
MIMANSA: Process Mining Software Repositories

from Student Projects in an Undergraduate Software

Engineering Course

Student Name: MEGHA MITTAL

IIIT-D-MTech-CS-DE-12-043
Jan xx, 2013

Indraprastha Institute of Information Technology
New Delhi

Thesis Committee
Ashish Sureka (Chair)

Rahul Purandare
Sanjay Goel

Submitted in partial fulfillment of the requirements
for the Degree of M.Tech. in Computer Science,

with specialization in Data Engineering

c©2014 Indraprastha Institute of Information Technology, New Delhi
All rights reserved

Keywords: Mining Software Repositories, Process Mining, Education Data Mining, Learning
Analytic, Software Engineering Education

Certificate

This is to certify that the thesis titled “MIMANSA: Process Mining Software Reposi-
tories from Student Projects in an Undergraduate Software Engineering Course”
submitted by Megha Mittal for the partial fulfillment of the requirements for the degree of
Master of Technology in Computer Science & Engineering is a record of the bonafide work car-
ried out by her under my guidance and supervision at Indraprastha Institute of Information
Technology, Delhi. This work has not been submitted anywhere else for the reward of any other
degree.

Prof. Ashish Sureka
Indraprastha Institute of Information Technology, New Delhi

Abstract

An undergraduate level Software Engineering course generally consists of a team-based semester
long project and emphasizes on both technical and managerial skills. Software Engineering
is a practice-oriented and applied discipline and hence there is an emphasis on hands-on de-
velopment, process, usage of tools in addition to theory and basic concepts. We present an
approach for mining the process data (process mining) from software repositories archiving data
generated as a result of constructing software by student teams in an educational setting. We
present an application of mining three software repositories: team wiki (used during require-
ment engineering), version control system (development and maintenance) and issue tracking
system (corrective and adaptive maintenance) in the context of an undergraduate Software En-
gineering course. We propose visualizations, metrics and algorithms to provide an insight into
practices and procedures followed during various phases of a software development life-cycle.
The proposed visualizations and metrics (learning analytics) provide a multi-faceted view to the
instructor serving as a feedback tool on development process and quality by students. We mine
the event logs produced by software repositories and derive insights such as degree of individual
contributions in a team, quality of commit messages, intensity and consistency of commit activi-
ties, bug fixing process trend and quality, component and developer entropy, process compliance
and verification. We present our empirical analysis on a software repository dataset consisting
of 19 teams of 5 members each and discuss challenges, limitations and recommendations.

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Ashish Sureka for his continuous
support in my M.Tech study and research, for his patience, motivation, enthusiasm, and immense
knowledge. His guidance helped me in all the time of research and writing of this thesis. Without
his guidance and persistent help this thesis would not have been possible.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Sanjay Goel
and Prof. Rahul Purandare, for their encouragement and support.

I would also like to thank my fellow mates Ritika Jain and Swati Aggarwal for their encourage-
ment, insightful comments and suggestions.

In addition, I would like to thank my family for supporting me throughout my life.

i

Contents

1 Introduction 1

1.1 Research Motivation and Aim . 1

1.2 Related Work and Research Contributions . 2

1.3 Research Methodology and Experimental Dataset 4

2 Team Wiki 5

2.1 Quality of Commit Messages . 5

2.2 Consistency in Commit Activity . 6

2.3 Contribution of Members in a Team Wiki . 8

3 Version Control System 9

3.1 Component And Developer Entropy . 9

3.2 Effects of Milestones on Commit Behaviour . 11

4 Issue Tracking System 13

4.1 Bugs Opening Trend, Closing Trend and Continuity 13

4.2 Mean Time to Repair . 16

4.3 Component Vs Priority in a Project . 16

4.4 Process Discovery . 17

4.5 Compliance Verification . 19

5 Conclusions 21

ii

List of Figures

1.1 Research Framework . 3

2.1 A Snapshot of Wiki Event Log . 6

2.2 Graph Illustrating Different Commit Activity (Number of Commits Across Time)
Patterns . 7

2.3 Graph Illustrating Significant Increase in Number of Commits Close to the Deadline 7

2.4 Contribution of Each Member of a Team in a Wiki 8

3.1 Radar Chart Illustrating Developers Contribution Across Components 11

3.2 Component and Developer Entropy Graphs Showing the Position of 6 Teams . . 12

3.3 Scatter Plot Representing the Commit Activity with Release Dates 12

4.1 Bugzilla Main Page . 14

4.2 A Snapshot of Bug History . 14

4.3 Bugs Opening And Closing Trends with 3 Different Behaviour as in Subfigures
(a), (b) and (c) . 14

4.4 Bugs Fixing Score Graph Showing the Position of 19 Teams 15

4.5 A Box Plot Illustrating the Statistics for Time to Repair of Bugs Reported . . . 15

4.6 A Histogram Showing the Distribution of Bugs Priority Across Various Compo-
nents of a Project . 17

4.7 Run-Time Bug Life-Cycle Process Map . 18

iii

List of Tables

1.1 Seven Closely Related Work Arranged in Chronological Order and Categorized
Based on Three Attributes . 2

1.2 Experimental Dataset Details . 3

2.1 Categorization of Commit Messages into Three Levels of Quality 7

4.1 Fitness Evaluation and Compliance Verification 19

iv

Chapter 1

Introduction

1.1 Research Motivation and Aim

Software Engineering (SE) is a practice-oriented and applied discipline and software development

processes, team-work, project management and exposure to popular SE tools are important

learning objectives in addition to fundamental technical concepts in SE courses [2] [5] [6] [9]

[10] [12] [15] [16]. SE courses generally consists of a team-based semester-long project giving

an opportunity for students to apply the theory and principles learnt during lectures. Student

teams follow a development process to deliver a software product. Several artifacts such as

software requirement specification document (SRS, design document, project plans, test plans

and source code) are produced at various milestones during product development [2] [5] [6] [9]

[10] [12] [15] [16]. A course instructor can easily assess and provide feedback on product and

deliverables such as SRS as it is visible but providing feedback on process and team-work is

not straightforward as it is not explicitly visible unlike a product. The study presented in this

paper is motivated by the need to provide an effective mechanism for SE course instructors to

gain visibility and insights on software development processes followed by student teams and

provide appropriate feedback on process improvement. Our motivation is to develop tools and

techniques for solving problems encountered by SE course instructors.

Several SE tools such as online Wiki based collaborative document editor, Version Control

Systems (VCS), Issue Tracking System (ITS), project management and testing tools facilitating

team-work and product development are taught during the course. Tools such as ITS, VCS and

Wiki generate an event log of activities performed by developers. For example, VCS records who,

when and what of a software change. Wiki event log records who (actor) made what change and

when (timestamp). Event logs generated by such Process Aware Information Systems (PAIS)

can be process mined for discovering run-time process map, imperfections, inefficiencies and

interesting patterns [16]. Process mining event logs generated from PAIS used by student-teams

in an education setting can provide feedback and actionable information to the course instructor.

The specific research aim of the work presented in this paper is the following:

1. To investigate the application of process mining event log data generated from Wiki based

1

Study University Repository Objective

Glassy 2006 [2] University of Mon-
tana

SVN Mining problematic patterns, steadiness
of progress and quality of commit mes-
sages

Jones 2010 [5] Bloomsburg Uni-
versity

SVN Aid in determining the accomplishments
of each individual in a group programming
project.

Kay 2006 [6] University of Syd-
ney

Wiki, ITS and SVN Frequent pattern characterizing aspects of
team-work.

Liu 2004 [9] University of Al-
berta

CVS Studying correlation between grades and
nature of collaboration.

Mierle
2005 [10]

University of
Toronto

CVS Mining statistical patterns or predictors of
performance.

Poncin
2011 [12]

Eindhoven Univer-
sity of Technology

SVN, Mails, Wiki
Articles Logs

Identifying developer roles, development
models and prototype reuse

Robles
2013 [15]

Universidad Rey
Juan Carlos

GIT VCS Gathering software analytics data from
programming assignments

Table 1.1: Seven Closely Related Work Arranged in Chronological Order and Categorized Based on Three
Attributes

collaborative document editor, Version Control Systems (VCS) and Issue Tracking System

(ITS) in the context of an undergraduate SE course.

2. To define new process quality metrics and visualization and examine the application of

existing process quality metrics for the purpose of understanding software development

process by student teams in an educational setting

3. To conduct a case-study and empirical analysis of process mining software repositories and

activity logs in a semester-long undergraduate level SE course and present our (teaching

team) experiences, effectiveness of the proposed approach as well as challenges encountered.

1.2 Related Work and Research Contributions

In this Section, we present closely related work to the study presented in this paper and present

novel research contributions in context to existing work. We characterize closely related work as

formal studies on mining software repositories of student team-based projects within the context

of university level Software Engineering course.

Table 1.1 presents the outcome of our literature survey on closely related work. We categorize 7

chronologically sorted papers (refer to Table 1.1) based on three attributes: software repositories

used in the study, name of the University and objective of the research study. Our literature

survey reveals that mining software repositories in an educational setting is an area that has

attracted the attention of several instructors teaching university level SE courses and the study

presented in this paper aims to further body the knowledge on the topic. Table 1.1 shows that

mining VCS is the most common application and mining other software repositories like Wiki

2

Data Extraction, Pre-processing

MYSQL RDBMS

Process Mining Software Repositories

Process Verification &
Conformance

ISSUE TRACKING

VERSION CONTROL

REQUIREMENTS

Development Activity

Actual Process
Discovery

Team-Work
Collaboration

Product - Process
Correlation

Figure 1.1: Research Framework

Field Value Field Value

Total Students 99 VCS : Total Commits 925

Total Teams 19 VCS : Average Commits 50

Date of First Wiki Activity 21-08-2013 Date of First ITS Activity 04-09-2013

Date of Last Wiki Activity 10-10-2013 Date of Last ITS Activity 17-10-2013

Wiki : Total Commits 1167 ITS : Total Bug Reports 482

Wiki : Average Commits 60 ITS : Average Bugs Reported 26

Date of First VCS Activity 23-08-2013 ITS : Maximum Bugs Re-
solved

404

Date of Last VCS Activity 17-10-2013 ITS : Average Bugs Resolved 22

Table 1.2: Experimental Dataset Details

based content management system and issue tracking system is relatively unexplored. In context

to existing work, the novel research contributions of this paper are following

1. We present an application of process mining Wiki, VCS and ITS event logs in a SE course

setting consisting of 19 teams of 5 members each. While there are several studies on mining

VCS, analyzing wiki and ITS activity event logs from a process mining perspective is a

fresh perspective presented in this paper.

2. We present several visualizations and metrics providing feedback on various process aspects

such as: work-load distribution between team members, regularity in contributions from

start till the deadline, quality of commit messages, component and developer entropy,

quality of efficiency of bug fixing process.

3. We conduct a case-study and apply the proposed approach on software repository dataset

generated from 19 student projects in an undergraduate level SE course. We present an

experience report, results and challenges encountered.

3

1.3 Research Methodology and Experimental Dataset

We propose a research framework (called as Mimansa) illustrated in Figure 1.1 and conduct

experiments on dataset described in Table 1.2. As shown in Figure 1.1, the architecture of

Mimansa consists of multiple components and phases. We mine three process aware information

systems (PAIS): Bugzilla1 issue tracking system, Mercurial2 and Git3 version control system

and Bitbucket4 Wiki. We extract raw data from PAISs using XM-RPC and JSON-RPC APIs

calls and store the data in a MySQL database. The extracted data is then pre-processed and

transformed to a format which is suitable to a mining task (for a given objective). Fields which

are common across event logs from all the three systems are: activity timestamp, actor and the

action. We frame several questions (actionable information for the Instructor such as the degree

of contribution from team members towards a common goal) and define process quality metrics

and visualizations which are addressed in the Analytics phase of the research framework. As

shown in Figure 1.1, the outcome of process mining is multi-dimensional and derived by mining

data from multiple PAIS giving visibility to the instructor on the development process in addition

to the product.

Software Engineering (CSE 300) is a 4 credit core course (two classes of 1.5 hours each in one

week with a total of 26 classes over 4 months) offered during the third year (5th semester) of

Bachelor of Technology (abbreviated as B.Tech) in Computer Science and Engineering (CSE)

program at Indraprastha Institute of Information Technology (IIIT Delhi, a state university in

India). The experience report is based on SE course taught in Monsoon 2013 semester. We

created 19 teams of 5 members each (except few teams which had 6 members). Table 1.2

describes the experimental dataset collected over a period of 8 weeks. The start date for the

experimental dataset is the begin date of wiki activity (21-August-2013) until the last date of

ITS activity (17-October-2013). As shown in the Table 1.2, we observe a total of 1167 commits

in Wiki, 925 commits in VCS and 482 issues in Bugzilla. We notice that 404 out of 482 issues

reported to ITS are resolved. We defined several project deliverables during the course. The first

project deliverable was on creating 25−30 user stories and a release plan (using team wiki). One

of the project deliverables was to conduct functional and non-functional testing of the software

and use ITS for managing and tracking defect reports as well as feature enhancement requests.

1 http://www.bugzilla.org/
2 http://mercurial.selenic.com/
3 http://git-scm.com/
4 https://bitbucket.org/

4

Chapter 2

Team Wiki

We taught basic principles and practices of Extreme Programming (XP) during the course and

one of the project deliverables was on writing user stories, product backlog and release plan ac-

cording to Extreme Programming methodology [11]. Agile development processes are intended

to support early and quick production of working code by structuring the development into small

release cycles and focussing on continual interaction between developers and customers. User

stories are one of the primary development artifact of this approach and are used as the basis for

defining the functions a system must provide and to facilitate requirements management [13].

It captures the ’who’, ’what’ and ’why’ of a requirement in a simple, concise way specifying the

needs and expectations of the user. Team Wiki’s were used by the students for the documen-

tation of user stories. A wiki is a collaborative tool that supports software development and

maintainence process of a team project. It is designed to facilitate the exchange of information

within and between teams.

Whatever changes are done to the information in a wiki leaves its traces in the event log produced

by wiki that can be reviewed later to retrack the process. A wiki event log represents the

activity of developers during requirement specification documentations. Figure 2.1 is a snapshot

of Bitbucket Wiki feature in which we mask the actual names of the authors and label various

data fields. From this log, we obtain information like a timestamp corresponding to an activity,

summary of commit and its author. Using this information we analyze the process and practise

followed by students during the software development.

2.1 Quality of Commit Messages

Wiki commit messages are like documentation and writing quality and well-formed commit

message is a process attribute and not a product (a document containing user-stories) attribute.

We emphasized in class on writing good quality commit messages (making a habit of writing

high quality commit messages) as it results in good documentation, gives a better insight and

helps in debugging or answering questions. We conducted a qualitative analysis of the commit

5

Figure 2.1: A Snapshot of Wiki Event Log

messages to check if they are clear and concise, explains the rationale and mentions the concepts

like how and why this change was committed. Following is the process quality question useful

to the instructor from pedagogy perspective:

RQ1 : To what extent guidelines on commit message quality are followed and what are the

specific gaps.

We categorize the quality of commit messages into three broad classes: Good, Average and

Poor. Table 2.1 shows examples of few commit messages in each category from student projects.

We observe commit messages like “Edited some user stories” in which it is not clear which user

story is edited. We notice commit messages like ”Edited online”, ”Minor fixes here and there”

and ”Wrote 4 user stories” which are vague and poor quality. We also observe several commit

messages (refer to Table 2.1) like ”Added title, priority and cost for user stories 17 and 19”

which is short, concise and specific. Quality of commit messages was a parameter for grading

the project deliverable and the grade was not only based on product quality but also process

quality.

2.2 Consistency in Commit Activity

Software Engineering is a 15 weeks long course with a project that should evolve in an incre-

mental and iterative fashion(reflecting a real world development environment). Analysing the

commit activity of a team wiki helps in understanding the nature of evolution of a project during

the documentation of user stories. We define the commit activity of a team as the frequency of

commits across timeline. A consistent pattern in the frequency of commits by a team reflects

an efficient pattern in the evolution of a project. Analyzing the frequency in commit activity

will help the instructor in answering the following research question:

RQ2 : To what extent the process followed by the students during the requirement documentation

6

Quality Example Remarks

Poor

1. Edited online.

Vague, not specific, only
2-3 terms, too general.

2. Wrote 4 user stories.

3. Minor fixes here and there.

4. User Story-32

Average

1. Changes to story 8,9,10,14.
Specific but still not cover-
ing all (rationale, why and
what) relevant details.

2. Edited some user stories(Priority heading re-
moved).

3. Edited 2nd user story.

4. Image issues of 20.

Good

1. Re added costs for 9-12,got removed due to com-
mit conflict. Short, concise, specific

and explains the rationale,
why and what.

2. FAQ page addition for easier usage of the appli-
cation.

3. Added Title, Priority and Cost for User Stories
17,19.

4. Release of user story 1 and 2 added.

Table 2.1: Categorization of Commit Messages into Three Levels of Quality

Figure 2.2: Graph Illustrating Different Com-
mit Activity (Number of Commits Across
Time) Patterns

Figure 2.3: Graph Illustrating Significant In-
crease in Number of Commits Close to the
Deadline

of their projects is incremental and iterative.

Figure 2.2 shows different commit activity patterns of the teams. We notice an incremental

pattern in the frequency of commit activity for team like “Facility” and at the same time a

non-incremental pattern can be noticed for team like “Hostel”. Reviewing the commit activity

of teams across timeline unfolds another important aspect of an educational environment and

that is reviewing the amount of work done by students near to the deadline. From Figure 2.3

we observe that most of the teams follow a non-uniform process and work more frequently near

to the deadline. Figure 2.3 reveals that team “Polling” contributes 35% of the total work on the

last day of the deadline. While we see an increase in activity in last 2 days, there is work in the

start and middle as well, as can be seen in projects “PhDAdmission” and “PhDContingency”.

Project work for team “PhDAdmission” started early and finished off well before the deadline.

Figure 2.2 and Figure 2.3 shows multiple patterns observed from wiki activities of different

7

Figure 2.4: Contribution of Each Member of a Team in a Wiki

teams, though we do not plot patterns for all the projects and represent the activity of only a

few projects.

2.3 Contribution of Members in a Team Wiki

Software Development Process inherently requires team work with an equal distribution of work

load across all the members of a team for the development of a healthy product. We encouraged

students to put an emphasis on uniform team work with an aim to develop the quality of

team spirit amongst them. Student team projects are a hallmark of undergraduate Software

Engineering courses and programs [4] [14]. We look into the contribution of team members in a

team wiki to provide an insight to the instructor from the following point of view:

RQ3 : To what extent the work load distribution in a team was uniform or skewed.

A stacked chart is used as shown in Figure 2.4 to represent the distribution of work across the

members of teams. Figure 2.4 shows different levels of work load distribution across different

members of teams. We observe that team members can be divided into 3 broad categories

namely: Out-performers as shown by team “Cafex” with member “ya” contibuting 45-50% of

the total work, Equal performers, team “IFM” is an example of this category in which each

member contributes 20-25% each and below expectation performers like in team “IIITD Polling

Portal” where member “Pa” is contributing only 8% of the total work. Such a differentiation in

students further benefits the instructor in adopting a fair grading policy.

8

Chapter 3

Version Control System

Version Control Systems(VCS) is an essential tool in software developement of a project. In an

educational setting, use of VCS is not only beneficial for students as it prepares them for the

real life situations but has several potential benefits for the instructor as well. It can be used

as a tool to monitor or visualize team and individual contribution. It helps in reviewing the

development process followed by the student teams across a timeline and their behiovior near

the release dates.

The event log of a VCS is the most important documentation for any project. We analyze

the event log of the projects to get an insight on process followed by student teams during the

development phase.

3.1 Component And Developer Entropy

SE courses generally includes a team-based semester-long project where student teams follow a

development process to deliver a software product. Several artifacts such as software requirement

specification document (SRS), design document, project plans, test plans and source code are

produced at various milestones during product development. A course instructor can easily

assess and provide feedback on product and deliverables as such as SRS as it is visible but

providing feedback on process and team-work is not straightforward as it is not explicitly visible

unlike a product. In student projects, analysing the contribution of individual developers in a

team not only helps the instructor in understanding the quality of team work involved but also

helps in fair grading process. Every project can be divided into several modules or components

which require a collaborative effort from all members of a team to yield an efficient product.

The students were asked to follow a modular structure for the development of their project. We

study the uniformity in the contribution of developers across all the components of a project to

facilitate instructor understanding the following:

RQ4 : To what extent the contribution of work amongst the developers of a team across various

components was uniform.

9

We define that team work in a project will be perfect if the contribution of all the members of

the team is uniformly distributed across various components of the developed software. That is,

if a team shows equal work from all the members in a component and across all the components

of the software then it shows perfect team work. We examine the VCS event logs to determine

the contribution of each developer across all the components of a project. A Radar Chart as

shown in Figure 3.1 is used to represent the contribution of all the team members across various

components. Each axis represents a component of the software and each colour represents a

developer. An equal distribution of a colour along all axes represents equal work by a developer.

A skewed distribution of a colour shows an expertise area of a developer but shows lack of

participation in all the components of the software.

Figure 3.1 shows the contribution of developers of a team within a component and across the

components. It shows participation of member2 equally spread to all the components whereas

a peak in the contribution of member3 and member4 in components “Authentication” and

“Systems” respectively shows their expertise in the respective areas but lack of contribution to

other parts of the software. It also helps in spotting the least contributors of a project as well

like “member1” who worked least in the entire team.

We define metrics called as Component Entropy (refer to Equation 3.1) and Developer En-

tropy (refer to Equation 3.2) to quantify two types of distribution (developer-component and

component-developer) serving as an indicator of extent of co-development at component level.

Lal et al. [8] apply the concept of Entropy for calculating component and bug-reporter entropy

across seven different types of defect reports and Khomh et al. [7] present an application of bug

triaging by computing crash-entropy (calculating entropy based on crash-types across users).

H(d|c) = −
j=m∑
j=1

i=n∑
i=1

p(d=i|c=j) ∗ logn(p(d=i|c=j)) (3.1)

H(c|d) = −
i=n∑
i=1

j=m∑
j=1

p(c=j|d=i) ∗ logm(p(c=j|d=i)) (3.2)

We instructed the student teams to have a modular design of their system consisting of com-

ponents or modules. A component consists of a collection of files and components are inter-

dependent. If two developers modify same files or files within the same component then we refer

it to as sharing, co-development or collaboration at the component level.

Let us say a team of n members is developing a system consisting of m components. Developer-

component entropy (Equation 3.2) quantifies the distribution of n developers across m com-

ponents. Inner summation calculates the individual entropy of each developer which is then

averaged over all the developers. Similarly, Component-developer entropy (Equation 3.1) refers

to the distribution of each of the m component across n developers. Here, Inner Summation

represents the entropy value of individual components where a high value indicates an equal con-

tribution from all the developers in this component. The entropy value can vary from a minimal

of 0 to a maximum of 1. The entropy is maximal (one extreme end) if there is a perfectly uniform

10

Figure 3.1: Radar Chart Illustrating Developers Contribution Across Components

distribution (every component receives equal contribution by all the team members). On the

other extreme end, entropy value is minimal if there is no co-development or collaboration at

component-level.

Figure 3.1 displays the level of collaboration in the developement of project “Placement”. The

developer entropy for member2 is 0.99 showing his equal contribution to all the components.

The overall Developer-component entropy for “Placement” is 0.87. Similarly, we calculate the

component entropy for component “Feedback” as 0.64 reflecting unequal contribution of all

the team members in this part of the project, on the other hand the component entropy for

component “System”is 0.88. The overall Component-developer entropy is coming out to be

0.72. Figure 3.2 represents the component and developer entropy and the frequency of commits

for 6 teams. We notice that for team “Leave”, component and developer entropy value lie in

a low value region of 0-0.5 representing poor team work whereas high entropy value for teams

like “Grading”, “Alumni”, “Placement” and “Mess” indicate collaborative development of the

projects. The entropy values obtained from the above mentioned metrics reflects the diversity

in the contribution of work in a project and not the intensity. One of the limitations of this

metric is that if a developer works less but still shows uniformity in his contribution to all the

components, then we get a high value of developer entropy. The same applies to the component

entropy as well. One way to extend this metric and remove this limitation is to add weights or

a bias during the calculation of the entropy values.

3.2 Effects of Milestones on Commit Behaviour

The development process of a software is an incremental process that can take multiple iterations

offering a series of releases with additive functionality. Analyzing the development activity of

projects near release dates helps in understanding the change in the behaviour of students

with deadlines. We focussed on the commits that involve source code contributions of different

developers of a project and their commit frequency to understand their behaviour near pre-set

milestones or release plans to help instructor understand the following aspect:

RQ5 : To what extent did various milestones or release plans effected the activity of developers

11

Figure 3.2: Component and Developer Entropy Graphs Showing the Position of 6 Teams

Figure 3.3: Scatter Plot Representing the Commit Activity with Release Dates

of a project.

Figure 3.3 shows the commit frequency of different developers of team “CourseReview”. Each

colour represents a different developer and its position in the graph represents the amount of work

done in terms of number of commits. Release dates associated with this project are represented

by the vertical lines. An increase in commit frequency shows an increase in the development

activity of a project. Figure3.3 represents an increase in the density of commit activity near the

release plans with an increase in number of commits by majority of the developers. From this

we infer that developers become more active near to the release of a deliverable and their work

is not uniformly distributed throughout the development process. We also notice that member2

shows a consistent behavior with decent commit activity throughout the timeline indicating a

member of the team who takes timely actions in the development process of the project.

12

Chapter 4

Issue Tracking System

Issue Tracking System such as Bugzilla are Process Aware Information Systems used during

software development and maintenance for issue (feature enhancement requests and defects)

tracking and management of a project. Software Maintenance and defect-fixing process is a col-

laborative activity involving several roles such as bug reporter, bug fixer and project developers.

4.1 shows the main page of Bugzilla which is accessed to search for reported bugs or to report

new bugs. An ITS produces an event log or the history of the events that were followed during

bug-fixing process. 4.2 represents event log of a bug with information like who reported a bug

and when and changes in resolution and status of a bug with their respective timestamps.

Process data archived in an ITS as an event log can be mined to track the bug-resolving process

of a project and can also be used for contribution and performance assesment of individuals as

a bug reporter and fixer. In the Software Engineering course, Bugzilla was introduced as an ITS

to be used for the defect tracking and maintenance of their products. Each team project was

allocated a testing team that was responsible for testing their projects. Team members were also

responsible for testing their own projects apart from the testing of projects allocated to them. In

the following sections we provide visualizations and metrics to accurately and reliably measure

the contribution of students teams as developers and testers during the software maintenance

and bug-fixing process.

4.1 Bugs Opening Trend, Closing Trend and Continuity

Francalanci et al. [1] present a method to measure performance characteristics such as conti-

nuity and efficiency of bug fixing process during software maintenance [1]. They define two

performance indicators (bug opening and closing trend) reflecting the characteristics and qual-

ity of bug fixing process. We mine the issue tracking system of student projects and apply the

performance indicators proposed by Francalanci et al. to measure the bug fixing performance

efficiency [1]. Francalanci et al. define bug opening trend as the cumulated number of opened

bugs over time and closing trends as the cumulated number of bugs that are resolved and closed

13

Figure 4.1: Bugzilla Main Page Figure 4.2: A Snapshot of Bug History

Figure 4.3: Bugs Opening And Closing Trends with 3 Different Behaviour as in Subfigures (a), (b) and
(c)

over time [1].

We plot the opening and closing trend for all projects on a graph and investigate the similarities

and differences in their characteristics. In Figure 4.3, x-axis represents the timeline across

which bugs are reported and resolved and y-axis shows the bugs count associated with each

date. Figure 4.3 displays the opening and closing trend for three projects exhibiting different

characteristics. At any instant of time, the difference between the two curves (interval) can be

computed to identify the number of bugs which are open at that instant of time. We notice that

the debugging process is of high quality for the graph in Figure 4.3(c) as there is no uncontrolled

growth of unresolved bugs (the curve for the closing trend grows nearly as fast or has the same

slope as the curve for the opening trend) across all time instants. However, we notice in Figure

4.3(a) that the growth of unresolved bugs increase with time and are resolved only when the

deadline approaches. This shows an inefficient growth and process of software testing. Figure

4.3(b) shows a team with an average trend of bug fixing process.

We propose a metric called as “Bug Fixing Score” as shown in Equation 4.1 to quanitfy the

bugs opening and closing trend of a project. The metric can serve as an indicator of the bug

fixing performance efficiency.

BugFixingScore = (1/n− i) ∗
i=n∑
i

log(BOi −BCi)/log(BOi) (4.1)

where, BO = Bugs opened till time instant i , BC = Bugs closed till time instant i , “i” is the

first time instant when BO¿0 and “n” is the maximum recorded time instant. Score of a project

14

Figure 4.4: Bugs Fixing Score Graph Showing the Position of 19 Teams

Figure 4.5: A Box Plot Illustrating the Statistics for Time to Repair of Bugs Reported

can vary from a minimal value of 0 to a maximal value of 1 where value 0 indicates a perfectly

efficient behaviour where the bug fixing process is as fast as the bug opening process. On the

other extreme end, score value 1 indicates an inefficient behaviour where there is no bug fixing

throughout the process though number of bugs opened continue to increase over time. The Bug

Fixing Score helps the instructor in answering the following research question:

RQ6 : To what extent the bug fixing performance of a project was efficient.

We calculate the score of all projects as shown in Figure 4.4 and place them according to the

value of their score with respect to number of bugs reported. In Figure 4.4, x-axis represents the

count of bugs reported and y-axis shows bug fixing score divided over 3 intervals . We conclude

that 50% of the projects exhibited a normal behaviour in bug-fixing process with a score value

in range 4.1-7.0 whereas only 16% of the teams showed an efficient behaviour in the bug-fixing

process lying in a range between 0.0-4.0. Rest of the teams showed an inefficient behavior in

15

the bug fixing process. In Figure 4.4, bottom right corner represents a team which reported

considerable number of bugs with an efficient value of bug fixing score lying in the range of

0.0-4.0. From this graph, one can easily comprehend and visualize the performance of various

teams during the testing and software maintenance phase of projects. The instructor can take

benefit of this metric during grading of projects by understanding the efficiency of student teams

during the bug reporting and resolving process of their respective projects.

4.2 Mean Time to Repair

Time taken to repair a bug (TTR) is a measure that helps in determining the efficiency of the

developers during the testing phase of a project. We define the time to repair a bug as follows:

TTR(b)(inHours) = dateclosedb− dateopenedb (4.2)

Analysing the repairing activity obtained from the time taken by developers to resolve bugs helps

in quantifying the devotion and importance given by the development team to the testing and

maintenance process of their projects and serves as a measure of the seriousness of developers to

the issues faced by their customers. The statistics obtained from bugs repairing time of student

teams helps the instructor to comment on the following research question:

RQ7 : What are the variations in the time devoted and importance given by the development

teams to the repairing activity of bugs.

We use a box plot as shown in Figure 4.5 to represent the statistics related to the TTR of bugs

for different teams. Figure 4.5 shows the quartiles and median values for 5 teams. A high value

of “Q3” indicates that bugs in this project were left unnoticed or no importance were given to

the bugs resolving process thus shedding light on the irresponsible behaviour of the development

team towards importance of testing process. From Figure 4.5 high value of Q3 for team “cafex”

indicates an inefficient behaviour of developers of this team towards the bug resolving process.

On the other hand we observe that most of the teams are showing an efficient behaviour in

bug resolving process taking time between 5 to 60 hours ,that is, the bugs are getting resolved

within a timespan of 2 days from their reported time. Resolving bugs in sufficient time not only

reflects the sincerity of the development team towards the maintenance process of their product

but also motivates them to avoid such situations in their future releases.

4.3 Component Vs Priority in a Project

A software project can be divided into various sub-modules or components developed by the

collaborated efforts of the developers of a project. Rigorous testing and inspection is required

in each part of a project for successful and reliable delivery of the product. During the testing

phase of a software, all the components are tested and bugs with different priority are reported

16

Figure 4.6: A Histogram Showing the Distribution of Bugs Priority Across Various Components of a
Project

according to the importance of their functionality. A component with majority of the bugs in

high priority region not only indicates its importance from the users point of view and urgency

to correct them but also shows an unsuccessful attempt of the development team in serving

the main functionality of this component. For the student projects, such a review will help the

instructor in identifying:

RQ8 : What are the components of a project that turned out to be weak and less functional

during the testing phase and what are the reasons for such a behavior.

Figure 4.6 is a histogram which shows the distribution of bugs with different priority in various

components of a project. We notice that maximum number of bugs are reported in component

“system” that shows its importance in the project and indicates lack of expertise in serving

the main functionality of this product. On the other hand, component like “security” with less

number of bugs shows the expertise and successful attempt of the project team in serving the

need of the user. In an educational setting, such a graph also helps the instructor during the

viva of the student projects as the instructor can ask the reasons for the failure of a particular

component, who was responsible for the development of this part and what steps were taken to

avoid such situations in the future releases of the project.

4.4 Process Discovery

Event log archived in ITS stores information like what was changed as in status or the resolution

of a bug and the timestamp associated with the change. We mined the event logs collected from

the bugs activity of student’s projects and mined it to get an insight into the process followed by

student teams during the software testing and maintenance phase. In the Software Engineering

course, the instructor emphasised student teams to follow design time process model of a bug

lifecycle during bug fixing process. We review the process models of the bugs activity in projects

17

25

29

4

19

119

230

49

5

5

85

4

4

12

51

6

14157

15

476

161

NEW

482

WORKSFORME

28

CLOSED

170

INVALID

33

DUPLICATE

46

WONTFIX

39

FIXED

294

VERIFIED

70

ASSIGNED

233

REOPENED

21

Figure 4.7: Run-Time Bug Life-Cycle Process Map

to give an insight to the instructor from the following perspective:

RQ9 : To what extent the runtime process models of student teams conform with design time

process model.

There are many process mining tools like ProM(Open source) and Disco(commercial)1 used

to obtain process models of softwares. We used Disco2 as a tool to obtain process map and

other statistical information for testing process of student projects. Disco miner is based on the

proven framework of the Fuzzy Miner with completely new set of process metrics and modelling

strategies3.Preprocessed data is imported into Disco which is used to discover the runtime or

actual process from the event log generated during the progression of a bug. We provide the

data collected from event logs to Disco with 3 types of information: Bug ID as the Case ID,

Status field or resolution field as activity, and event log timestamp as timestamp. Figure 4.7

reveals the bugs activity process of the student projects. Each node represents an activity and

an edge between two nodes represents a transition from one activity to another during the bug

1Disco is a proprietary tool for which we availed academic license and used for our analysis.
2http:// fluxicon.com/disco/
3http:// fluxicon.com/disco/files/Disco-Tour.pdf

18

Alumni Mgmt CourseReview

Fitness Metric 0.384 0.793

Total unique Transitions 72 72

Total Inconsistent Transitions 22 6

Most Inconsistent Transition Resolved→ Closed New → Resolved

Frequency of Most Inconsistent Transition 15 6

Table 4.1: Fitness Evaluation and Compliance Verification

lifecycle. Total reported bugs are 476 which travel through 10 different stages in their lifecycle

represented by 10 nodes. Label of each edge indicates the absolute frequency of transition, shade

and thickness corresponds to the frequency with more frequent being dark and less frequent as

light. We notice that 29% of bugs were marked as “closed” right after they were “fixed” without

getting “verified”. Around 7% and 5% of the bugs were reported as “invalid” and “wontfix”

respectively. Process Map shown in Figure 4.7 was further analysed to review activity frequency

and transition frequency . We observe that once a bug is reported as “new” the most frequent

event that it passes through is “assigned” followed by “fixed”. We infer from the analysed

process map that New → Assigned, Assigned → Fixed and New → Fixed are the most frequent

transitions.

4.5 Compliance Verification

[3] presents a method to detect the inconsistencies between design time process model and the

model obtained for as-is process from runtime event log. [3] defines a metric to measure fitness,

that is, how well observed process complies with the control flow defined in the design time

process model and the point of inconsistency.

They propose an algorithm to evaluate fitness metric to find number of cases with valid traces

(only defined transitions) and its ratio with total cases to measure the extent of fitness. Event

log and adjacency matrix, A (with row as source state and column as destination state, that

is, 6x6 in our case) has 1 in the cell if transition is preferred otherwise 0, are given as input.

For example, New → Assigned is a recommended transition and hence the value in adjacency

matrix A with row as “New” and column as “Assigned” will be 1, similarly on the other hand,

New → Resolved is a permitted transition but not a recommended one and hence the value for

such a transition will be 0 and such a transition will be considered as an inconsistent transition.

Using the proposed algorithm, an event trace (array with states from event log in sequential

order of their occurrence) for each case ID as shown in step 4 of algorithm 1. For optimization,

unique traces and count frequency of each is also identified. Each unique trace is verified with

adjacency matrix A for conformance. If it has all permitted transitions then the valid bit Vi

is assigned value 1 else 0. If the evaluated value of fitness metric is less than 1 then there

is deviation from defined model. To detect the cause of inconsistency, [3] proposes another

algorithm, that is, inconsistentDetector() which is invoked with event log and adjacency matrix,

19

A as input and returns inconsistency metrics. A footprint matrix is created of runtime event log

and is compared with design model (adjacency matrix) to identify inconsistent transitions (non-

zero elements in ITF). All states (6 for our case) are stored in an array, state. The frequency

of transition between each pair of states is counted from event log and stored in Transition

Frequency, TF matrix. Total inconsistent transitions are evaluated by adding the elements

of ITF. The algorithm evaluates the frequency (maximum element of ITF) and most frequent

inconsistent transition.

We implement the above mentioned 2 algorithms on the projects abtained from student teams

to understand the inconsistencies obtained in the state transitions adopted by them in their bug

resolving process. Analysing the fitness metric and performing conformance testing for student

projects according to these algorithms, we obtain the results as presented in Table 4.1. Low

value of Fitness Metric for “Alumni Mgmt” as compared to “CourseReview” indicates more

deviation in the run-time process model of the former from the defined design time model. As

shown in Table 4.1, for project “Alumni Mgmt”, 30% of unique transitions are inconsistent

transitions out of which most inconsistent transition is Resolved→ Closed with frequency of 15

transitions from total of 22 inconsistent transitions. On the other hand, a better performance can

be estimated for project “CourseReview” with most inconsistent transition as New → Resolved

that accounts for only 8% of total unique transitions.

20

Chapter 5

Conclusions

Mining activity logs generated by process aware information systems such as Wiki based docu-

ment management system, VCS and ITS as a result of developing software product in an edu-

cation setting can present useful insights on run-time development process and process quality

to the course instructor. We conduct a series of experiments which reveals that not only prod-

uct but process quality varies significantly between student teams and mining process aspects

can help the instructor in giving directed and specific feedback. We observe commit patterns

characterizing equal and un-equal distribution of workload between team members, patterns

indicating consistent activity in contrast to spike in activity just before the deadline, varying

quality of commit messages, developer and component entropy, variation in degree of process

compliance and bug fixing quality. We believe the proposed framework is effective in providing

visibility to the instructor on process data which can be mined to derive actionable information

for improving academic outcome and improve the teaching and learning methodology.

21

Bibliography

[1] Francalanci, C., and Merlo, F. Empirical analysis of the bug fixing process in open

source projects. In Open Source Development, Communities and Quality. Springer, 2008,

pp. 187–196.

[2] Glassy, L. Using version control to observe student software development processes. J.

Comput. Sci. Coll. 21, 3 (Feb. 2006), 99–106.

[3] Gupta, M., and Sureka, A. Nirikshan: Mining bug report history for discovering

process maps, inefciencies and inconsistencies, seventh india software engineering conference

(ISEC).

[4] Hogan, J. M., and Thomas, R. Developing the software engineering team. In Proceedings

of the 7th Australasian conference on Computing education - Volume 42 (Darlinghurst,

Australia, Australia, 2005), ACE ’05, Australian Computer Society, Inc., pp. 203–210.

[5] Jones, C. Using subversion as an aid in evaluating individuals working on a group coding

project. J. Comput. Sci. Coll. 25, 3 (Jan. 2010), 18–23.

[6] Kay, J., Maisonneuve, N., Yacef, K., and Zäıane, O. Mining patterns of events in

students teamwork data. In Educational Data Mining Workshop and Intelligent Tutoring

Systems (2006), pp. 1–8.

[7] Khomh, F., Chan, B., Zou, Y., and Hassan, A. E. An entropy evaluation approach

for triaging field crashes: A case study of mozilla firefox. In Proceedings of the 2011 18th

Working Conference on Reverse Engineering (Washington, DC, USA, 2011), WCRE ’11,

IEEE Computer Society, pp. 261–270.

[8] Lal, S., and Sureka, A. Comparison of seven bug report types: A case-study of google

chrome browser project. In APSEC (2012), pp. 517–526.

[9] Liu, Y., Stroulia, E., Wong, K., and German, D. Using CVS historical information

to understand how students develop software. In MRS 2004: International Workshop on

Mining Software Repositories (2004).

[10] Mierle, K., Laven, K., Roweis, S., and Wilson, G. Mining student cvs repositories

for performance indicators. In Proceedings of the 2005 international workshop on Mining

software repositories (2005), MSR ’05, pp. 1–5.

22

[11] Peeters, J. Agile security requirements engineering. In Symposium on Requirements

Engineering for Information Security (2005).

[12] Poncin, W., Serebrenik, A., and van den Brand, M. Mining student capstone

projects with frasr and prom. In Proceedings of the ACM international conference compan-

ion on Object oriented programming systems languages and applications companion (2011),

SPLASH ’11, pp. 87–96.

[13] Rees, M. J. A feasible user story tool for agile software development? In Software

Engineering Conference, 2002. Ninth Asia-Pacific (2002), IEEE, pp. 22–30.

[14] Reichlmayr, T. Enhancing the student project team experience with blended learning

techniques. In Frontiers in Education, 2005. FIE ’05. Proceedings 35th Annual Conference

(2005).

[15] Robles, G., and Gonzalez-Barahona, J. Mining student repositories to gain learning

analytics. an experience report. In Global Engineering Education Conference (EDUCON),

2013 IEEE (2013), pp. 1249–1254.

[16] van der Aalst, W. M. P. Process Mining: Discovery, Conformance and Enhancement

of Business Processes, 1st ed. Springer Publishing Company, Incorporated, 2011.

23

	Introduction
	Research Motivation and Aim
	Related Work and Research Contributions
	Research Methodology and Experimental Dataset

	Team Wiki
	Quality of Commit Messages
	Consistency in Commit Activity
	Contribution of Members in a Team Wiki

	Version Control System
	Component And Developer Entropy
	Effects of Milestones on Commit Behaviour

	Issue Tracking System
	Bugs Opening Trend, Closing Trend and Continuity
	Mean Time to Repair
	Component Vs Priority in a Project
	Process Discovery
	Compliance Verification

	Conclusions

