

MPTCP traffic. Furthermore, as shown later in the chapter, QAware’s unique de-

sign of leveraging hardware queue occupancy enables it to swiftly adapt to varying

network conditions and co-existent network applications sharing bottleneck paths.

12
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Figure 2.2: Loading (Mbps) and RTT(s) of the subflows. The paths taken by the
subflows and the network are shown in Figure 2.3.

2.3 Motivating Use of Cross-Layer Information

Figures 2.2a and 2.2b respectively show loading (bits offered per second) and the

corresponding estimates of round-trip times (RTT) of two available subflows by the

default MPTCP scheduler, minSRTT. They were obtained from controlled testbed

experiments and show how the scheduler optimizes over two TCP subflows using

non-interfering end-to-end paths. The network topology used in the experiment

is shown in Figure 2.3. The last-mile links were WiFi using 802.11g, and the rest

were 1 Gbps Ethernet. Neither flow dropped any packets during the length of the

experiment.

In the experiment, the default scheduler only utilizes ⇡ 60% of available ag-

gregated bandwidth. Observe (Figure 2.2a) that the default scheduler, more often

than not, prefers to send packets on one flow over the other. However, this by it-

self is not responsible for the low utilization of the available bandwidth. We argue

that the default scheduler loads a flow deemed to be the best amongst available

flows for undesirably long intervals. This is because the scheduler uses only the

SRTT of the flows, which is a delayed end-to-end transport layer measurement,

for its scheduling decisions.

Consider the RTT of flow 1 in Figure 2.2b. The RTT captures in a lagged

manner the impact of scheduling decisions on the subflow. The consistently high

values (see interval 12s to 14s in the figure) correspond to an earlier interval of time
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Figure 2.3: Topology used in experiments and simulations.

when the subflow was being assigned packets by the scheduler while it was heavily

loaded. That is, the device queue corresponding to the subflow had previously

many packets queued at the NIC.

The sharp dip in values (around time 14s in the figure) captures the transition

from when the flow stopped being assigned packets due to high RTT to when

it was again assigned packets. These assigned packets arrive at a rather lightly

loaded flow and see much smaller RTT, which causes the dip. The small RTT

that follows the dip corresponds to packets being assigned to the flow while it was

still lightly loaded. As the subflow continues to be assigned packets, the same

is reflected, albeit in a delayed manner, in increasing RTT (seconds 16 to 18 in

Figure 2.2b) that eventually peaks as it did during 12� 14 seconds. By the time

the resulting large RTT makes the scheduler switch to the other flow, the scheduler

has already spent an undesirably long time injecting packets to a loaded subflow.

In summary, the scheduling decisions that led to high device queue occupancy

and an increase in RTT were made using values of RTT that corresponded to an

earlier interval when the flow was less loaded. So while a device queue (local to the

MPTCP sender and used by the MPTCP flow) is loaded with packets, MPTCP

scheduler remains oblivious to the same. Instead, it waits to be informed via a

delayed end-to-end RTT-based feedback mechanism. In the process, it loses out

on many opportunities of scheduling packets to the other better flow, one that is

lightly loaded.

The above observations motivate QAware. It uses the device queues’ occupancy

and RTT estimates to use all available flows more efficiently.
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Figure 2.4: Queueing abstraction of an end-to-end MPTCP connection with two
subflows.

2.4 QAware Scheduler

We consider a simplified queue-theoretic abstraction to capture the essentials of the

scheduling problem, with the goal of maximizing end-to-end throughput. Specif-

ically, we model each subflow by a service facility. Figure 2.4 illustrates the ab-

straction for an MPTCP end-to-end connection that uses two TCP flows. The

abstraction allows us to apply results from analysis of multi-queue systems[55].

In our queueing abstraction, packets generated by an application arrive in a

queue that models the TCP send buffer (Figure 2.1). Packets in this queue are

assigned to one of the available service facilities in a first-come-first-serve (FCFS)

manner. Each facility consists of a finite queue and a server. Packets inside a

facility are serviced in an FCFS manner. The queue in a service facility is the

device driver queue (Figure 2.1) that is used by the TCP subflow corresponding

to the facility. The server includes the source host NIC, access network used by the

subflow, intermittent nodes in the core and the destination host (all layers of the

TCP/IP stack). When a packet is assigned to a service facility, it may find other

packets waiting for service in the facility’s queue. This packet must wait for all

the other waiting packets to finish service before it enters the server of the facility.

The total time a packet spends in a facility, often referred to as its system time,
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includes the time it waits in the facility’s queue and the time it spends getting

service.

2.4.1 Origins of the QAware scheduler

Many analytical works on queueing systems have looked at scheduling customer/-

packet arrivals to parallel service facilities [55, 56, 57, 58]. For many general arrival

processes and service time distributions, when all servers are stochastically iden-

tical, the optimal policy is to choose a service facility with the minimum number

of packets in its queue [55, 56, 58], that is it minimizes the average packet system

time. For the case of non-identical servers, a scheduling policy that assigns a packet

to a service facility that minimizes the conditionally expected system time of the

packet, conditioned on the knowledge of the number of packets waiting for service

in the facility, shows good performance [55]. Our QAware scheduler uses the policy

in MPTCP setting. Previous research has demonstrated that considering low-layer

queue occupancy can improve MPTCP congestion control performance [59].

Consider K service facilities indexed 1, . . . , K. Let facility k have a service rate

of µk. The two facilities in Figure 2.4 have service rates of µ1 and µ2. Let nk(t)

be the number of packets waiting for service in facility k at time t. The policy

assigns a packet to a service facility k⇤ given by

k⇤ = argmin
k

nk(t) + 1

µk
. (2.1)

Note that 1/µk is the expected service time of a packet in facility k. Thus, the

conditional waiting time of a packet that enters such a facility is nk(t)/µk, which

is the sum of the expected service times of the nk(t) packets currently waiting for

service in the facility. In addition, we add the term 1/µk to nk(t)/µk, to include

the expected service time of the packet to be scheduled. Thus, the expression

being minimized in (2.1) is the conditional expected system time of a packet if it

were to be assigned to facility k.
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2.4.2 Adapting scheduling policy to multiple end-to-end TCP subflows

The number nk(t) of packets in the queue of service facility k is the number of

packets waiting in the device driver queue of the corresponding subflow k and can

be obtained. However, we must estimate the average service time 1/µk of subflow

k.

Consider the ith packet arrival. Let tsi be the time the packet is assigned to a

subflow. Let tai be the time that a TCP ACK acknowledges receipt of the packet.

The round-trip time of the packet is RTTi = tai � tsi . Note that this includes the

time packet waits in the device driver queue of its assigned subflow before it starts

service and the time it spends in service. This is the system time of the packet.

Let Wi
1 be the time the packet i waits in the queue. This time can be calculated

locally at the MPTCP sender. The time Xi that the packet spends in service

begins when the packet enters the NIC for transmission and ends when a TCP

ACK for the packet is received. Given Wi and RTTi, we have Xi = RTTi �Wi.

The estimate of the service time is updated on receipt of a TCP ACK. Let Ŝk be

the current estimate of the average service time of facility k. On receipt of a TCP

ACK for packet i, we update

Ŝk = ↵Ŝk + (1� ↵)Xi, (2.2)

where 0 < ↵ < 1 applies appropriate weights to the last estimate of the average

and the current service time. We use ↵ = 0.8 in this work which is also the

smoothing factor for TCP congestion control 2 . The corresponding estimate of

the service rate is 1/Ŝk. At time t, QAware schedules to the TCP subflow k⇤ that

satisfies

k⇤ = argmin
k

(nk(t) + 1)Ŝk. (2.3)

Finally, note that since Xi = RTTi �Wi, we have Ŝk = RTT �cW , where RTT
1
For simplicity of exposition we ignore the time a TCP ACK may have to wait in a queue

before being sent to the TCP layer.
2
We examined for other values of ↵. This did not impact the overall performance of QAware.
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Algorithm 1 QAware Algorithm
1: Available Subflows SF2 {1, . . . , n}
2: minService  0xFFFFFFFF
3: selectedSubflow  NONE

/*The function below will return best subflow for packet Pk*/
4: for each subflow 2SF do
5: nk  queueSize(subflow)
6: if nk 6= 0 then
7: �t  sampling time
8: �packets  packets dequeued in �t
9: Wk  [1/(�packets

�t )]nk

10: else
11: Wk  0
12: end if
13: cW  ↵cW + (1� ↵)Wk

14: Ŝk = [RTT�cW ]
15: TSk = (nk + 1)Ŝk

16: if TSk < minService then
17: minService TSk

18: selectedSubflow  subflow
19: end if
20: end for

and cW are the exponentially weighted moving averages, with coefficient ↵, of

packet round-trip times and device driver queue waiting times, respectively, for

the subflow k. In our real implementation, summarized in (Algorithm 1), we use

RTT estimates that are readily available for each subflow and we calculate an

approximation of cW based on information available from device driver queues.

2.5 Implementation

We implement QAware as a modular scheduler using MPTCP v0.93 based on

Linux kernel v4.9.60 [60]. The code is available at [24].

As shown in Section 2.4, QAware’s functioning depends on the current estimate

of network interface (NIC) queue occupancy. Conventionally, the NIC queues were

either implemented within the hardware itself or as part of the driver, which made

NIC queues invisible to the Kernel and its occupancy extremely hard to estimate.

However, since Linux Kernel > v3.3.0, several NIC queue management protocols,

known as Byte Queue Limits (BQL), have been introduced as part of the Kernel

code to resolve starvation and latency at the NIC [61]. The BQL algorithms push

18



queueing abstractions from hardware drivers to specific data structures, which can

be accessed from within the Linux kernel3.

Our implementation closely follows the Algorithm 1. We first tap the network

device address mapped to MPTCP socket via struct dst_entry to access DQL4

as follows:

dql = netdev_get_tx_queue(dst->dev)->dql

We further utilize DQL entry to estimate current NIC (netdevice) queue occu-

pancy of each MPTCP subflow.

qSize = {dql->num_queued - dql->num_completed}

Here, num_queued and num_completed refer to the total number of bytes

queued in the network device and the number of bytes successfully transmitted by

the device, respectively.

Apart from NIC queue estimates, we utilize the smoothed mean RTT estimates

in microseconds via srtt_us accessible through struct tcp_sock. We ensure

that our implementation is in line with guidelines mentioned in RFC 6182 [19].

2.6 Evaluation Methodology

We evaluate QAware’s performance through extensive simulations and real-world

experiments in the following sections. We model our evaluation methodology

to mimic real MPTCP network configurations and application use-cases. In the

majority of our evaluation, we model a realistic network scenario (as illustrated in

Figure 2.3) wherein a client leverages two distinct network paths to connect to a

distant server.

For simulations, we implement QAware on the ns-3 network simulator. We

compare QAware with default minSRTT, and Earliest Completion First (ECF) [45]
3
At the time of QAware’s implementation and experimentation, only PCIe-based ethernet

drivers supported BQL [62].
4
In Linux, BQL is implemented as Dynamic Queue Limit (DQL).
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scheduler for constant bit rate (CBR), file downloads, and web browsing workloads.

The simulations help us zoom into the workings of the schedulers and evaluate

QAware over various workloads and network path configurations. Our evaluation

setup and results are described in Section 2.7.

We further examine and validate the performance gains obtained by QAware

in simulated environments via real network experiments. We utilize our Kernel

implementation summarized in Section 2.5. The experiments were performed in a

university data center and considered a variety of workloads such as video stream-

ing, web file downloads, etc. We compare QAware with several state-of-the-art

schedulers such as minSRTT, Delay Aware Packet Scheduler (DAPS) [44], Block-

ing Estimation based scheduler (BLEST) [42], and ECF [45]. The details of our

experiments and consequent results are discussed in Section 2.8. All our results

are averaged over multiple runs.

2.7 Simulation Setup and Results

We simulated network topologies of the kind shown in Figure 2.3. For all simula-

tions, the links between the access points and the backbone switch and between

the backbone switch and the server were modeled as wired links with rates 30

Mbps and 50 Mbps, respectively. The client is connected to the two access points

over wireless links with physical layer (PHY) rates in the range 6 � 12 Mbps.

These two wireless links provided the two network paths to send application data.

Both subflows use independent congestion control.

We simulated the following applications : i) constant bit rate (CBR) data from

low to high rates, ii) file transfer for sizes of 10� 30 MB, iii) web browsing of top

10 out of the US Alexa-100 websites, and iv) CBR with one of the paths being

shared by UDP traffic. For the applications, we simulated the following network

configurations : i) both wireless links have the same rate, ii) one link is much faster

than the other, and iii) one link drops TCP packets.

Comparisons of QAware with ECF and minSRTT5 demonstrate the benefits
5
In the simulation, the scheduler assigns packets over independent TCP streams. We do not

incorporate other MPTCP functionality such as re-transmission handler and path manager.
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Figure 2.5: Subflows F1 and F2 use links with PHY rates of 6 Mbps.

that QAware accrues because it optimally utilizes both network paths.

2.7.1 Constant Bit Rate Traffic

Access paths with no packet errors. Figure 2.5 shows the TCP throughputs

obtained by the schedulers for increasing CBR rates. Each wireless link was con-

figured with a PHY rate of 6 Mbps. This results in homogeneous network paths.

On average, QAware achieves percentage throughput gains of about 40% over the

rest. Further, note that all schedulers use both subflows. However, unlike the

others, QAware utilizes both the subflows almost equally for the entire simula-

tion time for all the CBR loads. To better understand their behaviors, consider

Figure 2.6, Figure 2.7 and Figure 2.8, which shows the variation of throughput,

device driver queue occupancy, and smoothed RTT, as a function of time, for a 2

second interval for minSRTT, ECF and QAware scheduler respectively. The CBR

rate was set at 12 Mbps. From the subflow throughputs and queue occupancy, it

is clear that QAware uses both subflows almost simultaneously. ECF uses just one

subflow for most of the interval, and while minSRTT uses both flows during the

interval, it switches between them very infrequently. Both minSRTT and ECF

rely on the delayed feedback provided by SRTT and so end up scheduling packets

to one subflow for longer intervals than QAware. Essentially, they switch flows

when SRTT of the subflow in use exceeds that of the other subflow. In addi-

tion, ECF, by design, declines scheduling opportunities to a subflow with a larger

RTT and prefers to wait for faster subflows. This explains the reason for using

one flow for a longer duration than minSRTT scheduler. In minSRTT and ECF,
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Figure 2.6: minSRTT Scheduler
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Figure 2.7: ECF Scheduler
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Figure 2.8: QAware Scheduler

subflows experience swings in SRTT. The SRTT increases linearly while it is the

subflow of choice. This increase eventually makes the subflow less desirable than

the other and the scheduler switches to the other flow, which, due to the current

low occupancy in the corresponding device queue, experiences low SRTT.6

Figure 2.9 shows throughputs obtained by the CBR application when the PHY

rate of one of the wireless links is 6 Mbps and the other is 12 Mbps. While all

schedulers equally utilize the subflow using the 12 Mbps link, QAware also utilizes

the subflow mapped on the 6 Mbps link. On average, QAware achieves throughput

gains of about 50% over the rest.

Access paths with packet errors. Figure 2.10 shows the throughput ob-

tained when one subflow suffers a packet loss rate of about 10�2. Both wireless
6
Our observations with respect to QAware and minSRTT for three homogeneous paths are

similar.
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Figure 2.9: Subflow F1 and F2 use links with PHY rate of 12 Mbps and 6 Mbps
respectively.

Figure 2.10: Per-flow throughput comparison for different CBR rates where sub-
flow F1 experiences a packet drop rate of 10�2.

links have PHY rates of 6 Mbps. Upon detecting packet loss, the congestion

window of the subflow decreases based on TCP congestion avoidance algorithm,

which limits the number of packets that can be sent on that subflow. Even in this

situation, QAware is able to exploit both subflows better and achieves about 32%

and 15% improvement over minSRTT and ECF respectively. When the wireless

links are 12 Mbps and 6 Mbps with an error on the slower link, the corresponding

gains are 53% and 6% (figure not shown due to space limitations). Since ECF is

biased toward using the faster path, it performs almost as well as QAware when

the error-free path has a faster wireless link. On the other hand, while minSRTT

uses the error-prone path better than ECF, it is unable to make good use of the

error-free path as the other two schedulers.
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Figure 2.11: File download completion times when both subflows use wireless link
with PHY rate of 6 Mbps.

2.7.2 Fixed Size File Transfer

Figure 2.11 shows the download completion time achieved by the three schedulers

for five different file sizes ranging from 10MB to 30MB. Both wireless links were set

to a PHY rate of 6 Mbps. Observe that QAware obtains the least download time

for all the file sizes. This is explained by its ability to utilize both the subflows for

data transfer effectively. The performance gap increases proportionally with file

size. Overall, QAware achieves 35% and 30% reduction in average download time

over minSRTT and ECF, respectively.

2.7.3 Web-browsing

To simulate web browsing, we deployed objects of 10 of the top U.S. Alexa-100

websites, summarized in Table 2.1, in our simulated server. The client consecu-

tively downloaded relevant objects of each website from the server at a variable

rate between 10Mbps to 30Mbps chosen in a probabilistic manner. We compared

scheduler performance for when both wireless links are 6 Mbps and when one of the

Website News Tech Radio Shopping Finance

#Objects 202 67 66.2 52.2 39.7
Size (KB) 3821.2 2152.2 2453 1000.7 1988.1

Website Wiki Market Social Movie Travel

#Object 28 49 69 39 21
Size (KB) 601.2 2032.8 1700.2 845.7 2000.4

Table 2.1: Web objects for traffic generation
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Figure 2.12: Download completion time for 10 websites from top U.S. Alexa-100
websites.

links is 12 Mbps. QAware achieves a significant reduction in download completion

time for both configurations, specifically up to 35% for the former (see Figure 2.12)

and up to 28% for the latter (figure not shown due to space limitations). On the

other hand, ECF and minSRTT perform similarly.

2.7.4 Multiple Applications

In current computing environments, end hosts typically run multiple applications

which must share the interfaces available at the host for network transfers. An

ideal MPTCP scheduler must efficiently adapt to bandwidth competition on bot-

tleneck links in such coexisting environment. We used the following setup to

evaluate the impact of such sharing on the schedulers. The PHY rates of the

wireless links were set to 9 and 6 Mbps. A CBR application generated data for a

10-second interval and used both the MPTCP subflows. The results are shown in

Figure 2.13.

Starting at 4 seconds, we introduced traffic from a UDP application that used

the network path with the 9 Mbps wireless link. The greyed area in the figure

denotes the time duration when both MPTCP and UDP applications were active

at the client. The UDP traffic lasted for 4 seconds. Before the start of the UDP

traffic, only QAware scheduler was utilizing both available subflows. Once the

UDP application starts, the device queue of the 9 Mbps wireless link saturates.

QAware, however, quickly adapts to it and reduces the traffic being sent on the

corresponding subflow. All the while, it keeps utilizing the subflow over the slower

wireless link. On the other hand, both minSRTT and ECF need to wait for several

25



6

6

6

Figure 2.13: Per-flow throughputs when the interface used by subflow F1 sees
UDP traffic for 4 seconds (greyed).

RTT updates for the impact of UDP traffic on queue wait times to get reflected

in the SRTT of the subflow. Lastly, unlike the other schedulers, QAware is also

quick to detect the availability of the subflow after the 8-second mark, which is

when the UDP application stops its transfer. Overall, QAware leads to gains of

about 40% over minSRTT and about 50% over ECF.

2.8 Real World Setup and Results

We next examine QAware’s performance in real network environments. Figure 2.14

shows our test network topology a University data center in Finland. We assign

two similar machines with 16 core AMD Opteron processors, 8 GB DDR2 RAM

running Ubuntu 16.04 LTS with latest stable MPTCP implementation (version

0.93, based on Linux kernel v4.9.60 [60]) as client and server. The implementation

uses the default congestion control algorithm (coupled OLIA). Both machines are

interconnected via two separate Gigabit Ethernet interfaces. One Ethernet con-

nection is routed through the internal University of Helsinki network and therefore

encounters background traffic from University staff. It has an end-to-end RTT of

>1ms. The other connection is over Top-of-Rack (ToR) switch with RTT <1ms.

We compare QAware with the following schedulers: i) minSRTT, ii) Delay

Aware Packet Scheduler (DAPS) [44] iii) Blocking Estimation based Scheduler
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Figure 2.14: Real network testbed in university datacenter.

Delay (ms) 1 40 80 160
Bandwidth (Mbps) 950 600 300 200

Table 2.2: Configurations for Bulk Traffic Experiments

(BLEST) [42], and iv) Earliest Completion First (ECF) [45] 7. We first compare

scheduler performance for an application generating bulk traffic. This workload

provides a qualitative validation of the results obtained in Section 2.7. We further

present scheduler performance for DASH video streaming and web file downloads.

We used the Linux Traffic Control system (tc) in combination with a Hierarchical

Token Bucket (HTB) packet scheduler using Statistical Fair Queuing (SFQ) for

network shaping. We flushed out the TCP cache between runs to ensure that each

run is independent of the next. All our results are averaged over ten runs.

2.8.1 Bulk Traffic

In this section, we compare QAware’s performance with other schedulers for a

high application transfer rate over both subflows. We performed experiments with

different settings of delays along the two paths. The setting includes i) default

path delays (< 1ms and > 1ms), ii) delay shaping to introduce 40ms of delay

along one path and 80ms along the other, and iii) 40ms along one path and 160ms

along the other. Path bandwidths corresponding to the different delays are stated

in Table 2.2.
7
DAPS, BLEST, and ECF are implemented on MPTCP v0.89 whereas the default minSRTT

and QAware are based on MPTCP v0.93. We could not implement QAware on MPTCP v0.89

as it is based on Linux v3.18 which does not support BQL. Please see [60] for exact changes

between the two versions.
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Figure 2.15: Bulk Traffic throughputs for different access path delays.

Figure 2.15a compares average throughput obtained by different schedulers for

default path delays. QAware achieves more than 45% increase in throughput com-

pared to DAPS, BLEST and ECF. QAware also provides an improvement of 37%

over the default minSRTT scheduler. Interestingly, the minSRTT scheduler out-

performs DAPS, BLEST, and ECF in the experiment. We attribute minSRTT’s

efficiency to two reasons. Firstly, DAPS, BLEST and ECF schedulers have been

designed to improve MPTCP performance for heterogeneous delays along avail-

able network paths. In fact, BLEST and ECF go as far as not sending an available

packet on a slower subflow and waiting for the faster subflow to become available.

When subflows witness similar delays (as in the current case), the default scheduler

places more packets on each path than DAPS, BLEST, and ECF. Secondly, based

on the more recent MPTCP kernel, minSRTT enjoys several code improvements

and optimizations.

For when the path delays are 40 and 80ms, QAware yields an average through-

put of 310 Mbps which is an improvement of about 10% over the default scheduler

and DAPS and 5% over ECF and BLEST (shown in Figure 2.15b). As presented

in Figure 2.15c, all schedulers perform quite similarly to each other as all try

to fully utilize the lower delay subflow when path delays are 40 and 160ms. In

this case, QAware still manages to achieve an improvement of about 7% over the

default scheduler and DAPS, and about 4% over BLEST and ECF.
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Figure 2.16: Average bitrate in video streaming for different path bandwidths.

Bandwidth (Mbps) 2.4 2 1.6
Delay (ms) 10 20 30

Table 2.3: Configurations for Video Streaming Experiments

2.8.2 Video Streaming

Streaming is a dominant Internet use case and is widely adopted by content

providers such as Netflix and YouTube [63]. We set up a DASH server and host

Big Buck Bunny, available from a public dataset, on it [64]. We configured the

streaming server to provide five representations of the video from 240p to 1080p

(same as most content providers). We re-encoded each representation in at least

three different bitrates with overall available bit rates from 128Kbps to 3.8Mbps

using H.264/MPEG-4 AVC codec. The streaming client employs an Adaptive Bit

Rate (ABR) algorithm to download video segments according to the available net-

work bandwidth. We throttled our testbed bandwidth to match the bitrates of

DASH encodings. Table 2.3 shows the average delay measured at client-side for

each bandwidth configuration. We evaluate and compare QAware’s performance

with other schedulers for when the two subflows i) have bandwidths of 2 Mbps,

ii) have bandwidths of 2 Mbps and 1.6 Mbps, and iii) have bandwidths of 2.4

Mbps and 1.6 Mbps.

From Figure 2.16, we observe that QAware improves the performance of stream-

ing applications in all network conditions. The performance improvement is more

significant in scenarios where the path bandwidths are similar (8% and 5% with

respect to default and 10% and 6% with respect to ECF, in Figures 2.16a and

2.16b respectively) as QAware utilizes available paths more efficiently than other
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Figure 2.17: Normalized download completion time for different file sizes (smaller
is better).

schedulers. DAPS consistently gives the worst performance out of all schedulers

due to its strong dependence on the RTT ratio of two subflows.

2.8.3 Web File Download

We now evaluate QAware’s performance for simple web downloads using curl. We

set up an HTTP server using Apache 2.2.22 and hosted varying file sizes of range

128KB to 500MB. We eliminate application connection time by only consider-

ing the transport-level time in the overall download completion time observed at

the client. Figure 2.17 presents the average completion time normalized to the

maximum achieved value by the scheduler for given file size.

For small web transfers (<1MB) all schedulers perform quite similar to each

other (it took 0.002s to download a 128 KB file by QAware vs. 0.003s by min-

SRTT). This is because for small data transfers, the bandwidth of the primary

subflow is more than capable of single-shot transmission, and thus, MPTCP rarely

switches to the secondary subflow. Therefore, until the performance of the pri-

mary subflow degrades during transfer, the choice of the scheduler does not affect

the performance for small files. The default and DAPS scheduler achieve lower

completion times for medium file sizes (⇡10/100 MB) in comparison to BLEST

and ECF. This is likely because BLEST and ECF add additional delays by waiting

for the faster subflow to become available. For large files (500 MB), BLEST and

ECF utilize faster subflow more efficiently than default and DAPS, thus achieving

a lower completion time. QAware consistently outperforms other schedulers and
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realizes up to a 20% decrease in completion time for medium file sizes (0.709s by

QAware vs. 0.895s by ECF for 100 MB file) and 30% for large file downloads

(3.46s by QAware vs. 4.93s by minSRTT for 500 MB).

2.9 Chapter Summary

We design QAware, a novel cross-layer MPTCP scheduler that combines hard-

ware device queue occupancy and TCP RTT for efficient scheduling decisions. We

evaluated QAware using extensive simulations and real network experiments for

various network configurations and applications such as bulk data transfers, web

browsing, web file downloads, and video streaming. Comparisons with various

state-of-the-art schedulers such as DAPS, BLEST, and ECF were used to demon-

strate the efficacy of QAware. It outperformed other schedulers in all network

configurations and workloads we tested. Further, we show that QAware quickly

adapts to co-existing applications and sudden variations in network conditions. We

have open-sourced QAware’s implementation as a modular scheduler for MPTCP

v0.93 Linux release.
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Chapter 3

Age Control Protocol: An End-to-End Transport

Protocol Provisioning Freshness Over the Internet

3.1 Introduction

The availability of inexpensive embedded devices with the ability to sense and

communicate has led to the proliferation of a relatively new class of real-time mon-

itoring applications such as health care, smart homes, transportation, and natural

environment monitoring. Figure 3.1 shows the typical end-to-end connectivity of

such applications. IoT devices are deployed alongside users in home/offices/cities

and connect to the network via a gateway over a wireless last-mile (for example,

WiFi). Such devices repeatedly sense various physical attributes of a region of

interest, for example, traffic flow at an intersection. This results in a device (the

source) generating a sequence of packets (updates) containing measurements of

the attributes. A more recently generated update contains a more current mea-

surement. These updates are communicated over the network to a remote monitor

that processes them for analytics and/or to provide any actuation that may be

required. Majority of the IoT applications are cloud-backed, with the processing

of measurements taking place in a remote cloud datacenter. Many such IoT sub-

systems can co-exist in the same physical space and use a shared and contended

Cloud

IoT Services

Network

ISP Network

GatewayIoT Devices

Core NetworkAccess Network

Figure 3.1: End-to-end network topology of cloud-based IoT services. IoT devices
connect over a shared wireless network (Access Network) that connects
to the Internet backbone via a gateway. These devices communicate
updates via the Core Network to applications and services that operate
in cloud datacenter infrastructures.



network which is managed by the serving ISP in the region (access network shown

in Figure 3.1). The rest of the connection to the cloud is the backhaul core network

and is widely known to be highly managed and reliable with significant bandwidth

capacity [65].

For monitoring applications, it is desirable that freshly sensed information

is available at monitors. However, as has been observed [2, 66, 67, 68], simply

generating and sending updates at a high rate over the network is detrimental

to this goal. Freshness at a monitor is optimized by the source smartly choosing

an update rate as a function of the end-to-end network conditions. Freshness at

the monitor suffers when a too small or a too large rate of updates is chosen by

the source. Monitoring applications may achieve a low update packet delay by

simply choosing a low rate at which the source sends updates. This, however,

may be detrimental to freshness, as a low rate of updates can lead to a large age

of sensed information at the monitor, simply because updates from the source are

infrequent. On the other hand, a large rate of updates would have the monitor

receive a steady stream of updates at a high rate. However, each update would

have a high age as a result of it having experienced a large network delay.

The requirement of freshness is not akin to requirements of other pervasive real-

time applications like voice and video. For these applications, the rate at which

packets are sent is determined by the codec being used. Often, such applications

adapt to network conditions by choosing an appropriate code rate. These applica-

tions, while resilient to packet drops to a certain degree, require end-to-end packet

delays to lie within known limits and would like small end-to-end jitter. For in-

stance, Real-time Transport Protocol (RTP) which is commonly used for delivering

audio and video over IP, uses rate control mechanisms such as SCReAM [69] and

GCC [70] to adapt the sending rate at available link capacity with minimum pos-

sible delay. More so than voice/video, monitoring applications are exceptionally

loss resilient and they don’t benefit from the source retransmitting lost updates.

Instead, the source should continue sending new updates at its configured rate.

At the other end of the spectrum are applications like that of file transfer

that require reliable transport and high throughputs but are delay tolerant. Such

applications use the Transmission Control Protocol (TCP) for end-to-end delivery
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Figure 3.2: Interplay of the networking metrics of delay (solid line), throughput
(normalized by service rate) and age. Shown for a M/M/1 queue [1]
with service rate of 1. The age curve was generated using the analysis
for a M/M/1 queue in [2].

of application packets. As we show in Section 3.3, the congestion control algorithm

of TCP, which optimizes the use of the network pipe for throughput, and TCP’s

emphasis on guaranteed and ordered delivery is detrimental to keeping age low.

Unlike TCP, User Datagram Protocol (UDP) ignores dropped packets and delivers

packets to applications as soon as they are received. While this makes it desirable

for age-sensitive applications; sending updates at a fixed rate incognizant of the

underlying network can be, in fact, disastrous for age of the updates.

Figure 3.2 broadly captures the behavior of the metrics of delay and age as a

function of throughput. Under light and moderate loads when packet dropping is

negligible, throughput (average network utilization) increases linearly in the rate of

updates. This leads to an increase in the average packet delay. Large packet delays

coincide with large average age. Large age is also seen for small throughputs (and

corresponding small rate of updates). At a low update rate, the monitor receives

updates infrequently, and this increases the average age (staleness) of its most

fresh update. Finally, observe that there exists a sending rate (and corresponding

throughput) at which age is minimized.

Considering the growing need for applications to support fresh delivery of up-

dates over the network and the inability of existing transport solutions to support

the freshness requirement, we propose a novel transport layer protocol, namely the

Age Control Protocol (ACP), which in a network-transparent manner regulates

the rate at which updates from a source are sent over its end-to-end connection

to the monitor. The goal is to keep the average age of sensed information at the
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monitor to a minimum, where the age of an update is the time elapsed since its

generation by the source. Based on feedback from the monitor, ACP adapts rate

to the perceived congestion in the Internet. Consequently, ACP also limits con-

gestion that would otherwise be introduced by sources sending to their monitors

at unnecessarily fast update rates.

Our specific contributions include the following.

1. We demonstrate the inability of TCP to transport age-sensitive update pack-

ets over the Internet. We investigate the impact of different TCP configu-

rations, such as congestion window and segment sizes on the age of updates

at a monitor.

2. We detail the Age Control Protocol and how it interfaces with the TCP/IP

networking stack.

3. We define the age control problem over the Internet. We intuit a good age

control behavior using a mix of analysis and simulations. This leads us to

a detailed description of the control algorithm of ACP. We also describe

ACP+, which modifies ACP to achieve significantly better age control over

a shared wireless access with high contention, which results from multiple

end-to-end paths between sources and monitors sharing the same access.

4. We provide a detailed evaluation of ACP using a mix of simulations (con-

trolled, easier to introduce very high contention, however, only a few hops)

and real-world experiments over the Internet (WiFi access with many end-to-

end paths sharing it, resulting in low to moderately high contention, followed

by many hops over the very fast Internet backhaul).

5. We shed light on age control over end-to-end paths in the current Internet.

We observe that the age optimizing rate over an end-to-end path that has

a source send updates over a shared WiFi access followed by the Internet

backhaul to a monitor in the cloud is much smaller than the bottleneck link

rate of the path, which is the link rate of the WiFi access. The age optimiz-

ing rate stays at about 0.5 Mbps for WiFi access rates of 6 - 24 Mbps and

backhaul rates as high as 200 Mbps. In fact, it is the age optimizing rate
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over the path in the absence of a first WiFi hop. Turns out that the inter-

continental path, much faster than the WiFi link, is in fact the constraining

factor with respect to the achievable age over the end-to-end path. We also

observe that at the age optimal rate, depending on the network scenario, a

source may send multiple updates per round-trip-time (RTT) or may send an

update over many RTT. In general, the bottleneck link rate and the baseline

(updates sent in a stop-and-wait manner) RTT may not shed light on the

age optimal rate. This in contrast to, the maximum end-to-end throughput,

which the transport control protocol (TCP) would like to achieve, given by

the product of the two quantities.

3.2 Related Work

The desire and need for timely updates arises in many fields, including, for ex-

ample, vehicular updating [71], real-time databases [72], data warehousing [73],

and web caching [74, 75]. In fact, the status update systems are very different

than the data communication systems. While all packets are equally important

in the latter, a packet is useful in the status update system only if it carries fresh

information. The age of information (AoI) as a metric for freshness or timeliness

has received a lot of attention in the past few years. While we try to discuss a

few important works here, we also direct the reader to the recent surveys for more

details on the literature [76, 77].

For sources sending updates to monitors, the AoI metric was first analyzed

for elementary queues in [2]. To evaluate AoI for a single source sending updates

through a network cloud [66] or through an M/M/k server [67, 68], out-of-order

packet delivery was the key analytical challenge. A related (and generally more

tractable) metric, peak age of information (PAoI), was introduced in [78] and

properties of PAoI have also been studied in [79] for an FCFS M/G/1 multiclass

queue and various M/M/1 queues that support preemption of updates in service

or discarding of updates that find the server busy [78, 80]. Packet deadlines

are found to improve AoI in [81]. AoI in the presence of errors is evaluated in

[82] and for memoryless arrivals to a two-state Markov-modulated service process

in [83]. Distributional properties of the age process have also been analyzed for
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the D/G/1 queue under first-come-first-served (FCFS) [84], as well as single server

FCFS and LCFS queues [85]. [86, 87] analyzes the general queueing systems of

the form G/G/1/1. There have also been studies of energy-constrained updating

[88, 89, 90, 91, 92, 93, 94, 95, 96].

There have also been substantial efforts to evaluate and optimize age for mul-

tiple sources sharing a communication link [97, 98, 99, 100, 101, 102, 103]. In

particular, near-optimal scheduling based on the Whittle index has been explored

in [97, 104, 105]. When multiple sources employ wireless networks subject to in-

terference constraints, AoI has been analyzed under a variety of link scheduling

methods [106, 107]. Analyzing the AoI for parallel server systems where updates

are sent from a single source to a single-hop parallel server network was considered

in [66, 68, 108]. The scheduling of updates for parallel server systems was consid-

ered in [109, 110, 111, 112, 113]. AoI analysis for multiple hop and multiple source

networks has also received attention in [110, 114]. Notably, when updates arrive

out of order, optimality properties of a Last Generated First Served (LGFS) service

are found in [115]. Scheduling of a finite number of update packets in the presence

of wireless interference for age optimization is an NP-hard problem [116]. [117]

discusses the scheduling policies for minimizing peak and average age of informa-

tion in wireless networks with time-varying links and under general interference

constraints. [118, 107] take the effect of channel state information into account

and propose an age-based scheduling policy.

There are works that design a sampling policy as a method to reduce the

AoI [89, 90]. One such approach is the zero-wait policy that aims to achieve max-

imum throughput and minimum delay, but it fails to minimize the AoI, especially

when the transmission times are heavy tail distributed [89, 90]. The optimal sam-

pling policy in such cases is a threshold one, either deterministic or randomized.

[119, 120] discusses the optimal threshold for real-time networks where both the

forward and backward paths have random delays. Sampling policies for unreliable

transmissions are considered in [121, 122]. More recently, [123] proposes an opti-

mal sampling strategy to optimize data freshness for unreliable transmissions with

random forward and backward channels. The proposed policy is based on a ran-

domized threshold strategy where the source waits until the expected estimation

error exceeds a threshold before sending a new sample in case of successful trans-
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mission. Otherwise, the source sends a new update immediately without waiting.

All these policies are some variation of stop and wait. Our work highlights the

need to model multi-hop settings, wherein multiple updates could be queued at

any time, to understand optimizing age over modern wide-area IP networks.

While the early work [71] explored practical issues such as contention window

sizes, the subsequent AoI literature has primarily been focused on analytically

tractable simple models. Moreover, a model for the system is typically assumed

to be known. Our objective has been to develop end-to-end updating schemes that

perform reasonably well without assuming a particular network configuration or

model. This approach attempts to learn (and adapt to time variations in) the

condition of the network links from source to monitor. This is similar in spirit to

hybrid ARQ-based updating schemes [124, 125, 126] that learn the wireless chan-

nel. [125] uses the reinforcement techniques in unknown network environments.

The chief difference is that hybrid ARQ occurs on the short timescale of a single

update delivery while ACP learns what the network supports over many delivered

updates.

Age in Systems. [127, 128] presents the first emulation study of age in wireless

links. There is limited systems research on ageing of information and its opti-

mization in real-world networks [129, 27, 130, 28, 131, 29, 132, 133]. In [129],

authors discuss the age of information (AoI) in real-networks where a source is

sending updates to a monitor over a selection of access networks including WiFi,

LTE, 2G/3G and Ethernet. The authors observe a "U-shaped" AoI vs. arrival

rate curve similar to the theoretical results for various non-preemptive queueing

systems. The key takeaway from that work is the need for an AoI optimizer that

can adapt to changing network topologies and delays. Our work, which we detail

in the chapter, proposes the Age Control Protocol (ACP) [27, 28, 131], which is

a transport-layer solution that works in an application-independent and network-

transparent manner. ACP attempts to minimize the age of information of a source

at a monitor connected via an end-to-end path over the Internet. In [29], we pro-

pose a modification to ACP and also compare it with other state-of-the-art TCP

congestion control algorithms used in the Internet. In [132], WiFresh, a MAC and

application-layer solution to ageing of updates over a wireless network is proposed.

While both [28] and [132] look at ageing of updates on the Internet, they differ
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in their approach and scope. ACP is a transport layer solution that works by

adapting the source generation rate without any specific knowledge of the access

network or any network hop to the monitor, whereas, WiFresh is a scheduling

solution designed for WiFi networks.

In [130, 134], the authors discuss the issues and challenges associated with

measuring AoI in real networks, including synchronization, selection of hardware,

and choice of transport protocol and draw insights for AoI aware transmission

protocols. A detailed analysis of all the age related practice works on real networks

can be found in [135].

In summary, unlike other works, ACP aims to provide a practical age control

algorithm that aims to minimize the average age in a multi-source and multi-hop

network where there is no prior information about the network and no control

over the other sources that have access to it.

3.3 Age Sensitive Update Traffic over TCP

Before we delve into the problem of end-to-end age control, we demonstrate why

TCP as a choice of transport protocol is unsuitable for age-sensitive traffic. Specif-

ically, we show that the congestion control mechanism of TCP, together with its

goal of guaranteed and ordered delivery of packets, can lead to a very high age

at the monitor, in comparison to when UDP is used, for a wide range of utiliza-

tion of the network by the traffic generated by the source, and not just when the

utilization is high.

We simulated a simple network consisting of a source that sends measurement

updates to a monitor via a single Internet Protocol (IP) router. The source node

has a bidirectional point-to-point (P2P) link of rate 1 Mbps to the router. A

similar link connects the router to the monitor. The source uses a TCP client

to connect to a TCP server at the monitor and sends its update packets over the

resulting TCP connection. We will also compare the obtained age with when UDP

is used instead.

Retransmissions and In-order Delivery: Figure 3.3a illustrates the impact of
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Figure 3.3: Impact of packet errors, receiver delays and packet size on age when
using TCP and UDP.

packet error on TCP. A packet was dropped independently of other packets with

a probability of 0.1. The figure compares the average age at the monitor and the

average update packet delay, which is the time elapsed between the generation of

a packet at the source and its delivery at the monitor when using TCP and UDP.

On using TCP, the time average age achieves a minimum value of 0.18 seconds

when the source utilizes a fraction 0.2 of the available 1 Mbps to send update

packets. This is clearly much larger than the minimum age of ⇡ 0.01 seconds at

the utilization of ⇡ 0.8 when UDP is used.

The large minimum age when using TCP is explained by the way TCP guar-
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antees in-order packet delivery to the receiving application (monitor). It causes

fresher updates that have arrived out-of-order at the TCP receiver to wait for

older updates that have not yet been received, for example, because of packet

losses in the network. This can be seen in Figure 3.3b that shows how large

measured packet delays coincide with a spike in the number of bytes received by

the monitor application. The large delay is that of a received packet that had to

undergo a TCP retransmission. The corresponding spike in received bytes, which

is preceded by a pause, is because bytes with fresher information received earlier

but out of order are held by the TCP receiver till the older packet is received post

retransmission. Unlike TCP, UDP ignores dropped packets and delivers packets to

applications as soon as they are received. This makes it desirable for age-sensitive

applications. As we will see later, ACP uses UDP to provide update packets with

end-to-end transport over IP.

TCP Congestion Control and Small Packets: Next, we describe the impact

of small packets on the TCP congestion algorithm and its impact on age. This

is especially relevant to a source sending measurement updates as the resulting

packets may have small application payloads. Note that no packet errors were

introduced in simulations used to make the following observations. Observe in

the upper plot of Figure 3.3c that the 500 byte packet payloads experience higher

age at the monitor than the larger 536 byte packets. The reason is explained by

the impact of packet size on how quickly the size of the TCP congestion window

(CWND) increases. The congestion window size doesn’t increase till a sender

maximum segment size (SMSS) bytes are acknowledged. TCP does this to op-

timize the overheads associated with sending payload. Packets with fewer bytes

may thus require multiple TCP ACK(s) to be received for the congestion window

to increase. This explains the slower increase in the size of the congestion window

for 500 byte payloads seen in Figure 3.3c. This causes smaller packets to wait

longer in the TCP send buffer before they are sent out by the TCP sender, which

explains the larger age in Figure 3.3c.
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Figure 3.4: The ACP end-to-end connection.

3.4 The Age Control Protocol

The Age Control Protocol resides in the transport layer of the TCP/IP networking

stack and operates only on the end hosts. Figure 3.4 shows an end-to-end connec-

tion between two hosts, an IoT device and a server over the Internet. A source

opens an ACP connection to its monitor. Multiple sources may connect to the

same monitor. ACP uses the unreliable transport provided by the user datagram

protocol (UDP) for sending updates generated by the sources. This is in line with

the requirements of fresh delivery of updates. Retransmissions make an update

stale and also compete with fresh updates for network resources.

The source ACP appends a header to an update from a source. The header

contains a timestamp field that stores the time the update was generated. The

source ACP suggests to the source the rate at which it must generate updates. To

be able to calculate the rate, the source ACP must estimate network conditions

over the end-to-end path to the monitor ACP. This is achieved by having the

monitor ACP acknowledge each update packet received from the source ACP by

sending an ACK packet in return. The ACK contains the timestamp of the update

being acknowledged. The ACKs allow the source ACP to keep an estimate of the

age of sensed information at the monitor. An out-of-sequence ACK, which is an ACK

received after an ACK corresponding to a more recent update packet, is discarded by

the source ACP. Similarly, an update that is received out-of-sequence is discarded

by the monitor. This is because the monitor has already received a more recent
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Figure 3.5: Timeline of an ACP connection. I marks the beginning of the ini-
tialization phase. C denotes the control algorithm (Algorithm 2
or 3) executed when a new control epoch begins. U is executed
when an ACK is received and updates Z,RTT, and T .

measurement from the source.

Figure 3.5 shows a timeline of a typical ACP connection. For an ACP connec-

tion to take place, the monitor ACP must be listening on a previously advertised

UDP port. The ACP source first establishes a UDP connection with the monitor.

This is followed by an initialization phase during which the source sends an update

and waits for an ACK or for a suitable timeout to occur, and repeats this process

for a few times, with the goal of probing the network to set an initial update

rate. Following this phase, the ACP connection may be described by a sequence

of control epochs. The end of the initialization phase marks the start of the first

control epoch. At the beginning of each control epoch, ACP sets the rate at which

updates generated from the source are sent until the beginning of the next epoch.

a1 a2
d1

a3 a4
d3 d2 d4

a5
d5

t

�(t)

a6
d6

Age

Figure 3.6: A sample function of the age �(t). Updates are indexed 1, 2, . . .. The
timestamp of update i is ai. The time at which update i is received
by the monitor is di. Since update 2 is received out-of-sequence, it
doesn’t reset the age process.
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3.5 The Age Control Problem

We will formally define the age of sensed information at a monitor. To simplify

the presentation, in this section, we will assume that the source and monitor are

time synchronized, although the functioning of ACP doesn’t require the same. Let

z(t) be the timestamp of the freshest update received by the monitor up to time

t. Recall that this is the time the update was generated by the source.

The age at the monitor is �(t) = t � z(t) of the freshest update available at

the monitor at time t. An example sample function of the age stochastic process

is shown in Figure 3.6. The figure shows the timestamps a1, a2, . . . , a6 of 6 packets

generated by the source. Packet i is received by the monitor at time di. At time

di, packet i has age di � ai. The age �(t) at the monitor increases linearly in

between reception of updates received in the correct sequence. Specifically, it is

reset to the age di�ai of packet i, in case packet i is the freshest packet (one with

the most recent timestamp) at the monitor at time di. For example, when update

3 is received at the monitor, the only other update received by the monitor until

then was update 1. Since update 1 was generated at time a1 < a3, the reception

of 3 resets the age to d3 � a3 at time d3. On the other hand, while update 2 was

sent at a time a2 < a3, it is delivered out-of-order at a time d2 > d3. So packet 2

is discarded by the monitor ACP and age stays unchanged at time d2.

We want to choose the rate � (updates/second) that minimizes the expected

value limt!1 E[�(t)] of age at the monitor, where the expectation is over any

randomness introduced by the network. Note that in the absence of a priori

knowledge of a network model, as is the case with the end-to-end connection over

which ACP runs, this expectation is unknown to both source and monitor and

must be estimated using measurements. Lastly, we would like to dynamically

adapt the rate � to nonstationarities in the network.

3.6 Good Age Control Behavior and Challenges

ACP must suggest a rate � updates/second at which a source must send fresh

updates to its monitor. ACP must adapt this rate to network conditions. To
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build intuition, let’s suppose that the end-to-end connection is well described by

an idealized setting that consists of a single FCFS queue that serves each update

in constant time. An update generated by the source enters the queue, waits

for previously queued updates, and then enters service. The monitor receives an

update once it completes service. Note that every update must age at least by the

(constant) time it spends in service, before it is received by the monitor. It may

age more if it ends up waiting for one or more other updates to complete service.

In this idealized setting, one would want a new update to arrive as soon as

the last generated update finishes service. To ensure that the age of each update

received at the monitor is the minimum, one must choose a rate � such that new

updates are generated in a periodic manner with the period set to the time an

update spends in service. Also, update generation must be synchronized with

service completion instants so that a new update enters the queue as soon as the

last update finishes service. In fact, such a rate � is age minimizing even when

updates pass through a sequence of Q > 1 such queues in tandem [1]. The update

is received by the monitor when it leaves the last queue in the sequence. The rate

� will ensure that a generated packet ages exactly Q times the time it spends in

the server of any given queue. At any given time, there will be exactly Q update

packets in the network, one in each server.

Of course, the assumed network is a gross idealization. We assumed a series

of similar constant service time facilities and that the time spent in service and

instant of service completion were known exactly. We also assumed a lack of any

other traffic. However, as we will see further, the resulting intuition is significant.

Specifically, a good age control algorithm must strive to have as many update

packets in transit as possible while simultaneously ensuring that these updates avoid

waiting for other previously queued updates.

Before we detail our proposed control method, we will make a few salient

observations using analytical results for simple queueing models and simulation

results that capture stochastic service and generation of updates. These will help

build on our intuition and also elucidate the challenges of age control over a priori

unknown and likely non-stationary end-to-end network conditions.
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3.6.1 Analytical Queueing Model for Two Queues

We will consider two queueing models. One is the M/M/1 FCFS queue with an

infinite buffer in which a source sends update packets at a rate � to a monitor

via a single queue, which services packets at a rate µ updates per second. The

updates are generated as a Poisson process of rate � and packet service times are

exponentially distributed with 1/µ as the average time it takes to service a packet.

In the other model, updates travel through two queues in tandem. Specifically,

they enter the first queue that is serviced at the rate µ1. On finishing service

in the first queue, they enter the second queue that services packets at a rate of

µ2. As before, updates arrive to the first queue as a Poisson process and packet

service times are exponentially distributed. The average age for the case of a single

M/M/1 queue was analyzed in [2]. We extend their analysis to obtain analytical

expressions of average age as a function of �, µ1 and µ2 for the two queue case, by

using the well-known result that updates also enter the second queue as a Poisson

process of rate � [1]. Note that packets arrive into queue 2 as a Poisson process

of rate �. We assumed that a packet that arrives into queue 2 undergoes service

for a time that is independent of the time it spent in service in server 1. That is,

somehow, correlations that may be introduced due to packet lengths do not exist

and both the queues can be analyzed as M/M/1/1 queues. The derivation is

in [30, Appendix A].

On the impact of non-stationarity and transient network conditions: Fig-

ure 3.7a shows the expected value (average) of age as a function of � when the

queueing systems are in steady state. It is shown for three single M/M/1 queues,

each with a different service rate, and for two queues in tandem with both servers

having the same unit service rate. Observe that all the age curves have a bowl-like

shape that captures the fact that a too small or a too large � leads to large age.

Such behavior has been observed in non-preemptive queueing disciplines in which

updates can’t preempt other older updates. A reasonable strategy to find the

optimal rate thus seems to be one that starts at a certain initial � and changes �

in a direction such that a smaller expected age is achieved.

In practice, the absence of a network model (unknown service distributions and

expectations), would require Monte-Carlo estimates of the expected value of age for
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Figure 3.7: Analytical queueing model analysis for two queues having service rates
µ1 and µ2.

every choice of �. Getting these estimates, however, would require averaging over a

large number of instantaneous age samples and would slow down adaptation. This

could lead to updates experiencing excessive waiting times when � is too large.

Worse, transient network conditions (a run of bad luck) and non-stationarities,

for example, because of introduction of other traffic flows, could push these delays

to even higher values, leading to an even larger backlog of packets in transit.

Figure 3.7a, illustrates how changes in network conditions (service rate µ and

number of hops (queues)) can lead to large changes in the expected age.
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It is desirable for a good age control algorithm to not allow the end-to-end

connection to drift into a high backlog state. As we describe in the next section,

ACP tracks changes in the average number of backlogged packets and average age

over short intervals, and in case backlog and age increase, ACP acts to rapidly

reduce the backlog.

On Optimal Average Backlogs: Figure 3.7b plots the average packet system

times, where the system time of a packet is the time that elapses between its

arrival and completion of its service, as a function of inter-arrival time (1/�) for

three single queue M/M/1 networks and two networks that have two queues in

tandem. As expected, an increase in inter-arrival time reduces the system time.

As inter-arrival times become large, packets wait less often for others to complete

service. As a result, as inter-arrival time becomes large, the system times converge

to the average service time of a packet.

For each queueing system, Figure 3.7b also marks with (+) the average inter-

arrival time 1/�⇤ that minimizes age. It is instructive to note that for the three

single queue systems this inter-arrival time is only slightly smaller than the system

time (The blue dashed line in Figure 3.7b is at 45�). However, for the two queues

in tandem with service rates of 1 each, the inter-arrival time is much smaller than

the system time. The implication being that on an average it is optimal to send

slightly more than one (⇡ 1.12) packet every system time for the single queue

system. However, for the two queue network with the similar servers, we want to

send a larger number (⇡ 1.6) of packets every system time. For the two queue

network where the second queue is served by a faster server, this number is smaller

(⇡ 1.43). As we observe next, as one of the servers becomes faster, the two queue

network becomes more akin to a single queue network with the slower server.

Figure 3.7c shows how the optimal average backlog varies as a function of

service rate(s). For each choice of service rate (i.e., µ in the single queue or

µ1, µ2 in the tandem queue), the age-optimal arrival rate �⇤ is selected. For fixed

µ1 = 1, �⇤ increases as µ2 increases, and this causes the average backlog in queue

1 to increase. However, as �⇤ increases more slowly than µ2, the backlog in queue

2 decreases, while the sum backlog approaches the optimal backlog for the single

queue system. Specifically, as queue 1 becomes a larger rate bottleneck relative to
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Network R1 R2 R3 R4 R5 R6

Net A 1 1 1 1 1 1
Net B 1 1 5 5 1 1
Net C 1 5 5 5 5 1
Net D 5 5 5 5 5 1
Net E 5 5 5 5 5 5

Table 3.1: Various P2P link configurations applied to the network diagram in Fig-
ure 3.12. The rates Ri are in Mbps. R1 is the rate of the link between
the source and AP-1 and R6 is that of the link between AP-2 and the
monitor.

queue 2, the optimal �⇤ must adapt to the bottleneck queue.

These observations stay the same on swapping µ1 and µ2. Moreover, when

the rates µ1 and µ2 are similar, the queues see similar backlogs. Notably, when

µ1 = µ2 = 1, the backlog per queue is smaller than in a network with only a single

such queue. However, the sum backlog (⇡ 1.6) is larger.

3.6.2 Simulating Larger Number of Hops

To see if this intuition generalizes to more number of hops, we simulated an end-

to-end connection which has the source send its packet to the monitor over 6 hops,

where each hop is serviced by a bidirectional P2P link. The hops are shown in

Figure 3.12. We vary the rates at which the P2P links transmit packets to gain

insight into how queues in a network must be populated with update packets at

an age optimal rate. We also introduce other traffic in the network that occupies,

on an average, a fraction 0.2 Mbps of each P2P link from the source to the moni-

tor. The different configurations are summarized in Table 3.1. For each network

configuration, we have the source send updates over UDP to the monitor using an

a priori chosen rate �. We vary � over a wide range of values and for each �, we

calculate the obtained time average age. These simulations allow us to empirically

pick the age minimizing � for the given network.

Figure 3.8 shows the time average backlog (queue occupancy) at the different

nodes in the network at the optimal �. The backlog at a node includes the update

packet being transmitted on a node’s outgoing P2P link and any update that is
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Figure 3.8: Average backlogs at different nodes in the network, shown in Fig 3.12,
at the optimal update rate. Net E is similar to Net A and not shown.

awaiting transmission at the node. Observe that all P2P links in each of Net A

and Net E have the same rate, 1 and 5 Mbps, respectively. Though Net B has

links much faster than that of Net A, for both these networks the average backlog

at all nodes is close to 1. That it is smaller than 1 is explained by the presence

of the other flow. The other flow, which also originates at the client, is also the

reason why the client sees a slightly larger average queue occupancy by the update

packets.

Net B has faster P2P links connecting ISP(s) and the Gateway when compared

to Net A. However, its other links are slower than that in Net E. We see that the

nodes that have fast outgoing links have low backlogs and those that have slow

links have an average backlog close to 0.8. The source has a slow outgoing link

and as a result of the other flow sees slightly larger occupancy of update packets.

In summary, at � that minimizes average age, as is also shown in Figure 3.8 for

Net C and Net D, nodes with outgoing links that are bottlenecks relative to the

others’ links see a backlog such that no more than one update packet is queued at

them. Naturally, nodes with faster links see smaller backlogs in proportion to how

fast their links are with respect to the bottleneck.

A corollary to the above observations is that a good age control algorithm

should on an average have a larger number of packets simultaneously in transit in

a network with a larger number of hops (nodes/queues).
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3.7 The ACP Control Algorithm

Let the control epochs of ACP (Section 3.5) be indexed 1, 2, . . .. Epoch k starts

at time tk. At t1 the update rate �1 is set to the inverse of the average packet

round-trip-times (RTT) obtained at the end of the initialization phase. At time

tk, k > 1, the update rate is set to �k. The source transmits updates at a fixed

period of 1/�k in the interval (tk, tk+1).

Let �k be the estimate at the source ACP of the time average update age at

the monitor at time tk. This average is calculated over (tk�1, tk). To calculate

it, the source ACP must construct its estimate of the age sample function (see

Figure 3.6), over the interval, at the monitor. It knows the time ai the source

sent a certain update i. However, it needs the time di at which update i was

received by the monitor, which it approximates by the time the ACK for packet i

was received. On receiving the ACK, it resets its estimate of age to the resulting

round-trip-time (RTT) of packet i. Note that this value is an overestimate of the

age of the update packet when it was received at the monitor, since it includes the

time taken to send the ACK over the network. The time average �k is obtained

simply by calculating the area under the resulting age curve over (tk�1, tk) and

dividing it by the length tk � tk�1 of the interval.

Let Bk be the time average of backlog calculated over the interval (tk�1, tk).
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This is the time average of the instantaneous backlog B(t) over the interval. The

instantaneous backlog increases by 1 when the source sends a new update. When

an ACK corresponding to an update i is received, update i and any unacknowledged

updates older than i are removed from the instantaneous backlog. Figure 3.9 shows

the instantaneous backlog as a function of time corresponding to the age sample

function in Figure 3.6.

In addition to using RTT(s) of updates for age estimation, we also use them

to maintain an exponentially weighted moving average (EWMA) RTT of RTT.

We update RTT = (1� ↵)RTT + ↵RTT on reception of an ACK that corresponds

to a round-trip-time of RTT. The source ACP also estimates the inter-update

arrival times at the monitor and the corresponding EWMA Z. The inter-update

arrival times are approximated by the corresponding inter-ACK arrival times. The

length T of a control epoch is set as an integral multiple of T = min(RTT, Z).

This ensures that the length of a control epoch is never too large and allows for

fast enough adaptation. Note that at a sufficiently low rate �k of sending updates

Z is large and at a sufficiently high update rate RTT is large. At time tk we set

tk+1 = tk + T . In all our evaluation we have used T = 10T . The resulting length

of T was observed to be long enough to see desired changes in average backlog and

age in response to a choice of source update rate at the beginning of an epoch.

The source updates RTT, Z, and T every time an ACK is received.

At the beginning of control epoch k > 1, at time tk, the source ACP calculates

the difference �k = �k � �k�1 in average age measured over intervals (tk�1, tk)

and (tk�1, tk�2) respectively. Similarly, it calculates bk = Bk � Bk�1.

ACP at the source chooses an action uk at the kth epoch that targets a change

b⇤k+1 in average backlog over an interval of length T with respect to the kth inter-

val. The actions, may be broadly classified into additive increase (INC), additive

decrease (DEC), and multiplicative decrease (MDEC). MDEC corresponds to a

set of actions MDEC(�), where � = 1, 2, . . .. We have

INC: b⇤k+1 = , DEC: b⇤k+1 = �,

MDEC(�): b⇤k+1 = �(1� 2��)Bk, (3.1)

where  > 0 is a step size parameter.
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Algorithm 2 Control Algorithm of ACP
1: INPUT: bk, �k, T , Bk

2: INIT: flag  0, �  0
3: while true do
4: if bk > 0 && �k > 0 then
5: if flag == 1 then
6: � = � + 1
7: MDEC(�): b⇤k+1 = �(1� 2��)Bk

8: else
9: DEC: b⇤k+1 = �

10: end if
11: flag  1
12: else if bk > 0 && �k < 0 then
13: if flag == 1 && |bk| < 0.5 ⇤ |b⇤k| then
14: � = � + 1
15: MDEC(�): b⇤k+1 = �(1� 2��)Bk

16: else
17: INC: b⇤k+1 =  , flag  0, �  0
18: end if
19: else if bk < 0 && �k > 0 then
20: INC: b⇤k+1 =  , flag  0, �  0
21: else if bk < 0 && �k < 0 then
22: if flag == 1 && � > 0 then
23: MDEC(�): b⇤k+1 = �(1� 2��)Bk

24: else
25: DEC: b⇤k+1 = �, flag  0, �  0
26: end if
27: end if
28: UpdateLambda(b⇤k+1)

29: wait T
30: end while

31: function UpdateLambda(b⇤k+1)

32: �k = 1
Z
+

b⇤k+1

T
33: return �k

ACK
RCVD

Figure 3.10: Update of RTT, Z, T , �(t), and B(t), which takes place every time
an ACK is received by the source ACP.

ACP attempts to achieve b⇤k+1 by setting �k appropriately. The estimate of Z

at the source ACP of the average inter-update arrival time at the monitor gives us

the rate 1/Z at which updates sent by the source arrive at the monitor. This and

�k allow us to estimate the average change in backlog over T as (�k � (1/Z))T .

Therefore, to achieve a change of b⇤k+1 requires choosing �k =
1
Z
+

b⇤k+1

T . Algorithm 2
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summarizes how ACP chooses its action uk as a function of bk and �k. Figure 3.10

summarizes updates on receipt of an ACK.

The source ACP targets a reduction in average backlog over the next control

interval in case either bk > 0, �k > 0 or bk < 0, �k < 0. The first condition (line 4)

indicates that the update rate is such that updates are experiencing larger than

optimal delays. ACP attempts to reduce the backlog, first using DEC (line 9),

followed by multiplicative reduction MDEC to reduce congestion delays and in

the process reduce age quickly. Consecutive occurrences (flag == 1) of this case

(tracked by increasing � by 1 in line 6) attempt to decrease backlog even more

aggressively, by a larger power of 2.

The condition bk < 0, �k < 0 occurs on a reduction in both age and backlog.

ACP greedily aims at reducing backlog further hoping that age will reduce too. It

attempts MDEC (line 23) if previously the condition bk > 0, �k > 0 was satisfied.

Else, it attempts an additive decrease DEC.

The source ACP targets an increase in average backlog over the next control

interval in case either bk > 0, �k < 0 or bk < 0, �k > 0. On the occurrence of the

first condition (line 20) ACP greedily attempts to increase backlog.
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Figure 3.12: Sources are connected to the monitor via multiple routers and access
points. Each source update travels over six hops. The first hop is
between the source and access point AP-1. This could be either P2P
or WiFi. The other hops that involve the ISP(s) and the Gateway
are an abstraction of the Internet. These hops are P2P links and we
vary their rates to simulate different end-to-end RTT.

When the condition bk < 0, �k > 0 occurs, we check if the previous action

attempted to reduce the backlog. If not, it hints at too low an update rate causing

an increase in age. So, ACP attempts an additive increase (line 17) of backlog. If

yes, and if the actual change in backlog was much smaller than the desired (line 13),

ACP attempts to reduce backlog multiplicatively. This helps counter situations

where the increase in age is in fact because of increasing congestion. Specifically,

increasing congestion in the network may cause the inter-update arrival rate 1/Z

at the monitor to reduce during the epoch. As a result, despite the attempted

multiplicative decrease in backlog, it may change very little. Clearly, in such a

situation, even if the backlog reduced a little, the increase in age was not caused

because the backlog was low. The above check ensures ACP attempts reducing

backlog to desired levels. In the above case, if instead ACP ignores the much

smaller than desired change, it will end up increasing the rate of updates, further

increasing backlog and age. Figure 3.11 shows a snippet of ACP in action.

3.8 Evaluation Methodology

We used a mix of real-world experiments and simulations to evaluate ACP. While

the real-world experiments allowed us to test ACP over an intercontinental end-

to-end connection, simulations allowed us to test with large numbers of sources

contending with each other over a shared wireless access under varied wireless

channel conditions and densities of source placements.

We evaluated ACP in the real-world by having 1� 10 sources connected to an
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802.11g WiFi access point send their updates over the Internet to monitors that

were running on an ec2 AWS Frankfurt [136] server with a global IP. The WiFi

access point was a part of IIIT-Delhi’s enterprise network that provides wireless

access at the university campus. This setup allowed us to test ACP over a path

with large RTT(s) and tens of hops. While the WiFi access point had only our

test sources connected to it, we don’t control the interference that may be created

by adjoining access points or WiFi clients. Lastly, we had no control over the

traffic on the university intranet when the experiments were performed.

Figure 3.12 shows the end-to-end network used for simulations. We start by

describing the wireless access over which sources connect to AP-1. We performed

simulations for 1 � 50 sources accessing AP-1 using the WiFi (802.11g) medium

access. We simulated for sources spread uniformly and randomly over areas of

10⇥ 10 m2, 20⇥ 20 m2 and 50⇥ 50 m2. The channel between a source and AP-1

was chosen to be Log-Normally distributed with choices of 4, 8, and 12 for the

standard deviation. The pathloss exponent was 3. WiFi physical (PHY) layer

rates were set to one of 12 Mbps and 54 Mbps.

For the network beyond AP-1, all links were configured to be P2P. We set the

P2P link rates from the set {0.3, 0.6, 1.2, 6.0} Mbps. This was to simulate network

RTT of a wide range. We used the network simulator ns31 together with the

YansWiFiPhyHelper2. Our simulated network is, however, limited in the number

of hops, which is six.

To compare the age control performance of ACP, we use Lazy. Lazy, like ACP,

also adapts the update rate to network conditions. However, it is very conservative

and keeps the average number of update packets in transit small. Specifically, it

updates the RTT every time an ACK is received and sets the current update rate

to the inverse of RTT. Thus, it aims at maintaining an average backlog of 1.

We end by stating that an appropriate selection of step size  is crucial to the

proper functioning of ACP. We chose it by trial and error. For simulations, we

found a step size of  = 0.25 to be the best. However, this turned out to be too

small for experiments over the Internet. For these, we tried  2 {1, 2}.
1https://www.nsnam.org/
2https://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_phy.html

56

https://www.nsnam.org/
https://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_phy.html


0.2 0.25 0.3 0.35
Average Age (s)

0

0.5

1

C
D

F

ACP Lazy

(a) Average Age

0.17 0.18 0.19 0.20 0.21
RTT (s)

0

0.5

1

C
D

F =1
 =2

Lazy

(b) Average RTT

0 50 100 150 200
Backlog

0

0.5

1

C
D

F

=1
=2

(c) Average Backlog

Figure 3.13: Comparison of Lazy and ACP with step size choices of  = 1, 2
obtained over 10 runs each. The Age CDF(s) of all the 10 sources
are shown.

Next, we will discuss the real-world results followed by the simulation results.

3.9 Inter-Continental Updates

In this section, we will show results for when 10 sources sent their updates to mon-

itors on the configured AWS ec2 server. The sources, as described earlier, gained

access to the Internet via an enterprise access point. The results were obtained by

running ACP and Lazy alternately for 10 runs. Each run was restricted to 1000

update packets long so that on an average ACP and Lazy experienced similar net-

work conditions. We ran ACP for  = 1 and  = 2. Using traceroute [137], we

observed that the number of hops was large, about 30, during these experiments.
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Figure 3.14: The time evolution of average backlog and age that resulted from one
of the ACP source sending updates over the Internet.

Figure 3.13 summarizes the comparison of ACP and Lazy. Figure 3.13a shows

the cumulative distribution functions (CDF) of the average age obtained by each

source when using ACP (using  = 1) and the corresponding CDF(s) when using

Lazy. As is seen in the figure, ACP outperforms Lazy and obtains a median

improvement of about 100 msec in age (⇡ 33% over average age obtained using

Lazy). This over an end-to-end connection with a median RTT of about 185 msec.

Further, observe that the age CDF(s) for all the sources when using either ACP

or Lazy are similar. This hints at sources sharing the end-to-end connection in a

fair manner. Also, observe from Figure 3.13b that the median RTT(s) for both

ACP and Lazy are almost the same. This signifies that ACP maintains a backlog

of update packets in a manner such that the packets don’t suffer additional delays

because multiple packets of the source are traversing the network at the same

time.

Further, consider a comparison of the CDF of average backlogs shown in Fig-

ure 3.13c. ACP exploits the fast end-to-end connection with multiple hops very

well and achieves a very high median average backlog of about 30 when using a

step size of 1 and a much higher backlog when using a step size of 2. We observe

that step size  = 1 worked best age-wise. Lazy, however, achieves a backlog of

about 1 (not shown).

For when we had 1, 2, and 5 sources sharing the WiFi access, we observe

average ages per source and average RTT(s) similar to when 10 sources share the

access. To exemplify, the median age obtained by an only source sending over

WiFi was 190 msec ( = 1), the median RTT was 182.5 msec, and the median

backlog was 30 updates. As shown in Figure 3.13, the corresponding values for 10
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sources sharing the access are 200 msec, 185 msec, and 30 updates. As the number

of sources increased from 1 to 10, the average age per source wasn’t impacted much

by the presence of other sources. In fact, across different number of sources, each

source utilized a throughput of about 1 Mbps over the end-to-end path. The sum

throughput of about 10 Mbps, when there are 10 sources is far from congesting

the WiFi access, which supported link rates as high as 54 Mpbs (corresponding

to data payload throughputs of ⇡ 28 Mbps). ACP optimizes age at a very low

throughput of 1 Mbps, barely using a much faster WiFi link and an even faster

(larger bottleneck link rate) backhaul that connects the IIIT-Delhi gateway to the

server in AWS Frankfurt. We return to a similar observation, and shed more light

on it in Section 3.12, where we experiment with many more sources sharing the

WiFi access.

We end by showing snippets of ACP in action over the end-to-end path. Fig-

ures 3.14a and 3.14b show the time evolution of average backlog and average age,

as calculated at control epochs. ACP increases backlog in small steps (see Fig-

ure 3.14a, 14 seconds onward) over a large range, followed by a rapid decrease in

backlog. The increase coincides with a reduction in average age, and the rapid de-

crease is initiated once age increases. Also, observe that age decreases very slowly

(dense regions of points low on the age curve around the 15 second mark) with an

increase in backlog just before it increases rapidly. The region of slow decrease is

around where, ideally, backlog must be set to keep age to a minimum.

3.10 Simulation Results

We first consider the performance of ACP during network changes. Figure 3.15

shows that ACP adapts rather quickly to the introduction of other flows that

congest the network. In these simulations, we introduced one to two UDP flows

at different points in the network used for simulation (Figure 3.12), where all links

are 1 Mbps. ACP reduces � appropriately and adapts backlog to desired levels.

Figure 3.16 compares the average age, source update rate �, the RTT, and

the average backlog, obtained when using ACP and Lazy. We vary the number of

sources in the network from 1 to 20. For smaller numbers of sources, the backlog
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Figure 3.15: ACP adapts to network changes. Blue circles show the achieved
age by an ACP client over time. A UDP client of rate 0.2 Mbps is
connected to AP-1 at 200� 400 secs and 1000� 1200 secs. Another
UDP client of rate 0.3 Mbps is connected to AP-2 at 600�800 secs and
1000� 1200 secs. A darker shade of pink signifies a larger aggregate
UDP load on the network.
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Figure 3.16: Comparison of ACP and Lazy as a function of number of sources.
All sources used a WiFi PHY rate of 12 Mbps. All links other than
wireless access are 6 Mbps. The sources are spread over an area of
100 m2. The standard deviation of shadowing was set to 4 dB.

(see Figure 3.16b) per source maintained by ACP is high. This is because, given

the similar rate P2P links and higher rate WiFi link, when using ACP, the sources

attempt to have their update packets in the queues of the access points and routers

in the network. On the other hand, a source using Lazy sticks to sending just one

packet every RTT on an average. Thus, the average backlog per source stays

similar for different numbers of sources.
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As the numbers of sources become large in comparison to the number of hops

(six) in the network, even at an average backlog of about 1 update per source,

there is little value in a source sending more than one update per RTT. Note

that there are only 6 hops (queues) in the network. When there are five or more

sources, a source sending at a rate faster than 1 every RTT will have its updates

waiting for each other to finish service. ACP maintains a backlog close to Lazy

when the numbers of sources are 5 and more.

Figure 3.16d shows the average source rate of sending update packets. Observe

that the average source rate drops in proportion to the number of sources. While

the source rate is about 800 updates/second when there is only a single source, it

is about 70 when 20 sources share the wireless access. This scaling down is further

evidence of ACP adapting to the introduction of larger numbers of sources. While

a source using ACP ramps down its update rate from 800 to 70, Lazy more or less

sticks to the same update rate throughout.

The absolute improvements in average age achieved by ACP, see Figure 3.16a,

for fewer numbers of sources seem nominal but must be seen in light of the fact

that end-to-end RTT of the simulated network under light load conditions is very

small (about 5 msec as seen in Figure 3.16c). ACP achieves a 21% and 13%

reduction in age with respect to Lazy, respectively, for a single source and two

sources.

The only impact that changing the link rates of the P2P links had was a cor-

responding change in RTT and Age. For example, while the average age achieved

by a source using ACP in a 20 source network with P2P link rates 0.3 Mbps was

⇡ 6 seconds, it was ⇡ 0.25 seconds when the P2P link rates were set to 6.0 Mbps.

The larger RTT for the former meant smaller � of about 5 updates/second/source.

The backlogs, as one would expect, were similar, however.

Evaluation Takeaways

As shown in Algorithm 2, ACP uses a step size parameter  in (INC) and

(DEC). We found  was difficult to set. For example, in our real experiments with

ACP  = 1 worked well. However, in simulations with shorter paths, with small

round-trip times but not so small propagation times, a small value of  = 0.25
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ensured proper updating of the update rate �k.

The  based update could also result in �k (calculated in Algorithm 2 line 32)

becoming very small or even negative. When �k became negative, we reset �k

to be at least one packet per round-trip time. Such resetting of �k resulted in

high age in settings where multiple ACP paths shared a constrained access. While

in our real-world results, we saw higher backlogs and were able to see significant

improvements in average age values, ACP was not able to achieve similar gains in

our simulation experiments as we increased the number of sources.

The failings of ACP borne by our extensive simulations motivate ACP+, which

does significantly better than ACP and Lazy when a large number of sources

contend over a shared access. We detail the improvements in the following section.

3.11 ACP+: An Improved Age Control Algorithm

We describe the changes in ACP+ with respect to ACP, whose control algorithm

was detailed in Section 3.7. Similar to ACP, ACP+ also uses the estimate of the

time average update age �k and the time average of backlog Bk at the source

ACP+ at time tk. These averages are calculated over (tk�1, tk). At every control

epoch k > 1, at time tk, the ACP+ source calculates the differences �k = �k��k�1

and bk = Bk � Bk�1. However, the length T of a control epoch for ACP+ is set

as T = 10/�k. This ensures at least 10 packets are sent by the source using the

updated �k.

The source ACP+ chooses an action uk at the kth epoch that targets a change

b⇤k+1 in average backlog over an interval of length T with respect to the kth inter-

val. Again the actions are broadly classified into (i) additive increase (INC), (ii)

additive decrease (DEC) and (iii) multiplicative decrease (MDEC). However, unlike

ACP, the  value for ACP+ is fixed to ±1. MDEC corresponds to a set of actions

MDEC(�), where � = {1, 2, . . .}. We have

INC: b⇤k+1 = 1, DEC: b⇤k+1 = �1,

MDEC(�): b⇤k+1 = �(1� 2��)Bk, (3.2)
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Algorithm 3 ACP+ Control Algorithm
1: INPUT: bk, �k, T , Bk

2: INIT: flag  0, �  0
3: while true do
4: if bk > 0 && �k > 0 then
5: if flag == 1 then
6: � = � + 1
7: MDEC(�): b⇤k+1 = �(1� 2��)Bk

8: else
9: DEC: b⇤k+1 = �1

10: end if
11: flag  1
12: else if bk > 0 && �k < 0 then
13: INC: b⇤k+1 = 1
14: flag  0, �  0
15: else if bk < 0 && �k > 0 then
16: INC: b⇤k+1 = 1
17: flag  0, �  0
18: else if bk < 0 && �k < 0 then
19: if flag == 1 && � > 0 then
20: MDEC(�): b⇤k+1 = �(1� 2��)Bk

21: else
22: DEC: b⇤k+1 = �1
23: flag  0, �  0
24: end if
25: end if
26: UpdateLambda(b⇤k+1)

27: wait T
28: end while

29: function UpdateLambda(b⇤k+1)

30: �k = 1
Z
+

b⇤k+1

RT T
31: if �k < 0.75 ⇤ �k�1 then
32: �k = 0.75 ⇤ �k�1 {Minimum � threshold}

33: else if �k > 1.25 ⇤ �k�1 then
34: �k = 1.25 ⇤ �k�1 {Maximum � threshold}

35: end if
36: return �k

ACP+ attempts to achieve b⇤k+1 by setting �k appropriately. The estimate of

Z at the source ACP+ of the average inter-update arrival time at the monitor

gives us the rate 1/Z at which updates sent by the source arrive at the monitor.

This and �k allow us to estimate the average change in backlog over RTT as

(�k � (1/Z))RTT . Therefore, to achieve a change of b⇤k+1 requires choosing �k =

1
Z
+

b⇤k+1

RTT
(see Algorithm 3 line 30).

Algorithm 3 summarizes how ACP+ chooses its action uk as a function of bk

and �k to achieve the desired b⇤k+1. Please refer to Section 3.7 for details on why

a particular control action is chosen.

The most significant change in ACP+ over ACP (Section 2) is in the function
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Figure 3.17: An illustration of the network topology. ACP+ clients are connected
to a WiFi AP located in the Orbit Testbed’s WiFi grid in USA. The
server is located in AWS Mumbai, India.

UPDATELAMBDA. ACP uses a step size parameter  in (INC) and (DEC), which

is difficult to set and varied for different networks. ACP+ uses a fixed  = 1.

Another difference between the algorithms is in how �k is set. As discussed in

Section 3.7, ACP may update �k to a negative value that is then forced to be at

least one packet per RTT. In ACP+, UPDATELAMBDA restricts the step change in �

and ensures that the updated �k is always positive. This, as shown in section 3.12,

results in significant improvements in age achieved when a large number of ACP+

sources send updates over a shared multiaccess.

3.12 ACP+ Sources Update Over Intercontinental Paths

Via a Contended WiFi Access

Figure 3.17 illustrates our real-world experimental setup. We used the ORBIT

testbed [138], which is an open wireless network emulator grid located in Rutgers

University, USA. The testbed houses multiple wireless capable and programmable

radio nodes deployed in a grid fashion with a 1 m separation between adjacent

nodes along columns and rows of the grid. We used the radio nodes as our sources.

In addition, we configured one of the ORBIT nodes as an 802.11n access point

configured to operate at 5 GHz on a fixed channel and a fixed WiFi physical layer

rate using hostapd [139] and the iwconfig [140] utility. Fixed WiFi rates, in

contrast to allowing WiFi rate control, enable better understanding of the impact

of the WiFi access and the Internet beyond on the age of updates of the sources at

the monitor. Our sources send updates to an ec2 AWS [136] instance in Mumbai,

64



India, which serves as our ACP+ monitor. The access point acts as a gateway to

the Internet for our sources.

For our experiments, we selected up to 80 nodes (sources) in the testbed to

connect to the WiFi access point as its clients. We also configured a node as a

sniffer to capture packets sent over the WiFi channel. This enabled us to quantify

the packet retry rates at the WiFi medium access control layer due to packet

collisions or drops over the WiFi access, using the retry flag in the MAC header of

sniffed packets. In the end-to-end path between the ACP+ sources in the ORBIT

grid and the AWS Mumbai server, we configure only the wireless network within

the ORBIT testbed. The rest of the path traverses the public shared Internet.

We experimented with 1, 2, 5, 10, 20, 40, 80 sources and WiFi physical layer

rates of 6, 12, and 24 Mbps. For all our experiments, we estimated the bottle-

neck link rate over the end-to-end path to be the WiFi link rate. Specifically, in

the absence of the WiFi access, the end-to-end path to AWS Mumbai was able

to support TCP throughputs as high as 200 Mbps. Further, the baseline RTT

between our sources and the monitor is within the 200-210 ms range. It is the

average RTT observed by any source when it is the only sender to the monitor in a

stop-and-wait [141] fashion. That is the source sends an update packet and waits

for an ACK (or a timeout) before sending the next update packet. The baseline

RTT is calculated in the absence of any wireless contention.

We perform at least five repeats of an experiment configuration, which includes

a choice of number of sources, their locations on the ORBIT grid and the WiFi

rate. Averages over the repeats are used to evaluate the performance of ACP+.

Our experiments lasted over several months and were repeated over different days

of the week and at different times of the day.

3.12.1 Takeaways for Age Control in the Internet

Figure 3.18c shows that ACP+ achieves a small age for a single source at an end-

to-end throughput, for an update payload size of 1024 bytes, of about 0.5 Mbps,

which is much smaller than our chosen WiFi rates. Note that the WiFi link rate is

the bottleneck link rate for our paths between the sources and the monitor. The
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(a) Average Age (ms) (b) Average Backlog (ms)

(c) Throughput (Mbps) (d) Average RTT (ms)

Figure 3.18: Averages of per source age, backlog, throughput, and RTT, measured
over runs of ACP+ for choices of WiFi link rates and number of nodes
sharing the WiFi access in the ORBIT testbed.

small age optimizing throughput was also observed in our experiments detailed in

Section 3.8 for a different path in the Internet.

An age optimizing throughput much smaller than the access link rates has

multiple ACP+ sources share the access without suffering an age penalty because

of the other sources. Specifically, observe in Figure 3.18a that the average age

per source stays similar for when there are 1 � 5 sources sharing a 6 Mbps WiFi

access. The age stays similar for a larger number of 10 and 20 sources when

sharing, respectively, a 12 and 24 Mbps WiFi access. As the number of sources

increase beyond 5, 10, and 20 sources, respectively, for access link rates of 6, 12,

and 24 Mbps, the increased contention results in a rapid increase in age with the

number of sources.

The increased contention results in large RTT(s) and has ACP+ maintain

smaller backlogs of updates per source. The RTT(s) are shown in Figure 3.18d

and the corresponding backlogs are shown in Figure 3.18b. The rapid increase in

RTT per source with increasing contention, and the smaller backlogs, results in a

sharp reduction in per source throughputs seen in Figure 3.18c.
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Figure 3.19: Sum Throughput of ACP+ normalized with respect to the bottleneck
link. The shaded ellipse shows the region where the access is not
the bottleneck for the timeliness performance of ACP+. Beyond
the shaded region, the access becomes the bottleneck, and the sum
throughputs start saturating.

An age optimizing throughput much smaller than access link rates has inter-

esting consequences for age control over the Internet, as we demonstrated using

ACP+. It implies that multiple sources can share the access, which is the bottle-

neck link in the path, without much contention and without saturating the shared

access. This behavior is contrary to that of the TCP, which always saturates the

bottleneck link, irrespective of the number of senders sharing it.

For a small enough number of sources sharing an access, age optimization

is constrained by the backhaul beyond the access. While the backhaul has a

bottleneck link rate much larger than that of the WiFi access, the time that an

update spends buffered in the many hops that constitute the backhaul, given the

other traffic using it, is the most salient as regards age control. As the number of

sources sharing an access becomes large, the access link is saturated and becomes

the constraining factor with regards to age optimization.

Figure 3.19 illustrates the two regimes of age control. It plots the utilization

of the access (measured as the sum of throughputs of the sources sharing it) nor-

malized by the WiFi link rate. For when the number of sources sharing the access

is small enough such that contention between the sources is low, the normalized

utilization of the access increases in proportion (marked by the shaded ellipses)

to the number of sources. The access isn’t the constraining factor and age control
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must adapt to the utilization of the backhaul by other traffic, while ensuring that

a large enough backlog of source updates is maintained in the backhaul, given the

large number of hops that may constitute it. Beyond the region of low contention,

the normalized utilization flattens and converges close to the maximum obtainable

for the link rate3. Not surprisingly, the region of low contention extends to a larger

number of sources for a larger WiFi link rate.

We could not extend our experiments to include greater than 80 nodes on the

ORBIT testbed due to hardware and wireless driver restrictions. As a result, we

couldn’t explore the region of really high contention wherein one would expect

age control to ideally backlog on an average less than an update per source per

round-trip-time. Recall that ACP’s failing was its inability to do better than Lazy

when there was high contention. Like Lazy, ACP maintained backlogs of about

1 per source as contention increased. We resort to simulations to evaluate how

ACP+ performs with respect to Lazy, especially when the contention resulting

from the sources sharing the access is very high.

3.13 Simulations Setup and Results

We used the same simulation setup as discussed in Section 3.8 using network sim-

ulator ns34 together with the YansWiFiPhyHelper5. The base network topology

used in our simulations is shown in Figure 3.12. We compare the performance

of ACP+ to Lazy, which as mentioned earlier, is a conservative status updating

mechanism that sends one update per RTT and maintains an average backlog of

1 update in the network for any source.

We show results for when source nodes are spread uniformly and randomly over

an area of 20⇥20 m2. We chose the number of sources from the set {1, 6, 12, 24, 48}.

The channel between the source and AP-1 was log-normally distributed with a

standard deviation of 12 and a path loss exponent of 3. The WiFi link rate was

set to 12 Mbps and that of the P2P links was set to 6 Mbps.
3
The normalized utilization is less than 1 because of WiFi protocol overheads, including

headers of layers 1 and 2. The overheads are larger for larger link rates.
4https://www.nsnam.org/
5https://www.nsnam.org/doxygen/classns3_1_1_yans_wifi_phy.html
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Figure 3.20: (a) Average source age (b) Average source backlog (c) Average source
RTT and (d) Update rate � for Lazy and ACP+ when all links other
than wireless access are 6 Mbps. All sources used a WiFi PHY rate
of 12 Mbps. The sources are spread over an area of 400 m2.

Figure 3.20a shows that ACP+ achieves a smaller age per source than Lazy.

The improvements are especially significant when a large number of sources share

the access to AP-1. That ACP+ is able to achieve smaller ages can be understood

via the average backlog per source when using ACP+ and Lazy, which is shown

in Figure 3.20b. When we have just one source, ACP+ tries to fill each queue in

the network with an update. This results in a larger backlog and a lower age in

comparison to Lazy, which achieves a backlog of just 1 update. However, as the

number of sources increases, while Lazy continues to maintain a backlog of 1 per

source, ACP+ reduces it. The backlogs obtained are 3.23, 1.39, 0.91, 0.57, 0.34,

respectively, for 1, 6, 12, 24, 48 sources. Compare these backlogs with our earlier

simulation results using ACP in Figure 3.16b. ACP’s design choices forced it to

maintain a minimum backlog of 1 per source. This resulted in Lazy doing at least

as well as ACP for a large enough number of sources connected to the shared

access (see Figure 3.16a).
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Figure 3.21: Average per-source Throughput (Mbps)

The ACP+ backlogs when we have a large number of sources are not only much

smaller than Lazy, it turns out that they are not too far from an ideal scheduling

mechanism that schedules updates from the sources in a round-robin manner. For

simplicity, ignore the difference in the link rates of the WiFi and P2P links. Also,

assume that no packets are dropped due to channel errors over WiFi. A round-

robin scheduler would keep six updates in transit of the source when we have just

one source. This would result in a backlog of 6. It would schedule six sources

one after the other in a manner such that a round of scheduling would lead to six

packets in the six queues from the six different sources, resulting in an average

backlog of 1 per source. Similarly, for when we have 12, 24, 48 sources, we would

see backlogs per source of 1/2, 1/4, 1/8, respectively. ACP+ sees larger backlogs

than these, at least partly because of packet collisions over the WiFi access, which

results in larger delays in the WiFi hop.

ACP+’s good adaptation to an increase in the number of sources is also seen

in the fact that the RTT doesn’t increase much as the number of sources increase.

This is unlike Lazy which sees big increases in RTT. While ACP+ results in RTT

of 5.5, 7.1, 7.9, 9, 10.4 ms, respectively, for 1, 6, 12, 24, 48 sources, Lazy sees RTT of

5.5, 6.3, 11.8, 26.3, 61.1 ms.

Figure 3.21 shows the throughput per source when using ACP+ and Lazy.

Consider ACP+. The throughput for when there is only one source is ⇡ 2.25

Mbps. The source ACP+ attempts to fill the bottleneck link in the simulation

setup. In the absence of other traffic flowing over the WiFi and P2P links, having

an average of 1 update per P2P link is age optimal. Given the 5 p2p links that are
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6 Mbps each and a WiFi access that has a link rate of 12 Mbps, one would expect

an average backlog of 5.5 packets at the rate � of sending updates that minimizes

age. ACP+ maintains an average backlog of a bit more than 3 packets. While less

than optimal, the reduction in average age when going from a backlog of about 3

to that of 5.5 is nominal. Specifically, the minimum age is empirically determined

to be ⇡ 5.69 ms, while ACP+ obtains an age of 6.3 ms. As the number of

sources increases, the throughput per source reduces. The total utilization (sum

throughput) quickly approaches the bottleneck link rate, though. Six sources

utilize about 4 Mbps together and for 50 sources, the total utilization is about 4.5

Mbps.

Sources using Lazy see about the same per source throughput as when using

ACP+ when there are 6 or more sources. However, the backlog and RTT is larger

when using Lazy, resulting in a larger age.

3.14 Age Fairness Using ACP+

We quantify fairness in age achieved by multiple ACP+ sources that share an

access network and send their updates to a monitor. We use the Jain’s fairness

index [142] to quantify age fairness in both our simulations and real-world ex-

periments. The Jain’s fairness index can take values between 0 and 1. A larger

fairness index implies more similar ages of the different sources at the monitor.

An index of 1.0 indicates that the ACP+ control algorithm enables the ACP+

flows to achieve the same ages over their paths to the monitor.

In our simulations, we find that as we increase the number of sources sharing

the network from 6 to 48, our fairness index reduces from .99 to .89. In our real-

world experiments, the fairness index lies between .99 to 1.0 as we increase source

density from 2 to 80 for all the WiFi link rates (6, 12 and 24 Mbps). ACP+

ensures age fairness in our experiments.
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3.15 Chapter Summary

We motivated the need to optimize the freshness of updates generated by a source,

at a monitor that receives the updates over a network. Having shown the draw-

backs of using TCP to have sources send updates to their monitors, we proposed

a protocol stack with a transport layer protocol, namely the age control protocol,

that sends and receives its packets over UDP. We detailed the control algorithm

of ACP and the improvements over it that constitute ACP+. We quantified the

performance of the control algorithms over end-to-end paths that connect IoT de-

vices to the cloud via extensive experimentation using simulations and real-world

networks. Our experiments helped characterize salient features of age control over

the Internet.

In this chapter, we focused on the age control protocol as an end-to-end trans-

port mechanism for sending update packets to a server over the Internet. In the

next chapter, we will detail its differences vis-a-vis different TCP congestion con-

trol mechanisms and their ability to transport fresh updates over an end-to-end

path consisting of both core and access networks.
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Chapter 4

Congestion Control and Ageing in the Internet

4.1 Introduction

The challenge of age control over an end-to-end path in the Internet is to adapt the

rate of status updates entering the path so that there are as many status updates

in transit as possible while no update waits behind another in a router queue. This

is in contrast to TCP loss-based congestion control algorithms that aim for high

throughput by having as many packets as possible in each queue without exceeding

the available queue occupancy. This allows an end-to-end flow to achieve a rate

equal to the bottleneck bandwidth; however, this is at the expense of large delays

and eventual losses due to excessive queueing at the bottleneck.

Recently, requirements of low latency along with high throughput have led

to the proposal of hybrid congestion control mechanisms such as BBR [32]. At

its stated ideal point of operation, BBR would have TCP packets delivered to

the receiver at the bottleneck link rate, while each packet would experience an

average delay as that experienced by a packet if only it was sent over the path.

Intriguingly, this would satisfy the goal of age control by resulting in the highest

rate of packet delivery at the receiver at the smallest possible packet delays.

In the previous chapter, we proposed and presented a strong case for the Age

Control Protocol, a transport layer protocol that regulates the rate at which status

updates are sent by an application over an end-to-end path. By abstracting away

an end-to-end path as a series of queues, we argued that a good age control

algorithm must try to have as many status updates in transit as possible while

ensuring that the updates don’t wait for previously queued prior updates from the

application.

Figure 4.1 provides an illustration of a good age control strategy in action

for an end-to-end path of three identical queues, each with deterministic service

times. Figures 4.1a and 4.1b, respectively, have too many and too few updates,



(a) Update rate high, delay high, age high

(b) Update rate low, delay low, age high

(c) Ideal snapshot of updates in transit

Figure 4.1: An illustration of queue occupancy and its impact on age.

resulting in high age. Figure 4.1c shows the snapshot one would expect to see

with a good age control algorithm sending updates over the three-queue network.

Of course, the picture becomes more complicated when the queues have random

service times. For example, with a pair of M/M/1 queues in tandem, the average

number of packets queued in the system at minimum age was shown to be ⇡ 1.6

updates (See Figure 3.7).

While applications have diversified significantly over the past few decades, TCP

is still the dominant protocol used in the Internet with ⇡ 90% traffic share [143].

TCP congestion control is the primary mechanism by which end hosts share avail-

able Internet bandwidth. For the purpose of TCP’s operation, the end-to-end

path may be abstracted away as a link with bottleneck bandwidth BWBtl and a

round-trip propagation time of RTTbase (baseline RTT) [32]. Figure 4.2a provides

an illustration, akin to that in [32, Figure 1], of the instantaneous round-trip time

RTTt at time t as a function of the current offered load (the effective rate at

which TCP is sending bytes). As long as the offered load is smaller than BWBtl,

the TCP packets see a low RTT of RTTbase. Once the offered load becomes larger

than BWBtl, the TCP packets that arrive at the link’s queue see increasingly

more packets waiting for service ahead of them. This results in a linear increase in

RTTt until the queue becomes buffer limited, the RTT saturates and TCP packets

arriving at a full queue are dropped.

Traditionally, TCP’s congestion control allows for an increasing number of

unacknowledged bytes from an application to flow through the network pipe until

one or more bytes are lost due to the resulting congestion. Such a loss-based
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Buffer Limited
Region

Loadt (bits/s)

(a) RTT as a function of offered load

Buffer Limited Region

Load (bits/s)

Deterministic
Stochastic

(b) Average steady state RTT as a function of average load

Figure 4.2: An illustration of how round-trip times vary as a function of the offered
load. While (a) shows the change in instantaneous RTT as the load
increases, (b) shows the steady-state average behavior at a chosen
load.

congestion control algorithm keeps increasing the offered load until a packet is

lost as a result of the link operating in the buffer limited region. The flow will

achieve a throughput equal to the bottleneck bandwidth, but packets in the flow

will suffer large round-trip times, especially when the link has a large buffer.

Figure 4.2a suggests that one would like to operate at the lower “knee” in

the curve, i.e., close to the bottleneck throughput BWBtl at low delays. In fact,

delay-based and hybrid congestion control algorithms such as the recently pro-

posed Bottleneck Bandwidth and Round-trip propagation time (BBR) protocol,

attempt this by using the round-trip time to detect congestion early before a loss

occurs due to buffer unavailability at a certain router along the path. Note that

this combination of a throughput of BWBtl and round-trip times of RTTbase is in

fact achieved by the snapshot in Figure 4.1c that illustrates a good age control

algorithm in action.

Of course, as was observed in [144] in relation to the stated point of opera-

tion of BBR, when a path is better modeled by a stochastic service facility, the

average round-trip times at the maximum achievable throughput of BWBtl could
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be much larger than RTTbase. Figure 4.2b provides an illustration of steady-state

average RTT as a function of average load. The red and blue curves, respectively,

correspond to a deterministic and a stochastic service facility.

This shift in congestion control algorithms from keeping the pipe full to “keep-

ing the pipe just full, but no fuller” [144], motivates this empirical study of how

the information at a receiver would age if updates were transmitted over the cloud

using the congestion control algorithms. However, we must be careful as (a) TCP

doesn’t regulate the rate of generation of packets by the status updating appli-

cation, (b) it is a stream-based protocol and has no notion of update packets.

As illustrated in Figure 4.3, an application writes a stream of bytes to the TCP

sender’s buffer. TCP creates segments from these bytes in a first-come-first-serve

manner. TCP segments are delivered to the TCP receiver. At any time, TCP

allows a total of up to a current congestion window size of bytes to be in transit

in the network. The TCP receiver sends an ACK to inform the sender of the last

segment received.

To stay focused on evaluating how scheduling TCP segments over an end-to-

end path would age updates at a receiver, we assume that a TCP segment, when

created, contains fresh information. Specifically, we ignore the ageing of bytes

while they wait in the TCP send buffer. One way of achieving this in practice

would be to have the application provide freshly generated information (as in a

generate-at-will model [77]) to be incorporated in a TCP segment just as TCP
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schedules it for sending.

We approximate the age of the segment when it arrives at the TCP receiver

to be the RTT of the segment, which is calculated based on the time of receipt of

the TCP ACK that acknowledges receipt of the segment. Further, we approximate

the inter-delivery time of segments at the receiver by the inter-delivery times of

the corresponding ACKs. The RTT(s) and the inter-delivery times together allow

us to come up with an estimate of the time-average of age at the receiver that

results from a chosen congestion control algorithm, using the graphical method of

time-average age calculation using the age sample function similar to one shown

in Figure 3.6 [2].

Last but not the least, we would like to minimize the impact of packet loss due

to link transmission errors on our evaluation of congestion control. Given our focus

on paths in the cloud, specifically between AWS data centers, we observe a very

small percentage of loss, and that too because of buffer overflows in routers that

result in the process of congestion control estimating the bottleneck bandwidth.

Our specific contributions of this chapter are:

1. We provide an empirical study of age, throughput and delay trade-offs obtained

when using state-of-the-art TCP congestion control algorithms to transport

updates over an end-to-end path in the cloud.

2. We evaluate a mix of loss-based (Reno [145] and CUBIC [146]), delay-based (Ve-

gas [147]) and hybrid congestion control algorithms (YeAH [148] and BBR [32])

for different settings of receiver buffer size.

3. We compare the performance of the TCP algorithms with that of ACP+. We

show that ACP+ does well in estimating the network conditions on the end-

to-end path and appropriately adapts the rate of status updates sent over the

path to keep age at the receiver close to the minimum. (Section 4.4)

4. We also compare ageing of update packets in shared and contended access

networks with up to 80 nodes on the ORBIT grid at Rutgers University. We

find that as contention on the access network increases, the performance of

TCP degrades considerably. In high contention networks, ACP+ performs 60⇥

better age-wise compared to the best performing TCP variant (Section 4.6).
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4.2 Primer on TCP Congestion Control

Congestion control was introduced in the Internet in the 1980s to overcome the

congestion collapse of the Internet [15]. These algorithms help achieve higher

utilization of the available network bandwidth while avoiding overloading the net-

work. Over the years, the design strategies of congestion control have evolved

from loss-based to delay-based and now recently introduced hybrid strategies to

improve the TCP’s performance in different networks such as lossy wireless or in

the presence of large network buffers.

The loss-based strategies aim for high throughput by having as many packets

as possible in each queue without exceeding the available queue occupancy. This

allows an end-to-end flow to achieve a rate equal to the bottleneck bandwidth;

however, this is at the expense of large delays and eventual losses due to exces-

sive queueing at the bottleneck. These algorithms generally have a slow start

phase followed by a congestion avoidance phase. A few examples of loss-based

congestion control algorithms are Reno, NewReno [149], Highspeed-TCP [150],

Scalable TCP [151], TCP Westwood [152], TCP Westwood+ [153], BIC [154] and

CUBIC [146]. CUBIC is the current default congestion control algorithm in the

Linux kernel. CUBIC differs from the traditional congestion control algorithms

like Reno/NewReno in setting the congestion window size as a cubic function. It

employs a fast recovery after the loss event and is less aggressive as it approaches

the cwnd_max, making it suitable for flows that require higher bandwidth. CUBIC

offers high RTT fairness, where RTT fairness is a fairness measure among connec-

tions with different RTTs sharing the link. This is because the cwnd calculation is

independent of RTT. However, it fails to achieve maximum available bandwidth

utilization and leads to packet losses due to its congestion detection mechanism.

The delay-based strategies monitor the delay over the Internet using the RTT

measurements and aim to keep the queueing delays below a certain threshold and

avoid the large delays associated with the loss-based approaches. These are proac-

tive schemes instead of reactive loss-based approaches. The use of delay (instead

of losses) as a congestion indicator helps avoid queue buildup, which in turn is

advantageous for low-latency applications. Additionally, these mechanisms avoid
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the throughput oscillations associated with the Additive Increase Multiplicative

Decrease (AIMD) based approaches such as CUBIC. However, RTT-based con-

gestion approaches suffer due to delayed ACKs, cross-traffic and queues in the net-

work. A few examples of these are Vegas [147], FAST [155], TCP LoLa [156] and

TIMELY [157]. Vegas uses RTT measurements to estimate the buffer occupancy

at the bottleneck queue as a function of expected and actual transmission rate

and attempts to keep it under a predefined threshold [158]. RTTbase is used as

a baseline measurement for a congestion-free network. The theoretical maximum

expected transmission rate in a congestion-free network is cwnd/RTTbase. A Vegas

flow will achieve this rate if all transmitted packets are acknowledged within the

minimum RTT such that RTTi=RTTbase, where RTTi is the RTT of ith packet.

Similarly, the actual transmitted rate is calculated using the currently measured

RTT as cwnd/RTTi. Therefore the number of packets queued at the bottleneck

can be calculated as

� = cwnd
RTTi �RTTbase

RTTi

At reception of each ACK, Vegas calculates � and keeps it between predefined

thresholds ↵ and �. For Linux kernel, � values lies between 2 � 4. A � value

higher than � indicates congestion and the cwnd is reduced by one. If � is lower

than ↵, cwnd is increased by one.

Vegas minimizes the queueing delays and reduce throughput oscillations, re-

sulting in improvements in long-term throughput averages. Despite having these

benefits, Vegas suffers from some inherent issues. First, the algorithm has a slow

growth rate and, therefore, can lead to the under-utilization of resources in a high-

speed network. Secondly, the algorithm uses RTT measurements to calculate the

sending rate. Any change in the network leading to an increase in RTT is inter-

preted as congestion and results in an unnecessary reduction in the sending rate.

Finally, it doesn’t work well when other loss-based flows are sharing the network

and switches to a loss-based approach in this scenario.

Hybrid algorithms use the combination of loss and delay as congestion indi-

cators. While the loss-based strategies work well in a high-speed network with low

resource utilization as these can quickly ramp up the cwnd sizes, the delay-based

schemes are more suited for higher utilization congested networks. The basic
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idea behind the hybrid approach was to improve on the loss-based strategies such

that congestion is detected much before the queues build up and the packets are

dropped yet keeping the throughput and network utilization high. A few examples

include TCP Compound [159], Veno [160], Illinois [161] and YeAH [148].

In 2016, Google proposed the bottleneck bandwidth and round-trip time

(BBR) [32] congestion control algorithm, which aims to utilize available network

bandwidth without filling network pipes. BBR periodically estimates available

network bandwidth (BWBtl) using the maximum data delivery rate and baseline

round-trip time (RTTbase). As shown in Figure 4.2, working at this point can

ensure maximum data delivery rate with minimum congestion in a deterministic

network environment. BBR uses four different phases for its operation, namely

startup, drain, probe bandwidth and probe RTT. The startup phase uses the

slow start mechanisms of loss-based algorithms, essentially doubling the sending

rate every RTT. BBR uses the received ACKs to estimate the current delivery rate.

BBR assumes that the bottleneck rate is achieved when the delivery rate stops

increasing for three consecutive RTTs. This marks the end of startup phase

and BBR enters the drain phase to remove excess queue buildup in the previous

sending cycle. BBR reduces its sending rate to 0.75 ⇥ BWBtl ⇥ RTTbase. BBR

calculates the RTT of the every received ACK and sets RTTbase as the minimum

value of RTT in the past 10 seconds. The cwnd is set to the bandwidth delay

product (BDP).

cwnd = BWBtl ⇥RTTbase.

To adapt to the changing network conditions, BBR periodically launches the probe

bandwidth phase by sending data at a higher rate (1.25 ⇥ BDP ) for an RTT

interval. This is followed by a new drain phase where the rate is reduced to drain

the excess queues formed. This is done once every eight cycles each lasting for

RTTbase duration. If the RTTbase is same for past 10 seconds, BBR enters the

probe RTT phase and reduces the in-flight data to four packets in order to drain

the bottleneck queue entirely. This phase lasts for 200 ms. BBR is designed to

spend majority of time in probe bandwidth with probe RTT being triggered for

⇡ 200ms once every 10 seconds.
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Figure 4.4: An illustration of the real experiment topology on the AWS ec2 cloud
network. The client machine (both ACP+/TCP) was in AWS Frank-
furt, Germany, and the server was in AWS Mumbai, India. The in-
stances were connected via the AWS Private WAN.

4.3 Ageing over the Internet

We empirically determine the ability of TCP congestion control algorithms to

deliver fresh updates over an end-to-end Internet path. We also compare its per-

formance with ACP+. First, we focus on understanding how ACP+ and TCP

behave in the Core Network (See illustration in Figure 3.1). The Internet core is

widely regarded to be significantly reliable (as also seen in our experiments de-

scribed later) and is operated by managed entities such as Amazon Web Services

(AWS). Further, we investigate the behavior of the algorithms over an end-to-end

path when the first hop is a shared and contended wireless access (Figure 3.1),

wherein the differences between age control and TCP congestion control for max-

imizing throughput over the Internet are the most stark and provide valuable

insights.

4.4 Ageing over the Core Network

To understand the behavior of ageing when using different transport protocols, we

conduct real-world experiments over the AWS cloud network.

Setup and Methodology: Figure 4.4 shows the real experiment topology.

All our experiments over the Internet used two T2.micro instances in the AWS

ec2 cloud network. Both instances are configured with one virtual CPU, 1 GB

RAM and a 1 Gbps Ethernet link connected to the AWS private WAN. One of the
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instances was in the AWS Frankfurt (Germany) data center, while the other was

deployed in the AWS Mumbai (India) data center. Each instance ran a virtual

machine with Ubuntu 18.04 LTS with Linux kernel version 5.3. We confirmed

through periodic traceroute that the underlying network between our two chosen

instances was served by the AWS private WAN.

We describe our measurement methodology next. For both the ACP+ and

TCP experiments, we deployed the sender in AWS Frankfurt and the receiver in

AWS Mumbai. For each chosen congestion control algorithm, we investigated the

impact of different receive buffer sizes on the performance of the congestion control

algorithms by changing default and maximum values of r_mem in the Linux kernel.

The space available in the receiver buffer limits the maximum amount of bytes

that any congestion control algorithm may send to the TCP receiver.

For the TCP experiments, we used iPerf3 for packet generation and Wireshark

for packet captures. To ensure that all algorithms saw similar network conditions,

we ran multiple iterations of ACP+, TCP BBR, TCP CUBIC, TCP Reno, TCP

Vegas and TCP YeAH, in that exact order, one after the other. For each TCP

variant in the stated order, we further ran different receive buffer settings. Each

run of the experiment lasted 200 s. Considering that end-to-end RTT is ⇡ 110

ms in our setup, TCP spends a majority of the transfer time in the steady-state

phase.

TCP guarantees delivery of bytes sent by an application. As a result, TCP re-

transmits lost segments, which might contain stale information. We ignore retrans-

mitted segments for calculation of the time-average age. However, retransmissions

and delays incurred because TCP ensures in-order delivery of bytes to the receiv-

ing application can result in a large age. Since our goal is to understand the

behavior of congestion control algorithms, we would like to minimize the impact

of guaranteed in-order delivery on age achieved by the algorithms. Luckily, the

core network provides a very reliable byte pipe. Even our measurements over the

controlled wireless testbed, which we detail later, saw very few losses (< 0.1%)

for up to 80 nodes. We also measured the duplicate ACKs, which indicate losses

and out-of-order packets received at the receiver. We observed very low percent-

ages of duplicate ACKs (< 1%) for up to 20 nodes and up to ⇡ 1.5% for up to 80
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nodes. We matched the time of reception of dupACKs to retransmitted data to

establish a correspondence. Similar to our duplicate ACKs, the retransmitted data

percentages are very low (⇡ 0.5%) for up to 80 nodes. Please note that these are

percentages and not fractions. Given the low percentages of retransmissions, we

observe that the age performance of TCP congestion control algorithms does not

take a hit because of TCP’s feature of guaranteed in-order delivery.

4.5 Results over the Core Network

We show results from 40 runs each of ACP+, BBR-d1m1, BBR-d1m3, BBR-

d5m5, CUBIC, Reno, Vegas and YeAH. For each run, we show the average age,

throughput, and average delay (round-trip time). In the above list, we have BBR

run with three different receiver buffer settings. BBR-d1m1 denotes the smallest

default and maximum values of the receiver buffer (r_mem). In BBR-d1m3, the

default is the same as BBR-d1m1 but the maximum is three times larger. Similarly,

in BBR-d5m5 both the default and the maximum is five times that in BBR-d1m1.

For all other TCP algorithms, the results are shown for a default and a maximum

five times that of BBR-d1m1. In general, one would expect a larger receiver buffer

to allow the TCP algorithm to have a larger number of bytes in flight as long as

the network doesn’t become the bottleneck.

4.5.1 Queue Waiting Delays Dominate

Figure 4.5 shows the impact of TCP segment lengths on delay. As is seen, segment

length and delays are uncorrelated for all the TCP algorithms. This observation

can be explained by the fact that the delays in the network are almost entirely

because of the time spent in router queues awaiting transmission. The transmis-

sion times (propagation delays), which are about 20 ms, are a small fraction in

comparison. It may be worth noting that the TCP segment lengths are chosen

by the TCP algorithm and often change during a TCP session. In the figure, we

show segment lengths averaged over a run.

83



5 10 15 20 25 30 35 40
Segment Length (KB)

110

112

114

116

D
el

ay
 (m

s) BBR-d1m1
BBR-d1m3
BBR-d5m5
CUBIC

RENO
VEGAS
YEAH
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algorithms.
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Figure 4.6: Delay vs. age for the different runs of the chosen algorithms.

4.5.2 Delay vs. Age

Figure 4.6 shows a scatter of (delay, age) for the chosen runs. We see that BBR-

d5m5 sees both age and delays larger than the rest. Amongst the rest, from

the figure, it is apparent that ACP+ achieves delays and ages smaller than all

algorithms other than BBR-d1m1. BBR-d1m1 achieves a slightly smaller age

than ACP+.

In fact, the age and delay achieved by BBR-d1m1, averaged over all runs, are

114.5 ms and 112.33 ms, respectively. The corresponding values for ACP+ are

115.5 ms and 110.79 ms. The next smallest age is achieved by CUBIC and is

⇡ 121 ms. Reno, Vegas and BBR-d1m3 achieve higher ages than CUBIC, with

YeAH achieving the highest age of about 125 ms among them. BBR-d1m4, BBR-

d1m5 and BBR-d5m5 achieve ages larger than 140 ms. Only BBR-d5m5 is shown.
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Figure 4.7: Throughput vs. age for the different runs of the chosen algorithms.

4.5.3 ACP+ vs. BBR-d1m1

Before we delve further into the relative performances of ACP+ and BBR-d1m1,

let’s consider Figure 4.7 in which we show the (throughput, age) values achieved

by the different algorithms. We omit BBR-d5m5 from the figure as it resulted

in high age values (average larger than 140 ms) and also did not yield very good

throughput. BBR-d1m3 achieves the highest throughput. In fact, its throughput

of about 200 Mbps is twice the next highest value of about 110 Mbps achieved by

BBR-d1m1. The average age when using BBR-d1m3 is 123.5 ms in contrast to

the 114.5 ms obtained when using BBR-d1m1.

Interestingly, the throughput obtained by ACP+ is a low of 0.77 Mbps in

contrast to 110 Mbps obtained using BBR-d1m1 (⇡ 141⇥ the ACP+ throughput).

This stark difference is partly explained by the segment1 sizes used by BBR-d1m1,

on an average about 14 KB, in comparison to the constant 1024 byte payload of an

ACP+ packet. This difference still leaves an unexplained factor of about 10. This

is explained by an average inter-ACK time of 10.4 ms for ACP+ in comparison to

a much smaller 1.16 ms for BBR-d1m1 that results from BBR-d1m1 attempting

to achieve high throughputs.

To summarize, ACP+ results in an average age of 115.5 ms, an average delay

of 110.79 ms, an average throughput of 0.77 Mbps and an inter-ACK time of 10.4

ms. The corresponding values for BBR-d1m1 are 114.5 ms, 112.33 ms, 110 Mbps

and 1.16 ms. ACP+ achieves an almost similar age as BBR-d1m1, however, at a
1
Recall our assumption that every new segment contains a fresh update.
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significantly lower throughput. The similar age at a much larger inter-ACK time

is explained by the fact (observed in our experiments) that while a very low or

high rate of updates results in high age, age stays relatively flat in response to a

large range of update rates in between. It turns out that ACP+ tends to settle in

the flat region closer to where increasing the rate of updates stops reducing age.

This much reduced throughput of ACP+ is especially significant in the context

of shared access, allowing a larger number of end-to-end ACP+ flows to share an

access without it becoming a bottleneck.

4.5.4 The BBR Puzzle

What could explain the low age achieved by BBR-d1m1? We observe that the

average delay of 112.33 ms when using BBR-d1m1 is the same as that obtained by

a Lazy (introduced in [28]) status updating protocol we ran alongside the others,

which sends an update once every round-trip time. One would expect Lazy to

achieve a round-trip time of RTTbase (see Figure 4.2a). This tells us that BBR-

d1m1’s flow on an average saw an RTT of RTTbase. While it obtained a low

throughput of 100 Mbps, it seems to have kept the pipe full enough. This low

throughput was an accidental consequence of the receiver buffer size settings of

BBR-d1m1, which disallowed the congestion control algorithm to push bytes into

the network at a larger rate. The higher throughput achieved by BBR-d1m3, as

observed earlier, came with a higher age, however.

4.6 Age over Shared and Contended Access

Figure 3.17 (Chapter 3) illustrates our real-world experimental setup to evaluate

ACP+ and TCP for delivery of fresh updates in a shared access network. We use

the same setup and methodology as discussed in Section 3.12 of Chapter 3 for our

experiments.

The baseline RTT (RTTbase) between our sources and the monitor is 200-210

ms. Our experiment setup allows us to analyze a typical IoT environment; wherein

multiple clients connect to a monitor over a network spanning multiple hops.

Please note that we only control the WiFi part of our end-to-end connection in
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ORBIT, and the rest of the path traverses the public shared Internet. We compare

our ACP+ protocol with TCP. We use iPerf3 [162] to generate TCP traffic from

ORBIT nodes towards the AWS server. To observe the impact of contention

on the wireless last-mile, we experiment with the number of connected clients

to the WiFi access points in two different configurations. The low contention

configuration includes five or fewer source nodes connected to the same WiFi

access point, which closely emulates smart home-like scenarios. On the other

hand, experiments with more than five (and up to 80) WiFi nodes are classified

as high contention. They are representative of smart factory scenarios.

We perform at least five runs of each experiment in each configuration setting

and present averages of performance metrics of interest. Our experiments lasted

several months and were repeated across different days of the week and at different

times of the day. We detail our network configurations and the results obtained

in the following sections.

4.6.1 Shared Network with Low Contention

The low WiFi contention configuration mimics the IoT smart home scenario

where there are typically numbered devices sharing the network. We compare

ACP+ with the TCP congestion control algorithms CUBIC [146], Vegas [147] and

BBR [32].

Note that all three algorithms are popularly used on the Internet and are

the commonly chosen examples of loss-based, delay-based, and hybrid congestion

control, respectively (see Section 4.2). Figure 4.8 compares the different TCP

congestion control algorithms and ACP+ in a low WiFi access contention envi-

ronment. The number of nodes connected to the access point are a maximum of 5.

The WiFi link rate is set to 12 Mbps. Figure 4.8a shows the average age achieved

by the TCP control algorithms and ACP+. ACP+ performs better than all the

chosen congestion control algorithms and the gap between ACP+ and the rest in-

creases as the number of clients increase from 1 to 5. In Figure 4.8b, we see a rise

in the average delay (RTT) that each TCP segment sees as the number of nodes

increases. This explains the above-stated increase in age. ACP+, on the other

hand, achieves a similar average age and RTT per client. The TCP algorithms,
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Figure 4.8: Comparison of different TCP Congestion Control Algorithms and
ACP+ for low WiFi access contention. The WiFi link rate was set
to 12 Mbps.

unlike ACP+, always try and fully utilize the bottleneck WiFi link. As is seen in

Figure 4.8c, TCP always achieves a sum throughput of about 8� 9 Mbps, which

is close to saturating the 12 Mbps WiFi link when we also include packet header

overheads. TCP’s mechanism of filling the network pipe leads to queue buildup

in the network, leading to an increase in delays.

Recall our results from Section 3.12 for ACP+. The per source throughput at

which age is minimized is very low. For a small enough number of sources, the

different ACP flows are oblivious to each other. The sum throughput, shown in

Figure 4.8c, is far from saturating the 12 Mbps WiFi link.

4.6.2 Shared Network with High Contention

In this network configuration, we only compare ACP+ and BBR since BBR out-

performs CUBIC and Vegas in the core network (Section 4.4) and also when WiFi

access contention is low (Section 4.6.1). We elucidate the impact of the bottleneck

bandwidth on BBR by setting the WiFi link rates to 6, 12, and 24 Mbps, using
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Figure 4.9: Average Age achieved by TCP BBR and ACP+ in the presence of high
WiFi access contention. The solid region indicates the mean, and the
bar indicates the standard deviation across different runs. Note the
different scales on the y-axes.
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Figure 4.10: Average RTT achieved by TCP BBR and ACP+ in the presence of
high WiFi access contention.

the iwconfig [140] utility.

Figure 4.9 compares the age achieved by BBR and ACP+ for 10, 20, 40 and

80 clients connected to a fixed-rate WiFi access point, for rates 6, 12, and 24

Mbps. Observe in Figure 4.9a that as we increase the number of clients, for a

given WiFi link rate, we see a very rapid increase in the average age per node

achieved by BBR. While ACP+ also sees an increase in age with the number of

clients (sources), the increase is less rapid than in the case of BBR. Also, the age

achieved by ACP+ is much smaller than that achieved by BBR, especially for 20

or more clients sharing the access. When using BBR, for a link rate of 24 Mbps,

age increases ten fold from 321.5 ms to 3054.7 ms as the number of clients increase

from 20 to 80. The corresponding age values for ACP+ are 215.5 ms and 249.65

ms. Given BBR’s performance, and the fact that it performs better age-wise than
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Figure 4.11: Average Throughput achieved by TCP BBR and ACP+ in the pres-
ence of high WiFi access contention. The solid region indicates the
mean, and the bar indicates the standard deviation across different
runs. Note the differences in scale on the y-axes.

the other congestion control algorithms, the TCP algorithms are unsuitable for

age control in high access contention settings.

The large age values when using BBR are explained by the corresponding large

RTT shown in Figure 4.10a. The RTTs are always larger than the corresponding

RTTs when using ACP+, which are shown for comparison in Figure 4.10b. As

with age, RTT also increases rapidly with the number of clients when using BBR.

Consider Figures 4.11a and 4.11b that respectively show BBR and ACP+

throughputs. While BBR has larger throughputs than ACP+, the throughputs

for when there are 20 or more clients are similar. For when there are 10 clients,

ACP+ has much smaller throughputs for WiFi link rates of 12 and 24 Mbps. This

is because the ACP+ paths do not together fully utilize the WiFi link for the

rates, since the constraining factor as regards optimization of age is the backhaul

beyond the access (see Section 3.12). For 10 clients at 6 Mbps and for when there

are 20 or more clients, ACP+ and BBR have similar throughputs. However, BBR

achieves the throughputs at a much larger RTT and hence achieves a much larger

age. The large RTTs when using BBR are likely because all BBR clients attempt

to fully utilize the bottleneck link, which is the WiFi link in our experiments.

ACP+, on the other hand, keeps the backlog in the end-to-end path small.

We end with the WiFi packet retry rates that we obtained by configuring a

node in the ORBIT testbed as a sniffer. One would expect larger client densities

to witness higher rates of retries due to a higher rate of packet decoding errors that
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result from collisions over the shared WiFi medium access. Figure 4.12 shows the

percentage of WiFi retries observed when using BBR and ACP+. As we increase

the number of clients, the retry rates when using BBR approach 50%. The retry

rates for ACP+ saturate to a much lower ⇡ 20%. The significantly larger retry

rates when using BBR corroborate the higher RTT, both of which are explained

by TCP clients attempting to saturate the bottleneck link. Further note that for

TCP BBR, the higher the WiFi link rate, the higher is the retry percentage. This

is because the congestion control algorithm estimates the bottleneck link rate and

pushes a larger amount of packets for higher link rates.

4.7 Chapter Summary

The chapter details an in-depth real-world study on ageing when using a mix

of loss-based, delay-based and hybrid TCP congestion control algorithms over an

end-to-end Internet path. We considered paths only over the core network and also

those with a shared access as the first hop. Comparisons with ACP+ demonstrate

that the congestion control algorithms are always worse age-wise. In fact, when

20 or more nodes share an access, the algorithms are unsuitable for age control

over the Internet.
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Chapter 5

Coexistence of Age Sensitive Traffic and High

Throughput Flows: Does Prioritization Help?

5.1 Introduction

As discussed in previous chapters, IoT devices often communicate their updates,

which require timely delivery to a server in the cloud, over an end-to-end path that

includes a shared wireless access followed by a multihop path over the Internet to

the server. The update traffic often shares the path with traffic that would like to

achieve high throughput. Update packets that require timeliness will suffer large

delays if queued together with high throughput flows. They may also suffer sig-

nificant delays in obtaining transmission opportunities over a shared multiaccess

when competing for the same with high throughput flows. In practice, the net-

working stack allows priorities to be associated with data flows using, for example,

the mechanism of Differentiated Services Code Point (DSCP). In principle, this

can help alleviate the adverse consequences of update packets sharing the network

with throughput flows.

In this chapter, we empirically shed light on the benefits of prioritizing update

packets sent over a shared WiFi access to a server in the cloud [14]. We use the time

Internet

Priority Queue

Best Effort Queue

Figure 5.1: Illustration of priority queueing over a shared WiFi access. Nodes and
AP maintain separate queues for different service classes.



average age of information (AoI) [2] to quantify timeliness. Transmission Control

Protocol (TCP) flows are used to emulate high throughput traffic. For end-to-end

flows carrying update packets, we regulate the end-to-end rate of updates using the

Age Control Protocol (ACP+), which has been shown to provide good timeliness

performance over paths of interest in our previous chapters.

Work on optimizing metrics of the age of information has considered packet

management techniques, including priorities and preemption when multiple sources

share a service facility [163, 164, 165, 166, 167, 168, 169]. Such work often uses

queueing models to capture sharing of the network resources. However, contention

has not been modeled when sources share a multiaccess channel. Also, these works

assume that all traffic sharing the facility requires timely delivery. Last but not

least, it is often assumed that packet management may discard a source packet.

Given the shared WiFi access and Enhanced Distributed Contention Access

(EDCA), we have different queues for the ACP+ and TCP flows in our work as

we assign a higher priority to update packets (ACP+ flows). The queues, however,

are FCFS and don’t allow preemption. Our specific contributions are:

1. We provide an empirical evaluation of the impact of coexisting ACP+ and

TCP flows on the time-average age of information of the ACP+ flows and the

throughputs of the TCP flows. Both flows share a WiFi network and have a

server in the cloud as their destination.

2. Using different experimental configurations (a) with and without prioritization,

(b) with and without shared access, and (c) in the absence of TCP flows, we

show that while giving ACP+ flows higher priority in the absence of contention

over the WiFi access (all flows originate from the same WiFi client) effectively

isolates the ACP+ flows from the TCP flows, the contention that is caused

when WiFi access is introduced, and all flows originate from different WiFi

clients results in barely any gains from prioritization.

3. We show from our experiments that as the number of ACP+ flows become large

enough, TCP and ACP+ flows (prioritized) sharing the same WiFi access is

worse both in terms of the throughputs of the TCP flows and the timeliness

achieved by the ACP+ flows.
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5.2 Related Work

Several works [163, 164, 165, 166] analyze the average age of updates in the pres-

ence of priority traffic. In [163], the authors analyze the average age of updates

when the sources are assigned different priorities for two service facilities. One

which allows source agnostic preemption in service by a new arrival of equal or

higher priority and the other in which there is a waiting room of size 1 and a new

arrival can preempt an update in waiting but not in service. In [164], the authors

expand the waiting room to allow each source to have up to one waiting update

while the server is busy. This also allows an update in service that is preempted

by a higher priority source to be saved in the waiting room to resume service

later. In [165], the authors analyze peak age when sources have priorities and

queues are of infinite size for Poisson arrivals and general service times. In [166],

the authors propose and analyze three source aware packet management policies

considering a memoryless service facility of a single queue and server. The facility

sees arrivals from two independent Poisson sources. The policies make different

choices regarding the size of the waiting room and whether preemption is allowed

in the service. In [168], the update currently in service is preempted instead of

discarding a new arrival. In [169] arrivals consist of a mix of ordinary and priority

updates. The latter can preempt any update in service. In case the preempted

update is ordinary, it is not discarded and is queued for resuming service later.

5.3 Prioritization in Networks

Several mechanisms exist in modern networked systems that commonly address

network bottlenecks by allowing priority packets to pass first [170, 171]. The

majority of such mechanisms operate by categorizing network traffic into distinct

“service classes" – each one assigned a separate queue. Based on the QoS demands

of each class, these mechanisms manage the rate of each class queue such that the

services can access a bottleneck link depending on their priority. For example, a

router at the bottleneck link may handle voice-over-IP (VoIP) application traffic

using a high-priority, high-rate queue, while packets of video streaming applica-

tions over the same link might be forwarded at a significantly lower rate.
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IETF Diffserv
Service Class DSCP 802.11 Access

Category
User

Priority

Network Control CS7, CS6
AC_VO

(Voice)
7

Signaling CS5
AC_VI

(Video)
5

Multimedia

Conferencing/

Streaming

AF41-43,

AF31-33

AC_VI

(Video)
4

High Throughput

Data
AF11-13

AC_BE

(Best Effort)
3

Low-Priority Data CS1
AC_BK

(Background)
1

Table 5.1: Diffserv QoS mapping in wired (DSCP) and WiFi access.

There are several ways in which network operators can classify network flows

into different service classes in their managed routers. For example, operators

may use the destination IP address and port to identify an application type (e.g.,

data egress from Netflix servers) or prioritize based on the transport protocol used

(RTP may have a different priority than UDP/TCP traffic) [172]. The most com-

mon traffic classification method uses Differentiated Services Code Point (DSCP)

markings. Application providers can assign their packets with a unique code in the

IP layer. Each code maps to a unique traffic class type that can be treated with

a different priority. The current standard dictates network management control

traffic to be assigned the highest priority, followed by interactive applications, low-

loss low-latency data transfers, and finally, best-effort data transfer applications

[170, 171]. As the DSCP value is embedded in the IP header (layer 3) of every

packet, it is visible to every router on the Internet and thus allows for end-to-end

flow prioritization.

However, since multiaccess schemes like WiFi operate at layer 2 i.e., MAC

(medium access control) of the networking stack, they remain oblivious to DSCP

markings in the IP layer. Instead, the 802.11 standard employs its prioritization

using Enhanced Distributed Channel Access (EDCA) or Hybrid Controlled Chan-

nel Access (HCCA) [173]. Similar to DSCP, the 802.11 prioritization assigns eight

separate queues at the MAC layer in which data packets are segregated based on
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Orbit Testbed (Rutgers, USA)

ACP+ TCP

Figure 5.2: An illustration of the network topology. Clients containing a mix of
TCP (red) and ACP+ (blue) are connected to a WiFi AP located in
the Orbit Testbed’s WiFi grid in USA. The server is located in AWS
Mumbai, India.

their priority level (defined as User Priority). Each priority level is assigned to

one of the four access categories (analogous to DSCP traffic classes), i.e. back-

ground (AC_BK), best-effort (AC_BE), video (AC_VI) and voice (AC_VO) (arranged

in increasing priority order). Each access category uses different CSMA/CA min-

imum and maximum contention window sizes and also inter-frame spacing (IFS).

This enables packets belonging to a higher priority access category faster access to

the shared channel and less contention from lower priority packets awaiting access.

Recent efforts have mapped DSCP markings to 802.11 EDCA priority and

access categories [174]. It is now possible for application providers to assign their

traffic higher priority in both wired and wireless networks by setting DSCP in

the IP header. Table 5.1 summarizes different traffic classes and their priority

mappings between DSCP (Diffserv) and 802.11.

5.4 Experimental Setup and Methodology

Figure 5.2 illustrates our real-world experimental setup. Our setup and methodol-

ogy is similar to our previous experiments discussed in Section 3.12 of Chapter 3.

For our experiments, we use the ORBIT testbed [138], which is an open wireless

network emulator grid located in Rutgers University, USA. ORBIT houses multi-

ple programmable radio nodes deployed in a controlled grid-like environment with

adjacent WiFi nodes along rows and columns at a distance of 1 m from each other.

Each ORBIT node runs Ubuntu 18.04 LTS over Linux kernel v5.0. By default,
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ORBIT nodes use the 1 Gbps ethernet NIC to connect to the Internet. We set

up one of the ORBIT nodes as an 802.11n access point configured to operate at

5 GHz on a fixed channel using hostapd and the Atheros (ath9k) Linux WiFi

driver [139]. To focus on the interplay between priorities and contention, we dis-

able the automated WiFi physical layer (PHY) rate control in ath9k drivers and

instead use a fixed WiFi PHY rate for the length of an experiment. While most

of our experiments use a PHY rate of 12 Mbps, we also use 6 Mbps for some

experiments. We provide experiment specific PHY rates in Section 5.5. We select

up to 80 nodes as WiFi clients in the ORBIT testbed and associate them to the

ORBIT node configured as the WiFi access point. Our WiFi access point routes

every packet received over WiFi to the public Internet over Ethernet. We also set

up a node in the testbed as a sniffer that captures all packets sent over the WiFi

channel during our experiments. The sniffer data allows us to estimate MAC layer

packet retry percentages suffered by the ACP+ and TCP flows over the WiFi ac-

cess. It also helps confirm that EDCA priorities have been applied. We use an

ec2 AWS instance in Mumbai, India, as our destination server for all flows. The

baseline round-trip-time (RTTbase), calculated by sending one packet for every

ACK between our WiFi clients and the server is ⇡ 200-210 ms. We evaluate three

different flow configurations.

1. ACP-default. Update packets are sent over an end-to-end path between a

WiFi client (the ACP+ source) and the AWS server (ACP+ monitor) using

the Age Control Protocol (ACP+) [29, 31]. Update packets sent by ACP+

are given the default priority and treated as best-effort traffic.

2. ACP-priority. It is same as ACP-default but here ACP+ packets are

given the highest network priority by setting the DSCP value as CS7 (see

Table 5.1).

3. TCP-iperf. We use iperf3 to generate TCP traffic from WiFi clients to

the AWS server. We configure each TCP flow to use the cubic congestion

control [146]. TCP flows are always treated as best effort in our work.

In addition to priority queueing at our configured WiFi access (available default

in the 802.11 standard), we use CAKE [175] at our AP node to support QoS priority
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at the Ethernet interface. CAKE is a comprehensive network queue management

utility that has been deployed as part of the OpenWRT framework and is available

in all Linux kernels version 4.19 and later [176]. CAKE supports Differentiated

Services (DiffServ) prioritization scheme and maps ACP-priority flows to the

highest priority queue (reserved for voice applications) ingressing the Ethernet

interface. On the other hand, CAKE treats flows belonging to ACP-default and

TCP-iperf as the lowest priority best-effort traffic.

We use three different experiment configurations and simultaneously run ACP+

and TCP flows to evaluate the gains from prioritizing ACP+ flows. Specifically,

in Baseline Priority (BP) we initiate one or more ACP-priority and TCP-iperf

flows from a single WiFi client. This setting eliminates any interference between

the flows due to contention over the WiFi access. It focuses on the co-existence of

ACP+ prioritized flows and TCP flows in what effectively is a setting with a single

server and one FCFS queue for every priority class. In Multiaccess Priority (MP),

each ACP-priority and TCP-iperf flow runs on a separate WiFi client. The flows

therefore compete for the shared WiFi multiaccess, resulting in contention. Lastly,

in Best Effort (BE), as in MP, each flow begins in a different WiFi client. We have

ACP-default flows where no priority is assigned along with TCP-iperf flows. All

flows are thus treated as best effort.

Evaluation Metrics. We now define our evaluation metrics. The performance

of an ACP+ flow (ACP-default or ACP-priority) is evaluated in terms of the

estimate of time-average age [2] at the source. Note that since the source of the

flow (a WiFi client) is not time-synchronized with the AWS server, age can’t be

calculated at the server. We bank on ACP+ ACK packets sent by the server back

to the source in response to every update packet sent by the source to estimate

the age. The round-trip-time (RTT) corresponding to an ACK-ed source packet is

assumed to be the packet’s system time. Age is assumed to reset to this time when

the source receives an ACK. Out-of-sequence older ACKs are discarded, which is in

line with the freshness requirement. Using RTTs as an estimate of system time can

lead to over-estimation of age. However, since we consider a linear age function,

the bias in estimation does not affect the optimal operating point. Chapter 3

contains the detailed design principles and operation of ACP+. In section 5.5, we
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present the mean time-average age, which is the mean calculated over all ACP+

flows.

We also discuss ACP+ throughput, which is the end-to-end rate (Mbps) of

ACK-ed source packets and is calculated by the source based on the ACK packets it

receives and the size of sent update packets. An update packet is of size 1024 bytes

in all our experiments. We will also present WiFi MAC packet retry percentages.

These simply capture the percentage of packets on air that were retries for a

source. The retry packets are marked with a retry flag which is captured by the

sniffer. Last but not least, TCP throughput is also a metric of interest. For all

metrics, we present the mean calculated over 3 repeats of an experiment, where

each experiment is 1000 seconds long.

5.5 Evaluation

We discuss our observations from experiments performed using the methodology

described in section 5.4. They help gain insight into whether prioritizing benefits

ACP+ flows when they share a WiFi access with TCP flows.

5.5.1 Analyzing Gains from Prioritizing ACP+ Flows over the Shared

WiFi Multiaccess

Figure 5.3 shows the mean time-average age achieved by ACP+ flows sharing the

WiFi network with TCP flows. Figures 5.3a, 5.3b, 5.3c and 5.3d show the mean

age for when the number of ACP+ flows are set to 2, 5, 10, and 20 respectively.

For each selection of a number of ACP+ flows, the mean age is shown for when

the number of TCP flows are 1, 2, and 5. Further, for each selection of number

of ACP+ and TCP flows, the mean is shown for the network configurations of

Baseline Priority (BP), Multiaccess Priority (MP) and Best Effort (BE).

Contention over the shared WiFi multiaccess increases in the configurations

MP and BE when the number of ACP+ clients or TCP clients increases. Let’s

begin by considering the mean age achieved under Baseline Priority. For a given

number of ACP+ flows, for example, 5 flows in Figure 5.3b, the mean age stays
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(a) Two ACP+ flows (b) Five ACP+ flows

(c) Ten ACP+ flows (d) Twenty ACP+ flows

Figure 5.3: Mean time-average age achieved by 2, 5, 10 and 20 ACP+ flows for
Baseline Priority, Multiaccess Priority and Best Effort configurations
for 1, 2, and 5 coexisting TCP flows.

unchanged for different numbers of TCP flows. For 5 ACP+ flows, this age is

⇡ 222 ms for 1, 2, and 5 TCP flows. The age is ⇡ 230.5 ms when there are

20 ACP+ nodes as in Figure 5.3d. The age stays the same for a given number

of ACP+ nodes because in BP all ACP+ and TCP flows originate in the same

WiFi client. Because of their higher priority than TCP flows, ACP+ flows are

unaffected by changes in the number of TCP flows originating in the WiFi client.

On the other hand, an increase in the number of ACP+ flows does result in an

increase in the mean age. This is because updates from a larger number of ACP+

flows share the same priority queue in the WiFi client. Mean age increases from

⇡ 220 ms for 1 - 2 ACP+ flows (Figure 5.3a) to ⇡ 230 ms for 20 ACP+ flows

(Figure 5.3d).

As seen in Figure 5.3 for MP and BE configurations in which flows are dis-

tributed over different WiFi clients sharing the WiFi multiaccess, mean age in-
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creases significantly as the number of TCP flows increases for any selection of the

number of ACP+ flows. Assigning a higher priority to ACP+ flows, as in MP, is

ineffective in isolating them from the effects of TCP flows sharing the multiaccess.

Also, the mean age when using Multiaccess Priority is in general not much smaller

than when treating ACP+ with the same priority as TCP when using Best Effort.

To understand the reason behind significantly worse mean age when using MP,

we begin by considering the throughput obtained by the TCP flows. Later we also

look at the WiFi MAC layer retry percentages suffered by update packets of ACP+

flows and also their round-trip times (RTTs).

Further, we observe from Figure 5.3 that for any selected number of TCP

and ACP+ flows, contention over the multiaccess results in a higher mean age in

comparison to BP. In fact, even for just 2 ACP+ and 2 TCP flows, we see that

the mean age for the setting of MP is about 9 ms more than that for Baseline

Priority. This gap increases rapidly with an increase in the number of ACP+ and

TCP flows. For example, it jumps to 38 ms for 2 ACP+ and 5 TCP flows, is 55

ms for when we have 5 ACP+ and 5 TCP flows, and is 130 ms for 20 ACP+ and

5 TCP flows.

Figure 5.4 shows the sum throughput (sum of throughputs of all ACP+ and

TCP flows) for the network configurations BP, MP, and BE, and different numbers

of TCP and ACP+ flows. It can be observed that the sum throughput is about

the same for all the configurations and all numbers of TCP and ACP+ flows. It

stays in the very narrow range of 8.8 to 9 Mbps. Essentially, the TCP and ACP+

flows together achieve the available data payload rate of about 9 Mbps, given

the link rate of 12 Mbps. The figure also shows the share of ACP+ flows and

that of TCP flows in the sum throughput. As can be seen, the fraction of sum

throughput that corresponds to ACP+ flows increases with the number of ACP+

flows. As expected, the sum throughput of ACP+ flows for Baseline Priority is

only a function of the number of ACP+ flows and is not impacted by the number

of TCP flows. This throughput is 0.8 Mbps for when we have 2 ACP+ flows and

goes up to about 5 Mbps for 20 ACP+ flows.

Further note, for a given number of ACP+ flows, the sum throughput of TCP

flows stays about the same for the configurations BP, MP, and BE. For BE, it is
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(a) Two ACP+ flows (b) Five ACP+ flows

(c) Ten ACP+ flows (d) Twenty ACP+ flows

Figure 5.4: Sum throughput of ACP+ and TCP flows with their respective shares
for 2, 5, 10 and 20 ACP+ flows. For each stacked bar, the diagonally
striped top part corresponds to the sum of ACP+ flows and the bottom
part shows the sum TCP throughput. For each number of ACP+
flows, the throughputs are shown for 1, 2, and 5 coexisting TCP flows
and for Baseline Priority, Multiaccess Priority and Best Effort.

within ⇡ 2 Mbps of sum TCP throughputs for Baseline Priority. Specifically, for

larger numbers of ACP+ flows, the TCP sum throughput is greater by at most ⇡ 1

Mbps when using Multiaccess Priority compared to using BP. When using BE,

it is at most ⇡ 2 Mbps higher. TCP throughput benefits in BE because ACP+

flows have the same access priority as TCP flows. The above observation tells us

that the significant increases in mean age seen in Figure 5.3 with an increase in

the number of TCP flows for a given number of ACP+ flows, for MP and BE,

may not be entirely attributed to TCP’s throughput share.

While an increase in TCP flows doesn’t impact the TCP sum throughput, it

results in increased MAC layer retries of packets of ACP+ flows. It also results

in ACP+ flows experiencing large RTTs. Figure 5.5a shows the packet retry

percentages as a function of the number of ACP+ flows for two and five TCP flows
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Figure 5.5: (a) Retry percentages of update packets sent in ACP+ flows as a
function of number of ACP+ sources. Percentages are shown for Best
Effort and Multiaccess Priority, and for 2 and 5 TCP flows. (b) ACP+
sum throughput in the absence of TCP as a function of the number
of ACP+ flows sharing a 6 Mbps WiFi link.

(a) Ten ACP+ flows (b) Twenty ACP+ flows

Figure 5.6: Mean RTT of ACP+ flows. For ten and twenty ACP+ flows, RTT is
shown for Baseline Priority, Multiaccess Priority and Best Effort, and
for 1, 2, and 5 coexisting TCP flows.

and the configurations of Multiaccess Priority and Best Effort. Retry percentages

increase by about 5% - 10% when the numbers of TCP flows increase from 2 to

5. We also see higher retry percentages when there are larger numbers of ACP+

flows. Also, observe that for a given number of TCP flows, Best Effort sees higher

retry percentages than MP. This is because having priority has ACP+ flows see a

little less contention over the WiFi multiaccess.

We also look at the mean RTTs of updates packets to see the impact of in-

creased MAC layer retries. Figures 5.6a and 5.6b show, respectively for 10 and 20

ACP+ flows, significant increases in RTT as the number of TCP flows increase

103



No TCP 1 2 5
Number of TCP Flows

205

255

305

355

A
g

e
 (

m
s)

ACP+ 5
ACP+ 10

ACP+ 20
ACP+ 40

ACP+ 80

Figure 5.7: Mean time-average age for ACP+ flows with increasing TCP flows.
In No TCP, all ACP+ flows share a 6 Mbps WiFi link. For all other
settings, ACP+ and TCP flows share a 12 Mbps link in Multiaccess
Priority configuration.

from 1 to 5, for MP and BE. These, together with the retry rates, explain the

large mean ages observed when using multiaccess in comparison to when using

Baseline Priority.

To summarize, the gains from prioritizing ACP+ flows vanish quickly with an

increase in contention over the shared WiFi multiaccess. The increased contention

leads to higher retries and higher RTTs, resulting in higher time-average age.

5.5.2 Analyzing the Effect of Competing TCP flows on ACP+

In this section, we try to analyze the performance of ACP+ flows sharing a 6

Mbps WiFi link without interference from TCP flows and compare it to the case

where all flows are sharing a 12 Mbps WiFi link.

Figure 5.7 shows the mean age achieved by ACP+ flows when they share the

WiFi multiaccess of rate 6 Mbps in the absence of TCP flows (labeled No TCP)

and when the ACP+ and TCP flows share a 12 Mbps in MP configuration. For

the No TCP setting, we see that the mean age is 209.43, 219.18, 243.79, 275.15,

327.41 ms, respectively for 5, 10, 20, 40, and 80 ACP+ flows. The corresponding

sum ACP+ throughputs (see Figure 5.5b) are 2, 2.9, 3.7, 4 and 5 Mbps. So with
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80 ACP+ flows sharing the WiFi multiaccess with a link rate of 6 Mbps, and

utilizing almost all of it (a sum throughput of 5 Mbps), the mean age is 327.41

ms. Compare these mean ages for the No TCP setting with 10 and 20 ACP+ flows

under Multiaccess Priority when a 12 Mbps WiFi link is shared with 1 - 5 TCP

flows (see Figure 5.7). For 10 ACP+ nodes it is 230.7, 247.25, and 309 ms. For 20

ACP+ it is 252.76, 298.9, and 358.77 ms, respectively. Clearly, ACP+ achieves

lower age even with 80 flows and lower link rate (of 6 Mbps) when compared with

20 ACP+ flows coexisting with TCP flows even at a higher link rate of 12 Mbps.

For TCP, throughput is the utility of interest. For TCP flows sharing a 6

Mbps WiFi link (without any ACP+ flows), the sum TCP throughput is ⇡ 5.5

Mbps, which is the expected payload rate after accounting for overheads like packet

headers. For ACP+ and TCP flows sharing a 12 Mbps link, the sum throughput

is 5 Mbps (1, 2 or 5 TCP flows) for when we have 20 ACP+ flows and is in the

range of 6 - 6.5 Mbps for 10 ACP+ flows (see Figure 5.4). In fact, it is only

when we have very few ACP+ flows, that the TCP sum throughputs are much

larger than 5.5 Mbps. For when TCP shares with only 1 ACP+ flow, the sum

TCP throughput is as high as 8 Mbps. With 5 ACP+ flows, the sum throughput

ranges from 7 - 7.5 Mbps.

Additionally, the retry percentages for No TCP are 2% for 5 ACP+ flows and

increase to 17% for 80 ACP+ flows (plot not included). Contrast these with the

much higher retry rates in Figure 5.5a for when ACP+ flows share a 12 Mbps link

with TCP flows. We also look at the impact of retry rate on RTTs and find that

even the RTTs are smaller, with 20 ACP+ flows seeing an RTT less than 220 ms.

To sum up, we found that when 20 ACP+ flows share a 12 Mbps access with

TCP flows, having TCP and ACP+ flows use non-interfering 6 Mbps WiFi links

is beneficial to both. ACP+ mean ages are much smaller and TCP gets a higher

sum throughput of 5.5 Mbps.

5.6 Chapter Summary

We studied the impact of prioritization on the performance of age-sensitive traffic

in the presence of competing network traffic. We considered an array of experimen-
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tal configurations in real-world network settings. Our results indicate that ACP+

flows gain from prioritization only when contention over the wireless access from

competing traffic is low. The gains are non-existent as the contention increases.

We also find that a large number of ACP+ and TCP flows using non-interfering 6

Mbps WiFi links results in both better throughput and age performance, respec-

tively for TCP and ACP+ flows, than when the flows share a 12 Mbps access.
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Chapter 6

Discussion and Future Research Directions

In this thesis, we provided transport layer solutions for two categories of emerging

applications. The first category of applications requires high end-to-end through-

put, for example, video streaming and large file downloads. The other category,

which includes IoT applications like environmental monitoring and vehicular net-

works, requires freshness of information at the destination.

For applications that require high end-to-end throughput, we proposed QAware

[23], which is a novel MPTCP scheduler that enables simultaneous use of multiple

available paths. QAware uses end-to-end subflow RTT(s) together with queue

occupancies at the layer 2 of the TCP/IP stack to decide the path over which

a TCP segment must be sent. Our scheduler outperformed various state-of-the-

art schedulers, including DAPS, BLEST, and ECF. QAware’s implementation

as a modular scheduler for MPTCP Linux kernel version 0.92 has been open-

sourced [24].

For applications that desire freshness of information at a destination (moni-

tor), we proposed the Age Control Protocol (ACP) [27, 28, 29], which is the first

transport layer protocol that enables freshness of information at a destination,

wherein the information is sent by a source in the form of status update packets

to the destination over the Internet. We evaluated ACP and its improved ver-

sion ACP+ over a wide range of simulated networks and real-world, end-to-end

paths over the Internet. Our evaluation brings insights into age control over the

Internet. We also compared and contrasted ACP+ with various state-of-the-art

TCP congestion control algorithms. We conclude that the existing algorithms are

unsuitable for age control over the Internet.

We end the thesis with an investigation of the coexistence of ACP+ and

TCP [14]. We show that the typically proposed prioritization mechanisms do

not work in the presence of access contention. We believe that there is a need to

model the benefits of prioritization in the presence of contention.



We make ACP+ publicly available at [31].

6.1 Future Research Directions

As discussed in Chapter 2, the QoS requirements of next-generation applications

have dictated the need for several improvements and advancements in transport

protocols to provide high throughputs and low delays. While this thesis focuses

on multipath TCP and proposes a novel cross-layer approach, recent advances in

QUIC have opened several new doors within this problem space. Notably, we

find the current discussions on multipath QUIC (MP-QUIC) [177] within IETF as

an interesting potential extension opportunity for enhancing QAware operation.

Specifically, unlike MPTCP, MP-QUIC scheduler design allows exploring a new

dimension for multipathing. That is, in addition to scheduling packets over mul-

tiple paths for increased reliability, MP-QUIC enables scheduling packets across

multiple streams on the same path for increased utilization. As a result, QAware

would need to optimize the queueing delay caused by packets scheduled by the

application across multiple streams on the same path over every available path to

maximize utilization of all available subflows and sub-streams optimally.

Our work in Chapter 3 has highlighted the need for network models that can

help us understand age optimization in multi-hop networks that mimic the In-

ternet. Insights obtained from stop and wait based protocols are not suitable

for age control over the Internet since these protocols don’t exploit the presence

of multiple hops. Moreover, we need better strategies to enable the coexistence

of age-sensitive traffic and high throughput traffic in the presence of access con-

tention, as more than just using prioritization may be required in such settings.

Approaches such as time-sensitive networking (TSN) [178] and deterministic net-

working (DetNet) [179], that provide time-critical networking through the link and

network layer advancements show promise if used in conjunction with ACP. We

believe that ACP can benefit from such lower layer enhancements, and we plan to

explore the interplay of ACP in TSN/DetNet enabled networks in future.

While in this thesis, we focused on applications that either care for freshness of

data or the throughput, there are emerging Internet applications such as AR, VR,
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Autonomous vehicles, teleoperated vehicles, and cloud gaming [180] that care for

both the freshness of data along with throughput and reliability. An end-to-end

protocol that is able to achieve throughput-age tradeoffs as desired by an applica-

tion is a possible future research direction. A natural extension, given the use of

multiple paths by TCP, is an age control protocol that is able to exploit multiple

simultaneous paths. For example, a Multipath ACP. In this case, an Machine

Learning based scheduling approach may prove beneficial since it would not only

maximize the throughput of an application but also make holistic decisions to

minimize end-to-end age across many available paths.

Several additions can be made to the ACP operation to make it applicable

to a wider class of next-generation applications. For example, adding packet re-

liability within ACP may prove useful for remote-control applications (such as

robotic control) since control commands require strong transmission guarantees

along with low age. Similarly, we also plan to run extensive performance measure-

ments of ACP over more recently available last-mile access technologies, e.g., 5G

new radio (NR), LEO satellite links, etc. These technologies use a new spectrum

for operation and observe contention, excessive queueing, and interference from

the environment much more than traditional LTE/WiFi. Many recent studies

have revealed performance bottlenecks of existing transport protocols over these

technologies [181, 182, 183]. Based on our learnings from designing QAware, we

believe there is a potential for improving ACP performance by considering lower-

layer state information, such as driver queue size, SNR, retry/send rate, etc. As

such, our focus would be to understand how ACP fares in minimizing end-to-end

age over such access technologies and how the control algorithm can be improved

to leverage such high bandwidth links effectively.

Last but not least, to have applications and the networking stack adopt age

control protocol, we need to work toward standardization. To gain an understand-

ing of recent transport layer innovations, we surveyed standardization efforts being

made for new (or extended) transport protocols in IETF [26]. Specifically, we

focused on understanding the open problems currently being looked at in the stan-

dardization body. We provided valuable insights to researchers in the field on how

to design protocols that can later be standardized and used beyond their research

study. To this end, we are preparing an IETF standardization draft of ACP [29].
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