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Abstract

Rapid advancements in the Internet of Things (IoT) have facilitated efficient de-

ployments of smart environment solutions for specific user requirements. With the

increase in the number of IoT devices, it has become difficult for the user to con-

trol or operate every individual smart device into achieving some desired goal like

optimized power consumption, scheduled appliance running time, etc. Smart homes

require every device inside them to be connected with each other at all times, which

leads to a lot of power wastage on a daily basis. As the devices inside a smart home

increase, it becomes difficult for the user to control or operate every individual device

optimally. Therefore, users generally rely on power management systems for such

optimization but often are not satisfied with the results. In this work, we present a

novel multi-objective reinforcement learning framework with two-fold objectives of

minimizing power consumption and maximizing user satisfaction. The framework

explores the trade-off between the two objectives and converges to a better power

management policy when both objectives are considered while finding an optimal

policy. We experiment on real-world smart home data, and show that the multi-

objective approaches: i) establish trade-off between the two objectives, ii) achieve

better combined user satisfaction and power consumption than single-objective ap-

proaches. We also show that the devices that are used regularly and have several

fluctuations in device modes at regular intervals should be targeted for optimization,

and the experiments on data from other smart homes fetch similar results, hence

ensuring transfer-ability of the proposed framework.
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Chapter 1

Introduction

The amount of power consumption in households (residential) is among the top

three in world electricity consumption [IEA, 2019], and is ever increasing with the

increase in demand of smart homes and IoT (Internet of Things) devices. According

to the United States Department of Energy (DoE), the average household consumes

90 million units of power a year, and much of that power is wasted [Center, 2019].

Habits like leaving lights on when we leave rooms, forgetting to turn off televisions

or computers when not in use, etc., are major reasons behind such wastage [Constel-

lation, 2019]. Therefore, there is a need for power controllers that can take actions

like turning devices on and off, or changing devices’ modes of operation on behalf of

users to achieve a goal like optimized consumption.

The increasing involvement of smart devices in our lives has necessitated us to

come up with better coordination and management strategies for increased efficien-

cies and Quality of Service (QoS). Many organizations are investing in extensive

research to come up with strategies to make utilization of energy as efficient as

possible. “Smart Homes” or “Smart Devices” is one such area that makes use of

Information & Communication Technologies for finding solutions to such environ-

mental issues. With the help of embedded intelligence, such devices can target

the preferences of a user during everyday life. However, cogency of such results is

critical [Chisik, 2011, Kempton and Montgomery, 1982]. With the installation of

smart meters along with these devices at homes, we can find effective ways to pro-
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Figure 1.1: Electricity consumption in the US from 1950-2020. Evidently, the elec-
tricity consumption is highest for residential purposes, and the trend is not changing
anytime soon.

vide users with a visualization of their energy consumption pattern in a way they

can comprehend [Herrmann et al., 2018]. Furthermore, we can even find ways to

make intelligent systems that can recommend users or act on their behalf, based on

their past power consumption behavior, to achieve the goal of minimizing electricity

wastage. The objective here needs to be to prevent any unnecessary consumption

of energy, preserving the comfort and productivity of the user.

In smart homes, a vast number of heterogeneous appliances, sensors, and actu-

ators inter-operate and provide context information, which in turn, together with

user preferences, are used to effectuate a value-added functionality dynamically. A

smart home needs to be able to analyse the actions of its occupant, taking into

account the context information, to proactively recognize the occupant’s activity to

conserve energy. Therefore, while creating such systems, one must proceed in a way

such that the intelligent planner’s policies in promoting efficient energy usage in

households must take into account the user’s choices and behavior for utmost user

satisfaction [Goulden et al., 2014].
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In the past, researchers have used traditional reinforcement learning for several

power optimization tasks. For example, [Tan et al., 2009] proposed a model-free

constrained RL approach for online power management. [Shen et al., 2013] pre-

sented another similar algorithm that requires no prior information of the workload

and dynamically adapts to the environment to achieve autonomous power manage-

ment. [Tesauro et al., 2008] proposed an RL based technique that performs simulta-

neous online management of both performance and power consumption. The authors

applied RL in a realistic laboratory testbed to find the optimal policy. None of these

techniques towards power optimization are used for smart home power management,

and they do not consider user satisfaction while finding optimal policies.

However, power management in a smart home is a problem that needs to solve

two tasks with different rewards simultaneously: minimize power consumption and

maximize user satisfaction. It is important for a power controller to consider user

preferences as well, i.e., the goal of minimal power consumption must be achieved but

not at the expense of user satisfaction. The scenario can be formulated as a MORL

problem where sequential decision making is required with multiple objectives. We

propose a novel multi-objective reinforcement learning (MORL) approach for power

management inside a smart home with two objectives: minimize power consumption

and maximize user satisfaction. In a MORL problem, an action on the environment

results in multiple rewards. The agent (power controller) learns an optimal policy

from these rewards using a variation of Q-learning [Watkins and Dayan, 1992]. Since

the objectives are contrasting, there is a trade-off between the two, and based on

their importance, optimization priorities are set. We use an overall reward function

to incorporate these optimization priorities, which is a weighted sum of the two

rewards RE representing power consumption, and RU representing user satisfaction.

We specifically focus on the weighted-sum method [Kim and De Weck, 2006] for

multi-objective optimization and compare the results with single objective strategies.

We evaluate our proposed methods on the Smart* data set for sustainabil-

ity [Barker et al., 2012]. The data samples include device-level real-world power

consumption values in several smart homes, named as A, B, C, ..., H recorded at ev-

ery 30 minutes. We show the effectiveness of our approach on data from smart home
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A, and demonstrate transfer-ability of experiments on smart homes B and C. We use

Q learning with individual objectives (single policy single objective approaches) as a

baseline reference to compare the proposed single policy multi-objective approaches.

We also define a metric “clash rate” for evaluating user satisfaction in the predicted

policy at each episode.
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Chapter 2

Background

2.1 Power Optimization

The increase in computing power in constrained environments have allowed re-

searchers to experiment and come up with new and better approaches to solve some

critical problems using the power of artificial intelligence. Hence, there have been

some approaches proposed earlier which either have been mainly theoretical in na-

ture or have focused only on one specific part of this problem statement. We present

a brief discussion on these methodologies adopted by researchers in the past.

In works that study the behavioural clustering of devices, Adika et.al. present

a method where appliances are clustered together based on their hourly energy

consumption data [Adika and Wang, 2014]. Then a “time of use” probability distri-

bution is made, and each cluster is given a schedule, making this a job scheduling

problem which is solved using dynamic programming. The challenge here is to

predict the correct cost of energy for the next hour. Consequently, the scheduling

assumes that the error in predicting the cost is minimum. However, the approach

does not focus on any method to suggest the user ways to cut down on excessive

power consumption.

In yet another approach, the authors introduce a generic way of creating a Peer to

Peer (P2P) overlay network using Hydra middle ware [Jahn et al., 2010,Eisenhauer

et al., 2010]. The authors talk about collecting and displaying energy consump-
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tion data using several data visualisation techniques. The approach does not have

intelligent monitoring or recommendation for the users, which makes us ask the

question of whether the data visualisation effects the user’s understanding of energy

consumption or not [Herrmann et al., 2018].

Wei et. al. show another general architecture for designing the energy consump-

tion monitoring and energy-saving management system that are IoT based [Wei and

Li, 2011]. According to this work, IoT infrastructure has three levels: the bottom-

most level collects data from different sensors, the middle level which is the network

layer talks about data transmission, and the topmost level processes the collected

and transferred data using cloud computing and fuzzy pattern recognition tech-

niques. A 3-component architecture was also introduced to cater to an intelligent

household lighting system for efficient energy consumption, including user’s context

information such that the system’s behaviour conforms to user satisfaction [Byun

et al., 2013]. Although this approach talks about an intelligent planner, it is limited

to the lighting systems and uses a static algorithm (minimum light intensity control)

to control the lights. Hence, the approach is not efficient when it comes to dynamic

environments where user behaviour is prone to change or in a real-life setting where

a set of diverse electrical equipment or appliances are present.

Yau et. al. base their technique on Markov Decision Process (MDP), assuming

there are three entities [Yau and Buduru, 2014]. Firstly, the manufacturer provides

the set of device states, secondly a SESP (Smart Environment Service Provider) who

analyses the state information and lastly, the MDP planning algorithm which makes

a policy of states and actions along with a user who receives these actions suggested

by the MDP and acts accordingly in the given environment. The approach assumes a

Central Module which collects all the information and does the heavy lifting, in turn,

solving the problem of having a constrained environment. The approach involves

manual human intervention, firstly as the manufacturer who supplies information

on the devices and then in the role of SESP who performs analysis on the data.

Also, The results are shown over simulation, and the approach is never used on a

real data-set.

The methodology used by Jahn et. al. and Byun et. al. makes us under-
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stand the major approaches for collecting data from appliances and hence, helps us

move in the direction of intelligent planning [Jahn et al., 2010,Byun et al., 2013].

The architecture proposed by Wei et. al. is a general way to move from the stage

of data collection to intelligent planning [Wei and Li, 2011]. There are existing ap-

proaches that are perfectly capable of achieving optimal energy consumption, taking

the assumption that the user behaviour is not dynamic, and the price prediction has

minimum error [Adika and Wang, 2014,Byun et al., 2013]. The approach used by

Yau et. al. uses RL and hence, is capable of dealing with a change in user be-

haviour [Yau and Buduru, 2014]. However, the role of entities like manufacturer

and SESPs can be automated. In this work, we find the quality of states based on

the user behaviour, which keeps on updating itself to improve with time. The work

presented in this work is an advancement of the approach discussed in [Yau and

Buduru, 2014].

In this section, we discuss traditional reinforcement learning with Q-learning, an

algorithm widely used to solve traditional RL problems. Then we introduce the

concepts of multi-objective reinforcement learning (MORL) and how it differs from

the traditional RL.
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2.2 Traditional Reinforcement Learning

Traditional reinforcement learning [Sutton and Barto, 2018] mimics the natural

learning style of trial-and-error by interacting with an environment (static or dy-

namic) and receiving feedback based on an action. The components of reinforcement

learning are:

Figure 2.1: Architecture of Traditional Reinforcement Learning.

• An Agent;

• A finite state space S;

• A set of available actions for the agent A;

• A reward function R : S ×A→ R.

The agent’s objective is to maximize its average long-term reward. It is achieved

by learning a policy π, which is a mapping between the states and the actions.

In our problem, one goal is to minimize the power consumption of a smart home,

and the other is to maximize user satisfaction. But, in a traditional reinforcement

learning setting, the two goals are independent. An agent can either minimize power

consumption, or it can maximize user satisfaction.

Q-learning [Watkins and Dayan, 1992] is a widely known algorithm used to solve

sequential decision-making RL problems. In each step, on the successful execution

of every action a, the environment yields a reward R, which indicates the value

of a state transition. The issued reward can be positive or negative. The agent
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keeps a value function Qπ(s, a) for each state-action pair. Learning to act in the

environment will make the agent choose actions to maximize long-term rewards.

Based on this value function, the agent decides its immediate action. The Q-value

for each state-action pair is initially chosen during the problem formulation, and

later, it is updated with each taken action and its issued reward. The value function

is given by the following Bellman equation:

Qπ(s, a) = R(s, a) + γmax
a

Qπ(s′, a) (2.1)

where R(s, a) is the reward issued after taking action a in state s, s′ is the

successive state of s, and γ is the discount factor used due to the different influences

of future rewards on the present value.

The optimal state-action value function is defined as:

Q∗(s, a) = maxπQ
π(s, a) (2.2)

When Q∗(s, a) is obtained, the optimal policy π∗ can be computed by:

π∗(s) = argmax
a

Q∗(s, a)

9



2.3 Multi-objective Reinforcement Learning

Reinforcement learning is a machine learning paradigm that helps with sequential

decision making under several uncertainties and aims to achieve a single long-term

objective. However, due to the complex requirements of real-world control systems,

often times, there are two (or more) conflicting objectives. For example, in our case

of smart home power management system the controller has two goals: i) to minimize

energy consumption of the smart home, ii) to maximize user comfort by moving to

states preferred by the user. In reinforcement learning, problems of this nature

having more than one conflicting objectives are called multi-objective reinforcement

learning problems (MORL).

MORL is different from tradtional RL in that there are two or more objectives

to be optimized simultaneously by the learning agent. [Liu et al., 2014] provides an

architecture for a MORL problem, where reward is provided for the learning agent

at each step. In MORL ( Figure 2.2), there are N objectives and ri(1 ≤ i ≤ N)

is the ith reward signal provided by the environment. The architecture illustrates

a single agent that has to find an optimal policy for a set of multiple objectives

simultaneously. The objectives can be conflicting, as in our case, or they can be

independent as well.

Figure 2.2: Architecture of Multi-Objective Reinforcement Learning.

For each objective i (1 ≤ i ≤ N) and a stationary policy π, there is a corre-

sponding state-action value function Qπ
i , which satisfies equation 2.1.

10



Let the combined value function for MORL is:

MQπ(s, a) = [Qπ
1 (s, a), Q

π
2 (s, a), ..., Q

π
N (s, a)]

where MQπ(s, a) is a vector and it also satisfies the Bellman equation (2.1). Then

the optimal state-action function will be given as:

MQ∗(s, a) = max
π

MQπ(s, a) (2.3)

and the optimal policy π∗ can be obtained by:

π∗(s) = argmax
a

MQ∗(s, a) (2.4)

MORL is a combination of multi-objective optimization methods and RL tech-

niques to solve sequential decision making problems with multiple conflicting objec-

tives. We will justify why we formulate smart home power management as a MORL

problem in the next section.

11



Chapter 3

Problem Formulation

The case of a smart home power management system is a multi-objective problem

with two objectives, viz., minimizing power consumption and maximizing user sat-

isfaction. Ideally, a controller will try to reduce the power consumption as much as

it can, given an optimization goal. The trivial solution for the controller will be to

turn off all the devices that operate in the smart home. However, this state might

not be desirable by the user. Therefore, it is important for a controller to consider

user preferences as well. Hence, the goal of minimal power consumption must be

achieved by establishing a trade-off with user satisfaction, and not at it’s expense.

Based on the importance of an objective function, optimization priorities must be

ensured while designing the policies. After appropriately expressing the preferences,

we have to design an efficient algorithm that can solve the sequential decision making

problems based on observed state transition data.

12



3.1 Environment

Smart homes usually have smart meters to measure the power consumption for

each device operating within it. The power consumption values for every device is

independent, and take a fixed number of discrete values. This is because each device

operates only in a fixed number of modes and their power consumption in a specific

mode remains the same. For example, a simple furnace has only two modes, ON and

OFF. In OFF mode, it consumes no power while in ON mode it consumes x (say)

units of power. We are assuming that the consumption x remains the same and no

degradation of device happens over time, hence causing more energy consumption.

Similarly, a washing machine can have three modes of operation, viz, standby, washer

and dryer. Let’s assume a smart home has N devices. A state in an environment

is a vector of energy consumption values (in whatever device modes they are in) of

these N devices, as depicted by blocks s and s′ in Figure 3.1.

Let’s assume the number of device modes each one operates in is given by a set

D = {nD1, nD2, ..., nDN}

Total number of states in state− space =
N∏
i=1

nDi

Increasing the number of devices, or just their modes of operation can lead to

state-space explosion. Therefore, in our techniques we choose devices selectively and

use data processing to avoid state-space explosion.

13



Figure 3.1: Illustration of Power controller. To formulate the problem, we create
an environment with several states in it defined by a vector of the device states at
any given time. We define a reward which consists of two components: i) power
optimization, and ii) user satisfaction. Given an initial state, the agent (i.e. the
power controller) can take an action to change the environment’s state and calculate
a reward. The next action then depends on the reward from the previous step.
Detailed explanation of each component is available in the text.
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3.2 Power Controller (Agent)

The Agent is a power controller that can change the mode of operation of any of the

N devices, consequently changing the energy consumption value. For example, a

power controller can turn off the furnace, if it is on, or switch the washing machine

to dryer mode from some other mode. However, an agent can also choose not to do

anything. Therefore, the Agent can perform either of the two actions, i.e., MOV E

or STAY , on each device in a state s, to move the environment to a state s′. For

example, in Figure 3.1, the controller changes the mode of operation of device 1 and

device 2, from green to red by MOV E action, and chooses to keep the Nth device

it its current state by STAY action.

15



3.3 Reward

Whenever the proposed agent takes an action on the environment, a reward is cal-

culated on the basis of the state chosen by the controller and the ground truth state

from the Smart House Dataset. Since there are two distinct objectives, we formulate

the reward functions to incorporate the power consumption and user satisfaction.

Every update of the state-action value function (Equation 2.1) is dependent on the

reward. Therefore, by integrating the optimizations in reward function, the agent

learns the trade-off between optimization priorities for an optimal state. First we in-

troduce both rewards separately and then we combine them to form a single reward,

as shown in Figure 3.1.

3.3.1 Minimizing Power Consumption

Let’s say the power consumption in the predicted and ground truth state is Ps′ , and

Ps respectively. The reward, RE is given as:

RE =

∑
d−(Ps′ − Ps)

D
(3.1)

which is the average difference of power consumed by the D devices between

predicted state and the desired state. As the agent always tries to maximize the

reward, thus we negate the sum in order to achieve state which consumes less power

than what the user had chosen. By negating, the state with the least electricity

consumption becomes goal state for the power controller.

3.3.2 Maximizing User Satisfaction

To model user behavior, we compute the Euclidean distance between the predicted

state and the ground truth state. The reward

RU =

∑
d |s′ − s|
D

(3.2)

where d ∈ D devices.
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3.3.3 Overall reward

We take a weighted combination of both the rewards, RE (Equation 3.1) and RU

(Equation 3.2), and define overall reward as:

R = WE ∗RE +WU ∗RU (3.3)

where WE and WU are the weights to manipulate the optimization priorities of the

two objectives. These weights are treated as hyper parameters during experimenta-

tion.

17



3.4 Evaluation

The evaluation of power controller’s performance is two-fold due to the multi-

objective nature of the optimization problem. The reward RE represents negation

of power consumption, therefore, a policy with more positive RE value is desired.

Hence, as we increase the number of iterations, the value of RE should increase.

Similarly, the reward RU represents the likelihood that the next state predicted

by the controller, Spred
U , matches to the next state that user prefers, Sreal

U . However,

to evaluate RU , we introduce a term called “clash rate” to get a device level view of

clashes. To calculate clash rate:

clash rate =
∑

(Sreal
U == Spred

U ) (3.4)

where “==” is an element wise comparison that assigns 1 if values do not match

and 0 otherwise, and returns an array with 1’s and 0’s.

For example, let us say the user wants next state to be Sreal
U = [D1, D2, D3, D3, D1],

where Dis represent the device modes at this state. Now, the controller takes an

action on the environment to change its state to Spred
U = [D2, D1, D3, D1, D1]. The

clash rate in this case is 3, as the device modes at index 0, 1, and 3 do not match

(assume the vectors are indexed starting from 0). As we increase the iterations to

train the power controller more, the clash rate should decrease.
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Chapter 4

Solutions

MORL approaches can be divided into two groups based on the number of policies

to be learned [Vamplew et al., 2011]:single policy and multiple policy approaches.

In our case, the objectives are contrasting, and the availability of data allows us to

create a sufficiently good representation of the environment. Therefore, we focus on

a single policy approach to solve it.

The aim of single policy approaches is to obtain the best policy which satisfies the

optimization priorities as set by the designer, or defined by the application domain.

Therefore, based on varying optimization priorities we implemented four variations

of a single policy algorithm to find an optimal policy for our two-fold objectives

of minimum power consumption and maximum user satisfaction. A single policy

approach to solve MORL problems is to formalize an objective function TQ(s, a),

which can represent overall preferences in optimization. The approach is very similar

to Q-learning with a few modifications, as shown in Algorithm 1. The objective

function TQ(s, a) is given as the summation of Q-values for all the objectives, and

is given as:

TQ(s, a) =
N∑
i=1

Qi(s, a) (4.1)

As discussed in Section 3.3, we incorporate the optimization priorities using

weightsWE andWU in the reward function. SinceQ(s, a) is dependent on the reward
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Algorithm 1 Single Policy Approach to solve MORL

1: K: the maximum number of episodes
2: N: the number of objectives
3: Initialize TQ(s, a);
4: Initialize Qi(s, a), ∀(i < N);
5: for each episode j ranging from 1 to K do
6: Fetch sj0, s

j
1 from samples;

7: Choose a using TQ(s, a) policy using ϵ greedy approach;
8: Take action a, s′;
9: Compute reward [r1, r2,..., rN ] based on sj1, and s′;

10: for i = 1, 2, ..., N do
11: Qi(s, a)← Qi(s, a) + α[ri + γmaxa′ Qi(s

′, a′)−Qi(s, a)];
12: end for
13: Compute TQ(s, a);
14: s← s′;
15: end for

function, and TQ(s, a) on Q(s, a), any change in the weight values in equation 3.3

will result in a change of values in TQ(s, a). They are defined as:

4.1 Single Policy Single Objective

As a baseline reference, we implement single policy approach with single objectives.

Recall equation 3.3, the overall reward is defined as the sum of two rewards, one for

minimizing power consumption and other for maximizing user satisfaction. There-

fore, for single policy with one objective taken at a time has two cases:

4.1.1 Power Consumption Minimization

To implement this, we give 100% optimization priority to power consumption, and

set WE and WU to 1 and 0, respectively in equation 3.3.

4.1.2 User Satisfaction Maximization

To implement this, we give 100% optimization priority to user satisfaction, and set

WE and WU to 0 and 1, respectively in equation 3.3.

20



4.2 Single Policy Multi Objective

The goal of the power controller is to achieve a multi-objective optimization. There-

fore, we consider two cases:

4.2.1 Equal weights

The case where both objectives are equally as important, and the power controller

tries to optimize both. BothWE andWU are set to 1. Based on the policy calculated

by the power controller, the action with the maximum summed values is chosen to

be executed.

4.2.2 Weighted Sum

The weighted sum approach is proven to be effective with multiple objectives in the

past. [Ngai and Yung, 2011] used it to combine seven vehicle overlapping objectives,

and [Zeng et al., 2010] used it with a combination of three objectives, viz., degree

of the crowd in an elevator, the waiting time, and the number of start-ends. The

approach modifies equation 4.1 as:

TQ(s, a) =

N∑
i=1

WiQi(s, a)

In our case, the Wis are WE and WU , and we experiment with different values

of both to get the best results.
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Chapter 5

Environment Setup

We evaluate the proposed solutions in Section 4 using the Smart* data set for sus-

tainability [Barker et al., 2012]. As a baseline reference, we consider Q-learning with

single objective of power consumption minimization and user satisfaction maximiza-

tion. We plot the reward and clashes for all four proposed algorithms to contrast the

results. In this section, we first briefly explain the data set, then the environment

design, and finally the experiments and results.

5.1 Smart* Data Set for Sustainability

The data set includes real power consumption readings of multiple devices such as

furnace, fridge, washing machine, etc., inside smart homes collected over regular

intervals of 30 minutes. Each device has sensors attached to them to record the

power consumption after regular time intervals inside seven smart homes1. For our

experiments, we used data from smart home A collected over a period of three

years. We also use data from smart home B, and C to show transferability of the

framework. Note that data from each smart home is similar in nature. The only

difference is in the type and the number of devices used to collect data.

1http://traces.cs.umass.edu/index.php/Smart/Smart
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5.2 Designing the Environment

The data set has power consumption values from more than 20 devices for each smart

home. We have considered only 5 devices from a smart home: furnace, washing

machine, fridge, heater, and kitchen lights. The reasons to do so are:

• In a real world scenario, a user does not want the controller to operate on all

of the devices in their smart home.

• Formalizing an optimization problem with only a top few devices with max-

imum power consumption is more realistic and helpful than taking all the

possible devices and constraints into consideration.

• For simplicity of experimentation.

5.2.1 Data Processing

In our data set, the power consumption reading for each device took many distinct

unique values. For example, the power consumption values for Furnace has 17, 000

unique entries, and that of Fridge is 16, 000. However, a lot of these values are very

close and differ only at 4th/5th decimal place representing a data collection glitch.

Since we chose 5 devices, a state in this environment is represented by a vector

of size [D1
1, ..., D

k
i , ..., D

5
2]1×5 where Dk

i represents the device Dk in mode i, and its

value is given as the power consumption by device k in mode Di.

The size of the state space is the cross product of all the unique values taken

by each device. Therefore by this convention, if we consider only the furnace and

the fridge, the size of state space will be 272 million (16, 000× 17, 000). With such

a big state space, the problem becomes very complex to solve, and therefore, to

avoid the state space explosion, we cluster the energy consumption values of each

device separately to find a fixed number of modes of operation for each device.

Intuitively, in real-life, a furnace cannot have 17,000 modes of operation. Therefore,

finding device modes with clustering seems to be a fair assumption to make.
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5.2.2 Clustering to assign the modes of operation for each device

We wanted to find cluster centers of power consumption values for each device indi-

vidually, which can represent different modes of operation. The modes of operation

can be readily available from manufacturer’s end but they might not be ideal for

our case. For example, suppose a washing machine consumes x power in standby

mode, y in wash mode and z in dry mode, and the values, y and z are very close.

The manufacturer can say that modes y and z are different, but we have similar

readings for the two states, and hence, does not affect our objective. Therefore, we

cluster the readings such that each device mode represents a significant amount of

change in power consumption from one mode to another. The clustering helps us

reduce the state space to a very good extent.

First we performed silhouette analysis [Rousseeuw, 1987] to find the optimal

number of clusters for each device. We vary k, the number of clusters from 2 to

6 assuming it is rare that a device has more than 6 modes of operation. Figure

5.1 shows the silhouette plot for various clusters using Duct Heater’s electricity

consumption data for k = 3. The clusters are well formed with coefficient value

more than the threshold, as can be seen in Figure 5.2. The plot is shown for k = 3

as it yielded the best silhouette score. Similar experiments are performed with

remaining 4 devices.

After clustering, the optimal number of clusters for the chosen devices, Furnace,

Washing Machine, Fridge, Duct Heater, and Kitchen Lights is 2, 3, 3, 3, and 5,

respectively. Clustering reduces the size of state space from 272 million+ (16, 000×

17, 000) to just 270 (2× 3× 3× 3× 5) preventing the state space explosion.
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Figure 5.1: Clustering results for Duct Heater from smart home A: Silhouette anal-
ysis for K-means clustering with k = 3 for Duct Heater.

Figure 5.2: Clustering results for Duct Heater from smart home A: Distribution of
consumption values of Duct Heater with k = 3
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Chapter 6

Experiments

The first objective is to minimize the total power consumption, and the second

objective is to maximize user satisfaction. Our algorithm takes into account 4

hyper-parameters: learning rate (α), discount factor (γ), exploration rate (ϵ), re-

ward prioritization weights WE and WU . As a baseline, we use Algorithm 1 with

single objectives. Note that if we run the algorithm with a single objective, it be-

comes the traditional Q-learning algorithm. The clash rate as defined in Equation

3.4 will be maximum for single policy with power consumption minimization objec-

tive, and minimum with user satisfaction maximization objective. However, with

multi-objectives, the cash rate should be between the two. The overall reward is

given as the weighted sum, therefore, reward will be maximum for multi-objective

approach. We implemented the solutions discussed in Section 4 as:
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6.1 Single Policy Single Objective

The overall reward has two weighted terms, WE and WU representing power con-

sumption and user satisfaction, respectively. For the first set of experiments, we

focus only on optimizing a single objective by initialising WE and WU as (1, 0) for

power consumption minimization objective, and (0, 1) for user satisfaction maxi-

mization objective. Hence, in single policy single objective Q-learning formulation,

our agent only receives the reward RE in the former case and the reward RU in the

latter.

We experimented with more than 100 combinations of α and γ with α, γ ∈ (0, 1]

to find the best hyperparameters. The agent calculates average total reward R and

the clashrate for every combination of our hyperparameters over a total of 463

unique states episodes learned over 300 epochs. We decayed the value of ϵ by a

factor of 1.4 every 20 epochs. The set of parameters which gives us the highest

average reward and least number of clashes is chosen. The hyperparameters shown

in Table 6.1 achieve the best results when our aim is to minimize the average number

of clashes to meet each objective individually.

Table 6.1: Hyper-parameter values for Single Policy Single-Objective Q-learning

Objective/Hyper-
parameters

Power Consump-
tion Minimization

User Satisfaction
Maximization

α 0.4 0.9

γ 0.1 0.05

ϵ 0.1 0.1

WE 1 0

WU 0 1
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6.2 Single Policy Multi-Objective

We divide the experiments for multi-objective approaches into two approaches as

discussed in Section 4: Equal Weights and Weighted-Sum. As shown in Line 11

of Algorithm 1, the update function for the Q-values is different than the normal

Q-learning formulation. The equation for the Q-value update is given as:

Qi(s, a) + = α(ri + γmax
a′

Qi(s
′, a′)−Qi(s, a)) (6.1)

For equal weights approach, the weights WE and WU have been assigned the

same value of 1 representing equal priority for both objectives. For Weighted-Sum

approach, we perform experiments by taking approximately 2, 300 combinations of α,

γ,ϵ, WE and WU with their values within the range (0,1]. The best hyperparameters

for the multi-objective approaches are listed in the Table 6.2.

Table 6.2: Hyper-parameter values for Single Policy Multi-Objective Q-learning

Approach/Hyper-
parameters

Equal Weights
Approach

Weighted-Sum
Approach

α 0.9 0.9

γ 0.1 0.1

ϵ 0.05 0.07

WE 1 0.3

WU 1 0.1
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Chapter 7

Results

7.1 Average Power

To compare the four algorithms proposed to find an optimal policy, we ran them

for equal number of epochs using the best hyperparameters obtained for each. Each

epoch has 463 training steps and 450 validation steps, we plotted the average power

for each epoch for comparison. Figure 7.1 shows the average reward for each algo-

rithm.

Figure 7.1: Average Power vs No. of Episodes for different approaches.

The average power is maximum for power satisfaction minimization because the
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policy is getting reward based on the predicted state and user’s next state, and it is

lowest for user satisfaction maximization due to the fact that if we move from a high

power state to a low power state, it will hurt user’s satisfaction, which is indeed the

desired behavior. The plots for multi-objective approaches always end up between

the two single objective ones, representing the trade-off between the two contrasting

objectives.

7.2 Average Number of Clashes

Figure 7.2 shows the combined clash rate for all four algorithms. The experimental

parameters are kept same as the previous section. Note that for power consumption

minimization the clash rate is highest because no weightage is given to user satis-

faction. If we deploy an agent with such policies, the user will get agitated and they

will try to override agent’s actions, rendering it useless. While on the other hand,

an agent with user satisfaction maximization policies will not be helpful in opti-

mizing power consumption. However, if we look at clash rates for multi-objective

techniques, they lie between the two single objective approaches, and this clash rate

can be adjusted using weights based on user preferences.

Figure 7.2: Average Number of Clashes vs No. of Episodes using different ap-
proaches.
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7.3 Appliance-wise clashes

We calculate the average number of clashes for each of the five appliances and plot

them separately to see the behavior of proposed approaches. Figures 7.3, 7.4, 7.5,

7.6, 7.7 show the clash rate for each device. The experimental parameters are kept

same as Section 7.1.

Figure 7.3: Appliance wise clash rate for Furnace.

Figure 7.4: Appliance wise clash rate for Heater.

The results for appliances with three device modes is consistent with the overall

results with two exceptions of furnace (two device modes) and kitchen lights (5

device modes).

For furnace, the power consumption minimization approach does not behave

as expected. The reason could be the irregular usage and collection of data, as a
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Figure 7.5: Appliance wise clash rate for Lights

Figure 7.6: Appliance wise clash rate for Refrigerator.

Figure 7.7: Appliance wise clash rate for Washer.
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furnace is used only during colder seasons and the data we used for experiments

is collected over a span of three years. For lights, all algorithms fetch nearly same

results. The reason can be because lights are used for prolonged times, and there

are not many fluctuations in lights’ modes of operation. Therefore, the clash rate

coincides for user satisfaction, power consumption, and a combination of the two.

Hence, Furnace and Lights have very little to contribute to the overall optimization.

The results, therefore, suggest that devices that are used regularly and with several

fluctuations in device modes at regular intervals should be targeted for optimization.

7.3.1 Transferability on other smart homes consumption data

To show that the proposed framework can be applied to power consumption data of

multiple smart homes, we choose the best algorithm (weighted sum approach) and

run it for smart homes B, and C from the same Smart* data discussed in Section

5.1.

Figure 7.8 shows that the rewards increase and the clash rate decreases with

increase in number of episodes. Figure 7.8a and Figure 7.8b show that the behavior

is similar on all three smart homes data.

(a) Rewards (b) Clash Rate

Figure 7.8: Average reward and Clashes with Weighted Sum approach smart homes
A, B, and C.
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Chapter 8

Conclusion

In this work, we present a novel multi-objective reinforcement learning technique

for power consumption optimization with contrasting objectives of minimizing power

consumption and maximizing user satisfaction. We show that both objectives, when

considered together, achieve the best optimal policy. Our experimental results show

that the proposed multi-objective techniques establish a trade-off between the two

objectives. The optimal policy achieves better user satisfaction than power op-

timization policies and achieves better power consumption than user maximization

policies. We show that the devices used regularly in smart homes should be the ones

targeted for such optimization purposes. Finally, we also show that the experiments

can be performed with other smart home data set to achieve similar results.
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