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and just leave every other idea alone. This is the way to success.”
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Abstract

Egocentric videos are recorded in a hands-free, always-on, under enhanced privacy-
sensitive scenario and are often collected from day to weeks. For efficient consumption,
such videos require robust video analysis techniques that can deal with extremely long
sequences in an unsupervised setting. This dissertation explores a novel research area
by developing video analysis tasks for extremely long and sequential data (ranging from
a day to weeks long) in a self-supervised/unsupervised setting. In this dissertation, we
address the three key video analysis problems, namely temporal segmentation, summa-
rization, and recovering activity patterns, specifically designed to deal with the issues of
scalability, privacy, and unlabeled data.

There are a plethora of works in the literature for third person video analysis. How-
ever, third person videos are often recorded from point-and-shoot cameras, thus gener-
ating small video samples (up to a few minutes). In this dissertation, we work on Disney
(up to 8 hrs video sequence), UT Egocentric (UTE) (up to 5 hrs), and EgoRoutine (up to
20 days of photo-stream lifelogs) datasets that are recorded in a real-life setting. There-
fore, third person video analysis techniques do not typically scale for long sequences. For
example, the simplest task of temporal segmentation becomes challenging for extremely
long sequence data as the length of events ranges from a few seconds to hours long. Sim-
ilarly, for video summarization, we usually consider the whole video sequence to select
the appropriate frames/sub-shots for generating a compact yet comprehensive summary.
In activity pattern recovery, we need to model the underlying distribution of activity
patterns for the whole data (weeks long lifelog), and the task becomes cumbersome
when the distributions are highly skewed. In all these instances, the complexity of the
task increases multifold and requires a different level of comprehension for modeling the
extremely long video sequences. We further demonstrate that state-of-the-art (SOTA)
approaches based on Recurrent Neural Networks (RNNs), Long Short-Term Memory
Networks (LSTMs), Graph Convolutional Networks (GCNs), or Transformers networks
fail miserably to handle massively long sequences. This dissertation proposes scalable
solutions to analyze extremely long egocentric videos, typically ranging from a day to
weeks.

The long and unconstrained nature of egocentric videos makes it imperative to use
temporal segmentation as an important pre-processing step for many higher-level video
analysis tasks. In the first work, we present a novel unsupervised temporal segmen-
tation technique especially suited for extremely long egocentric videos. We formulate
the problem as detecting concept drift in a time-varying, non i.i.d. sequence of frames.
Statistically bounded thresholds are calculated to detect concept drift between two tem-
porally adjacent multivariate data segments with different underlying distributions while

vi



vii

establishing guarantees on false positives.
The egocentric videos are extremely long and highly redundant in nature, and these

videos are difficult to watch from beginning to end. Hence, require summarization tools
for their efficient consumption. The second work presents a novel unsupervised deep
reinforcement learning framework to generate video summaries from day long egocentric
videos. We also incorporate user choices using interactive feedback for including or
excluding a particular type of content in the generated summaries.

Lifelogging applications for egocentric videos require analyzing a huge volume of
data often captured over weeks to months for a particular subject and contain long-
term dependencies. High-level video analysis tasks over lifelogs include recognizing daily
living activity (ADL), routine discovery, event detection, anomaly detection, etc. We
observe that the Transformer-based SOTA architectures still fail for extremely long video
sequences. Our analysis reveals that the key ingredient missing is the inability of the
architecture to exploit strong spatio-temporal visual cues inherent in video data. To cap-
ture such cues within a transformer architecture, we propose a novel architecture named
Semantic Attention TransFormer (SATFormer), which factorizes the self-attention ma-
trix into a semantically meaningful subspace. We use SATFormer within a novel self-
supervised training pipeline developed specifically for the task of recovering activity
patterns in extremely long (weeks-long) egocentric lifelogs. In the proposed pipeline, we
alternatively learn feature embedding from the proposed SATFormer using the pseudo-
label assigned to each frame and learn the pseudo-labels from the clustering done using
feature embedding from SATFormer.

Overall, this dissertation is a significant feat addressing the broader issues of scala-
bility, privacy, and unlabeled data and establishing SOTA performance for the respective
tasks. The proposed works are pioneers in handling massively long (up to 60k time
steps) sequence video data in an unsupervised setting.
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Chapter 1

Introduction

1.1 Egocentric Videos

Egocentric videos or first-person videos (FPV) are captured by wearable devices and
approximate the visual field of the camera wearer. Consequently, these videos consider
the camera wearer as a central reference point and provide the unique perspective of
engagement of the wearer to the realistic environment. Fig. 1.1 depicts the comparison
between egocentric and traditional videos or third-person videos (TPV).

(a)

(b)

Figure 1.1: Figures (a) and (b) compare a frame sequence generated by a small video
snippet of egocentric and third-person videos, respectively. The figure shows that both
the subjects perform similar activities (interacting with the dishes) in the kitchen; how-
ever, the visuals differ considerably.

The wearable devices used to capture such videos are typically worn on the head or
chest of the wearer. Fig. 1.2 depicts a few popular wearable cameras.

1.2 First-person vs. Third-person Videos

Egocentric videos are often captured in a hands-free, always-on manner leading to ex-
tremely long and highly redundant video sequences comprising a large variety of un-

1
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GoPro Pivothead SenseCam

Figure 1.2: The figure demonstrates a few wearable devices with their installation on
the wearer. GoPro, Pivothead, and SenseCam are head/hat-mounted, glass-mounted,
and chest-mounted devices, respectively.

constrained environments compared to their third-person counterpart. By virtue of the
specialized placement of the camera, these videos are shaky and lack subject pose in-
formation (refer Fig. 1.1). Furthermore, these videos are often captured in enhanced
privacy constraints, ruling out the creation of large annotated datasets, and supervised
models. Due to these unique characteristics, the third-person techniques do not scale
for first-person videos. Table 1.1 compares the two modalities.

Annotations Extremely Redundant Subject Pose Shaky Privacy
Long Information Constraints

FPV ✗ ✓ ✓ ✗ ✓ ✓

TPV ✓ ✓ ✗ ✓ ✗ ✗

Table 1.1: Comparison between first-person videos (FPV) and third-person videos
(TPV).

1.3 Egocentric Vision

Egocentric vision (or first-person vision) is a subfield of computer vision that analyzes
egocentric images and videos. Early research in egocentric vision focused on health be-
havior analysis such as measuring sedentary behavior and nutrition-related behaviors
[43]. After that, the computer vision community delved deeper into egocentric vision
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due to rapid advancement in wearable devices and the increasing number of potential
applications [17]. In 2012, Kanade and Hebert [78] developed the first egocentric vision
system to understanding the user’s environment and activities. This system focused on
the following key characteristics of the egocentric videos: a localization module that
estimates the surrounding (match the current image with a large database), a recogni-
tion module able to identify important objects and people, and an activity recognition
module that recognizes the current activity of the user. Inspired by this work, many
egocentric video analysis works focused on hand-related action/activity recognition and
social interaction analysis. Wearable devices are typically used in an ‘always on manner’
that leads to abundant data. Temporal segmentation [33, 124] and summarization [90]
are the key problems addressed to handle such long sequential data. Furthermore, activ-
ity forecasting, routine discovery, and preserving privacy in the egocentric video are also
explored extensively. More recently, egocentric videos have been used to understand hu-
man and animal cognition, human-human and human-robot interaction, and augmented
reality interfaces.

1.4 Motivation

Due to rapid technological advancements in the last decade, we are witnessing a widespread
creation of multimedia data, including image, text, audio, and video. For example,
statistics (of the year 2018) show that Instagram users have uploaded over 20 billion
photos, Twitter users sent approximately 500 million tweets every day, and YouTube
users uploaded over 300 hrs of videos every minute (i.e., more than 8 trillion images per
year assuming the frame rate is 15 fps) [72, 128]. It is evident that video constitutes
the major share of available multimedia data out of all the modalities. The computer
vision community seeks to provide efficient and effective video analysis frameworks to
understand, index, and retrieve such gigantic data to handle real-world challenges.

Recently, video data generated by point and shoot cameras have increased exponen-
tially due to mobile technology, low-cost storage, and social media platforms. These
videos are triggered by user interest and are typically very short (ranges up to a few
minutes). However, three categories of videos are extremely long and constitute the
major share of available video data, namely surveillance video, sport videos/movies, and
lifelogs.

Furthermore, the surveillance videos contribute the majority among all kinds of long
videos captured. In video surveillance, the camera is fixed to a specific location, and
the signal is transmitted to a limited set of monitors. Due to always-on recording,
these videos are very long and boring. Nowadays, computer vision techniques are exten-
sively used for automated behavioral analysis of the huge volume of data generated from
surveillance videos. In behavioral analysis, the abnormal behavior of people, vehicles,
machines, and the environment is identified by observing the data collected by surveil-
lance cameras. For example, a vehicle violating the speed limit is abnormal behavior,
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and slipping/falling of a pedestrian on the road is abnormal behavior. However, from an
algorithmic perspective, the analysis of surveillance videos is straightforward and can be
done by subtracting static background and choosing frames with significant foreground
objects.

On the other end, the majority of the sports/movies video analysis comprises pre-
defined events/criteria such as leading characters and action scenes for movies [23, 64],
and specific events in a sports video [21, 46, 121, 161]. For example, for soccer video
analysis, the predefined events could be a goal, the movement of the ball, the position
and/or movement of players, etc [27, 146].

The expeditious progress in technology has made wearable cameras [60, 123, 138]
affordable and popular, and apart from recreational purposes, these wearable cameras are
increasingly being used in law enforcement, geriatric care (for old people), and lifelogging
applications. The egocentric videos possess unique characteristics (refer to Table 1.1)
because of the specialized position of the camera and peculiar recording style (moving
camera). Due to these unique characteristics, third-person video analysis techniques
fail for egocentric video analysis. For example, the SOTA third-person video analysis
approaches use advanced frameworks such as TCNs [40, 41, 89, 110], LSTMs [18, 96,
109, 110, 145, 188, 199], GCNs [5, 175, 190], and Transformer networks [58, 139] that are
not scalable for massively long sequences and/or are not applicable for the unlabelled
data. Furthermore, the third-person action/activity recognition works rely on subject
pose information and hence are not applicable for egocentric videos [75, 178]. Similarly,
traditional SOTA approaches for egocentric video analysis rely on predefined objects and
people present, are specific to known environments (e.g., daily life, cooking video) and fail
for the unseen environments common in egocentric videos [91, 104]. Hence, we require a
new set of video analysis techniques specifically designed to address the above challenges
and efficiently consume the massive volume of data resulting from the egocentric videos.

1.5 Aims & Research Questions

Motivated by the challenges, this dissertation aims to design novel scalable and unsuper-
vised video analysis frameworks for massively long (up to 60K time steps) multivariate
sequences, suitable for high-level video analysis tasks viz temporal segmentation, sum-
marization, and activity recognition.
We articulate the following research questions for the three fundamental video analysis
tasks:

1. Temporarily segment day long egocentric videos where the length of events is very
dynamic (ranging from a few seconds to hours).

2. Summarize day long egocentric videos while maintaining the representativeness of
the whole video. Personalize summaries by incorporating user feedback (in the
form of video exemplars).
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3. Recover activity patterns from one’s weeks long lifelog.

1.6 Thesis Contributions

Overall, this dissertation is a significant feat to address the broader issues of scalability,
privacy, and unlabeled data and establishes the SOTA. Suggested solutions represent the
pioneering efforts for several video analysis tasks on massively long (up to 60k time steps)
sequences in an unsupervised fashion. The proposed frameworks demonstrate novel deep
learning and theory-based solutions for egocentric videos/photostreams analysis and
show practical applicability in the real-life domain. All the works are deeply inspired by
the recent advancement of deep learning, such as LSTM, Reinforcement Learning, Trans-
former Networks, etc., to pursue scalable solutions. Furthermore, We also demonstrate
a statistical framework that deals with scalability in multivariate streaming data.

The dissertation explores three fundamental video analysis tasks: temporal video
segmentation, summarization, and recovering activity patterns from a massively long
multivariate sequence. Each task requires a different level of semantic understanding of
massively long egocentric video sequences. To the best of our knowledge, we are the
first to work on the Disney (up to 8 hrs video sequence) [51], and UTE datasets (up to
5 hrs) [90, 104] for temporal segmentation and summarization and EgoRoutine dataset
(up to 20 days long photostream sequence) [160] for activity patterns recovery. A brief
introduction and contributions of the problems addressed are as follows:

1.6.1 Temporal Segmentation of Day Long Egocentric Videos

The long and unconstrained nature of egocentric videos makes it imperative to use tem-
poral segmentation as an important pre-processing step for many higher-level inference
tasks. Activities of the wearer in an egocentric video typically span over hours and are
often separated by slow, gradual changes. Furthermore, the change of camera view-
point due to the wearer’s head motion causes frequent and extreme but spurious scene
changes. This work presents a novel statistical unsupervised temporal segmentation
technique especially suited for day long egocentric videos. We formulate the problem
as detecting concept drift in a time-varying, non i.i.d. sequence of frames. Statistically
bounded thresholds are calculated to detect concept drift between two temporally adja-
cent multivariate data segments with different underlying distributions while establishing
guarantees on false positives.

Contributions:

1. To the best of our knowledge, we are the first to formulate the problem of temporal
segmentation of extremely long egocentric videos.
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2. We use a multivariate generalization of Hoeffding’s bound to compute distribution
invariant segmentation threshold for multivariate time series arising out of a given
frame sequence.

3. Our technique gives significantly improved f-score of 59.44%, on HUJI dataset [126],
in comparison to current state of the art of 45.70% by [33].

1.6.2 Summarization and Personalized Summarization of Day Long
Egocentric Videos

Egocentric videos (specially in lifeloging) comprise repetitive and long uninteresting por-
tions. For efficient consumption and indexing, automatic summarization is imperative.
Video summarization aims to create a compact and comprehensive synopsis by selecting
the most informative parts of the original video [9]. The problem is a well-studied area
in computer vision and broadly divided into two styles: keyframes and video skims. The
proposed work focuses on video skims based summarization, where the summary is gen-
erated by the collection of video segments extracted from the original video sequence.
While recording, the camera wearer often moves in a variety of scenes and performs
various daily activities. The characteristics rule out techniques relying on the detection
of important pre-specified events or objects. Further, obtaining annotated samples for
summarization is hard for egocentric videos, often captured in an enhanced privacy sce-
nario. Therefore, this work proposes a novel sliding window-based unsupervised deep
reinforcement learning (RL) technique to summarize egocentric videos spanning 4 to 8
hrs. While generating visually diverse summaries, it is observed that the summariza-
tion criteria are inherently personal. Specifically, in the day long lifelogs, the same user
may want to explore the summary focusing on the different types of events like social
interaction, having food, walking, etc. Hence, we propose interactive summarization to
personalize summaries by interactively collecting user feedback on-the-fly.

Contributions:

1. To the best of our knowledge, this work is the first work to summarise arbitrary
long input videos and can be trained to generate summaries of various lengths.
We demonstrate it by generating 1, 5, 10, and 15 minutes summaries of day long
egocentric videos from several benchmark datasets [51, 90, 104, 125, 127].

2. Our approach can focus on various user-specified saliency criteria for the summary,
such as distinctiveness, indicativeness, and object, or motion saliency.

3. We also propose an interactive summarization framework that can personalize
summaries based on the length, content as well as interactive feedback from the
user.
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4. We achieve state-of-the-art performance on benchmark egocentric video datasets.
We report Relaxed F-score [33] of 29.60 against 19.21 from the SOTA [199]. We
also report BLEU score of 11.55 from our approach in comparison to 10.64 by the
SOTA on the Disney dataset [51].

5. Though our focus is on egocentric videos, our technique can summarize hand-held
videos as well. We obtain F-score of 46.40 and 58.3 on SumMe [61] and TVSum
[153] datasets respectively, against the SOTA scores of 41.4 and 57.6 respectively.

1.6.3 Recovering Activity Patterns from Weeks Long Lifelog (photo-
streams)

In lifelogging, egocentric videos are recorded across weeks to months. High-level anal-
ysis tasks over lifelogs include recognizing daily living activity (ADL), routine discov-
ery, event detection, anomaly detection, etc. They require pre-processing with a self-
supervised/unsupervised temporal segmentation and an activity indexing technique that
deals with extremely long sequences. We show that traditional sequential models viz
RNNs, LSTMs, GCNs, and Transformers fail to capture the long global dependencies
required to address this problem, where similar events are often distributed across differ-
ent days and even weeks. To this end, we propose a novel architecture named Semantic
Attention TransFormer (SATFormer), for representation learning in a very long photo-
stream sequence.

Contributions:

1. We propose a novel Transformer architecture (SATFormer) based on the low-rank
factorization of the self-attention matrix using proposed representative loss. The
proposed architecture can exploit semantic cues to learn robust representation from
extremely long video sequences.

2. We propose a self-supervised training scheme to discover activity patterns in ex-
tremely long egocentric lifelogs (recorded for up to 20 days). The approach does
not rely on any priors, pre-trained networks to detect activities, objects, and/or
places, and is specifically developed for unconstrained egocentric videos.

3. We demonstrate the performance of our contributions on the benchmark Egor-
outine dataset. The proposed techniques using the SATFormer module gives a
performance of 0.68/0.68/0.79 in terms of NMI/AMI/F-Score metrics, compared
to 0.60/0.60/0.64 by the SOTA.

4. We also contribute annotations for the daily routines of all 7 subjects in the dataset
comprising 104 days of life-logging data.
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1.7 Thesis Structure

In chapter 2, we will discuss various SOTA works aligned to the three fundamental video
analysis problems. Chapter 3 introduces the first problem titled temporal video segmen-
tation. In this work, we demonstrate to temporarily segment the day long video (ranging
up to 8 hrs) into possible events. In chapter 4, we introduce summarization and interac-
tive summarization of day long video. This work demonstrates the summarization of day
long sequence using a sliding window framework using three basic RL frameworks: policy
gradient, Q learning, and Actor-critic. We also propose an interactive summarization
framework that can personalize summaries based on the length, content, and interactive
feedback from the user. In chapter 5, we introduce activity patterns recovery from weeks
long photo-stream lifelogs using self-supervised learning. Chapter 6 presents the thesis
conclusion by summarizing the contributions and proposing several perspectives about
future research directions.



Chapter 2

Related Work

Most of the works in the analysis of egocentric videos focus on action recognition [52,
82, 122, 149, 186], and summarization [67, 91, 95, 104, 173, 179] tasks. Furthermore,
the supervised methods [52, 102, 103, 105, 122, 148, 149, 186] have dominated the field,
whereas relatively fewer works have been demonstrated in unsupervised settings [15, 53,
67, 82, 95, 104, 173]. We will elaborate upon these works in detail in subsequent sections.

On the other end, many interesting problems are addressed for egocentric photo-
stream lifelogs [2–4, 20, 36, 66, 119, 136]. Most of the works focus on extracting social
interaction patterns in egocentric photo-stream lifelogs [2–4, 66]. Herruzo et al. [66] use
traditional classifiers such as kNN, SVM, and SOTA CNNs to classify the photo-stream
into three patterns of interest, namely socializing, eating, and sedentary. Aghaei et al.
in [2] employs LSTM based classification model for social interaction pattern extraction,
and in [3] harness high-level image features and employ LSTM for detection and cate-
gorization of social interaction into formal and informal gatherings. Aghaei et al. [4]
proposed an unsupervised agglomerative clustering approach to identify unique interac-
tion in photo-streams. Furnari et al. [54] study how personal location from the user’s
lifelog can be recognized and localized from egocentric videos. They segment egocentric
videos into fixed personal locations specified by the user like car, office, kitchen using
Hidden Markov Model (HMM). Similarly, one of the preferences is to analyze people’s
food interaction for healthcare and geriatric care. Sarker et al. [136] introduce a new
dataset titled ‘EgoFoodPlaces’ and trained an atrous CNN to recognize recurrences of a
person on food places. Cartas et al. [20] use a CNN-LSTM model with the fixed batch
size and overlap to capture the temporal evolution of high-level features in photo-stream
for some predefined categories. The method uses a very short duration of temporal
window size (5, 10, and 15 frames), which helps to detect temporal boundaries with-
out explicitly knowing the boundaries. The techniques used for egocentric photo-stream
analysis are not often applicable for day long egocentric video sequences (High Temporal
Resolution) because they vary long and comprise a very smooth transition between the
actions/events.

We now discuss various SOTA works related to temporal segmentation, summariza-
tion and personalized summarization, and activity patterns recovery.

9
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2.1 Temporal Segmentation of Day Long Egocentric Videos

Related Tasks: We note that the solution to action localization, action detection,
and scene segmentation results in the temporal segmentation of videos. Action local-
ization refers to predicting the temporal bounds of pre-specified action categories in an
input video. Researchers have looked at the problem of action localization, and action
detection in both third person [6, 18, 22, 39, 48, 96, 110, 144, 145, 145], as well as the
first person contexts [2, 15, 20, 71, 82]. Many temporal action localization/action detec-
tion works are supervised and demonstrated for untrimmed videos [56, 144, 145]. For
example, Shou et al. [145] demonstrate action localization in untrimmed videos. The
proposed framework is a three-stage framework that uses frame-level annotations. The
untrimmed video is divided into small segments. In the first state, the proposal network
classifies the foreground activities from the background activities. The proposal network
eliminates the background activities to a large extent, and the foreground activities
are given as input to the classification network. In the second state, the classification
network uses C3D CNN to harness Spatio-temporal information and gives a confidence
score for each segment. In the third stage, the classification network initializes the local-
ization network. It better aligns the predictions in time with the ground truth using a
novel loss function and outputs the confidence score. In the end, the NMS removes the
redundancy to output the results. However, for the proposed problem, we do not have
ground truth labels, so such works are not applicable. Furthermore, many works use
segmentation-based approaches to action localization that rely on labeled data [73, 154].
Another class of approaches is based on the detection and tracking of active objects
[170], where they use specialized methods such as the object detector [74] and human
detector [112, 182]. The above approaches are mostly supervised, whereas our focus is
on unsupervised segmentation with no prior knowledge of output categories. Similarly,
in a scene segmentation task, one looks at the boundaries separating two visually differ-
ent scenes. In a scene segmentation scenario, the boundaries are usually sharp, which
is not true for the case of egocentric videos. Besides, the wearer’s head motion and the
resulting sharp viewpoint changes may induce false segmentation using a typical scene
segmentation technique.

However, very few works discuss boundary localization/activity detection and lo-
calization in an unsupervised setting. Xu, [174], propose a new approach to train
pre-trained video representation networks that is helpful for downstream localization
tasks by incorporating boundary-sensitive information. They synthesized the temporal
boundaries in existing large-scale video action classification datasets. They used these
synthesized boundary and action labels in a supervised setting to generate more robust
representations. Hou et al. [70] proposed an unsupervised action localization approach
that discovers sub-actions for each action from the training videos and optimizes the
temporal structure of sub-actions as the shortest path problem to locate the actions.

Unlike the above approaches, we aim to solve the temporal video segmentation prob-
lem in untrimmed and unconstrained videos where neither we have training videos nor
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predefined actin/subactions classes. The proposed method can be used in a streaming
mode without supervised/unsupervised training.

Deep Learning Techniques for Temporal Segmentation: In the last decade,
DNNs have emerged as a leading technique for several computer vision problems, includ-
ing the temporal video segmentation [1, 33, 40, 54, 84, 126]. Temporal Convolutional
Networks (TCNs) and its variants [40, 41, 89] harness local motion information and use
a hierarchy of temporal convolutional filters to capture longer range patterns. Similarly,
Ding and Xu [40] propose a hybrid of LSTM and TCN to capture local motion and
long range context. Most of the works use LSTM based generative model to predict the
future context and track their evolution to decide the event boundaries in continuous
video/photo-streams sequences [1, 33, 36]. These methods do not scale for hours long
egocentric video segments, as the gradients during backpropagation vanish beyond a few
hundred-time steps [93]. Besides, most of the techniques are supervised and require a
large amount of training data, which is extremely hard in privacy-sensitive context.

Traditional Techniques for Temporal Segmentation: Traditional techniques
for temporal segmentation of third person videos utilize variations of fixed-size sliding
window approach to generate the start and end times of all the events in a video [48, 68,
73, 140, 145, 169]. These methods generally specify windows of different sizes and slide
them across a video to generate event proposals of corresponding sizes. The overlapping
proposals generated are further processed to remove overlap and select only the most
relevant proposals. These methods are computationally expensive and require a large
scale space search to handle events with significantly varying lengths, making them
impractical for egocentric videos. For instance, in Disney egocentric dataset, events can
be less than 5 minutes (social interactions), to more than 30 minutes (lunch).

Adaptive Windowing: Bifet and Gavalda [16] propose an adaptive windowing frame-
work to detect distribution drift in streaming data. The adaptive windowing framework
grows the window if the current distribution is long and drops a sub-window from the tail
if a distribution drift is detected. The statistically bounded thresholds are calculated
to detect distribution drift between two temporally adjacent sub-windows. However,
this work is demonstrated on univariate and i.i.d data streams. Dimiccoli et al. [37]
adapt [16] by using graph cut technique to look for the trade-off between the adaptive
windowing [16] and agglomerative clustering. They further combine low-level features
with high-level semantic labels and demonstrate event segmentation on egocentric photo-
stream datasets. However, the method has been proposed for i.i.d. samples and heavy
oversegments for dependent video streams.

Temporal Segmentation of Egocentric videos: Paci et al. [119] uses Siamese
Neural Network to detect context change between two consecutive low-resolution images
for egocentric photostream. Del et al. [33] and Dias et al. [36] use LSTM based gener-
ative model to predict the future context and track their evolution to decide the event
boundaries in continuous photo streams. Dimiccoli et al. [37] also demonstrate temporal
segmentation on egocentric photo-streams (as discussed in the previous paragraph).
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2.2 Summarization of Day Long Egocentric Videos

Video Summarization: The majority of keyframe extraction techniques identify
events using salient objects and video dynamics from various viewpoints and different
degrees [194]. Zhang et al. [191] identify the content change in the video segment to
extract keyframes. De et al. [31] find a cluster centroids as a representative of each
cluster, which eventually derives the keyframes . However, video datasets exhibit lower
inter-class and higher intra-class variance leading to difficulty in defining these clusters.
Liu and Kender [97] have used a sequence reconstruction measure (SRM) to measure
the degree to which selected keyframes can reconstruct the original video sequence.
Dementhon et al. [88], and Latecki et al. [34] pick salient points of manifold formed
by the representation of input frames as the keyframes. Dufaux [42] selects keyframes
by considering high-level semantic criteria such as high motion, spatial activity, and the
likelihood of having people. In contrast, Kang and Hua in [79] used attention, context
dominance, and frame quality. These techniques work well for the targeted domain
but do not generalize since the heuristic for frame selection is drawn from empirical
observations. Video skims based summary generation typically require high-level context
analysis and can be divided into four basic categories: (1) Redundancy elimination in a
video by selecting a set of continuous frames that exhibit maximum similarity with input
videos [156]. (2) Event/highlight detection and localization techniques which identify
and locate the pre-defined events in a video sequence, such as sports videos, e.g. baseball
[21], athletics [121], and cricket [161]. (3) Skim curve formulation techniques generate a
curve that shows the likelihood of each base unit to include in the skim with respect to
some user criteria. A threshold is used on the generated curve, and the segments above
the threshold are assembled to form a final skim [107]. (4) Query context personalization
which incorporates user feedback, either as a query or a personalized profile, e.g., [143]
use human face, and caption text, and [11] use favorite players or a team preferred by
the user.

Summarizing Short Hand-Held Videos: Supervised video summarization tech-
niques have dominated the field of short video summarization [76, 188], where sequen-
tial determinantal point process, and LSTMs have been used to maximize various in-
formative measures like representativeness, relevance, and uniformity in the learned
summary. Unsupervised video summarization techniques have received more attention
[61, 104, 109, 153, 199]. Some of the traditional works include low-level handcrafted
informative measures like visual or motion cues for feature extraction and use various
formulations for shot level importance scoring followed by variants of submodular func-
tion maximization to generating the summary [61, 111, 173, 179]. Higher-level informa-
tive measures, including diversity and representativeness, have been proposed recently
[109, 151, 199]. Mahasseni et al. [109] use an adversarial learning framework for video
summarization. Song et al. [151] proposed an RL technique to extract video category-
specific keyframes. However, this work requires category information and keyframe labels
during training. Zhou et al. [199] have extended the work with a reward function to
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maximize diversity and representativeness in summary. This model is unsupervised but
does not scale for videos longer than a few thousand frames.

Egocentric Video Summarization: Egocentric video summarization techniques
often rely on important objects, and people present in the videos [91], and gaze tracking
information (gaze provides a sense of the camera wearer’s intent) [173]. Lin et al. [95]
predict contexts of each video segment and use context-specific highlights to generate
summaries. Similarly, Yao et al. [179] use a two-stream deep neural network (for spatio-
temporal modeling) to generate highlight scores for each segment using the deep ranking
model and generate summaries with these highlight scores. The inputs are a set of
highlight and non-highlight video segment pairs, which are fed independently into two
identical networks with shared parameters. A ranking layer is used in the end to evaluate
the margin ranking loss of the pair. Both the streams are then late fused to generate
the final highlight score. To overcome the scarcity of the first-person labeled data, Ho
et al. [67] propose a deep neural network that transfers knowledge from third person
video domain to egocentric videos for summarization. Lu et al. [104] propose story-
driven summarization, which explicitly accounts for connectivity between the important
entities. These entities are predefined important objects for the known environment
and visual words for the unknown environment. Most of the techniques discussed above
are specific to a video context (e.g., daily life or kitchen videos) and fail for the unseen
environments.

Customizing Video Summaries: The summarization criteria are often user-specific
viz inclusion of predefined object or event, presence of audio, duration of summary,
etc. Hence generating customized summaries is an important sub-area of video sum-
marization. Malino et al. [32] propose an interactive summarization framework that
collects feedback from the user over the most frequent item in the original video. Then
it iteratively refines the summary by a question asking interface. A probabilistic frame-
work called active inference in the conditional random field (CRFs) is used to infer
the summary preferred by the user. This work fine-tunes CNN on Places dataset [196]
to detect most frequent objects or events, which is not feasible for the egocentric set-
ting. Other works take user feedback in the form of natural language queries and use a
mapping mechanism to bridge the gap between visual and language to personalize the
summarization [181, 192]. Zhang et al. [192] select diverse sub-shots of a video that are
representative of the whole video and yet related to a given user query in the natural
language. They use a mapping network to connect visual and query space. This map-
ping network uses a relatedness reward to measure the distance between the predicted
and ground truth query embedding for personalization. Similarly, Yousefi and Kuncheva
[181] find all the frames related to the query using a semantic concept search. Jin et
al. [77] segment video by analyzing visual features and speech detection and assign an
importance score to each segment. It uses a variant of the knapsack problem to find
an optimal video summary by fast-forwarding or removing unimportant segments. Han
et al. [63] represent video by manifold embedding and assigns weights to each frame.
Visual saliency features are applied between each pair of frames to learn the inherent
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video structure. Darabi and Ghinea [30] use predefined categories to score each video
segment using Scale Invariant Feature Transform (SIFT) features. The user feedback
towards the high-level visual concepts is recorded in the vector form for personalization.
After combining these two groups of data highest score video segments reflecting the
user priority are returned. We emphasize that the techniques proposed in this work do
not rely on the predefined objects or events and take user feedback in the form of video
clips instead of text to reduce the overhead resulting from the use of cross-modality.

2.3 Recovering Activity Patterns from Weeks Long Lifel-
ogs

Unsupervised activity recognition for egocentric videos: Kitani et al. [82] use
a stacked Dirichlet process mixture (DPM) model. The first DPM learns the codebook
of the motion histogram, and then the second DPM uses these codebooks to learn the
ego-action for sports videos. This work follows the bag-of-words model and does not
utilize long-term sequential or contextual information. Fathi et al. [50, 53] use a weakly
supervised technique to model the active objects in a egocentric video sequence in an
unconstrained environment when the domain-specific knowledge is not always available.
Bhatnagar et al. [15] use CNN-LSTM based autoencoders to learn generic feature em-
bedding by exploiting multi-resolution temporal information. Talavera et al. [160] use
topic modeling to learn the activity patterns performed at different time intervals of the
days. It uses dynamic-time-warping to classify a day-long photo-stream sequence into a
routine/non-routine day (2-class classification problem). Yan et al. [176] formulate the
problem as an optimization problem for multitasking clustering under the assumption
that multiple individuals perform the same activities in similar environments e.g. work-
ing in the office often involves reading/writing papers and working on the computer. This
framework uses low-level features such as optical flow and gaze information hence will
not capture higher-level discriminative information necessary for unconstrained settings.

Self-supervised learning: Noroozi et al. [118] use a large network trained on a pre-
text task to generate pseudo labels for the target task and then train a smaller network
with these pseudo labels by transferring the knowledge. For egocentric data, we do not
have such large labeled data. Asano et al. [10] proposed the SOTA self-supervised repre-
sentation learning framework that uses a fast variant of the Sinkhorn-Knopp algorithm
to generate pseudo labels for large-scale datasets. However, the equipartition assump-
tion used in the Sinkhorn-Knopp algorithm is not applicable for the problem as the
distribution of activity patterns is highly skewed. Recently Zhan et al. [187] proposed
an online deep clustering-based representation learning framework that steadily evolves
the cluster centroids at each iteration and update the pseudo labels and simultaneously
update the network parameters.

Representation Learning for modeling global dependencies: Sarfraz et al.
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[134, 135] proposed a weighted hierarchical clustering approach that uses the 1-nearest
neighbor graph to cluster the semantically consistent frames present in the video. Deep
representation learning using graph autoencoder is getting attention for various NLP
tasks [80, 168]. Park et al. [120] propose a symmetric GCN autoencoder for represen-
tation learning for NLP and image datasets. The work assumes a global relationship
among the images and can also be adapted for video representation learning. However,
all the GCN-based works require a pre-computed adjacency matrix which implicitly
assumes a particular structure in the data. For example, Park et al. [120] use a pre-
computed sparse affinity matrix using τ closest frames in the Euclidean space. In our
problem, fixing a τ limits the generalization of our model to variable size events spanning
across multiple days. Furthermore, computing the adjacency matrix requires a prior or
semi-supervision, which is impractical in our setting.

Transformers: Recently, models based on Transformer architecture have shown
SOTA performance in sequence modeling for various NLP tasks [166]. However, scal-
ability of self-attention mechanism is a notable limitation of the transformer-based
works for their applicability to long sequential inputs [35, 99]. The complexity of self-
attention is O(N2) per layer (where N is sequence length) which quickly becomes in-
tractable when N is large. Thus an active research area has emerged to gain com-
pute and memory efficiency by approximating self-attention. A few notable works
viz Longformer[14], Reformer [81], Fast Transformer[167], Routing Attention[132],
Long-Short Transformer [200], and Performer [25] claim time complexities of O(N),
O(N log N), O(NCm), O(N1.5m), O(Nr), and O(Nrm) respectively, where m, C and
r are feature dimension, the number of clusters, and the dimension of the projection
matrix, respectively.



Chapter 3

Temporal Segmentation of Day
Long Egocentric Videos

3.1 Introduction

This chapter focuses on temporal video segmentation of day long egocentric video. Due
to the task’s utility as a pre-processing for many higher-level inference problems like
indexing and summarization, the problem is a well-researched area in computer vision:
both for the first person [16, 54, 124, 126, 172] as well as third person videos [84, 150, 185].

Common techniques for temporal segmentation of third person videos are based on
either MRF formulation or deep neural network (DNN) with RNN/LSTM units. The
former techniques [83] look for temporal discontinuities, and hence fail for egocentric
videos when the segment boundaries are often slow with gradual changes in the scene.
DNN based techniques [15, 39, 40, 110] use recurrent connections to capture the temporal
context and do not scale well for long segments. To better understand the scales involved,
a 10 minutes video segment captured at 30 frames per second (FPS) contains 18000
frames. Even with sophisticated back-propagation techniques [93], it is hard to train
RNNs for such a long sequence. Multi-scale network designs [39, 41, 89] are possible but
compromise temporal resolution to gain long term context.

For temporal segmentation of egocentric videos, researchers have suggested to use
both generic (e.g. RGB, Optical flow, etc.) as well as egocentric specific cues (e.g.
hand pose, handled object, etc.). However the techniques are often limited to either
short segments [71] or segmentation based on long term activities but with short term
signatures [15, 124, 126]. For example, to detect long term ‘walking’ activity, [126]
independently classifies a video clip of 4 secs.

Another way to approach the problem is to use video compression works. Most of
video compression works use motion information and image interpolation to reconstruct
the frames in the original videos [92, 101, 171]. Egocentric videos are recorded using
head/chest-mounted cameras in hands-free mode, which leads to very shaky videos;
hence, we can not rely on the motion information. Furthermore, using this erroneous
motion information for long segments is not obvious. For example, a subject walking

16
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Figure 3.1: Challenges in temporal segmentation of egocentric videos. 1st row: Signifi-
cant change in the scene due to head movement but there is no ground truth boundary.
2nd row: Segmentation boundary but no significant change in visuals.

from a building to outdoors can produce the same motion vectors in both contexts.
Hence we need to include RGB information for temporal segmentation for egocentric
videos.

We propose to formulate the problem of temporal segmentation as concept drift
detection in multivariate time series data. In a concept drift detection task, one main-
tains two adjacent temporal windows of fixed size and estimate statistical summary
(e.g. average) of the two windows separately. If the summary is significantly different
for the two windows, the algorithm declares concept drift. The key challenges to use
the formulation for temporal segmentation are: (1) Choosing window length for the
statistical summary, as different activity/event lengths may require different temporal
windows, and (2) Choosing threshold to declare a boundary, as real boundaries may have
smooth visual changes, whereas sharp head motion may cause significant visual changes
in non-boundary regions. We emphasize that the proposed formulation can incorporate
various other cues suggested for temporal segmentation of egocentric videos viz optical
flow, hand pose, and other objects present in the scene, etc. Our primary contribution is
in suggesting a way to deal with smooth changes in the features at the real boundaries
compared to sharper changes at the spurious boundaries as illustrated in Fig. 3.1.

Bifet and Gavalda [16] have suggested a technique, called ADWIN, to segment i.i.d.
univariate sequences. Their method maintains an adaptive window, and for each of
its various partitions into two sub-windows, a threshold is calculated based upon the
harmonic mean of the length of the two sub-windows. A boundary is declared if the
difference of the statistical summaries of the two sub-windows is larger than this thresh-
old. The threshold is based on the Hoeffding’s inequality and is valid for all probability
distributions. ADWIN gives probabilistic bounds on the boundary detection error and
works for univariate sequences with slow as well as abrupt changes.

The proposed concept drift detection approach is most appropriate for extremely
long activities in untrimmed day long videos and significantly different from anomaly
detection or similar works. Anomaly detection is the identification of rare items, events,
or observations that deviate significantly from most of the data. An abundance of work
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Methods Unsupervised
Multivariate Scalability Customized Works with

Data to Long Granularity Extremely
Sequences Shaky Videos

TCFPN [41] ✗ ✓ ✗ ✗ ✗

ADWIN [16] ✓ ✗ ✓ ✓ ✓

SR-Clustering [37] ✓ ✓ ✗ ✓ ✓

CES [33] ✓ ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

Table 3.1: Comparison of state of the art with our method on various criteria important
for applicability to egocentric videos.

has been done for unsupervised anomaly detection [100, 184, 198]. Most of the works
learn the dominant video structure within a model then anomalies are detected by either
high reconstruction error or prediction error for some data samples. However, for the
problem at hand, we deal with diverse and complex activities, so the assumption used
in anomaly detection does not hold. Analogous to anomaly detection, many works focus
on event detection in sports/movie videos and focus on predefined events/criteria. The
predefined events for movies included the leading characters and action scenes for movies
[23, 64]. For soccer videos, a goal, movement of the ball near the goal post, or movement
of the players [27, 146] and for cricket, the boundaries and wickets [161]. The egocentric
videos are recorded in an unconstrained setting, so we can not define events a priori so
these approaches are not applicable for egocentric videos.

In this chapter, we propose a technique for concept drift detection in multivariate,
and non-i.i.d. sequences such as egocentric videos, which can be used for temporal
segmentation of such videos. Table 3.1 compares the key strengths of our approach with
state of the art. The specific contributions of this work are as follows:

1. To the best of our knowledge, we are the first to suggest formulating the problem of
temporal segmentation of extremely long egocentric videos as detecting concept drift
in a time series data.

2. We use a multivariate generalization of Hoeffding’s bound to compute distribution
invariant segmentation threshold for multivariate time series arising out of a given
frame sequence.

3. Hoeffding’s bound as such assumes i.i.d. samples and can not be used for video
sequences with a large correlation between temporal neighbors. We suggest a simple
heuristic of jump factor to get around the problem.

4. In our experiments on both day long egocentric videos, as well as benchmark photo-
stream datasets, the proposed technique successfully copes with two key egocentric
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specific challenges viz continuous as well as extreme viewpoint variations, and long
segments. Our technique gives significantly improved f-score of 59.44%, on HUJI [126],
in comparison to current state of the art of 45.70% by [33].

3.2 Proposed Approach

We start this section with our theoretical contributions. Since the target of this work
is detecting context drift in a stream of video frames, represented as vectors in Rd, we
first extend the standard Matrix Hoeffding’s bound to the special case of d×1 matrices,
which is our case. Then we use the derived bound for our novel concept drift detection
formulation in multivariate sequence. While the discussion until here will assume the
input samples (frames in our case) to be independent, we end the section with details
on how to deal with temporally correlated data streams.

3.2.1 Multivariate Hoeffding’s Bound

The standard result for Hoeffding’s inequality for random symmetric matrices may be
given as the following [108]:

Lemma 3.1. Consider a finite sequence Zi of independent, random, symmetric matrices
with dimension d, and a sequence of fixed symmetric matrices Pi, such that E[Zi] = 0
and Z2

i ⪯ P 2
i , almost surely. Here, ⪯ denotes the semi-definite order on symmetric

matrices. Then for all ϵ ≥ 0, we have:

P
(∥∥∥∑

i
Zi

∥∥∥
s
≥ ϵ

)
≤ d exp

(
−ϵ2

2σ2

)
, (3.1)

where σ2 = 1
2
∥∥∑

i(P 2
i + E[Z2

i ])
∥∥

s, and ∥X∥s denotes the spectral norm of X.

For our case, we assume that E[Z2
i ] ≈ Z2

i , and Zi ≈ Pi, and hence compute σ2 as
simply

∥∥∑
i P 2

i

∥∥
s. Note that the result as such is valid only for the symmetric matrices.

We extend it to the vector data-streams using the Jordan-WieLaudt theorem [155] as
described below. Consider a vector X of size d× 1. Let A be a block matrix such that

A =
[

0 X
XT 0

]
. Since, A is a symmetric matrix with dimension (d + 1)× (d + 1), we can

use Eq. (3.1) for the matrix A, such that:

P
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i
Ai

∥∥∥
s
≥ ϵ

)
≤ (d + 1) exp

(
−ϵ2

2σ2

)
, (3.2)

where σ2 =
∥∥∑

i A2
i

∥∥
s. It can also be shown that: A2 =

[
XXT 0

0 XT X

]
, and that A’s

non-zero eigenvalues are ±1 times the singular values of X. Hence ∥A∥s = ∥X∥2, where
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∥X∥2 denotes the ℓ2 norm of the vector X. Using the result in the equation above:
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)
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We use the above result to compute the bound for the average as:
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Denoting X = 1
n

∑
i Xi, and σ2 = σ2/n

P
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2
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)
≤ (d + 1) exp

(
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2σ2

)
, (3.4)

Note that, if we assume the ℓ2 norm of X as 1, then XT
i Xi = 1, and σ2 as given in Eq.

(3.3b) is always 1. We summarize our result below:

Theorem 3.2. Let X1, . . . , Xn be d dimensional, independent random vectors with
E[X] = 0, and unit ℓ2 norm. Then:

P
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2
≥ ϵ

)
≤ (d + 1) exp

(
−nϵ2

2

)
, (3.5)

where X denotes the observed mean of the samples.

3.2.2 Concept Drift Detection

We formulate the temporal segmentation of egocentric videos as concept drift detection
in a data stream. While in reality, the adjacent frames in the video stream are not
conditionally independent of each other, for this section, we will assume so. In the next
section, we describe our proposal to get around the assumption.

Concept Drift Detection Pipeline: For the concept drift detection, one maintains
a sliding window, w, of dynamic length, n, over the sequence. Consider a hypothesis
that there is a segment boundary at index t within the window, i.e., there is a particular
segment, w1, of length n1, from [0, t) and another segment, w2, of length n2, from [t, n).
We assume that the data in two segments is from two unknown distributions with the
observed mean values of µ̂1 and µ̂2 respectively. If for a particular partition, the score
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Figure 3.2: The block diagram describing major steps of the proposed approach. The ci

represents the correlation coefficient between the two frames. Please refer to the main
paper for the details

(∥µ̂1 − µ̂2∥2) exceeds a threshold ϵcut, we would like to declare a detected boundary at t
and the segment w1 will be dropped from w. Otherwise, a new sample is added to the
current window w, and the process is repeated for this new window of size n+1. For each
window w, the boundary hypothesis is tested for all indices t ∈ w. Below we describe
a way to compute the threshold ϵcut in a principled manner using multiple hypothesis
testing.

Multiple Hypothesis Testing: One of the ways to calculate the threshold ϵcut is by
bounding the error rate for declaring incorrect segment boundaries. Let us denote the
observed mean of the segments, as µ̂1, µ̂2 respectively, and the true (unobserved) mean
of the current window as µw. We perform hypothesis testing with µ̂1 = µ̂2 = µw as
the null hypothesis. In other words, our null hypothesis is that the two segments come
from the same, but unknown, distribution. Since we perform multiple tests in a single
window for various values of t, hence as per the multiple hypothesis testing problem in
the statistics, we would like to increase the threshold of accepting the hypothesis by n
(size of the window or number of tests). For the hypothesis accepting the probability of
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δ, we would like to set the ϵcut such that:

P
(
∥µ̂1 − µ̂2∥2 ≥ ϵcut

)
≤ δ

n
. (3.6)

The following lemma bounds the probability of difference in the observed means:

Lemma 3.3. For a sequence of d-dimensional random vectors, {X1, . . . Xn}, sampled
from an unknown but stationary probability distribution, and its arbitrary partition into
two subsets w1, and w2, with lengths n1, and n2, and observed means µ̂1, and µ̂2 respec-
tively:

P
(
∥µ̂1 − µ̂2∥2 ≥ ϵ

)
≤ 2(d + 1) exp

(
−mϵ2

4

)
, (3.7)

where m is the harmonic mean of n1 and n2.

Proof. Consider the following three events:

• Event A: ∥µ̂1 − µ̂2∥2 < ϵ.

• Event B: ∥µ̂1∥2 < k ϵ.

• Event C: ∥µ̂2∥2 < (1− k)ϵ.

Here, k is a real number ∈ (0, 1). Further, from triangle inequality:

∥µ̂1 − µ̂2∥2 ≤ ∥µ̂1∥2 + ∥µ̂2∥2 (3.8)

Assuming Events B and C hold:

⇒ ∥µ̂1 − µ̂2∥2 < k ϵ + (1− k)ϵ (3.9)
⇒ ∥µ̂1 − µ̂2∥2 < ϵ. (3.10)

Hence, we can say that B ∩ C ⊆ A, which implies Ac ⊆ Bc ∪ Cc, where Sc denotes the
complement of the set S. Therefore, from union bound rule of the probability theory:

P (Ac) ≤ P (Bc) + P (Cc) (3.11)

Using event defintions as given above:

P (∥µ̂1 − µ̂2∥2 ≥ ϵ) ≤ P (∥µ̂1∥2 ≥ k ϵ) + P (∥µ̂2∥2 ≥ (1− k)ϵ)

Using Theorem 3.2

P (∥µ̂1 − µ̂2∥2 ≥ ϵ) ≤ (d + 1) exp
(
−n1k2ϵ2

2

)

+ (d + 1) exp
(
−n2(1− k)2ϵ2

2

)
(3.12)
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The equation above holds for all values of k. Hence, to get the tightest upper bound of
the left hand side (l.h.s.) of the above equation, we minimize the right hand side (r.h.s.)
with respect to k. Here, we note, and also done in [16], the r.h.s. is approximately
minimized when the exponents of the two terms are equal:

k2ϵ2n1 = (1− k)2ϵ2n2 (3.13)

⇒ k =
√

(n2/n1)/(1 +
√

(n2/n1)) (3.14)

For this value of k, we have:

k2ϵ2n1 = (1− k)2ϵ2n2 = n2n1
(√n1 +√n2)2 ϵ2 (3.15)

≤ n2n1
(n1 + n2)ϵ2 = m

2 ϵ2, (3.16)

where m is the harmonic mean of n1 and n2. We can use the values to get the tightest
upper bound for the l.h.s. of Eq. (3.12) as:

P
(
∥µ̂1 − µ̂2∥2 ≥ ϵ

)
≤ 2(d + 1) exp

(
−mϵ2

4

)
(3.17)

Hence proved.

Calculating ϵcut: As noted in Eq. (3.6), and the accompanying discussion, we would
like to choose a value of ϵ which enables us to declare a concept drift and hence the
segment boundary if the ℓ2 norm of the difference of the observed means of the two
segments goes beyond ϵ. Further, the hypothesis testing framework allows us to choose
a value of ϵ according to the threshold of accepting the hypothesis δ, which bounds the
error rate for declaring incorrect segment boundaries to δ. Since Lemma 3.3 bounds the
probability of difference of observed means exceeding ϵ, we can use it to choose a value
of ϵ (denoted as ϵcut hereon) such that we get the desired upper bound on declaring the
false boundary:

2(d + 1) exp
(
−mϵ2

cut
4

)
≤ δ

n
(3.18)

⇒ ϵcut ≥

√
4
m

log
(2n(d + 1)

δ

)
(3.19)

3.2.3 Handling Conditionally Dependent Data

It may be noted that the derivation of ϵcut using the Hoeffding’s bound is valid only
when the data is identically and independently distributed (i.i.d). The assumption is
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invalid for egocentric video stream where a frame is highly correlated with its temporal
neighbor. One way to resolve the problem is by making the data conditionally inde-
pendent. We observe that the correlation between the frames decreases as the temporal
distance between them increases. We fix a threshold and declare two frames indepen-
dent if the correlation coefficient between them is below the threshold. This is effectively
sub-sampling the video.

We discover the optimal sub-sampling rate from the data itself. For the first frame
t in a given window W , we find the frame t + kt for which the correlation coefficient
is less than a threshold ρc. The process is then repeated from frame t = t + kt, and is
continued until the end of the window is reached. We select the sub-sampling rate, k,
as the average of kt for all t.

We further optimize the proposed pipeline by observing that we do not really need to
sub-sample the video, but the effect of sub-sampling can be incorporated in the threshold
ϵcut itself. Consider an extreme scenario, when the original samples were conditionally
independent, but we introduced a severe correlation by duplicating a sample r times.
Note that in this case, the ground truth boundary should not shift but the length of the
segments W0 and W1 just increases by r times. The harmonic mean m also increases
by r times, thus effectively decreasing segmentation threshold ϵcut, and leading to over-
segmentation. We compensate for the reduction in ϵcut by updating the expression to:

ϵcut ≥

√
4k

m
log

(2n(d1 + 1)
kδ

)
(3.20)

where k is the sub-sampling rate for un-correlating the input data, as described earlier.
Note that the exact choice of correct k is not very critical, but merely helps to virtually
sub-sample a video such that the i.i.d. assumption starts to holds, by penalizing the
effect to ϵcut. However, the role of k becomes more important to normalize videos
taken at different temporal resolutions (frames per second). The proposed approach
avoids over-segmentation of a video by adjusting the threshold for videos at the higher
temporal resolution, leading to higher accuracy in boundary prediction. Note that the
discussion above does not address the problems when videos are captured at extremely
low temporal solution, which we discuss next.

3.2.4 Handling Photo-stream Data

Imagine we had a video, and have found an optimal sub-sampling rate k at which the
adjacent frames become conditionally independent. Note that, any larger k will also
satisfy the independence constraint, but will lead to under-segmentation. We observe
that when the input is a photo-stream, the frames are indeed conditionally independent,
but they would likely be independent (as per our correlation coefficient criterion) even
when we insert an additional frame (by interpolating neighboring frames) in between.
We believe that our method underestimates the length of the segment in the case of
photo-streams due to the above reason. Therefore, for the photo-streams, we suggest
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Algorithm 1 Temporal Segmentation Algorithm
Input F N

i=1: Feature vector of video frames
Output BM

i=1: Predicted Boundaries
1: Initialize the window W
2: for each frame xt do
3: W ←−W ∪ {xt}
4: Compute average skip factor k in current window by a user defined correlation

coefficient ρc

5: Flag=False
6: Possible Boundaries B
7: for each n split of W into W1 . W2 do
8: Compute threshold, ϵcut ≥

√
4
m log

(
2n(d+1)

δ

)
9: if ∥µ1 − µ2∥2 ≥ ϵcut then

10: splits = ∥µ1 − µ2∥2 − ϵcut
11: B ←− B ∪ best(splits)
12: Flag = True
13: end if
14: end for
15: if Flag==True then
16: Drop window W1 from W along best boundary B
17: end if
18: end for

to look for the smallest number of k frames, which when inserted in the photo-stream
still keeps the neighboring frames independent. We introduce these frames, or feature
vectors as the case may be, by simply averaging the features of two consecutive frames.
The process is continued until the correlation coefficient of the feature vectors remains
below a user specified threshold.

However, similar to the way we handled correlated frames in the videos, we do not
need to make the actual addition of frames to the dataset. We just need to know the
length of the adaptive window, when the frames will be added to the window. This new
window length is then used to modify the threshold. The modified threshold used for
the photo-stream is as follows:

ϵcut ≥

√
4

mk
log

(2nk(d + 1)
δ

)
(3.21)

Fig. 3.2 shows the block diagram of the proposed approach and Algorithm 1 presents
the pseudo-code.
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3.3 Experiments

3.3.1 Datasets

We demonstrate the results of proposed approach on three extremely long egocentric
video datasets, viz HUJI [124, 126], Disney [51], and UTEgo [90, 104], as well as on the
standard photo-stream dataset, viz EDUB-Seg20 [37, 159]. The detailed description of
datasets is as follows.

HUJI dataset: HUJI dataset consists of video sequences captured by GoPro camera
by three users at a temporal resolution of 30fps. The dataset comprises several small
video clips of less than 30 minutes. For each user, we merged their corresponding small
clips into one big video in the specified order. We have evaluated on the videos (of length
4 hours and 2 hours) recorded by only two users using the ground truth boundaries made
available by [37]. This is due to the unavailability of the ground truth for the third one.
The number of frames in the longest video sequence is 72217.

Disney dataset: Disney dataset consists of videos captured at Disney world by 6
individual for three days. Similar to the HUJI dataset, for each user, we have merged
several small video clips in the order of the numbering provided by the user. After
merging we have a total of 8 video sequences of 4-8 hours for each individual user. We
have generated our own ground truth by three different annotators. The number of
frames in the longest video sequence is 151695.

UTEgo dataset: UTEgo dataset comprises of 4 videos captured by Looxcie wearable
camera at a temporal resolution of 15fps. These videos are 3-5 hours long and captured
in an unconstrained setting. We have manually labeled the ground truth for this dataset
as well. We will make our annotations public, post acceptance. The number of frames
in the longest video sequence is 92287.

EDUB-Seg20: We also demonstrate results on a photo-stream dataset namely EDUB-
Seg20. The dataset comprises 18735 images captured through Narrative Clip which
captures 2 pictures per minute. The pictures are taken by 7 different users over 20 days.
The dataset comprises a variety of scene contexts, viz, attending a conference, traveling,
working in the office, etc. EDUB-Seg dataset is released in two versions EDUB-Seg12
comprises 12 videos and EDUB-Seg20 which is the extension of EDUB-Seg12 with 8 new
videos. Though our focus is on long videos and not short photo-streams, the evaluation of
this dataset allows us to compare our technique against existing temporal segmentation
methodologies for egocentric photo-streams.
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Figure 3.3: The segmentation granularity increases as we increase δ in our approach.
The three rows in the figure show the output from our approach at δ, 10−6, 10−4, and
10−2 respectively, on the ‘Alireza Day 1’ sequence from Disney dataset. The bars above
each row indicates the time instance of frames chosen as a boundary, such that the length
of the row shows the length of the sequence.

3.3.2 Implementation Details

Feature Vector and Initial Window Length: For all the video datasets, we use the
input at 5fps and use frame-wise AlexNet [85] features as used by SR-Clustering [37].
However, for a fair comparison on the photo-stream datasets, we use LSTM features
similar to one used by [33]. However, since we operate in the streaming mode in our ap-
plication, instead of bi-direction features as suggested in [33], we use only unidirectional
features. We set the initial window length to 20 frames in all the experiments.

Frame Correlation Coefficient: As discussed earlier, to make the frames indepen-
dent for meeting the requirements of our theoretical results, we use the notion of skip
factor. The learned skip factor requires a hyper-parameter correlation coefficient thresh-
old, ρc to declare the two frames independent. We have chosen ρc = 0.95 for video
datasets. However, we observe that LSTM features used for the photo-stream datasets
exhibit a high correlation. Hence, we use ρc = 0.999 for the photo-stream datasets. Fur-
thermore, the value of ρc should indeed be per video, depending upon the conditional
independence and hence improve the performance. However, in practice we do not have
access to such information, hence we have picked a particular value, which is fixed for
all the videos.

Granularity: Any segmentation problem is inherently dependent upon the scale
one is looking for. In our technique, the granularity at which the user wants their
video to be segmented can be controlled by the δ. As seen in Fig. 3.3, as the value
of δ increases, the number of segments increases, and boundaries are detected even for
smaller changes. Similarly, upon decreasing the value of δ, the number of segments
decreases, corresponding to capturing large heterogeneous context in a single event. In
general application of our technique, we expect that such a granularity could be taken
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Figure 3.4: The figure shows the F-Measure comparison between SOTA and proposed
approach for different values of temporal tolerance for the Disney dataset.

as feedback from the end-user. However, for comparing with benchmark datasets, we do
not have such user-feedback available. Hence we use average segment length as the proxy
for the segmentation granularity required. We define 2500-3000, 1600-2500, and 1000-
1600 frames per segment as our ranges for low, medium, and high levels of granularity,
respectively. We set the δ for the corresponding granularity as 10−6, 10−4, and 10−2

respectively. Similarly, for the photo-stream datasets of HUJI, UTEgo, Disney, and
EDUB-Seg20, we experiment with δ values of 10−7, 10−3, and 10−1 for different levels
of granularity.

Boundary Tolerance: As proposed by [33], when dealing with continuous boundaries
in an egocentric video, there is an inherent ambiguity in annotating the exact frame which
should be marked as the boundary, and many frames in the temporal vicinity could have
been marked as a boundary as well. Hence, penalizing an algorithm for marking the
exact frame as a boundary may not indicate the true strength of the technique. [33] has
proposed the use of temporal tolerance, which allows a technique to be rewarded if it
predicts a boundary within a certain range of the ground truth. We adopt the metric
in our experiments and use a temporal tolerance (tol) of 2.5 minutes to calculate the
performance (f-measure) of our technique. As shown in Fig. 3.4, the boundary detection
accuracy improves as the value of temporal tolerance is increased.

Hardware Requirements: The proposed technique is implemented on Matlab with
system architecture comprising of Quadro P5000 GPU and Intel i7 processor with 4
cores (32 GB RAM). It takes approximately 2 hrs (inclusive of feature extraction) and
approximately 8GB CPU RAM to segment 8 hrs long video.
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Methods HUJI UTEgo Disney

TCFPN [41] 4.18 2.50 3.56
ADWIN [16] 12.44 0.83 15.01
CES[33] 4.52 9.31 3.96

Ours 73.01 58.41 67.63

Table 3.2: F-Measure comparison on video datasets

3.3.3 Evaluation Measure

We use the averaged F-measure to evaluate our performance. As proposed in [33], we
consider a predicted boundary as true positive if it occurs within the tolerance(tol)
neighborhood of a ground truth boundary, while taking into consideration that this
ground truth boundary has not already been matched to a predicted boundary before.
Analogously, all the ground truth boundaries, for which no frame within its tol range
has been predicted, are referred to as false negative. We also evaluate our method
based on the number of segments predicted. The metric is used to show reduction in
over-segmentation achieved for video data using our method.

3.3.4 Comparative Evaluation

For comparison on video datasets, we pick two representative techniques to compare
against, viz CES [33] and TCFPN [41]. We also compare against ADWIN [16] which is
based on unsupervised concept drift detection but does not handle multivariate data or
correlated samples. For comparison with ADWIN, we pretend the data is uncorrelated
and convert a feature vector into a single scalar by taking its ℓ2 norm. We ignore the
SR-Clustering [37] for the video datasets because it doesn’t scale for day-long video
sequences.

Since many of the approaches we compare against were originally targeted for photo-
streams and not videos, therefore, to ensure a fair comparison, we prepare two config-
urations for each dataset. In the first configuration, we resample a video at 2 frames
per minute, thereby making it resemble a photo-stream. In the second configuration,
each input video is resampled at 5fps to match the lowest temporal resolution of all the
datasets. For photo-stream datasets, we also compare with SR-Clustering [37]. Table 3.2
shows the quantitative evaluation based on F-measure for tol = 750 for video datasets.
We notice significant performance improvement over all the state of the art approaches
as these techniques fail to handle the daylong video sequences.

Fig. 3.5 shows a qualitative visualization of the comparison between various state of
the art techniques and the proposed approach. The bar chart shows the frames selected
as a boundary by different techniques for a 30 minutes clip. It is clear that the state of
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0Hr 0Min 0Hr 30Min0Hr 10Min 0Hr 20Min
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Ground Truth ADWINOurs CES

Figure 3.5: Temporal segmentation of long egocentric videos: The figure shows a qual-
itative representation of closeness of boundaries predicted by the proposed approach,
ADWIN [16], CES [33] to ground truth boundaries from specific portions of Huji (first
row), UTEgo (second row) and Disney (third row) datasets (better visualize in colors).
Please see the text for details.

the art techniques severely over-segment all the video sequence datasets due to frequent
scene changes accompanying the sharp head motion of the wearer. The images above
each of the bar charts show representative frames from a short video segment from each
of the clips. The boundaries selected by each technique are marked by thick colored
lines between the frames. This is for visual comparison of the frames where different
techniques choose to create a boundary. From the figure, we can observe that the
proposed approach doesn’t over-segment and precisely locates the temporal boundaries.

Table 3.3 shows the F-measure for tol = 5 for photo-stream datasets (EDUB-Seg
as well as all the video datasets down-sampled to photo-streams as described earlier).
For photo-stream datasets also we show considerable improvement. We report 13.74%,
24.42%, and 7.43% improvement in F-measure for HUJI, UTEgo, and Disney datasets
respectively, however, for EDUB-Seg20 we under-perform marginally as CES [33] uses
bidirectional features, whereas we use uni-directional features to maintain the online
streaming mode property of our technique. Fig. 3.6 shows the visualization for photo-
stream datasets. The first row shows the visualization for the EDUB-Seg20 dataset
where the CES [33] performs competitively. For the HUJI dataset proposed method
performs better than the CES [33].

As mentioned in section 3.3.2, we use frame-wise AlexNet [85] features as used by SR-
clustering [37] for a fair comparison. We have also tried other pre-trained CNN; namely,
VGG [147], GoogleNet [157], and ResNet101 [65], and achieved marginal performance
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Methods Features EDUB HUJI UTEgo Disney

TCFPN [41] CNN 19.26 2.37 1.37 3.84
ADWIN [16] CNN 35.37 44 11.47 23.21
CES [33] LSTM-Bi 69 45.70 36.19 61.40
SR-Clustering [37] CNN 49.93 44.06 9.44 55.81

Ours LSTM-uni 63.96 59.44 60.61 68.83

Table 3.3: F-Measure comparison on photo-stream datasets

Ground Truth ADWIN CESOurs SR Clustering

0Hr 0Min 1Hr 20Min 2Hr 40Min 4Hr  0Min

0Hr 0Min 1Hr 54Min 3Hr 48Min 5Hr 43Min

Figure 3.6: Temporal segmentation of photo-stream data: The figure shows a qualita-
tive representation of the closeness of boundaries predicted by the proposed approach,
ADWIN [16], CES [33] to ground truth boundaries from specific portions of EDUB-Seg
(first row), and Huji (second row). Please see the text for details.

gain of 1.2%, 3% and 0.85% respectively with respect to AlexNet on UTE dataset (refer
to Table 3.4).

Table 3.5 to 3.11 show the detailed F-Measure for photostream as well as the video
sequence datasets. Tables show the δ, correlation coefficient threshold (ρc), and predicted
segment for each video sample. We have used ρc = 0.95 for video datasets and ρc = 0.999
for the photo-stream datasets. Similarly, We set the δ for the corresponding granularity
as 10−2, 10−4, and 10−6 respectively for video datasets and 10−1, 10−3, and 10−7 for
photostream datasets.

3.3.5 Online Streaming vs Recorded Video

Our algorithm can be potentially used in the online streaming mode as well. Recall that
for detecting a temporal boundary, we take a window w, split it at time instant t, in two
windows w1 and w2, and then find the difference of means. Therefore, we effectively find
the temporal boundary at t after looking at w2 as well. This can be seen as detecting a
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UTEgo dataset (video)

SiD Features used
AlexNet[85] VGG16 [147] Resnet101 [65] GoogleNet[157]

P01 59.79 56.28 48.37 64.16
P02 59.01 61.57 60.82 55.80
P03 56.52 52.00 57.00 57.81
P04 58.33 68.66 70.85 68.00

Avg. Fscore 58.41 59.62 59.26 61.44

Table 3.4: F-Measure performance of our method on the features extracted from different
pre-trained networks on UTEgo video dataset

HUJI dataset (video)
Videos F-score δ ρc Pred. GT

Yair 78.94 10−2 0.95 37 38
Chetan 28 10−2 0.95 4 5

Weighted Fscore 73.01

Table 3.5: F-Measure performance of our method on HUJI video dataset

UTEgo dataset (video)
Videos F-score δ ρc Pred. GT

P01 59.79 10−4 0.95 42 55
P02 59.01 10−6 0.95 35 25
P03 56.52 10−4 0.95 25 21
P04 58.33 10−4 0.95 39 32

Avg. Fscore 58.41

Table 3.6: F-Measure performance of our method on UTEgo video dataset
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Disney dataset (video)
Videos F-score δ ρc Pred. GT

Alin Day 1 64.36 10−6 0.95 54 32
Alireza Day 1 72.83 10−2 0.95 86 77
Alireza Day 2 66 10−2 0.95 131 72
Alireza Day 3 72.72 10−4 0.95 32 33
Denis Day 1 68.42 10−6 0.95 41 34
Hussein Day 1 65.67 10−2 0.95 67 66
Michael Day 2 71.32 10−6 0.95 77 65
Munehike Day 1 59.67 10−6 0.95 68 57

Avg. Fscore 67.63

Table 3.7: F-Measure performance of our method on Disney video dataset

HUJI dataset (Phtostream)
Videos F-score δ ρc Pred. GT

Yair 59.37 10−1 0.999 27 38
Chetan 60 10−1 0.999 7 5

Weighted Fscore 59.44

Table 3.8: F-Measure performance of our method on HUJI photostream dataset

UTEgo dataset (Photostream)
Videos F-score δ ρc Pred. GT

P01 64.44 10−1 0.999 45 55
P02 60 10−3 0.999 29 25
P03 57.69 10−3 0.999 32 21
P04 60.31 10−3 0.999 35 32

Avg. Fscore 60.61

Table 3.9: F-Measure performance of our method on UTEgo photostream dataset
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Disney dataset (Photostream)
Videos F-score δ ρc Pred. GT

Alin Day 1 69.56 10−3 0.999 38 32
Alireza Day 1 71.64 10−1 0.999 68 77
Alireza Day 2 62.85 10−1 0.999 72 72
Alireza Day 3 64.28 10−3 0.999 24 33
Denis Day 1 69.84 10−3 0.999 31 34
Hussein Day 1 73.33 10−1 0.999 40 66
Michael Day 2 76.11 10−1 0.999 65 65
Munehike Day 1 63.04 10−3 0.999 44 57

Avg. Fscore 68.83

Table 3.10: F-Measure performance of our method on Disney photostream dataset

EDUB-Seg20 dataset (Photostream)
Subject-Set F-score δ ρc Pred. GT

1-1 66.66 10−7 0.999 28 16
1-2 45.71 10−7 0.999 22 12
1-3 70.96 10−7 0.999 17 13
1-4 70 10−7 0.999 40 39
1-5 58.53 10−7 0.999 43 38
2-1 64.615 10−7 0.999 42 22
2-2 56.86 10−7 0.999 67 34
2-3 60.46 10−7 0.999 54 31
2-4 72.72 10−7 0.999 49 38
3-1 71.23 10−7 0.999 37 35
4-1 70.58 10−7 0.999 21 12
5-1 64.70 10−7 0.999 22 11
5-2 61.72 10−7 0.999 36 44
5-3 62.22 10−7 0.999 22 24
6-1 70.12 10−7 0.999 42 34
6-2 69.69 10−7 0.999 35 30
6-3 71.11 10−7 0.999 39 50
6-4 56.75 10−7 0.999 45 28
7-1 54.54 10−7 0.999 70 28
7-2 60 10−7 0.999 26 14

Avg. Fscore 63.96

Table 3.11: F-Measure performance of our method on EDUB-Seg20 photostream dataset
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Datasets High Medium Low

UTEgo 2m19s 3m08s 3m29s
Disney 1m77s 2m54s 3m87s

Table 3.12: Latency analysis

boundary with a certain latency. Table 3.12 shows the average latency of our algorithm
vs the average segment length in the video.

3.4 Conclusion

In this chapter, we have introduced a novel, principled, and theoretically justified tech-
nique for temporal segmentation of egocentric videos. We have adapted the univariate
concept drift for i.i.d. data to multivariate correlated data using the adaptive windowing
technique. We demonstrate the results on long videos as well as photo-stream datasets
to prove the efficacy of the proposed approach. We have also shown that the adaptive
windowing technique can generate superior results in video temporal segmentation when
compared to the state-of-the-art deep CNN/LSTM models.



Chapter 4

Summarization and Personalized
Summarization1

4.1 Introduction

Egocentric videos are often recorded in a hands-free mode to capture day long visual
diaries from the first-person perspective. The captured videos are highly redundant and
extremely shaky, making them difficult to watch from beginning to end, thus necessitat-
ing the use of summarization tools for their efficient browsing.

The objective of a video summarization algorithm is to create a compact yet com-
prehensive summary by selecting appropriate frames from an input video. The problem
has been a well-studied area in computer vision with two styles for generated summary:
keyframes and video skims. In the keyframes-based output, the summary is represented
by a set of salient frames of the original video sequence. This is also called still image
abstract or static storyboard. A video skim-based summary is generated as the collection
of video segments extracted from the original video sequence. This is also called the
moving image abstract, or moving storyboard. The focus of this paper is on generating
video skims. Most of the work has targeted videos from static surveillance cameras
[29, 152, 189]. The focus is not misplaced since surveillance videos form the majority
among all kinds of videos captured and have long, uninteresting portions. This makes
the use of video summarization attractive. However, from the algorithmic perspective,
the summarization problem is much easier for surveillance videos and can be mostly done
by subtracting static background and choosing frames with significant and important
foreground objects.

The majority of the summarization techniques include predefined events/criteria such
as action scenes and loud music for movies, anomaly detection in the surveillance video,
and specific events in a sports video. On the other hand, videos from point and shoot
cameras are typically triggered by user interest and do not have long uninteresting

1This work was done in collaboration with Anuj Rathore (IIIT Hyderabad) and resulted in two publi-
cations published in ACMMM and PAMI. This chapter includes the work titled “Generating Personalized
Summaries of Day Long Egocentric Video” published in PAMI.

36
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Figure 4.1: Egocentric videos are characterized by their long, redundant, and extremely
shaky nature. The figure shows comparative statistics for benchmark egocentric and
third person video. We use Disney, HUJI, and UTE datasets for first-person and TVSum
and SumMe for third-person datasets to calculate the statistics. While other statistics are
obvious, optical flow indicates frequent sharp changes in viewpoints due to the wearer’s
head motion. The typical characteristics make traditional summarization techniques
unsuitable for egocentric videos.

portions. However, in a video captured using a moving camera, the background is also
moving, and the task of determining which frames to include in a summary becomes
much more challenging. Researchers have suggested various cues to select the summary
frames such as motion [193], global image features [76, 109, 199], detecting important
events, the presence of salient objects and people [91, 104], as well as role of a frame
in a hypothetical storyline [162]. Most of these techniques give a score to each frame
and then use a separate combinatorial algorithm [104, 173] to select the frames that
maximize the score in a given summary length constraint. The major shortcomings of
these techniques are in their pre-specified saliency definition, the restricted capability
to model inter-frame interactions for global indicativeness of the summary and lack of
scalability and customization for long videos.

The success of deep neural networks (DNNs) in learning complex frames and video
representations has paved the way for supervised [76, 188] and unsupervised [109, 199]
summarization techniques. Here, RNNs/LSTMs are typically used to model sequential
dependency among frames. Given the numerical constraints on back-propagating gra-
dients over many recurrent connections, such architectures cannot process input videos
longer than a few hundred frames. Even hierarchical approaches [195] can handle up to
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Methods Unsup Scalable Customization SR
VL US Int

K-Medoids ✓ ✓ ✓ ✗ ✗ ✗

DR-DSN[199] ✓ ✗ ✓ ✗ ✗ ✗

M-AVS[76] ✗ ✗ ✗ ✗ ✗ ✗

dppLSTM[188] ✗ ✗ ✗ ✗ ✗ ✗

FFNet[87] ✗ ✗ ✓ ✗ ✗ ✗

SUM-GANdpp [109] ✗ ✗ ✓ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 4.1: Comparison of SOTA techniques with the proposed method on various criteria
important for applicability to egocentric videos. Abbreviations: Unsup = Unsupervised,
VL: Variable Length, US: User Saliency, Int: Interactive, SR: Shake Resistance.

1600 frames only.
Egocentric videos contain extreme shakes and long uninteresting portions (see Fig. 4.1).

The camera wearer often moves in a variety of scenes and performs various daily activ-
ities. These characteristics rule out techniques that rely on the detection of important
pre-specified events or objects. Moreover, the task of obtaining annotated samples for
summarization for third-person videos is hard. It is even harder for egocentric videos,
which are often captured in enhanced privacy-sensitive scenarios. This rules out the
supervised approach, rendering many SOTA techniques unsuitable [76, 87, 109, 188].

While generating visually diverse summaries, it is observed that the summarization
criteria are inherently personal. Specifically, in the day long life-logging videos, the same
user may want to explore the summary focusing on the different types of events like social
interaction, having food, walking, etc. Hence, a key requirement of a summarization
framework for egocentric videos is to personalize summaries by interactively collecting
user feedback on the fly.

In this work, we formulate video summarization as a sequential decision making
process over video frames, where each decision is binary (whether to include the frame
in summary or not). The setup requires a sequential model to capture the temporal
dependencies, which has been addressed using a bidirectional LSTM based architecture.
The quality of the summary is available only for the whole set and not for individual
frames. Hence we find the RL framework, which works with sparse rewards, suitable
to solve this problem. Our experiments also show an ablation study with various RL
optimization algorithms such as policy gradient, Q-Learning, and Actor-Critic styles.
The key strengths of our approach are shown in Table 4.1. The specific contributions of
our work are:

1. Our framework can work with arbitrary long input videos and can be trained to
generate summaries of various lengths. We demonstrate it by generating 1, 5, 10,
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and 15 minutes summaries of day long egocentric videos from several benchmark
datasets [51, 90, 104, 125, 127].

2. Our approach can focus on various user-specified saliency criteria for the summary,
such as distinctiveness, indicativeness, and object, or motion saliency.

3. We propose an interactive summarization framework that can personalize sum-
maries based on the length, content as well as interactive feedback from the user.

4. We achieve state-of-the-art performance on benchmark egocentric video datasets.
We report Relaxed F-score [33] of 29.60 against 19.21 from the SOTA [199]. We
also report BLEU score of 11.55 from our approach in comparison to 10.64 by the
SOTA on the Disney dataset [51].

5. Though our focus is on egocentric videos, our technique can summarize hand-held
videos as well. We obtain F-score of 46.40 and 58.3 on SumMe [61] and TVSum
[153] datasets respectively, against the SOTA scores of 41.4 and 57.6 respectively.

The first version of this work appears in [130] only demonstrates the naive RL framework,
namely policy gradient, to summarize day long egocentric videos. The second version
appears in [114] contains the following core contributions:

1. We propose an interactive summarization framework that can personalize sum-
maries based on the feedback (video exemplars) provided by the user.

2. Advance RL frameworks, namely Q Learning and AC framework, are introduced
with various plugins such as distinctiveness, indicativeness, and object or motion
saliency.

4.2 Proposed Approach

The specific objectives of the proposed summarization approach are as follows:

1. Unsupervised: To handle enhanced privacy concerns.

2. Scalable: To handle day long egocentric videos.

3. Customizable: To handle vast variety of contexts in the wild egocentric videos.

4. Interactive: To accommodate user preferences.

To simplify the exposition, we first describe our architecture to generate summaries
for short videos in an unsupervised manner. We then explain to scale-up of the architec-
ture for day long videos, followed by the modifications required for customization and
interactive summary generation.
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4.2.1 Architecture

The proposed framework uses 3D convolutional neural networks (CNNs) for capturing
spatio-temporal features from an egocentric video. We have used 3D CNN model [164],
called C3D hereon, trained on Sports-1M dataset for feature extraction in our design.
Other 3D CNN models such as [19, 75, 165] can be used as well. We first divide our
video into sub-shots of 16 non-overlapping frames and extract 512 dimension features
from pool5 layer: {xt}Tt=1 for each sub-shot from C3D. Here T denotes the total sub-
shots extracted from a video. The extracted features are inputted to the reinforcement
learning agent, which uses a bidirectional long short-term memory network (BiLSTM).
The hidden state (hi = hf∥hb) of BiLSTM encapsulates past and future information
of ith sub-shot using forward and backward stream respectively. Here hf and hb are
hidden states of forward and backward layers of BiLSTM, respectively, and ∥ indicates
the concatenation of the two. We unroll the BiLSTM network M times for the training
and give a sub-shot as input to each BiLSTM unit. .

4.2.2 Formulation

We formulate the summary generation as a Reinforcement Learning (RL) problem, where
the state space comprises of input sub-shots features {xm}, and the action set {am} is a
binary decision for selecting or not selecting a particular sub-shot in summary. To train
the summarization agent, we experiment with the following RL optimization strategies:
1. Policy Gradient, 2. Q Learning, and 3. Actor-Critic.

Summarization with Policy Gradient: For the policy gradient framework, we
design the agent as a BiLSTM network followed by a fully connected (FC) layer for final
prediction as shown in Fig. 4.2. The BiLSTM takes C3D features {xm}Mm=1 as input and
produces corresponding hidden states {hm}Mm=1. In the end, the FC layer is followed
by a sigmoid function to predict the probability score {pm}Mm=1 corresponding to each
sub-shot. The output summary corresponding to the input video is then selected by
sampling each sub-shot based on the probability outputted by each LSTM unit. The
reward for the agent is the score of the overall summary based upon the pre-specified
or user-defined scoring functions as described later in Section 4.2.3, Section 4.2.5, and
Section 4.2.6.

To train the summarization agent, we use the policy-based reinforcement learning to
optimize the policy πθ with parameter θ that maximizes the expected reward:

Jπ(θ) = Eπθ(a1:M |h1:M ) [R(S)] , (4.1)

where S denotes the output summary. πθ(a1:M |h1:M ) denotes probability distribution
over the input sub-shots (M), where am ∈ {0, 1} indicates whether the mth sub-shot
is selected or not. R(S) is the reward function that measures the quality of generated
summaries.
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Figure 4.2: Illustration of the proposed technique to summarize day long egocentric
videos based on policy gradient framework. The figure also demonstrates the sliding
window framework. In that, as per the current position of the sliding window (Ws)
we select a set of segments as a past summary (Sp) and future summary (Sf) (a global
representative of input video) from the previously generated summary. The first column
to the left of C3D shows the representation of past, current, and future segments of the
video. The past and future segments are represented by their sub-shots in the current
summary. Further, each sub-shot in the representation (whether coming from past,
current, or future segments) is essentially a set of 16 consecutive frames from which
we evaluate the C3D features. The second column to the left of C3D features indicates
these sub-shots/sets. The RL agent takes actions on the input (Sp+Ws+Sf) to select the
sub-shots for summary by maximizing the reward in each iteration. Based on various
informative measures, the feedback reward R(S) assesses the goodness of the summary.

It can be shown that the derivative of objective function w.r.t. parameters θ is given
as:

∇θJ(θ) = Epθ(a1:M )

[
R(S)

M∑
m=1
∇θ log πθ(am|hm)

]
, (4.2)

where pθ(a1:M ) denotes probability distribution over possible action sequence. Since we
calculate the expectation over the action sequence, which is difficult to compute directly.
We approximate it by sampling actions for E episodes on the same input and output
probability distribution and then calculate the average gradient:

∇θJ(θ) = 1
E

E∑
e=1

M∑
m=1

R(Se)∇θ log πθ(am|hm), (4.3)
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where R(Se) is the reward computed for summary S in the eth episode. The high
variability in cumulative reward and log probabilities make the network hard to converge.
We use a common countermeasure to ensure smaller and stable gradient, which is to
subtract a baseline, B, from the cumulative reward:

∇θJ(θ) = 1
E

E∑
e=1

M∑
m=1

(R(Se)−B)∇θ log πθ(am|hm) (4.4)

where B is computed as the moving average of rewards experienced so far.
Policy gradient is a naive RL framework that uses the baseline function to calculate

the episodic reward. The baseline functions are not learnable, which leads to high
variance across video samples. We introduce the Q learning and AC framework that uses
a Q value network that leads to a stable gradient across video samples. On the other
end, the extra parameters required more training samples. For the proposed framework,
each position of the sliding window (refer Section 4.2.4) constitutes one training sample,
so we generate sufficient training samples (especially for day long videos) to train the Q
learning and AC frameworks.

Summarization using Q Learning: In Q learning, instead of predicting the confi-
dence score, pm, we predict the Q values for selecting or not selecting a sub-shot for a
particular state. The objective function of Q learning is to minimize the mean squared
error between the target Q value and the approximate Q value with parameter θ over
the input sequence:

Jπ(θ) = Eπ

[(
Qπ(s, a)−Qπ

θ (s, a)
)2]

. (4.5)

Here Qπ(s, a) and Qπ
θ (s, a) is the target Q value and approximate/predicted Q value

respectively. As suggested in [158, Ch. 6], we use TD target to approximate the target
Q values i.e Qπ(sm, am) = r + γQπ

θ−(sm+1, am+1), where r is the current reward, γ is
the discount factor, and Qπ

θ− is the Q value of the target with parameters updated in
the alternate epochs. With the approximation, the weight update is given by:

∆θ = αδm∇θQπ
θ (sm, am), (4.6)

where δ is the TD error computed as:

δm = r + γQπ
θ−(sm+1, am+1)−Qπ

θ (sm, am) (4.7)

We adopt the idea proposed by [113] to calculate the reward for ‘m’ steps of an episode,
and calculate TD error for the entire episode as:

δm =
M−1∑
m=1

[
rm + γ Qπ

θ−(sm+1, am+1)−Qπ
θ (sm, am)

]
(4.8)

δm = R(S) + γ
M−1∑
m=1

Qπ
θ−(sm+1, am+1)−

M−1∑
m=1

Qπ
θ (sm, am) (4.9)
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where R(S) = ∑M−1
m=1 rm, is the total reward. And the weight update is given as:

∆θ = αδm

M∑
m=1
∇Qθ(sm, am), (4.10)

where α is the learning rate for the parameters.

Summarization using Actor-Critic Framework: For the Actor-Critic framework,
we propose a common BiLSTM network, with tied weights, followed by two separate
fully connected layers for Actor and Critic as shown in Fig. 4.4. The common BiLSTM
reduces the parameters and ensures fast convergence. The basic policy gradient in an
actor-critic framework is given as follows:

∇θJ(θ) = Epθ(a1:M )

[
R(S)

M∑
m=1
∇θ log πθ(am|hm)

]
(4.11)

The actor policy is denoted by πa and its parameters θ are updated as follows:

∆θ = αa

M∑
m=1

Qc(sm, am)∇θ log πa(sm, am), (4.12)

where Qc is the Q-value for the state-action pair given by the critic, and αa is the learning
rate of the actor.

Denoting critic parameters by w, we update the critic parameters using TD target
and calculate the TD error in the same way as done for Q learning:

δm = R(S) + γ
M−1∑
m=1

Qw−(sm+1, am+1)−
M−1∑
m=1

Qw(sm, am). (4.13)

where Qw− indicates the Q value returned by the critic for the target. With the TD
error computed as above, the weight update for the critic is given by:

∆w = αcδm

M∑
m=1
∇Qw(sm, am) (4.14)

4.2.3 Scoring a Summary and Basic RL Rewards

The proposed RL framework requires a summary scoring mechanism to compute the
goodness of a summary. The goodness of the summary can be defined by selecting the
most diverse sub-shots that can reproduce the original video with minimal loss. To
implement this notion, distinctiveness and indicativeness rewards are used in literature
[62, 199]. This score is used as a reward to train the agent using any of the training
methodologies (policy gradient, Q learning, or actor-critic) discussed in the previous sec-
tion. Though we describe many rewards to customize the summaries in the next section,
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Figure 4.4: Illustration of the proposed framework using Actor-Critic framework along
the interactive summarization plugin to summarize day long egocentric videos. After
generating the initial summary as described in the last few sections, we ask the user to
pick the sub-shots which the user certainly wants in summary. We call such sub-shots
positive sub-shots. Similarly, we collect in negative sub-shots, the sub-shots which the
user dislikes.

three basic rewards are common to all the summaries produced by our framework. Note
that all these rewards do not require the notion of any pre-specified important objects
or events.

Distinctiveness Reward: Let V = {1, . . . , M}, represents the set of input sub-shots,
and S = {i | i ∈ V} denotes the set of indices of the sub-shots included in the summary
(hereinafter called summary sub-shots). Let xm be the feature representation of mth

sub-shot. Distinctiveness reward measures the degree of uniqueness among the summary
sub-shots, and is computed as the mean of pairwise distance among the selected video
sub-shots using ℓ2 norm:

Rdis = 1
|S|(|S| − 1)

∑
i∈S

∑
j∈S,
j ̸=i

∥xi − xj∥2 (4.15)

Indicativeness Reward: The indicativeness reward measures how well the summary
sub-shots represent the original input video. Here the assumption is that each input sub-
shot can be described as a linear combination of a small subset of indicative sub-shots.



4.2. PROPOSED APPROACH 45

Hence, we define Rind as:

Rind = − 1
|V |

∑
i∈V

min
b

xi −
∑
j∈S

bi
jxj

2

, (4.16)

where V indicates the set of input sub-shots in the whole video and each variable bi
j

denotes the weight corresponding to sub-shot xj in the summary, to best reconstruct an
input sub-shot xi. The set of weights b = {bi

j} are found as the ones maximizing the
indicativeness reward for a summary set S.

Summary Length Reward: A trivial way to generate a summary that maximizes
distinctiveness and indicativeness is to choose all the input sub-shots in the output
summary. To prevent such a trivial solution and keep the summary concise, we introduce
an additional constraint penalizing the length of the summary. We propose the following
reward to generate a summary of the desired length:

Rlength = −
(

1
M

M∑
m=1

pm − ϵ

)2

, (4.17)

where pm denotes the probability outputted by our framework for selecting sub-shot m,
and ϵ denotes the desired percentage of sub-shots (given as input to our system) to be
selected in the summary.

4.2.4 Scalability to Day Long Egocentric Videos

The proposed technique, as described above, does not require the input sub-shots to be
temporarily adjacent. Therefore, to scale it to long videos, instead of giving the whole
video as input in one go, we use a sliding window approach (refer Fig. 4.2 or Fig. 4.4).
We keep on moving a sliding window (containing temporally adjacent sub-shots), and
at any temporal location, we give two sets of input to our model. The first input is
‘all the sub-shots’ covered by the current window, and the second is the most recently
generated ‘indicative sub-shots’ (or the latest summary generated by our method minus
the indicative sub-shots belonging to the current window). Note that we do not give
the indicative sub-shots belonging to the current window since the current iteration
will update which sub-shots will be selected as indicative sub-shots from the current
window. However, the set of indicative sub-shots which do not belong to the current
window remains as is. Further, note that our technique can choose any number of sub-
shots as indicative from the current window based on the accrued reward. We divide
the indicative sub-shots into Sp and Sf according to the current position of the sliding
window, i.e., all the indicative sub-shots indexed before the sliding window belong to
Sp, and all the sub-shots indexed after sliding window belong to Sf . We use the model
described in the previous section to pick the most distinctive and indicative sub-shots
with these two inputs.
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Based on the trained weights, the network outputs probability scores corresponding
to each sub-shot. We choose an action sequence of top-scoring sub-shots based on these
probability scores to match the desired summary length. We compute the reward in
feature space over the action sequence and back-propagate the gradient as per one of the
RL techniques viz Policy Gradient, Q Learning, or Actor-Critic. Further, if the selected
sub-shots get a better reward than the previous summary, we update the ‘indicative
sub-shots’ of the video according to the current selection. The updated representation
is then used in the next pass for the next sliding window, and the same process is
repeated for all sliding windows of the video. We move the sliding window from the
beginning to the end of any day long egocentric video. We call this one scan, and then
we repeat this multiple times to better assimilate the information from all parts of the
video. Furthermore, we observed no significant systematic bias in the output summary
due to the initialization because of multiple scans.

The proposed framework is visually described in the Fig. 4.2 and Fig 4.4 for summa-
rization and interactive summarization, respectively, and can work with arbitrarily long
videos while still maintaining the global context for generating a consistent and concise
summary.

4.2.5 Customizing Summaries

The unconstrained nature of egocentric videos makes it hard to pre-suppose the saliency
criteria. We propose a plugin-based architecture where different plugins can bias the
generated summaries using appropriate rewards. Apart from distinctiveness and indica-
tiveness, we propose following two novel rewards, especially for the first-person context:

Social Interaction Reward: We propose a new reward emphasizing the social inter-
actions present in egocentric videos. We integrate a FasterRCNN [131] model, fine-tuned
for face detection, into the proposed network. We detect faces in each frame included in
the summary and, add the ratio of faces in the summary to the length of the summary,
as the reward. We observe that, during social interaction faces tend to occupy a larger
area (facearea), and also have higher prediction confidence score (faceconf). The smaller
faces with low confidence are usually far away from the wearer and are irrelevant from
a social interaction perspective. Therefore, we threshold the bounding box area and
confidence score, to eliminate the faces with no social interaction with the wearer. With
this, we define social interaction reward as:

Rsoc =
∑

m∈S facesoc
m

|S|
, where

facesoc
m =

{
1, if faceconf

m > 98%, and facearea
m > 4%

0, otherwise
(4.18)

Face Identity Reward: We suggest this reward to generate a summary focusing on
‘unique’ interactions present in a video sequence. To evaluate this reward, we compute
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OpenFace [7] features of the faces detected by FasterRCNN. However, apart from the
usual distinctiveness and indicativeness reward on sub-shot features, we propose an
additional reward for the distinctiveness of face features:

Riden = 1
|S|(|S| − 1)

∑
i∈S

∑
j∈S,
j ̸=i

(
1− fT

i fj

∥fi∥2∥fj∥2

)
(4.19)

where fi corresponds to the facial features from the ith sub-shot. The reward biases
generated summary towards including all the people, with whom a wearer might have
interacted within the video.

Customizing Summary Length: It is hard to predict the amount of important
content in a day long egocentric video. Therefore, we propose to generate summaries
of different lengths to cater to various kinds of content. Since our model is completely
unsupervised, we merely need to change the desired percentage of sub-shots (epsilon) and
retrain the network to output different length summaries. In the experiments section,
we demonstrate the capability by outputting summaries of 1, 5, 10 and 15 minutes for
hours long videos. Apart from showing the adaptability of the proposed model, the
summaries also demonstrate how well the proposed technique select content at different
granularity from the input videos.

4.2.6 Interactive Summarization

The variety of contexts in which an egocentric video is captured ensures that, despite
the various customization proposed for the summary generation in the last few sections,
a user may still find some interesting portions not included or some redundant portions
included in the summary. Therefore, we propose to introduce a new module in our
framework that can interact with the user in an online manner and personalize the
summaries by collecting the feedback provided by the user as depicted in Fig. 4.4.

After generating the initial summary as described in the last few sections, we ask
the user to pick the sub-shots which the user certainly wants in summary. We call such
sub-shots positive sub-shots(S+). Similarly, we collect in negative sub-shots(S−), the
sub-shots which the user dislikes. Kindly refer to the section A.2 in appendix for the
verbatim text transferred to the subjects for the user study. Based upon the sets of
positive and negative sub-shots, we define the interactive reward as follows:

Rint = A

|S||S+|
∑
i∈S

∑
j∈S+

xT
i xj

∥xi∥∥xj∥

+ B

|S||S−|
∑
i∈S

∑
j∈S−

(
1− xT

i xj

∥xi∥∥xj∥

)
(4.20)

where A, and B are the weights to fine-tune the impact of the user feedback. We use the
interactive reward just as the other rewards in our RL based summarization framework.
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4.3 Experiments & Results

4.3.1 Datasets

We demonstrate the results on Disney [51], UT Egocentric (UTE) [90, 104], HUJI [125,
127], SumMe [61] and TVSum [153] datasets. Disney, UTE, and HUJI are long duration
egocentric video datasets. Disney consists of videos captured at Disney World by six
individuals for three days. Here, we have merged the small video segments, following the
numbering order provided by their authors, into a day long video for each individual.
After merging, we have eight sequences of 4 to 8 hrs for each individual. For Disney,
Yeung et al. [180] have provided ground truth text and video summaries of three videos,
namely ‘Alin Day 1’, ‘Alireza Day 1’ and ‘Michael Day 2’ by three annotators. UTE
comprises four videos, each of 3 to 5 hrs long, and captured in an unconstrained setting.
To evaluate the proposed approach on UTE, we have used the annotations provided
by Yeung et al. [180]. The HUJI dataset comprises 44 egocentric videos of less than
30 minutes each and captures daily activities performed by three subjects, both indoor
and outdoor. HUJI dataset do not have any ground truth summaries (neither text nor
video).

SumMe and TVSum are benchmark datasets containing small-duration video se-
quences. SumMe consists of 25 video sequences ranging from 1 to 6 minutes videos
of various domains such as sports, holidays, etc., in both third person and egocentric
perspectives. It is annotated by 15 to 18 individuals with multiple summaries. TVSum
contains 50 video sequences of 2 to 10 minutes, covering news, documentaries etc. It is
also annotated by 20 persons with multiple summaries.

4.3.2 Evaluation Methodology

To prove the efficacy of the proposed framework, we use four evaluation measures. We
observe that egocentric videos are highly redundant, especially in a temporal neighbor-
hood. Therefore, picking any of the frames from a local neighborhood leads to per-
ceptually similar summaries. However, the commonly used F-score [188] for evaluating
summary does not capture this aspect, leading to arbitrary scores with little perceptual
correlation. In the first evaluation measure, we use the metric proposed by Molino et
al. [33], called Relaxed F-score (RFS). In Relaxed F-score, given a pair of predicted
summary, S and ground truth summary, G; instead of taking exact overlap, we take a
fixed temporal relaxation (∆t) around G, while calculating true positive (TP) and then
remove these frames from the false positive (FP) and false negative (FN) calculations.
The relaxed precision (Pr), recall (Rr) and F-score (Fr) are defined as:

Pr = Relaxed TP
Relaxed TP + FP , and Rr = Relaxed TP

Relaxed TP + FN

Fr = 2× Pr ×Rr

Pr + Rr
× 100% (4.21)
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For long sequence egocentric videos, the semantic information can be more accurately
expressed in texts [180]. Therefore, in the second evaluation measure, we perform the
natural language description based evaluation of video summaries as proposed by [180].
We convert the predicted summary to text using the text description provided for the
entire video by [180] and then use BiLingual Evaluation Understudy (BLEU) [141] score
for evaluation.

In the third evaluation named Average Human Rating (AHR), we follow [106, 107,
116] to rate the summary based on informativeness and enjoyability with a confidence
score by 10 participants. The participants were recruited using purposive sampling [163],
where the participants have a different background, with three of them having profes-
sional experience in recording videos. The demographic information about the partic-
ipants is given in Table A.3 in the appendix. The informativeness and enjoyability of
each participant are weighted by the normalized confidence score, and the average over
participants is reported. Please refer to section A.2 in the appendix for the detailed
verbatim text transferred to the subjects for the user study.

In the last evaluation measure, we score the generated summary based on the number
of unique events captured and the jerks present. To calculate the unique events, we have
used the text description of the input videos (three videos of the Disney dataset) provided
by Yeung et al. [180]. The consecutive sentences are merged if the BLEU score between
them is greater than 0.5. Each unique sentence is then identified as a unique event. To
calculate the number of jerks, we count the number of temporally discontinuous shots
in the summary. The final score is calculated as:

Scoreue = Unique Events− αj ×Number of Jerks (4.22)

where αj is weight to penalize unique events by the number of jerks. We use αj = 0.3
in our experiments.

For small duration video datasets, we follow [188] and use traditional F-score to
measure the quality. Note that the traditional F-score can also be seen as a special case
of Relaxed F-score (RFS) with temporal relaxation of 0. For SumMe and TVSum, we
generate a summary (S) which is 15% of original video length, and report the mean
F-score generated from multiple ground truth summaries.

As suggested by [32], we did a qualitative evaluation of personalized summaries in two
scenarios by 10 participants. In the first scenario, a participant was asked to evaluate a
system-generated summary while being unaware of the video content. Here, the system
iteratively personalized the generated summary by taking into account the participant’s
feedback. In the second scenario, we assume that the user is aware of the video content
(e.g., the user may be the camera wearer) a priori. Please refer to section A.2 in the
appendix for the detailed verbatim text transferred to the participants for the user study.
Once the personalized summary is generated, then the participants rate the summary
by the quality of personalization compared to the default summary on the Likert scale
(1: very poor, 2: poor, 3: ok, 4: good, 5: excellent) along with their confidence score (1:
Not confident to 5: Completely confident).
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Methods
Alin Michael Alireza

RFS BLEU AHR RFS BLEU AHR RFS BLEU AHR
INF ENJ INF ENJ INF ENJ

Uniform samp. 20.60 0.76 2.95 1.91 17.23 0.69 2.62 1.64 17.05 0.56 2.48 1.65
K-medoids 22.08 0.74 2.82 2.53 17.73 0.71 2.32 2.22 17.84 0.57 2.68 2.28
dppLSTM[188] 10.87 0.63 2.42 2.68 20.13 0.58 2.73 2.01 15.80 0.44 3.12 2.50
DR-DSN[199] 11.44 0.76 2.53 2.75 16.30 0.74 2.63 2.86 16.79 0.53 2.44 3.04
FFNet[87] 19.18 0.59 1.91 1.91 19.76 0.70 2.80 2.88 18.52 0.26 2.33 2.62
SUM-GAN[109] 12.27 0.53 1.17 2.26 16.53 0.64 2.14 2.48 14.14 0.41 3.18 2.78

OursPG 32.59 0.72 2.88 3.22 25.40 0.74 2.86 2.75 27.65 0.54 2.68 3.17
OursQ 30.38 0.77 3.26 2.66 23.89 0.72 2.93 3.00 23.89 0.56 3.46 3.55
OursAC 35.65 0.74 3.68 2.74 30.00 0.73 3.46 2.95 23.16 0.57 4.06 2.90

Table 4.2: Performance comparison between SOTA approaches and the variations of the
proposed method. PG, Q, AC show our framework trained with Policy Gradient, Q
Learning, and Actor-Critic learning techniques, respectively.

4.3.3 Implementation details

After experiments with a few different sizes, we set sliding window lengths to 25 percent
of the desired summary length (please refer A.1 in appendix for detailed abalation study).
For all the frameworks, we set the learning rate (α) to 10−5, learning rate decay to 0.1,
number of episodes to 5, number of sliding window pass per video to 4, ϵ to 0.5, hidden
units in the BiLSTM to 256, and mini-batch size to 16. We set the discount factor (γ)
to .99 for Q learning and AC framework. The actor (αθ) and critic (αw) learning rate
are set to 10−3. The maximum epochs used to train the network is 20. We also add l2
regularization on the weights to avoid overfitting.

The proposed technique is implemented in PyTorch and tested on a regular work-
station containing Nvidia Quadro P5000 GPU. It takes approximately 2 hrs (inclusive
of feature extraction) to summarize an 8 hrs long video. The GPU memory required to
generate a 5 minutes summary is approximately 1500MB.

4.3.4 Results on Long Egocentric Videos

Table 4.2 shows the quantitative evaluation between SOTA approaches and the variations
of the proposed method on the three samples of Disney dataset. We compare various
performance measures such as Relaxed F-score (RFS) with the temporal relaxation of
50 units (RFS-50), BLEU score, and Average Human Rating (AHR). For comparison
with DR-DSN [199], we unroll the network for the whole video at the test time and
generate the probability of picking each frame. Top scoring frames according to the
summary length are then outputted as the summary. We notice significant performance
improvement over all the SOTA approaches. We report an average of 10% improvement
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against DR-DSN [199] in relaxed F-score for 50 units of temporal relaxation for three
videos of the Disney dataset. We perform only marginally better in terms of BLEU score
because, for many events, the text description of visually different events overlapped.
For example, “My friends and I walked through the park" and “My friends and I walked
through the line" are two visually different events but exhibit close BLEU score. Hence,
even if our technique picks more unique events, the BLEU score is marginally better.
However, the AHR shows significant performance improvement for all the videos in
terms of informativeness and enjoyability score. The SOTA approaches typically pick a
cluster of frames in summary from the same location (refer Fig. 4.7), which lowers the
informativeness and enjoyability score compared to the proposed framework. The same
is validated through our user study where one of the participants expressed for ‘Alin
Day 1’ video when FFNet [87] is used,

“Kept focussing on scenes for far too long and because of this, it missed
many other scenes. For example, lunch and dinner sequences were longer
than required."

Similarly, the summaries generated by uniform sampling and K-medoids, show sudden
changes that lead to poor comprehension and reduces the informativeness and enjoya-
bility score. The following quote from one of our participants (for ‘Michale Day 2’ video
when ‘uniform sampling’ is used) supports the finding:

“Informativeness: I could not make sense of the whole summary as it felt
more like a slide show of images. Although most of the events were included
as compared to ground truth, still I reduced my score as I felt that multiple
pics (frames) were depicting one event, which could be avoided given the
slow rate and the fact that few frames were not adding any new information.
Enjoyability: I did not enjoy this! It was not smooth and felt like I am
watching a slide show of images. It was so slow and boring! "

Table 4.3 shows the summary score for the unique events covered by 1, 2.5, and 5
minutes summaries. The numbers show that the proposed approach significantly im-
proves compared to all the SOTA approaches for all cases except for one case of where
uniform sampling performing better for ‘Alireza Day 1’ video when the summary length
is 2.5.

In Fig. 4.5, we compare various SOTA approaches based on Relaxed F-score for various
amounts of temporal relaxation (∆t). As we increase the relaxation, the Relaxed F-
score increases linearly for all the methods, and from the graph, it is evident that our
techniques outperform SOTA approaches by a huge margin for all relaxations.

Fig. 4.6 shows a qualitative comparison between DR-DSN [199] and the summaries
generated by our method. The 1st row in the figure shows the original frames, and the
numbers on the top show frame numbers (from 140Kth frame to 300Kth in the original
video. The 2nd row shows the predicted summary frames by the DR-DSN method. The
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Methods 1 minute 2.5 minutes 5 minutes
Al Mi Az Al Mi Az Al Mi Az

Uniform samp. 21 30 27 40 52 60 38 56 70
K-medoids 25 28 27 32 48 46 19 49 66
FFNet[87] 21.4 14.4 10.9 20.5 43 4.7 13.3 0.5 6.7
DR-DSN[199] 17.5 21.5 20.2 19.1 15.7 22.8 5.2 14.4 20.9
OursPG 27.6 28.9 31.1 48.6 57.6 49.9 41.2 58.5 63.1
OursQ 28.4 43 30.9 42.2 66.6 48.6 56.6 62.5 69
OursAC 33.7 33 33.4 57.7 74.8 56.6 70.4 99.9 75.2

Table 4.3: Performance comparison between SOTA and the variations of the proposed
method for the number of unique events covered. We demonstrate the results for 1, 2.5,
and 5 minute summaries on the three samples of the Disney dataset using basic rewards
(distinctiveness, indicativeness, and summary length).

Subjects Video
Name Dataset Events Score

(1 to 5)Included Excluded

S01-S1 Alin Disney ‘Dinner’ ‘In Dark’ 3
S03-S1 Alin Disney ‘Dinner’ ‘Tram ride’ 5
S02-S2 P01 UTE ‘Driving’ ‘Prep. Food’ 4
S01-S2 Yair HUJI ‘Driving’ ‘Sitting’ 4

Table 4.4: The table shows the Likert score when specific events are included or excluded
in summary. S0X-SY represents subject ‘X’ in scenario ‘Y’.

3rd, 4th, and 5th rows show output from the proposed method using distinctiveness-
indicativeness, social interaction, and unique identity based rewards, respectively. We
observe that, due to the specific rewards used, the summaries generated by our technique
ignore the video segments like approaching the building, walking over the pool, etc.,
which do not involve social interaction or faces. The summaries are correctly centered
towards their desired objective.

We observed in Fig. 4.6 that DR-DSN [199] picks a cluster of frames from a particular
location in summary. On the other hand, our distinctiveness and indicativeness reward
is able to distribute the summary frames from all over the video correctly. Fig. 4.7 gives
a better visualization by showing the distribution of the summary frames with respect
to the ground truth summary for various frameworks, including ours for the full video.
The figure also indicates that most of the selected summary frames are common despite
using different RL frameworks as the reward is the same for all the frameworks.

In Fig. 4.8, we compare 1 minute, 5 minutes, 10 minutes and 15 minutes summaries
generated by our framework using the policy gradient method for the ‘Michael Day 2’
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Figure 4.5: Commonly used F-score do not correlate well with goodness of a summary
for long videos. We use Relaxed F-score to evaluate the summaries. The plot above
shows Relaxed F-score for different units of temporal relaxation (∆t) for ‘Alin Day 1’
video sequence of Disney dataset.

sequence of the Disney dataset. Similarly, Fig. A.5 in the appendix compares differ-
ent length summaries generated by the Actor-Critic framework for the ‘P04’ sequence
of the UTE dataset. As can be seen, our network can adapt to different desired sum-
mary lengths. We observe, and as expected, most of the frames present in the shorter
summaries are also present in, the longer ones along with some additional frames.

Fig. 4.9 shows the qualitative analysis of the interactive summarization using Interac-
tive Summarization reward along with the basic RL rewards. From the visualization, it
is evident that the summary is indeed biased towards user feedback. Similarly, Fig. A.2
in appendix demonstrates the interactive summarization framework on the ‘P01’ video
sequence of the UTE dataset.

The UTE dataset comprises small video sequences (< 5 hrs) and is less complex
than the Disney dataset. Due to the aforementioned reason, Table 4.5 shows significant
improvement over SOTA in terms of RFS-50 measure for all the UTE videos.

Table 4.4 shows the results from a user study as discussed in the evaluation section.
The detailed results with the comments for all 10 participants are shown in the Table
A.2 in the appendix. It is evident that the users like personalized summaries generated
by our method.

4.3.5 Results on Short Hand-held Videos

Though not the focus of this paper, we also evaluate our method over short hand-
held videos. Table 4.6 shows the comparison. Our method outperforms all unsupervised
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140K 155K 170K 185K 200K 230K 245K 260K 275K 300K215K

Figure 4.6: The figure shows a comparison between DR-DSN [199] and proposed ap-
proach for the 10 minutes summaries of ‘Michael Day 2’ sequence using basic RL rewards.
The blank rectangles indicate that no frames were picked from those frame ranges.

0 10K 20K 40K 50K 60K30K

(f) Actor-Critic Framework

(e) Q Learning

(d) Policy Gradient

(b) FFNet

(a) DR-DSN

(c) SUM-GANdpp

(g) Ground Truth

Figure 4.7: We also observe in our experiments that the SOTA often gets biased towards
a short temporal segment in the video. In contrast, ours can distribute the summary
frames from all over the video same as ground truth.
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methods. Though the proposed method is unsupervised and comparison with supervised
techniques may not be fair. We still made a comparison and except for H-RNN [195] and
M-AVS [76], where we perform close, our method improved SOTA supervised techniques
as well.

Comparing the performance of three configurations of our technique corresponding
to different RL optimization techniques, we observe that Q learning performs better
than the policy gradient, and the actor-critic performs better than Q learning. The
policy gradient uses a baseline function that reduces the cumulative reward variance
and leads to smaller gradients. In contrast, the Q learning and actor-critic techniques
use a Q-value network instead of a baseline function to calculate TD error. This en-
sures higher gradients across multiple video samples, leading to better and faster reward

0 40K 80K 120K 160K 240K 280K 320K 360K 400K200K
(a) 1 minute summary

(b) 5 minutes summary

(c) 10 minutes summary

(d) 15 minutes summary

(e) Ground Truth summary

Figure 4.8: Comparing 1, 5, 10, and 15 minutes summaries (row 1-4) based on the basic
RL rewards using Policy Gradient framework on ‘Michael Day 2’ sequence from Disney
dataset with the ground truth summary (row 5). Note that the ground truth summary
length is approximately 5 minutes. The numbers on the top show frame numbers (from 0
to 400K). The pictures show indicative frames in summary from the corresponding frame
range. The blank rectangles indicate no frames were picked from those frame ranges. The
black vertical bars indicate a frame was picked from a corresponding temporal window
of 70 frames in each row. The bar serves to indicate the distribution of summary frames
in the video.
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Methods P01 P02 P03 P04

Uniform samp. 27.78 25.11 36.56 20.79
K-medoids 30.50 22.86 39.66 22.59
FFNet [87] 30.78 19.37 35.92 27.43
SUM-GANdpp [109] 31.68 10.91 35.85 25.44
dppLSTM [188] 32.47 26.78 41.66 26.93
DR-DSN [199] 36.36 28.21 42.54 27.81

Ourspol 43.64 46.39 51.16 39.41
OursQ 41.94 48.24 48.47 39.65
OursAC 47.50 36.26 58.86 48.10

Table 4.5: Comparison on UTE dataset based on basic RL rewards using RFS-50 metric.

Dinner event

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.9: The figure demonstrates the visualization of the interactive summarization
of the ‘Alin Day 1’ video sequence of the Disney dataset for 10 minutes summaries.
Each bar represents 10 seconds of a time interval. (a)-(f) shows different summaries
when the user asks to exclude/include ‘dinner’ event in summary, and (g) shows the
ground truth summary distribution. We observe that (b) shows big peaks in the ‘dinner’
event area, whereas (c) shows very few spikes because of the negative feedback. As an
ablation study, we initialized the summary by random frames but not included any frame
from the ‘dinner’ event in the initialization, as shown in (d). When we personalized the
summary to include the ‘dinner’, with the initialization as done in (d), we observe that
the summary changes to select sub-shots from the ‘dinner’ event as shown in (e).
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Methods SumMe TVSum Category

dppLSTM[188] 38.6 54.7 supervised
SUM-GANsup [109] 41.7 56.3 supervised
DR-DSNsup [199] 42.1 58.1 supervised
Li et al. [94] 43.1 52.7 supervised
M-AVS [76] 44.4 61.0 supervised
H-RNN [195] 44.3 62.1 supervised

Uniform samping 29.3 15.5 unsupervised
K-medoids 33.4 28.8 unsupervised
Elhamifar et al. [47] 37.8 42.0 unsupervised
Song [153] - 50.0 unsupervised
SUM-GAN [109] 39.1 51.7 unsupervised
DR-DSN [199] 41.4 57.6 unsupervised

Ourspol 44.48 56.40 unsupervised
OursQ 44.56 56.44 unsupervised
OursAC 46.40 58.30 unsupervised

Table 4.6: Though not the focus of this paper, we evaluate our method on short video
benchmarks as well for a thorough comparison. The table shows F-scores for various
techniques on SumMe and TVSum datasets using basic RL rewards. Mentioned results
are from respective original papers. We choose 5 fold validation (fixed five splits of both
the dataset by the script provided by [199]) and reported an average F-score for all the
proposed frameworks.

maximization. For a detailed comparison between all the frameworks and stability of
the RL framework (training plots), we direct the reader to section A.3 and section A.4
respectively in the appendix.

Datasets SumMe TVSum
Methods DIST IND Both DIST IND Both
Policy Gradient 44.5 44.74 44.76 56.10 56.3 56.40
Q Learning 45.1 45.2 45.62 55.72 55.72 56.44
Actor-Critic 46.36 46.48 46.40 55.77 56.66 58.30

Table 4.7: The table shows the F-scores measure of different techniques for various
combinations of rewards for SumMe and TVSum datasets. DIST and IND represent
the Distinctiveness and Indicativeness rewards, respectively. We choose 5 fold validation
(fixed five splits of both the dataset by the script provided by [199]) and reported an
average F-score for all the experiments.
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Datasets Disney UTE
Methods DIST IND Both DIST IND Both
Policy Gradient 26.77 27.23 28.54 42.87 43.4 45.15
Q learning 24.24 25.77 26.05 41.91 42.39 44.57
Actor-Critic 27.36 28.99 29.60 45.27 45.79 47.68

Table 4.8: The table shows the average RFS-50 (Relaxed F Score with temporal relax-
ation of 50) for three video sequences of Disney and UTE datasets for different rewards.
DIST and IND represent the Distinctiveness and Indicativeness rewards, respectively.
Note that the summary length reward is fixed to generate 5 minutes summary for all
the experiments.

4.3.6 Ablation Study using various rewards

We have conducted extensive experiments to demonstrate the contribution of each re-
ward in the final summary. We consider two basic rewards, namely distinctiveness, and
indicativeness rewards, and did all the ablation for small and day long datasets in Table
4.7 and 4.8 respectively. The results show that both rewards individually cater com-
plementary information, and when used together, we get performance improvement in
all the experimental setups. For other plugins such as social interaction and interactive
summarization, we did an extensive qualitative analysis. Furthermore, user feedback for
interactive summarization is inherently subjective and dynamic, so we cannot demon-
strate any quantitative analysis.

4.4 Conclusion

In this chapter, we have proposed a reinforcement learning based technique to generate
personalized summaries of day long egocentric videos. Ours is the first technique with
the capability to summarize such long sequences. We train our model end-to-end in a
completely unsupervised manner and demonstrate the scalability of our technique on
Disney, UTE, and HUJI datasets. To claim the superiority of our technique, we have
performed extensive quantitative and qualitative evaluation, demonstrating significant
improvement over SOTA results on long and short video sequences. Our framework
allows the inclusion of various kinds of rewards in a plug-and-play manner, which can
influence the selection of frames for the summary. We have shown the performance of our
framework using visual diversity, representativeness, social saliency, faces, and summary
length-based rewards. We also demonstrated how these rewards could be exploited to
incorporate exemplar-based user preferences.



Chapter 5

Recovering Activity Patterns
from Weeks Long Lifelogs

5.1 Introduction

Egocentric lifelogging applications typically require capturing and analysis of the huge
volume of data. The data is often captured over weeks to months for a particular subject
and contains long-term dependencies. For example, an activity may be performed only
once daily but at a certain time of the day. For efficient indexing and browsing of
lifelogging videos from an egocentric camera, we need automated tools for learning the
activity patterns in an unsupervised setting. The focus of our work is to recover the
activity patterns from photo-stream sequences recorded for multiple days (up to 20 days).
The two critical challenges while solving the mentioned problem are: (a) extremely long
sequences generated over multiple days, and (b) unavailability of annotated data due to
enhanced privacy concerns in egocentric settings, and massive human effort required.

Recently self-attention based deep neural network models (referred to as Transformer)
[166] have shown their superiority over convolutional architecture in a variety of tasks [49,
58, 59, 98]. Motivated by this, we explore the use of Transformer architecture for the
task of activity clustering in extremely long egocentric videos for discovering activity
patterns of the wearer. Multiple researchers have pointed out the inability of standard
Transformer architecture to scale for extremely long sequences. This is primarily be-
cause the self-attention mechanism suffers quadratic compute and memory requirements
with the sequence length. Further, Transformer models typically need large super-
vised data, and the unavailability of supervision in typical long sequence tasks makes it
challenging for the application of Transformers.

A few works in the domain of natural language processing have proposed a sparse
attention mechanism for Transformers to reduce the quadratic complexity to linear and
handle long sequences [14, 183]. However, these works do not provide any theoretical
guarantees and typically use fixed locations to compute global attention, affecting gen-
eralization capability. Choromanski et al. [25] have proposed a theoretically bounded
linear-complexity attention mechanism (called Performer) that factorizes the regular

59
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quadratic-complexity self-attention matrix proposed in [166]. This makes the Performer
model most suitable for handling extremely long sequences. Broadly, Performer projects
the query and key vectors into a fixed random subspace, and the projections conceptual-
ize the factorization of a full-rank attention matrix. The main observation and a major
contribution of this work is that the random subspace-based factorization is inadequate
for attention modeling in extremely long video sequences.

We formulate the rank reduction of the attention matrix A as a non-negative matrix
factorization (NMF). It has been shown that k-means clustering is a tractable approx-
imation to the non-negative low-rank matrix factorization problem [38]. Motivated by
this, instead of learning the low-rank factorization using random projections, we first
find out the representative frames from all the input frames, and then use the features
vectors from the representative frames, R, to learn low-rank matrices Q and K such
that self-attention matrix A = QR⊤RK⊤. The use of representative frames allows us to
integrate various semantic cues into the factorization process. In this work, we choose
representative frames using a particular representative loss as described later. However,
we note that other kinds of semantic loss functions could have been easily integrated into
the proposed framework as well. We call the proposed architecture based on the proposed
representative loss-based self-attention factorization as Semantic Attention Transformer
or SATFormer.

We use the SATFormer for the self-supervised discovery of activity patterns using
the following pipeline. First, we initialize c clusters from n frames using a process de-
scribed later in the paper. Then in the first step, we use cluster membership to assign a
pseudo-label to each frame. The pseudo labels are used to train the SATFormer with the
representative frames used for factorizing the self-attention matrix instead of random
vectors. This allows the SATFormer to learn a robust and meaningful frame representa-
tion. Then in the second step, we use the SATFormer representation to generate updated
clusters. The two steps are iterated alternately until convergence. We use spectral clus-
tering on the embeddings generate at the convergence to output the activity patterns.

Contributions: The key contributions of our work are:

1. We propose a novel Transformer architecture (SATFormer) based on the low-rank
factorization of the self-attention matrix using proposed representative loss. The
proposed architecture can exploit semantic cues to learn robust representation from
extremely long video sequences.

2. We propose a self-supervised training scheme to discover activity patterns in ex-
tremely long egocentric lifelogs (recorded for up to 20 days). The approach does
not rely on any priors, pre-trained networks to detect activities, objects, and/or
places, and is specifically developed for unconstrained egocentric videos.

3. We demonstrate the performance of our contributions on the benchmark Egor-
outine dataset and Epic Kitchens dataset. Compared to the current state-of-
the-art, we report significant improvement in terms of (NMI, AMI, F-Score) of
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(0.68,0.68,0.79) compared to (0.60,0.60,0.64) on the EgoRoutine photo-stream dataset,
and (0.47,0.47,0.48) compared to (0.39,0.39,0.31) on Epic Kitchens video dataset.

4. We also contribute annotations for the daily routines of all 7 subjects in the dataset
comprising 104 days of life-logging data.

5.2 Proposed Approach

We consider the photo-stream lifelogs recorded from wearable cameras of several subjects
performing daily activities. The objective of this work is to recover activity patterns of
one’s lifelog recorded over multiple days. For the purpose of analysis, multiple sequences
from a subject over multiple days are temporarily concatenated, resulting in a single
colossal sequence per subject. We formulate the problem as a representation learning
for a massively long temporal sequence in an unsupervised setting. The sequence repre-
sentation learning formulation is motivated by the intuition that similar activity patterns
should exhibit similar structures in latent space. The formulation demands explicit mod-
eling of global dependencies as the activity patterns typically repeat only over a long
interval (hours/days). The core technical contribution of this work is to learn an embed-
ding network (f emb

θ ) for sequence representation learning that can handle extremely long
sequences and model the global dependencies among similar activity patterns scattered
across such sequences. Furthermore, we find that the clustering information plays a vi-
tal role in representation learning [10]. Therefore, we include it in the latent embedding
using self-supervised learning.

5.2.1 Overview

Consider photo-stream lifelog of a subject recorder over D days. We concatenate these
sequences in time, X = {Xd}Dd=1, to create a single sequence per subject spanning across
days. The concatenation is required to discover and link the activities happening even
only once a day. Let the number of frames in X be denoted by N . We use a BiLSTM
model suggested in [57] to extract frame-wise features and use Principal Component
Analysis (PCA) to reduce the feature dimension, and generate a 512 dimensional vector
for each frame. The vector for the ith frame in the sequence is denoted as xi. Our
objective is to find c activity patterns/clusters from the week-long sequence of a sub-
ject. There is no assumption on order among a pair of activities, nor are all activities
necessarily performed each day. Further, our technique does not impose any constraint
that number of clusters should be same for every subject. Fig. 5.1 and Fig. 5.2 shows
an overview of proposed SATFormer, and overall pipeline respectively.
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Figure 5.1: The figure depicts the proposed semantic attention that factorizes the self-
attention matrix using semantically meaningful subspace by harnessing the latent char-
acteristics of the data. It uses the representative frames sampled from the query Q
instead of the fixed random vectors used in the Performer. The resulting projections
Q′ and K′ are the membership matrices showing the distance of representative frames
from the input sequence. Naturally, these two factorizations are the low-rank decompo-
sition of the self-attention matrix using the saliency of the data. Intuitively, semantic
attention generates a semantically meaningful subspace of k centroids learned by the
inherent characteristics of the data. Our experiments reveal that these meaningful se-
mantic centroids help disseminate better information compared to random frames used
in the Performer. Furthermore, the representative frames are learned while training the
network. We use the representative loss to ensure that the representative frames can
reconstruct the query Q.

5.2.2 SATFormer: Semantic Factorization of Self-attention Matrix

Self-attention in Transformers

To draw global dependencies between the input sequence, we take inspiration from the
Transformer network [166] and borrow the self-attention mechanism in our embedding
network (f emb

θ ) (see Fig. 5.2) which generates an embedding vector for each frame in
the sequence. Once the input sequence X of length N is linearly projected as query
Q = {qi | qi ∈ Rm, i ∈ [N ]}, key K = {ki | ki ∈ Rm, i ∈ [N ]}, and value V = {vi | vi ∈
Rm, i ∈ [N ]}, where m is the query, key, and value dimensions, then the self-attention
mechanism is given as follows:

Att(Q, K, V) = AN×N VN×m, AN×N = softmax
(

QN×mKT
N×m√

m

)
, (5.1)

Here A ∈ RN×N is the attention matrix. The vanilla self-attention used in Transformers
leads to O(N2) space and time complexity, and does not scale to long sequences.
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Why Factorization of Self-attention Matrix?

The quadratic time complexity of the self-attention matrix should be addressed effec-
tively to model the global dependencies in long sequence data. Our experiments also
confirm that the self-attention mechanism [166] fails miserably for long sequences and
gives memory error beyond a sequence length of 14k. An active research area has emerged
to gain compute and memory efficiency by approximating self-attention using various
heuristics [14, 81, 132]. For example, Beltagy et al. [14] (Longformer) have proposed
a sparse attention mechanism that uses two types of attention- the local attention for
contextual representation and global attention for disseminating information across the
full sequence. Kitaev et al. [81] (Reformer) have proposed a locality-sensitive hashing
under the assumption that the nearby vectors assign the same hash value with high
probability. In contrast, for lifelogs, our emphasis is on linking similar activity patterns
scattered across the extremely long sequence. A fundamental approach to addressing
this issue without relying on any heuristics and prior information is by factorizing the
attention matrix into the low-rank query and key matrix pairs and changing the order of
matrix matrix multiplication Q(KT V) for achieving linear space and time complexities
[25, 142]. Performer [25] does the same by projecting the query-key pair onto a ran-
dom subspace [25]. Our experiments reveal that a simple factorization shows moderate
performance gain but is inadequate to harness the important visual information present
in extremely long and repetitious video sequences. Hence, we propose a novel semantic
factorization based on representative frames that harnesses the latent characteristics of
the data for factorizing the attention matrix.

Semantic Factorization of Self-attention

To overcome the quadratic complexity of self-attention, we formulate the low-rank de-
composition of attention matrix A as a non-negative matrix factorization (NMF) problem.
We approximate the NMF using k-means, as it is a tractable approximation to the non-
negative low-rank matrix factorization problem [38]. Precisely, we factorize a full rank
attention matrix A to the low-rank matrices: membership matrix, K′, and reconstruction
matrix, Q′, such that: A = Q′K′. We first compute k representative frames from Q, and
then stack them to generate R ∈ Rk×m. Then we learn a k ×N matrix, K′, such that
exp(RK⊤) can be interpreted as the distance or membership coefficient of each sample
from/of each of the k clusters (represented by the corresponding representative frame),
where exp(.) is applied element-wise. Multiplication with V, i.e. exp(RK⊤)V, can then
be interpreted as finding k cluster centroids as the weighted sum of the samples accord-
ing to their cluster membership. We interpret multiplication with Q′, i.e., Q′RK⊤V, as
reconstructing a sample as the weighted sum of cluster centroids. Since conceptually we
expect the reconstruction weights to be the same as the cluster membership coefficients,
exp(RK⊤), hence we enforce Q′ = K′.
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Mathematical Formulation of Semantic Factorization

It is instructive to note that while our proposed factorization provides rich concep-
tual motivation, we are basically suggesting to factorize A = Q′K′, such that Q′ =
exp(QR⊤), and K′ = exp(RK). Here R is a matrix comprising of a set of k vec-
tors chosen in a particular way (using representative loss). Mathematically this is not
much different from the Performer, in which the vectors are chosen as random vectors
orthogonal to each other. Hence, mathematical justification for the Performer style
factorization translates to ours as well. We give the detailed mathematical description
for semantic factorization as follows.

The (i, j) element of attention matrix A ∈ RN×N is the dot product of the row
i of Q and row j of K. We can equivalently denote it as A(i, j) = κ(qi, kj), where
κ : Rm×Rm → R+ is the kernel function. Kernel approximation is a powerful technique
to approximate the quadratic complexity kernel by projecting the input features into a
new space where dot products approximate the kernel well. Formally, given a kernel κ,
kernel approximation methods seek to find a nonlinear transformation ϕ : Rm → Rk, for
any qi, kj ∈ Rm

κ(qi, kj) = ϕ(q⊤
i )ϕ(kj). (5.2)

Mathematical Results

We first prove the following two mathematical results before using them in our formu-
lation.

Lemma 5.1. For a random vector w ∈ Rm sampled from a Gaussian distribution with
zero mean and identity covariance matrix (Im), and vectors x, y ∈ Rm, we have:

exp
(
∥x + y∥2

2

)
= Ew∼N(0,Im)exp(wT (x + y)) (5.3)

Proof.

exp
(
∥x + y∥2

2

)
= exp

(
∥x + y∥2

2

)
· 1 (5.4)

= exp
(
∥x + y∥2

2

)
1

(2π)m/2

∫
exp

(
−∥w − (x + y)∥2

2

)
dw (5.5)
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Since w is a Gaussian distributed vector in Rm with zero mean and identity covariance
matrix, the second term represents the total probability and hence should be 1.

exp
(
∥x + y∥2

2

)
= exp

(
∥x + y∥2

2

)
(2π)−m/2

∫
exp

(
−∥w − (x + y)∥2

2

)
dw (5.6)

= (2π)−m/2
∫

exp
(
∥x + y∥2 − ∥w − (x + y)∥2

2

)
dw (5.7)

= (2π)−m/2
∫

exp
(
∥x + y∥2 − (wT w + ∥x + y∥2 − 2wT (x + y))

2

)
dw

(5.8)

= (2π)−m/2
∫

exp
(
−(wT w − 2wT (x + y))

2

)
dw (5.9)

= (2π)−m/2
∫

exp
(
−∥w∥2

2

)
exp(wT (x + y))dw (5.10)

= Ew∼N(0,Im)exp(wT (x + y)) (5.11)

Hence proved.

Lemma 5.2. For x, y ∈ Rm, we have: exp(xT y) = κ(x, y) = ϕ(x)ϕ(y), where:

ϕ(x) = Ew∼N(0,Im)

[
exp
(
− ∥x∥

2

2

)
exp(wT x)

]
, (5.12)

ϕ(y) = Ew∼N(0,Im)

[
exp
(
− ∥y∥

2

2

)
exp(wT y)

]
, (5.13)

and w is a Gaussian distributed vector in Rm with zero mean and identity covariance
matrix (Im).

Proof.

exp(xT y) = exp
(1

2(−xT x− yT y + xT x + yT y + xT y + yT x)
)

(5.14)

= exp
(1

2(−∥x∥2 − ∥y∥2 + (x + y)T (x + y)
)

(5.15)

= exp
(1

2(−∥x∥2 − ∥y∥2 + ∥x + y∥2)
)

(5.16)

= exp
(

(−∥x∥2 − ∥y∥2
2

)
exp

(
∥x + y∥2

2

)
(5.17)
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Using Theorem 5.1 to replace second term in the R.H.S.

= exp
(

(−∥x∥2 − ∥y∥2
2

)
Ew∼N(0,Im)exp(wT (x + y)) (5.18)

= Ew∼N(0,Im)

[
exp

(
wT x− ∥x∥2

2)
exp

(
wT y − ∥y∥2

2)]
(5.19)

= ϕ(x)ϕ(y) (5.20)

where ϕ(x) and ϕ(y) are as given by Equations 5.12 and 5.13 respectively. Hence proved.

Softmax Kernel Approximation using Semantic Kernel

We can use Theorem 5.2 to write the the attention matrix A as softmax-kernel as follows:

A(x, y) = exp(x⊤y) = κ(x, y) = ϕ(x)ϕ(y), (5.21)

where we have ignored the scaling factor of softmax. We have also ignored
√

m-
normalization, which can be equivalently done by normalizing query and key matrices
accordingly.

Instead of fixed random Fourier feature transform using random vector w as proposed
in [25, 26, 129] to approximate the kernel κ(x, y), we use representative frames (R). The
proposed semantic kernel (ϕsem) defined as below projects the data into a semantically
meaningful space:

ϕsem(x) =
∑

Ri∈R
exp

(
− ∥x∥

2

2

)
exp(RT

i x), (5.22)

where Q iid∼ D (a standard normalized input distribution) and R ∈ Rk×m, R ⊂ Q.
Here, we pretend that the feature vectors of representative frames are sampled from
zero mean, unit covariance Gaussian. Intuitively, the semantic kernel reduces the rank
of the attention matrix from N to k by projecting into the space of representative frames.

Now we compute Q′ = ϕsem(Q) and K′ = ϕsem(K), where Q′, K′⊤ ∈ RN×k are the
factorization of attention matrix A and exp is applied element-wise. With this kernel
trick, we can change the order of multiplication of query Q′, key K′ and value vectors
V.

Âttsem(Q, K, V) = Q′(K′.V) (5.23)

This multiplication is characterized by the time complexity of O(Nkm) and space com-
plexity of O(Nk+Nm+km) compared to O(N2+Nm) and O(N2m) of the self-attention
[166] and allows us to scale it to long egocentric sequences.
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Figure 5.2: Illustration of flow chart of proposed SATFormer. Our technique consists of
a neural network fθ parameterized by θ that is further divided into two parts. The first
part is an embedding network, f emb

θ : Rm → Rm, that generates an embedding vector
H ∈ RN×m. The second part is a classification head, f cls

θ : Rm → Rc, consisting of
a linear layer followed by the softmax operator, which generates the predicted labels
Ŷ ∈ RN×c corresponding to the input sequence of length N . We train the network
using the pseudo labels Ỹ ∈ RN×c generated using the proposed self-supervised learning
framework. Once the network is trained, we perform spectral clustering [115], with the
number of clusters c, using the affinity matrix generated by the latent representation
given by the embedding network.

Finding Set of Representative Frames

Whereas the Performer uses random projection vectors to learn Q′, and K′, we enforce
that Q′ = exp(QR⊤), and K′ = exp(RK⊤), where R is a matrix of features of rep-
resentative frames. This ensures that the factorization proceeds by first projecting to
meaningful cluster centers and then reconstructing based on these projections. Given
the above motivation, any implementation to find good representative frames out of Q
could have been applied. In our implementation, we use the following specific technique,
where we update the representative frames (denoted by the vectors qj in the equation
below) in each epoch using the latest feature embedding learnt so far, and the ones which
optimize the following loss function:

LRep = min
{qj} s.t. ∥{qj}∥=k

∑
i∈N

min
bi

∥∥∥∥∥∥qi −
k∑

j=
bi

jqj

∥∥∥∥∥∥
22

. (5.24)

Here, qi indicates the ith feature embedding learned for sample i, i.e., the ith row of Q
(recall that in our implementation q = K). Further, bi

j denotes the weight corresponding
to the query vector qj computed for best reconstructing query vector qi. The set of
weights bi = {bi

j} are found as the ones which can best reconstruct a sample qi using
the selected representative vectors qj .
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5.2.3 Activity Patterns Clustering using Self-supervised Learning

The embedding network (f emb
θ ) uses the proposed semantic attention based factorization

in a Transformer architecture as suggested in [166]. In a supervised setting we could
have trained using the labels y1, ...yN ∈ {1, ..., c} for each frame, drawn from the space
of c possible labels of a subject. We can compute predicted class probability vector, ŷi,
for each sample xi by passing the output of the network fθ from the softmax layer:

ŷi = fθ(xi)

The model can be trained using the cross-entropy loss computed as:

L = − 1
N

N∑
i=1

c∑
j=1

yi[j] log ŷi[j], (5.25)

where y is the one-hot vector corresponding to label yi. In our settings long sequences
and privacy-sensitive nature of the egocentric data prohibits availability of the ground
truth label. Hence, we adopt a self-supervised approach where we first cluster the
samples into c cluster based on the learned embeddings and use the cluster membership
to generate pseudo-labels ỹi for each sample. We then train the embedding network
using cross-entropy loss with respect to the pseudo-labels:

L = − 1
N

N∑
i=1

c∑
j=1

ỹi[j] log ŷi[j], (5.26)

For clustering, we use the core-set algorithm [137] to generate ‘c’ medoids indices using
the latest embeddings generated. The core-set algorithm is an efficient approximation of
the k-center problem [137]. These medoids are aligned/matched to the previously gen-
erated medoids, and medoids memory (comprises indices of medoids) is updated. Once
the medoids memory is updated, the pseudo labels (ỹ) are generated with the current
embedding and the latest medoids. To initialize the medoids memory, we apply the
core-set for input features. The proposed framework is trained similarly to Expectation-
Maximization (EM). The two steps, namely representation learning, and self-labeling
are, as follows: (1) Freeze the current label assignment matrix ỹ, and update the model
fθ by minimizing the Equation 5.26. (2) Freeze the current embedding (H) compute the
‘c’ medoids and update the medoids memory.

5.3 Experiments & Results

5.3.1 Experimental Setup

Dataset: We demonstrate the results on a publicly available EgoRoutine dataset [160],
comprising life-logging of seven subjects, for a total of 104 days. The dataset is captured
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by a wearable camera, fixed on the chest of a subject, capturing at 2 frames-per-minute
(fpm), constituting 115, 685 captured frames in total. Compared to conventional ego-
centric datasets, this dataset is recorded in a highly unconstrained environment that
includes a variety of indoor and outdoor scene contexts. The activities are shopping,
visiting restaurants/museums/concerts, traveling on flight/bus/cab/metro, working in
a lab, attending conferences, cycling, sitting at the beach, etc. The dataset does not
provide activity annotations. However, we have annotated all seven subjects for our
experiments. We will release the annotations post-publication. Furthermore, we have
tested the framework on the Epic Kitchens dataset to check the efficacy of the pro-
posed approach. To demonstrate the proposed framework on the Epic Kitchens dataset
[28], we synthesize a long video sequence (approx. 20k frames) using the Epic Kitchens
dataset. This dataset is divided into high-level categories based on the occurrences of
‘noun’ classes. We pick equal video snippets of each category: ‘appliances,’ ‘cleaning,’
‘crockery,’ ‘drinks,’ ‘furniture,’ ‘meat,’ and ‘vegetables’ across all subjects and concate-
nate them to form a long colossal sequence. The subset ‘noun’ classes selected for each
category are listed in Table 5.1.

Category Id Category Name Nouns selected

1 Appliances Washing Machine, Fridge
2 Cleaning Cloth, Towel
3 Crockery Plate, bowl
4 Drinks Tea, Juice, Wine, Drink, Beer, Whisky
5 Furniture Floor, Chair, Wall
6 Meat Meat, Chicken, Sausage, Fish, Pork, Bacon, Beef

7 Vegetables Onion, Potato, Carrot, Tomato, Mushroom,
Cucumber, Vegetables

Table 5.1: Nouns selected corresponding to the categories for Epic Kitchens dataset.

Annotations: We have recruited three participants from different backgrounds (ECE
undergraduate, CSE undergraduate, and CSE graduate) for annotation. We have gener-
ated codebooks of each subject of the EgoRoutine [160] dataset separately and shared it
with participants to annotate videos on the same granularity. Each label file comprises
the activity number and the corresponding activity name (refer to the Table 5.2 for
the label file of subject-1 of EgoRoutine dataset). We share an annotation file with the
participants, comprises two columns titled start time and the activity number for each
day of the subject. The activities span for short to very long duration, so we just collect
the activity’s start time with its corresponding activity number (from the label file).
Precisely, for a particular day of photostream sequence, the user needs to start from the
first fame of the sequence and identify the activity performed from the activity codebook
shared. The timestamp of the frame and the activity number is filled in the two columns
discussed. The timestamp can be obtained from the frame name itself. Each frame is
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named xxxxxxxx_HHMMSS_xxx.jpg, where HHMMSS is the timestamp of the
frame.

Activity Number Activity Name
1 buying
2 having food in restaurant
3 having meeting and food at round table
4 working in lab
5 in metro
6 walking in lab and chitchatting
7 in gym
8 outdoor walking in day
9 outdoor walking in night
10 in lab kitchen
11 at metro station
12 walking in the building
13 in room
14 in cab
15 class room

Table 5.2: Activity labels for subject-1 of EgoRoutine dataset.

Table 5.3 demonstrates the details of the activity patterns used to annotate each
subject. We can observe that the activity patterns are vast and similar to the real
world. For each subject, the number and type of activity patterns differ significantly.
The annotations also allow us to generate ground truth at multiple granularities as we
annotated at high granularity. For example, we can always merge ‘in metro’, ‘in cab’
and ‘in bus’ activities to ‘traveling’ at low granularity.

Evaluation: For evaluation, we use the commonly used clustering evaluation met-
rics: Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI), and
F-score [148, 177]. These matrics range in [0, 1], where larger values indicate better
performance.
Adjusted Mutual Information (AMI): Suppose that the sequence of length N is par-
titioned in to predicted clusters A = {A1, A2, ...AKp} and ground truth clusters B =
{B1, B2, ..., BKg}, where, Kp an Kg are number of clusters in ground truth and pre-
dicted clusters. The clusters are pairwise disjoint i.e. | ∪Kp

i=1 Ai| = | ∪Kg

i=1 Bi| = N . Then
the mutual information between two clusters can be defined as:

MI(A, B) =
Kp∑
i=1

Kg∑
j=1

PAB(i, j)log
PAB(i, j)

PA(i)PB(j) (5.27)

where PAB(i, j) = |Ai∩Bj |
N denotes the probability that frame belong to both the clusters
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Id Number of Activities Name of Activity Patterns

S1 15

buying, having food in restaurant, having meeting and food at round table,
working in lab, in metro, walking in lab and chitchatting, in gym, outdoor
walking in day, outdoor walking in night, in lab kitchen, at metro-station,

walking in the building, in room, in cab, in class room

S2 25

in home kitchen, in balcony (tea), working on laptop at home, having food,
walking in building, walking in day (walking outdoor), cycling, operating

vending machine/ATM, at metro station, in metro, walking in night,
purchasing, using mobile/kindle (in room), washroom, sitting at beach, in mall

/hotel having food, bus, room view, using laptop in lab, using mobile/kindle but
not in room, having tea (in room), walking in lab and chitchatting, in library,

working on laptop at library, in museum

S3 16

room view, in kitchen, having food (room/restaurant/cafe), at metro
station, in metro, in washroom, outdoor walk in day, walking in building/
taking printout from printer, walking in lab and chitchatting, working on
laptop (watching movie on laptop), in class room/ attending presentation,

using mobile,purchasing (in mall/food/bakery/watch), outdoor walk in night,
at airport, in advisor’s room

S4 31

in room (walking, kitchen), walking outdoor (day), walking in building,
working on laptop or desktop (in room or lab), riding bike, in hospital

waiting room, with doctor, having food/in restaurant, walking in lab and
chitchatting, using mobile (outdoor/restaurant/airport), in classroom,

in washroom, watching TV and using mobile in room, purchasing toys, veggies,
fruits, at airport, walking outdoor in night, at metro station, in metro, driving

car, in swimming pool, Blur images, in school, in plane, attending a
presentation, coffee/tea break at conference/at lounge, giving presentation,
in cab, hosting a conference as receptionist, in open-bus/bus, at poster, at

beach and mountains

S5 24

in room, outdoor walk in day, walking in building, working on laptop,
driving car, in metro, at metro station, walking in lab and chitchatting,

class room/attending presentation in audi/conference), having
food at (home/restaurant/in conference), outdoor walk in night, in cab,

at airport, in flight, purchasing (on stores at airport/local shops/mall/tickets
at bus station), in hotel room/ hotel, at conference venue/ lounge/

reception, in bus, on beach, archaeological zone, at poster, monument visit,
bus station, watching television

S6 19

at home, outdoor walk in day, walking in building, working on laptop,
walking in lab and chitchatting, purchasing (food, shoes, toys, books),

having food (in lab, restaurant), washroom, outdoor walk in night,
in kitchen, in classroom, in Bus, in hotel room, museum, in car, visiting

a old township and mountains, at metro station, in metro, at circus

S7 25

at home, outdoor walk in day, walking in building, working on laptop,
walking in lab and chitchatting, purchasing (food, cloths, sweets,fruits,

in supermarket), having food (in lab, restaurant), at metro station,
in metro, at fair, washroom, outdoor walk in night, blank frame, in bus,

in hospital/clinic/medical facility, in classroom, at concert, meeting
with professor, sitting in park (picnic), at conference venue, at poster

, attending presentation, in kitchen, in car, walking in hill area/trekking

Table 5.3: Table demonstrates the number of activities and the name of activity patterns
used to annotated the life-logs of the subject.

Ai ∈ A and Bi ∈ V , PA(i) = |Ai|
N , and PB(j) = |Bj |

N .
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The expected mutual information can be defined as:

E{MI(A, B)} =
Kp∑
i=1

Kg∑
j=1

min(ai,bj)∑
nij=(a+b−N)+

nij

N
log(N.nij

aibj
)×

ai!bj !(N − ai)!(N − bj)!
N !nij !(ai − nij)!(bj − nij)!(N − ai − bj + nij)! (5.28)

where (ai + bj −N)+ = max(1, ai + bj −N), nij denotes the number of common frames
in clusters Ai and Bj , ai = ∑Kg

j=1 nij , and bj = ∑Kp

i=1 nij .
From Equation 5.27 and 5.28, the AMI is defined as [117]:

AMI(A, B) = MI(A, B)− E{MI(A, B)}
max{H(A), H(B)} − E{MI(A, B)} (5.29)

Normalized Mutual Information (NMI): Similarly, from equation 5.27 and 5.28, the NMI
is defined as [117]:

NMI(A, B) = MI(A, B)
(H(A) + H(B))/2 (5.30)

F-score: Similar to [15, 82], we use the greedy approach [86] for a one-to-one mapping
between the predicted clusters and ground truth clusters. The cost of assigning cluster
i to class label j is computed as the F1 score weighted by population for class j when i
is assigned to j. The precision (Pr), recall (Rr) and F-score (Fr) are defined as:

Pr = TP
TP + FP , and Rr = TP

TP + FN

Fr = 2× Pr ×Rr

Pr + Rr
× 100% (5.31)

where TP, FP, and FN represent the true positive, false positive, and false negative
calculations.

Baselines: We compare with a SOTA egocentric work [37] to demonstrate the effi-
cacy of SATFormer. Dimiccoli et al. [37] use a threshold to control the granularity
of segmentation. We tweak the threshold to generate the appropriate clusters for each
subject. Due to the scarcity of recent works for activity pattern recovery, we select five
Vision/NLP works aligned to our problem [10, 12, 120, 166]. Part et al. [120] propose a
novel convolutional graph autoencoder called GALA (Graph convolutional Autoencoder
using LAplacian smoothing and sharpening) for representation learning, and have vali-
dated their technique using various backbone networks on different image datasets. The
training of graph convolutional autoencoder required a sparse adjacency matrix com-
puted apriori to embed the underlying structure of the data in node embeddings. This
is not feasible for an unsupervised setting. For establishing the baseline, we generate a
sparse adjacency matrix by considering τ closest frames for an input frame in Euclidean
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space under the assumption that the events are of equal length. We choose τ = 30 to
demonstrate the results. Similarly, Bai et al. [12] propose Deep Autoencoding Predic-
tive Components (DAPC) that mask the feature dimension and temporal dimension of
the input sequence and reconstruct the masked component from the latent representa-
tions. The DAPC uses multiple configurations for the encoder, such as linear, lstm,
bgru, blstm, and Transformer. The Transformer encoder shows memory error in our
case due to long sequences. Hence, we show results on bgru configuration. Sarfraz et
al. proposed a hierarchical clustering algorithm that groups semantically related frames
of a video using a 1-nearest neighbor graph. The algorithm partitioned the data at
multiple granularities. We picked the partition closest to ground-truth clusters for com-
parison. Chen et al. [24] proposed a contrastive action representation learning (CARL)
framework that uses a novel sequence contrastive loss. We trained the architecture on
our datasets and used spectral clustering on the frame-wise representations generated.
Furthermore, to prove the efficacy of the proposed semantic attention, we replace it with
three SOTA attention mechanisms, namely Transformer, Longformer, and Performer
in the proposed architecture, and call them as SATFormer-Trans, SATFormer-Long, and
SATFormer-Perf, respectively. We also compare SATFormer with SOTA self-supervised
framework proposed by Asano et al. [10]. We replace the fully connected layer in [10]
with the proposed representative frame-based attention transformer and have named it
SATFormer-SeLa.

Implementation Details: The proposed SATFormer architecture uses six layers of
transformer encoder, each of which uses one attention-head with the proposed semantic
attention mechanism for the embedding network. We use Principal Component Analysis
for dimensionality reduction for all the experiments, which resulted in a 512 dimensional
feature vector. We utilize m/2 frames to compute the representative loss at each layer
and backpropagate along with cross-entropy loss. For medoids matching, we use bipartite
matching between the previously generated medoids (extract the current embedding
corresponding to the previously generated indices stored in medoids memory) and current
medoids in Euclidean space. We generate pseudo labels for every 50th epoch. We set the
learning rate as 0.01, the number of neurons at the feedforward network as 2048, and
the adam optimizer with a 4000 epoch of warmup [166]. We use f = ReLU for better
generalization similar to Performer. We remove the positional encoding as the sequence
of the events is stochastic for the problem at hand. For Performer attention, we use
8 parallel attention heads and the generalized ReLU kernel. For Longformer attention,
we use 8 parallel attention heads, 500 uniformly distributed indexes for global attention,
and a sliding window size of 60 for local attention.

5.3.2 Results and Discussion

Quantitative Comparison for Different Number of Clusters: Table 5.4 shows
the quantitative evaluation based on AMI, NMI, and F-score for different granulari-
ties of clusters. We demonstrate that SATFormer outperforms all the SOTA frameworks
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Methods c = 12 c = 13 c=15
F1↑ AMI↑ NMI↑ F1↑ AMI↑ NMI↑ F1↑ AMI↑ NMI↑

SR-clustering [37] 0.3044 0.0913 0.0924 0.2697 0.1294 0.1312 0.2614 0.1537 0.1557
TWHC [134] 0.3132 0.1548 0.1603 0.3259 0.1649 0.1655 0.3072 0.1530 0.1545
SeLa [10] 0.6642 0.6291 0.6299 0.6662 0.6150 0.6158 0.5855 0.5954 0.5963
DAPC + GRU [12] 0.7135 0.6129 0.6135 0.6152 0.6040 0.6048 0.6343 0.6080 0.6089
GALA [120] 0.6357 0.6079 0.6085 0.6458 0.6084 0.6093 0.5381 0.5932 0.5941
SATFormer-Trans⋆ [166] 0.2262 0.1651 0.1674 0.2257 0.1749 0.1769 0.2292 0.1423 0.1451
SATFormer-Long [14] 0.5576 0.5989 0.5995 0.6212 0.6066 0.6073 0.6575 0.5982 0.5990
SATFormer-Perf [25] 0.6955 0.6219 0.6224 0.6001 0.5938 0.5944 0.6842 0.5996 0.6006
SATFormer-SeLa [10] 0.6478 0.5991 0.6025 0.6573. 0.6152 0.6160 0.7185 0.6276 0.6286
SATFormer 0.7482 0.6510 0.6515 0.7976 0.6837 0.6842 0.7960 0.6806 0.6814

Table 5.4: Comparison between various SOTA approaches for subject S1 in EgoRoutine
dataset. For K = 13, we merge ‘in cab’ and ‘in metro’ to ‘transportation’ class and ‘in
lab kitchen’ to ‘walking in lab and chitchatting’ class in the ground truth annotations.
For K = 12, we further merge the ‘food in lab’ to ‘at restaurant’ class. ⋆ represents that
Transformer gives memory error after 14000 sequence length, the results are evaluated
for less than 14000 sequence length.

with a considerable margin for 14 days long sequence of subject S1. When we replace
the proposed semantic attention with SOTA attention mechanisms such as Transformer,
Longformer, and Performer, the performance drops considerably as the SOTA mecha-
nism fails to harness the rich semantic information. Furthermore, in SATFormer-SeLa, we
use the self-supervised learning framework proposed by [10] instead of our proposed self-
supervised framework. They use the equipartition assumption for generating the pseudo
labels. However, the equipartition assumption does not work, as the activity patterns in
egocentric lifelogs are highly skewed. Due to poor pseudo labels, the SATformer-SeLa
can not harness the clustering information and significantly underperform compared to
SATFormer.

Qualitative Results: Fig. 5.3 demonstrates visualization of the results obtained for
the sequence corresponding to subject S1 (all 14 days concatenated sequentially). The
figure shows that SATFormer performs robustly for all activity patterns. We observed
that the most repetitious activity pattern, ‘working in lab’ is handled and significantly
recovered. Furthermore, the SATFormer is robust for minority classes as well and pre-
cisely recovers ‘in cab’ (appeared once on day 10, refer Fig. 5.3) and ‘at metro station’.
However, we observe misclassifications due to high overlap among the context and the
objects involved in the activity patterns. For example, ‘food in lab’ is frequently misclas-
sified as ‘walking in lab and chitchatting’ or ‘kitchen’ as the former shares the common
context (the lab) and the latter shares common objects (the food). Furthermore, ‘walk-
ing in lab and chitchatting’ shows confusion with ‘walking in building’ and ‘working in
lab’ at the boundaries due to the smooth transition between the activity patterns. The
same can be validated by the confusion matrix in Fig. 5.4.
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Figure 5.3: The figure demonstrates the visualization of a comparison between the pre-
dicted class and ground truth for different days (for better visualization, we have divided
the concatenated sequence into multiple days). We use Hungarian matching for a one-
to-one mapping between ground truth and predicted clusters. (Figure best visible in
color.)

Quantitative Comparison for All Subjects: Table 5.5 demonstrates the quanti-
tative comparison with the top-performing SOTA frameworks for all the seven subjects
of the EgoRoutine dataset. We show significant performance improvement in terms of
F1-score, AMI, and NMI for all the subjects. We observe that the GALA [197] performs
comparably to the proposed framework for S2 as it uses a sparse adjacency matrix
with τ closest frames, and the choice of τ seems best for this subject. Table 5.7 demon-
strates significant performance gain compared to SOTA techniques for the Epic Kitchens
datasets in terms of F1-score, AMI, and NMI.

Ablation Study: Table 5.6 shows an exhaustive ablation analysis demonstrating the
contribution of various design choices in SATFormer. We first replace the novel factorized
attention with Performer attention [25] and demonstrate the results generated by uni-
head and multi-head attention. The results reveal that multi-head attention performs
better than uni-head attention, as claimed in [25]. However, for the proposed semantic
attention, uni-head attention performs significantly better than multi-head version. This
is because in multi-head attention, when we split the feature vector along the feature
dimension and select the most representative frames, then the global information of the
image is compromised. Each head focuses on a small part of the feature embedding
that lacks the global context of the activities essential for the problem at hand. Fur-
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Id Score TW-FINCH SeLa DAPC GALA SATFormer
SATFormer(CVPR’21) (ICLR’20) (ICLR’21) (CVPR’19) -perf

S1
AMI 0.1530 0.5954 0.6080 0.5932 0.5939 0.6806
NMI 0.1545 0.5963 0.6089 0.5941 0.5948 0.6814
F1 0.3072 0.5855 0.6343 0.5381 0.6423 0.7960

S2
AMI 0.3489 0.4832 0.4794 0.4901 0.4765 0.4901
NMI 0.3551 0.4889 0.4852 0.4932 0.4824 0.4957
F1 0.2541 0.4497 0.4504 0.4901 0.4395 0.4960

S3
AMI 0.1038 0.4704 0.5083 0.5262 0.4891 0.5756
NMI 0.1055 0.4717 0.5096 0.5275 0.4905 0.5768
F1 0.2227 0.4885 0.5546 0.5965 0.5208 0.7202

S4
AMI 0.4640 0.5474 0.5518 0.5630 0.5663 0.5750
NMI 0.4699 0.5513 0.5557 0.5668 0.5699 0.5786
F1 0.2882 0.4200 0.4415 0.5117 0.4575 0.5821

S5
AMI 0.4722 0.5845 0.5868 0.5658 0.5787 0.5913
NMI 0.4769 0.5870 0.5892 0.5685 0.5812 0.5937
F1 0.3230 0.4808 0.4907 0.4707 0.4671 0.6074

S6
AMI 0.1801 0.5371 0.5078 0.5838 0.5277 0.6252
NMI 0.1823 0.5392 0.5101 0.5857 0.5297 0.6272
F1 0.2645 0.5453 0.4213 0.6720 0.4928 0.6813

S7
AMI 0.3057 0.5510 0.5625 0.5630 0.5569 0.5833
NMI 0.3078 0.5553 0.5667 0.5675 0.5612 0.5873
F1 0.3584 0.4764 0.4953 0.5093 0.5264 0.5745

Table 5.5: Performance comparison with the top performing SOTA in terms of F1 score,
AMI, and NMI for all the subjects of the EgoRoutine dataset.

Model Network Hyperparams Performance
Sem Attn SharedQK Attn Heads F1 AMI NMI

SATFormer-Perf NA NA 8 0.6842 0.5996 0.6006
SATFormer-Perf NA NA 1 0.6317 0.5900 0.5909

SATFormer ✓ ✗ 8 0.7076 0.6079 0.6096
SATFormer ✓ ✗ 1 0.7235 0.6319 0.6328
SATFormer ✓ ✓ 8 0.7096 0.6231 0.6240
SATFormer ✓ ✓ 1 0.7960 0.6806 0.6814

Table 5.6: Performance comparison the proposed framework SATFormer with various
desing choises for subject ‘S1’ for ‘c’ =15. SharedQK, Sem Attn, Attn Heads, and NA
represent the linear layers of query and key is shared, the semantic attention, the number
of attention heads, and not applicable.
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Figure 5.4: The confusion matrix demonstrates that inter-class confusion is marginal
for most of the activity patterns.

thermore, we propose to enforce Q′ = K′. Not only it makes conceptual sense, the
results demonstrate substantial performance improvement using the proposal compared
to when Q′, and K′ are allowed to be different. The bandwidth of the representative
frames (m/2 used for all the subjects) is a latent characteristic of the data and depends
upon the diversity of the lifelogs, so the performance may vary. With shared Q′ and
K′, and uni-head attention, the proposed attention outperform SOTA frameworks with
a considerable margin. We also visualize, and compare the attention map generated by
SATFormer, and Performer in the supplementary material.

5.4 Conclusion

We focus on the problem of activity pattern clustering from the week-long recordings of
a subject from an egocentric camera in a completely unsupervised setting. Our exper-
iments with state-of-the-art revealed that current Transformer models can not handle
such long sequences. Hence, we have introduced a novel semantic attention transformer
that can exploit the redundancy present in the lifelogs for scaling to such long sequences.
In the proposed SATFormer, we factorize the attention matrix into the low-rank query
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Score SeLa DAPC GALA CARL SATFormer SAT
(ICLR’20) (ICLR’21) (CVPR’19) (CVPR’22) -perf -Former

AMI 0.3229 0.0267 0.3900 0.3158 0.3884 0.4710
NMI 0.3234 0.0271 0.3904 0.3140 0.3887 0.4713
F1 0.3161 0.2051 0.3154 0.2992 0.4543 0.4830

Table 5.7: Performance comparison with SOTA in terms of F1 score, AMI, and NMI for
the Epic Kitchens dataset.

and key matrices using a learnable and parameter-free semantic attention. Furthermore,
we use a novel fast medoids-based self-supervised learning framework that incorporates
clustering information into the generated representations. We provide detailed abla-
tions for choosing uni-head attention and shared query-key projections for the proposed
semantic attention. Our results on the EgoRoutine dataset recorded in a highly un-
constrained setting demonstrate the efficacy of SATFormer. We also believe that our
proposed semantic factorization of attention in Transformers will be useful for other
computer vision tasks involving long sequential data as well.



Chapter 6

Conclusion and Future Research

Scalability and unlabeled data are two main challenges for analyzing egocentric videos in
real-life environments. For efficient consumption, egocentric videos require robust video
analysis techniques dealing with extremely long sequences in self-supervised/unsupervised
settings. We demonstrate that SOTA sequential models viz Temporal Convolutional Net-
works (TCNs) [13], Recurrent Neural Networks (RNNs) [133], Long Short-Term Memory
Networks (LSTMs) [69], Graph Convolutional Networks (GCNs) [45], and Transformers
networks [166], fail to handle the massively long sequence.

This dissertation develops various video analysis techniques to analyze day to weeks
long egocentric videos. Specifically, we address the three fundamental video analysis
tasks: temporal segmentation, summarization, and recovering activity patterns, and es-
tablish the SOTA performance with a huge margin. The proposed frameworks use SOTA
statistical and deep learning-based frameworks and demonstrate on real-life egocentric
datasets. To the best of our knowledge, we are the first to work on the Disney (com-
prises 4 to 8 hrs long video samples) and UTE datasets (comprises 3 to 5 hrs long video
samples) for temporal segmentation and summarization and EgoRoutine dataset (up to
20 days long photostream sequence) for activity patterns recovery.

6.1 Future Research

Despite the tremendous progress in supervised video analysis, the literature lacks robust
works for long video analysis (first and third-person videos) in an unsupervised setting.
Recent literature works use pre-trained CNN/LSTM networks for feature extraction that
result in coarse-level information. They failed to model fine-level information, such as the
evolution of the active objects, people, scenes, and their relationships. Due to the reason
mentioned above, the community has not explored high-level video analysis tasks such
as action/activity recovery at multiple granularities, visual question answering (VQA),
and personalized summarization. Some of the future lines of research are as follows:
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6.1.1 End-to-End Representation Learning for Long Videos

Describing a video by the sequence of events performed is crucial and serves as a general-
purpose backbone for various video analysis tasks. E.g., we can extract recipes from
multiple cooking videos or recover the routine of one’s weeks-long lifelogging. This also
helps identify any missing event, such as some ingredients or the order of the ingredient
in the cooking video or the order of placement of components in assembling a machine
or surgical video analysis. The task requires high-level semantic understanding from the
videos in the wild. Most unsupervised video analysis frameworks are not end-to-end
and extract spatial information from pre-trained CNN followed by sequential models
(LSTMs, GCN, and Transformers) for temporal modeling. Few works use pre-trained
active (manipulated objects) objects recognition models to harness fine-grained informa-
tion. However, CNN’s trained on the ImageNet dataset generate poor representations for
cooking videos, and the error further escalates by sequential models used at the second
level. Furthermore, using pre-trained object recognition networks raised the scalability
issue. Motivated by the Vision Transformer (ViT) [44], in the future, we seek to expand
the applicability of the Transformer for video analysis to model the fine-level information
by exploiting the pixel-level information efficiently. We can train Transformer for videos
by taking inspiration from NLP representation learning frameworks such as Masked
Language Model (MLM) and Autoregressive (GPT). However, the striking difference
between the videos and the text is that the atomic units (the objects) in the videos are
not brittle compared to the text (the words). Each frame in the video contains multiple
objects, and their relative positions lead to different meanings (leads to words in the
text). This smooth continuum makes fine-level representation learning in videos makes
very challenging. In MLM, we mask a random word in the sentence and try to recon-
struct the masked word by harnessing the context. To mimic this concept in videos, we
need to locate the objects present in the video in an unsupervised setting. We can use
optical flow to locate the active object. Once we have the object location, we can mask
it similarly to MLM. The possible future research direction of this work is to locate all
the possible objects and use MLM to generate better embeddings. Once we have more
instrumental and discriminative feature representation, we can more effectively approach
tasks requiring higher-level semantic understanding.

6.1.2 Query-based Content Retrieval in Videos

Due to the popularity and affordability of video-capturing devices, the amount of video
data created per day has increased tremendously in the last few years. Query-based
content retrieval in videos currently relies on the video description (often manually gen-
erated) and meta-information available with the video. Query-based content retrieval
from videos in the wild is still an ambitious problem and has enormous potential for han-
dling such massive data. While working on personalized summarization, we observed
that text-based video analysis increases user experience; however, from the algorithmic
perspective, it is very challenging to bridge the gap between the two modalities. Similar
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to VQA for images, we need a VQA for videos for efficient storage and consumption.
In this problem, the user provides feedback in the form of text (query), and we need to
retrieve the content in the videos aligned to the text feedback. This problem is closely
related to personalized video summarization discussed in the dissertation; however, in
this problem, the feedback is given in the form of text instead of video exemplars.

Many works demonstrate query-based content retrieval on very small-length videos
[8, 55]. As the summary includes most of the significant events present in the day-
long boring lifelogs, we can use these works on the generated summaries to locate the
video segment that best matches the language query. However, the summary might miss
the query events; in that case, we need efficient query-based content retrieval works to
process the entire video.

The problem requires precise modeling of the scene, objects, and their relationship
(structure of the video) in the video and reason these structures using text queries. We
can harness GCNs to harness fine-level details of the objects and their manipulation at
the frame level. Once we have frame-level structures, we can adapt the self-attention
mechanism of the Transformer to exploit these frame-level structures (in the form of
graphs) and disseminate information of similar frames/events across the long video to
generate information embeddings. The core contribution is to redefine the self-attention
mechanism that will work on GCN embeddings instead of a compact frame-level repre-
sentation generated by pre-trained networks. The attention should handle the temporal
evolution/manipulation of various objects and background necessary for VQA.
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Appendix A

Summarization and Personalized
Summarization

In this appendix, we provide the following details omitted in the chapter 4:

– Section A.1: More qualitative analysis for predicted summaries

– Section A.2: Information Sheet

– Section A.3: Comparison between All the Frameworks

– Section A.4: Stability of RL Frameworks

– Section A.5 Detailed results on Personalized Summarization

– Section A.6: Demographic Information

– Section A.7: Algorithms

– Section A.8: Video Demonstration

A.1 More qualitative analysis for predicted summaries:

We further add more visualization to deeply inspect the proposed frameworks with all the
ground truth summaries when using basic rewards. We choose 5 minutes summaries pre-
dicted by the proposed frameworks to compare against the three ground truth summaries
ranging from 3 to 6 minutes. In Fig. A.1 and A.2, we demonstrate the visualization for
the ‘Alin Day 1’ video sequence of the Dinsey dataset and the ‘P01’ video sequence of
the UTE dataset, respectively, with all the three ground truth summaries. We operate
on 1fps (a C3D feature is extracted per second) and get a binary mask as an output
indicating the selected shots (of one second). In contrast, the ground truth summaries
comprise a set of sentences, each corresponding to a 5 seconds clip. We map the clips
to the original video sequence and generate the binary mast at one fps, similar to our
predicted binary mask.
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Fig. A.3 shows the comparison of 1 minute, 3 minutes, and 5 minutes summary
generated by AC framework using the distinctiveness-indicativeness reward of ‘HUJI
Ariel 1’ video.

We have also prepared the GUI of the proposed work to conduct a user study for
personalized summarization. The GUI is shown in Fig. A.7. As discussed in section 4.3,
the detail table with user comments on the personalized summary is shown in Table A.2

Table A.1 shows the summary length and sliding window size for two long sequence
datasets, namely Disney and HUJI. As mentioned in section 4.3, we take sliding window
size 25% of the desired summary length. To generate one-minute summaries, our sum-
mary length and sliding window size are 120 sub-shots (i.e. 2 sub-shots/second) and 30
sub-shots respectively. Similarly, for 10 minutes summaries, summary length and sliding
window size are 120 and 30 respectively and so on for 3, 5, and 15 minutes summaries.
For the Disney dataset, we train the network for 1, 5, and 15 minutes summaries, whereas
for the HUJI dataset, we train the network for 1, 3, and 5 minutes summaries.

Summary length Sliding window size

120 (1 min) 30
180 (3 mins) 45
600 (5 mins) 150
1200 (10 mins) 300
1800 (15 mins) 450

Table A.1: Summary length and sliding window size for summaries of various time
durations.

A.2 Information Sheet

Below we give the verbatim text transferred to the subjects for the user study.

A.2.1 Information Sheet

You are being invited to take part in this study. Before you make a decision, it is
important for you to understand why this study is being done and what it will involve.
Please take time to understand the following information carefully. Please do not hesitate
to ask us if there is anything that is not clear or if you would like more information. If
you do take part, you will be asked to sign a consent form.
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Figure A.1: The figure demonstrates the comparison between ground truth summaries
and the summaries generated by the different frameworks for the ‘Alin Day 1’ video
sequence of the Disney dataset. In each row, the black vertical bars indicate a frame
was picked from a corresponding temporal window of 70 frames as it is not possible to
visualize the video sequences at 1fps. As the annotations are done at 1/5 fps, pooling
over a window of length 70 makes the ground truth summaries sparse. We can observe
that in the first half and middle of the video, all three ground truth summary frames
are uniformly distributed, whereas the selection is significantly less toward the end. The
Actor-Critic framework also exhibits the same behavior, whereas the policy gradient and
Q-learning perform slightly poorly compared to the Actor-Critic.

Objective:

We are conducting a study to understand how the system-generated summary of a day
long egocentric video satisfies a user. We further extend our work to personalize the
summary by taking user feedback and then ask the user to evaluate the personalized
summary.

Risk:

The study is time-consuming. You may feel exhausted while participating in the study.
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Figure A.2: The figure demonstrates the comparison between ground truth summaries
and the summaries generated by the different frameworks for the ‘P01’ video sequence
of the UTE dataset. In each row, the black vertical bars indicate a frame was picked
from a corresponding temporal window of 70 frames as it is not possible to visualize
the video sequences at 1fps. We can observe that the ground truth summary frames
are approximately uniformly distributed in the second half of the video. The same
distribution is observed for the predicted summaries from all the frameworks.

Benefits of study

You will not directly benefit from taking part in this study however as the summaries
are inherently subjective so helping us out in the evaluation will open a new area of
research. Additionally, you will receive incentive of INR 500 for your valuable time.

Confidentiality of research information

Taking part in this study is voluntary and you can stop at any time. We will be collecting
demographic details of our participants. However no identifying information will be
included in any publication or presentation, and your responses remain confidential.

Meaning of Terms

• Informativeness Informativeness score evaluates how many objects/events of the
original video are included in the summarized video.



A.2. INFORMATION SHEET 87

• Enjoyability The enjoyability assesses only the smoothness(jerk) of a video se-
quence.

• Informativeness and Enjoyability Rate the Informativeness and Enjoyability
of the summary on the following scale.
extremely dissatisfied = 1
dissatisfied = 2
neutral = 3
satisfied = 4
extremely satisfied = 5

• Confidence score This shows the confidence of the subject by which he/she
provides the informativeness and enjoyability. The likert scale for the confidence
is
Not confident at all = 1
Slightly confident = 2
Somewhat confident = 3
Fairly confident = 4
Completely confident = 5

A.2.2 Evaluation Procedure

You would be evaluating summaries of three videos namely Alin Day 1, Alireza Day 1
and Michael Day 2. We have two step evaluation procedure, You are supposed to fill
everything in the google form:

1. In the first step you will be asked to evaluate the generated summary. Once
you finish viewing the summary then you will be asked to score the same for
informativeness and enjoyability using the likert scale mentioned above (in the
Google form). You will also be asked for a confidence score for informativeness
and enjoyability together.

2. We will show you the GT text summaries (by three users). Once you read the GT
text summaries, you will be asked to revisit the generated summary and modify
your informativeness and enjoyability scores along with the confidence (if required).
Kindly briefly justify your modification.

A.2.3 Generating personalized summary:

You are supposed to personalize and evaluate two videos. There are two scenarios for
the personalization of the summary for each video.

1. In the first scenario, you are asked to choose the events from the system-generated
summary (while being unaware of the video content). The detailed personalization
procedure is as follows:
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(a) You will select a video sequence and click the button “Generate Summary
without Feedback”. Once a default summary is generated you would be pick-
ing the interesting events which you want to include/exclude in the summary.
You have to specify the time stamp as a feedback for positive as well as
negative feedback. Kindly refer Figure A.7.

(b) When you click on the ‘Generate Summary with Feedback’ the personalized
summary incorporating the suggested feedback is generated.

2. In the second scenario, we believe that you are aware of the video content.

(a) We ask you to see the original video and choose the events you want to
include/exclude in the summary. You have to specify the time stamp as a
feedback for positive as well as negative feedback. Kindly refer Figure A.9.

(b) When you click on the ‘Generate Summary with Feedback’ the personalized
summary incorporating the suggested feedback is generated.

A.2.4 Evaluation procedure for personalized summary

1. Once the personalised summary is generated then you will rate the summary by
the quality of personalization compared to default summary on the likert scale (1:
very poor, 2: poor, 3: ok, 4: good, 5: excellent) with confidence (1: Not confident
to 5: Completely confident).

2. To gauge your experience kindly answer the following question.

(a) “which events you wanted to include/exclude in the summary?”
(b) “why are you satisfied/not satisfied with the generated summary?”

A.3 Comparison between all the frameworks:

Fig. A.4 shows the training plot of policy gradient, Q learning, and Actor-Critic frame-
work. As discussed in section 4.3, the episodic reward plot for the policy gradient shows
high variance across video samples due to baseline function. Whereas Q learning and AC
framework use Q value network leads to stable gradient across video samples. On the
other end, the extra parameters required more training samples. If we have less train-
ing data, then the policy gradient is easy to train. For the proposed framework, each
position of the sliding window constitutes one training sample, so we generate sufficient
training samples (especially for day long videos) to train the Q learning and AC frame-
works. The same is validated by Fig. A.4 shows the training plot of policy gradient, Q
learning, and Actor-Critic framework.
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Figure A.3: Comparing 1, 3 and 5 minutes summaries (row 1-3) based on distinctiveness-
indicativeness reward of ‘HUJI Ariel 1’ video.

Figure A.4: The episodic reward plot of the policy gradient shows that we get clusters
corresponding to each video sample as the baseline is not parameterized.

A.4 Stability of RL frameworks:

As we move the sliding window over the input video sample, it generates enough training
samples to train any RL framework. We are successfully able to train policy gradient
and Q learning. We also used experience replay for efficient convergence. Ideally, for the
Actor-Critic framework, we have separate networks for actor and critic, but due to the
diverse nature of each video sample, we are not able to train the AC framework. To get
around the problem, we have used a common backbone LSTM network for actor and
critic network followed by two fully connected heads for actor and critic, respectively.
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Figure A.5: Similar to Fig. 4.8, we compare 1, 5, 10 minutes summaries with the ground
truth summary in rows 1 to 4, respectively. The summaries are generated using the basic
reward using the Actor-Critic framework on the ‘P04’ sequence of the UTE dataset. We
observe that the 1-minute summary does not capture the redundant part in which the
subject is ’working on a laptop’ (from 18K to 28.8K), whereas the redundant frames
increase as the length of the summary increases.

A.5 Detailed Results for Personalized Summarization

The detailed results for all 10 participants in two different scenarios with participant‘s
feedback are shown in Table A.2. The Likert score, along with confidence and partici-
pant’s comments, shows that the participants are satisfied with the personalization to a
large extent. We get 2.88 average (normalized by confidence) Likert score over 20 par-
ticipants. Furthermore, it’s clear from the participant’s feedback that the frameworks
struggle to completely eliminate the dark scenes when the participants want to exclude
them from the summary. This happens because there are many dark scenes scattered
throughout the video sequence.

A.6 Demographic Information

As discussed in section 4.3, the demographic details are shown in Table A.3.
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(f) Actor-Critic Framework

(e) Q Learning

(d) Policy Gradient

(b) FFNet

(a) DR-DSN

(c) SUM-GANdpp

(g) Ground Truth

Figure A.6: We observed that DR-DSN [199] picks a cluster of frames from a particular
location in summary, whereas the proposed frameworks effectively distribute the sum-
mary frame from all over the video. This figure gives a better visualization by showing
the distribution of the summary frames for the full video. The bar chart from top to
bottom represents the summary generated by DR-DSN [199], FFNet [87], SUM-GANdpp

[109], and our technique with Policy Gradient, Q Learning, and Actor-Critic frame-
work respectively. The figure also indicates that despite using different RL frameworks,
most of the selected summary frames are common as the reward is the same for all the
frameworks.

A.7 Algorithms

We have discussed the proposed approaches in section 4.2. We give the exact algorithm
steps here. Algorithm 2 elaborate the sliding window framework and Algorithm 3,
Algorithm 4, and Algorithm 5 describes the training process of Policy Gradient, Q
Learning, and AC framework respectively.

A.8 Video Demonstration

Please find the video demonstration of the interactive summarization module on this
link. We have created GUI for this module. The video demonstrates how we can
provide positive feedback (events you want to include) and/or negative feedback (events
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Figure A.7: Figure shows the GUI of the proposed work.

you want to exclude) to customize the generated summaries.
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Figure A.8: GUI of the first scenario for personalization of summary.

Figure A.9: GUI of the second scenario for personalization of summary.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure A.10: The figure demonstrates the visualization of the interactive summarization
of the ‘P01’ video sequence of the UTE dataset. Each bar represents 10 seconds of the
time interval. (a)-(e) shows different summaries when two events, namely ’preparing
food’ and ’driving’ are included/excluded in summary. We can observe that (c) has
more driving sub-shots compared to (b), whereas in (d) the bars in the driving sub-shots
are reduced considerably. Similarly, for (e) we get peaks in the ’preparing food’ area,
whereas the bars in the driving area are reduced. The opposite is seen in (d).

Algorithm 2 Proposed Framework
Input F T

i=1: Video subshots
Output P N

i=1: Probability scores
1: Freeze the C3D weights and randomly initialize weights of BiLSTM
2: for each epoch do
3: for each video do
4: for each pass do
5: for each sliding window do
6: Policy Gradient/Q Learning/ Actor-Critic
7: end for
8: end for
9: if Policy Gradient then

10: Update baseline B
11: end if
12: end for
13: end for
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Subjects Video
-Dataset

Events LikertScore
(1 to 5) Conf. Participant FeedbackIncluded Excluded

S01-S1 Alin-Disney Dinner Dark scenes 3 4 ‘Black part is not
completely removed’

S01-S1 P01-UTE Driving Social Int. 4.5 3 ‘It accurately highligted
part I liked and don’t liked.’

S02-S1 Alin-Disney Dinner Dark scenes 3 4 ‘So many dark scenes’

S02-S1 P01-UTE lunch Purchasing 3 4 ‘Purchasing in store not
removed completely’

S03-S1 Alin-Disney Dinner Tram ride 5 4 ‘Included really long dinner,
Tram ride is mostly removed’

S03-S1 P01-UTE Social Int. Driving 4 3 ‘Detailed conversation, could
exclude some more driving shots’

S04-S1 Alin-Disney Shopping Escalator 4.5 4 ‘Shopping is taken for little long,
escalator is removed’

S04-S1 P01-UTE Driving Writing 5 5 ’Majority of summary was driving,
no writting event’

S05-S2 Alin-Disney Tram ride Dinner 4 4 ‘Dinner is almost removed’

S05-S2 P02-UTE Playing Lego Eating Pizza 4 4 ‘Eating is removed entirely and
lego is included for more time’

S06-S1 Alin-Disney Dark room Travel 4 4 ‘Accurately included
the suggested feedback’

S06-S1 P02-UTE Having pizza Driving 2 4 ‘Driving is not removed’

S07-S1 Alin-Disney Castle Travel in bus 3.5 4 ‘Overall its good, still there
were some bus travel events’

S07-S1 P01-UTE Marketing Driving 2.5 5 ‘Lots of instances of driving
which could have been reduced’

S08-S1 Alin-Disney Indoor Outdoor 4 4 ‘Most of video is outdoor based’

S08-S1 P02-UTE Ice Cream Walking 3.5 4 ‘Excluding is correct, inclusion
is not very good’

S09-S2 Alin-Disney Tram ride In bus, Dark 2 5 ‘Tram ride is missing, rest is fine’

S09-S2 P03-UTE lunch, Payment Purchasing 4.5 3 ‘Summary is very nice’

S10-S1 Alin-Disney carousel Dark scenes 2 4 ‘Many dark scenes, poor summary’

S10-S1 P03-UTE Cooking Drive, Wash 4 5 ‘washing is removed,
driving is not’

Table A.2: The table shows the Likert score of 1 (Extremely dissatisfied) to 5 (Extremely
satisfied) given by the participants when specific events are included or excluded in
the summary with user comments on the personalized summary. S0X-SY represents
subject ‘X’ in scenario ‘Y’. It is observed that sometimes the user sees the excluded part
in the personalized summary. This is because the interactive reward personalized the
summary but at the same time distinctiveness-indicative reward that tries to maintain
the global context. This can be handled by fine-tuning the weights of A and B discussed
in interactive reward.
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Algorithm 3 Policy Gradient Framework
1: Initialize θ and learning rate α.
2: for For each sliding window do
3: Calculate Sp and Sf according to the position of Ws
4: Get M probability scores from the neural network
5: for For each episode do
6: Sample M actions from probability scores
7: Compute cost and reward

cost+ =
M∑

m=1
R(S)∇θlogπθ(am|hm)]

8: end for
9: Compute episodic cost and episodic reward

10: if episodic cost improves then
11: update summary by picking top |S| sub-shots
12: end if
13: if For each mini batch then
14: Back-propagate pseudo batch cost
15: end if
16: end for

Participant Stream Qualification Gender Professional
Recording

S1 CSE Ph.D. Female No
S2 CSE Ph.D. Female No
S3 IT Ph.D. Male Yes
S4 IT Ph.D. Female No
S5 ECE Undergrad Male No
S6 ECE Undergrad Male No
S7 ECE Undergrad Male No
S8 IT Undergrad Male No
S9 IT Undergrad Male Yes
S10 CSE Undergrad Male Yes

Table A.3: Demographic Information of subjects for AHR. Three out of ten participants
have professional video recording experience.
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Algorithm 4 Q Learning Framework
1: Initialize θ, γ and learning rate α.
2: for For each sliding window do
3: Calculate Sp and Sf according to the position of Ws
4: Get M Q values from the Q value network
5: Get M Q values from the target Q value network
6: for For each episode do
7: Sample M actions from probability scores
8: Compute correction (TD error) for actions

δm = R(S) + γ
M−1∑
m=1

Qθ−(sm+1, am+1)

−
M−1∑
m=1

Qθ(sm, am)

9: Compute cost and reward R(S)

cost+ = δm

M∑
m=1,a∈A

∇θQθ(sm, am)

10: end for
11: Compute episodic cost and episodic reward
12: if episodic reward improves then
13: update summary by picking top |S| subshots
14: end if
15: if For each mini batch then
16: Back-propagate pseudo batch cost
17: end if
18: end for
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Algorithm 5 Actor Critic Framework
1: Initialize θ, w, γ and learning rates αa, αc.
2: for For each sliding window do
3: Calculate Sp and Sf according to the position of Ws
4: Get Q values from the Critic Network
5: Get Policy distribution from Actor network
6: Get Q values from the target Critic network
7: for For each episode do
8: Sample M actions from Policy distribution
9: Actor cost calculation

costac+ =
M∑

m=1
Qc(sm, am)∇θlog(πa(sm, am))

10: Compute correction (TD error) for actions

δm = R(S) + γ
M−1∑
m=1

Qw−(sm+1, am+1)

−
M−1∑
m=1

Qw(sm, am)

11: Compute cost and reward R(S)

costcri+ = δm

M∑
m=1,
a∈A

∇wQw(sm, am)

12: end for
13: Compute episodic costac, costcri and episodic reward of actor and critic
14: if episodic reward improves then
15: update summary by picking top |S| subshots
16: end if
17: if For each mini batch then
18: Back-propagate pseudo batch costac, and costcri

19: end if
20: end for
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