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Abstract
The evolution of conventional field-programmable gate array (FPGA) platforms to all
programmable multi-processor system-on-chip (MPSoC) platforms in the last decade
has comprehensively addressed the scalability and flexibility requirements of next-
generation electronic systems. To meet the large bandwidth and multi-standard re-
quirements of upcoming wireless, satellite, and radar applications, the MPSoC plat-
form with on-chip radio frequency (RF) data converters, RFSoC, has been introduced
recently. Though RFSoC offers significant improvement in area, power and latency
of the wireless systems over conventional multi-chip platforms, there is a signifi-
cant gap in the existing literature on the configuration of the RFSoC platform for
real-world demonstration. The work presented in this thesis aims to bridge this gap,
thereby enabling engineers and researchers from academia and industry to efficiently
and quickly configure the RFSoC platform.

The first contribution of this thesis is to study various features of RF data con-
verter in RFSoC comprising multiple analog-to-digital converters (ADC) and digital-
to-analog converters (DAC) along with analog-front-end. Next, a detailed configura-
tion process of RF data converters for any desired carrier frequency and transmission
bandwidth is discussed. This includes the clock generation and configuration in RF
data converters and programming of in-built interpolation and decimation stages of
the DAC and ADC, respectively. The second contribution involves the real-radio
performance analysis of RF data converters using an end-to-end IEEE 802.11-based
wireless physical layer (PHY). Specifically, an in-depth tutorial on the integration of
wireless PHY with RF data converters for any given carrier frequency and data rate
is presented via various illustrative examples. The work includes the design of hard-
ware IP cores for digital-up converters (DUC) and digital down converters (DDC) on
FPGA, their integration with baseband PHY and RF data converters via hardware-
software co-design and PYNQ-based graphical user interface (GUI) on ARM proces-
sor for performance analysis. We validate the functional correctness of the designs
in the presence of fixed-point word-length effects, quantization error due to data con-
verters, and RF impairments via bit-error-rate (BER) performance on the RFSoC.
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Chapter 1

Introduction

1.1 Motivation

there are no references
Next generation electronic systems demand scalability and flexibility from the hard-
ware platforms in addition to the conventional requirements of area, power and cost
efficient architectures. The scalable architectures enables the use of same platform
for wide range of products while flexible architecture enables feature richness and
future upgradability on-the-fly. The evolution of conventional field-programmable
gate array (FPGA) platforms to all programmable multi-processor system-on-chip
(MPSoC) platforms in the last decade has comprehensively addressed these require-
ments. To meet the large bandwidth and multi-standard requirements of upcoming
wireless, satellite, and radar applications, the MPSoC platform needs to be integrated
with data converters such as analog-to-digital converters (ADC) and digital-to-analog
converters (DAC) and analog-front-end comprising of analog filters, mixers, ampli-
fiers, antennas and their matching circuits as shown in Fig. 1.1. The presence of
multiple discrete components results in lower data rate but large area and power con-
sumption. Furthermore, the cost and design efforts to build the wireless transceivers
are huge. The direct RF converters based approach shown in the Fig. 1.2 offer two
chip solution comprising of MPSoC and analog-front-end (AFE) tightly integrated
via FPGA Mezzanine Card (FMC) connectors.

Figure 1.1: Conventional RF Signal Chain

The next obvious solution is to integrated RF data converters on the same chip
as that of MPSoC. This is referred to as RFSoC which has been introduced recently
by AMD-Xilinx. Though RFSoC offers significant improvement in area, power and
latency of the wireless systems over conventional multi-chip platforms, there is a sig-
nificant gap in the existing literature on the configuration of the RFSoC platform for
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Figure 1.2: RF Signal Chain with Direct RF Converters

real-world demonstration. The work presented in this thesis aims to bridge this gap,
thereby enabling engineers and researchers from academia and industry to efficiently
and quickly configure the RFSoC platform.

Figure 1.3: RF Signal Chain after RFSoC

1.2 Objectives

This work aims at exploring RF data converters of the Zynq RFSoC ZCU111
evaluation kit. The goal is to explore how to configure the data converters for a
given sampling rate, reference frequencies available for a particular sampling rate,
generating clock configuration files to configure the clock modules. For theis, an
OFDM example implementation on RFSoC by University of Strathclyde- Software
Defined Radio Research Laboratory is used as a base model which will be discussed
in the further chapters. This design is an end-to-end transceiver implementation on
the ZCU111 kit. This design is first understood in depth and then exploited to test its
functionality for varying sampling rates and data converters’ frequencies.

1.3 Thesis Outline

The thesis is organized as follows. The Chapter 2: RF Data Converters discusses
the architecture of the RF DACs/ADCs, their specifications and their working. The
Chapter 3: OFDM PHY Layer Implementation explains the Simulink model of the
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OFDM physical layer that is used in this work. The Chapter 4: TICS Software
Clock Generation explains how to set up the LMX2594 module settings to generate
clock configuration values for any frequency using the TICS software. The Chapter
5: Implementation Methodology explains the steps from simulink model to testing
on hardware involving System Generator and HDL coder for IP generation, Vivado
IP Integrator to create block design and generating bitstream and finally PYNQ to
view the output results. It discusses RF data converter IP settings in vivado in great
depths. Chapter 6: Results discusses the results obtained after implementing the
design. Finally, Chapter 7: Conclusion and future work summarizes the entire work
and discusses briefly the future aspects of this thesis.

3



Chapter 2

RF Data Converters

The RF Data Converters is one of the most interesting features of RFSoC de-
vices. The integration of data converters on the FPGA itself enables generating
very efficient systems in terms of power, area, complexity, etc as has already been
discussed. Additionally, the in-built interpolators/decimators allows one to upcon-
vert/downconvert the data rate from lower frquencies, say 300MSPS, to a higher
2.4GSPS without using any additional filter. In this work, the ZU28DRF-FFVG1517,
Zynq UltraScale+ RFSoC Gen1 device (ZCU111), is used. It contains a total of 4
12-bit RF analog-to-digital converters which are distributed across 4 banks and 8 14-
bit RF digital-to-analog (RF-DAC) converter channels distributed across two banks.
The maximum achievable sampling frequency at the RF ADC is 4.096 GSPS and at
the RF DAC is 6.554 GSPS. In this chapter, we will briefly discuss the architecture
of these data converters and will focus on the RF data converter IP customization as
per the requirements. The data listed in Tab. 2.1 specifies the minimum and max-
imum data sampling rates achievable at the DAC/ADC ends, and the interpolation
and decimation factors.

Data Converter Min. Sampling Max. Sampling Interpolation or
Rate (in GSPS) Rate (in GSPS) Decimation Factors

ADC 1 4.096 1, 2, 4, or 8 (decimation)
DAC 0.5 6.554 1, 2, 4, or 8 (interpolation)

Table 2.1: RF Data Converters (Gen 1 devices)

The two architectures available for RF Data Converters are dual and quad tile ar-
chitectures. In the dual architecture, each tile will have two data converters, mixers,
decimators/interpolators each. While in quad architecture, each tile will have four of
each components. The Gen 1 devices used in this work have dual RF-ADC and quad
RF-DAC architecture which are shown in the Fig. 2.1, 2.2 respectively. Considering
the dual RF-ADC tile architecture as shown in the Fig. 2.1, the sampling clock pro-
vided to both the ADCs is same and the mixer is grouped together with the decimator
to form a digital downconverter. The first component after the RF-ADC tile is the
digital I/Q mixer. It generates sine/cosine wave at the frequency equal to the car-
rier frequency of incoming signal using a NCO (Numerically controlled oscillator)
which is then multiplied to the incoming signal. This shifts the signal back to the
baseband. The other high frequency terms generated at double the carrier frequency
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are removed by the low pass filter. The three different modes of operation of the I/Q
mixer are bypass mode where the mixer is entirely bypassed, fine mode where any
arbitrary frequency signal is generated and multiplied to the received signal, and the
coarse mode where only a limited set of frequencies can be multiplied to the signal.
The second component is the decimator, which can perform rate reduction by factors
1, 2, 4, or 8 as selected by the user. The decimation is done by cascading half band
filters, each decimating by a factor of 2, depending on the input decimation factor.

Figure 2.1: Dual RF ADC Architecture

The architecture for quad RF-DACs is very similar to that of ADC but in opposite
set of operations and have four DACs in each tile instead of two. In the quad RF-
DAC, there are 4 DACs being fed by the same sampling clock and have four I/Q
mixers and interpolators. This architecture allows for multi-band operation since
here, the output of a single DAC can be fed to all four interpolators where each can
be tuned to different frequency thereby recovering different band (maximum of 4
bands). The dual ADC architecture can support only 2 such bands. The input I/Q
symbols enter the RF data converters and then pass through a pair of interpolators
to increase the sample rate as is set by the user. The interpolation rates available are
1, 2, 4, and 8. Then the I/Q mixer generates the sine/cosine wave to modulate the
signal and then passed to the RF-DAC converter. The interpolation is also done by
cascading identical half-band filters each increasing the rate by a factor of 2 as per
the requirement.
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Figure 2.2: Quad RF DAC Architecture
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Chapter 3

OFDM PHY Layer Implementation

The OFDM example implementation on RFSoC by University of Strathclyde-
Software Defined Radio Research Laboratory is used as a base model in this thesis
work. The basic implementation of the OFDM along the with the data transmission
rates is shown in the Fig. 3.1 which is discussed below in detail. The entire design
is created in the Simulink software by MATLAB. The design is first understood in
detail and tested for its working on the ZCU111 hardware. It is then modified at
different levels for varying frequencies and tested again on the board to verify the
functionality for every modification.

Figure 3.1: OFDM Design Model

The design consists of 4 separate blocks, viz. Transmitter, Interpolate, Decimate,
and Receiver. These blocks are mapped to the hardware by HDL coder and System
Generator tools. It is to be noted here that the data transmissions from/to PS and from
one block to another occur at 12 MHz frequency except at the output of interpolate
and the input of decimate block in the PL.
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3.1 Transmitter Block

The transmitter block consists of the entire signal processing at the transmitter
end. This block receives the modulation scheme and enable signal as input from the
PS via AXI4-Lite channel. The execution in this block can be better understood from
its sub-blocks as discussed below.

1. Control Signal Generator: This block generates the control signals for the en-
tire OFDM burst. It generates preamble valid, data valid, pilot valid signals
based on the IEEE 802.11a. These signals are then passed to the subsequent
blocks. The execution of this block starts once the enable signal is turned high.

2. RF Data Generator: The preamble values (short training (STS) and long train-
ing symbols (LTS)), information (data) to be passed, and the pilot symbols are
generated in this block. The data generated is modulated based on the input
modulation scheme is modulated to I and Q complex symbols in the RF signal
generator block.

3. Sub-Carrier Mapper: The complex data symbols, preamble and pilot symbols
are then passed to this sub carrier mapping block in which the preamble and
complex data symbols are rearranged.

4. IFFT: The output is then passed to the IFFT block where IFFT is performed
only on the preamble and complex data symbols and not on pilot symbols. It
converts frequency-domain subcarriers to produce the OFDM symbols in the
time-domain.

5. Cyclic Prefix Addition: Finally, the IFFT output is passed to the Add Cyclic
Prefix block (CP). The CP is added corresponing to LTS, STS, and the complex
data symbols. This addition of CP is done to recognize the starting point of
incoming data at the receiver end.

6. The output is finally up-sampled to 12 MHz for transfer to the next block,
interpolator.

3.2 Interpolate and Decimate Blocks

The interpolation block receives its input from the transmitter block. This trans-
mission is done at 12 MHz in the PL using multiple DMAs. This block first down-
samples the data to 1 MHz frequency and then up-samples it to a required frequency
using combination of certain filters. The interpolated symbols are then passed to the
DAC tile.

This block consists of four filters for interpolation. First is half-band filter, sec-
ond is CIC compensation filter, third is CIC interpolation filter, and fourth is half-
band SSR filter. In the original design, the interpolation is done by factor of 2, 2,
48, 2 respectively. The SSR (super sample rate) filter at the last, added to interpolate
the sample rate by a factor of 2, allows the data rate of 384 MHz while maintaining
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clock required for data transmission at 192 MHz. This is achieved by concatenating
2 symbols, adjacent in time frame and sending it as a single data block. For this,
the transmission bus width at the output of interpolate is chosen as double the data
width of single complex data symbol. This data is passed over a channel formed by
a simple loopback connection to be received by the ADCs of the RFSoC and then
passed to the decimate block of the OFDM design.

Decimate block receives the data from ADC tile of the RFSoC after down-
conversion to baseband frequency. The decimation is done again by using a series
of filters, like in the interpolate block but in opposite order, i.e., the SSR filter comes
first to decimate by a factor of 2 (as opposed to last in the interpolate block). After
decimation to 1 MHz, the data is up-sampled to 12 MHz before passing to the next
block (receiver). The filters, delays, gains added in the model for these blocks are
selected from the Xilinx library section in the Simulink library. The filter coefficients
used for all the filters are generated using a separate MATLAB file depending on the
interpolation/decimate rate, output sampling rate and the type of that particular filter.

3.3 Receiver Block

The receiver block gets its input from the decimate block and generates the orig-
inal data. the data is first down-sampled from 12 MHz to 1 MHz. The sub-blocks in
the receiver are discussed as below.

1. Timing and Frequency Synchronization: This block performs, frame detection
for CP removal, coarse frequency estimation, and generates control signals like
preamble valid or data valid. Schmid and Cox Timing Metric is used for the
frame detection in this implementation.

2. FFT: At the receiver, FFT is performed on the OFDM symbols to recover the
frequency domain symbols.

3. One Tap Equalizer: This block performs channel estimation and equalization
step. The preamble symbols are used for channel estimation and least square
estimation methodology is employed. These estimated values are then used
by the equalizer where the channel estimated values are multiplied to the data
symbols so as to counter the impact of channel on the transferred data bits.

4. Phase Tracking 1: This block tracks linear phase errors which occurs due to
sampling phase frequency offsets. The implemented algorithm estimates the
gradient of the linear phase error using pilot sub-carriers.

5. Phase Tracking 2: This block tracks common phase error (CPE) from symbol
to symbol. CPE is caused by residual frequency offset and phase noise effects.

6. The final output from Phase Tracking 2 is sent to the PS. The output consists
of the modulated complex data symbols.
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Chapter 4

TICS Software for Clock Generation

The ZCU111 board consists of two evaluation modules (EVMs), viz. LMK04208
and LMX2594 which generates clock for programming the RF data converters. The
LMK04208 is a jitter cleaner and a clock generator module whereas the LMX2594 is
a high performance clock generator. Of these two, LMX2594 provides the sampling
clock for the RF DACs/ADCs. As is highlighted in the Fig.4.1, for this particular
case, the incoming data at the RF DAC is clocked at 384MHz. To sample this data,
LMX2594 provides this clock (384MHz) to RF DAC. Similarly, to sample the output
data from RF ADC, LMX2594 only provides the clock.

Figure 4.1: OFDM Model

The RF clocking architecture is shown in the Fig. 4.2. Here, the LMK04208 pro-
vides the input reference clocks to the LMX2594. The LMX2594 then based on its
configuration, generates the clock which is fed directly to the DAC and ADC banks.
These chips consists of various blocks like phase synchronizers, VCO mixers, etc that
are required for clock generation. The values of these blocks are to be programmed
by the user according to the required frequency output which then feeds the RF Data
converters. A configuration (.txt) file is required to program these modules. This file
is generated by using the TICS software.
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Figure 4.2: RF Clocking Architecture

The Texas Instruments Clock Synthesizer (TICS SW Pro) software provides an
interactive interface to generate the clock configuration files which are used to pro-
gram the evaluation modules (EVMs) for a certain frequency. Below shown in the
Fig. 4.3 is the snapshot of the setup for generating 384 MHz clock from LMX2594
module in the TICS software. The various highlighted parameters are discussed be-
low.

1. The input to LMX2594 chip Fosc is set to a frequency of 122.88 MHz.

2. The Doubler (OSc 2X) is used to up the input frequency signal (Fosc). The
doubler can have two values, X1 (OSc 2X = 0 means that the doubler is dis-
abled) and X2 (OSc 2X = 1 means that the doubler is enabled and the input
signal frequency is doubled). The doubler is used to reduce spurs in the noise
signal or increase the phase detector frequency.

3. The PreR divider is used to divide the frequency fed to PLL R (R) divider. The
maximum frequency limit to the input of PLL R divider is 250 MHz and hence
PRE L divider is used to make sure this criteria is met. It is used iff multiplier
is used.

4. The PLL R further divides the frequency for the phase detector (Fpd). The
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Figure 4.3: LMX2594 setup to generate 384 MHz clock in TICS SW Pro

expression for Fpd is given as

Fpd =
Fosc ∗ OSC 2X ∗ MULT

Pre R ∗ PLL R

5. N divider and Fraction (NUM and DEN) are used to precisely output the clock
of frequencies with decimal part like 245.76 MHz. The FV CO generated can
have min value of 7.5GHz and maximum of 15GHz.

FVCO = Fpd ∗ (N +
NUM
DEN

)

The N-divider has minimum value restrictions based on the modulator order
and VCO frequency (FV CO). Also note that, for case when fraction is to be
bypassed, i.e., when FV CO is integral multiple (N) of Fpd, the denominator is
to be set as 1 and not 0 (NUM

DEN
with DEN as 0 is a computational error.)

6. The Channel Divider (CHDIV) consists of a series of several dividers and is
used to generate frequencies lower than minimum limit of VCO. Also, above
10 GHz, the maximum allowable channel divider value is 6.

(a) SEG EN1 is an enable buffer for channel divider. It is disabled only for
channel divider value 2 and enabled for channel divider > 2.
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(b) It is to be noted here that the FV CO ≤ 11.5GHz for CHDIV≥ 8. This
constarint will be used later in computing the parameters’ value for any
desired frequency.

7. The RFoutA is the final output clock which will be passed to the DAC ADC
tiles. It is given by the expression:

RFOUTA =
FVCO

CHDIV

8. The parameters as highlighted in VCO Calibration are set for faster and more
efficient amplitude calibration without compromising on the low phase noise.
The FCAL LPFD ADJ and FCAL HPFD ADJ are used to adjust the calibra-
tion speed. ACAL CMP DLY is used for delay insertion during VCO am-
plitude calibration. Lowering this value can speed up VCO calibration, but
lowering it too much may degrade VCO phase noise.

9. Phase synchronization: The phase synchronization block is used for synchro-
nizing the delay from the rising edge of the OSCin signal to the output signal.

10. Each parameter corresponds to a register value, some of which have been dis-
cussed above. For example, in Fig. 4.3, the CHDIV parameter corresponds to
the Register R75 as is highlighted and a brief description is displayed in the
bottom left corner of the window itself.

The entire configuration of the LMX2594 module consists of 113 registers whose
values are to be set. These register values correspond to the vaues of the parameters
that are set, as discussed above. The register values are represented in hexadecimal
format and listed in the ’RAW Registers’ tab as shown in Fig. 4.4. These values
are then exported as a .txt file which is later used to configure the data converters
sampling clock.
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Figure 4.4: The register values for 384 MHz clock
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Chapter 5

Implementation Methodology

The OFDM design as explained in the previous chapter is implemented in the
Simulink MATLAB. The simulink model consists of additional PS blocks (for mod-
ulation scheme input) and channel block for the end-to-end simulation as shown in
the Fig. 5.1, and verification of the designs. There are four blocks that are hardware
mappable and are exported as vivado IPs to be imported in the Vivado IP Integrator.
The entire process from simulink model to testing the design on hardware (ZCU111)
board is a four step process. We will understand it with an example design. In this
example design, the filters interpolate by factors 2, 2, 48, 2 and the RF DAC further
interpolates by factor of 8. The data rates are same as those mentioned in Fig. 3.1

5.1 Step 1: IP generation using System Generator and HDL Coder

The four IPs that are generated from the Simulink Models are Transmitter, Inter-
polate, Decimate, and Receiver. There are three separate Simulink models provided
for generating these IPs.

1. OFDM TX HW: This model is used to generate only the interpolate IP.

2. OFDM RX HW: This model is used to generate the receiver end IPs which
are receiver and the decimate.

3. OFDM TX RX fixed point: This model is used to generate the transmitter IP.

The interpolate and decimate IPs are generated using the System Generator and hence
these subsystems are created using the Xilinx supported hardware blocks from the
library browser. The transmitter and receiver IPs are generated using the HDL coder
tool by the MATLAB. To test for varying frequencies, the interpolate and decimate
blocks and the RF Data Converter IP settings need to be changed as per the require-
ment.

As has been discussed, the interpolate and decimate blocks use series of FIR
Filters for interpolation and decimation purposes. The filter coefficients are generated
using a separate MATLAB file based on the interpolation/decimation rate, output
frequency, and the type of the particular filter as is highlighted in the Fig. 5.2. In this,
first the interpolation factors of all the filters are defined, then the output frequency of
all the respective filters is defined. Then finally, the coefficients are generated using
inbuilt MATLAB function, as shown for the CIC Compensation filter.
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Figure 5.1: OFDM Implementation Simulink Model

Once this is done, the interpolation/decimation factor is set in the Simulink
model also. Below shown in the Fig. 5.3, is highlighted the interpolation factor
specification of the CIC Compensation filter block in the Simulink Model.

Additionally, the data sample rates in the entire Simulink model can be displayed
in a color coded manner to better visualize the sample rates throughtout the design
and to verify the changes made in interpolate and decimate blocks. For example,
as shown in the Fig 5.4, the incoming data is at 1MHz. After passing through half-
band filters, the data is upconverted to 2MHz. Further, the CIC compensation filter
upconverts it to 4MHz. The CIC interpolation filter then further upconverts it to
192MHz.

The transmitter and receiver blocks remain the same throughout.

5.2 Step 2: Vivado IP Integrator

After generating the IPs from the Simulink Models, the Xilinx Vivado tool is
used to generate the block design that is to be implemented on the hardware. The
enitre block design is shown in the Fig. 5.5. In this figure is highlighted the data
transmission from transmitter end to DAC input port of RF Data Converter IP and
from ADC port to the receiver. The generated IPs are imported and the block design
is created using a TCL file which also configures the RF Data Converter settings as
per the requirement. From the generated block design, bitstream is created which is
used to program the ZCU111.

The parameters of interest in the RF Data Converter IP settings are highlighted
in the Fig. 5.6,5.7,5.8.

For the DAC, the DAC1 of tile DAC229 is enabled as highlighted in the Fig. 5.6.
The output data symbols generated by the transmitter IP are of complex data type (i.e.
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Figure 5.2: Filter Coefficients Generation

I/Q symbols). These symbols are received at the input of RF DAC as AXI4 stream
values and are further passed as real values (I and Q symbols passed separately).
Hence, the analog output type is set as real. The interpolation values available for this
specific hardware are 1, 2, 4, and 8 (available interpolation values further depend on
the sampling rate set also) and can be selected from the drop down menu. The number
of samples per AXI4 stream cycle implies the total number of samples (I and Q
symbols counted separately) received in one cycle of AXI stream. This parameter can
be understood from the SSR scenario. Since in the original design SSR is employed,
two adjacent data symbols each containing its I and Q symbols, are concatenated to
form one data packet being transferred to the RF DAC in one clock cycle, i.e., 2I and
2Q symbols. The transmission bus width here is of 64 bits (16 bits of every symbol).
Hence, in the settings in Fig.5.6, the number of samples per AXI4 stream cycle value
is set as 4. It is to be noted that the analog output data type of RF DAC is real since
the I and Q symbols are passed to the channel separately.

Similarly, for RF ADC, ADC0 of tile ADC225 is enabled as shown in the Fig. 5.7.
Since the digital output data type is I/Q, the ADC output will have two different data
ports, one for I and Q each. It receives input real analog data from the channel and
passes 2 I and 2 Q symbols at the two output ports in a single cycle. Hence the num-
ber of samples per AXI4 Stream Cycle at the ADC output is set as 2, i.e., samples in
a single AXI stream cycle at single output port, 2 I symbols at one and 2 Q symbols
at other output port (of the two concatenated data symbols). The transmission bus
width here is of 32 bits (16 bits of every symbol). The decimation factor set here is
also 8 since the interpolation was also done by 8.

The Fig. 5.8 shows the settings for various input and output clocks in the data
converters. The sampling frequency is the sampling rate of data transfer through the
channel from DAC to ADC. For RF ADC, it can vary from 1.0 to 4.096 GSPS and
for RF DAC, it can vary from 0.5 to 6.554 GSPS. This clock feeds the data converter
tiles. The drop down menu shows a list of available frequencies depending on the se-
lected sampling rate. The fabric clock is same as the required AXI4 stream clock and
is the frequency of the clock which drives the stream input/output of the DAC/ADC
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Figure 5.3: Interpolation Factor in Simulink Model

tiles. Only in the case of SSR, the reference frequency is different from the fabric
or AXI4 stream clock. The clock out is the output clock generated within the data
converter itself. It is generated from the input reference clock (fref ) itself by using
clock dividers. The drop down menu shows the list of available frequencies. The
available clock out for RF ADC are fref/2, fref/4, fref/8, fref/16. The available
clock out for RF DAC are fref , fref/2, fref/4, fref/8, fref/16. These output clocks
can be used to drive any AXI port. In the current design, these clocks are used to feed
the interpolate and decimate IP blocks. The relationship between these frequencies
can be illustrated by two simple formulae.

For DAC,

Fs =
AXI4 Stream Clock ∗ Interpolation Factor ∗ No.of samples per AXI4 Stream Cycle

2

For ADC,

Fs =
AXI4 Stream Clock ∗ Decimation Factor ∗ No.of samples per AXI4 Stream Cycle

1

The 2 in the denominator of Fs for DAC is to compensate for the higher data bus
width at the input of DAC (twice as that of ADC).

5.2.1 Architecture

The architecture used for the design is shown in the Fig. 5.9. Here, the Process-
ing System (PS) consisting of Quad ARM Cortex A-53 and Dual ARM Cortex -R6
processors is used to control and configure the IP blocks, viz. Transmitter, Receiver,
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Figure 5.4: Sample Time Display

Figure 5.5: IP Integration in Vivado

RF Data Converters IP, AXI DMAs via AXI4-Lite Protocol. Additionally, it reads the
input modulation scheme from the user and passes it to the transmitter block using
the HP (High Processing port) via AXI Interconnect. On receiving the input modula-
tion scheme from the PS, the transmitter block computes the OFDM symbols, passes
them to interpolate block which upconverts to certain frequency as is set by the user
and passes them to the RF-DAC converters via AXI DMA as AXI4 Stream protocol.
Additionally, the complex data symbols are passed to the PS (for plotting) via AXI
DMA which converts the AXI4 Stream protocol to memory mapped.. The RF DAC
converters further upconverts to higher data rates and passes to the channel. The RF
ADC then receives the data from the channel, downconverts it and then passes to the
decimate block via AXI DMA, again as AXI4 Stream protocol. The decimate block,
then after down conversion, forwards the data to receiver block which computes the
channel estimation values and recovered OFDM symbols. This output is sent to the
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Figure 5.6: RF DAC settings

PS via AXI DMA which converts the AXI4 Stream protocol to memory mapped.

5.3 Step 3: Clock Configuration File Generation

For the discussed example design, the data sampling at DAC/ADC is done at
384MHz. This clock will be provided by the LMX2594 module on the ZCU111
board itself. To generate this clock, the module needs to be configured to produce
this clock frequency at the output and for this, TICS software is used as has already
been discussed in Chapter 4. Here we work our way up to achieve the optimal settings
values. First step is to find the CHDIV and F osc values in the Fig. ??. Given the
constraint as mentioned earlier,

FOSC ≤ 11.5GHz for CHDIV ≥ 8

and,
FOSC = CHDIV ∗ RFOUTA

Assuming,
CHDIV ≥ 8

CHDIV ∗ RFOUTA ≤ 11.5
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Figure 5.7: RF ADC settings

CHDIV ∗ 384MHz ≤ 11.5GHz

CHDIV ≤ 29.9479

The available CHDIV values can be seen from the drop down menu as shown in the
Fig. 5.10. The CHDIV≤ 29.947 gives CHDIV value as 24. With this,

FOSC = CHDIV ∗ RFOUTA

FOSC = 9216MHz

Next, is to find the N divider, and fraction values. For this, consider the Fig. 5.11
Since,

FVCO = Fpd ∗ (N +
NUM
DEN

)

and F VCO=9216MHz and F pd is set as 122.88 MHz from the Fig. 5.12. Here, the
doubler can be enabled to double the F pd (next example).

75 = N +
NUM
DEN
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Figure 5.8: RF System Clocking settings

Figure 5.9: RFSoC Architecture for OFDM Model
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Figure 5.10: TICS Setting Step 1

Figure 5.11: TICS Setting Step 2

Since 75 itself is a whole number, N=75, NUM=0, DEN=1. Here, if DEN=0, the
denominator will be set as 0 i computing F VCO which is not possible. Hence, DEN
is taken as 1.

Another example can be taken by enabling the doubler. For this, let’s consider
generating output frequency of 409.6MHz.

CHDIV ∗ RFOUTA ≤ 11.5

CHDIV ∗ 409.6MHz ≤ 11.5GHz

CHDIV ≤ 28.076

The CHDIV≤ 28.076 gives CHDIV value as 24. With this,

FOSC = CHDIV ∗ RFOUTA

FOSC = 9830.4MHz

Next, is to find the N divider, and fraction values. Since,

FVCO = Fpd ∗ (N +
NUM
DEN

)
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Figure 5.12: TICS Setting for Fpd

Figure 5.13: TICS Setting by enabling the doubler

and F VCO=9830.4MHz. If doubler is enabled, F pd=245.76MHz,

N +
NUM
DEN

=
9830.4

245.76
N +

NUM
DEN

= 40

From this, N=40, NUM=0, DEN=1.

5.4 Step 4: PYNQ Setup

For final step of running the design on hardware, PYNQ is used. It provides
an interactive python kernel on the Jupyter labs which are integrated with the web
browser running directly on the ARM processor. For any design to run on the board,
an overlay file (drivers) and the bitstream file is required. Additional .pynq files are
required which are simple python scripts running. The bitstream generated from
the vivado is programmed on the board by a function defined in overlay itself. The
overlay file is additionally used to configure the DACs/ADCs, clock the RF data
converters using the clock configuration file generated from the TICS SW Pro, and
define various functions required for plotting/displaying the output. For the chan-
nel, a simple loopback connection is used to connect the enabled DAC and ADC as
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Figure 5.14: ZCU111 Setup

shown in the Fig. 5.14. The reference clock, sampling rate, and the clock configu-
ration generated from TICS are required to be set according to the design. For this,
the pre-defined function set all ref clks(<reference clock value (in MHz)>) is used
which invokes the clock configuration values and programs the LMX2594 module.
The PYNQ provides a GUI for visualizing the received data in form of plots. The
functionality of the design can be verified by obtaining the constellation plots of the
recovered data (output from the receiver block) for various modulation schemes.
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Chapter 6

Results

The OFDM base model was modified for varying RF frequencies and tested on
the hardware for its functionality. The values for which the design has been tested
are listed in the Tab. 6.1. Only the changes at the transmitter end (interpolation and
RF DAC) are listed here. Correspondingly, similar changes are done at the receiver
end (decimator and RF ADC) too. In the designs original and 1, SSR filter is also
used which means the incoming data rate is 192 MHz but the RF DAC ADC can be
clocked at 384 MHz. Since adjacent data symbols in time frame are concatenated
as a single block in SSR, the incoming data bus width at DAC is twice (64 bits)
as compared to the other cases (32 bits). For the remaining designs, the SSR filter
is removed entirely. For designs 2, 3 and 4, the third filter interpolation factor is
modified. For design 5, second filter interpolation factor is changed from 2 to 6 and
in design 6, the second filter is removed.

To verify the functionality of the design, the constellation plot of the demodu-
lated received symbols is observed for all the modulation schemes. The constellation
plot for some of the modulation is shown in the Fig. 6.1-6.10 below.

Additionally, the received symbols were demodulated in the PS itself at the re-
ceiver end to compute symbol error rate (SER). The SER comprison for designs
original and 1 (with SSR) is shown in the Fig. 6.11.

Design Interpolation Sampling Frequency Interpolation Sampling frequency
by filters of DAC (in MHz) by RF DAC (in GHz)

Original 2, 2, 48, 2 384 8 3.072
1 2, 2, 48, 2 384 4 1.536
2 2, 2, 48 192 8 1.536
3 2, 2, 96 384 8 3.072
4 2, 2, 60 240 8 1.920
5 2, 6, 20 240 8 1.920
6 2, 120 240 8 1.920

Table 6.1: List of values for which the design has been tested
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Figure 6.1: BPSK Figure 6.2: QPSK Figure 6.3: 8-PSK

Figure 6.4: 16-QAM Figure 6.5: 32-QAM Figure 6.6: 64-QAM

Figure 6.7: 128-QAM Figure 6.8: 256-QAM Figure 6.9: 512-QAM
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Figure 6.10: 1024-QAM Figure 6.11: SER comparison with SSR
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Chapter 7

Future Work and Conclusion

The OFMD PHY Layer example design used in this work has, in addition to up-
conversion/downconversion by RF data converters, interpolate and decimate blocks
which are implemented in the PL. The work done in this thesis focuses on these
blocks as well in addition to exploring the RF data converters. These blocks are im-
plmented by using series of filters and their respective interpolate/decimate factors
are modified tp genarate differeneg carrier frequencies of the data. Additionally, the
parameters associated with RF data converters like their carrier frequency, sampling
rates, interpolation/decimation factors, etc. are also explored in detail. Apart from
this, the TICS software used to generate the clock configuration files to program the
LMX2594 module which feeds the RF DACs/ADCs is also explored in depth. The
design is finally tested for its functionality on the PYNQ by observing the received
constellation plot corresponding to any modulation scheme. All these understand-
ing would be very helpful to other researchers or engineers to integrate any other
baseband design with RF DAC/ADC.

The future work in this thesis would be to create well-detailed handouts and
video tutorials on multiple ofdm examples and to create application notes of interpo-
late and decimate blocks, DAC/ADC and clock configuration.
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