
Scalable Spatio-Temporal Arrival Time Estimation for

Public Transit

by

Karan Dhingra

Under the supervision of

Dr. Pravesh Biyani, IIIT Delhi

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

NEW DELHI– 110020

September 2021

©Indraprastha Institute of Information Technology
(IIITD), New Delhi, 2021

Scalable Spatio-Temporal Arrival Time Estimation for

Public Transit

by

Karan Dhingra

Submitted

in partial fulfillment of the requirements for the degree of

Master of Technology in

Computer Science Engineering (CSE-AI)

to

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY DELHI

September 2021

Certificate

This is to certify that the thesis titled Scalable Spatio-Temporal Arrival Time Es-

timation for Public Transit being submitted by Karan Dhingra to the Indraprastha

Institute of Information Technology Delhi, for the award of the Master of Technology

in Computer Science & Engineering (CSE-AI), is an original research work carried

out by her under our supervision. In my opinion, the thesis has reached the standards

fulfilling the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any other

university or institute for the award of any degree/diploma.

September, 2021

Dr. Pravesh Biyani

Indraprastha Institute of Information Technology Delhi

New Delhi 110020

iv

Acknowledgement

After three years at IIITD, I would like to pay my hearty gratitude to several indi-

viduals who contributed in many ways. Firstly I give special thanks to Dr. Pravesh

Biyani, who gave me freedom, guidance, and faith to pursue my ideas. I am incred-

ibly fortunate that I have had the support even before I started my M.Tech. Next, I

would like to thank Charul for her contribution, constant support, and making sense

of my ideas. I would also like to thank Kshitij for helping me with the ETA data.

In the end, I would like to express my gratitude towards my family and friends

for their faith, co-operation, and guidance, which have been a constant source of

motivation. The last appreciation would be towards my nephews and niece; their

presence and naivety helped me stay calm and happy throughout this journey.

v

Abstract
The problem of the ETA prediction of public transit has an essential role in improv-

ing the rider’s experience. While, it is challenging to ensure the timeliness of bus,

especially during the rush hours. This thesis provides a heads-up on estimated arrival

time for better planning using the open-transit data.

The first step of providing a real-time scalable ETA is to design an algorithm that

can preprocess the raw GTFS data of a day into a tensor. The representation aims

to decouple the information about the bus, thereby enabling scalability across routes

and reducing variance.

The second step is to design a Spatio-temporal model (SSTG) for scalable and ro-

bust ETA prediction. In the proposed SSTG framework, we will provide answers to

the following open problems. Firstly how can we exploit the spatio-temporal corre-

lation in the ETA data? Secondly, how to scale the spatial-temporal ETA prediction

framework on a large network effectively? Thirdly, How to handle sparsity in the

data? Fourthly, the prediction of the ETA for the cold start stops is an unexplored

problem. i.e., stops that are absent from the training dataset, how can we predict ETA

for a cold start-stop? Moreover, a user would prefer waiting a bit longer than missing

the bus because of underestimation. Therefore, for better customer satisfaction, we

need to reduce the underestimation.

The proposed framework captures the Spatiotemporal structure in the ETA data

using recurrent neural networks modified with a graph convolutional. The input to

the network can be sub-sampled, thereby ensuring scalable learning and further pro-

viding a solution to the cold start stops ETA prediction. The first layer of the encoder

integrates GRU-D for the missing data imputation. Moreover, we use a MSLE-

Weighted loss function to overestimate the ETA and fine-tune the penalty on overall

performance compared to the regression loss(MSE) function. We finally conclude

that the SSTG model is computationally efficient and outperforms the state-of-the-

art methods on ETA and traffic datasets.

vi

Contents

1 Introduction 1

1.1 Existing Work . 2

1.2 Problem Statement . 4

1.3 Contribution . 4

1.4 Structure . 5

2 Modeling Raw Data to Tensor 7

2.1 Introduction . 7

2.1.1 Background . 7

2.1.2 Motivation . 8

2.2 Modeling . 8

2.2.1 Entries to Tree . 8

2.2.2 Assigning entries to stops 10

2.2.3 Time interpolation . 11

2.2.4 Tree to Tensor . 16

3 Preliminaries 18

3.1 Temporal Modeling . 18

3.1.1 Vanishing Gradient . 19

3.1.2 LSTM and GRU . 20

3.2 Spatial Modeling . 21

3.3 Graph Convolutional Network . 22

3.3.1 ChebNet . 24

3.3.2 GCN . 26

3.3.3 SGN . 26

3.4 Sub Sampling . 27

3.4.1 Random Sampling . 28

3.4.2 Node Sampling . 28

3.4.3 Ripple Walk SubSampling 29

vii

3.4.4 Bias from SubSampling 30

3.5 Sequence Learning . 30

3.5.1 Curriculum Learning . 31

3.6 Missing Data . 32

3.6.1 GRU-D . 32

4 Scalable ETA prediction Framework 34

4.1 Mean . 34

4.2 LSTM . 34

4.3 ConvLSTM . 35

4.4 DCRNN . 36

4.5 Proposed Framework . 37

4.5.1 Training Procedure . 39

4.5.2 Evaluation Procedure . 40

5 Experimental Results and Discussion 41

5.1 Datasets . 41

5.1.1 METR-LA . 41

5.1.2 Delhi Traffic data . 41

5.1.3 Delhi ETA data . 41

5.2 Training Details . 42

5.2.1 Model Parameters . 42

5.2.2 Learning Rate . 42

5.2.3 Optimization . 43

5.2.4 Loss Function . 43

5.3 Metrics . 44

5.3.1 Mean Square Error . 44

5.3.2 Mean Absolute Error . 45

5.3.3 Root Mean Square Error 45

5.3.4 Mean Relative Error . 45

5.3.5 Overestimate Percentage 46

viii

5.4 Experimentations . 46

5.4.1 Convolution layer . 46

5.4.2 Subsampling . 49

5.4.3 Bias from SubSampling 51

5.4.4 AutoRegression . 52

5.4.5 Missing Data . 53

5.5 Extension to ETA-DT dataset . 55

5.5.1 Choosing the Architecture 56

5.5.2 Integrating the Missing Data 58

5.5.3 Relative Loss Function . 60

5.6 Results . 61

6 Conclusion and Future Work 65

A Appendix 70

A.1 Induction Proof . 70

A.2 Further Study on AutoRegressive Training 70

A.2.1 Professor Training . 70

A.2.2 RL-Training . 73

ix

List of Tables

5.1 Results for Experiment : Graph Convolution 49

5.2 Experiment : Sub Sampling . 52

5.3 Results for Experiment : AutoRegression 53

5.4 Results for Experiment : Missing Data 55

5.5 Results for Experiment: ETA-DT Dataset Integration 58

5.6 Results for Experiment: Missing Entry in ETA-DT Dataset 59

5.7 Results for Experiment: Over-Estimation on SSTG-GRUD model . 61

5.8 Results: METR-LA Dataset . 62

5.9 Results: ETA-DT Dataset . 63

5.10 Results: Over-Estimation on ETA-DT Dataset 63

5.11 Results: ETA-DT Test Dataset . 64

A.1 Results for Experiment : AutoRegression 74

x

List of Figures

2.1 Havestine Formula . 8

2.2 Entries Tree Structure . 9

2.3 Bus Route: Dots - Stops, Line - Traversal 10

2.4 Stops along a bus route . 11

2.5 Distance and Time Histogram of bus close to a stop 11

2.6 Red: Previous, Black: Assigned, Green: Next Stop 12

2.7 Direction Alignment . 13

2.8 LIS Algorithm: Entries removed 13

3.1 Recurrent Neural Network . 18

3.2 Fully Connected vs Convolutional Neural Network 22

3.3 Spatial vs Spectral Convolutional 23

3.4 Graph Convolution Approximation - Block Diagram 25

3.5 Sub Sampling . 27

3.6 Handling Bias by recomputing Laplacian for each sub-graph 30

4.1 Seq2Seq Architecture . 35

4.2 LSTM vs FC-LSTM . 35

4.3 Diffiusion Convolutional Recurrent Neural Network 36

4.4 Graph Convolutional Layer and Spatio-Temporal Block 38

4.5 Proposed - Simplified Spatio-Temporal Graph 39

4.6 GRUD Layer in SSTG . 39

5.1 Experiment: GCN vs DCRNN . 47

5.2 Validation Error: GCN vs DCRNN 48

5.3 Single Order Convolution . 48

5.4 DCRNN vs SGC : Training and Error Loss Minimization 48

5.5 DCRNN vs SGC : Performance on Validation set 49

5.6 Learning 1: Node Sampling . 50

xi

5.7 Node Sampling on DCRNN model 50

5.8 Sub Sampling . 51

5.9 Random Walk Sub Sampling . 52

5.10 Teacher Force vs Auto Regressive Training 52

5.11 Curriculum Training . 53

5.12 Mean Square Error during Validation 54

5.13 Corrected: Validation Error . 55

5.14 Corrected: Training Error on METR-LA Dataset 55

5.15 LSTM vs GCN . 56

5.16 Gradients for LSTM Kernel . 57

5.17 Batch Loss on different Value of epsilon 58

5.18 SGC: Overfitting during Validation 59

5.19 SSTG-GRUD: Performance . 59

5.20 Overestimation Percentage . 60

5.21 SSTG-GRUD: Training Error vs TTR Decay 61

A.1 Professor Training . 71

A.2 RL-Validation Performance . 72

A.3 ε value for different models . 73

A.4 TTR Decay of a different algorithm 74

xii

Chapter 1

Introduction
Traffic Congestion impacts our society adversely on the economy, environment,

and mental health. On an average, a Delhi resident wastes approximately seven days

[1] due to traffic congestion in a year. Another study [2] highlighted that the traffic

congestion amounted to approximately |54000 crores in Delhi in 2013. One way to

resolve this problem is by strengthening the public transportation services, providing

end-to-end mobility and ease of use in accessing the public services.

However, the share of non-captive riders, who are formally employed and earn

more than |50000 per month, is less in the Delhi bus system as compared to Mumbai

[3], because of punctuality and travel time. Another study [4] highlighted the reason

behind the transition of commuters from bus to the Metro. While 83% of the com-

muters moved to reduce their travel time, approximately 37.4% bus riders believe

that buses are less punctual when compared with the Metro.

The recent initiative of open-data [5] has provided real-time access to the bus

movement in the General Transit Feed Specification (GTFS) format, which enables

the development of services to facilitate a better experience for an average rider and

thereby improve the usability of the buses. One of the primary reasons behind the

poor share of non-captive riders in Delhi buses is the punctuality of the buses; ensur-

ing timeliness is challenging, especially during rush hours in Delhi traffic.

It is possible to provide riders with a heads-up on the amount of time taken by

the bus to reach their location. Providing estimation of arrival time can aid a user in

deciding whether to opt for public transport or use private depending on convenience.

According to a study[6] on the bus service in Chicago, an increment in ridership,

approximately 126 rides per day was observed after providing real-time information

of the buses.

Estimating the time of arrival is a challenging problem, especially in Delhi. Key

features like speed, time taken exhibit complex Spatio-temporal relationship. E.g.,

1

Two vehicles might take drastically different times to travel the same distance in

two neighboring streets, while it might take a similar time to travel farther located

expressways. It is very common that traffic during rush hours is smooth in one di-

rection but congested in the opposite. Thus, it is essential to model the temporal

relationship based on the vehicle’s path and the spatial relationship with different

locations.

It is preferable to provide over-estimated results. Let’s say the estimated arrival

time for the bus is 10:30, but it arrived at 10:32 this incurs discomfort as the rider

would have to wait for 2minutes but what if it came at 10:28 and left even before

10:30. The penalty incurred by a rider with over-estimation is minor as compared to

under-estimation.

1.1 Existing Work

There are various methods available to model the temporal sequences. ARIMA

(Autoregressive Integrated Moving Average) and SARIMA (Seasonal ARIMA) have

been used to model univariate traffic data [7] and predict short-term traffic at a fixed

location. ARIMA and SARIMA rely on Wold Decomposition, i.e., any stationary

time series can be written as the sum of two time series, 1) deterministic and 2)

stochastic. Thus, if we can transform a series into a stationary, it would become

simpler to predict the output as the stationary sequence becomes independent of time.

If a time series is not stationary, it can be converted by computing the difference

of contiguous elements which are k distance apart. SARIMA is a special case of

ARIMA, in which the difference is modeled based on seasonal information of the

time series.

Kalman filter is an algorithm that aims to estimates a function which fits the noisy

input. Kalman filters are used to smooth the jerk in any real-world process, like GPS

data fetching e.t.c. It models the internal state space using a Markov chain to learn

the state-transition matrix given the observations. Kalman Filters has been used to

model the spatiotemporal data [8] and ETA prediction [9], [10].

A hybrid system [11] has been proposed in which SVM is used to model the ETA

2

on key points based on historical metadata about the trip such as start-time, weather,

route condition, travel time for a road segment to predict the ETA for key points

between the trip. Kalman filters are used for interpolation between the key points in

order to make adjustment if required based on the real-time input.

Deep Learning techniques are also used for future prediction tasks. In seq2seq

[12], the authors proposed a deep neural network that can estimate the output for the

next k steps using the input features of k1 sequence length. It uses LSTMCell for

temporal modeling and a full connected layer for spatial modeling.

In [13], the authors proposed FC-LSTM, which shares the weight between ver-

tices, thereby reducing the overall footprint of the network, but it implies that the ver-

tices are independent of each other. ConvLSTM [14] improves upon the FC-LSTM

by using convolutional layers for spatial modeling.

The ConvLSTM uses spatial convolutional operator and works well for ordered

data, which is not the gurranteed with graphs. To model the Spatio-temporal re-

lationship, the spatial convolutional operator is replaced with spectral convolutional

operator [15], [16], [17]. DCRNN improves upon the T-GCN by modifying GRUCell

to compute graph convolution instead of matrix multiplication.

Generative models [18] have also been used for estimation of the time, a gener-

ative model aims at modeling the distribution of the input data, i.e. spatio-temporal.

It works in autoregressive configuration i.e. the output at kth time interval is not just

conditioned on the input feature but also on the output of k−1....k−p steps where p is

the overall receptive field of the network.

In [19], [20], the distance between the vertices is used to represent the weighted

adjacency, which works well. But it would award less score to far-away highways

that are more likely to operate similarly or awards a very high score to the opposite

direction of the road. Graph Attention Networks [21] aims at learning the adjacency

on the fly by modeling the relationship of the vertices with themselves. Correlation

between the vertices can also be used to build the adjacency matrix using relationship

between the vertices. The techniques discussed in this thesis extent these works on

Simplified and Scalable Spatio Temporal Modeling.

3

1.2 Problem Statement

The time taken by a bus to travel between the two stops can be used to provide a

head’s up on approximate travel time between stops at a given time. In a given transit

system, we have multiple vehicles running between stops following a pre-assigned

route. The arrival time for a given set of routes needs to be processed in a single

operation instead of sequential operations for each route. As not every vehicle is

expected to cover the edge at every time interval. In some cases, the data get lost

because of poor connection, leading to missing entries. We need to consider the

effect model has when it over-estimates the arrival time vs. under-estimation.

The input data is a list of entries, such that each entry consists of trip id, route

id, GPS coordinates, speed, and the time stamp. We have over 20 lakh entries for

a given day, such that each trip has, on average more than 160 entries sampled at a

frequency of 10sec, where some entries are lost due to signal error. The thesis solves

the following two problems:

• Modeling the raw GPS sequences into a tensor, T ∈ RN×T×V , where N is the

number of days, T denotes the sampling frequency per day, and V represents

the edge, i.e., transition from one stop to another.

• Estimation the arrival time in advance using a compact yet scalable model

that learns the Spatio-temporal relationship and handles the missing data. It

provides a mechanism to finetune the overestimation rate.

1.3 Contribution

The objective of this thesis is to model the Spatio-temporal relationship for arrival

time Estimation of buses using the open data of Delhi. We will first refine the raw

data and define the structure as it is challenging to model raw sequences of GTFS

data considering we have an average of 26 trips on 1085 routes every day. We will

then decouple the data from the buses, as running on individual buses independently

is counterproductive as the experience of a nearby bus may aid in a better relationship

4

than the previous time-step. There are multiple buses traveling between single hop

at a given time, thereby reducing the overall variance of input data.

After that, we will define neural network based framework and training tech-

niques that can be used for modeling, followed by the proposed framework, which

scales up efficiently on large databases,

The main contribution of the thesis can be summarized as follows.

1. We propose a scalable Spatio-temporal ETA prediction framework that predicts

the future ETA of a large network in the presence of missing data.

2. The proposed framework models the spatiotemporal characteristic in the ETA

data using a Graph convolution-based framework.

3. To efficiently train the ETA framework to a large network, we employ sampling

during training.

4. The proposed framework process the missing data to improve the prediction

performance in the presence of high missing entries.

5. To improve the overestimation, we have shifted from the MSE loss function to

a modified MSLE loss function.

6. We conduct comprehensive experiments on real-world ETA and traffic speed

datasets that show the efficacy of the proposed method over the other state-of-

the-art methods.

1.4 Structure

The thesis is organized as follows:

• Chapter 2 presents the preprocessing techniques require to model the raw GTFS

data into Spatio-temporal tensor.

• Chapter 3 overviews the concepts and framework used in the thesis.

• Chapter 4 overviews the algorithms used for comparison and our proposed

framework.

5

• Chapter 5 presents the Experimental Results and Analysis.

• Conclusion and Future work are provided in Chapter 6.

6

Chapter 2

Modeling Raw Data to Tensor

2.1 Introduction

Open transit data enables an exciting opportunity to aid passengers in improving

their travel experience. The open transit data follows GTFS format [22], General

transit feed specification, which consists of two components 1) static and 2) feed.

The static data consists of routes information, stops details, and other information

which does not change over time. In contrast, the feed data consists of real-time

information consisting of bus metadata, timestamp, and spatial coordinates.

Each entry in the data consists of coordinates of a bus at a given time following a

predefined route. While it is a very efficient way to store data for real-time exchange,

but requires iteration through the complete dataset to get details of a specific trip,

which is computationally expensive. Similarly, given a trip, multiple entries along

the route are available, but it is required to filter out entries that are not nearby from

a stop to estimate the arrival time. Thus, modeling not just reduces the system’s

complexity but also removes any irregularities from the data.

2.1.1 Background

Each entry in the dataset consists of GPS coordinates at a given time. As the

points are represented in the spherical coordinates system, the calculations need to

incorporate the spherical nature of the earth.

1. Havestine Distance between two points: As the earth is spherical, the straight

line distance needs to be calculated along the arc, while the Euclidean distance

is a circle segment. Hd(BC) = α ∗ R, where α is the angle of the arc, and

R is the radius. α can be computes as sin(α) = d
2R

, where d is the eucledian

distance between the points.

2. Mid Point of two points: Earlier, we were calculating the distance BED (Fig.

7

Figure 2.1: Havestine Formula, R is the radius, BC is the eucledian distance, and
BEC is havestine distance

2.1), we also require coordinates of E point. We use the value of D as E by

assuming that the earth is locally flat, where D is calculated as the midpoint in

cartesian system.

2.1.2 Motivation

The aim is to design an algorithm that can preprocess the data of a given day into

a matrix, Mf ∈ RK×T where T is the sampling frequency on a given day, and K is the

number of locations edges. Here an edge represents the time taken by bus to go from

a stop, s to the next connected stop. This representation decouples the information

about the bus, enabling 1) improving the scalability of the system and 2) reducing

the variance as the time taken by multiple buses are averaged.

2.2 Modeling

The process of modeling Mf has been broken down into four independent sub-

processes to reduce the complexity of the overall system and improve the debugging

capabilities.

2.2.1 Entries to Tree

In this subprocess, we restructure(Alg. 1) the input data into a tree format such

that the first child of the root contains all the trips on a particular route, and its child

stores a list consisting of individual trip information. The tree structure (Fig. ??)

reduces the complexity of trip querying from O(NR ∗ NT ∗ TE) to O(NR + NT),

8

where NR denotes the total number of routes, NT denotes trips on a given route, and

TE denotes the number of entries in a trip.

Figure 2.2: Entries Tree Structure - Root node is date, with its children describing
data from the individual routes and the leaf nodes consisting of individual trip data.

While adding to a given trip, we assert that there are no duplicate entries. It

reduces the overall entries by 20%, which is huge considering more than a million

entries each day.

Algorithm 1: Restructuring the entries into tree
Result: T, tree as described in 2.2.1
Initialization : T = {}, Id = Input Data ;
for Entry ∈ Id do

route, trip, x = Entry
if route /∈ tree then

tree[route] = {}
else

if trip /∈ tree[route] then
tree[route][trip] = x

else
t−1 = tree[route][trip][−1].time
if x.time! = t−1 then

tree[route][trip].add(x)
end

end
end

end

9

2.2.2 Assigning entries to stops

A trip consists of entries present all over the route path, and this sub-process filter

out entries that are not in proximity to a given stop.

The brute force approach assigns an entry to a stop with the minimum distance.

The alignments are accurate, but the complexity is O(TE ∗ TN), where TN is the

number of stops in a trip. The computation would scale up as this process needs to

be repeated O(NR, NT) times. Also, it might introduce alignment with extra stops

which the bus never covers.

Figure 2.3: Bus starts from Anand Vihar stop(red), and should end at the Nangloi
Extension(green).

Given an ordered list of stops, [S1, S2, ...SN] on a route, for an entry, ei we search

for the stop, Si,

Si :
(
Hd(Si, ej) < Hd(Si+1, ej)

)
∧
(
Hd(Si, ej) < ε

)
(2.1)

where ε is the threshold. The alignment assigns an entry to a particular stop if it is

closer than the next stop and the distance between the stop and entry is less than a

threshold, ε. It is done, because not all trips starts from their source’ stop (Fig. 2.4).

The thresholding is helpful in scenarios where a stop’s GPS location is wrong. If

Si+1 is very far, then all of the entries would be assigned to the stop Si only. We used

the value of 250m as epsilon and observed an increment of 5% in stop alignment of

the data.

The value of 250m was taken based on multiple factors, like the percentage of

stops aligned vs average speed required to cover a distance in 10 seconds, which

is the frequency of our data. On average, more than 80% of the entries are under

10

Figure 2.4: Stops : Blue circle, and Entries: purple line; there is no entry before the
second stop.

50m distance from the stop, but 6% of the entries above 150m are the only readings

aligned for the given stop, thereby reducing the missing alignment data from 46% to

42%.

(a) Distance from a stop (b) Time taken at a stop

Figure 2.5: Histograms

2.2.3 Time interpolation

Now, we have multiple entries in proximity with a given stop; still, we need to

assign a specific time to a given stop as it could take anywhere between 10sec to 4

minutes to travel 250m. We take few assumptions to assign the time,

• We set the ideal displacement of the bus from a stop’s as−32m, i.e., we assign

the time to any stop as the time taken by a bus to reach 32m before the stop’s

location. Here, 32m is equivalent to the length of two buses, and to promote

over-estimation.

• We only consider entries that are fetched within 2.5 minutes of bus reaching

the closest point from both directions. The threshold automatically increases

11

to 5 minutes when there are fewer entries available. Here, the value of 2.5

minutes is based on analysis of bus waiting time(Fig. 2.5b) at a given stop.

This threshold removes any outliers on the terminal stops.

Given the aligned entries, we need to estimate the time at which the bus is 32m

before the stop. We first need to mark entries based on their location relative to the

stop, i.e. whether the entry is logged before or after the stop. Assigning direction

based on the distance from neighbouring stops lead to in-correct assignment due to

missing entries in one or another direction as shown in Fig. 2.6.

Figure 2.6: Red: Previous, Black: Assigned, Green: Next Stop

Even though the entry is after the stop, it would be assigned as before because it

is closer to the previous stop than the next stop. Also, distance for direction could

introduce errors in stops that are not in the straight line. Thus, we compute the angle

between entry and neighboring stops to assign direction.

Algorithm 2: Assigning Direction to an entry
Result: D, boolean; 0 refers to before, and 1 as after the stop
Initialization: s: stop id; de : direction of an entry; dn : direction of stop;
if len(dn) is 1 then

#Edge condition, start and end stop;
#Assigns opposite direction;
if s is 0 then

dn = (−dn, dn);
else

dn = (dn,−dn);
end

end
D = dn[1].dot(de) > dn[0].dot(de)

Once the direction is assigned, we use the longest increasing subsequence(LIS)

12

(a) Example 1 (b) Example 2

Figure 2.7: Direction Alignment; red - towards stop; blue - away from the stop

algorithm(Eq. 2.2) to ensure monotonicity in the displacement around the stop.

L(i) =

1 +max(L(j)) (x[j] < x[i]) ∧ (0 < j < i)

1 otherwise

(2.2)

We also tried Kalman filters to smoothen the coordinates and avoid removing any

entry, but 1) Kalman filters are computationally expensive, and 2) these entries have

less than 15m of distance, highlighting the stoppage of bus and should have no effect

on the time estimation. The LIS algorithm operates with O(TE), and we observed

a 5% reduction in the entries, but it was less than 2.5% when the entries count were

less than five and increased up to 40% when the count reached 30 as shown in Fig.

2.8

Figure 2.8: Entries removed using LIS Algorithm

The monotonicity was introduced, 1) to cross-check if the alignment of direc-

tion is correct, 2) remove entries when the driver forgets to switch off the recording

device or waits for longer duration of time. The monotonicity also enables easier

13

interpolation as distance can now be used as an independent variable.

We used interpolation to estimate the time at the −32m mark, assuming that the

bus travels with constant speed as cubic spline and other polynomial interpolater did

not perform well. The linear interpolation is directly used if there are entries before

and after the mark. We did not use linear interpolation for extrapolation as the results

were not robust. For extrapolation, we break it down into three cases. If multiple

entries are present, we compute the speed between consecutive entries and use the

closest to the required speed. If there is only one entry present, then we use the

corrected instantaneous speed (scaled up by the factor of 3.6) if the speed is not zero,

or else we assume the speed as 2.7m/s.

The quality of time estimation can be computed based on how much time a bus

takes to reach the stop B from A. We labelled the entries as mis-alignment if the time

taken is less than 30s or more than 30min.

Time Mis-Alignment

Interpolator Cubic Spline Linear OUR

% Error 28% 2.26% 2.24%

14

Algorithm 3: Time Interpolation Algorithm for a stop
Result: t, time taken to reach 32m mark.
Initialization : Id = list of entries, and t, s = stop ;
diff returns difference of consecutive elements
if (diff(Id) < 0) then

t = unique(Id.t);
Id = Id[t];

end
havestine distance between a point and stop.
Id.d = Hd(s, Id);
Cp = argmin(Id.d);
Rescale the origin of time to the closest entry.
tref = Id.t[Cp];
Id.t = Id.t− tref ;
Ip = zeros(len(Id));
2.5minutes thresholding
Ip[−15 + Cp : 15 + Cp] = 1;
5minutes thresholding
Ip = Ip ∧ (Id.t < 5 ∗ 60) ∧ (Id.t > −5 ∗ 60);
Id = Id[Ip];
direction assignment using Alg. 2.7
ID = direction(Id);

15

if (Id[0] < −32 ∧ Id[−1] > −32) then
t = interpolate(Id.x, t)(−32)

else
if len(Id) > 1 then

disprequired =

{
ID.x[0] + 32 ifID.x[0] > −32
ID.x[−1] + 32 otherwise

;

displacement = diff(ID.x);
p = argmin(|displacement− disprequired|);

Vc =
displacement[p]

Id.t[p+ 1]− Id.t[p]
else

Vc =

{
3.6 ∗ Id[0].v Id[0].v > 0

2.7 otherwise

t =

{
time[0]− drequired/Vc ID.x[0] > −32
time[−1] + drequired/Vc otherwise

t = t+ tref

2.2.4 Tree to Tensor

Given the stop time-alignment, this subprocess aims at generating tensor, T for

a day of shape RK×T , where K is the number of edges and T is the time. The

tensor representation decouples the time estimation from trips, which increases over

time and reduces the overall variance as different buses cover the same edge with

approximate; we observed each non-zero entry is sampled 2.7 times.

We discretize the time into buckets of 10minutes; a reduction in the bucket size

increases the sparsity. We observed that 32% of the time bus repeats its trip within

the 10minutes. This number reduces to 16% if buckets of 5minutes are used, but the

sparsity increases from 76.7% to 84%.

16

Algorithm 4: Tree to Tensor Algorithm
Result: Tensor, T

Initialization: t, tree; h, dict() stores index for an edge alignment;

for route in tree do

for trip in tree[route] do

for stop in range(Ns − 1) do

data = tree[route][trip][stop];

data+1 = tree[route][trip][stop+ 1];

if data is None OR data+1 is None then
#mis-alignment

continue;

end

time = (data+1 − data);
if time < 0 OR time > 1800 then

continue;

end

T [h[stop][stop+ 1], time//600]+ = time/60;

end

end

end

17

Chapter 3

Preliminaries
Understanding the behavior of a process requires analyzing the underlying rela-

tionship. While the relationships between the independent variables of a quadratic

polynomial is simple, most real-world strategies follow a complex pattern. In recent

times, neural networks have achieved the state of the art performances in modeling

real-world processes. This chapter will focus on different neural network models and

training strategies for scalable and efficient Spatio-temporal modeling.

3.1 Temporal Modeling

A recurrent Neural Network (or RNN) is a type of neural network which contains

a self-loop (Fig. 3.5) on a temporal sequence. The self-loop enables the modeling of

change in the input over a constant time interval.

We can use a multi-layer perceptron for temporal modeling but it would require

O(t ∗ k) memory, where t is the sequence length and k feature size. Also, would

requires more permutations of data because trainable parameters are independent of

the time domain.

Figure 3.1: Recurrent Neural Network

As the trainable parameters are shared across time steps, it only requires O(k)

memory during inference. However during training, It unrolls the RNN to make t

copies of the weights as part of gradient backpropagation through time, BPTT [23].

While the sequence length is one of the issues limiting its scalability, the other sig-

nificant problems are Vanishing and Gradients Explosion.

18

3.1.1 Vanishing Gradient

Vanishing Gradient is a condition in which gradients are not able to propagate

back to the initial layers. It occurs in neural networks which consists of many layers

as,
∂l

∂Ok−1
=

∂Ok

∂Ok−1
∗ ∂l

∂Ok

, acc to chain rule (3.1)

where Ok−1, Ok are the output of k − 1th, and k layers respectively.

Thus, gradient of kth layer,

∂l

∂Ok

=
∂Ok+1

∂Ok

∗ ∂Ok+2

∂Ok+1

∗ ∗ ∂l

∂O−1
(3.2)

is directly proportional to the gradients of a layer’s output wrt to input, if the gradi-

ents in-between layers become less than 1, then the effect on kth layer would increase

exponentially. It eventually saturates the learning curve, hence leading to the vanish-

ing gradient. If the value of the gradients becomes more than 1, it might lead to the

problem of exploding gradients, i.e., Gradients become too large (∞ or undefined).

It is more prominent in Recurrent Neural Networks with large sequence length,

as the gradient for ith time step is,

∂l

∂Oi
=
∂Oi+1

∂Oi
∗ ∂O

i+2

∂O1+1
.... ∗ ∂l

∂O−1
(3.3)

thus,
ht = f(Wht−1 + Uxt + b),

⇒ ∂ht

∂ht−1
= f ′(ht−1) ∗W

∴
∂l

∂ht
= W T−t

T∏
k=t

f ′(hk)

(3.4)

∝ W k, where k is the number of steps to the end of the sequence; it introduces

instability, either vanishing gradients or gradient explosions.

19

3.1.2 LSTM and GRU

To mitigate the gradient stability issues, Hochreiter [24] proposed a gating mech-

anism inside the RNN Cell, known as Long Short Term Memory (LSTM) which

controls the flow of information, thereby improving the stability of the network.

v = σ(Wht−1 + Uxt) (3.5)

[it, ft, ot] = v (3.6)

C∗t = tanh(W ght−1 + U gxt) (3.7)

Ct = ft ◦ Ct−1 + it ◦ C∗t (3.8)

ht = tanh(Ct−1) ◦ ot (3.9)

where U,W are the learnable weights, xt is the input at time step t, and ht, ct are

the hidden states.

The gradient of cell at time t,

∂Ct
∂Ct−1

=
∂(ft ◦ Ct−1 + it ◦ C∗t)

∂Ct−1

=
∂(ft ◦ Ct−1)
∂Ct−1

+
∂(it ◦ C∗t)
∂Ct−1

=
∂(ft ◦ Ct−1)
∂Ct−1

+ ε

= ft ◦
∂Ct−1
∂Ct−1

+ Ct−1 ◦
∂ft
∂Ct−1

+ ε

= ft + Ct−1 ◦
∂ft
∂Ct−1

+ ε

= ft + ε

∴
∂l

∂Ct−1
=

T∏
k=t

fk + ε

(3.10)

where ε stores the gradient which is susceptible to vanishing gradient due to the

presence of W k (as highlighted in Eq. 3.4).

Thus the gradient back propagating through lstm cell is atleast
∏T

k=t fk (from Eq.

3.10). The value of fk is also controlled between [0, 1] using sigmoid gate, and also

20

depends on the output value at time t, fk.

A simplified version of LSTM was proposed by Kyunghyun [25] known as Gated

Recurrent Network, GRU, which reduces the number of gates required, thereby re-

ducing the computation and providing similar performance.

v = σ(Wxt + Uht−1 + b)

[rt, zt] = v

h∗t = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

ht = (1− zt) ◦ ht−1 + zt ◦ h∗t

(3.11)

Similarly to lstm, GRU ensures minimum gradient backprop of
∏T

k=t(1− zk).

LSTM and GRU reduce the effect of vanishing gradient but do not handle the

issue of gradient explosion, and for that, gradients are clipped if required.

3.2 Spatial Modeling

Convolutional Neural Network (CNN) is a type of neural network that aims to

model a signal’s spatial relationship. It consists of fc(x) which computes convolu-

tional of input X ∈ RS1×S2...Sn×N with learnable weights, W ∈ RK1×K2...Kn×M ,

where S1, S2, ...Sn are the spatial dimension over which convolution takes place,

K1, K2...Kn are the spatial dimension of W, or the receptive field of CNN, andM,N

are input and output feature size respectively.

fc(x) for an ordered data is given by,

fc(x, i) =
∑
K

xi:i+K ◦W (3.12)

where K denotes the summation of features across the spatial dimensions, and i

is the vector representing a location of x.

CNN’s are inspired by the concept of convolution in signal processing, but the

mathematical operation of CNNs computes correlation. Some of the key benefits

provided by CNNs over fully connected layers(FCN) are,

21

(a) Fully Connected Network (b) Convolutional Neural Network

Figure 3.2: Circle represents an embedding, while line represents learnable weights.
In FCNs, weights are different (even for three As or two Ps), while in CNNs, weights
are shared (shown with different color), and hence the network can generalize the
feature for three As based on its neighbourhood. Source: Modified; originally from
Chapter 4: Convolutional Neural Network by Oreilly.com

• Size of the learnable parameter is independent of the input, x, and is controlled

as receptive field hyperparameter. In case of FCNs, size is directly proportional

to x (Fig. 3.6a).

• CNNs requires less training data when compared to FCNs, especially when the

data is repetitive because of parameter sharing (Fig. 3.6b).

• CNNs are also known as a regularized version of FCNs as the scale of con-

nectivity and complexity is less than or equal to FCNs depending upon the

receptive field.

3.3 Graph Convolutional Network

The convolution operator defined in Eq. 3.12 models the relationship between

data based on the spatial ordering of the data. i.e., for a given location, the output

feature would depend on the following k elements. But, a graph is not guaranteed to

be ordered; for example, in Fig. 3.3a we can not say whether P comes before L or

after, as Apple and LEP are possible and valid structures.

We can illustrate the importance of ordering in CNN with the help of adjacency

matrices, which is one of the fundamental ways to represent a graph (Fig. 3.3b).

22

https://www.oreilly.com/library/view/learning-tensorflow/9781491978504/ch04.html

If we use a CNN with the receptive field of size 3, the relationship of vertex A

with {P,N} will be captured. But for P , it can either be with {A,N}, {L,E}, or

{N,L,E} even though P has {A,E, L} as adjacent.

Thus, vanilla CNN is not a correct approach for modeling the spatial relationship

of a graph, and would not be scalable as the number of vertices in the graph increases,

or the sparsity of the graph increases.

N

A

P

L E

(a)


− A P N L E
A 0 1 1 0 0
P 1 0 0 1 1
N 1 0 0 0 0
L 0 1 0 0 1
E 0 1 0 1 0


(b) (c)

Figure 3.3: a) Graph, G where Each vertex represents one alphabet, with edges repre-
senting their relationships, b) Adjacency Matrix of G, and c) highlights one possible
structure of interest from the graph.

Graph Convolution aims at computing convolution on graphs efficiently and cor-

rectly. If we compute the Fourier transform of Eq. 3.12, we can rewrite convolution

as,

fc(x, i) =
∑
K

xi:i+K ∗W (3.13)

f fc (x, i) = xf ◦W f (3.14)

where xf , x−f denotes the Fourier and inverse-Fourier transform of x wrt graph, G

respectively. xf = UTx, and x−f = Ux. U is the eigen vector of Laplacian, L of G.

This transformation is known as convolution property.

We can write the convolutional of a graph signal with a learnable parameter as,

fc(x, i) = (xf ◦W f)−f

fc(x, i) = U(UTx ◦ UTW)
(3.15)

23

We can write fc as,

fc(x, i) = U(UTW ◦ UTx) (3.16)

as hadamard product is commutative.

Now replacing diag(UTW) = W ′,

fc(x, i) = U(W ′UTx) (3.17)

because dot product and matrix multiplication with same for diagonal matrix,

The Eq. 3.17 computes the convolution of graph signal with a learnable parame-

ter, but the Fourier transformation brings few challenges,

• Time Complexity to compute the Eigenvector isO(V 3), where V is the number

of vertices.

• The Convolution operation is not localized in space and computes the feature

vectors of each vertex with respect to all the vertices, requiring memory pro-

portional to graph size and affecting the distant and less-important vertices.

3.3.1 ChebNet

To handle the above-mentioned issues, Hammond [16] proposed ChebNet, which

uses Chebyshev Polynomials [26] to approximate the graph convolution and reduce

time complexity. Using Chebyshev Polynomials, we can approximate any function

f(x) as,

f(x) =
∞∑
i=0

AiTi(x) (3.18)

where Ti(x) = xTi−1(x) − Ti−2(x), given T (0) = 1, T (1) = x, and A0, A1...Ai

are the learnable parameters. Also, x ∈ [−1, 1], and f(x) needs to be continuous and

single value.

Thus, using Eq. 3.18, we can approximate W ′ = diag(UTW) as a f(λ′), where

λ′ = 2 λ
max(λ)

− 1. It is done to normalize the eigen value between [−1, 1] as eigen

value of Laplacian is always greater than or equal to 0.

24

(a) Computing Graph Convolution using spec-
tral transformation

(b) Approximating the Graph Convo-
lution using Chebyshev polynomials.

Figure 3.4: Graph Convolution Approximation - Block Diagram

W ′ =
k∑
i=0

θiTi(λ
′) (3.19)

where, Wi is the approximation upto order k, and θi is the learnable parameter.

Now, fc(x, i) can be written as,

fc(x, i) = UW ′UTx

Putting the value of W ′ from 3.19

fc(x, i) = U
k∑
i=0

θiTi(λ
′)UTx

Rearranging

fc(x, i) =
i∑

k=0

θk(UTk(λ
′)UT)x

fc(x, i) =
i∑

k=0

θkTk(L
′)x

(3.20)

where L′ = 2 ∗ L
max(λ)

− I . The proof of Eq. 3.20 is present in A.9.

∴ fc(x, i) =
∑k

i=0 θiTi(L
′)x is not just time efficient with O(V 2) complexity but

is space localized as θi can be scalar or vector of constant size. Also, k represents

the receptive field of the convolution as Tk(L′) would compute the laplacian upto k

distant vertices from a given vertex thereby reducing the effect on distant vertices.

25

3.3.2 GCN

ChebNet suffered from the problem of overfitting and over smoothening, and to

reduce that Kipf [15] proposed few changes to the ChebNet. Instead of learning a k

receptive fold using single convolutional layer, GCN proposes k convolutional layers

such that each layer is a linear function of Laplacian followed by non-linearity.

Setting k = 1;

fc(x, i) = (θ0T0(L
′) + θ1T1(L

′))x

fc(x, i) = (θ0I + θ1L
′)x

fc(x, i) = (θ0I + θ1(
2L

max(λ)
− I))x

Approximating max(λ) = 2;

fc(x, i) = (θ0I + θ1(L− I))x

(L = D − A =⇒ L = I −D−1/2AD−1/2)

fc(x, i) = (θ0I + θ1(I −D−1/2AD−1/2 − I))x

fc(x, i) = (θ0I − θ1D−1/2AD−1/2)x

Assuming θ1 = −θ0 =⇒ θ;

fc(x, i) = θ(I +D−1/2AD−1/2)x

Rearranging for numerical stability

fc(x, i) = θD−1/2(A+ I)D−1/2x (3.21)

The approximation of max(λ) is from the assumption that neural networks will be

able to scale with the input, and θ1 = −θ0 is made to reduce the parameter in a single

layer. K separate layers over a single layer with k convolutions are used to increase

the overall non-linearity.

3.3.3 SGN

In GCN, the underlying assumption is that the learning would improve due to

presence of non-linear activation between many layers with less parameters, as shown

26

with CNNs but SGN [17] hypothesise that presence of non linearity between layers

is not of importance as much of the benefit arise from averaging with the neighbour-

hood vertexs using Laplacian matrix. Thus, the network becomes,

GCN k layer network, (3.22)

Ok(x) = σ(fc(..k....σ(fc(σ(fc(Xi)))))) (3.23)

Removing Non linearity, (3.24)

Ok(x) = fc(..k....(fc((fc(Xi))))) (3.25)

Putting fc(x) as L∗θx, where L∗ = D−1/2(A+ I)D−1/2 (3.26)

Ok(x) = (L∗...k...L∗)(θk....θ0)Xi (3.27)

Ok(x) = L∗
k

θXi (3.28)

Thus, we can collapse the k layers as a single layer. The network can learn the

feature representation up to the k layer using a single pass while avoiding additional

parameters and improving numerical stability compared with ChebNet.

3.4 Sub Sampling

Graph Convolutional Network enables scalable modeling for small to medium

graphs, but as the size of the graph increases (5.1.3), the computational requirements

increase too.

With the ordered data, it is easier to crop the input images w.r.t. to the overall

receptive field of the network. Cropping (or subsampling) is not simple as each layer

model’s k neighbor relationships and different vertices may have distant neighbors.

Figure 3.5: Sub Sampling of Graph for training, Source: towardsdatascience.com

27

https://towardsdatascience.com/an-intuitive-explanation-of-graphsage-6df9437ee64f

In GraphSaint [27], a subsampling technique was proposed, which aims at se-

lecting subgraphs to 1) to efficiently train large graphs and 2) regularize large graphs

(similar to dropout) to reduce over smoothening. Thus, sub-sampling enables train-

ing on a portion of the dataset, accompanied by improvement in generalization.

3.4.1 Random Sampling

The most naive technique is to sample the vertices randomly, i.e.

SN = random(V,N) (3.29)

where random(x, k) function uniformly samples k integers from 0 → x without

repetition. While the random sampler adds minimal computational penalty, it is not

used as it might ignore the neighbors of a given vertex and select un-related vertices

altogether, especially when working with sparse graphs.

3.4.2 Node Sampling

The Node sampling techniques sample the vertices based on the importance of a

given vertex, as shown in algorithm 5. The vertices are initially sampled with repe-

tition, and once the vertices are sampled, only unique vertices are used as sampling

copies of the same vertex introduces instability in the system and is not correct.

Algorithm 5: Node based Subsampling Algorithm
Result: SN = set(V1, V2.....Vk)

initialization : P (vi) =
∑
jWij∑
j P (vj)

∀i, Ns = 0, SN = set() ;

while Ns < k do
where | =∼ samples one element from v with repetition

SN | =∼ P (v);

Ns ++;
end

Thus, NodeSampler returns vertices that are less than or equal to k, which is the

size of a sub-sampled graph.

NodeSampling, on the one hand, adds an extra computation cost but reduces the

28

randomness in the sampled graph. It is still not well suited for sparse graphs as the

probability of selecting an edge is directly proportional to the likelihood of choosing

both vertices. If one vertex is less connected, it will result in under-training those

relationships and introduce biases. In order words, if we have sparse graph then a

node-sampled graph is more probable to include most densely connected vertices of

each cluster than neighbours of a particular cluster.

3.4.3 Ripple Walk SubSampling

Ripple Walk SubSampling [28], RWS is a modified random-walk sampling algo-

rithm [27]. Random Walk Sampling has two key advantages, 1) Sn is more probable

to contain the neighbor vertices than vertex-sampling, and 2) It samples the neigh-

boring vertices uniformly, thereby reducing the bias. Initially, the samples select one

vertex to SN , followed by recursive addition of f neighbors of Sn, until k vertices

are sampled.

Algorithm 6: Ripple Walk Subsampling Algorithm
Result: SN = set(V1, V2.....Vk)

Initialization : SN = set(), k ∈ I ;

SN | =∼ U(V, 1); # U(V, f) randomly selects f values ∈ [0, V].

while len(SN) < k do

NC = len(SN);

SC = set();

for Ni ∈ SN do
SC | = neighbours(Ni); # | = is in-place logical OR.

end

SN | = U(SC , f);

if len(SN) == NC then
No new neighbours are added. Adding another root node.

SN | =∼ U(V, 1);

end

end

29

RWS algorithm is biased towards neighbors of a vertex and vertices within a clus-

ter rather than the center of multiple clusters. Also, the number of sampled vertices

is always equal to k, improving the computational efficacy during training.

3.4.4 Bias from SubSampling

A sampler algorithm introduces two kinds of biases, 1) the probability with which

a particular vertex is selected and 2) computing vertex features from selective neigh-

bors. While the former is mitigated with the help of the RWS algorithm. For the

latter, a normalization technique was proposed in GraphSaint [27]. It aimed at rescal-

ing each edge by dividing it with a factor of P (Eij)

P (vj)
. The factor reduces the effect of

more probable edges on the training as the probability of selecting edge wrt to given

vertex, P (Eij|vj).

For the NodeSampling algorithm, we can compute edge and vertex probability

analytically. It is much more complex for the RWS algorithm and required repeated

sampling for numerical estimation, increasing the computation cost. We indepen-

dently observed that computing the Laplacian on the subsampled graph improves the

overall stability of the system, as later found in the implementation of GraphSaint

[27] later on. Thus, we compute the Laplacian of the subsampled and do not perform

any further normalization on it.

(a) Vertex features when 50% sampled, (b) Rescaled with complete graph,

Figure 3.6: Handling Bias by recomputing Laplacian for each sub-graph

3.5 Sequence Learning

The aim is to predict ETA for the next k′ minutes given the input features of

previous k minutes. We use the seq2seq [12] model, which accomplishes it in two

30

phases. In the first phase, known as encoder, last k sequences are modeled, 2) fol-

lowed by the second phase known as decoder, which consumes the embedding from

the encoder to predict the output for the next k′ steps in auto-regression fashion.

In autoregressive settings, an algorithm not just depends on the encoder’s embed-

ding but also on the output of the previous time step too,

Xt = f(Xe, Xt−1) (3.30)

where Xe is the encoder embedding, and Xt−1 is the output from the previous time-

step. Input, Xt−1 to the f can be noisy, especially during the early stages of the

learning, and to mitigate that, Williams [29] proposed teacher force learning,

Xt = f(Xe, X
”
t−1), during training

Xt = f(Xe, Xt−1), during evaluation
(3.31)

whereX”
t−1 is the ground truth value at t− 1th time step. With the help of teacher

force training, we can remove the noisy estimate to f .

3.5.1 Curriculum Learning

The distribution learned through teacher force training expects ground truth as

input, which is not available during evaluation, thereby less generalizable. Bengio

[30] proposed curriculum learning, an extension to the teacher force training(TTF) in

which with ε probability, input to f is the previous output and ground truth otherwise.

Initially, the value of ε = 0, and as the training progress, its value is increased to 1. It

introduces a decay curve, which controls the threshold, ε known as teacher-training

threshold (TTR).

Xt = f(Xe, X
∗
t−1)

where X∗t−1 = ε ∗X”
t−1 + (1− ε) ∗Xt−1

(3.32)

31

We also performed experiments on more complex techniques for Autoregressive

learning but did not yield much improvement over curriculum learning and can be

found in A.2.

3.6 Missing Data

The Recurrent Neural Networks assumes that every input feature is available at

a given time, but it can not be guaranteed for real-world datasets. Thus handling

missing data is essential to ensure consistency and generalizable performance.

3.6.1 GRU-D

GRU-D [31] extends the GRU cell to handle missing data. At first, it learns the

mask which imputes the missing data with the linear combination average and last

seen value depending upon a learned mask (γ1). After that, it rescales the state matrix

based on γ2.

X = X ◦m+ (1−m) ◦ (X1 ◦ γ1 + (1− γ1) ◦X2) (3.33)

where ◦ is the element wise multiplication, X is the input, m is the mask of X; mi,j

is 0 if an entry is missing. X1 is the input value available at any previous time step.

X2 is the average value of input feature. γ1 is the learnable parameters,

γ1 =

e
−(W1∗dt+b1) W1 ∗ dt+ b1 >= 0

0 otherwise

(3.34)

where W1, and b1 are the learnable parameters, and dt stores the time at which previ-

ous entry was available. Similarly, γ2 with W2 and b2 learnable weights are used to

rescale h, h = γ2 ◦ h .

32

GRU-D also adds the missing data information to the recurrent output of GRU as

v = σ(Wxt + Uht−1 + b+ β1)

[rt, zt] = v

h∗t = tanh(Whxt + Uh(rt ◦ ht−1) + bh + β2)

ht = (1− zt) ◦ ht−1 + zt ◦ h∗t

(3.35)

where β1 = W β
1 ∗m, and β2 = W β

2 ∗m; W β
1 ,W

β
2 are the learnable parameters.

33

Chapter 4

Scalable ETA prediction Framework
We have analyzed multiple algorithms, such that each algorithm increases the

overall complexity of the system. Each algorithm takes an input, I ∈ RV×T×K ,

where V represents vertices (location for traffic data, edges for ETA-Data), T rep-

resents the time sequence, and K represents the number of features. It returns an

output, O ∈ RV×T , which is the speed for METR-LA, SP-DT, and time elapsed for

ETA-DT.

4.1 Mean

As stated in Occum’s razor [32], or parsimony principle, the simplest explanation

is the best explanation. Thus, the mean model returns an average value for a vertex

at a given time over training samples. Given an input data consisting of time elapsed

I ∈ RN×V×T ,

Ov,t =
1

N

∑
N

Iv,t, (4.1)

where v represents vertex, t represents time, N represents the number of samples.

On the one side, it does not model any form of relationship, but it is also very fast as

just indexing is required during evaluation.

4.2 LSTM

LSTM uses seq2seq architecture [12] (Fig. 4.1). The encoder consists of Conv1D

and GRU layers to generate the embedding for the input sequence. It takes an input,

I ∈ RT×(V ∗K), which has features of all the vertices concatenated across the last

dimension, and the encoder returns a latent embedding, Le ∈ RN where N is the

size of latent embedding. The decoder comprises of GRU cells to autoregressively

estimate the output for T ′ future steps.

LSTM, on the one hand, enables the relationship modeling of the data, but on the

34

other hand, it is not flexible with the changes in the number of vertices. It is also not

possible to evaluate the model on specific vertices.

Encoder
Decoder

FC
I GRU- GC

GRU- GC

O

GRU
GRUGRU- GCConv

Figure 4.1: Seq2Seq Architecture

4.3 ConvLSTM

ConvLSTM [14] builds upon the work of FC-LSTM [13] in which the parameters

across vertices (Fig. 4.2) are shared i.e. the temporal relationship across vertices is

modeled independently. In ConvLSTM, a Conv2D block is used before the encoder

to incorporate the relationship between the vertices represented by the adjacency

matrix.

(a) LSTM: Independent parameters for all
the vertices

(b) FC-LSTM: Parameters F1, F2, F3 are
shared across vertices

Figure 4.2: LSTM vs FC-LSTM

It takes an input, I ∈ RT×V×K , without any concatenation. The output from the

Convolutional block, Lc ∈ RT×V×M is transposed to RV×T×M . After that, the GRU

layer in the encoder is used to generate the latent embedding, Le ∈ RV×N . The

35

autoregressive decoder then consumes the latent embedding to estimate the output

for T ′ future steps.

4.4 DCRNN

Diffiusion Convolutional Recurrent Neural Network [19], DCRNN is one of the

state of the art architecture to model the Spatio-temporal relationships. It uses Dif-

fusion Convolutional to model the spatial relationships and GRU for temporal rela-

tionships. The GRUCell has been modified to compute diffusion convolution before

applying any fully connected layer, as shown in Fig. 4.3

Figure 4.3: DCRNN : Taken from the original source [19]

Diffusion Convolution layer uses the stationary distribution of the graph for mod-

eling,

Ds =
∞∑
i=0

α(1− α)i(D−1W)i (4.2)

where Ds, represents the Stationary distribution, D−1 represents the degree matrix,

and W matrix represents the adjacency matrix. They have used ChebNet approxima-

tion(3.3.1), and truncate the layer upto kth order of Laplacian. Thus, the Diffusion

convolution of X wrt θ is,

Dc =
k∑
i=0

(θ1k(D
−1W)i + θ2k(D

T−1W)i) (4.3)

36

where DT , aims at modelling the in bound traffic to a particular vertex.

The modifications in GRUCell (from 3.11) are,

v = σ(D0
c ([xt, ht−1]) (4.4)

[rt, zt] = v (4.5)

h∗t = tanh(D1
c ([xt, rt ◦ ht−1])) (4.6)

ht = (1− zt) ◦ ht−1 + zt ◦ h∗t (4.7)

4.5 Proposed Framework

Simplified Spatio-Temporal Graph (SSTG) is our proposed framework, with an

emphasis on simplifying Spatio-temporal modeling. It is based on seq2seq architec-

ture and takes an input of shape I ∈ RV×T×F , where V are the number of vertices,

T is the time-sequence length, and F is the number of input features. It returns the

output of shape O ∈ RV×T .

The input is first processed by the encoder, which consists of two Spatio-Temporal

Graph(STG) Blocks. Each STG block is a modified GRUCell which models the re-

lationship using graph convolution, GC operating in residual fashion [33]. Each GC

layer, GCk consumes output from the previous layer and input to the block using kth

order of Laplacian. The structure of the GC layer and STG Block is shown in 4.4.

The encoder processes input tensor sequentially, such that input, Ie and he at each

time t = ti is
Ie = I[:, ti]

he =

0 ti = 0

Eti−1
otherwise

(4.8)

where Eti is the embedding of the encoder at time, ti. The embedding of encoder at

time te is fed into decoder as the initial hidden state, where te is the time of last input

sequence. The input to the decoder, Id and hd at each time t = ti is,

37

GC Layer

FCL1 L2 FC

FC

I O

(a) GC-Layer: I and O are input
and output respectively. FC is a
fully connected layer, comprises of
dropout, single layer Neural Net-
work, and LeakyReLU activation.
Li© takes dot product with ith order

laplacian.

GRU-GC Layer

GC

| | C

GC

Tanh

OI

?

(b) GRU-GC Layer: σ and Tanh are the activation
functions. The self loop on top represents the hid-
den state. ||© splits the output into two, across the
latent dimension.⊕ and⊗ performs addition and
multiplication respectively. C© computes the com-
plement.

Figure 4.4: Block Diagram of GC Layer and STG

Id, hd =

I[:, te, : 1], Ete t == te

O[:, t], Dti−1
otherwise

(4.9)

where Dti is the embedding of decoder at time, ti. We use ground truth input at time

te acting as the initial input, Ie. The ETA for the further time steps are generated in

autoregressive manner (3.5), as shown in the Fig. 4.5.

We use GRUD-GC as the first cell of the encoder to handle the sparsity in the

input data (Fig. 4.5). GRUD-GC integrated GRUD (3.6.1) updates with the GRUCell

and takes four extra inputs, {I1, Iµ,M,Dt}, where I1 ∈ RV×T×F is the last non-

missing value, Iµ ∈ RV×F is the average value of a feature, M ∈ {0, 1}V,T,F is the

binary mask where 0 denotes missing-entry, Dt ∈ IV,T,F is the total time for which a

particular feature has been missing.

GRU-D transforms the input at any time step t,

I → I ◦M + (1−M) ◦ (γ1 ◦ I1 + (1− γ1) ◦ Iµ) (4.10)

The hidden state is transformed as γ2◦hd. We do not use the GRU-D transformations

on recurrent output as we did not observe any considerable performance boost.

38

Encoder
Decoder

FC
t =t e

No

Yes

Not =t eYes

I

GRU- GC t e

GRU- GC

O

GRUD- GC
GRU- GC

t e

Sampl e

Lapl aci an

trainNo

Yes

Figure 4.5: Architecture- SSTG : Condition t = te is used to feed different inputs at
the initial time of the decoder. te© returns the input at time, t = te.

GRU-GC Layer

GC

| | C

GC

Tanh

O

GRUD

FC

?0

Yes

C

?

e- x | |

C

I

I ?

I 1

M

I

Figure 4.6: GRUD-GC : Condition ≥ 0 is used to ensure the output after e−x

transformation stays in the range [0, 1].

4.5.1 Training Procedure

During training, input to the network is sampled using the RWT sampling algo-

rithm (3.4.3); the sub-graph corresponding to the sampled vertices is used to com-

pute Laplacian. We used random-walk normalized Laplacian because the sum of all

edges for a given vertex is 1 for random-walk Laplacian, and is
N∑
i=1

√
Dv

Di

for sym-

metric normalization. Thus, the symmetric Laplacian requires modeling of degree

for a given vertex, which poses a challenge as the degree of vertices changes when

sampling.

39

The input to the decoder can be the ground truth sample or the previous output.

We use curriculum learning (3.5.1) in which the network gradually switches from

ground truth to the previous output. After testing multiple decay functions, we settled

with the decay function similar to Tanh over the number of training steps.

4.5.2 Evaluation Procedure

During the evaluation, the network can receive input based on three different

policies:

1. RWT sampling: Sampler can used to sample a fixed amount of vertices; it is

of little utility during evaluation as we are looking for ETA prediction of all

the vertices or a specific set of vertices.

2. Complete Graph: We can input the complete graph to the network; it does not

require any normalization or fine-tuning because the Laplacian is random-walk

normalized.

3. Specific Vertex: If we are looking for output for a specific set of vertices,

we can set those vertices as initial for the RWT sampler and evaluate at a

much faster rate when compared to the complete graph. It operates without any

modification, but to get the stable output, we need to ensure a good percentage

of neighbors are present in the set of sampled vertices.

The output at the previous step acts as input for the decoder, and thus the decoder

entirely operates in AutoRegressive Fashion.

40

Chapter 5

Experimental Results and Discussion

5.1 Datasets

To quantitatively analyze our framework, we evaluated the performance on a stan-

dardized dataset, METR-LA, and then extended them into our dataset, ETA-DT.

5.1.1 METR-LA

METR-LA [19] is a traffic dataset on Los-Angeles County, USA and has 207

sensors with each sensor collecting the data for the duration of 4 months. We used

this dataset to analyze and iterate over different ideas. It uses gaussian kernel to

compute the weighted matrix,

ai,j =

0 ||Xi −Xj|| < k,

e
−||Xi−Xj ||

2

σ2 otherwise,

(5.1)

where Xi and y are geolocation of two sensors, σ is the standard deviation of the

distances, and k is the constant to control sparsity.

5.1.2 Delhi Traffic data

SP-DT is the speed traffic dataset on Delhi, India, and uses 519 sensors across

different road segments. The data was collected for over 60 days with a sampling

frequency of 15min from 7:00 AM to 11:00 PM. The data can be organized as a

tensor, T ∈ R519×(60∗67). This dataset was initially used, for a minimal use case of

testing the performance on missing data.

5.1.3 Delhi ETA data

ETA-DT[2.2] is a time-velocity dataset on DTC buses, Delhi, India. Each time

step consists of time taken to travel between an edge, i.e. from one stop to another.

41

There are 6639 such edges. We only take edges with at most 70% sparsity for training

and evaluation, which turns out to be 1169. For training and evaluation, data of the

five months has been used. For more details on the development and cleaning of

the dataset, please check out section 2.2. To generate the adjacency representation

between the edge’s, we computed the spearson [34] correlation between a pair of

edges and selected the top 9% of the coefficients to ensure sparsity in the Graph. We

used constant seed for batch sampling across all of our experiments to increase the

training consistency.

5.2 Training Details

To ensure fair analysis between models, we used similar hyperparameter and

learning settings when possible.

5.2.1 Model Parameters

A deep neural network can compose of several hyperparameters, and it is not

possible to validate every permutation of the parameters. For the same reason, we

went with standard values of parameters and only updated them when required. In

all of our tests, the number of units in a GRU layer is 64 or 128 for the METR-LA

dataset and 128 to 512 for the ETA-DT dataset. We used two RNN layers at the time

of encoding and two layers when decoding with the same hidden dimension. It was

done to ensure the final state of the encoder can be directly used as the initial state of

the decoder.

5.2.2 Learning Rate

Our Initial Experiments used a learning rate of 10−3. Later we employed the

learning rate decay after 15 (or 20) epochs by the factor of 0.1 every 10 epochs. It

worked well for LSTM based networks, but with GCNs, we observed that imcrement

in the decay factor to 0.5 improves the numerical stability and better convergence.

42

5.2.3 Optimization

We used Adam optimizer for training analysis on METR-LA dataset but switched

to AdaGrad optimizer when performing experiments on ETA-DT dataset. It was done

to reduce the effect of missing data on gradient explosion and stabilize the training.

The value of ε was also increased from 10−7 to 10−3 to stabilize the training.

The gradient explosion was leading to overfitting and instability on very primitive

models. We added batch normalization before every convolutional layer, ensuring

that the input distribution to each convolutional layer is standardized. With RNN,

we employed dropout as implementing vanilla batch normalization before every time

step is incorrect because batch normalization would standardize the input distribution

across time steps, which is not guaranteed to be true.

5.2.4 Loss Function

Initially, we used mean square error to minimize the error and solve the problem

as a regression problem. The ground truth of two vertices could differ by a huge

margin, and thus using the absolute loss would have less effect on few vertices,

• MSLE loss:

MSLE(Xi, X
′
i) = log2

(
Xi + 1

X ′i + 1

)
= (log(Xi + 1)− log(X ′i + 1))

2 (5.2)

where X ′i is the predicted value, and Xi is the ground truth.

Not only it is relative, but it also penalizes the underestimates more than the

overestimates. If the value of Xi is 20, and of X ′i = 10 then MSLE loss would

be

log2
(
21

11

)
= log2(1.90) =⇒ 0.07

but if the value of X ′i = 30 then the MSLE loss would be

log2
(
21

31

)
= log2(0.67) =⇒ 0.03

43

• Weighted Loss: We weight the loss for underestimates more than that of over-

estimates,

Wh(Xi, X
′
i) =

L(Xi, X
′
i) X ′i >= Xi

αL(Xi, X
′
i) otherwise

(5.3)

where α is a constant.

The Weighted loss is absolute in nature, while the MSLE is not defined in some

cases, for example, X ′i ≤ −1.

• MSLE-Weight Loss: We compute the MSLE loss to ensure relative error but

uses different weights for under-estimates as we observed MSLE significantly

underestimates.

Ch(Xi, X
′
i) =

MSLE(Xi, X
′
i) X ′i >= Xi

αMSLE(Xi, X
′
i)

2 otherwise

(5.4)

5.3 Metrics

To quantitatively analyze the performance of different algorithms, we defined five

metrics with contrastive qualitative attributes,

5.3.1 Mean Square Error

Mean Square Error (or MSE) calculates the expected value of square different

between ground truth and output.

MSE(X,X ′) =
1

N

N∑
i=0

(Xi −X ′i)2 (5.5)

44

5.3.2 Mean Absolute Error

Mean Absolute Error (or MAE) calculates the expected value of absolute differ-

ence between ground truth and output.

MAE(X,X ′) =
1

N

N∑
i=0

|Xi −X ′i| (5.6)

5.3.3 Root Mean Square Error

Root Mean Square Error (or RMSE) takes the square root of Mean Square Error.

RMSE(X,X ′) =

√√√√ 1

N

N∑
i=0

(Xi −X ′i)2 (5.7)

Outliers have less effect on RMSE than MSE; MAE is a linear score and weighs each

input equally.

5.3.4 Mean Relative Error

Mean Relative Error (or MRE) calculates the expected value of the ratio of the ab-

solute difference between ground truth and output and ground truth. MRE measures

the relative error, enabling comparison between different datasets.

MRE(X,X ′) =
1

N

N∑
i=0

|Xi −X ′i|
|Xi|

(5.8)

On the one side, MSE is more biased towards higher values in error; MAE high-

lights the average error present. It is possible that between two observations, MAE

stays the same while MSE reduces e.g.

G,O1, O2 = [0, 0]; [1, 1]; [2, 0];

MAE after O1 =
|1−0|+|1−0|

2
→ 1, MSE after O1 =

(1−0)2+(1−0)2
2

→ 1,

MAE after O2 =
|2−0|+|0−0|

2
→ 1, MSE after O1 =

(2−0)2+(0−0)2
2

→ 2.

While the MSE has increased, the value of MAE stays the same, highlighting an

45

increment in the variance over bias.

5.3.5 Overestimate Percentage

When the model is trained with MSLE loss function, another metric is used which

checks for percentage of time the network over estimates the results.

OP (X,X
′) =

100

N

N∑
i=0

(X ′i ≥ Xi) (5.9)

5.4 Experimentations

We have designed multiple experiments to understand each moving part of this

system to develop a simple, scalable yet robust framework. There are four experi-

ments, Graph Convolution, Sub Sampling, AutoRegression, Missing Data. The first

three studies were extensively performed on the METR-LA dataset. In the meantime,

we used SP-DT dataset to study the missing data problem. The learnings helped in

designing a framework for the ETA-DT dataset. We used ETA-DT for detailed study

on missing data because of higher sparsity and experiments on arrival time estima-

tion.

5.4.1 Convolution layer

In this experiment, we used METR-LA (5.1.1) dataset and compared the per-

formance of DCRNN [19] with other Graph Convolutional techniques. The aim is

to observe the performance penalty if we replace the Diffusion Convolution Layer in

DCRNN with standard GCN networks. In DCRNN, authors have claimed that Diffu-

sion Convolution improves performance. But, when we compared the performance

with similar specification GCN, we observed very similar results. There was only

one change,

• DCRNN uses diffusion convolution, which is random-walk normalized Lapla-

46

cian (LU), while GCN uses symmetric normalized Laplacian (LN).

LN = D−1/2AD1/2

LU = D−1A
(5.10)

For each vertex, LU represents the relationship with other vertices in the form

of unit vector such that the sum for all the edges is 1; while it is
∑N

i=1

√
Dv

Di

for symmetric normalized Laplacian. The intuition is that LN carries more

information about the Graph and should perform better if not equally.

We observed similar performance(Fig. 5.1) during training, with a 4% increase

in error during validation, which reduces down to ε as the training progressed and the

model over-fitted.

(a) Training Error (b) Validation Error

Figure 5.1: GCN vs DCRNN

The key benefits from this experiment were that GCN layer performed at par with

DCRNN in terms of minimization of MAE error (Fig. 5.2), highlighting the overall

reduction in the variance of the model. The gap between the model increased even

further when we compare percentage error.

The next step towards simplification was to use the SGN network in place of

GCN; when we used a single layer of order k, we observed a dip in performance(Fig.

5.3), we think it is because of over-smoothing in single order GCN.

The results from GCN motivate us to simplify Spatio-temporal modeling. We

used vanilla GRU cells in the encoder, followed by multiple SGC layers stacked in

residual learning configuration i.e. input to the kth layer is the output of previous

47

(a) MAE Validation Error (b) MRE Validation Error

Figure 5.2: GCN vs DCRNN

(a) Validation Error

Figure 5.3: Single Order Convolution

layer and input. The embedding is then fed to the decoder. We obtained 1) better

performance during validation and increment in training error which might be due to

less overfitting(Fig. 5.4, 5.5).

(a) Training Error (b) Validation Error

Figure 5.4: DCRNN vs SGC : Training and Error Loss Minimization

Also, the simpler model is 60% faster when compared with DCRNN and 53%

faster when compared with GCN. The immediate performance boost comes because

we are no longer multiplying the hidden embedding with normalized Laplacian at

48

every time step.

(a) MAE Validation Error (b) MRE Validation Error

Figure 5.5: DCRNN vs SGC : Performance on Validation set

Results for each convolution technique, along with the time taken are shown in

Table. 5.1. The results are generated based on average performance over last 5

epochs if not specified.

Training Error Validation Error Training Time
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

DCRNN 0.0461 0.1309 0.9726 0.2143 0.0905 0.1612 0.9967 0.2986 231.4s
GCN 0.0534 0.1424 1.0293 0.2303 0.111 0.1774 1.0398 0.3304 267.09s
SGC 0.0828 0.1665 1.1006 0.2861 0.1044 0.1712 0.9933 0.3201 112.74s

Table 5.1: Results for Experiment : Graph Convolution

5.4.2 Subsampling

In this experiment, the METR-LA dataset is used to evaluate different graph sam-

pling techniques. All of the tests were performed on the DCRNN model and further

extended to our model.

5.4.2.1 Learning - 1

In the literature, node sampling has been shown to perform better than without

sampling. Initially, we did not get good results as the loss would reach NaN (Fig.

5.6) even before training of first epoch is finished, highlighting gradient explosion

even after gradients clipping over 0.5 is used. Upon looking at the available imple-

mentation, we observed that unique vertices were used for training once the vertices

were sampled with repetition. As at each layer, we are aggregating the features w.r.t.

49

normalized laplacian, it controls the amount of neighborhood information clubbed

with the given feature. But, when we allow multiple copies of a vertex, the same

information is added multiple times, introducing the possibility of value explosion

especially when clubbed with RNNs. Taking unique vertices ensures the control

propagation during training and does not change the probability distribution, which

would happen had we sampled the elements without replacement.

Figure 5.6: Instability due to multiple copies of vertices during node-sampling

We observed (Fig. 5.7) that network no longer suffers from parameter explosion

and trains well. Still, the subsampling introduces an extra 175% error during the

training, expected to a certain extent as the model is regularized. Still, it performed

poorly in generalizing well with the Validation data as it has 20% more error when

comparing the best performance. While it reduced the training time by 35%, the loss

in performance was too significant to ignore.

(a) MSE Training Error (b) MSE Validation Error (c) MAE Validation Error

Figure 5.7: Node Sampling on DCRNN model

5.4.2.2 Ripple Walk Sampler

Using Ripple Walk Sampler [3.4.3], we observed much better performance as

compare to node sampler (RWS Sampling:φ) (Fig. 5.8). It underperforms in train-

50

ing with an extra error of 47.8% when compared to the complete model, which is

way less than that of node sampling. The most significant improvement was in the

validation score, highlighting that the increment in training error should improve

generalization. It only had an extra 2% error in terms of best performance when

compared to the complete model. It did not overfit and reduces the training time by

25% and uses just 50% of the data. The main reason behind the increase in training

time compared to node sampling is preprocessing ahead of time, while RWS requires

walks during every batch.

(a) MSE Training Error (b) MSE Validation Error

Figure 5.8: Sub Sampling

5.4.3 Bias from SubSampling

Upon implementing the GraphSaint normalization (RWS Sampling:Norm), by

estimating the edge and node numerically. We observed an increment in the training

error by 19%, and 11% during validation. After that, we computed the Laplacian

of each subgraph (RWS Sampling:Lapl) and observed the increment in performance

by 2%. Also, the best performance of the sub-sampled Graph was similar when

compared with the Complete Graph, and it did not overfit as the training proceed. It

also took 20% less time, as laplacian computation during every batch took 5% extra

time.

Results for each subsampling technique along with time taken is shown in table

5.2,

51

(a) MAE Validation Error (b) RMSE Validation Error

Figure 5.9: Random Walk Sub Sampling

Training Error Validation Error Training Time
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

Complete Graph 0.0461 0.1309 0.9726 0.2143 0.0905 0.1612 0.9967 0.2986 231.4s
Node Sampling 0.1121 0.1906 1.137 0.3327 0.1094 0.1860 0.9985 0.3283 153.5s
RWS Sampling: φ 0.0689 0.1490 1.0496 0.2613 0.0916 0.1607 0.9647 0.3006 172.79s
RWS Sampling: Norm 0.08215 0.1610 1.0770 0.2849 0.1023 0.1743 1.0017 0.3175 176.49s
RWS Sampling: Lapl 0.06770 0.14806 1.0476 0.2588 0.0903 0.1613 0.9764 0.2977 185.66s

Table 5.2: Experiment : Sub Sampling

5.4.4 AutoRegression

In this experiment, we used METR-LA dataset and compared the performance

of the Teacher force training mechanism with curriculum learning. Teacher force

training introduces multiplicative error during validation (Fig. 5.10b). Even though

the model performance is optimal during training, it underperforms during the vali-

dation.

(a) Training Error (b) Validation Error

Figure 5.10: Teacher Force vs Auto Regressive Training

52

5.4.4.1 Curriculum Learning

With Curriculum learning, we observe network underperform in comparison

with TTF and outperform in comparison to AR during training. As expected, it

outperformed against both of the training strategies during evaluation. We repeated

the test such that the model starts from an autoregressive setting and slowly decays

down to the TTF setting and observed a similar performance.

(a) Training Error (b) Validation Error

Figure 5.11: Curriculum Training

Results for each subsampling technique along with time taken is shown in the

Table. 5.3,

Training Error Validation Error Training Time
MSE MAE RMSE MSE MAE RMSE Epoch/sec

Teacher Force 0.0404 0.1291 0.2007 0.1277 0.1906 0.3541 102.21s
Auto Regression 0.0615 0.1502 0.2473 0.114 0.1898 0.3351 99.55s
Curriculum 0.0762 0.1672 0.2749 0.1099 0.1808 0.3289 163.4s

Table 5.3: Results for Experiment : AutoRegression

The model in teacher force and autoregression configuration is the fastest in terms

of computation. While all of the other models have similar performance, this perfor-

mance penalty is mainly due to additional conditions required to switch between

AutoRegression and Teacher Force training Configuration.

5.4.5 Missing Data

We used SP-DT dataset for the initial testing on missing data configuration on

the LSTM model. We observed a considerable performance improvement in the

validation set.

53

5.4.5.1 Lesson 2

To test the GRUD model’s performance on different sparsity of data. We designed

a random function generator that sets the sparsity of the batch data based on hyper-

parameter. We observed an improvement in performance on the validation set when

compared to the original data. Ideally, it should have been the opposite. We repeated

the experiment on the METR-LA dataset to cross-verify this finding and observed

the same conclusions, as shown in Fig. 5.12.

(a) SP-DT Dataset: The sparsity of γ is
higher than that of β, and α. Performance
of GRU-D model is analysed over three dif-
ferent level of sparsity.

(b) METR-LA Dataset: Sparsity is set to
60% for both models. For comparison,
GRUD is trained without any sparsity impu-
tation.

Figure 5.12: Mean Square Error during Validation

Initially, we hypothesized that for both the dataset, missing data has been acting

as a regularization mechanism to improve the generalization capability. But upon

further studies, we found the bug. We were masking the data independently for

every batch, and as the batch shares the same sequence with other batches at different

time steps. Independent batch introduces a similar effect as of dropout because the

probability of never seeing input data input features is reduced.

When we preprocessed the training dataset before stacking the entries over time

sequence length, we observed it underperforms as illustrated by validation loss in

Fig. 5.13.

Thus, we observe that GRU-D effectively handles the missing data using a learn-

able parameter that controls the amount of dependence on previous and average fea-

ture values.

54

(a) SP-DT Dataset: Disabled Independent
Batch Sampling

(b) METR-LA Dataset: Legend with @ im-
plies the percentage of sparsity

Figure 5.13: Corrected: Validation Error

(a) MSE Error (b) MAE Error

Figure 5.14: Corrected: Training Error on METR-LA Dataset

Results for GRU-D vs GRU for SP-DT and METR-LA dataset is shown in Table.

5.4,

Dataset Algorithm Training Error Validation Error
MSE MAE RMSE MSE MAE RMSE

SP-DT GRU 0.1385 0.2542 - 0.1542 0.2667 -
GRU-D 0.1225 0.245 - 0.1333 0.2543 -

METR-LA GRU 0.0841 0.1758 0.2889 0.1502 0.2219 0.3846
GRU-D 0.0735 0.1645 0.2701 0.108 0.1863 0.3262

Table 5.4: Results for Experiment : Missing Data

5.5 Extension to ETA-DT dataset

After observing the behavior of different spatial-temporal models on the METR-

LA dataset and missing data on SP-DT dataset. We aim to implement a robust and

scalable model on our ETA-DT dataset. It is not just large compared to the METR-

55

LA dataset in terms of vertices but is more sparse and thus introduces the effect of

missing data on the optimization of the network.

5.5.1 Choosing the Architecture

Similar to METR-LA, we first trained the LSTM model on our dataset and com-

pared its performance with a similarly configured GCN model with sub-sampling.

Ideally, GCN should have outperformed LSTM without any issues, but we observed

LSTM beat GCN with a considerable margin (Fig. 5.15). To ensure we have not

made any programming error, we compared the performance with Mean Model, and

GCN was outperforming the Mean model without any hiccups.

(a) MSE Training Error (b) MSE Validation Error

Figure 5.15: LSTM vs GCN

We could not understand the reason behind this behavior initially, primarily be-

cause of performance on validation data. Thus, to iron out any errors in the data

modeling, we added more assertions. Still, the behavior did not change, highlighting

some mistakes during the training phase.

The reason behind our belief on the training anomaly is because LSTM with

1/10th of the parameters outperformed. This is when we found the first mistake; in

some forums, Adam [35] optimizer was discouraged when working with the missing

data, and upon studying more in this direction, we observe that Adam optimizer

56

updates the gradients based on,

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

m =
mt

1− βt1
v =

vt
1− βt2

θt+1 = θt −
η√
v + ε

m

(5.11)

If we observe the update equation, the value in the denominator is controlled w.r.t.

to the gradients and β2 constant, which is different from β1, which can set the de-

nominator to be zero. At the same time, the numerator is non-zero and thereby very

large gradient updates. As soon as we switched to the Adagrad [36], the spikes in the

gradients stop appearing (Fig. 5.16) because in Adagrad v is replaced with L2 norm

of gradients(Gt) for each parameter.

θt+1 = θt −
η√

Gt + ε
gt (5.12)

where gt is the gradient at time t.

(a) Using Adam Optimizer (b) Using Adagrad Optimizer

Figure 5.16: Gradients for LSTM Kernel

After switching to Adagrad optimizer, LSTM starts saturating at a loss of 1.0

for a few epochs but then suddenly begins training and again reaches the result we

observed with Adam optimizer. The performance of the model varied a lot with the

change in ε (Fig. 5.17).

We performed one final experiment such that the parameters for the network are

57

(a) Different Learning Rates (b) All of the experiments are done in
same setting; in some experiments the
value of ε is 0.01 and in other 0.011

Figure 5.17: Batch Loss on different Value of epsilon

the same, except ε. In some of the experiments, the value of epsilon is 0.01, and in

some, it is 0.011. The loss curves have a very distinct boundary as the models with

0.01 epsilon decaying earlier when compared with 0.011. We believe it is due to the

missing data present in the data, leading to sparsity in the parameter and gradient

explosion. The effect of gradient explosion is more on LSTM when compared with

the rest because all the other networks share parameters across vertices while LSTM

does not. We also observed that all of the states of the art algorithms like T-GCN

[20], DCRNN uses FC-LSTM [13] for comparison.

Results for each model, along with the time taken are shown in Table. 5.5. All

models were trained for at max 50 epochs, with early stopping enabled.

Algorithm Training Error Validation Error Time Taken
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

FC-LSTM 0.7292 0.4492 3.0636 0.8527 0.7291 0.4476 3.0677 0.8527 135.8s
DCRNN 0.6499 0.4015 2.8141 0.8038 0.6502 0.4022 2.8338 0.8041 949.7s
SSTG 0.6061 0.3916 2.9014 0.7751 0.6726 0.4211 2.5243 0.8164 297s

Table 5.5: Results for Experiment: ETA-DT Dataset Integration

5.5.2 Integrating the Missing Data

The initial testing of missing data on ETA prediction was done on a simpler

model, SGC(5.4.1), and observed improvement in terms of training loss, but the

updated model overfitted and had performance drop in terms of the validation loss

(Fig. 5.18).

58

(a) Training Error (b) Validation Error

Figure 5.18: SGC: Overfitting during Validation

It was a great sign, as it highlights that the network is saturating. We then

switched to our proposed network, SSTG. We observed a better-generalized per-

formance across the parameters, as shown in Fig. 5.19).

(a) Validation MSE (b) Validation MAE

Figure 5.19: SSTG-GRUD: Performance

Results for each model, along with the time taken are shown in table 5.6. All the

models were trained for at max 50 epochs, with early stopping if required.

Algorithm Training Error Validation Error Time Taken
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

SSTG-GRU 0.6061 0.3916 2.9014 0.7751 0.6726 0.4211 2.5243 0.8164 297s
SGC-GRUD 0.5885 0.3776 2.8909 0.7641 0.6295 0.4041 2.9717 0.7901 199s
SSTG-GRUD 0.475 0.3304 2.5778 0.6876 0.5954 0.364 2.7649 0.7696 297s

Table 5.6: Results for Experiment: Missing Entry in ETA-DT Dataset

SSTG-GRUD is trained with the curriculum training process, while others have

been with AutoRegression.

59

5.5.3 Relative Loss Function

MSE loss function penalizes all of the entries equally whether the ground truth

is 10 and prediction is 9.5 or ground truth is 1 and prediction is 0.5. The error for both

outputs is the same as 0.25, but their percentage error is 0.05 and 0.5, respectively.

Also, the MSE loss penalizes the output equally irrespective of greater or less than

the ground truth.

Thus, we switched the loss function to MSLE, which aims at computing the

relative error. We observed that the model has a lower overestimation percentage

as compared to MSE. However, it outperformed in all other metrics—with the most

significant improvement in terms of MRE error, highlighting that relative loss func-

tion improves the model’s overall functioning, and the reduction in over-estimation

percentage is because of improvement in generalization. Also, with MSLE loss, our

model performs desirably in TTF and AR autoregressive configuration enabling bet-

ter performance with curriculum learning.

Figure 5.20: Overestimation Percentage

After, that we tried weighted loss and observed improvement in the overestima-

tion percentage (Fig. 5.20), but it comes at the cost of the other metrics.

Our final model uses MSLE-Weight loss, 1) to increase the penalty on the un-

derestimation results, and 2) to ensure relative error minimization. We observe a

better overestimation percentage compared to MSLE and less performance penalty

compared to Weighted loss.

Results for all of the models has been shown in Table. 5.7,

60

Algorithm TTF/AR Training Error Validation Error
MSE MAE MRE RMSE OE% MSE MAE MRE RMSE OE%

MSE AR 0.5822 0.3731 2.8463 0.7612 65.51 0.6307 0.4294 3.3009 0.7927 64.4
MSLE AR 0.6073 0.361 2.5615 0.7769 57.17 0.6117 0.3642 2.5637 0.7803 55.61
MSLE TTF 0.5344 0.3454 2.4732 0.729 55.45 0.6527 0.3846 2.7021 0.806 48.13
Weighted∗ TTF 0.613 0.4302 3.6458 0.7816 77.19 0.6177 0.4273 3.4976 0.7842 70.9
MSLE-Weighted1 TTF 0.5965 0.3893 3.0368 0.7706 69.47 0.6154 0.403 2.8732 0.7827 70.01
MSLE-Weighted2 Curr 0.6205 0.3689 2.6008 0.7859 58.29 0.6287 0.3966 2.6333 0.7914 66.19
MSLE-Weighted3 Curr 0.6035 0.3673 2.65 0.7752 60.19 0.6187 0.369 2.7331 0.785 55.45

Table 5.7: Results for Experiment: Over-Estimation on SSTG-GRUD model

Training the naive SSTG model in GRUD configuration is difficult when Au-

toRegression training processed is used; for the same reason, curriculum learning

was used. Weighted∗ was early stopped, and MSLE-Weighted1, MSLE-Weighted2,

MSLE-Weighted3 have different 2, 1.5, and 1.2 weight factors, respectively. Also,

MSLE-Weighted2 only penalizes if the bus is more than a minute early.

It is crucial to utilize the curriculum learning as the network is susceptible to the

input distribution as shown by the training loss tracking the decay curve (Fig. 5.21).

Thus with the help of curriculum learning, we can ensure that the input during the

evaluation will not be entirely unexpected for the network.

(a) Training Error (b) Decay Curve

Figure 5.21: SSTG-GRUD: Training Error vs TTR Decay

The SSTG-GRUD, with the help of MSLE-weighted loss function, is easily tun-

able to the specific needs of over-estimation and performance.

5.6 Results

In this section, we have compiled all the significant models that we used in ex-

perimentation.

61

The results on METR-LA data has been shown in Table. 5.8,

Training Error Validation Error Training Time
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

LSTM 0.0811 0.1874 1.1571 0.2829 0.1433 0.2319 1.2341 0.3757 121.1s
ConvLSTM 0.1121 0.1906 1.137 0.3327 0.1094 0.1860 0.9985 0.3283 153.5s
DCRNN 0.0461 0.1309 0.9726 0.2143 0.0905 0.1612 0.9967 0.2986 231.4s
SGC 0.0828 0.1665 1.1006 0.2861 0.1044 0.1712 0.9933 0.3201 112.74s
Node Sampling 0.1121 0.1906 1.137 0.3327 0.1094 0.1860 0.9985 0.3283 153.5s
RWS Sampling: φ 0.0689 0.1490 1.0496 0.2613 0.0916 0.1607 0.9647 0.3006 172.79s
RWS Sampling: Norm 0.08215 0.1610 1.0770 0.2849 0.1023 0.1743 1.0017 0.3175 176.49s
RWS Sampling: Lapl 0.06770 0.14806 1.0476 0.2588 0.0903 0.1613 0.9764 0.2977 185.66
RWS Sampling: Lapl@0.6 0.0841 0.1758 - 0.2889 0.1502 0.2219 - 0.3846 ”
RWS GRUD: Lapl@0.6 0.0735 0.1645 - 0.2701 0.108 0.1863 - 0.3262 ”
SSTG@0.6 0.0829 0.1616 1.8842 0.2863 0.1027 0.172 1.8378 0.3178 -

Table 5.8: Results: METR-LA Dataset

In all of the experiments, the latent feature size of Encoder and Decoder was

constant, 64. We used two layers in both encoder and decoder. The initial config-

uration was referred from the implementation of DCRNN. The ConvLSTM model

underperformed when compared with LSTM because the vertices are modeled inde-

pendently in ConvLSTM. While, during validation ConvLSTM outperforms LSTM

as it is more regularized due to parameter sharing. SGC outperformed DCRNN, es-

pecially in terms of MAE error, highlighting that using residual structure improves

the overall learning, and modifying GRU to compute the graph convolution is not

required in every case. The RWS Sampling and RWS Sampling:Lapl performed

similarly, but in SSTG, we compute Laplacian at every batch because it is the correct

way to process the sub-graph. The experiments marked with RWS Sampling and

SSTG are the same, except RWS Sampling does not utilize the residual connection,

while SSTG does. We did not perform intermediate experiments on SSTG; because

we were parallelly experimenting on sub-sampling and simpler methods for graph

convolution. The last three experiments were done to highlight the effect of missing

data; here, 0.6 implies 60% of the data is available. Our proposed framework, SSTG,

outperformed RWS Sampling by a considerable margin, and it has a very marginal

improvement compared with the GRUD version of RWS Sampling.

The results on ETA-DT data has been shown in Table. 5.9,

62

Training Error Validation Error Training Time
MSE MAE MRE RMSE MSE MAE MRE RMSE Epoch/sec

FC-LSTM 0.7292 0.4492 3.0636 0.8527 0.7291 0.4476 3.0677 0.8527 135.8s
DCRNN 0.6499 0.4015 2.8141 0.8038 0.6502 0.4022 2.8338 0.8041 949.7s
SSTG-GRU 0.6061 0.3916 2.9014 0.7751 0.6726 0.4211 2.5243 0.8164 297s
SGC-GRUD 0.5885 0.3776 2.8909 0.7641 0.6295 0.4041 2.9717 0.7901 199s
SSTG-GRUD 0.475 0.3304 2.5778 0.6876 0.5954 0.364 2.7649 0.7696 297s

Table 5.9: Results: ETA-DT Dataset

Loss fn Policy Training Error Validation Error
MSE MAE MRE RMSE OE% MSE MAE MRE RMSE OE%

MSE AR 0.5822 0.3731 2.8463 0.7612 65.51 0.6307 0.4294 3.3009 0.793 64.4
MSLE AR 0.6073 0.361 2.5615 0.7769 57.17 0.6117 0.3642 2.5637 0.780 55.61
MSLE TTF 0.5344 0.3454 2.4732 0.729 55.45 0.6527 0.3846 2.7021 0.806 48.13
MSLE-W1 TTF 0.5965 0.3893 3.0368 0.7706 69.47 0.6154 0.403 2.8732 0.783 70.01
MSLE-W2 Curr 0.6205 0.3689 2.6008 0.7859 58.29 0.6287 0.3966 2.6333 0.791 66.19
MSLE-W3 Curr 0.6035 0.3673 2.65 0.7752 60.19 0.6187 0.369 2.7331 0.785 55.45

Table 5.10: Results: Over-Estimation on ETA-DT Dataset

As with experiments on the METR-LA dataset, we used a two-layer encoder and

decoder but 128 hidden units instead of 64. We also performed tests with 256 and

512 units and observed marginal improvement. DCRNN outperforms FC-LSTM (as

the vertex size is very high, ConvLSTM would have required 5x more layers to spa-

tially cover based on ordering provided by adjacency matrix) but is computationally

expensive. SSTG-GRU outperformed DCRNN and takes less than 1/3rd amount

of time. To handle the missing data, we switched to the GRUD version. The final

SSTG-GRUD has been trained with Curriculum Learning policy, and for that rea-

son, there is a massive difference in the training error. The simple SGC network

overfits when merging with GRUD. The experiment in the Table. 5.10 highlights

the effect of over-estimation, and for the same reason, we have an additional metric,

Over-estimation percentage (OE%). We have tested different policy to maximize

the performance on the validation dataset. When the MSLE loss function is used,

our model improves in all of the metrics except the Over-estimation percentage. We

believe the improvement in generalization could be behind the dip. After that we

tried the weighted loss function, which improved the Overestimation percentage but

performed poorly in other metrics (that’s why it stopped early). The last three experi-

ments were performed using the MSLE-weighted loss function with different weight

factors, enabling us to finetune the penalty on estimation vs. Over-estimation per-

63

centage. The first experiment uses factor of 2, while the the second experiment uses

the factor of 1.6 and we only penalize if the under-estimation is more than 1min. In

the last experiment, we have used a very small factor of 1.2 only.

The results on ETA-Dataset while evaluating different strategies of sampling are

shown in Table:5.11,

Strategy Sample Size Algorithm MSE MAE RMSE OE% Epoch/sec

Complete

Mean 3.92m 62.504s 118.8s 48.53 0.05s
FC-LSTM 2.99m 54.671s 103.6s 68.24 2.1s
DCRNN 2.645m 48.689s 97.3s 67.08 10.72s
SSTG 2.651m 49.142s 97.6s 70.18 16.5s

RWS Sampling 512 SSTG 2.511m 48.529s 94.9s 70.16 4.8s
256 SSTG 2.551m 49.007s 95.6s 69.75 3.86s

Predefined@1

All Mean 3.832m 69.307s 117.5s 51.81 0.05s
All FC-LSTM 3.701m 58.43s 115s 66.22 0.12s
All DCRNN 2.357m 45.208s 91.3s 66.6 10.72s
32 SSTG 2.507m 46.544s 78.3s 69.14 0.23s
256 SSTG 2.503m 46.629s 78.3s 69.84 1.95s

Predefined@2

All Mean 3.089m 55.933s 105.5s 47.59 0.05s
All FC-LSTM 2.398m 50.246s 92.5s 71.58 0.12s
All DCRNN 2.262m 48.934s 89.5s 73.26 10.72s
16 SSTG 2.227m 45.661s 72.9s 72.58 0.13s
64 SSTG 2.226m 45.918s 73s 73.01 0.41s

Table 5.11: Results: ETA-DT Test Dataset

There are three evaluation strategies; in the first block, we have discussed how

our proposed framework performs when evaluating the results on the complete graph.

When evaluating on the complete data, the proposed algorithm has a mean square er-

ror of 2.635m as compare to 3.93m for the mean model and 2.64m for the DCRNN.

DCRNN out performs the proposed algorithm in other metrics too; but our algorithm

was trained with a penalty in the loss to increase over-estimation (4% higher) and

is also trained on 25% of the data. In the predefined vertex evaluation strategy, we

sampled out a fixed node and estimated the output for those; we repeated these ex-

periments for two types of vertices, 1) Predefined@1 in which average neighbors are

more than 100, and 2) Predefined@2 in which the average neighbors are between

10-20. Both of the experiments are averaged over 25 trials. Our proposed algorithm

outperforms DCRNN when tested on vertices with moderate connectivity, while it

underperformed when the vertices are very highly connected. We observe that the

performance of our proposed model is very similar when compared with DCRNN,

while taking only 4% time during evaluation.

64

Chapter 6

Conclusion and Future Work
The problem of the ETA prediction plays a very important role in improving the

rider’s experience. While ensuring timeliness is challenging, especially during rush

hours. It is possible to provide riders with a heads-up on the amount of time taken

by the bus to reach their location. A stream of GTFS data enables the estimation of

the arrival time for the future time steps. In this thesis, we developed an algorithm

to model the raw GTFS data into Spatio-Temporal tensors, which are further used

by our proposed algorithm, SSTG, based on recurrent neural networks and graph

convolutional networks future prediction. The proposed model captures the Spatio-

temporal structure defined by the adjacency matrix of the data. To incorporate the

absence of data for certain vertices at times, we modify the first layer to impute the

data dynamically.

We obtain better results for arrival time estimation with our proposed algorithm

when compared to the state-of-the-art technique. We also evaluated our algorithms

on an additional traffic speed dataset, METR-LA. The two points, which we would

look to develop in the future, 1) dynamically learn the adjacency matrix by using

single-attention for graph modeling and temporal prediction, and 2) would be to

develop techniques that can help us define the graph size for a pre-defined vertex

during evaluation.

65

Bibliography
[1] Tom Tom Index. New delhi traffic report.

[2] Neema Davis, Harry Joseph, Gaurav Raina, and Krishna Jagannathan. Conges-

tion costs incurred on indian roads: A case study for new delhi. 08 2017.

[3] Hemant K. Suman, Nomesh B. Bolia, and Geetam Tiwari. Comparing public

bus transport service attributes in delhi and mumbai: Policy implications for

improving bus services in delhi. Transport Policy, 56:63–74, 2017.

[4] V. Chauhan, H. K. Suman, and N. Bolia. Binary logistic model for estimation

of mode shift into delhi metro. The Open Transportation Journal, 10:124–136,

2016.

[5] Open Transit Data Delhi. https://opendata.iiitd.edu.in/.

[6] Lei Tang and Piyushimita (Vonu) Thakuriah. Ridership effects of real-time

bus information system: A case study in the city of chicago. Transportation

Research Part C: Emerging Technologies, 22:146–161, 2012.

[7] Billy M. Williams and Lester A. Hoel. Modeling and forecasting vehicular

traffic flow as a seasonal arima process: Theoretical basis and empirical results.

Journal of Transportation Engineering, 129(6):664–672, 2003.

[8] Noel Cressie and Christopher K Wikle. Space-time kalman filter. Encyclopedia

of environmetrics, 4:2045–2049, 2002.

[9] Hao Liu, Henk Van Zuylen, Hans Van Lint, and Maria Salomons. Predicting

urban arterial travel time with state-space neural networks and kalman filters.

Transportation Research Record, 1968(1):99–108, 2006.

[10] Hao Liu, Hans van Lint, Henk van Zuylen, and Ke Zhang. Two distinct ways

of using kalman filters to predict urban arterial travel time. In 2006 IEEE Intel-

ligent Transportation Systems Conference, pages 845–850, 2006.

66

[11] Bin Yu, Zhong-Zhen Yang, Kang Chen, and Bo Yu. Hybrid model for predic-

tion of bus arrival times at next station. Journal of Advanced Transportation,

44(3):193–204, 2010.

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning

with neural networks, 2014.

[13] Alex Graves. Generating sequences with recurrent neural networks, 2014.

[14] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai kin Wong, and

Wang chun Woo. Convolutional lstm network: A machine learning approach

for precipitation nowcasting, 2015.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representa-

tions (ICLR), 2017.

[16] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on

graphs via spectral graph theory, 2009.

[17] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-

ian Weinberger. Simplifying graph convolutional networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 6861–6871. PMLR, 09–15 Jun 2019.

[18] Charul and Pravesh Biyani. To each route its own eta: A generative modeling

framework for eta prediction, 2019.

[19] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Graph convolutional recur-

rent neural network: Data-driven traffic forecasting. CoRR, abs/1707.01926,

2017.

[20] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min

Deng, and Haifeng Li. T-gcn: A temporal graph convolutional network for

67

traffic prediction. IEEE Transactions on Intelligent Transportation Systems,

21(9):3848–3858, Sep 2020.

[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[22] General Transit Feed Specification.

[23] M. Mozer. A focused backpropagation algorithm for temporal pattern recogni-

tion. Complex Syst., 3, 1989.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

[25] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation, 2014.

[26] Prof. J. R. Culham. Chebyshev polynomials. Accessed: 15-05-2021, Reading

Material on Chebyshev Polynomials.

[27] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor Prasanna. GraphSAINT: Graph sampling based inductive learning method.

In International Conference on Learning Representations, 2020.

[28] Jiyang Bai, Yuxiang Ren, and Jiawei Zhang. Ripple walk training: A subgraph-

based training framework for large and deep graph neural network. CoRR,

abs/2002.07206, 2020.

[29] Ronald J. Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, 1(2):270–280,

1989.

[30] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled

sampling for sequence prediction with recurrent neural networks, 2015.

68

[31] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, and

Yan Liu. Recurrent neural networks for multivariate time series with missing

values. CoRR, abs/1606.01865, 2016.

[32] John Laird. The law of parsimony. The Monist, 29(3):321–344, 1919.

[33] Jiawei Zhang and Lin Meng. Gresnet: Graph residual network for reviving

deep gnns from suspended animation. CoRR, abs/1909.05729, 2019.

[34] S. Kokoska and D. Zwillinger. Crc standard probability and statistics tables and

formulae, student edition. 1999.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion, 2017.

[36] Agnes Lydia and Sagayaraj Francis. Adagrad - an optimizer for stochastic

gradient descent. Volume 6:566–568, 05 2019.

[37] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville,

and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent

networks. arXiv preprint arXiv:1610.09038, 2016.

69

Appendix A

Appendix

A.1 Induction Proof

Induction Proof : UTi(λ′)UT = Ti(L
′)

♦ Base Case: T0(λ′) = 1 =⇒ UT0(λ
′)UT = UUT = 1

=⇒ UT0(λ
′)UT = T0(L

′)

♦ Induction Step(s): Assumption for Ts(L′) = UTs(λ
′)UT ,

♦ Proof for Step(s+1):

Ts+1(L
′) = L′Ts(L

′)− Ts−1(L′) (A.1)

∵ Eq. 3.18 (A.2)

Ts+1(L
′) = L′UTs(λ

′)UT − UTs−1(λ′)UT (A.3)

∵ Induction Assumption (A.4)

Ts+1(L
′) = Uλ′(UTU)Ts(λ

′)UT − UTs−1(λ′)UT (A.5)

Ts+1(L
′) = U(λ′Ts(λ

′)− Ts−1(λ′))UT (A.6)

∵ Distributive property (A.7)

Ts+1(L
′) = UTs+1(λ

′)UT (A.8)

Q.E.D (A.9)

A.2 Further Study on AutoRegressive Training

A.2.1 Professor Training

In Professor Training [37], The decoder generates two outputs; the first has

ground truth as the input Df , and the second has output from the previous steps Ds.

It adds another neural network, known as a discriminator, distinguishing Df from

Ds. Df is marked as the correct class in the discriminator cycle, while Ds is marked

70

during the generator cycle. During each cycle, only the gradients of the respective

modules are updated. The generator’s parameters are only updated when the discrim-

inator is confident well trained (above 75% accuracy) but not too successful (below

99% accuracy). It is done because the distribution of real-input (Df) depends on the

decoder output, and Professor training does not pre-train the network in teacher-force

configuration.

After multiple attempts, we could not get it to work. We are aware that adversarial

domain adaption is difficult but, even after setting all of the parameters correctly and

following the methodology, it did not work. We also tried pre-training it initially.

Still, as the pretraining stops, the generator updates the distribution of the decoder

such that the accuracy of TTF decoded becomes 1. In contrast, that of AR decoded

gets reduced down to 0. (Fig. A.1).

(a) Discriminator Loss for TTF Decoded (b) Discriminator Loss for AR Decoded

Figure A.1: Professor Training: Legend represents the step at which pre-training
stopped

A.2.1.1 RL-Validation

The professor training requires an extra discriminator and parallel training in both

configurations for adaptive training. To simplify the process, we implemented a Q

learning algorithm to control the value of ε, with the state space, S ∈ [0, 1], possible

actions as {+0.01,−0.01} increasing or decreasing the value of ε, and the reward is

the average of the relative difference between the training and validation loss. The

update equation for Q learning is as follows (Eq. A.2.1.1),

71

a = argmax(Q[ε])

ε′ =

ε+ 0.01 ifa = 1,

ε− 0.01 otherwise

r =
|mean(Ltrain)− Lvalidation|

mean(Ltrain)

Q(ε, a) = Q(ε, a) + α(r + γmax(Q(ε′))) (A.10)

where Q is a matrix, α is the learning rate, and γ is the discount factor.

The training from RL-Validation does not just improve the overall performance

of the model, but the learned ε threshold is adaptive, and the resultant model has

better MAE as compared to curriculum training, with similar mean square error, as

shown in Fig. A.2.

(a) MSE Validation (b) MAE Validation

Figure A.2: RL-Validation Performance

RL-Validation introduces two issues to the training process. The optimization

of the Q learning parameter only happens during validation(Fig. A.3). Thus, the

adaption is slow and requires more epochs for finetuning of the Q learning agent.

Also, the model’s performance on the validation set impacts the threshold behavior,

introducing the posterior effect of performance on Validation data on the model,

which is not correct.

72

Figure A.3: ε value for different models

A.2.2 RL-Training

We implemented another Q learning that updates its parameter at every batch and

only utilizes the training data to tackle both issues. We divide each batch into mini-

batches such that each batch consists of 3 training samples; we train the first sample

in TTF fashion, second in an AR fashion and third wrt to the learned TTR threshold.

Updations of the Q learning happens after each mini batch, with reward as

r′ =


1 if |LTTF − Lε

LAR − Lε
| < 1.25 &|LTTF − Lε| > |LAR − Lε|

1 if | LAR − Lε
LTTF − Lε

| < 1.25 &|LAR − Lε| > |LTTF − Lε|

0 otherwise

(A.11)

Reward, r′ ensures that loss incurred through the threshold is the approximate middle

of loss due to AutoRegression and Teacher Force. It is done because an optimal

AutoRegression agent would have less loss when compared to noisy outputs and

more loss than ground truth during training.

We observed RL-Train (Fig. A.4) behaved in a sigmoidal fashion, i.e., during cer-

tain phases, it switched to TTF. During certain stages, it switched to AR, regularizing

the learning process.

But upon further analysis, we observed it to have minimal impact on the overall

73

(a) Threshold for RL-Train using 0.6 and
0.1 learning rate

(b) Reward obtained by the Q learning

Figure A.4: TTR Decay of a different algorithm, value of 1 implies autoregression,
0 implies teacher force

learning of the algorithm as reward obtained during multiple trials never increased.

It acted as a linear control algorithm, i.e., as soon as the error between AR and TTF

setting increased, i.e., regularized the model by increasing the teacher training force,

which increased the error between TTF and ε strategy prompting it to decrease the

threshold.

Training Error Validation Error Training Time
MSE MAE RMSE MSE MAE RMSE Epoch/sec

Teacher Force 0.0404 0.1291 0.2007 0.1277 0.1906 0.3541 102.21s
Auto Regression 0.0615 0.1502 0.2473 0.114 0.1898 0.3351 99.55s
RL-Validation 0.0843 0.175 0.2891 0.1098 0.1803 0.3287 157.37s
RL-Train@0.1 0.0741 0.1652 0.2711 0.1075 0.1755 0.3251 160.97s
RL-Train@0.6 0.0739 0.1656 0.2708 0.1093 0.1753 0.328 164.41s
Professor Training - - - - - - -
Curriculum 0.0762 0.1672 0.2749 0.1099 0.1808 0.3289 163.4s

Table A.1: Results for Experiment : AutoRegression

74

	Introduction
	Existing Work
	Problem Statement
	Contribution
	Structure

	Modeling Raw Data to Tensor
	Introduction
	Background
	Motivation

	Modeling
	Entries to Tree
	Assigning entries to stops
	Time interpolation
	Tree to Tensor

	Preliminaries
	Temporal Modeling
	Vanishing Gradient
	LSTM and GRU

	Spatial Modeling
	Graph Convolutional Network
	ChebNet
	GCN
	SGN

	Sub Sampling
	Random Sampling
	Node Sampling
	Ripple Walk SubSampling
	Bias from SubSampling

	Sequence Learning
	Curriculum Learning

	Missing Data
	GRU-D

	Scalable ETA prediction Framework
	Mean
	LSTM
	ConvLSTM
	DCRNN
	Proposed Framework
	Training Procedure
	Evaluation Procedure

	Experimental Results and Discussion
	Datasets
	METR-LA
	Delhi Traffic data
	Delhi ETA data

	Training Details
	Model Parameters
	Learning Rate
	Optimization
	Loss Function

	Metrics
	Mean Square Error
	Mean Absolute Error
	Root Mean Square Error
	Mean Relative Error
	Overestimate Percentage

	Experimentations
	Convolution layer
	Subsampling
	Bias from SubSampling
	AutoRegression
	Missing Data

	Extension to ETA-DT dataset
	Choosing the Architecture
	Integrating the Missing Data
	Relative Loss Function

	Results

	Conclusion and Future Work
	Appendix
	Induction Proof
	Further Study on AutoRegressive Training
	Professor Training
	RL-Training

