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Abstract

A covariate in face recognition can be defined as an effect that independently

increases the intra-class variability or decreases the inter-class variability or

both. Covariates such as pose, illumination, expression, aging, and disguise

are established and extensively studied in literature and are categorized as

existing covariates of face recognition. However, ever increasing applications

of face recognition have instigated many new and exciting scenarios such as

matching forensic sketches to mug-shot photos, faces altered due to plastic

surgery, low resolution surveillance images, and individual from videos. These

covariates are categorized as emerging covariates of face recognition, which

is the primary emphasis of this dissertation. One of the important cues in

solving crimes and apprehending criminals is matching forensic sketches with

digital face images. The first contribution of this dissertation is a memetically

optimized multi-scale circular Weber’s local descriptor (MCWLD) for match-

ing forensic sketches with digital face images. This dissertation presents an

automated algorithm to extract discriminative information from local regions

of both sketches and digital images using MCWLD. An evolutionary memetic

optimization is proposed to assign optimal weights to every local facial region

to boost the identification performance. Since, forensic sketches and digital im-

ages can be of poor quality, a pre-processing technique is also used to enhance

the quality of images. Results on different sketch databases, including forensic

sketch database, illustrate the efficacy of the proposed algorithm. Widespread

acceptability and use of biometrics for person authentication has instigated

several techniques for evading identification such as altering facial appearance

using surgical procedures. These procedures modify both the shape and tex-

ture of facial features to varying degrees and thus degrade the performance

of face recognition when matching pre- and post-surgery images. The second

contribution of this dissertation is a multi-objective evolutionary granular al-

gorithm for matching face images altered due to plastic surgery procedures.



The algorithm first generates non-disjoint face granules at multiple levels of

granularity. The granular information is assimilated using a multi-objective ge-

netic algorithm that simultaneously optimizes the selection of feature extractor

for each face granule along with the weights of individual granules. On IIIT-D

plastic surgery database, the proposed algorithm yields the state-of-the-art per-

formance. Face recognition performance degrades when a low resolution face

image captured in unconstrained settings, such as surveillance, is matched with

high resolution gallery images. The primary challenge is to extract discrim-

inative features from the limited biometric content in low resolution images

and match it with information-rich high resolution face images. The problem

of cross-resolution face matching is further alleviated when there is limited

labeled low resolution training data. The third contribution of this disserta-

tion is co-transfer learning framework, a cross pollination of transfer learning

and co-training paradigms, for enhancing the performance of cross-resolution

face recognition. The transfer learning component transfers the knowledge

that is learned while matching high resolution face images during training

for matching low resolution probe images with high resolution gallery during

testing. On the other hand, co-training component facilitates this knowledge

transfer by assigning pseudo labels to unlabeled probe instances in the tar-

get domain. Experiments on a synthetic, three low resolution surveillance

quality face databases, and real world examples show the efficacy of the pro-

posed co-transfer learning algorithm as compared to other approaches. Due

to prevalent applications and availability of large intra-personal variations,

videos have gained significant attention for face recognition. Unlike still face

images, videos provide abundant information that can be leveraged to com-

pensate for variations in intra-personal variations and enhance face recognition

performance. The fourth contribution of this dissertation is a video based face

recognition algorithm which computes a discriminative video signature as an

ordered (ranked) list of still face images from a large dictionary. A three stage

approach is developed for optimizing ranked lists across multiple video frames

and fusing them into a single composite ordered list to compute the video signa-

ture. The signature embeds diverse intra-personal variations and facilitates in

matching two videos across large variations. Results obtained on Youtube and

MBGC v2 video databases show the effectiveness of the proposed algorithm.
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Chapter 1

Introduction

One of the most common visual patterns that one comes across every day is a human face.

Humans have a remarkable property of recognizing faces and identifying a face appears to

be one of the most effortless human activities. For the last four decades, face recognition

has been an active research problem and researchers have been motivated to develop

algorithms to emulate the recognition capability of human mind [12]. Imparting this

intelligence to machines has led to the development of several automated face recognition

algorithms. However, human face is not a rigid object and can have a lot of differences due

to inter-personal or intra-personal variations. Inter-personal variations can be attributed

to changes in race or genetics, while intra-personal variations can be attributed to changes

in pose, illumination, expression, aging, hair, cosmetics, and facial accessories.

As a part of identity science, face biometrics has the benefit of being non-intrusive

and passive as compared to other biometric modalities such as fingerprint and iris. Face

images can be easily captured from a distance without much co-operation from the user.

It has received a lot of attention from both academicians as well as industry because

of its ever increasing applications in surveillance, access control, law enforcement, cross

border security, multimedia, forensics, and many more. With advancements in technology

and reduction in sensor cost (camera), new applications of face recognition have become

prevalent. Verification based on face images captured through built-in cameras is used to

allow access to personal devices such as laptops and mobile phones. With development

in face recognition technology, it is now used for cross border security. Hong Kong-SAR

border has the worlds first drive-thru face recognition system. Smart-Gate at Australia,

US Visit, and Japan Visit programs also collect face for all visitors. Face recognition is

also used in kiosk applications to allow access to ATM machines, server rooms, and e-

commerce applications (online banking). Face recognition has found applications in large
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social welfare programs where a new user is matched against all existing users to check for

duplicates. Currently, two states in United States (Massachusetts and Connecticut) use

face identification for large scale de-duplication. In India, UIDAI is also collecting face

biometric (along with other biometric modalities) to issue a unique identification number

to all the citizens. Face, being a non-invasive biometric, is widely used for surveillance.

In surveillance applications, face images are captured without active co-operation from

the user and are matched to a watch list database of individuals. Surveillance cameras

now have a profound presence at public places like airports, railway stations, shopping

malls, and banks. A face recognition system has different stages. As shown in Figure 1.1,

face recognition [13] starts by detecting the facial region in an image, i.e. face detection.

Once the face is detected, features are extracted to generate a template that captures the

discriminative information from the face image. The template of the probe (query) image

is then matched with the templates stored in database. The match scores thus obtained

are used to establish the identity of an individual. Depending on the context, a face

recognition system can operate either in a verification (1:1 matching) or an identification

(1:N matching) mode. Verification involves confirming or denying the identity claimed

by an individual, whereas identification involves determining the identity of an individual

from a list of N individuals enrolled in the database.

Figure 1.1: Illustrating different stages in a face recognition system i.e. image acquisition,
face detection, face normalization, feature extraction, and matching.
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1.1 Face Recognition Literature

As mentioned previously, face detection is the first stage in an automated face recognition

system. Given an input image, the goal of face detection is to detect all the faces present in

the image irrespective of its position, orientation, and lighting conditions. Face detection is

a challenging task because of the variability in scale, location, orientation, facial expression,

occlusion, and lighting conditions. Yang et al. [14] categorized the techniques for face

detection into four classes: knowledge-based, feature invariant, template matching, and

appearance-based methods. Knowledge-based methods comprise a set of rules that encode

human knowledge of what constitutes a face and generally consist of relationships between

facial features. Feature invariant methods aim to find structural features that exist even

when the pose and lighting conditions vary, and then use these features to locate faces. In

template matching methods, standard patterns of a face are stored and the correlations

between an input image and the stored patterns are used for detection. In appearance-

based methods, models (or templates) learned from a set of training images to capture

the representative variability of facial appearance are used for face detection. Further in

literature, there has been two widely used face detectors: 1) proposed by Rowley et al.

[15] and 2) proposed by Viola and Jones [16]. Face detector proposed by Rowley et al.

[15] is a neural network based technique which is fast and efficient. On the other hand, the

Adaboost face detector proposed by Viola and Jones [16] uses Haar-like features along with

a cascade of boosted decision tree classifiers as a statistical model which is fast, reliable

and computationally less expensive. Zhang and Zhang [17] presented a survey on recent

advances in face detection where several techniques are categorized based on the feature

extraction and learning algorithms utilized for robust face detection.

From the detected face images, facial features are extracted which are matches with

the stored templates (database). In an attempt to categorize different face recognition

algorithms, Klare and Jain [18] proposed the taxonomy of facial features by grouping the

salient information available in 2D face images into feature categories: level 1, level 2,

and level 3. Level 1 facial features capture the holistic nature of a face such as skin color,

gender, and general appearance of a face such as principal component analysis (PCA) and

linear discriminant analysis (LDA) approaches. Level 2 features are locally derived and

describe facial structures that are relevant for recognition such as Gabor wavelets, local

binary patterns (LBP), and scale invariant feature transform (SIFT). Level 2 features

are the most discriminative face features and are predominantly used for face recognition.

Level 3 features comprise unstructured micro level features on the face such as scars, moles,
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and facial marks. These features are especially efficient for matching look-alike faces [19],

biologically identical twins [20, 21, 22] and faces across different age variations. Most of

the research effort has gone into level 1 and 2 features and it is quite recent that level 3

information is used in applications where level 1 and 2 features cannot perform efficient

face recognition.

Zhao et al. [23] presented a survey of face recognition algorithms and existing chal-

lenges. They categorized the face recognition techniques (using still images) into holistic,

feature based, and hybrid approaches. Holistic approaches use the global appearance of a

face image and extract features from the full face, whereas in feature based approaches,

local features such as eyes, nose, and mouth are extracted and their characteristics such as

local geometry and appearance are utilized. Hybrid approaches, based on human percep-

tion, use both local features and the full facial region for recognition. They have identified

pose and illumination variations as the two major issues in face recognition. Kong et

al. [24] divided techniques for face recognition into visible and infrared domain. They

presented a review of 2D face recognition techniques in visible spectrum and showed that

these algorithms can achieve significant performance in controlled settings with coopera-

tive users. However, the performance of these algorithms degrade when face images are

captured in uncontrolled environment with large variations in pose, illumination, and ex-

pression. Their survey also presents a comprehensive review of algorithms proposed for

robust face recognition in infrared imagery. Several approaches such as detecting disguise

variations using thermal imagery and multi-spectral fusion for illumination normalization

are presented. Face recognition techniques in infrared imagery have shown to improve

the overall performance in uncontrolled environments; however, one limitation of infrared

sensing methods is their high dependency on the environmental illumination.

Belhumeur [25] presented some ongoing challenges in face recognition such as pose,

illumination, and expression and described several techniques proposed to address these

challenges. Techniques proposed for matching face images across these variations are cat-

egorized as feature based, appearance based, and 3D face recognition techniques. Feature

based methods using geometric relations (e.g. distances and angles) between facial fea-

tures such as eyes, mouth, nose, and chin are used for efficient face recognition because of

their economical representation. However, feature-based methods are dependent on the

reliability of the feature extraction algorithm. The subspace based methods differ from

feature-based techniques in their low-dimensional representation. Subspace based meth-

ods recognize a face only if the face has been previously seen under similar circumstances.

In 3D face recognition, the images acquired during enrollment are used to estimate the
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models of the 3D shape of a face. These 3D models can then be used to synthetically

render the images of each face under arbitrary pose and lighting conditions, effectively

increasing the gallery set for each subject. Out of several approaches proposed for face

recognition, 3D face recognition has gone a long way towards addressing challenges due

to pose, lighting, and expression. This observation is also discussed by Abate et al. [26]

in their comprehensive review of techniques for 2D and 3D face recognition.

The progression in face recognition literature has been analyzed from different points

of view. As discussed above, one view categorizes face recognition algorithms into holis-

tic, feature-based, and hybrid techniques, another categorizes them as visible and infrared

domain techniques; one divides them as 2D and 3D face recognition techniques whereas,

the other proposes a grouping based on the salient information into hierarchical feature

category. There are also a few papers that review face recognition across pose variations

[27], illumination variations [25, 28], aging [29] and forensic applications [30]. The pro-

gression in face recognition is dependent on the availability of large publicly available

databases. Table 1.1 lists the widely used databases in face recognition literature. With

the availability of the CMU PIE [31] and CMU Multi-PIE [9] databases, there has been a

significant development in the algorithms for addressing pose, illumination, and expression

variations. Similarly, with the availability of databases for age variations such as FG-NET

[32] and MORPH [33], researchers are trying to model the biological process of aging for

simulating age and developing age invariant face recognition algorithms. The real appli-

cation of face recognition involves matching face images in unconstrained setting such as

arbitrary pose, uncontrolled illumination and expression or in the presence of one or more

covariate simultaneously. Recent advances in this direction led to development of few large

unconstrained databases such as LFW [34], Pubfig [35], YouTube faces [6]. These large

scale unconstrained databases facilitate development and evaluation of algorithms for the

more general application of face recognition.
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Table 1.1: List of widely used publicly available face databases for different covariates.

Covariate Database Description

Pose

CMU-PIE [31] 13 poses within ±66◦ in yaw and ±15◦ in tilt.
AT&T ([36]) 10 random poses within ± 20◦ in yaw and tilt.
XM2VTS [37] 5 poses:0◦ ±30◦ in yaw and tilt.
Multi-PIE [9] 15 poses within ±66◦ in yaw and ±15◦ in tilt.
FERET [38] 18 poses, 0◦to± 90◦.
Yale-B [39] 9 different poses 0◦, 12◦ and 24◦.
CAS-PEAL [40] 21 different poses.

Illumination

CMU-PIE [31] Different illumination from 13 light sources.
AR [41] Left, right, and all side lights on.
CASIA-FaceV5 [42] 2,500 color facial images of 500 subjects.

Yale-B [39]
64 lighting conditions and 1 ambient illumina-
tion.

CASIA NIR [43] 3,940 images of 197 subjects.
PolyU NIR [44] 34,000 images of 335 subjects.

Expression
JAFFE [45] 7 different facial expressions.
Cohn-Kanade [46] Neutral to a peak expression.
BU-3DFE [47] 7 expression variations for 100 subjects.
CMU-AMP ([48]) 75 images showing different expressions.

Aging
FG-NET ([32]) 6-18 images per subject from 0-69 years of age.
Morph [33] 46 days to 29 years.

Sketch

CUHK face sketch [49] 606 viewed sketches.
CUHK face sketch FERET [50] 1194 viewed sketches.

IIIT-D sketch database [51]
238 viewed sketches, 140 semi-forensic
sketches, and 6 forensic sketches.

Cosmetics

IIIT-D plastic surgery [8]
900 subjects with different plastic surgery
cases.

YouTube makeup [52]
2 images before makeup and 2 images after
makeup for 151 subjects.

Virtual Makeup [52] 204 images for 51 subjects.
Makeup in the “wild” [53] 154 images with and without makeup.

Look-alikes & Twins

IIIT-D look-alike [19] 50 subjects with 5 genuine and 5 look-alikes.
3D twins expression challenge [54] 428 images of 107 twin pairs.

ND-Twins [21]
24050 color photographs of the faces of 435
attendees at the Twins Days Festivals.

Low resolution/video

SCface [10] 4160 surveillance images of 130 subjects.

MBGC video challenge problem ([7])
399 walking sequence and 202 standard se-
quence (720 × 480).

Honda UCSD [55, 56]
Dataset 1: 75 video of 20 subjects.
Dataset 2: 30 video of 15 subjects.

ChokePoint [11]
54 video sequences and 64,204 labeled face im-
ages.

COX-S2V [57]
1000, subjects with 1 high quality photo and
4 surveillance video.

Unconstrained
Labeled faces in the wild [34] 13,233 images of 5749 subjects.
PubFig [35] 58,797 images of 200 subjects.
YouTube faces [6] 3,425 videos of 1,595.
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1.2 Covariates of Face Recognition

The generality in the applications of face recognition introduces several challenges (co-

variates) such as pose, illumination, expression, aging, and disguise. These covariates

significantly alter the inter-class and intra-class dynamics thus resulting in reduced face

recognition performance. Figure 1.2 illustrates the concepts of intra-class and inter-class

variability. Based on it, a covariate in face recognition is defined as an effect that in-

dependently increases the intra-class variability or decreases the inter-class variability or

both.

Figure 1.2: Illustrating the concepts of inter-class and intra-class variations in biometrics.
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A robust face recognition system should be able to identify faces captured in uncon-

trolled environments such as images captured in unpredictable lighting conditions, differ-

ent angles and distances from the camera, and where the subjects are non-cooperative.

However, the performance of current face recognition systems significantly deteriorate for

such uncontrolled but real-world conditions. Based on the applications of face recognition

and how extensively different covariates have been studied in literature, the covariates of

face recognition are classified into two categories: 1) existing covariates and 2) emerging

covariates. Figure 1.3 shows different types of existing and emerging covariates.

1. Existing covariates: In past, face recognition literature has focused on certain

covariates of face recognition and a lot of research has been performed to address

them [23, 25, 27, 28]. These covariates are termed as the existing covariates of face

recognition and are briefly listed below.

• Variations due to pose and illumination may camouflage some of the features

and lead to incorrect recognition results.

• Variations in expression can cause deformations in local facial structure and

change the facial appearance and local geometry, thereby reducing the face

recognition performance.

• Many applications of face recognition require matching face images with varia-

tions in age such as matching a recent photo with image on passport or driver’s

license. Facial aging is a biological process that leads to gradual changes in the

structural geometry and texture of a face.

• Disguise is the process of concealing one’s identity or impersonating another

person by using makeup and other accessories. Law enforcement applications

often require identifying individuals who try to conceal their identities using

disguise accessories. Both aging and disguise can lead to large variations in

intra-class and inter-class distributions and hence, degrade the face recognition

performance. Many researchers are working to develop algorithms to efficiently

match face images with variations in age [58, 59, 60] and disguise [61, 62].

2. Emerging Covariates: With ever increasing applications of face recognition, there

has emerged a need to understand and address new as well as fascinating challenges

of face recognition. Since these challenges have been recently established and re-

searchers are now developing algorithms to mitigate their effects, we term them as
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Figure 1.3: Covariates of face recognition: (a) existing covariates and (b) emerging covari-
ates.
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emerging covariates of face recognition. It has become essential for current face

recognition algorithms to be robust in the presence of these emerging covariates as

well.

• An important law enforcement application is matching forensic sketches to dig-

ital face images of known individuals. Law enforcement agencies often find

the need to determine the identity of sketches obtained from the description

of eye witness from the crime scene. This problem introduces a new emerg-

ing covariate of matching forensic sketches with the mugshots in the database

[4, 51].

• In recent years, facial plastic surgery has also emerged as an important covariate

of face recognition [8]. Plastic surgery is a spontaneous process and its effects

are generally contrary to that of facial aging. Variations caused due to plastic

surgery are long-lasting and may not be reversible. Therefore, plastic surgery

poses a huge challenge for existing face recognition algorithms.

• For public safety and security, surveillance cameras are installed at public

places, airport gates, security checkpoints, and government buildings primarily

to monitor a large area from a single location. It is now desirable to build sys-

tems where surveillance cameras coupled with a face recognition system can be

used to automatically identify individuals from a watch-list. However, due to

the poor quality of face images obtained from surveillance cameras, matching

low resolution face images [63, 64, 65, 66, 67] has emerged as an important

covariate of face recognition.

• With several applications of face recognition in e-commerce and social welfare

programs, matching biological twins [21, 54, 68], [20, 22] and look-alikes [19]

has also instigated interest from the research community.

1.3 Research Contributions

This dissertation focuses on developing algorithms for mitigating the effects of emerg-

ing covariates of face recognition. It presents several algorithms using machine learning

paradigms such as genetic and memetic algorithms, online learning, co-training, transfer

learning, and clustering to make face recognition algorithms scalable and robust to the

emerging covariates. Quantitative analysis with existing techniques and commercial face
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recognition systems demonstrate that this research enhances the state-of-art on several

publicly available databases. The major contributions of this dissertation are as follows:

1. Memetic optimization for matching forensic sketches with digital face

images: An automated sketch recognition algorithm is developed to extract dis-

criminating information from local regions of both sketches and digital face images.

Structural information along with the minute details present in local facial regions

are encoded using multi-scale circular Weber’s Local descriptor. To assign optimal

weights to every local facial region, an evolutionary memetic optimization is proposed

to boost the identification performance. Since, forensic sketches or digital face im-

ages can be of poor quality, a pre-processing technique is proposed to enhance the

quality of images and improve the identification performance. This dissertation also

offers a part of the IIIT-Delhi sketch database 1) viewed and semi-forensic sketch

database and 2) 61 forensic sketch-digital image pairs to the research community.

2. Multi-objective evolutionary algorithm for matching surgically altered

face images: A multi-objective evolutionary granular algorithm is developed to

match face images before and after plastic surgery. The algorithm first generates

non-disjoint face granules at multiple levels of granularity. The granular information

is assimilated using a multi-objective genetic approach that simultaneously optimizes

the selection of feature extractor for each face granule along with the weights of

individual granules.

3. Matching cross-resolution face images using co-transfer learning: A co-

transfer learning framework is developed for matching low resolution probe images

with high resolution gallery images. The proposed algorithm seamlessly combines

transfer learning and co-training paradigms. The transfer learning component trans-

fers the knowledge that is learned while matching high resolution face images during

training for matching low resolution probe images with high resolution gallery dur-

ing testing. On the other hand, co-training component facilitates this transfer of

knowledge by assigning pseudo labels to unlabeled probe instances in the target do-

main. Amalgamation of these two paradigms in the proposed framework enhances

the performance of cross-resolution face recognition.

4. Recognizing Faces in Videos using Clustering Based Re-ranking and Fu-

sion: A video based face recognition algorithm is developed that computes a discrim-

inative video signature as an ordered list of still face images from a large dictionary.
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A three stage approach is designed for optimizing ranked lists across multiple video

frames and fusing them into a single composite ordered list to compute the video

signature. This signature embeds diverse intra-personal variations and facilitates in

matching two videos across large variations. For matching two videos, a discounted

cumulative gain measure is utilized which uses the rankings of images in a video

signature as well as the usefulness of images in characterizing the individual in a

video.
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Chapter 2

Matching Forensic Sketches with

Digital Face Images

2.1 Introduction

Face recognition is a well studied problem in many application domains. However, match-

ing sketches with digital face images is a very important law enforcement application that

has received relatively less attention. Forensic sketches are drawn based on the recollection

of an eye-witness and the expertise of a sketch artist. As shown in Figure 2.1, forensic

sketches include several inadequacies because of the incomplete or approximate description

provided by the eye-witness. Generally, forensic sketches are manually matched with the

database comprising digital face images of known individuals. Existing state-of-the-art

face recognition algorithms cannot be used directly and require additional processing to

address the non-linear variations present in sketches and digital face images. An auto-

matic sketch to digital face image matching system can assist law enforcement agencies

and make the recognition process efficient and relatively fast.

Figure 2.1: Examples showing exaggeration of facial features in forensic sketches.
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2.1.1 Related Research

Sketch recognition algorithms can be classified into two categories: generative and dis-

criminative approaches. Generative approaches model a digital image in terms of sketches

and then match it with the query sketch or vice-versa. On the other hand, discrimina-

tive approaches perform feature extraction and matching using the given digital image

and sketch pair and do not generate the corresponding digital image from sketches or the

sketch from digital images.

Generative Approaches: Wang and Tang [69] proposed Eigen transformation based

approach to transform a digital photo into sketch before matching. In another approach,

they presented an algorithm with separate shape and texture information and applied

Bayesian classifier for recognition [70]. Liu et al. [71] proposed a non-linear discriminative

classifier based approach for synthesizing sketches by preserving face geometry. Li et al.

[72] matched sketches and photos using a method similar to the Eigen-transform after

converting sketches to photos. Xiao et al. [73] proposed to convert a sketch into photo

using embedded Hidden Markov Models. The non-linearity between corresponding local

patches of sketch photo pair was modeled using EHMM to generate pseudo-photo patch.

These pseudo photo patches were then combined to synthesize a photo from the sketch

and recognition was performed using Eigenface method. However, when synthesizing a

photo from a sketch, the quality of the photo may degrade due to the exaggeration of

features by artist. Wang and Tang [49] further proposed using Markov Random Fields

to automatically synthesize sketches from digital face images and vice-versa. Zhang et

al. [74] extended multiscale Markov Random Field (MRF) model to synthesize sketches

under varying pose and lighting conditions. Sharma and Jacob [75] proposed a general

latent space for heterogeneous face recognition using partial least squares (PLS) which

projects images from two modalities to a space where they are similar. The holistic repre-

sentation successfully matched sketches with digital images by maximizing the correlation

in the projection of corresponding images from different modalities. However, PLS based

approach cannot be expected to lead to effective recognition when such projections do not

exist. Table 2.1 shows rank-1 identification accuracy of different approaches for matching

sketches with digital face images.

Discriminative Approaches: Uhl and Lobo [76] proposed photometric standardization

of sketches to compare it with digital photos. They further geometrically normalized

sketches and photos to match them using Eigen analysis. Yuen and Man [77] used local

and global feature measurements to effectively match sketches and mugshot images. Zhang
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et al. [78] compared the performance of humans and PCA-based algorithm for matching

sketch-photo pairs with variations in gender, age, ethnicity, and inter-artist difference.

They also discussed about the quality of sketches in terms of artist’s skills, experience,

exposure time, and distinctiveness of features [79]. Similarly, Nizami et al. [80] analyzed

the effect of matching sketches drawn by different artists. Nejati and Sim [81] proposed an

approach for sketch photo matching using only facial component outlines and facial marks.

Their analysis suggested that improved performance was achieved by comparing the abnor-

mal features in sketches with the exaggerated digital faces. Their analysis also suggested

that combining local and holistic exaggerated features led to improved face recognition

performance. Further, Nejati et al. [82] proposed a new eye-witness testimony method

where the sketches were drawn by an eyewitness thus eliminating the bias and combining

additional soft information such as skin tone and ethnicity. Matching was performed by

estimating shapes of the facial components and combining the relative differences using

global least square optimization. However, their approach was limited to the accuracy of

shape estimation from sketches and digital images. Klare and Jain [83] proposed a scale

invariant feature transform (SIFT) based local feature approach where sketches and digital

face images were matched using the gradient magnitude and orientation within the local

region. Klare et al. [4] extended their approach using local feature discriminant analysis

(LFDA) to match forensic sketches. In their approach, sketch and face images were first

partitioned into slices. Scale-invariant feature transform (SIFT) and multiscale local bi-

nary pattern (MLBP) descriptors were computed for each slice. Next, Local-feature-based

discriminant analysis (LFDA) was used to extract the most salient features for each slice

and similarity between feature vectors was computed to match sketches with photos. The

accuracy was further improved by incorporating subject’s demographic information such

as race, gender, age, and height. In another approach, Klare and Jain [84] proposed a

framework for heterogeneous face recognition where both probe and gallery images were

represented in terms of non-linear kernel similarities. Zhang et al. [85] analyzed the psy-

chological behavior of humans for matching sketches drawn by different sketch artists.

Zhang et al. [50] proposed an information-theoretic encoding band descriptor to capture

discriminative information and random forest based matching to maximize the mutual

information between the sketch and photo. Bhatt et al. [86] extended Uniform Local

Binary Patterns to incorporate exact difference of gray level intensities to encode texture

features in sketches and digital face images. Recently, Bhatt et al. [51] proposed to use

the structural information along with the minute details present in local facial regions
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Table 2.1: A comparison of some representative approaches proposed for matching sketches
with digital face images.

Approach Database Gallery/Probe Rank-1 accuracy

Eigen-Transformation [69] CUHK 300/300 90.0%

LLE Transformation [71] CUHK 300/300 87.7%

MRF Transformation [49] CUHK 300/300 96.3%

Direct matching [83] CUHK 300/300 97.8%

Genetic Algorithm [86] CUHK 233/233 94.1%

LFDA+MLBP [4] Forensic Sketch 10,100/49 32.6% (rank-50)

Memetic algorithm [51] Forensic Sketch 7063/190 28.5% (rank-50)

using multi-scale circular Weber’s local descriptor. Further, an evolutionary memetic op-

timization was proposed to assign optimal weights to every local facial region to boost

the identification performance for matching forensic sketches. Canavan et al. [87] utilized

a scale-space topographic feature representation to model the appearance of the sketch

and a mesh adaptation approach was used to model the 3D shape. Further, a component

based spatial Hidden Markov Model (HMM) for sketch recognition using the geometry of

3D face sketches. Galoogahi and Sim [88] utilized shape as a robust feature for matching

cross modality images such as sketches and digital images. They encoded the shape in-

formation from sketches and digital images using LBP descriptor in Radon space for each

local region.

2.1.2 Research Contributions

After discussing with several sketch artists, it is observed that generating a sketch is an

unknown psychological phenomenon, however, a sketch artist generally focusses on the

local facial features and texture which he/she tries to embed in the sketch through a blend

of soft and prominent edges. Therefore, the proposed algorithm is designed based on the

following observations:

• information vested in local facial regions can have high discriminating power;

• facial patterns in sketches and digital face images can be efficiently represented by

local descriptors.

This chapter proposes an automatic algorithm for matching sketches with digital face

images using the modified Weber’s local descriptor (WLD) [1]. WLD is used for repre-

senting images at multiple scales with circular encoding. The multi-scale analysis helps

24



in assimilating information from minute features to the most prominent features in a

face. Further, memetically optimized χ2 distance measure is used for matching sketches

with digital face images. The proposed matching algorithm improves the performance by

assigning optimal weights to local facial regions. To further improve the performance,

a Discrete Wavelet Transform (DWT) [89] fusion based pre-processing technique is pre-

sented to enhance forensic sketch-digital image pairs. Three different types of sketches are

used for performance evaluation, 1) sketches drawn by a sketch artist while looking at the

digital image of a person (viewed sketches), 2) sketches drawn by an artist based on his

recollection from the digital image of a person (semi-forensic sketches), and 3) sketches

drawn based on the description of an eyewitness from his recollection of the crime scene

(forensic sketches). The major contributions of this chapter are summarized as follows:

1. Existing approaches for matching forensic sketches [4] manually separate good and

bad forensic sketches and generally focus on good forensic sketches only. Such a

classification is often based on the similarity between the sketch and corresponding

digital face image. Since the corresponding digital face image is not available in

real-time applications, selecting good and bad forensic sketches is not pragmatic for

matching forensic sketches with digital face images. In this chapter, a pre-processing

technique is presented for enhancing the quality of forensic sketch-digital image pairs.

Pre-processing forensic sketches enhances the quality and therefore, improves the

performance by at least 2− 3%.

2. Multi-scale Circular WLD and memetically optimized χ2 based algorithms are pro-

posed for matching sketches with digital face images. The proposed algorithm out-

performs existing approaches on different sketch databases.

3. To better understand the progression from viewed to forensic sketches, semi-forensic

sketches are introduced to bridge the gap between viewed and forensic sketches. In

the experiments, it is observed that training sketch recognition algorithms (existing

as well as the proposed) on semi-forensic sketches improves the rank-1 identification

performance by at least 4% compared to the traditional way, i.e. training on viewed

sketches.

4. Human performance for matching sketches with digital face images is also analyzed.

The information collected from individuals corroborate with our initial observation

that local regions provide discriminating information.
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5. The chapter also presents a part of the IIIT-Delhi database1 (Viewed and Semi-

forensic Sketch database) and 61 forensic sketch-digital image pairs to the research

community to promote the research in this domain.

2.2 Pre-processing Algorithm

In sketch to digital face image matching, researchers have generally used viewed sketches

where the quality of sketch-digital image pair is very good. On these good quality viewed

sketches, the state-of-art is about 99% (rank-1) identification accuracy while the state-of-

art in forensic sketch recognition is about 16%. One of the reasons for low recognition

performance is that forensic sketches may contain distortions and noise introduced due

to the excessive use of charcoal pencil, paper quality, and scanning (device noise/errors).

Furthermore, in the gallery, digital images may also be noisy and of sub-optimal quality

because of printing and scanning of images. As shown in Figure 2.2, forensic sketch-digital

image pairs of lower visual quality may lead to reduced matching performance as compared

to good quality sketch-digital image pairs.

A pre-processing technique is presented that enhances the quality of forensic sketch-

digital image pairs. The steps involved in the pre-processing technique are as follows:

• Let f be the color face image to be enhanced. Let f r and f y be the red and

luma channels2 respectively. These two channels are processed using the multi-scale

retinex (MSR) algorithm [90] with four iterations. MSR is applied on both red and

luma channels to obtain f rm and f ym.

• f rm and f ym are subjected to wavelet based adaptive soft thresholding scheme [91]

for image denoising. The algorithm computes generalized Gaussian distribution

based soft threshold which is used in wavelet based denoising to obtain f rm
′

and

f ym
′

respectively.

• Noise removal in the previous step may lead to blurring of edges. Experiments show

that a symmetric low-pass filter of size 7×7 with standard deviation of 0.5 efficiently

restores the genuine facial edges. Applying this (Wiener) filter on f rm
′

and f ym
′

produces f1 and f2.

1Available at http://research.iiitd.edu.in/groups/iab/sketchDatabase.html.
2In the watermarking literature, it is well established that red and luma channels are relatively less

sensitive to the visible noise, therefore, these channels are used for enhancement.
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• After computing the globally enhanced red and luma channels, DWT fusion algo-

rithm is applied on f1 and f2 to compute a feature rich and enhanced face image, F .

Single level DWT (with db 9/7 mother wavelet) is applied on f1 and f2 to obtain

the detailed and approximation bands of these images. Let f j
LL, f

j
LH , f j

HL, and f j
HH

be the four subbands and j = 1, 2, where LL represents approximation band and

LH, HL, and HH represent the detailed subbands. To preserve features of both

the channels, coefficients from the approximation band of f1 and f2 are averaged.

f e
LL = mean(f1

LL, f
2
LL) (2.1)

where f e
LL is the approximation band of enhanced image. All three detailed subbands

are divided into windows of size 3×3 and the sum of absolute pixels in each window

is calculated. For the ith window in HL subband of the two images, the window with

maximum absolute value is selected to be used for enhanced subband f e
HL. Similarly,

enhanced subbands f e
LH and f e

HH are also obtained. Finally, inverse DWT is applied

on the four subbands to generate a high quality face image.

F = IDWT (f e
LL, f

e
LH , f e

HL, f
e
HH) (2.2)

This DWT fusion algorithm is applied on both forensic sketches and digital face images.

Figure 2.3 shows quality enhanced forensic sketches and digital face images. Note that

the pre-processing technique enhances the quality when there are irregularities and noise

in the input image, however, it does not alter good quality face images (i.e. sketch-

digital image pairs from the viewed sketch database). Sketches are scanned as three

channel color images. Further, the forensic images obtained from different sources are

three channel color images. If a gray scale image is obtained, multi-scale retinex and

Wiener filtering are applied only on the single channel. Along with quality enhancement,

face images are geometrically normalized. The eye-coordinates are detected using the

OpenCV’s boosted cascade of haar-like features. Using the eye-coordinates, rotation is

normalized with respect to the horizontal axis and inter-eye distance is fixed to 100 pixels.

Finally, the face image is resized to 192×224 pixels.

2.3 Matching Sketches with Digital Face Images

Local descriptors have received attention in face recognition due to their robustness to

scale, orientation, and speed. Local Binary Patterns (LBP) is one of the widely used

descriptors for face recognition [92]. In face recognition literature, several variants of LBP
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Figure 2.2: Paper quality, sensor noise, and old photographs can affect the quality of sketch-
digital image pairs and hence reduce the performance of matching algorithms. (a) Good
quality sketch-digital image pairs (CUHK database) and (b) poor quality sketch-digital image
pairs (Forensic sketch database).

Figure 2.3: Quality enhancement using the pre-processing technique. (a) represents digital
face image before and after pre-processing and (b) represents forensic sketches before and after
pre-processing.
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have been proposed. Bhatt et al. [86] extended LBP to incorporate exact difference of

gray level intensities among pixel neighbors and used it for sketch recognition. Local

descriptors such as LBP are generally used as dense descriptors where texture features are

computed for every pixel of the input face image. On the other hand, sparse descriptor

such as Scale Invariant Feature Transform (SIFT) [93] is based on interest point detection

and computing the descriptor in the vicinity of detected interest points. SIFT is computed

using gradient and orientation of neighboring points sampled around every detected key

point. As a sparse descriptor, SIFT has been used for face recognition by Geng and Jiang

[94]. Klare and Jain [83] applied SIFT in a dense manner (i.e. computing SIFT descriptor

at specific pixels) for matching sketches with digital face images. It is our assertion that

local descriptors can be used for representing sketches and digital face images because

they can efficiently encode the discriminating information present in the local regions.

Recently, Chen et al. [1] proposed a new descriptor, Weber’s local descriptor, which

is based on Weber’s law and draws its motivation from both SIFT and LBP. It is similar

to SIFT in computing histogram using gradient and orientation, and analogous to LBP

in being computationally efficient and considering small neighborhood regions. However,

WLD has some unique features that make it more efficient and robust as compared to SIFT

and LBP. WLD computes the salient micro patterns in a relatively small neighborhood

region with finer granularity. This allows it to encode more discriminative local micro

patterns. WLD is optimized for matching sketches with digital face images by computing

multi-scale descriptor in a circular manner (in contrast to the originally proposed square

neighborhood approach). Finally, two multi-scale circular WLD (MCWLD) histograms

are matched using memetically optimized weighted χ2 distance.

Figure 2.4: Steps involved in the proposed algorithm for matching sketches with digital face
images.
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Figure 2.5: Illustrating the steps involved in computing the circular WLD histogram
(adapted from [1]).

2.3.1 Feature Extraction using MCWLD

MCWLD has two components: 1) differential excitation and 2) gradient orientation.

MCWLD representation for a given face image is constructed by tessellating the face image

and computing a descriptor for each region. As shown in Figure 2.4, MCWLD descriptor

is computed for different parameters P and R, where P is the number of neighboring pixels

evenly separated on a circle of radius R centered at the current pixel. Multi-scale analysis

is performed by varying radius R and number of neighbors P . Sketches and digital face

images are represented using MCWLD as explained below:

2.3.1.1 Differential Excitation

Differential excitation is computed as an arctangent function of the ratio of intensity

difference between central pixel and its neighbors to the intensity of central pixel. The

differential excitation of central pixel ξ(xc) is computed as:

ξ(xc) = arctan

{

P−1
∑

i=0

(

xi − xc
xc

)

}

(2.3)

where xc is the intensity value of central pixel and P is the number of neighbors on a circle

of radius R. If ξ(xc) is positive, it simulates the case that surroundings are lighter than

the current pixel. In contrast, if ξ(xc) is negative, it simulates the case that surroundings

are darker than the current pixel.
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2.3.1.2 Orientation

The orientation component of WLD is computed as:

θ(xc) = arctan

{

x(P
2
+R) − x(R)

x(P−R) − x(P
2
−R)

}

(2.4)

The orientation is further quantized into T dominant orientation bins where T is experi-

mentally set as eight.

2.3.1.3 Circular WLD Histogram

For every pixel, differential excitation (ξ) and orientation (θ) are computed using Eqs. 2.3

and 2.4 respectively. As shown in Figure 2.5, a 2D histogram of circular WLD feature,

CWLD(ξj, θt), is constructed where j = 0, 1, ..., N − 1, t = 0, 1, ..., T − 1, and N is the

dimension of the image. Each column in the 2D histogram corresponds to a dominant

orientation, θt, and each row corresponds to a differential excitation interval. Thus, the

intensity of each cell corresponds to the frequency of a certain differential excitation in-

terval in a dominant orientation. Similar to Chen et al. [1], four step approach is followed

to compute CWLD descriptor.

Step-1: The 2D histogram CWLD(ξj, θt) is further encoded into 1D histograms. Dif-

ferential excitations, ξ, are regrouped into T orientation sub-histograms, H(t), where

t = 0, 1, ..., T − 1 corresponds to each dominant orientation.

Step-2: Within each dominant orientation, range of differential excitation is evenly divided

into M intervals and then reorganized into a histogram matrix. Each orientation sub-

histogram in H(t) is thus divided into M segments, Hm,t where m = 0, 1, ...,M − 1

and M = 6. For each differential excitation interval lm, lower bound is computed as

ηm,l = (m/M − 1/2)π and upper bound ηm,u is computed as ηm,u = [(m+ 1)/M − 1/2]π.

Each sub-histogram segment Hm,t is further composed of S bins and is represented as:

Hm,t = hm,t,s (2.5)

where s = 0, 1, ..., S − 1, S = 3 and hm,t,s is represented as:

hm,t,s =
∑

j

δ(Sj == s),

(

Sj =

⌊

ξj − ηm,l

(ηm,n − ηm,l)/S
+

1

2

⌋)

. (2.6)

Here j = 0, 1, ..., N − 1, m is the interval to which differential excitation ξj belongs i.e.

ξj ∈ lm, t is the index of quantized orientation, and δ(·) is defined as follows:

δ(·) =

{

1, if function is true,
0, otherwise

(2.7)
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Step-3: Sub-histogram segments, Hm,t, across all dominant orientations are reorganized

into M 1D histograms.

Step-4: M sub-histograms are concatenated into a single histogram represents the final

6 × 8 × 3 (M × T × S) circular WLD histogram. The range of differential excitation

is segmented into separate intervals to account for the variations in a given face image,

and assigning optimal weights to these Hm segments further improves the performance of

CWLD descriptor.

2.3.1.4 Multi-scale Circular WLD

In Multi-scale analysis, CWLD descriptor is extracted with different values of P and R

and the histograms obtained at different scales are concatenated. Multi-scale analysis is

performed at three different scales with parameters as (R = 1, P = 8), (R = 2, P = 16)

and (R = 3, p = 24). A face image is divided into 6 × 7 non-overlapping local facial

regions and MCWLD histogram is computed for each region. MCWLD histograms for

every region are then concatenated to form the facial representation.

2.3.2 Memetic Optimization

According to psychological studies in face recognition [95], some facial regions are more

discriminating than others and hence, contribute more towards the recognition accuracy.

Similarly, MCWLD histograms corresponding to different local facial regions may have

varying contribution towards the recognition accuracy. Moreover, MCWLD histogram

corresponding to each local facial region comprises ofM sub-histogram segments (as shown

in Step-3 of Figure 2.5) representing different frequency information. Generally, the regions

with high variance are more discriminating as compared to flat regions, therefore, M sub-

histogram segments may also have varying contribution towards the recognition accuracy.

It is our assertion that while matching MCLWD histograms, different weights need to

be assigned to local regions and histogram segments for better performance. Here, the

weights associated with 42 local facial regions and 6 sub-histogram segments at 3 different

scales have to be optimized. Optimizing such large number of weights for best performance

is a very challenging problem and requires a learning based technique.

Memetic algorithm (MA) [96] can be effectively used to optimize such large search

spaces. It is a form of hybrid global-local heuristic search methodology. The global search

is similar to traditional evolutionary approaches such as population-based method in a

Genetic Algorithm (GA), while the local search involves refining the solutions within the
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Figure 2.6: Illustrating the steps involved in memetic optimization for assigning optimal
weights to each tessellated face region.

population. From an optimization perspective, MAs have been found to be more efficient

(i.e. requiring fewer evaluations to find optima) and effective (i.e. identifying higher

quality solutions) than traditional evolutionary approaches such as GA [97]. Memetic

algorithm is used for optimizing the weights.

2.3.2.1 Weighted χ2 Matching using Memetic Optimization

For matching two MCWLD histograms, weighted χ2 distance measure is used.

χ2(x, y) =
∑

i,j

ωj

[

(xi,j − yi,j)
2

(xi,j + yi,j)

]

(2.8)

where x and y are the two MCWLD histograms to be matched, i and j correspond to

the ith bin of the jth histogram segment (j = 1, · · · , 756), and ωj is the weight for the jth

histogram segment. As shown in Figure 2.6, a memetic search is applied to find optimal

values of wj. The steps involved in the memetic optimization process are described below:

Memetic Encoding: A chromosome is a string whose length is equal to the number of

weights to be optimized i.e. 42 × 6 × 3 = 756. Each unit or meme in a chromosome is a

real valued number representing the corresponding weight.

Initial Population: MA is initialized with 100 chromosomes. For quick convergence,

weights proportional to the rank-1 identification accuracy of each individual region are

used as the initial chromosome [92]. The remaining 99 chromosomes are generated by

randomly changing one or more units in the initial chromosome. Further, the weights are

normalized such that the sum of all the weights in a chromosome is one.
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Fitness Function: Each chromosome in a generation is a possible solution and the recog-

nition is performed using the weights encoded by the chromosomes. The identification

accuracy, used as fitness function, is computed on the training set and the 10 best per-

forming chromosomes are selected as survivors. These survivors are used for crossover and

mutation to populate the next generation.

Hill Climbing Local Search: MA requires a local search on survivors to further fine tune the

solution [97]. Two survivors are recombined to produce two candidate parents. Note that

in a pair of two, this process is repeated for all 10 survivors to find better chromosomes. If

the candidate parents have better performance than participating survivors, they replace

the survivors to become parents and populate the next generation. This local search is

performed at each generation to find better parents from the competing survivors which

leads to quick convergence and better quality of solution.

Crossover and Mutation: A set of uniform crossover operations is performed on par-

ents (obtained after local search) to populate a new generation of chromosomes. After

crossover, mutation is performed by changing one or more weights by a factor of its stan-

dard deviation in previous generations. After mutation and crossover, 100 chromosomes

are populated in the new generation.

The MA search process is repeated till convergence and terminates when the identi-

fication performance of the chromosomes in new generation does not improve compared

to the performance of chromosomes in previous five generations. At this point, weights

pertaining to the best performing chromosome (i.e. chromosome giving best recognition

accuracy on training data) are obtained and used for testing. Thus, for a given data set,

the MA search process finds optimal weights. It also enables to discard redundant and

non-discriminating regions whose contribution towards recognition accuracy is very low

(i.e. the weight for that region is zero or close to zero). This leads to dimensionality reduc-

tion and better computational efficiency because MCWLD histograms for poor performing

facial regions are not computed during testing.

2.3.2.2 Avoiding Local Optima

Evolutionary algorithms such as MA often fail to maintain diversity among individual

solutions (chromosomes) and cause the population to converge prematurely. This leads to

decrease in the quality of solution. Different techniques have been proposed to maintain

certain degree of diversity in a population, without affecting the convergence. Adaptive
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mutation rate [98] and random offspring generation [99] are used to prevent premature

convergence to local optima.

• Adaptive Mutation rate: To maintain diversity in the population, mutation rate can

be increased. However, higher value of mutation rate may introduce noise and affect

the convergence process. Instead of using a fixed high or low mutation rate, an

adaptive mutation rate, depending on population’s diversity, is used. Population

diversity is measured as the standard deviation of fitness values in a population as

shown in Eq. 2.9:

stddev(P ) =

√

∑N
i=1(fi − fmean)2

(N − 1)
(2.9)

where N is the population size and fi is the fitness of the i
th chromosome in the pop-

ulation. The process starts with an initial value of mutation rate (probability 0.02),

and whenever population diversity falls below the predefined threshold, mutation

rate is increased.

• Random Offspring Generation: One of the reasons for evolutionary algorithms con-

verging to local optima is high degree of similarity among participating chromosomes

(parents) during crossover operation. Combination of such chromosomes is ineffec-

tive because it leads to offsprings that are exactly similar to the parents. If such a

situation occurs where participating chromosomes (parents) are very similar, then

crossover is not performed and offsprings are generated randomly.

The memetic optimization for computing weights is summarized in Algorithm 1.

2.3.3 Proposed Algorithm for Matching Sketches with Digital Face Im-

ages

The process of matching sketches with digital face images is as follows:

1. For a given sketch-digital image pair, the pre-processing technique is used to enhance

the quality of face images.

2. Both sketches and digital face images are tessellated into non-overlapping local facial

regions.

3. For each facial region, MCWLD histograms are computed at three different scales.

The facial representation is obtained by concatenating MCWLD histograms for every

facial region.
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Algorithm 1 Memetic algorithm for weight optimization.

Step 1: Memetic Encoding: A chromosome of length 42× 3× 6 = 756 is encoded where
each unit in the chromosome is a real valued number representing the corresponding
weight.
Step 2: Initial Population: A population of 100 chromosomes is generated starting with
a seed chromosome.
Step 3: Fitness Function: Fitness is evaluated by performing recognition using the
weights encoded by each chromosome. 10 best performing chromosomes from a popu-
lation are selected as survivors to perform crossover and mutation.
Step 4: Hill Climbing Local Search: The survivors obtained in Step 3 are used to find
better chromosomes in their local neighborhood and parents are selected.
Step 5: Crossover and Mutation: New population is generated from parents obtained
after local search in Step 4. A set of uniform crossover operations is performed followed
by mutation. To avoid local optima, adaptive mutation and random offspring generation
techniques are used.
Step 6: Repeat Steps 3-5 till convergence criteria is satisfied.

4. To match two MCWLD histograms, weighted χ2 distance measure is used where the

weights are optimized using Memetic algorithm.

5. In identification mode, this procedure is applied for each gallery-probe pair and top

matches are obtained.

2.4 Sketch Databases

To evaluate the performance of the proposed algorithm, three types of sketch databases

are used: 1) Viewed Sketch, 2) Semi-forensic Sketch, and 3) Forensic Sketch database.

1. Viewed Sketch Database: It comprises a total of 549 sketch-digital image pairs from

two sketch databases: the CUHK database [49] and the IIIT-Delhi Sketch database

[86]. The CUHK database comprises 606 sketch-digital image pairs from CUHK stu-

dents [49], the AR [41], and the XM2VTS databases. Since the XM2VTS database

is not available freely, the remaining 311 sketch-digital image pairs are used. Fur-

ther, the authors have prepared a database of 238 sketch-digital image pairs. The

sketches are drawn by a professional sketch artist for digital images collected from

different sources. This database is termed as IIIT-Delhi Viewed Sketch database.

2. Semi-forensic Sketch Database: As described earlier, sketches drawn based on the

memory of sketch artist rather than the description of an eye-witness are termed

as semi-forensic sketches. To prepare the IIIT-Delhi Semi-forensic Sketch database,
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the sketch artist is allowed to view the digital image once (for about 5−10 minutes)

and is asked to draw the sketch based on his memory. The time elapsed between

the artist’s viewing an image and starting to draw a sketch is about 15 minutes.

Sketch artist is not allowed to view the digital image while preparing the sketch.

These sketches are thus drawn based on the recollection of the sketch artist, thus

eliminating the effect of attrition based on how well the eyewitness remembers an

individual’s face and how well he/she is able to describe it to the sketch artist. 140

digital images from the IIIT-Delhi Viewed Sketch database are used to prepare the

Semi-forensic Sketch database. Therefore, all images that are used to draw a semi-

forensic sketch also have a corresponding viewed sketch. Figure 2.7 presents samples

of viewed and semi-forensic sketches corresponding to digital face images.

3. Forensic Sketch Database: Forensic sketches are drawn by a sketch artist from the

description of an eyewitness based on his/her recollection of the crime scene. These

sketches are based on (1) how well the eyewitness can recollect and describe the

face and (2) the expertise of the sketch artist. A database of 190 forensic sketches

with corresponding digital face images is used. This database contains 92 forensic

sketch-digital image pairs obtained from Lois Gibson [2], 37 pairs obtained from

Karen Taylor (published in [3]), and 61 pairs from different source on the internet.

Figure 2.8 shows sample images from the forensic sketch database.

2.5 Viewed Sketch Matching Results

To establish a baseline, the performance of the proposed and existing algorithms are first

computed on the viewed sketch database. Since the application of sketch recognition

is dominant with identification scenario, the performance of the proposed algorithm is

evaluated in identification mode. Three sets of experiments are performed using the viewed

sketch databases. In all three experiments, digital images are used as gallery and sketches

are used as probe. Further, 40% of the database is used for training and the remaining

60% pairs are used for performance evaluation. The protocol for all three experiments is

described in Table 2.2.

For each experiment, training is performed to compute the parameters of feature ex-

tractor and weights using the Memetic Optimization. This non-overlapping train-test

partitioning is repeated five times with random sub-sampling and Cumulative Match Char-

acteristic (CMC) curves are computed for performance comparison.
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Figure 2.7: (a) Sample images from the IIIT-Delhi Sketch database. The first row represents
the viewed sketches, the second row represents the corresponding digital face images and the
third row represents the corresponding semi-forensic sketches. (b) Sample images from the
CUHK database.

Figure 2.8: Sample images from the Forensic Sketch database. Images are obtained from
different forensic artists [2], [3].
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Table 2.2: Experimental protocol for matching viewed sketches.

Experiment
Number of Sketch- Training Testing
Digital Image Pairs Database Database

Experiment 1 311 from CUHK 125 186

Experiment 2 238 from IIIT-Delhi 95 143

Experiment 3 549 from Combined 220 329

Table 2.3: Rank-1 identification accuracy of sketch to digital face image matching algorithms
for matching viewed sketches. Identification accuracies are computed with five times random
cross validation and standard deviations are also reported.

Database Rank-1 Standard
(Training/ Algorithm Identification Deviation
Testing) Accuracy (%) (%)

COTS-1 91.25 0.83
COTS-2 92.05 0.72
WLD [1] 93.42 0.85

CUHK MWLD [1] 94.14 0.82
(125/186) MCWLD 95.08 0.76

SIFT [83] 94.36 1.03
EUCLBP+GA [86] 95.12 0.93
LFDA [4] 97.10 1.16
Proposed 97.28 0.68

COTS-1 71.46 0.87
COTS-2 73.26 0.75
WLD [1] 74.34 0.81

IIIT-Delhi MWLD [1] 75.68 0.83
Viewed MCWLD 78.48 0.89
Sketch SIFT [83] 76.28 1.33
(95/143) EUCLBP+GA [86] 79.36 0.87

LFDA [4] 81.43 1.11
Proposed 84.24 0.94

COTS-1 80.14 0.78
COTS-2 79.24 0.86
WLD [1] 84.37 0.88

Combined MWLD [1] 85.32 0.86
(220/329) MCWLD 88.25 0.84

SIFT [83] 85.86 1.01
EUCLBP+GA [86] 88.75 0.87
LFDA [4] 91.16 0.93
Proposed 93.16 0.96
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2.5.1 Experimental Analysis

The performance of the proposed approach is compared with existing algorithms designed

for matching sketches with digital face images and two leading commercial face recog-

nition systems1. Existing algorithms include SIFT [83], EUCLBP+GA [86] and LFDA

[4]. Further, the performance gain due to multi-scale analysis and circular sampling is

analyzed by comparing the performance of WLD, Multi-scale WLD (MWLD) algorithms

with square sampling, and Multi-scale circular WLD (MCWLD). The same weighting

scheme proposed by Chen et al. [1] is used in WLD, MWLD, and MCWLD algorithms.

Further, to quantify improvement due to memetic optimization of weights as compared

to the weighting method proposed in [1], the performance of the proposed algorithm is

compared with MCWLD. The pre-processing technique enhances the quality only when

there are irregularities and noise in the input image and it does not alter good quality face

images (i.e. sketch-digital image pairs from the viewed sketch database). Therefore in the

experiments with Viewed Sketch database, no pre-processing is applied on sketch-digital

image pairs. Key results and observations for matching viewed sketches are summarized

below:

Figure 2.9: CMC curves showing the performance of sketch to digital face image matching
algorithms on the CUHK database.

1The license agreements of these commercial face recognition systems does not allow us to name the
product in any comparison. Therefore, the two products are referred to as COTS-1 and COTS-2.
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Figure 2.10: CMC curves showing the performance of sketch to digital face image matching
algorithms on the IIIT-Delhi Viewed Sketch database.

Figure 2.11: CMC curves showing the performance of sketch to digital face image matching
algorithms on the Combined database.
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• The CMC curves in Figures 2.9-2.11 show the rank-1 identification accuracy of sketch

to digital face image matching algorithms. Table 5.2 summarizes the rank-1 identifi-

cation accuracy and the standard deviation for five times random subsampling (cross

validations) on all three sets of experiments. On the CUHK database, the proposed

approach yields rank-1 accuracy of 97.28% which is slightly better than LFDA [4]

and is at least 2% better than MWLD [1], MCWLD, SIFT [83], and EUCLBP+GA

[86]. The proposed approach also outperforms the two commercial systems by at

least 5%.

• On comparing WLD with MWLD, it is observed MWLD provides an improvement of

about 1% on different viewed sketch databases due to multi-scale analysis. Further,

compared to the MWLD algorithm [1], the proposed MCWLD algorithm improves

the rank-1 identification accuracy by about 1% on the CUHK, 2.8% on the IIIT-

Delhi, and 2.9% on the combined databases. It suggests that circular sampling

method yields more discriminative representation of the face image as compared to

square sampling. Note that both MWLD and MCWLD are applied at three different

scales with parameters as (R = 1, P = 8), (R = 2, P = 16) and (R = 3, p = 24).

Parameters for WLD are M = 6, T = 8, and S = 3.

• Compared to the weighting scheme (proposed by Chen et al. [1]) used in MCWLD

algorithm, the proposed memetic optimization improves the rank-1 identification ac-

curacy by 2.2% on the CUHK, 5.7% on the IIIT-Delhi, and 4.9% on the combined

databases. This improvement in rank-1 identification accuracy validates our asser-

tion that assigning memetically optimized weights to local facial regions boosts the

identification performance. This also corroborates with several psychological find-

ings that different facial regions have varying contribution towards the recognition

performance [95].

• The CUHK sketch database and the IIIT-D viewed sketch database have variations

introduced by different drawing styles of artists. As discussed by Zhang et al. [79],

drawing styles of different artists play an important role in how closely a sketch

resembles the actual digital photo thus influencing the performance of different al-

gorithms.

• As shown in Figure 2.11, the rank-1 identification accuracy of the proposed algo-

rithm on the combined database is at least 2% better than existing approaches and
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outperforms the two commercial systems by 13%. The proposed approach repre-

sents the face image by combining MCWLD histograms obtained from every local

facial region. The multi-scale analysis along with memetic optimization for assigning

weights corresponding to each local facial region helps in capturing the salient micro

patterns from both sketches and digital face images. Further, memetic optimization

helps in dimensionality reduction; i.e. at the end of memetic optimization, on an

average, 32 out of 126 (42×3) local facial patches at different scales are assigned null

weights. Therefore, MCWLD histogram for these patches are not computed during

testing.

• Experiments are performed by reducing the dimensionality of features using PCA;

however, the results are not encouraging as it does not capture the observation that

information vested in local regions has varying contribution in recognition accuracy

and assigning optimal weights to these regions will enhance the performance. To

incorporate this observation, MA is used that leads to dimensionality reduction and

better computational efficiency because MCWLD histograms for poor performing

facial regions are not computed during testing.

2.6 Matching Forensic Sketches with Digital Face Images

Previous research [4] in matching forensic sketches suggests that existing sketch recognition

algorithms trained on viewed sketches are not sufficient for matching forensic sketches

with digital face images. Moreover, poor quality of forensic sketches further degrade the

performance of sketch to digital image matching algorithms. This chapter attempts to

analyze and evaluate the performance of semi-forensic sketches and use it for improving

the training of the algorithms for forensic sketch matching.

2.6.1 Matching Semi-Forensic Sketches

Viewed sketches and forensic sketches are very different from each other. As shown in

Figure 2.2, the level of difficulty increases from viewed to forensic sketch matching. In an

attempt to bridge the gap between viewed sketches and forensic sketches, semi-forensic

sketches are introduced. It is our assertion that training on semi-forensic sketches can

improve modeling the variations for matching forensic sketches as compared to training

on viewed sketches. Therefore, to better understand the progression from viewed to semi-

forensic sketches, experiments are performed where training is done on viewed sketches

and performance is evaluated on semi-forensic sketches.
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Figure 2.12: CMC curves showing the identification performance when algorithms are
trained on viewed sketches and matching is performed on semi-forensic sketches.

To evaluate the performance on semi-forensic sketches, the algorithms are trained on

the Viewed Sketch database. 95 sketch-digital image pairs from the IIIT-Delhi Viewed

Sketch database are used for training and testing is performed with the remaining 454 dig-

ital face images as gallery and 140 semi-forensic sketches as probes. Figure 2.12 shows the

rank-1 identification accuracy of sketch to digital face image matching algorithms on semi-

forensic sketches. The proposed approach that uses MCWLD and memetically optimized

weighted χ2 distance yields rank-1 identification accuracy of 63.24% and outperforms ex-

isting algorithms such as SIFT [83], EUCLBP+GA [86], and LFDA [4] by 2 − 5%. The

proposed approach also outperforms the two commercial face recognition systems by at

least 9%.

2.6.2 Matching Forensic Sketches

Since forensic sketches are based on the recollection of an eyewitness, they are often

inaccurate, incomplete, do not closely resemble the actual digital face image, and may

be of poor quality. These concerns make the problem of matching forensic sketches with

digital face images more challenging than matching viewed sketches. This section presents

the evaluation of algorithms on the Forensic Sketch database.
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2.6.2.1 Experimental Protocol

To evaluate the proposed approach for matching forensic sketches, four sets of experi-

ments are performed. The performance of the proposed algorithm is also compared with

existing algorithms and two commercial face recognition systems. The protocol for all the

experiments are listed below:

1. Training on IIIT-Delhi Viewed Sketch database: Training is performed on 140 sketch-

digital image pairs from the IIIT-Delhi Viewed Sketch database. For testing, 190

forensic sketches are used as probe. The gallery comprises of 599 digital face images

(remaining 409 digital face images from the IIIT-Delhi Viewed Sketch database and

190 digital face images from the Forensic Sketch database).

2. Training on IIIT-Delhi Semi-forensic Sketch database: Training is performed on 140

sketch-digital image pairs from the IIIT-Delhi Semi-forensic Sketch database. For

testing, 190 forensic sketches are used as probe and 599 digital face images as gallery.

3. Enhancing Quality of Forensic Sketches: In this experiment, the quality of Forensic

Sketch database is enhanced using the pre-processing technique described in Section

2.2. Training is performed on 140 sketch-digital image pairs from the IIIT-Delhi

Viewed Sketch database. 190 forensic sketches are used as probe and 599 digital

face images are used as gallery.

4. Large Scale Forensic Matching : To replicate the real world scenario of matching

forensic sketches to police mugshot database with large gallery size, 6324 digital face

(frontal) images obtained from government agencies are appended to the gallery

of 739 digital face images used in previous experiments. To evaluate the effect of

training on semi-forensic sketches and quality enhancement using the pre-processing

algorithm, two experiments are performed in large scale evaluation.

• Training is performed on 140 sketch-digital image pairs from the IIIT-Delhi

Viewed Sketch database and no pre-processing is applied on the forensic sketches.

• Training is performed on 140 sketch-digital image pairs from the IIIT-Delhi

Semi-forensic Sketch database and the forensic sketches are enhanced using the

pre-processing technique.
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Table 2.4: Rank-1 identification accuracy of sketch to digital face image matching algorithms
for matching forensic sketches.

Gallery/ Rank-1
Experiment Probe Algorithm Identification

Images Accuracy (%)

599/190

COTS-1 13.62
COTS-2 13.92

Experiment 1 SIFT [83] 14.26
Figure 2.13 EUCLBP+GA [86] 14.81

LFDA [4] 15.26
Proposed 17.19

599/190

COTS-1 13.62
COTS-2 13.92

Experiment 2 SIFT [83] 18.26
Figure 2.14 EUCLBP+GA [86] 19.81

LFDA [4] 22.78
Proposed 23.94

599/190

COTS-1 15.62
COTS-2 16.01

Experiment 3 SIFT [83] 16.26
Figure 2.15 EUCLBP+GA [86] 16.54

LFDA [4] 17.78
Proposed 20.94

Table 2.5: Rank-50 identification accuracy for large scale forensic sketch matching as shown
in Figures 2.16 & 2.17.

Gallery Rank-50
Experiment 4 /Probe Algorithm Identification

Database Accuracy(%)

Training on

6923/190

COTS-1 7.88
Viewed Sketch COTS-2 8.46
database without SIFT [83] 17.11
pre-processing EUCLBP+GA [86] 18.93
applied on LFDA [4] 20.81
forensic sketches Proposed 23.94

Training on

6923/190

COTS-1 11.28
Semi-forensic COTS-2 12.86
database with SIFT [83] 21.24
proposed pre- EUCLBP+GA [86] 23.75
processing on LFDA [4] 24.62
forensic sketches Proposed 28.52
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2.6.2.2 Experimental Analysis

Figures 2.12-2.17 and Tables 3.2-2.5 illustrate the results of these experiments and the

analysis is provided below.

Figure 2.13: CMC curves showing the identification performance when algorithms are
trained on viewed sketches and matching is performed on forensic sketches.

• Table 3.2 and Figure 2.13 show identification performance of the proposed and ex-

isting algorithms for matching forensic sketches when the algorithms are trained on

the IIIT-Delhi Viewed Sketch database (Experiment 1). The proposed algorithm

yields 17.19% rank-1 identification accuracy which is about 2% better than exist-

ing algorithms. The proposed approach also outperforms the two commercial face

recognition systems by at least 3%.

• In Experiment 2, the training is performed on semi-forensic sketches for the same

140 subjects that are used for training in Experiment 1. The results in Figure 2.14

show that there is an improvement of about 7% in rank-1 identification accuracy of

the proposed algorithm and at least 4% for existing algorithms when the algorithms

are trained using the semi-forensic sketches. This improvement in accuracy validates

our assertion that training sketch recognition algorithms on viewed sketches is not

sufficient for matching forensic sketches. The proposed algorithm performs better
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than LFDA based algorithm [4] because the proposed approach can be efficiently

trained even with less number of sketch-digital image pairs whereas LFDA requires

large number of training samples to compute the discriminant projection matrices.

Figure 2.14: CMC curves showing the identification performance when algorithms are
trained on semi-forensic sketches and matching is performed on forensic sketches.

• The forensic sketch database contains sketches and digital face images of poor quality.

The pre-processing technique enhances the quality of forensic sketches by reducing

noise and irregularities from the images. The CMC curves in Figure 2.15 show the

results for Experiment 3 where enhancing the quality of forensic sketches leads to

an improvement of 2 − 3% in the rank-1 identification accuracy for all algorithms

(compared to CMCs in Figure 2.13).

• Experiment 4 demonstrates the scenario where a forensic sketch is matched against

a large mugshot database. The CMC curves in Figure 2.16 show the results for large

scale forensic sketch matching when algorithms are trained using viewed sketches

without any pre-processing. In this case, rank-50 identification accuracy of the

proposed algorithm is 23.9% which is at least 3% better than existing algorithms.

• Comparing the CMC curves in Figure 2.17 show that the pre-processing technique

along with training on semi-forensic sketches improves the identification accuracy of

the proposed approach significantly (at least 4.72% improvement in rank-1 accuracy).
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Figure 2.15: CMC curves showing the identification performance when algorithms are
trained on viewed sketch-digital image pairs and testing is performed using pre-processed
(enhanced) forensic sketch-digital image pairs.

Figure 2.16: CMC curves showing the identification performance when algorithms are
trained on viewed sketch-digital image pairs and tested with large scale digital gallery and
forensic sketch probes.
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Enhancing the quality of forensic sketch-digital image pairs improves the rank-1

identification accuracy of the two commercial face recognition systems also by at

least 2%.

Figure 2.17: CMC curves showing the identification performance when algorithms are
trained on semi-forensic sketch-digital image pairs and tested with large scale digital (en-
hanced) gallery and pre-processed forensic sketch probes.

• The CMC curves in Figures 2.16 and 2.17 suggest that existing algorithms for match-

ing sketches to digital face images are still not able to achieve acceptable identifi-

cation accuracy for large scale applications. However, the proposed algorithm still

performs better than existing algorithms and commercial face recognition systems.

As shown in Table 2.5, the proposed algorithm achieves rank-50 accuracy of 28.52%

which is at least 4% better than existing algorithms and 15% better than the two

commercial face recognition systems.

• It is to be noted that the performance of automated algorithms on semi-forensic

sketches is better than the performance on forensic sketches. This improvement is

attributed to the fact that semi-forensic sketches act like a bridge between viewed and

forensic sketches. Therefore, training sketch recognition algorithms on semi-forensic

sketches consistently improves the performance for all existing algorithms.
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• At 95% confidence interval, non-parametric rank-ordered test (using the ranks ob-

tained from the algorithms) and parametric t-test (using the match scores) suggest

that the two top performing algorithms (i.e. the proposed and LFDA) are signifi-

cantly (statistically) different.

• Finally, on a 2 GHz Intel Duo Core processor with 4 GB RAM under C# program-

ming environment, for a given probe sketch, the proposed algorithm requires 0.096

seconds to compute the MCWLD descriptor.

Figure 2.18: Illustrating sample cases when (a) the proposed approach and LFDA [4] cor-
rectly recognize, (b) LFDA fails while the proposed algorithm correctly recognizes, (c) the
proposed algorithm fails while LFDA correctly recognizes, and (d) both the algorithms fail to
recognize.
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The proposed approach emphasizes on the discriminating information vested in the

local regions. To capture our assertion that every local region has varying contribution,

memetic algorithm assigns optimal weights to each local facial region. Assigning discrimi-

nating weights to different facial regions also supports the conclusion made by Klare et al.

[4] that different internal, external, and individual face regions (eyes, nose, mouth, chin

etc.) have significant contribution for sketch recognition. Next, Figure 2.18(a) shows some

examples of sketch-digital image pairs that are correctly identified by the proposed ap-

proach as well as the LFDA [4] based approach (correctly identified in rank-50). Sketches

that show high recognizability have some peculiar features such as beard, mustache, and

soft marks on the face. Figure 2.18(b) shows some examples where LFDA based approach

performed poorly while the proposed approach correctly identified the sketch. This is

mainly because the proposed approach focuses on the structural details along with dis-

criminating and prominent features of the face. Figure 2.18(c) shows some examples

of sketch-digital image pairs where the proposed approach performed poorly, whereas,

LFDA based approach correctly matched sketches with digital face images. Finally, Fig-

ure 2.18(d) shows some examples where both the proposed approach and LFDA based

approach failed to match sketches with the correct digital face images. These sketches

either do not resemble the actual digital face image or converge to an average face that

resembles more than one digital face image in gallery because of the common features.

2.7 Human Analysis for Matching Sketches with Digital

Face Images

Several studies have analyzed human capabilities to recognize faces with variations due

to illumination and expression [100]. Recently, Zhang et al. [85] performed an extensive

study to analyze the human performance in matching sketches obtained from multiple

artists. This section presents a study to understand the cognitive process of matching

sketches with digital face images by humans on viewed, semi-forensic and forensic sketch

databases. This examination of human responses also considers local region used by each

subject while matching sketches with digital face images.

2.7.1 Experimental Method

Since the validity of a psychological experiment is closely related to fatigue and interest

level of the subject [85], human analysis is performed on a subset of 140 viewed, 140

semi-forensic and 190 forensic sketches.
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2.7.1.1 Participants

A total of 82 subjects, largely undergraduate university students, volunteered to partici-

pate in the sketch to digital face image matching study. Some of the volunteers may be

familiar with few subjects in the IIIT-Delhi Viewed and Semi-forensic Sketch database

but not with any of the sketches in Forensic Sketch database.

2.7.1.2 Questions

In every question, a probe sketch must be matched to one of the 12 digital face images

in the gallery. Since this is a web based application, we came up with 12 digital face

images as gallery so as to properly layout the query sketch and digital face images on a

computer screen. The gallery necessarily include the correct matching digital face image

and the remaining images in the gallery are the top retrieved digital face images for the

probe sketch obtained using the proposed MCWLD algorithm. In the interest of fairness,

un-cropped images that may include hair, ears, and neck are used for human evaluation.

The automatic algorithms on the other hand, do not require this additional information.

2.7.1.3 Procedure

Each volunteer interacts with a web interface, where he/she is first authenticated. It

is done to ensure that the user gets different questions in every session. Subsequently,

the volunteer is presented with the questions, one at a time. Each question is selected

randomly from a unique unanswered question bank comprising a mixture of viewed, semi-

forensic and forensic sketches. Further, the user selects one of the gallery image as a

suitable match for the query sketch. Along with this selection, the user marks the local

region in the digital face image that he/she finds to be the most beneficial in recognizing

the query sketch. This response is indicated by the user’s click on the most discriminating

local facial region of the selected gallery image. A volunteer answers between 2 and 12

questions in a single session and can participate in up to four sessions.

2.7.2 Results and Analysis

A total of 1169 human responses are obtained for 470 probe sketches. Of these responses,

71.94% are found to be correct matches. Table 2.6 shows the total number of responses

and individual accuracy of these responses across the three types of sketches. Further,

Figure 2.19 shows human response (clicks) that the participant deemed as important in

matching the sketches with digital face images. These clicks are plotted over a mean
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Figure 2.19: Facial regions for correctly and incorrectly matched (a) viewed sketches, (b)
semi-forensic sketches, and (c) forensic sketches. Dots represents the area that user found to
be most discriminating in matching the sketch with digital face images.

Table 2.6: Distribution of 1169 human responses obtained from the study.

Type Total Human Responses % Correct

Viewed 403 80.4

Semi-forensic 334 79.6

Forensic 432 58.1

face image to enable better visualization. The key observations from this study are listed

below:

• The click-points, shown in Fig 2.19 indicate that the dominant local regions of a face

image such as mouth, nose, and eyes (accurately depicted by the sketch artist), are

used for matching.

• Figure 2.19(a) shows the click-plot when the user is presented viewed sketches. The

high accuracy can be attributed to the correct depiction of the features by the artist.

The user clicks are concentrated close to nose and mouth region.

• Figure 2.19(b) shows the click-plot when the user is presented semi-forensic sketches.

The points seem to deviate towards the exaggerated features such as corners of eyes,

nose and eyebrows.

Table 2.7: Distribution of user clicks between prominent facial regions.

Viewed (%) Semi-forensic (%) Forensic (%)

Eyes 6.13 13.97 13.17

Nose 18.10 14.90 18.10

Mouth 10.58 10.56 14.76
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• Forensic Sketch database contains poor quality sketches and two-fold exaggeration

at witness description and artist depiction. The large differences in appearance,

age, and high possibility of accessaries result in user preference for nose and mouth

regions, as shown in Figure 2.19(c).

• As the difficulty of recognition task escalates from viewed to forensic sketches, there

is a notable increase in use of the prominent facial features (eyes, nose, and mouth),

as indicated in Table 2.7. This marked increase in user preference for local facial

features when presented with unfamiliar sketches is a strong indication of their im-

portance in the recognition task.

• This study supports our initial hypothesis that local regions provide discriminating

information for matching sketches with digital face images. Finally, with 1169 sample

size at 95% confidence level, confidence interval lies in 2− 3% for the three types of

sketches.

The accuracy claimed by humans for different types of sketches cannot be compared with

the accuracy of automatic algorithms because of different experimental protocols. This

analysis is to validate our assertion that discriminating patterns in local facial regions have

major contribution in recognizing sketches with digital face images.

2.8 Summary

Sketch to digital face matching is an important research challenge and is very pertinent to

law enforcement agencies. This chapter presents a discriminative approach for matching

sketch-digital image pairs using modified Weber’s local descriptor and memetically opti-

mized weighted χ2 distance. The algorithm starts with the pre-processing technique to

enhance sketches and digital images by removing irregularities and noise. Next, MCWLD

encodes salient micro patterns from local regions to form facial signatures of both sketches

and digital face images. Finally, the proposed (evolutionary) memetic optimization based

weighted χ2 distance is used to match two MCWLD histograms. Comprehensive analy-

sis, including comparison with existing algorithms and two commercial face recognition

systems, is performed using the viewed, semi-forensic, and forensic sketch databases. Semi-

forensic sketches are introduced to bridge the gap between viewed and forensic sketches. It

is observed that sketch recognition algorithms trained on semi-forensic sketches can better

model the variations for matching forensic sketches as compared to algorithms trained on

viewed sketches. Analysis of results also suggest that local regions play an important role
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in matching sketch-digital image pairs and is effectively encoded in MCWLD and memet-

ically optimized weighted χ2 distance. The results also show that the proposed algorithm

is significantly better than existing approaches and commercial systems.
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Chapter 3

Recognizing Surgically Altered

Face Images using Multi-objective

Evolutionary Learning

3.1 Introduction

Plastic surgery procedures provide a proficient and enduring way to enhance the facial

appearance by correcting feature anomalies and treating facial skin to get a younger look.

Apart from cosmetic reasons, plastic surgery procedures are beneficial for patients suffering

from several kinds of disorders caused due to excessive structural growth of facial features

or skin tissues. Plastic surgery procedures amend the facial features and skin texture

thereby providing a makeover in the appearance of face. Figure 3.1 shows an example

of the effect of plastic surgery on facial appearances. With reduction in cost and time

required for these procedures, the popularity of plastic surgery is increasing. Even the

widespread acceptability in the society encourages individuals to undergo plastic surgery

for cosmetic reasons. According to the statistics provided by the American Society for

Aesthetic Plastic Surgery for year 2010 [101], there is about 9% increase in the total

number of cosmetic surgery procedures, with over 500, 000 surgical procedures performed

on face.

Transmuting facial geometry and texture increases the intra-class variability between

the pre- and post-surgery images of the same individual. Therefore, matching post-surgery

images with pre-surgery images becomes an arduous task for automatic face recognition

algorithms. Further, as shown in Figure 3.2, it is our assertion that variations caused

due to plastic surgery have some intersection with the variations caused due to aging and

disguise. Facial aging is a biological process that leads to gradual changes in the geometry

and texture of a face. Unlike aging, plastic surgery is a spontaneous process that is
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Figure 3.1: Illustrating the variations in facial appearance, texture, and structural geometry
caused due to plastic surgery (images taken from internet).

Figure 3.2: Relation among plastic surgery, aging, and disguise variations with respect to
face recognition.
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generally performed contrary to the effect of facial aging. Since the variations caused due

to plastic surgery procedures are spontaneous, it is difficult for face recognition algorithms

to model such non-uniform face transformations. On the other hand, disguise is the process

of concealing one’s identity by using makeup and other accessories. Both plastic surgery

and disguise can be misused by individuals trying to conceal their identity and evade

recognition. Variations caused due to disguise are temporary and reversible; however,

variations caused due to plastic surgery are long-lasting and may not be reversible. Owing

to these reasons, plastic surgery is now established as a new and challenging covariate of

face recognition alongside aging and disguise.

3.1.1 Related Research

Singh et al. [8] analyzed several types of local and global plastic surgery procedures and

their effect on different face recognition algorithms. They have experimentally shown

that the non-linear variations induced by surgical procedures are difficult to address with

current face recognition algorithms. Marsico et al. [102] also proposed an approach that

integrated information derived from local regions to match pre- and post-surgery face

images. Aggarwal et al. [103] proposed sparse representation approach on local facial

fragments to match surgically altered face images. Kose et al. [104] proposed a block based

face recognition to match face images with nose alterations in both 2D and 3D domain.

The blocks which maximize the recognition performance were used in the algorithms to

mitigate the effect of nose alteration both 2D and 3D. A nose alteration database was

prepared from FRGC database [105] in which nose in each sample is replaced with the

nose region from another randomly chosen individual. Further, Erdogmus et al. [106]

analyzed how such changes on nose region affect the face recognition performances of

several 2D and 3D algorithms and concluded that 3D algorithms were more vulnerable to

variations in nose regions. Recently, Jillela and Ross [107] proposed a fusion approach that

combined information from the face and ocular regions to enhance recognition performance

across face images altered due to facial plastic surgery. Bhatt et al. [108] proposed

an evolutionary granular computing based algorithm for recognizing faces altered due

to plastic surgery. Their algorithm generated non-disjoint face granules where each face

granule represented different information at varying size and resolution. Further, two

feature extractors were used for extracting discriminative information from face granules.

Finally, different responses were unified in an evolutionary manner using multi-objective

genetic algorithm for improved performance.
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There has been some interesting work in predicting the post-surgery faces based on

the previous examples from pre- and post-surgery faces. In this direction, Liu et al. [109]

trained a predictor on previous set of pre- and post-surgery landmark distances and used

it to predict the new positions of landmark points after plastic surgery. Image morphing

was used to synthesize the appearance of face after plastic surgery. Rabi and Arabi [110]

proposed an approach to synthetically alter the facial features to simulate the results of

plastic surgery. The proposed approach replaces the facial features of an individual with

corresponding facial features of other individuals and seamlessly fuses the facial features

to remove any discontinuity. This paper presents a good future direction to create large

databases to study the effect of plastic surgery as creating database with plastic surgery

variations is very challenging due to privacy issues. However, research in predicting the

post surgery face is very naive as the proposed approach just recovers the changes in facial

shape and does not incorporate the texture variations. More complex models need to be

learned to simulate the effects of different local and global plastic surgery procedures.

Though results suggest that algorithms are improving towards addressing the challenge,

there is a significant scope for further improvement. Plastic surgery also raises some social

and ethical issues [111], being related to the medical history of an individual which is

secure under law, invasion of privacy is an important aspect in this research. Apart

from affecting the face recognition algorithms, plastic surgery procedures may also lead

to identity theft. Identity theft can be intentional, when a person consciously attempts to

resemble someone by undergoing facial plastic surgery procedures, or unintentional where

he/she may resemble someone after the surgery. Plastic surgery procedures modifying

the facial geometry and texture along with associated privacy issues make it an arduous

research problem. These procedures can significantly modify facial regions both locally

and globally. Since, existing face recognition algorithms generally rely on local and global

facial features, variations in these features can affect the recognition performance. Table

3.1 summarizes the performance of different algorithms for matching pre- and post-surgery

images from the plastic surgery face database [8]. Results suggest that further research is

required to design optimal face recognition algorithms that can account for the challenges

due to facial plastic surgery procedures.
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Table 3.1: A comparison of different approaches proposed for matching pre- and post-surgery
images on the Plastic Surgery face database [8].

Authors Approach Rank-1 accuracy

Singh et al. [8]

PCA 29.1%
FDA 32.5%
LFA 38.6%
CLBP 47.8%
SURF 50.9%
GNN 54.2%

Marsico et al. [102]

PCA 26%
LDA 35%
FARO 41%
FACE 65%

Aggarwal et al. [103] Sparse representation 77.9%

Jillela and Ross [107] Fusion of face and ocular region 87.4% (On a subset)

Bhatt et al. [108] Multi-objective genetic approach 87.3%

Figure 3.3: Block diagram illustrating different stages of the proposed algorithm.
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3.1.2 Research Contributions

This chapter presents a multi-objective evolutionary granular computing based algorithm

for recognizing faces altered due to plastic surgery procedures. As shown in Figure 3.3,

the proposed algorithm starts with generating non-disjoint face granules where each gran-

ule represents different information at varying size and resolution. Further, two feature

extractors, namely Extended Uniform Circular Local Binary Pattern (EUCLBP) [86] and

Scale Invariant Feature Transform [93], are used for extracting discriminating information

from face granules. Finally, different responses are unified in an evolutionary manner us-

ing a multi-objective genetic approach for improved performance. The performance of the

proposed algorithm is compared with a commercial-off-the-shelf face recognition system

(COTS) for matching surgically altered face images against large scale gallery. The chap-

ter also analyzes the effect of plastic surgery procedures on the performance of individual

granules along with periocular region. The chapter is organized as follows: Section 3.2

presents the proposed face granulation scheme along with the evolutionary optimization

for selecting the feature extractor and weights of each granule. Section 3.3 presents the

databases, comprehensive experimental results, and key observations.

3.2 Evolutionary Granular Computing Approach for Face

Recognition

Face recognition algorithms either use facial information in a holistic way or extract fea-

tures and process them in parts. In presence of variations such as pose, expression, illu-

mination, and disguise, it is observed that local facial regions are more resilient and can

therefore be used for efficient face recognition [112], [113], [114], [115]. Several part based

face recognition approaches capture this observation for improved performance. Heisele

et al. [112] proposed a component based face recognition approach using different facial

components to provide robustness to pose. Weyrauch et al. [113] designed an algorithm

in which gray-level pixel values from several facial components were concatenated and

classification was performed using SVM. Similarly, Li et al. [114] proposed an approach

where local patches were extracted from different levels of Gaussian pyramid and arranged

in an exemplar manner. These exemplar based-local patches were then combined using

boosting to construct strong classifiers for prediction. In another approach, a subset se-

lection mechanism was proposed [115] where the most informative local facial locations

were used in decision making.
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Singh et al. [8] observed that with respect to plastic surgery, more than one facial re-

gion may be affected due to a procedure. For example, blepharoplasty which is primarily

performed to amend forehead also affects eye-brows. Further, Singh et al. [8] observed

that with large variations in the appearance, texture, and shape of different facial regions,

it is difficult for face recognition algorithms to match a post-surgery face image with pre-

surgery face images. Previous part-based face recognition approaches may not provide

mechanisms to address the concurrent variations introduced in multiple features because

these approaches generally emphasize on analyzing each feature independently. On the

other hand, it is observed that humans solve problems using perception and knowledge

represented at different levels of information granularity [95]. They recognize faces using

a combination of holistic approaches together with discrete levels of information (or fea-

tures). Sinha et al. [95] established 19 results based on the face recognition capabilities of

a human mind. It is suggested that humans can efficiently recognize faces even with low

resolution and noise. Moreover, high and low frequency facial information is processed

both holistically and locally. Campbell et al. [116] reported that inner and outer facial

regions represent distinct information that can be helpful for face recognition. Researchers

from cognitive science also suggested that local facial fragments can provide robustness

against partial occlusion and change in viewpoints [95], [117], [118]. To incorporate these

observations, this chapter proposes a granular approach for facial feature extraction and

matching. In the granular approach [119, 120], as shown in Figure 3.3, non-disjoint fea-

tures are extracted at different granular levels. These features are then synergistically

combined using multi-objective evolutionary learning to obtain the assimilated informa-

tion. With granulated information, more flexibility is achieved in analyzing underlying

information such as nose, ears, forehead, cheeks, and combination of two or more features.

The face granulation scheme helps in analyzing multiple features simultaneously. More-

over, the face granules of different sizes and shapes (as shown in Figures 3.4-3.7) help to

gain significant insights about the effect of plastic surgery procedures on different facial

features and their neighboring regions.

3.2.1 Face Image Granulation

Let F be the detected frontal face image of size n × m. Face granules are generated

pertaining to three levels of granularity. The first level provides global information at

multiple resolutions. This is analogous to a human mind processing holistic information

for face recognition at varying resolutions. Next, to incorporate the findings of Campbell

et al. [116], inner and outer facial information are extracted at the second level. Local
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facial features play an important role in face recognition by human mind. Therefore, at

the third level, features are extracted from the local facial regions.

3.2.1.1 First Level of Granularity

In the first level, face granules are generated by applying the Gaussian and Laplacian

operators [121]. The Gaussian operator generates a sequence of low pass filtered images

by iteratively convolving each of the constituent images with a 2D Gaussian kernel. The

resolution and sample density of the image is reduced between successive iterations and

therefore the Gaussian kernel operates on a reduced version of the original image in every

iteration. Similarly, the Laplacian operator generates a series of band-pass images. Let the

granules generated by Gaussian and Laplacian operators be represented by FGri, where i

represents the granule number. For a face image of size 196×224, Figure 3.4 represents the

face granules generated in the first level by applying Gaussian and Laplacian operators.

The resultant images may be viewed as a ‘pyramid’ with FGr1 and FGr4 having the highest

resolution and FGr3 and FGr6 having the lowest resolution. FGr1 to FGr3 are the granules

generated by Gaussian operator and FGr4 to FGr6 are the granules generated by Laplacian

operator. The size of the smallest granule in the first granular level is 49×56. In these six

granules, facial features are segregated at different resolutions to provide edge information,

noise, smoothness, and blurriness present in a face image. As shown in Figure 3.4, the

effect of facial wrinkles is reduced from granule FGr1 to FGr3. The first level of granular-

ity thus compensates for the variations in facial texture, thereby providing resilience to

plastic surgery procedures that alter the face texture such as facelift, skin resurfacing, and

dermabrasion.

Figure 3.4: Face granules in the first level of granularity. FGr1, FGr2, and FGr3 are generated
by the Gaussian operator, and FGr4, FGr5, and FGr6 are generated by the Laplacian operator.
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3.2.1.2 Second Level of Granularity

To accommodate the observations of Campbell et al. [116], horizontal and vertical granules

are generated by dividing the face image F into different regions as shown in Figures 3.5

and 3.6. Here, FGr7 to FGr15 denote the horizontal granules and FGr16 to FGr24 denote the

vertical granules. Among the nine horizontal granules, the first three granules i.e. FGr7,

FGr8, and FGr9 are of size n×m/3. The next three granules, i.e., FGr10, FGr11, and FGr12

are generated such that the size of FGr10 and FGr12 is n× (m− ǫ) and the size of FGr11 is

n× (m+ 2ǫ). Further, FGr13, FGr14, and FGr15 are generated such that the size of FGr13

and FGr15 is n×(m+ǫ) and the size of FGr14 is n×(m−2ǫ). Nine vertical granules, FGr16

to FGr24, are also generated in a similar manner. Figures 3.5 and 3.6 show horizontal

and vertical granules when the size of face image is 196 × 224 and ǫ = 151. The second

level of granularity provides resilience to variations in inner and outer facial regions. It

utilizes the relation between horizontal and vertical granules to address the variations in

chin, forehead, ears, and cheeks caused due to plastic surgery procedures.

Figure 3.5: Horizontal face granules from the second level of granularity (FGr7 − FGr15).

1In the experiments, it is observed that ǫ = 15 yields the best recognition results when face image is
of size 196 × 224.
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Figure 3.6: Vertical face granules from the second level of granularity (FGr16 − FGr24).

3.2.1.3 Third Level of Granularity

As mentioned previously, human mind can distinguish and classify individuals with their

local facial regions such as nose, eyes, and mouth. To incorporate this property, local

facial fragments are extracted and utilized as granules in the third level of granularity.

Given the eye coordinates, 16 local facial regions are extracted using the golden ratio face

template [5] shown in Figure 3.7(a). Each of these regions is a granule representing local

information that provides unique features for handling variations due to plastic surgery.

Figure 3.7(b) shows an example of local facial fragments used as face granules in the third

level of granularity.

Figure 3.7: (a) Golden ratio face template [5] and (b) face granules in the third level of
granularity (FGr25 − FGr40).

The proposed granulation technique is used to generate 40 non-disjoint face granules

from a face image of size 196 × 224. Three levels of granularity are designed to address
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specific variations introduced in local facial regions by different plastic surgery procedures.

For example, variations in skin texture due to dermabrasion or skin-resurfacing are more

pertinent in FGr1 and FGr4 while texture variations are suppressed in granules FGr2, FGr3,

FGr5, and FGr6. The second level of granularity (FGr7 - FGr24) helps analyze different

combinations of local features that provide resilience to concurrent variations introduced

in multiple regions by different plastic surgery procedures (such as blepharoplasty, browlift,

and rhinoplasty). The third level of granularity (FGr25 - FGr40) independently analyzes

each local feature to address the variations in individual facial regions. Selection of these

40 fixed structure1 face granules is based on their capability to address specific variations.

3.2.2 Facial Feature Extraction

The proposed granulation scheme results in granules with varying information content.

Some granules contain fiducial features such as eyes, nose, and mouth while some gran-

ules predominantly contain skin regions such as forehead, cheeks, and outer facial region.

Therefore, different feature extractors are needed to encode diverse information from the

granules. Any two (complementing) feature extractors can be used; here Extended Uni-

form Circular Local Binary Patterns and Scale Invariant Feature Transform are used. Both

these feature extractors are fast, discriminating, rotation invariant, and robust to changes

in gray level intensities due to illumination. However, the information encoded by these

two feature extractors is rather diverse as one encodes the difference in intensity values

while the other assimilates information from the image gradients. They efficiently use

information assimilated from local regions and form a global image signature by concate-

nating the descriptors obtained from every local facial region. It is experimentally observed

that among the 40 face granules, for some granules EUCLBP finds more discriminative

features than SIFT and vice-versa (later shown in the experimental results).

3.2.2.1 Extended Uniform Circular Local Binary Patterns

Extended Uniform Circular Local Binary Pattern (EUCLBP) [86] is a texture based de-

scriptor that encodes exact gray-level differences along with difference of sign between

neighboring pixels. For computing EUCLBP descriptor, the image is first tessellated into

non-overlapping uniform local patches of size 32× 32. For each local patch, the EUCLBP

1In our approach, eye-coordinates are detected using the OpenCV’s boosted cascade of Haar-like fea-
tures. Since, the plastic surgery face database contains images with frontal pose and neutral expression,
the OpenCV’s eye detection is accurate. Using the eye-coordinates, face image is normalized with respect
to the horizontal axis and inter-eye distance is fixed to 100 pixels. Finally, the detected images are resized
to 196×224.
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descriptor is computed based on the 8 neighboring pixels uniformly sampled on a circle

(radius=2) centered at the current pixel. The concatenation of descriptors from each local

patch constitutes the image signature. Two EUCLBP descriptors are matched using the

weighted χ2 distance.

3.2.2.2 Scale Invariant Feature Transform

SIFT [93] is a scale and rotation invariant descriptor that generates a compact repre-

sentation of an image based on the magnitude, orientation, and spatial vicinity of image

gradients. SIFT, as proposed by Lowe [93], is a sparse descriptor that is computed around

the detected interest points. However, SIFT can also be used in a dense manner where the

descriptor is computed around pre-defined interest points. SIFT descriptor is computed

in a dense manner over a set of uniformly distributed non-overlapping local regions of size

32×32. SIFT descriptors computed at the sampled regions are then concatenated to form

the image signature. Similar to EUCLBP, weighted χ2 distance is used to compare two

SIFT descriptors.

3.2.3 Multi-objective Evolutionary Approach for Selection of Feature

Extractor and Weight Optimization

Every face granule has useful but diverse information, which if combined together can

provide discriminating information for face recognition. Moreover, psychological studies

in face recognition [95] have also shown that some facial regions are more discriminating

than others and hence, contribute more towards the recognition accuracy. Feature selection

methods are used for selective combination of features to assimilate diverse information

for improved performance. Sequential feature selection (SFS) [122] and sequential floating

forward selection (SFFS) [122] are widely used feature selection methods that evaluate

the growing feature set by sequentially adding (or removing) features one-at-a-time. On

the other hand, a definitive feature selection approach concatenates different features (for

example, EUCLBP and SIFT) and performs dimensionality reduction using PCA to yield

the final feature set. Other approaches such as genetic search [115] and conditional mutual

information (CMI) [123] are also used to find the most informative features. These existing

feature selection techniques are single objective functions and may not be sufficient for

improving the performance with single gallery evaluations.

Feature selection problem encompasses around two objectives: 1) select an optimal

feature extractor for each granule, and 2) assign proper weight for each face granule.

The problem of finding optimal feature extractor and weight for each granule involves
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searching very large space and finding several suboptimal solutions. Genetic algorithms

(GA) are well proven in searching very large spaces to quickly converge to the near optimal

solution [124]. Therefore, a multi-objective genetic algorithm is proposed to incorporate

feature selection and weight optimization for each face granule. Figure 3.8 represents the

multi-objective genetic search process and the steps involved are described below.

Figure 3.8: Genetic optimization process for selecting feature extractor and weight for each
face granule.

Genetic Encoding : A chromosome is a string whose length is equal to the number of face

granules i.e. 40 in our case. For simultaneous optimization of two functions, two types of

chromosomes are encoded: (i) for selecting feature extractor (referred to as chromosome

type1) and (ii) for assigning weights to each face granule (referred to as chromosome

type2). Each gene (unit) in chromosome type1 is a binary bit 0 or 1 where 0 represents

the SIFT feature extractor and 1 represents the EUCLBP feature extractor. Genes in

chromosome type2 have real valued numbers associated with corresponding weights of the

40 face granules.

Initial Population: Two generations with 100 chromosomes are populated. One generation

has all type1 chromosomes while the other generation has all type2 chromosomes.

1. For selecting feature extractors (type1 chromosome), half of the initial generation (i.e.

50 chromosomes) is set with all the genes (units) as 1, which represents EUCLBP
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as the feature extractor for all 40 face granules. The remaining 50 chromosomes in

the initial generation have all genes as 0 representing SIFT as the feature extractor

for all 40 face granules.

2. For assigning weights to face granules (type2 chromosome), a chromosome with

weights proportional to the identification accuracy of individual face granules (as

proposed by Ahonen [92]) is used as the seed chromosome. The remaining 99 chro-

mosomes are generated by randomly changing one or more genes in the seed chro-

mosome. Further, the weights are normalized such that the sum of all the weights

in a chromosome is 1.

Fitness Function: Both type1 and type2 chromosomes are combined and evaluated simul-

taneously. Recognition is performed using the feature extractor selected by chromosome

type1 and weight encoded by chromosome type2 for each face granule. Identification accu-

racy, used as the fitness function, is computed on the training set and 10 best performing

chromosomes are selected as parents to populate the next generation.

Crossover : A set of uniform crossover operations is performed on parents to populate a

new generation of 100 chromosomes. Crossover operation is same for both type1 and type2

chromosomes.

Mutation: After crossover, mutation is performed for type2 chromosomes by changing one

or more weights by a factor of its standard deviation in the previous generation. For type1

chromosome, mutation is performed by randomly inverting the genes in the chromosome.

The search process is repeated till convergence and terminated when the identification

performance of the chromosomes in new generation do not improve compared to the per-

formance of chromosomes in previous five generations. At this point, the feature extractor

and optimal weights for each face granule (i.e. chromosomes giving best recognition ac-

curacy on the training data) are obtained. Genetic optimization also enables discarding

redundant and non-discriminating face granules that do not contribute much towards the

recognition accuracy (i.e. the weight for that face granule is close to zero). This optimiza-

tion process leads to both dimensionality reduction and better computational efficiency.

Evolutionary algorithms such as genetic algorithms often fail to maintain diversity

among individual solutions (chromosomes) and cause the population to converge prema-

turely. This problem is attributed to loss of diversity in a population that decreases the

quality of solution. Adaptive mutation rate [98] and random offspring generation [99] are

used to prevent premature convergence to local optima by ensuring sufficient diversity in
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a population. Depending on population diversity, mutation is performed with an adaptive

rate that increases if diversity decreases and vice-versa. Population diversity is measured

as the standard deviation of fitness values in a population. Further, random offspring gen-

eration is used to produce random offsprings if there is a high degree of similarity among

participating chromosomes (parents) during the crossover operation. Combination of such

similar chromosomes is ineffective because it leads to offsprings that are exactly similar to

parents. Therefore, under such conditions, crossover is not performed and offsprings are

generated randomly.

3.2.4 Combining Face Granules with Multi-objective Evolutionary Learn-

ing for Recognition

The granular approach for matching faces altered due to plastic surgery is summarized

below.

1. For a given gallery-probe pair, 40 face granules are extracted from each image.

2. EUCLBP or SIFT features are computed for each face granule according to the

evolutionary model learned using the training data.

3. The descriptors extracted from gallery and probe images are matched using weighted

χ2 distance measure.

χ2(a, b) =
∑

i,j

ωj
(ai,j − bi,j)

2

ai,j + bi,j
(3.1)

where a and b are the descriptors computed from face granules pertaining to a

gallery-probe pair, i and j correspond to the ith bin of the jth face granule, and ωj is

the weight of the jth face granule. Here, the weights of each face granule are learned

using the genetic algorithm.

4. In identification mode (1 : N), this procedure is repeated for all the gallery-probe

pairs and top matches are obtained based on the match scores.

3.3 Experimental Results

Several experiments are performed to evaluate the performance of the proposed algorithm.

The performance of the algorithm is also compared with SIFT and EUCLBP applied on

full face image, SIFT and EUCLBP applied on the 40 face granules, sum-rule fusion [125]

of SIFT and EUCLBP on face granules, and a commercial-off-the-shelf face recognition
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system (COTS)1. Further, to evaluate the effectiveness of the proposed multi-objective

genetic approach for feature selection and assimilation, the performance is compared with

other feature selection methods, namely, definitive feature selection (referred to as “EU-

CLBP+SIFT+PCA”), SFS [122], and SFFS [122].

3.3.1 Database

Experiments are performed on two databases: (a) plastic surgery face database [8] and

(b) combined heterogeneous face database. The plastic surgery face database comprises

1800 pre- and post-surgery images corresponding to 900 subjects with frontal pose, proper

illumination, and neutral expression. The database consists of different types of facial

plastic surgery cases such as rhinoplasty (nose surgery), blepharoplasty (eyelid surgery),

brow lift, skin peeling, and rhytidectomy (face lift). It is difficult to isolate individuals who

have undergone plastic surgery and use special mechanism to recognize them. Therefore,

face recognition algorithms should be robust to variations introduced by plastic surgery

even in general operating environments. Considering such generality of face recognition,

the second database is prepared by appending the plastic surgery face database with

1800 non-surgery images pertaining to 900 subjects from other publicly available face

databases. This database is termed as the combined heterogeneous face database and

comprises 3600 images pertaining to 1800 subjects. The non-surgery images are from the

same databases used by Singh et al. [8] and consists of two frontal images per subject

with proper illumination and neutral expression.

Images in the plastic surgery face database are collected from different sources on

internet and have noise and irregularities. The detected images in the database are first

preprocessed to zero mean and unit variance followed by applying histogram equalization

to maximize image contrast. Further, Wiener filtering is applied to restore the blurred

edges. As mentioned previously, the face images are geometrically normalized and the size

of each detected face image is 196 × 224 pixels.

3.3.2 Experimental Protocol

To evaluate the efficacy of the proposed algorithm, experiments are performed with 10

times repeated random sub-sampling (cross validations). In each experiment, 40% of the

database is used for training and the remaining 60% is used for testing. The training data

is used for learning EUCLBP/SIFT feature selection and weights of each face granule,

1COTS used in our experiments is one of the highly accurate and widely used face recognition software;
however the academic license agreement does not allow us to name it in any comparison.
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while the unseen testing data is used for performance evaluation. Experimental protocol

for all the experiments are described here:

• Experiment 1: 1800 pre- and post-surgery images pertaining to 900 subjects from

the plastic surgery face database [8] are used in this experiment. Images of 360

subjects are used for training and the performance is evaluated on the remaining

540 subjects. Pre-surgery images are used as the gallery and post-surgery images

are used as the probe.

• Experiment 2: Out of 1800 subjects from the combined heterogeneous face database,

720 subjects are used for training and the remaining 1080 subjects are used for

testing. The training subjects are randomly selected and there is no regulation on

the number of training subjects with plastic surgery. This experiment resembles real

world scenario of training-testing where the system is unaware of any plastic surgery

cases.

• Experiment 3: To evaluate the effectiveness of the proposed algorithm for matching

individuals against large size gallery, two different experiments are performed. In

both the experiments, 6324 frontal face images obtained from government agencies

are appended to the gallery of 1800 face images used in Experiment 2.

– Case 1: Training is performed with images of 360 subjects from the plastic

surgery face database. The performance is evaluated on post-surgery images

from the remaining 540 subjects as probes against the large scale gallery of

7764 subjects.

– Case 2: Training is performed with images of 720 subjects from the combined

heterogeneous face database. The performance is evaluated on images from

the remaining 1080 subjects as probes against the large scale gallery of 7404

subjects.

3.3.3 Analysis

The proposed algorithm utilizes the observation that human mind recognizes face images

by analyzing the relation among non-disjoint spatial features extracted at multiple granular

levels. Further, simultaneously optimizing the feature selection and weight computation

pertaining to each face granule allows for addressing the non-linear and spontaneous vari-

ations introduced by plastic surgery. Key results and observations from the experiments

are summarized below.
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• The CMC curves in Figures 3.9 and 3.10 and Table 3.2 show rank-1 identification

accuracy for Experiments 1 and 2. The proposed algorithm outperforms other al-

gorithms by at least 4.22% on the plastic surgery face database and 4.86% on the

combined heterogeneous face database. The proposed algorithm also outperforms

the commercial system by 2.66% and 1.93% on the plastic surgery face database and

the combined heterogeneous face database respectively.

Figure 3.9: CMC curves for the proposed and existing algorithms on the plastic surgery face
database.

• In Experiment 2, the training-testing partitions have plastic surgery as well as non-

surgery images. It closely resembles the condition which a real world face recognition

system encounters in general operating environment. Without the knowledge of

specific plastic surgery cases, face recognition system has to be robust in matching

surgically altered face images in addition to matching regular face images. Different

types of plastic surgery procedures have varying effect on one or more facial regions.

The proposed algorithm inherently provides the benefit of addressing the non-linear

variations introduced by different types of plastic surgery procedures.
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Figure 3.10: CMC curves for the proposed and existing algorithms on the combined hetero-
geneous face database.
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Table 3.2: Rank-1 identification accuracy of the proposed multi-objective evolutionary
granular approach and comparison with existing approaches. Identification accuracies and
standard deviations are computed with 10 times cross validation.

Database
Algorithm

Rank-1 Standard
(#Train/#Test) Accuracy (%) Deviation

Single Algorithm
EUCLBP [86] 65.56 1.02
SIFT [93] 69.26 1.13
Granular EUCLBP 72.35 0.85
Granular SIFT 76.11 0.86

Plastic surgery COTS 84.66 0.76
face database Match Score Fusion

Sum Rule Fusion 82.05 0.90
(360/540) Feature Selection Approach

SFS [122] 80.66 0.94
SFFS [122] 81.58 0.96
EUCLBP+SIFT+PCA 83.10 0.71
Proposed 87.32 0.64

Single Algorithm
EUCLBP [86] 70.98 0.92
SIFT [93] 72.75 0.98
Granular EUCLBP 74.08 0.78
Granular SIFT 79.12 0.82

Combined COTS 87.94 0.80
heterogeneous Match Score Fusion
face database Sum Rule Fusion 84.85 1.16

Feature Selection Approach
(720/1080) SFS [122] 82.43 0.76

SFFS [122] 83.59 0.88
EUCLBP+SIFT+PCA 85.01 0.68
Proposed 89.87 0.70
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• CMC curves in Figures 3.11 and 3.12 show the performance of the proposed algo-

rithm and commercial system for matching probes against a large gallery (Experi-

ment 3). The proposed algorithm outperforms the commercial system by 4.6% and

2.21% on Case 1 and Case 2 of Experiment 3 respectively. Assimilating discrim-

inating information from different levels of granulation and combining them in an

evolutionary manner helps to mitigate the effect of plastic surgery procedures and

leads to improved performance.

Figure 3.11: CMC curves for the proposed and commercial algorithms for large scale evalu-
ation on probe images from (a) Case 1 of Experiment 3 and (b) Case 2 of Experiment 3.

• Table 3.3 shows individual rank-1 identification accuracy of all 40 face granules

using EUCLBP and SIFT on the plastic surgery face database. Face granules

4, 7, 19, 21, 29, and 31 yield significantly better recognition performance with EU-

CLBP as compared to SIFT. On the other hand, face granules 2, 3, 8, 11, 14, 26, 39,

and 40 provide better recognition performance with SIFT as compared to EUCLBP.

SIFT generally performs better on granules containing fiducial features such as eyes,

nose, and mouth, however its performance on predominant skin regions such as fore-

head, cheeks, and outer facial region is not optimal. Since EUCLBP is based on
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Figure 3.12: CMC curves for the proposed and commercial algorithms for large scale evalu-
ation on probe images from (a) Case 1 of Experiment 3 and (b) Case 2 of Experiment 3.
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Table 3.3: Rank-1 identification accuracy of face granules using SIFT and EUCLBP.

Granule SIFT (%) EUCLBP (%) Granule SIFT (%) EUCLBP (%)

FGr1 69.26 65.56 FGr21 14.12 22.08

FGr2 51.42 42.26 FGr22 19.25 23.96

FGr3 46.18 21.32 FGr23 23.64 19.25

FGr4 22.86 36.20 FGr24 20.88 23.94

FGr5 20.15 25.75 FGr25 9.72 5.50

FGr6 16.26 19.50 FGr26 19.36 8.85

FGr7 10.46 19.38 FGr27 18.12 12.50

FGr8 39.06 28.64 FGr28 9.22 7.25

FGr9 17.85 23.42 FGr29 17.36 22.50

FGr10 13.14 19.64 FGr30 8.54 6.48

FGr11 41.43 32.38 FGr31 18.52 22.86

FGr12 28.20 24.44 FGr32 14.24 6.48

FGr13 16.88 22.02 FGr33 13.16 11.24

FGr14 33.06 23.84 FGr34 11.35 5.65

FGr15 30.56 24.68 FGr35 10.75 7.94

FGr16 15.76 21.84 FGr36 15.10 13.54

FGr17 33.12 25.50 FGr37 12.64 6.28

FGr18 15.64 21.28 FGr38 12.20 10.38

FGr19 11.82 20.10 FGr39 22.86 12.82

FGr20 51.60 44.40 FGr40 24.92 11.18

exact difference of gray level intensities, it can better encode discriminating micro

patterns even from predominant skin regions.

• Multi-objective evolutionary approach for selecting feature extractor using genetic

algorithm provides the advantage of choosing better performing feature extractor for

each face granule. It is observed in our experiments that on average, SIFT is selected

for 22 face granules whereas EUCLBP is selected for 18 face granules. This process

in performed only during training and requires around 3 hours and 16 minutes to

converge when we optimize it for 340 subjects in the plastic surgery face database.

During testing, the weights learned during training are used to match the histogram

features corresponding to different face granules using weighted ξ2 distance.

• To show the improvement due to face granulation, Table 3.2 compares the rank-1

identification accuracy of granular EUCLBP and granular SIFT with EUCLBP and

SIFT applied on the full face. The results show that applying EUCLBP and SIFT on

face granules improves the rank-1 accuracy by at least 3% as compared to a full face
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image. The ability to encode local features at different resolutions and sizes (face

granules) allows the proposed algorithm to be resilient to the non-linear variations

introduced by plastic surgery procedures.

• To show the efficacy of the multi-objective evolutionary approach, the performance is

compared with sum-rule fusion [125] of SIFT and EUCLBP on face granules. Table

3.2 shows that the proposed algorithm outperforms sum-rule fusion by at least 5%

on both the databases.

• While comparing with existing feature selection approaches, SFS and SFFS algo-

rithms are used to select either EUCLBP or SIFT features for each face granule

based on the identification accuracy (optimization function). The dimension of se-

lected features is empirically decided based on the best performance achieved during

training. In SFS, the best performance is achieved with all 40 face granules. How-

ever for feature selection using SFFS, the best performance is obtained with 32 face

granules. Unlike SFS and SFFS algorithms, the proposed multi-objective evolution-

ary granular algorithm allows for simultaneous optimization of feature selection and

weights for each face granule. As shown in Table 3.2, the proposed algorithm out-

performs SFS by at least 6.66% and SFFS by at least 5.74% in rank-1 identification

accuracy on both the databases.

• In definitive feature selection (EUCLBP+SIFT+PCA), PCA is used for dimension-

ality reduction in which top eigen vectors are retained to preserve 95% of the total

energy of the distribution. Unlike the multi-objective genetic optimization, PCA

based dimensionality reduction does not allow assigning distinct weights to different

face granules and therefore the proposed algorithm outperforms definitive feature

selection by at least 4.22%.

• Recently, Aggarwal et al. [103] proposed a sparse representation based approach to

match surgically altered face images in a part-wise manner. The proposed granular

algorithm outperforms the sparse representation based approach [103] by 9.4% on

the plastic surgery face database under the same experimental protocol.

• From non-parametric rank-ordered test (Mann-Whitney test on the ranks obtained

from the algorithms), it can be concluded that there is a statistically significant

difference between the proposed algorithm and COTS. Further, at 95% confidence

level, parametric t-test (using the match scores) also suggests that the proposed

algorithm and COTS are statistically different.
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3.3.4 Identification Performance with Different Plastic Surgery Proce-

dures

According to Singh et al. [8], plastic surgery procedures can be categorized into global

and local plastic surgery. Global plastic surgery completely transforms the face and

is recommended in cases where functional damage is to be cured such as patients with

fatal burns or trauma. In these kind of surgeries, facial appearance, skin texture, and

feature shapes vary drastically thus making it arduous for any face recognition system to

recognize pre- and post-surgery faces. Rhytidectomy (full facelift) is used to treat patients

with severe burns on face and neck. It can also be used to reverse the effect of aging and get

a younger look, thus modifying the appearance and texture of the whole face. Analogous to

rhytidectomy, skin peeling procedures such as laser resurfacing and chemical peel alter the

texture information thus affecting the performance of face recognition algorithms. These

procedures are used to treat wrinkles, stretch marks, acne, and other skin damages caused

due to aging and sunburns. These two global plastic surgery procedures severely impact

the performance of the proposed algorithm that yields rank-1 identification accuracy of

71.76% and 85.09% for cases with rhytidectomy and skin peeling respectively, as shown in

Figure 3.13 and Table 3.4.

On the other hand, local plastic surgery is meant for reshaping and restructur-

ing facial features to improve the aesthetics. These surgical procedures result in varying

amounts of change in the geometric distance between facial features but the overall texture

and appearance of the face remains similar to the original face. Dermabrasion is used to

give a smooth finish to face skin by correcting the skin damaged by sunburns or scars

(developed as a post-surgery effect), dark irregular patches (melasma) that grow over the

face skin, and mole removal. Among all the local plastic surgery procedures listed in [8],

dermabrasion has the most prominent effect on the performance of the proposed algorithm

as it drastically changes the face texture. As shown in Figure 3.13 and Table 3.4, the pro-

posed approach yields rank-1 identification accuracy of 77.89% for dermabrasion cases.

Other local plastic surgery procedures also affect the performance of the proposed algo-

rithm to varying degrees. Since plastic surgery procedures increase the difference between

pre- and post-surgery images of the same individual (intra-class variations), they drasti-

cally reduce the performance of existing face recognition algorithms. The performance of

the proposed algorithm with various global and local plastic surgery procedures is also

shown in Table 3.4 and CMC curves in Figure 3.13. These results show that the proposed
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algorithm provides improvement of at least 21.7% compared to existing algorithms1.

Figure 3.13: CMC curves on different types of local and global plastic surgery procedures
for the proposed algorithm.

3.3.5 Analysis of Different Granularity Levels

To understand the contribution of different granularity levels for recognizing face images

altered due to plastic surgery, a detailed experimental study of individual granular levels

is performed. The correlation analysis of all three levels of granularity is reported in

Table 3.5. The complementary information vested in different levels is utilized by the

proposed algorithm for efficiently matching surgically altered face images. Table 3.6 shows

the identification accuracy of individual levels of granularity for the two databases. The

first level of granularity has different Gaussian and Laplacian pyramids that assimilate

discriminating information across multiple resolutions. Pyramids at level-0 contain minute

features whereas the pyramids at level-1 and level-2 provide high level prominent features

of a face. Several psychological studies have shown that humans use different inner and

outer facial features to identify individuals [126]. The inner facial features include nose,

eyes, eyebrows, and mouth while the outer facial region comprises face outline, structure

of jaw/chin, and forehead. The second level of granularity therefore extracts information

1Since the experimental protocol and sample distribution across different validation trials in [8] and the
current research are same, the results of PCA, FDA, LFA, CLBP, SURF, and GNN are directly compared.
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Table 3.4: Rank-1 identification accuracy on different types of local and global plastic
surgery procedures.

Type Surgery # PCA FDA LFA CLBP SURF GNN Periocular Proposed

Local

Browlift 60 28.5 31.8 39.6 49.1 51.1 57.2 34.42 89.22
Dermabrasion 32 20.2 23.4 25.5 42.1 42.6 43.8 44.56 77.89
Otoplasty 74 56.4 58.1 60.7 68.8 66.4 70.5 47.25 92.25

Blepharoplasty 105 28.3 35.0 40.2 52.1 53.9 61.4 30.96 91.42
Rhinoplasty 192 23.1 24.1 35.4 44.8 51.5 54.3 40.71 88.85

Other 56 26.4 33.1 41.4 52.4 62.6 58.9 35.81 89.17

Global
Rhytidectomy 308 18.6 20.0 21.6 40.9 40.3 42.1 37.27 71.76
Skin peeling 73 25.2 31.5 40.3 53.7 51.1 53.9 45.83 85.09

Overall 900 27.2 31.4 37.8 47.8 50.9 53.7 40.11 87.32

Table 3.5: Pearson correlation coefficient between different granular levels on the plastic
surgery face database.

Database Granules
Genuine Impostor

correlation correlation

Plastic Level 1 - Level 2 0.67 0.59
surgery Level 1 - Level 3 0.43 0.21
face database Level 2 - Level 3 0.63 0.55

Combined Level 1 - Level 2 0.81 0.78
heterogeneous Level 1 - Level 3 0.38 0.20
face database Level 2 - Level 3 0.42 0.26
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Table 3.6: Performance of different levels of granules and their combinations on the plastic
surgery and the combined heterogeneous face database.

Database Granular level Accuracy (%)

Granular level 1 78.3
Plastic Granular level 2 82.7
surgery Granular level 3 58.4
face Granular level 1+2 80.1
database Granular level 2+3 82.8

Granular level 1+3 85.0
Proposed 87.3

Granular level 1 80.7
Combines Granular level 2 84.1
Heterogeneous Granular level 3 61.5
face Granular level 1+2 83.2
database Granular level 2+3 84.4

Granular level 1+3 86.9
Proposed 89.8

from different inner and outer facial regions representing discriminative information that

is useful for face recognition. Local facial fragments such as nose, eyes, and mouth provide

robustness to variations in local regions caused due to plastic surgery procedures. Human

mind can efficiently distinguish and classify individuals with their local facial fragments.

Therefore, the third level of granularity assimilates discriminating information from these

regions. The proposed granular approach unifies diverse information from levels that are

useful for recognizing faces altered due to plastic surgery.

To analyze the complementary information provided by different granularity levels,

the performance is evaluated for different combinations. The performance of the proposed

multi-objective evolutionary granular approach is optimized for a particular level of gran-

ulation or their combination by assigning null weights to the face granules corresponding

to other levels of granulation during genetic optimization. Table 3.6 also shows the results

for different combinations of granular levels on the two databases.

According to the statistics provided by American Society for Aesthetic Plastic Surgery

[101], blepharoplasty (eyelid surgery) is identified as one of the top five surgical procedures

performed in 2010. Eyelid is the thin skin that covers and protects our eyes and is a

major feature in periocular recognition algorithms. Blepharoplasty is used to reshape

upper and lower eyelids to treat excessive growth of skin tissues obstructing vision. Some

other global plastic surgery procedures such as rhytidectomy or skin peeling may also

affect the periocular region. Periocular region can be used as a biometric when the face
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is occluded [127] and/or the iris cannot be captured [128]. Recently, Juefei-Xu et al.

[129] proposed using periocular region for age invariant face recognition and reported

substantial improvements in both verification and identification performance. Driven by

the robustness of periocular biometrics against occlusion and aging, this chapter also

evaluates the performance of periocular biometrics for recognizing surgically altered face

images. In the proposed granulation scheme, FGr29 and FGr31 represent the right and left

periocular regions as shown in Figure 3.14. Experiments are performed using the protocol

of Experiment 1 in Section 3.3.2. CMC curves in Figure 3.15 show the performance

of periocular region for matching surgically altered faces from the plastic surgery face

database. The performance is computed individually for the left and right periocular

regions using SIFT and EUCLBP. Sum-rule fusion [125] of SIFT on the left and right

periocular regions (fusion of SIFT) and sum-rule fusion of EUCLBP on the left and right

periocular regions (fusion of EUCLBP) is also reported. Finally, the overall performance

of periocular region is computed based on the sum-rule fusion of SIFT and EUCLBP

on left and right periocular regions (fusion of SIFT and EUCLBP). The performance

is also compared with an existing periocular based recognition algorithm, referred to as

Bharadwaj et al. [128].

Figure 3.14: FGr29 represents the right periocular region and FGr31 represents the left
periocular region.

Experiments are also performed to analyze the effect of different global and local

plastic surgery procedures (especially blepharoplasty) on periocular region. Table 3.4

reports rank-1 identification accuracy of periocular region for matching faces altered due

to specific types of plastic surgery. Blepharoplasty alters the periocular region thereby

affecting the performance of periocular biometrics. It is also observed that the performance

of periocular biometrics is reduced when a local region neighboring the periocular region

(such as nose and forehead) is transformed due to plastic surgery. This is mainly because

modifying local features also transmits some vicissitudes in the adjacent facial regions. The
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Figure 3.15: CMC curves comparing the performance of different algorithms for matching
periocular region on the plastic surgery face database.

results suggest that although, periocular biometrics has shown robustness to aging and

occlusion, plastic surgery is an important challenge for periocular recognition algorithms.

3.4 Summary

Plastic surgery has emerged as a new covariate of face recognition and its allure has made

it indispensable for face recognition algorithms to be robust in matching surgically altered

face images. This chapter presents a multi-objective evolutionary granular algorithm that

operates on several granules extracted from a face image. The first level of granularity pro-

cesses the image with Gaussian and Laplacian operators to assimilate information from

multi-resolution image pyramids. The second level of granularity tessellates the image

into horizontal and vertical face granules of varying size and information content. The

third level of granularity extracts discriminating information from local facial regions.

Further, a multi-objective evolutionary genetic algorithm is proposed for feature selection

and weight optimization for each face granule. The evolutionary selection of feature ex-

tractor allows switching between two feature extractors (SIFT and EUCLBP) and helps

in encoding discriminatory information for each face granule. The proposed algorithm uti-

lizes the observation that human mind recognizes faces by analyzing the relation among

non-disjoint spatial features extracted at different granularity levels. Experiments under
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different protocols, including large scale matching, show that the proposed algorithm out-

performs existing algorithms including a commercial system for matching surgically altered

face images. Further, experiments on several local and global plastic surgery procedures

also show that the proposed algorithm consistently outperforms other existing algorithms.

Detailed analysis on the contribution of three granular levels and individual face granules

corroborates the hypothesis that the proposed algorithm unifies diverse information from

all granules to address the non-linear variations in pre-and post-surgery images.
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Chapter 4

Matching Cross-resolution Face

Images using Co-transfer Learning

4.1 Introduction

With advancements in technology, surveillance cameras now have a profound presence

and are widely used in security and law enforcement applications. There are several in-

stances where surveillance videos have helped agencies in apprehending individuals who

have committed crime or identify individuals with the intent to commit crime. For exam-

ple, in 2005 subway bomb blasts in London [130], CCTV footage helped law enforcement

officers in identifying the bombers. In 2008 Mumbai terrorist attacks [131], surveillance

cameras installed at different locations (CST railway station, Taj Palace, and Trident ho-

tels) helped the agencies to track the activities of terrorists and later identify them. In the

2010 car bomb case at Times Square [132], the surveillance footage captured an unidenti-

fied individual leaving the car with explosives. Later, widespread distribution and manual

investigation of the video helped the investigating agencies to apprehend the individual.

In all these cases, surveillance cameras could not foil the terrorist attacks, however,

they served as the primary evidence in leading the investigation and also recognizing

the individuals at the end. It is therefore desirable to build a system where surveillance

cameras coupled with a face recognition algorithm can be used to automatically identify

individuals from a watch-list. Along with the challenges of pose, expression, illumination,

aging, and disguise in face recognition, matching a watch-list photograph to an image

obtained from surveillance camera also requires the capability of matching across resolu-

tion. For example, the watch-list photograph could be a high resolution image whereas

the surveillance camera images are generally low resolution images. As shown in Figure

4.1, even if both the images are frontal, the information content in both the images could
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Figure 4.1: Illustrating the difference in matching (a) low resolution and high resolution
images, (b) two high resolution images, and (c) two low resolution images.

be significantly different. The presence of pose, illumination, and expression along with

different resolution could further exacerbate the problem, as shown in Figure 4.2.

4.1.1 Related Research

In literature, several approaches have been proposed to match cross-resolution face im-

ages. As shown in Table 4.1, these algorithms can be classified into two categories: super-

resolution and transformation based approaches. Figure 4.3 shows the steps involved in

super-resolution based approaches for cross-resolution matching which enhance the low

quality probe image before recognition. On the other hand, Figure 4.4 shows transfor-

mation based approaches which extract features that are resilient to resolution changes

and match cross-resolution face images. Some of the transformation based approaches

also perform resolution invariant transformations either in the image space or the feature
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Figure 4.2: Illustrates the challenge in matching low resolution images when coupled with
other covariates. Low resolution challenge (a) alone, (b) with pose, (c) with illumination, and
(d) with expression.

space for matching.

1. Super-resolution based approaches: Huang and He [133] proposed to build a coherent

subspace between the PCA features of high resolution (HR) and low resolution (LR)

images mapped using the radial basis functions for recognition. Baker and Kanade

[138] proposed an algorithm to apriori learn the spatial distribution of image gra-

dients to enhance the resolution of local features before matching. Chakrabarty et

al. [139] proposed a learning based method to super-resolve face images with kernel

principal component analysis-based prior model. Chang et al. [140], [141] formed

geometrically similar manifolds using local facial patches in the low and high resolu-

tion images. They used training images to estimate the high-resolution embedding

and construct a smooth super-resolved image. Yang et al. [142] proposed a super

resolution approach by representing local patches as a sparse linear combination of

elements from high resolution images. In addition to these local models, Liu et al.

[143] integrated a holistic parametric and a local nonparametric model using two-

step statistical modeling for face hallucination. It was observed that super-resolution

approaches, due to environmental variations and distortions, failed to significantly
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Table 4.1: Existing algorithms for cross-resolution face image matching.

Approach Technique Database Gallery/probe resolution

Super-resolution

Coherent features [133]
FERET

72×72/ 12×12UMIST
ORL

Multi-modal tensor face [134]
AR

56×36/ 14×9Yale
FERET

S2R2 [66]
Multi-PIE

24×24/6×6FERET
FRGC v.2

Relationship learning [135] FRGC v.2 64×48/ 28×24

Transformation

LFD [136] FERET 88×80/33×30
Coupled locality

FERET 72×72/12×12
preserving mapping (CLPM) [137]
Synthesis based CMU-PIE

48×40/19×16
LR face recognition[67] FRGC v.2
MDS [63] Multi-PIE 48×40/12×10

Figure 4.3: Broad view of super resolution based approaches for cross-resolution face match-
ing.
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Figure 4.4: Broad view of transformation based approaches for cross-resolution face match-
ing.

improve the recognition performance. It is our assertion that the primary objec-

tive of super-resolution is to obtain a good visual reconstruction from low resolution

face(s), and these algorithms are generally not intended for recognition. However,

there are some approaches that simultaneously optimize both super resolution and

face recognition. Jia and Gong [134] combined super-resolution and face recognition

by computing a maximum likelihood identity parameter vector in high-resolution

tensor space for recognition. Further, Hennings-Yeomans et al. [66] proposed an ap-

proach where facial features were included in a super-resolution method as the prior

information for simultaneous reconstruction of super-resolved images. Recently, Zou

and Yuen [135] proposed a super-resolution technique based on the relationship be-

tween the high-resolution image space and the very low resolution image space. Their

technique allowed for better visual appearance as well as improved face recognition

performance for the very low resolution problem.

2. Transformation based approaches: Unlike super-resolution, another method to match

cross-resolution images is to downsample high resolution images to the level of low

resolution images before matching. However, information useful for face recognition

such as texture, edges, and other high frequency information is compromised while

downsampling the images. To address this problem, Li et al. [137] proposed to

project both high resolution and low resolution images to a feature space using cou-

pled mappings. Biswas et al. [144] proposed a multidimensional scaling approach to
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simultaneously transform the features from high resolution gallery and low resolution

probe images. The Euclidean distance between the transformed feature vectors ap-

proximates the distance computed when the probe images were captured at similar

resolution as that of the gallery images. Researchers have also studied that the phase

and magnitude in frequency domain can be used as a resolution invariant represen-

tation for efficiently matching cross-resolution face images. Lei et al. [136] proposed

a local frequency descriptor based on the magnitude and phase information to match

cross-resolution face images in the frequency domain. Shekhar et al. [67] proposed

a generative approach using the information from high resolution gallery to match

low resolution probe images with illumination variations. Lei et al. [65] proposed a

coupled discriminant analysis for heterogeneous face recognition (matching high vs.

low resolution images). To maintain the discriminative power and generalizability of

their approach, they utilized multiple samples from different resolutions along with

locality information in the kernel space.

4.1.2 Research Contribution

The conditions in which a face recognition algorithm is trained are referred to as the source

domain where the availability of large training data helps the algorithm to efficiently learn

the task. In the source domain, face recognition algorithms are trained to match high

resolution images. However, for surveillance applications, the probe data i.e., the target

domain, comprises low resolution face images and the gallery contains high resolution face

images. Under these variations, the performance of a biometric system degrades because

it is unable to efficiently utilize the knowledge learned in the source domain and there

is a scarcity of labeled low resolution data that can be used for training the algorithms.

Obtaining sufficient labels for the target data is time consuming, requires human effort,

and very expensive. However, there is an abundance of unlabeled low resolution data in

target domain during testing. This observation motivates us to formulate the problem of

cross-resolution face matching where sufficient labeled data is available in source domain

and only a few labeled instances are available from the target domain. In this chapter, we

propose a co-transfer learning (CTL) framework which is a cross-pollination of transfer

learning [145] and co-training [146]. The framework integrates transfer learning and co-

training in a non-separable manner to efficiently transfer the knowledge from the source

domain to the target domain with sequentially available unlabeled instances from the

target domain.
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• transfer learning is used to leverage the knowledge learned in the source domain for

efficiently matching LR probes with HR gallery in the target domain.

• co-training is used to enable transfer learning with unlabeled probe instances from

the target domain by assigning pseudo-labels to probes.

In face recognition literature, to the best of our knowledge, this is the first work that

leverages unlabeled probe instances to facilitate knowledge transfer. The performance of

the proposed framework is evaluated in a cross-resolution face recognition application and

the experiments are performed on four face databases, namely, the CMU Multi-PIE [9],

SCface [10], ChokePoint [11], and MBGC v2 video challenge [7] databases. The results

show that the proposed algorithm outperforms existing algorithms including FaceVACS

which is a commercial face recognition system.

4.2 Co-transfer Learning Framework

We, humans, have innate abilities of transferring knowledge between related tasks. It is

observed that if the new task is closely related to the previous learning, humans can quickly

transfer this knowledge to perform the new task. However, given some prior knowledge in

a related task, traditional algorithms are unable to adapt to a new task and have to learn

the new task from the beginning. Generally, they do not consider that the two tasks may

be related and the knowledge gained in one may be used to learn the new task efficiently

in lesser time. Transfer learning attempts to mimic this human behavior by transferring

the knowledge learned in one or more source tasks and use it for learning the related

target task. Several approaches have been proposed for transfer learning and they can be

categorized as 1) inductive, 2) transductive, and 3) unsupervised transfer learning. Based

on the domain representation, transfer learning approaches can be further categorized into

homogeneous and heterogeneous transfer learning. The source and target domains share

same feature space in the former whereas feature space is different in the later one. For a

more detailed discussion on different transfer learning approaches, readers are directed to

[145].

Transfer learning has been explored in many computer vision applications. Zhu et al.

[147] proposed a heterogeneous transfer learning framework that utilized annotated images

from the web as a bridge to transfer knowledge between text and images using a matrix

factorization approach. Quattoni et al. [148] proposed a method for learning a sparse

prototype image representation for transfer across visual categories. Their approach used
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a large set of unlabeled data and a kernel function to form a representation. Ahmed et

al. [149] proposed a hierarchical feed-forward model for visual recognition using transfer

learning from pseudo tasks which include a set of pattern matching operations constructed

from the data. Geng et al. [150] proposed a domain adaptation metric learning by intro-

ducing a data dependent regularization to conventional metric learning in the reproducing

kernel Hilbert space. This minimized the empirical maximum mean discrepancy between

different domains. Wang et al. [151] proposed dyadic knowledge transfer which is a non-

negative matrix tri-factorization based approach to transfer cross-domain image knowledge

for the new computer vision tasks. In face recognition or related domains, transfer learning

has been applied to verify kinship using face images through subspace transfer learning

[152]. Chen et al. [153] also proposed to learn a person-specific facial expression model by

transferring the informative knowledge from other people. Their approach allows to learn

an accurate person-specific model for a new subject with only a small amount of person

specific data. Most of the transfer learning techniques work in offline manner and assumes

that the data from the target domain is available upfront.

Generally, labeled data in target domain is scarce and obtaining labels for the target

data is time consuming and expensive in most real world scenarios; therefore, it is difficult

to learn a model for the target data. On the other hand, large amount of unlabeled data,

available in the form of probe, can be leveraged to learn the model. There are some existing

semi-supervised approaches for face recognition [154, 155, 156, 157] that utilize few labeled

and ample amount of unlabeled data for enhancing face recognition performance. Many

of these semi-supervised approaches are used for template update such as semi-supervised

PCA [158, 159] or LDA [160]. There are few approaches [154, 161] that update/retrain

the model with few labeled and large unlabeled data. Mostly, existing semi-supervised

algorithms require entire unlabeled data upfront and do not perform well for single sample

per subject.

The proposed co-transfer learning algorithm builds on the limitations of existing ap-

proaches to address the challenge of single sample per subject and performs transfer learn-

ing in online manner with sequential unlabeled data available from the target domain.

Transfer learning and co-training are jointly used to transfer the knowledge learned in the

source domain to the target domain with unlabeled instances, as shown in Figure 4.5. Co-

training to update the classifiers has been explored by Bhatt et al. [161] where biometric

classifiers are updated using labeled as well as unlabeled instances. However, to the best

of our knowledge, it is the first algorithm that uses transfer learning for face recognition
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as a semi-supervised approach using few labeled and a large number of unlabeled probe

instances.

Figure 4.5: Illustrating the cross-pollination of transfer learning and co-training for trans-
ferring knowledge from source domain to target domain.

The proposed framework is a generalized framework that can be applied to any classifier

which allows re-training with incremental data. In this chapter, we have applied the

concept of co-transfer learning to support vector machine (SVM). Re-training the SVM

classifier in batch mode is computationally expensive [162] and may not be feasible in

real-wold applications. Some approaches have been proposed that allow re-training the

SVM classifier using only previous support vectors and the new incremental data points.

A method to add or remove one sample at a time to update SVM is proposed in [163]

where a solution for N ± 1 samples can be obtained using the N old samples and the

sample to be added or removed. In the proposed approach, SVM is first trained using an

initial training set and a decision hyperplane is obtained. The SVM classifiers are then

updated using the new available instances and the previous support vectors. For more

details on updating SVM classifiers with new incremental data, readers are directed to

[161], [162], [163].

Transfer Learning: In face recognition, the classifiers such as SVM, are learned using

training data (from the source domain) while the performance is evaluated on a separate

unseen test data (the target domain) which may have different properties and follow a

different distribution compared to the training data. Consider a scenario where there are

two classifiers, one trained using the source and an other trained using the target domain

data. During training, there is a large labeled data in the source domain i.e., for matching

HR probe with HR gallery images (source domain) but only a few labeled instances are

available in the target domain, i.e., for matching LR probes with HR gallery images. In

such a case, the source domain classifier alone may not efficiently classify the test instances
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because of the variations in data distribution of source and target domains. Since, the

classifier in target domain is trained using only a few labeled samples, it is not able to

efficiently classify the test instances. It has to learn/update its decision boundary with

the incremental data available in the target domain. Both the classifiers are individually

insufficient to classify the test data from the target domain. Therefore, in the proposed

algorithm, an ensemble is built as a weighted combination of the source and target domain

classifiers. It efficiently classifies test instances and subsequently transfers the knowledge

from the source domain to the target domain as and when the data from the target

domain is available. For this, the two classifiers trained on the source and target domains

are combined to efficiently classify the unlabeled probe instances.

Figure 4.6: Block diagram illustrating the steps involved in the proposed co-transfer learning
framework.

As shown in Figure 4.6, the source domain classifiers (CS
j ) are trained using sufficient

HR labeled training data in the source domain denoted byDS
L = {(uS

1 , z1), (u
S
2 , z2), ..., (u

S
n , zn)}.

Every ith instance, ui has two views {xi,1, xi,2} for the training label zi ∈ {−1,+1}; here

xi,1 and xi,2 represent the input vectors obtained from two separate views (features). The

two views are utilized for co-training (explained later). The target domain classifiers (CT
j )

are initially trained on a few labeled training instances from the target domain repre-

sented as DT
L={(uT

1 , z1), (u
T
2 , z2), ..., (u

T
m, zm)}. Here, n and m are the number of training

instances in the source and target domains respectively, such that n>m and j = 1, 2 rep-

resents the view (feature). Let a set of r unlabeled probe instances in the target domain
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be represented as DT
U={(u′T

1 ), (u
′T
2 ), ..., (u

′T
r )}. An ensemble prediction function, denoted

as Ej , is constructed for each view. Ej is a weighted combination of the source domain

classifier, CS
j , and the target domain classifier, CT

j , with wS
j and wT

j as the weights of the

source domain classifier and the target domain classifier for the jth view respectively. For

the ith unlabeled probe instance in the jth view, the ensemble function Ej predicts the

label, Ej(xi,j) → yi,j. For the i
th instance in the target domain u′

i, class label is predicted

by the ensemble as given in Eq. 4.1.

yi,j = sign(wS
i,j Π(CS

j (u
′
i)) + wT

i,j Π(CT
j (u

′
i))−

1

2
) (4.1)

where Π is a normalization function such that Π(x) = max(0,min(1, x+1
2 )), wS

i,j and wT
i,j

are the weights for the source and target domain classifiers at the ith instance respectively.

Initially, both the weights are set to 0.5 so that each classifier contributes equally within

an ensemble and gradually, they are automatically adjusted to emphasize the contribution

from the updated target domain classifiers in an ensemble. As proposed by Zhao and Hoi

[164], the two weights are updated dynamically as shown in Eqs. 4.2 and 4.3.

wS
i+1,j =

wS
i,jhi(C

S)

wS
i,jhi(C

S) + wT
i,jhi(C

T
j )

(4.2)

wT
i+1,j =

wT
i,jhi(C

T )

wS
i,jhi(C

S) + wT
i,jhi(C

T )
(4.3)

where wS
i+1,j and wT

i+1,j are the updated weights and hi is defined as:

hi(C) = exp{−η l(Π(Ci),Π(ŷi))}, (4.4)

η = 0.5, l(y, ŷ) = (y − ŷ)2 is the square loss function, y is the predicted label and ŷ is the

pseudo label provided by co-training (explained later).

Co-training: As mentioned previously, unlabeled probe instances are available in

abundance and can be utilized to update/learn the classifiers in the target domain. How-

ever, it is required to obtain the labeled target data. Obtaining labeled training instances

from the target domain is difficult, expensive, and requires human effort. In biometrics,

there are situations when only a small set of labeled data is available for training while a

huge amount of unlabeled data is readily available as probe. This situation is similar to a

semi-supervised learning scenario, where co-training [146], [161] has proven beneficial as it

can be used to transform unlabeled probe instances into pseudo-labeled training instances.
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In the proposed co-training approach, a small initial labeled set is available from the target

domain for training the classifiers and a large number of unlabeled instances are available

as probe. It assumes the availability of two ensemble functions (classifiers), E1 and E2,

trained on separate views (features) where each ensemble function has sufficient (better

than random) accuracy. If the first ensemble confidently predicts genuine label for an

instance while the second ensemble predicts impostor label with low confidence, then this

particular instance (with pseudo label provided by the first ensemble) is utilized for updat-

ing the second ensemble and vice-versa. In this chapter, the confidence of prediction for an

instance on the jth view, denoted by αj , is measured as the distance of that instance from

the decision boundary. For confidently predicting an instance to belong to genuine class,

the distance from the decision hyperplane should be greater than the genuine threshold

(Pj). Similarly, an instance is confidently predicted as impostor if the distance from the

hyperplane is greater than the impostor threshold (Pj). Note, here Pj refers to genuine

threshold when comparing for genuine class and to impostor threshold when comparing

for impostor class. Since SVM is used for classification, a genuine threshold is computed

as the distance of the farthest support vector of genuine class. Similarly, an impostor

threshold is computed as the distance of the farthest support vector of impostor class.

Varying the thresholds will change the number of instances on which the co-training is

performed. High threshold value implies conservative co-training while smaller value of

the threshold leads to aggressive co-training. In this manner, unlabeled probe instances

are transformed into pseudo-labeled training instances which are then used to update the

ensembles. In an ensemble, knowledge is transferred by updating the decision boundary of

the target domain classifier CT
j using only the new incremental data as proposed in [161].

Co-transfer: In the proposed framework, transfer learning and co-training work con-

currently to improve the target domain task with pseudo labels provided by co-training

that lead to transfer of knowledge from the source to the target domain. Within each

ensemble, the target domain classifier updates its decision boundary [161] with every

pseudo-labeled instance obtained during testing. Moreover, the weights corresponding to

the source and target domain classifiers are also adjusted dynamically using Eqs. 4.2 and

4.3. This scheme avoids the need to learn the target domain classifiers from the beginning

and hence, makes the system scalable and computationally efficient. Note that in the

co-transfer learning framework, only target domain classifiers are updated with pseudo-

labeled instances. The source domain classifiers do not need any update because they are
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Algorithm 2 Co-transfer learning

Input: Initial labeled training dataDS
L in the source domain, a few labeled instancesDT

L

from the target domain. Unlabeled probe instances DT
U from target domain (available

sequentially).
Iterate: j= 1 to 2 (number of views)
Process: Train classifiers CS

j and CT
j on jth view of DS

L and DT
L respectively to con-

struct ensemble Ej. Compute confidence thresholds Pj for each view.
for i = 1 to r (number of probe instances) do

Predict labels: Ej(xi,j) → yi,j; calculate αj: confidence of prediction
if α1 > P1 & α2 < P2 then

Update CT
2 with pseudo-labeled instance {xi,2, yi,1)} & recompute wS

2 and wT
2 .

end if .
if α1 < P1 & α2 > P2 then

Update CT
1 with pseudo-labeled instance {xi,1, yi,2)} & recompute wS

1 and wT
1 .

end if .
end for.
end iterate.
Output: Updated classifiers CT

1 , C
T
2 and weights wS

1 , w
T
1 , w

S
2 and wT

2 .

well trained using large amount of labeled data available upfront in the source domain.

The proposed co-transfer learning framework is summarized in Algorithm 2.

Error bounds: To analyze the effectiveness of the proposed co-transfer learning al-

gorithm, we compute the error bounds. For an ensemble E, let ME denote the number of

errors by the ensemble, then as shown in [164], ME is bounded by:

ME ≤ 4min
(

∑

CS ,
∑

CT
)

+ 8ln(2). (4.5)

where
∑

CS =
∑I

i=1 l
∗(Π(CS

i ),Π(ŷi)),
∑

CT =
∑I

i=1 l
∗(Π(CT

i ),Π(ŷi)), I is the number

of instances, and ŷi is the pseudo label for the ith instance. Proof of the error bound of an

ensemble is provided in [164] and also provided as Appendix B. For two ensembles when

the final decision classification decision is based on their combination, the error bounds

M for the co-transfer learning algorithm are given as:

min(ME1,ME2) ≤ M ≤ max(ME1,ME2) (4.6)

The primary objective of selecting two ensembles is to facilitate co-transfer learning as

one ensemble provides pseudo labeled training instances to the other. Therefore, the

error bounds of the proposed algorithm will lie between the error bounds of the two

participating ensembles as shown in Eq. 4.6. It follows the concept of lifelong learning
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Table 4.2: Experimental protocol on different databases for cross-resolution face matching.
Training subjects in the source domain specifies the total number of subjects used for train-
ing different algorithms. ∗ For ChokePoint database, training of source and target domain
classifiers is performed using the CMU Multi-PIE [9] database.

Database

Training Testing/ Resolution range Covariates
Source domain Target domain Co-transfer (pixels) (apart from
(# subjects) (# subjects) learning low resolution)

(# subjects)
CMU

100 40 237 216×216 - 16× 16 Illumination
Multi-PIE [9]

SCface [10] 50 20 80 72×72 - 24×24
Variation in camera
& distance, pose
illumination

ChokePoint∗ [11] 50 20 29 216×216 - 16× 16
Pose, illumination,
and expression

MBGC v.2 [7] 60 30 87 216×216 - 16× 16
Pose, illumination,
and activity
(walking/talking)

where the classifiers continue to learn as and when additional training data is available.

However, as more and more pseudo labeled instances are available, the weights for the

source and target domain classifiers saturate. Co-transfer learning can be stopped when

the saturation occurs and the emphasis is shifted towards the target domain classifiers.

4.3 Co-transfer Learning for Cross-resolution Face Recog-

nition

In an operational scenario, training is performed in a controlled environment; whereas

during testing, a biometric system encounters data from uncontrolled environment. Co-

training is particularly useful for recognizing cross-resolution face images. The source and

target domain classifiers are trained on two views (features) and two ensemble functions

(E1 and E2) are built. One view is the local phase quantization (LPQ) [165] and the

second view is the scale invariant feature transform [93]. Both these views are resilient to

scale changes and can be effectively used for matching face images with different resolu-

tions. The two features provide diverse information, one encodes the discriminative phase

information whereas the other encodes information from the image gradients. The two

feature extractors used are briefly described below:

• Local Phase Quantization [165] operates on the Fourier phase computed locally

for a window in every image position. It uses the local phase information extracted

using a short-term Fourier transform. The phases of the multiple low-frequency

coefficients are uniformly quantized into one of the 256 bins. These LPQ codes for
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all image pixel neighborhoods are concatenated to form a histogram and is used for

recognition. Since only phase information is used, the method is also invariant to

uniform illumination changes. In our experiments, same parameters as proposed by

Ahonen et al. [165] are used. Finally, χ2 distance is used to compare two LPQ

descriptors.

• Scale Invariant Feature Transform [93] is a scale and rotation invariant descrip-

tor that generates a compact representation of an image based on the magnitude,

orientation, and spatial vicinity of image gradients. SIFT, as proposed by Lowe [93],

is a sparse descriptor that is computed around detected interest points. However,

it can also be used in a dense manner where the descriptor is computed around

pre-defined interest points. SIFT descriptor is computed in a dense manner. SIFT

descriptors computed at the sampled regions are concatenated to form the image

signature and χ2 distance is used to compare two SIFT descriptors.

Initial training on labeled data from the source and target domains: The co-

transfer learning framework assumes that during training, each subject has high resolution

gallery-probe pairs and a few subjects have corresponding low resolution images from the

target domain. As shown in Figure 4.7, face images are tessellated into non-overlapping

facial patches1. LPQ and SIFT descriptors are computed for each local patch and matched

using the χ2 distance measure. Distance scores corresponding to each local patch are

vectorized to an input vector {ui, zi}, where zi ∈ {−1,+1} is the associated label. {+1}

signifies that the gallery-probe pair belongs to the same individual (i.e. genuine pair)

whereas {−1} signifies that the gallery-probe pair belongs to images corresponding to

different individuals (i.e. impostor pair).

Input vectors obtained by matching LPQ descriptors of two high resolution images are

utilized for training the source domain SVM classifier (CS
1 ) on view 1. On the contrary,

the target domain SVM classifiers for view 1 are trained using one high resolution and

one low resolution images. The source domain and the target domain SVM classifiers are

then combined to form an ensemble, E1. Similarly, the SVM classifiers for view 2 (SIFT)

are trained and the ensemble function E2 is learned.

Co-transfer learning with unlabeled probes from the target domain: As shown

in Figure 4.8, for matching a LR probe with a HR gallery image, the images are tessellated

1It is empirically determined that the best performance is obtained when a face is tesselated into 3× 3
non-overlapping patches.
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Figure 4.7: Block diagram illustrating the training process of the source and target domain
classifiers to build the ensembles.

into non-overlapping local patches and LPQ and SIFT descriptors are computed for each

local patch. LPQ descriptors from the corresponding local patches on the gallery and probe

images are matched using χ2 distance and the distance scores from these local patches are

vectorized to form an input vector u’ for view 1. Similarly, an input vector corresponding

to SIFT (view 2) is computed using the χ2 distance measure. Unlike training, the instances

obtained during testing are unlabeled. For every query given to the biometric system, both

the ensembles, E1 and E2, are used to classify the instance. If one ensemble confidently

predicts genuine label for an instance while the other ensemble predicts impostor label

with low confidence, then this instance is added as a labeled re-training sample for the

second ensemble and vice-versa. The target domain SVM classifiers (CT ) in the ensembles

are updated with pseudo-labeled probe instances obtained during testing. Further, the

weights for both source domain and target domain SVM classifiers are also updated with

each pseudo-labeled probe instance, as shown in Eqs. 4.2 and 4.3. Thus each ensemble

updates the target domain classifier of the other ensemble. The final decision is computed

by combining responses from both the ensembles.

4.4 Database and Experimental Protocol

The performance of the proposed co-transfer learning framework is evaluated on four dif-

ferent databases, (1) CMU Multi-PIE [9], (2) SCface [10], (3) ChokePoint [11], and (4)
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Figure 4.8: Block diagram illustrating the co-transfer learning in the target domain with
unlabeled probe instances.

Multiple Biometric Grand Challenge (MBGC) v.2 video challenge database [7]. To evalu-

ate the efficacy of the proposed framework, a joint transfer-and-test [164] strategy is used

which allows the data used in model adaptation to be concurrently used for performance

evaluation. The experiments are designed to resemble real world scenario where ample

training data is available in the source domain to train the classifiers for classifying the

high resolution gallery-probe pairs as genuine or impostor. However, only a few low res-

olution probe and corresponding high resolution gallery images are available for training

the classifiers in the target domain. To emulate such conditions, Table 4.2 lists the number

of high resolution gallery-probe pairs that are used for training the classifiers in the source

domain and the number of low resolution probe and corresponding high resolution gallery

images used for training classifiers in the target domain. The training subjects in the

target domain are a subset of the training subjects in the source domain. Sample images

from all the databases are shown in Figure 4.9. Details about the databases are further

described below:

1. CMU Multi-PIE [9] database comprises images from 337 individuals captured in four

different sessions with varying pose, expression, and illumination. For experiments,

a subset pertaining to 337 individuals with frontal pose and neutral expression are

selected; however, the gallery and probe images vary in illumination conditions. For

each subject, one high resolution image is kept in the gallery and one low resolution

image is used as probe.
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Figure 4.9: Sample images from the (a) CMU Multi-PIE, (b) SCface, (c) ChokePoint, and
(d) MBGC v.2 video challenge databases.

2. The SCface database is a real-world surveillance database comprising images of 130

individuals captured in uncontrolled indoor environment using multiple surveillance

cameras placed at different distances. For each subject, one high resolution image is

kept in gallery and five images captured from different cameras are used as probe.

SCface database contains low resolution images ranging from 48×48 - 24×24 pixels

and experiments are performed without interpolating these images. Therefore in

the experimental protocol for SCface database, gallery and probe images vary from

72×72 to 24×24 pixels.

3. The ChokePoint database is a video database captured under real-world surveillance

conditions. Three cameras placed above the portals are used to capture individuals

walking through the portal. Images are captured with surveillance cameras in un-

constrained environment and include illumination, expression, and pose variations.

The database consists of 29 unique subjects captured in two portals with a time gap
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of about one month. Since there are only 29 subjects in the database, training of

both source and target domain classifiers is performed using the CMU Multi-PIE

database. For each subject in the ChokePoint database, one high resolution image

is kept in the gallery and five images are used as the probe.

4. From the MBGC v.2 video challenge database, multiple videos in standard definition

(720×480 pixels) and high definition (1440×1080 pixels) format corresponding to

147 subjects are used. The database includes videos where the user is walking or

performing some activity. Faces present in these videos have variations due to pose,

illumination, and expression. The faces extracted from video frames are partitioned

into the gallery and probe data sets (here we ensure that gallery and probe images

are from different sessions i.e. from different videos of the person). Gallery consists

of single image per user and probe set comprises five images from different sessions.

To emulate the conditions that the gallery is generally captured under controlled con-

ditions, the experiments are performed with settings such that the resolution of gallery

images is always higher than the probe images. Generally in a practical surveillance sce-

nario, a single image is available in the gallery watch-list. To match the complexity of

such surveillance scenario, experiments are performed with single image per subject in the

gallery. The performance is reported in identification mode with 10 times repeated random

sub-sampling (cross-validations) for non-overlapping training-testing partitions. Experi-

ments are performed at different resolutions of gallery and probe images ranging from

216×216 pixels to 16×16 pixels. Face images in the databases are available at different

resolutions and are interpolated1 to the nearest resolution in the experimental protocol.

4.5 Experimental Results and Analysis

For cross resolution face matching, the performance of algorithms degrade mainly due to

the 1) difference in information content between the high resolution gallery and low reso-

lution probes and 2) limited biometric information in face images at low resolution. The

proposed algorithm attempts to address these issues by using the knowledge learned for

matching high resolution images from the source domain to efficiently match low resolu-

tion images from the target domain. The objective of the experiments is to determine the

effectiveness of the proposed algorithm in transferring knowledge from the source domain

to target domain for cross resolution face matching.

1Images are interpolated to the required resolution using bi-cubic interpolation.
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1. SIFT with SVM classifier and LPQ with SVM classifier, referred to as SIFT and

LPQ in the results.

2. Sum-rule score level fusion [125] of two ensembles trained on the initial labeled data

from the source and target domains (referred to as ‘fusion’ ).

3. Multidimensional scaling algorithm (MDS) proposed by Biswas et al. [63] for match-

ing low resolution face images.

4. A widely used commercial-off-the-shelf face recognition algorithm, FaceVACS, re-

ferred to as COTS.

5. Three super-resolution techniques. Super-resolution-1 (SR-1) is the standard bi-

cubic interpolation, super-resolution-2 (SR-2)1 is a regression based technique pro-

posed by Kim and Kwon [166], and super-resolution-3 (SR-3)2 is a sparse represen-

tation based approach proposed by Yang et al. [142].

6. Match score fusion of the proposed algorithm with MDS [63] and COTS using sum-

rule [125].

4.5.1 Analysis

The experimental results suggest that the proposed approach efficiently matches cross-

resolution face images by leveraging knowledge learned in the source domain. It also

validates our assertion that co-training enables updating the decision boundary of the

target domain classifiers with unlabeled probe instances as and when they arrive.

• Cross-pollination of transfer learning and co-training seamlessly transfers the knowl-

edge learned in the source domain for matching cross-resolution face images. Co-

training and transfer learning go hand-in-hand as co-training provides pseudo labels

for unlabeled test instances which in-turn are used to update the target domain

classifiers within each ensemble and thus transfer the knowledge.

• Updating the weights of the source and target domain classifiers allows to dynami-

cally adjust the contribution from the constituent source and target domain classifiers

in an ensemble. Initially, equal weights are assigned to both the classifiers; however

with knowledge transfer, weights of classifiers in the target domain become more

1Source code is available at authors webpage “http://www.mpi-inf.mpg.de/kkim/.”
2Source code is obtained from “http://www.ifp.illinois.edu/jyang29/.”
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Figure 4.10: CMC curves showing the performance for matching 24×24 probe images with
72×72 gallery images on the CMU Multi-PIE database.

prominent. Table 4.3 shows the number of instances on which co-transfer learning is

performed for different databases. It also shows how the co-transfer learning on unla-

beled instances changes the weights of an ensemble so as to better classify the target

domain samples. The experiments show that on all the four databases combined,

co-training provides correct pseudo labels for about 98% of the total instances.

• The behavior of the proposed algorithm is further analyzed and Figure 4.14(a) il-

lustrates sample cases where the proposed co-transfer learning algorithm correctly

recognizes the low resolution probe images. Examples in Figure 4.14(b) illustrate

cases where the proposed algorithm performs poorly. The poor performance can

be attributed to the fact that some of the pseudo labels assigned to unlabeled

probe instances may be incorrect leading to negative transfer. However, the effect

of negative-transfer can be minimized by optimally selecting the confidence thresh-

old for co-training. High threshold value implies conservative transfer while smaller

value of the threshold leads to aggressive transfer.
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Figure 4.11: CMC curves showing the performance for matching 24×24 probe images with
72×72 gallery images on the SCface database.

As discussed before, existing techniques for matching cross-resolution face images can

be divided into transformation and super-resolution approaches. The subsections below

compare the performance of the proposed algorithm with both kinds of approaches.

4.5.1.1 Comparison with COTS and Transformation based Approaches

The performance of the proposed co-transfer learning (CTL) algorithm is compared with

MDS [63], COTS, individual ensembles of SIFT [93], and LPQ [165], and their fusion. The

results are also evaluated by fusing the proposed CTL algorithm with other techniques

such as MDS [63] and COTS. Tables 4.4-4.7 show the results of the proposed and existing

algorithms different combinations of gallery-probe resolution on the four databases.

• The results show that independently, SIFT and LPQ are not efficient for matching

cross resolution face images. However, the ensembles, E1 (for LPQ) and E2 (for

SIFT), developed by combining the classifiers trained on both the source and target

domains, improves the performance. It is also observed that fusion [125] of two

ensembles further improves the performance for cross-resolution face matching.
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Table 4.3: Illustrates the number of instances on which co-transfer learning is performed
and how the weights within an ensemble shift to emphasize the contribution of the target
domain classifier.

Database
# pseudo labels Weights after co-transfer
CT
1 CT

2 wS
1 wT

1 wS
2 wT

2

CMU Multi-PIE [9] 5184 4210 0.18 0.82 0.23 0.77

SCface [10] 7346 5268 0.21 0.79 0.27 0.73

ChokePoint [11] 456 540 0.33 0.67 0.36 0.64

MBGC v2 [7] 8136 6874 0.22 0.78 0.24 0.76

Table 4.4: Rank-1 identification accuracy of the proposed CTL algorithm and comparison
with existing algorithms and commercial system on the CMU Multi-PIE database [9].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL COTS
CTL+ CTL+
MDS COTS

216×216

72×72 66.3 61.7 72.4 68.1 76.2 77.8 81.0 99.5 80.2 99.8
48×48 63.6 58.2 70.6 67.3 74.5 75.2 79.7 98.1 79.4 99.3
32×32 45.4 41.8 53.2 47.4 58.7 61.3 65.3 97.4 63.7 98.5
24×24 22.2 21.4 29.5 26.8 32.9 33.4 37.7 54.5 35.6 58.2
16×16 10.8 9.6 16.7 13.3 18.1 20.2 23.6 10.9 22.1 24.8

72×72

48×48 73.8 71.4 79.4 76.3 86.1 89.2 92.3 98.2 92.7 99.1
32×32 62.8 49.8 69.1 55.2 79.4 81.5 84.1 96.3 84.3 97.4
24×24 56.8 52.6 61.8 59.4 70.3 75.7 77.4 64.5 78.5 80.1
16×16 50.2 47.4 56.7 52.1 66.2 68.9 72.4 11.5 72.8 76.1

48×48
32×32 44.2 42.5 50.3 47.8 55.2 58.7 61.8 96.8 60.5 97.1
24×24 42.6 39.8 48.6 44.5 51.7 54.9 57.1 75.9 55.8 78.5
16×16 20.6 18.2 26.2 22.3 29.9 31.3 32.9 6.4 39.4 43.2

32×32
24×24 37.6 30.1 41.2 30.4 44.8 40.9 45.7 78.4 45.4 80.6
16×16 22.1 16.8 24.3 17.2 27.0 25.1 28.1 5.4 29.8 30.0

24×24 16×16 30.8 26.4 35.6 30.2 42.1 38.1 43.2 16.3 44.6 47.8
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Table 4.5: Rank-1 identification accuracy of the proposed CTL algorithm and comparison
with existing algorithms and commercial system on the SCface database [10].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL COTS
CTL+ CTL+
MDS COTS

72×72
48×48 58.4 55.8 63.2 60.4 74.4 76.1 79.4 35.7 80.4 83.4
32×32 53.4 52.3 58.1 57.8 67.4 70.4 72.8 18.5 73.7 76.2
24×24 48.1 43.5 52.6 49.1 60.2 64.8 66.4 10.3 67.6 70.1

48×48
32×32 36.2 32.6 40.2 36.5 45.8 47.9 50.0 23.8 50.6 54.3
24×24 25.6 24.2 30.2 28.3 35.6 38.1 40.3 14.5 39.5 45.1

32×32 24×24 22.5 17.3 26.4 21.3 29.7 31.2 33.1 8.4 33.9 36.2

Table 4.6: Rank-1 identification accuracy of the proposed CTL algorithm and comparison
with existing algorithms and commercial system on the ChokePoint database [11].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL COTS
CTL+ CTL+
MDS COTS

216×216

72×72 32.2 28.6 36.3 32.5 39.8 41.6 44.6 46.2 43.2 50.9
48×48 23.1 22.1 29.6 28.1 31.5 33.8 38.4 33.7 36.8 42.3
32×32 21.8 21.8 27.3 25.7 30.6 32.5 35.5 20.4 34.1 39.5
24×24 18.4 16.2 23.2 20.7 28.4 29.1 32.4 10.3 31.7 35.1
16×16 9.6 8.2 14.7 11.2 15.6 17.8 20.2 6.04 19.3 23.4

72×72

48×48 42.4 36.1 48.4 42.6 50.5 50.9 53.7 22.7 53.1 56.4
32×32 32.6 31.8 37.6 35.7 39.5 41.6 43.8 12.7 42.6 47.2
24×24 25.4 23.6 30.5 28.9 31.6 32.4 36.1 9.5 34.8 39.5
16×16 21.4 19.6 26.2 23.8 28.1 28.7 31.6 7.6 30.4 35.2

48×48
32×32 35.4 32.6 41.2 37.6 44.7 45.4 48.2 18.5 47.8 50.9
24×24 23.2 20.4 27.4 24.8 29.5 30.2 33.1 11.8 32.6 37.2
16×16 17.6 14.5 21.8 19.6 24.1 26.3 28.3 4.7 27.5 31.6

32×32
24×24 20.4 14.8 23.4 18.7 24.3 28.6 31.6 16.4 30.8 35.4
16×16 14.6 9.6 17.3 13.4 19.6 21.9 23.1 3.5 22.5 26.0

24×24 16×16 19.4 15.6 22.7 18.6 25.8 28.7 30.5 13.5 31.4 35.8
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Table 4.7: Rank-1 identification accuracy of the proposed CTL algorithm and comparison
with existing algorithms and commercial system on the MBGC v.2 video challenge database
[7].

Resolution Algorithm

Gallery Probe LPQ SIFT E1 E2 Fusion MDS CTL COTS
CTL+ CTL+
MDS COTS

216×216

72×72 27.2 25.4 30.8 28.2 33.4 36.5 40.7 44.3 39.2 47.3
48×48 22.6 24.8 26.2 23.7 29.3 30.8 33.5 31.4 32.7 36.8
32×32 20.8 17.2 23.6 20.9 26.1 28.4 32.6 18.5 31.4 35.2
24×24 17.6 15.4 21.5 18.6 23.7 25.3 28.1 9.8 26.9 29.5
16×16 9.6 8.8 12.5 10.1 14.8 16.8 19.5 5.7 18.7 20.8

72×72

48×48 38.2 33.6 43.1 39.7 45.3 46.8 49.3 21.2 48.6 50.7
32×32 29.2 26.4 33.4 29.1 35.9 38.3 41.9 11.4 40.5 45.2
24×24 23.6 20.4 26.3 22.5 28.7 29.8 33.2 8.7 31.5 36.9
16×16 19.6 16.8 22.7 19.4 24.8 26.5 29.5 6.2 28.1 33.5

48×48
32×32 33.6 31.2 38.4 33.1 40.5 44.3 47.4 17.2 46.8 48.7
24×24 21.4 20.2 24.6 21.3 25.8 27.6 30.3 10.2 29.4 33.5
16×16 16.5 14.8 18.2 15.7 20.3 24.1 26.5 4.2 26.1 27.9

32×32
24×24 17.8 12.6 20.7 15.6 22.3 27.1 28.6 14.8 29.2 33.2
16×16 12.6 8.6 14.6 10.9 16.3 19.8 21.3 3.1 20.6 23.9

24×24 16×16 18.4 14.8 20.4 16.1 23.5 27.3 28.2 11.9 29.4 31.8
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Figure 4.12: CMC curves showing the performance for matching 24×24 probe images with
72×72 gallery images on the ChokePoint database.

• The Cumulative Match Characteristics curves in Figures 4.10, 4.11, 4.12, and 4.13

show the performance of different algorithms for matching probe images of resolution

24×24 with gallery images of resolution 72×72. As compared to the fusion of two

ensembles, the knowledge transfer from the source to target domain improves the

accuracy by at least 4-5%. During initial training, since the source and target domain

classifiers are trained independently, the knowledge transfer is not available in an

ensemble. It is feasible only with pseudo labeled probe instances available in the

target domain during testing.

• Table 4.4 shows the results on the CMUMulti-PIE database. The images in the CMU

Multi-PIE database are of very high quality and therefore the results on this database

may not be representative of cross resolution face matching with surveillance quality

databases. However, previous research on low resolution face recognition has shown

results on the CMUMulti-PIE database, therefore, we used this database (along with

three surveillance databases) to establish the baseline comparison with MDS. The

results show that for high resolutions, COTS performs better than the proposed
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Figure 4.13: CMC curves showing the performance for matching 24×24 probe images with
72×72 gallery images on the MBGC v.2 video challenge database.

CTL and MDS algorithms. However, the performance of the commercial system

reduces significantly on reducing the resolution of probe images. On the contrary,

the performance of CTL reduces at a lower rate and it yields better results that

COTS when the probe image is of resolution 16× 16.

• Table 4.5 shows the results on the SCface database [10]. The proposed algorithm

yields promising results on the real-world surveillance database and even outper-

forms COTS by at least 24% on all combinations of gallery and probe resolutions.

Since the proposed algorithm uses SIFT and LPQ features that are resilient to pose

variations and changes in gray-level intensities due to illumination variations, it

inherently addresses the problem of head-pose and illumination variations in the

SCface database. Moreover, the knowledge transfer with unlabeled probe instances

in the target domain facilitates to efficiently classify the low resolution probes.

• Tables 4.6 and 4.7 illustrate the performance on the ChokePoint [11] and MBGC v.2

video challenge [7] databases respectively. The results that on both the databases,
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Figure 4.14: Illustrating sample cases when the proposed approach (a) correctly recognizes
and (b) fails to recognize. All the examples are with probe (left image) size 24×24 and gallery
(right image) size 72×72.

the proposed algorithm performs better than the existing algorithms and COTS for

all combinations of gallery-probe resolutions (except for gallery 216×216 and probe

72×72, where COTS gives better performance).

• From the results shown on the three surveillance databases, it can be inferred that

for high resolution gallery-probe pairs, COTS performs better than the proposed

algorithm. However, for lower resolutions, the proposed algorithm yields better

results. The performance of transformation based approaches such as MDS [63]

degrade when the difference in resolution of gallery and probe images increases (i.e.

matching gallery images of 216×216 with probe image of resolution 32×32 or lower).

The transformations learned for such wide variations in gallery-probe resolution may

not be precise and thus degrade the performance.
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• Experimental results in Tables 4.4-4.7 also show that sum-rule fusion [125] of the

proposed algorithm with COTS further enhances the performance of cross-resolution

face matching. This improvement in performance may be attributed to the combined

effect of COTS and CTL. COTS efficiently addresses the difference in the information

content at higher resolutions, while CTL addresses the problem of limited biometric

information at low resolution images. On the contrary, sum-rule fusion of the pro-

posed CTL with MDS [63] slightly degrades the performance as it may not efficiently

accommodate for large difference in information content between the gallery-probe

pairs.

• Figures 4.15-4.18 show the confidence interval for the proposed algorithm, COTS

and MDS on the four databases used for measuring the efficacy of the proposed

algorithm for matching cross-resolution face images.

Figure 4.15: Illustrates the confidence interval for different algorithms for matching cross-
resolution face images on the CMU Multi-PIE database.

4.5.1.2 Comparison with Super-resolution based Approaches

In this section, the performance of the proposed co-transfer learning algorithm is compared

with three super-resolution techniques proposed in literature. For evaluating the effective-
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Figure 4.16: Illustrates the confidence interval for different algorithms for matching cross-
resolution face images on the SCface database.

ness of super-resolution techniques for matching low and high resolution face images, it is

used as a pre-processing step to enhance the quality of low resolution face images before

matching. The enhanced image is matched with the high resolution gallery image using

different algorithms. The LPQ and SIFT features are extracted from the super-resolution

images and the performance is computed after sum-rule fusion [125] of LPQ and SIFT

match scores computed using the χ2 distance metric. For evaluating the performance

with the proposed technique and COTS, super-resolution based on sparse representation

(SR-3) is applied on the probe images and then feature extracting and matching are per-

formed using the CTL algorithm (referred to as “CTL+SR”) and COTS (referred to as

“COTS+SR”). The target domain thus includes enhanced images obtained using super-

resolution. It is to be noted that transfer learning is still applicable as super-resolution

introduces several artifacts that may affect the biometric information in a face image and

leads to variations in data distribution (of features or match scores) between the source

and target domains. The classifiers in target domain are now trained to match the en-

hanced probe images with HR gallery. For the experiments, super-resolution is performed

with a magnification factor of three to match probe images of size 24 × 24 with 72 × 72

gallery images. Figure 4.19 shows examples of enhanced images obtained using the three
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Figure 4.17: Illustrates the confidence interval for different algorithms for matching cross-
resolution face images on the ChokePoint database.

super-resolution techniques and Figures 4.20, 4.21, 4.22, and 4.23 show the CMC curves.

The key analysis and observations from the experiments are listed below:

• CMC curves in Figures 4.20, 4.21, 4.22, and 4.23 show that the proposed co-transfer

learning algorithm outperforms all three super-resolution techniques by at least ~11%

on the CMU Multi-PIE database, ~10% on the SCface database, and ~4% on the

ChokePoint and MBGC v.2 video challenge databases.

• As shown in Figures 4.20, 4.21, 4.22, and 4.23, enhancing probe images using super-

resolution boosts the performance of both CTL and COTS. It is observed that super-

resolution minimizes the difference in the resolutions of gallery and probe images.

However, it does not enhance the biometric information in the face images. There-

fore, the performance gain is constrained by limited biometric information in low

resolution face images.

4.5.1.3 Performance on Real World Cases

Recently, Klontz and Jain [167] have investigated the opportunity for face recognition

algorithms to facilitate law enforcement agencies in identifying individuals from the crime
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Figure 4.18: Illustrates the confidence interval for different algorithms for matching cross-
resolution face images on the MBGC v2 video challenge database.

scene CCTV images during the Boston bombings incident. Inspired by their study, the

performance of the proposed co-transfer learning algorithm is also evaluated on some real

world examples pertaining to cross-resolution face matching. In our experiments, some

real world examples are collected from different sources on the internet which includes

two individuals from Boston bombing [167, 168], four individuals from London bombing

[130] and one individual from Mumbai terrorist attack [131]. Figure 4.24 shows the low

resolution probes and corresponding gallery images considered in the experiment. In

this additional experiment for evaluating the performance with these seven real world

examples, we appended these images to the SCface database for co-transfer learning. The

experiments are performed with gallery image resolution of 72×72 pixels and query image

resolution of 32× 32 pixels. Each individual has one image in the gallery and one or more

low resolution images as probe. Further, an extended gallery of 6534 individuals is created

by using frontal images acquired from a law enforcement agency and appending it to the

gallery of the SCface database. The performance of the proposed co-transfer learning

algorithm is also compared with COTS for matching 15 probe images corresponding to

these 7 real world cases. The results in Table 4.8 show that the proposed algorithm
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Figure 4.19: Enhanced images obtained using three super-resolution techniques (SR-1,SR-2,
and SR-3). The leftmost column represents low resolution (24×24) images and the rightmost
column represents the original high resolution images (72×72) from the (a) CMU Multi-PIE,
(b) SCface, (c) ChokePoint, and (d) MBGC v.2 video challenge databases.

consistently retrieves the correct match at a lower rank than COTS1 on all the cases. The

results validate our initial assertion that the proposed co-transfer learning algorithm can

efficiently be coupled with surveillance systems to assist law enforcement agencies.

4.6 Summary

The chapter introduces a co-transfer learning framework which seamlessly combines the

co-training and transfer learning paradigms for efficient cross-resolution face matching.

During training, the proposed framework learns to match high resolution face images in

the source domain. This knowledge is then transferred from the source domain to the

target domain to match low resolution probes with high resolution gallery. The proposed

1Since, the eye region is occluded in some of the probe images, COTS is not able to process such cases
(represented as NP - Not Processed).
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Figure 4.20: CMC curves comparing the performance of the proposed algorithm with three
super resolution techniques on the CMU Multi-PIE database. Probe images of 24×24 pixels
are super-resolved by a magnification factor of 3 to match the gallery resolution of 72×72
pixels.

framework builds ensembles from the weighted combination of source and target domain

classifiers on two separate views. Two ensembles trained on separate views transform the

unlabeled probe instances into pseudo-labeled instances using co-training. These pseudo-

labeled instances are utilized for updating the decision boundary of the target domain

classifier, thus, transferring knowledge from the source domain to the target domain. Fur-

ther, dynamically updating the weights assigned to each classifier facilitates gradual shift

of knowledge from the source to target domain. The amalgamation of transfer learning

and co-training helps to transfer the knowledge from the source to target domain with

probe instances as and when they arrive. Comprehensive analysis, including comparison

with existing cross-resolution face matching algorithms, super-resolution techniques, and

a commercial face recognition system, is performed for different gallery-probe resolutions

ranging from 216×216 to 16×16 pixels. The proposed co-transfer learning framework pro-

vides significant improvement for cross-resolution face matching on different surveillance

quality face databases.
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Figure 4.21: CMC curves comparing the performance of the proposed algorithm with three
super resolution techniques on the SCface database. Probe images of 24×24 pixels are super-
resolved by a magnification factor of 3 to match the gallery resolution of 72×72 pixels.
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Figure 4.22: CMC curves comparing the performance of the proposed algorithm with three
super resolution techniques on the ChokePoint database. Probe images of 24×24 pixels are
super-resolved by a magnification factor of 3 to match the gallery resolution of 72×72 pixels.
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Figure 4.23: CMC curves comparing the performance of the proposed algorithm with three
super resolution techniques on the MBGC v.2 video challenge database. Probe images of
24×24 pixels are super-resolved by a magnification factor of 3 to match the gallery resolution
of 72×72 pixels.
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Figure 4.24: Real world cases for cross-resolution face matching: (a) low resolution probe
images and (b) corresponding gallery images.

Table 4.8: Results for matching real world examples against a large scale gallery of 6534
individuals. Values in the table represents the rank at which the correct identity is retrieved.
NP represents the cases which are not processed by the COTS.

Probe CTL COTS

1a 7 NP

1b 29 NP

2a 8 11

2b 17 26

2c 1 3

3a 15 28

3b 5 9

4a 19 22

5a 17 NP

5b 1 1

6a 1 1

6b 10 14

6c 18 NP

7a 2 4

7b 4 NP
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Chapter 5

Recognizing Faces in Videos using

Clustering Based Re-ranking and

Fusion

5.1 Introduction

With the increase in usage of camera technology in both surveillance and personal appli-

cations, enormous amount of video feed is being captured everyday. For instance, almost

100 hours of video are being uploaded every minute on Youtube alone1 and it is increasing

rapidly. Surveillance cameras are also capturing significant amount of data across the

globe. In terms of face recognition, the amount of data collected by surveillance cameras

every day is probably more than the size of all the publicly available face image databases

combined. One primary purpose of collecting these data from surveillance cameras is to

detect any unwanted activity during the act or at least enable to analyze the events and

may be determine the persons of interest after the act. Therefore, widespread use of video

cameras for surveillance and security applications have stirred extensive research interest

in video based face recognition.

While face recognition is a well-studied problem and several algorithms have been pro-

posed [13, 169], a majority of the literature is on matching still images and face recognition

from videos is relatively less explored. Recognizing the individuals appearing in videos

has both advantages and disadvantages compared to still face matching. Since the ac-

quisition in videos is unconstrained, the presence of covariates such as pose, illumination,

and expression is significantly more but at the same time, the information available in

a video is generally more than the information available for matching two still images.

1http://www.youtube.com/yt/press/statistics.html
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As shown in Figure 5.1, videos provide several cues in the form of multiple frames and

temporal information as compared to still images. These cues can be used for improving

the performance of face recognition and provide robustness to large variations in facial

pose, expression, and lighting conditions.

Figure 5.1: Illustrates the abundant information present in videos. Compared to (a) still
face images, (b) video frames represent large intra-personal and temporal variations useful for
face recognition.

Video based face recognition includes (1) matching video-to-still face images (or still-to-

videos) and (2) matching two videos. In video-to-still face recognition, the probe (query)

is a video sequence and the gallery is composed of still face images whereas in still-to-

video face matching, the gallery and probe are switched. As proposed by Zhang et al.

[170], video-to-still/still-to-video face recognition techniques can be broadly categorized

into frame selection and multi-frame fusion approaches. In frame selection, one or more

optimal frames are selected from a video sequence and used to compute the similarity

between the video and still images. On the other hand, in multi-frame fusion approaches,

recognition results of multiple frames are fused together. In video-to-video face recognition,

both gallery and probe (query) are videos of individuals to be matched. Poh et al. [171]

evaluated several existing approaches for video-to-video face recognition and their analy-

sis suggests that existing techniques do not efficiently utilize the abundant information in

videos for enhancing face recognition performance. They also suggest that (1) part-based

approaches generally out-perform holistic approaches and (2) selecting frames based on
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the image quality boosts the recognition performance. To further evaluate existing al-

gorithms for video-to-video face recognition, the Multiple Biometric Grand Challenge [7]

also featured a problem on face recognition from unconstrained videos. The results from

the challenge suggest that there is a huge gap in the performance of state-of-the-art algo-

rithms from still image to video based face recognition. Observations and analysis from

these evaluations elicit further research in video based face recognition.

5.1.1 Related Research

The survey on video based face recognition by Barr et al. [190] categorizes existing ap-

proaches as set based and sequence based approaches. Table 5.1 summarizes the exist-

ing video based face recognition algorithms. Set based approaches [6, 191] utilize the

abundance and variety of observations in a video to achieve resilience to sub-optimal cap-

ture conditions. The approaches [172, 192] that model image sets as distributions use

the between-distribution similarity to match two image sets. However, the performance

of such approaches depend on the parameter estimation of the underlying distribution.

Modeling image sets as linear sub-spaces [176, 177, 178] and manifolds [172, 173, 179, 193]

is also proposed where matching between two image sets is performed by measuring sim-

ilarity between the input and reference subspaces/manifolds. However, the performance

of a subspace/manifold based approach depends on maintaining the image set correspon-

dences. To address these limitations, Cui et al. [181] proposed to align two image sets

using a common reference set before matching. Lee et al. [183] proposed a connected

manifold approach that utilizes the likelihood and transition probability of the nearest

previous manifold for recognition. Hu et al. [184] proposed to represent an image set

using sample images, their mean, and an affine hull model. A sparse approximated near-

est point method was proposed to compute the between-set distance as a pair of nearest

points on the sets that are sparsely approximated by sample images. On the other hand,

sequence based approaches explicitly utilize the temporal information for improved face

recognition. To utilize the temporal information, Zhou et al. [185] proposed to use a joint

posterior probability distribution of motion vector and identity variable estimated using

sequence importance sampling. Several approaches that model the temporal information

with Hidden Markov Models (HMM) [182, 186] are also proposed for improved video based

face recognition.

Recently, the research focus has shifted and advancements in face recognition have

led to a new paradigm of matching face images using a large dictionary. Patel et al.

[194] proposed a sparse approximation based approach where test images were projected
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Category Authors Technique Database Recognition Rate (%)

Set Based

Arandjelovic et

al. [172]
Manifold density Private 93.6 (avg)

divergence

Wang et al. [173]
Manifold-manifold

Honda/UCSD
[174]

96.9

distance
CMU MoBo
[175]

93.6

Aggarwal Linear dynamic
Private 93.7

et al. [176] modeling
Honda/UCSD
[174]

90.0

Fukui & Yam-
aguchi [177]

Kernel orthogonal
Private 97.42/EER=3.5

mutual subspace
Nishiyama et

al. [178]
Hierarchical image-set Private 97.4/EER=2.3

matching

Harandi Grassmannian
CMU PIE [31] 65.2

et al. [179] manifolds
BANCA [180] 64.5
CMU MoBo
[175]

64.9

Cui et al. [181] Image set alignmnet

Honda/UCSD
[174]

98.9

CMU MoBo
[175]

95.0

YouTube
celebrity [182]

74.6

Lee et al. [183]
Probabilistic appear-
ance manifolds

Private 93.2

Hu et al. [184]

Sparse
Honda UCSD
[174]

92.3

Approximated CMU MoBo
[175]

97

Nearest Point YouTube
Celebrity [182]

65.0

Wolf et al. [6] Set-to-set similarity
YouTube Faces
[6]

72.6 at EER

Sequence Based

Zhou et al. [185]
Sequential importance

Private 100

sampling
Private ~93
CMU MoBo
[175]

~56

Liu & Chen [186]
Adaptive Hidden

Private 1.2 EER

Markov models
CMU MoBo
[175]

4.0 EER

Kim et al. [182]

Visual constraints
Honda/UCSD
[174]

100

using generative & YouTube
celebrity [182]

~70

discriminative models

Dictionary Based

Chen et al. [187] Video-dictionaries MBGC v1 [188]
~59 at EER (WW)
~55 at EER (AW)
~51 at EER (AA)

Bhatt et al. [189] Rank aggregation
YouTube Faces
[6]

78.3 at EER

Proposed
Clustering based

YouTube Faces
[6]

80.7 at EER

MBGC v2 [7]
62.2 at EER (WW)

re-ranking and fusion 57.3 at EER (AW)
54.1 at EER (AA)

Table 5.1: Categorization of existing approaches of video based face recognition.
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onto a span of elements in learned dictionaries and the resulting residual vectors were

used for classification. Chen et al. [187] proposed a generative approach for video based

face recognition where a video sequence was first partitioned into sub-sequences and then

sequence-specific dictionaries were learned. The frames from every query video were pro-

jected onto the span of atoms in every sequence-specific dictionary and the residuals were

utilized for recognition. Their approach has a computational overhead of creating mul-

tiple sequence-specific dictionaries for specific pose and illumination variations. Chen et

al. [195] proposed a multi-variate sparse representation that simultaneously takes cor-

relation as well as coupling information between frames. Different sub-directories were

trained for multiple partitions which represents a particular viewing condition and a joint

sparse representation was used for face recognition using minimum class reconstruction

error criteria. Recently, Bhatt et al. [189] proposed to compute a video signature as an

ordered list of still face images from a large dictionary. In their approach, temporal and

wide intra-personal variations from multiple frames were combined using Markov chain

based rank aggregation approach.

Figure 5.2: Illustrates the block diagram of the proposed algorithm for matching two videos.

5.1.2 Research Contributions

This chapter proposes a novel algorithm for video based face recognition that computes

the signature of a video as an ordered list of still face images from a dictionary. Figure

5.2 shows the outline of the proposed algorithm which starts by computing a ranked list
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for every frame in the video to utilize the abundant information and capture the wide

intra-personal variations. It utilizes the taxonomy of facial features [196] to efficiently

compute the video signature. Taxonomy of facial features [196] groups the salient in-

formation available in face images into different feature categories: level-1, level-2, and

level-3. Out of these three, level-1 facial features capture the holistic nature of face such

as skin color, gender, and appearance of the face. These features are highly discriminative

in differentiating an image from other images that have largely different facial appear-

ances. These features being computationally efficient are generally used for indexing or

reducing the search space. Therefore, level-1 features are used to generate a ranked list by

congregating images from the dictionary that are similar to the input frame. A ranked list

is an ordered list of face images retrieved from the dictionary where the face image with

the highest similarity is positioned at the top of the list. To characterize an individual in

a video, ranked lists from multiple frames are combined using a three stage process that

involves clustering, re-ranking, and fusion. It produces the final composite ranked list for

a video which represents the discriminative video signature. Combining multiple ranked

lists into a single optimized ranked list that minimizes the overall distance from all ranked

lists is a well studied problem in information retrieval domain. However, to the best of our

knowledge, this dissertation presents the first approach to combine ranked lists pertaining

to individual frames to generate a composite video signature. It transforms the problem

of video based face recognition into matching two ordered lists (ranked lists). Further, a

relevance score is computed for images in the final composite ranked list using the dis-

criminative level-2 features. These are locally derived features and describe structures in a

face that are pertinent for face recognition. As compared to level-1 features, these features

are more discriminative and are predominantly used for face recognition. Relevance score

computed using level-2 features represent the usefulness of an image in characterizing the

individual in a video. Finally, to match two videos, their composite ranked lists (video

signatures) are compared using a discounted cumulative gain (DCG) measure [197]. The

major contributions of this chapter can be summarized as follows:

• It utilizes the taxonomy of facial features for efficient video based face recognition.

Computationally efficient level-1 features are used for computing multiple ranked

lists pertaining to multiple video frames and discriminative level-2 features are used

to compute the relevance of images in the final composite ranked list.

• Existing dictionary based face recognition algorithms [198] compute the signature of

a still face image as an ordered list of images from dictionary. In this chapter, a new
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paradigm is introduced using a three-stage technique for generating video signatures

as an ordered list of still face images from the dictionary.

• Existing approaches discard the characteristics embedded in the ranked lists and

only consider the overlap between two lists as the final similarity. In this chapter,

the DCG measure seamlessly utilizes rank and relevance scores of images to compute

the final similarity between two lists.

5.2 Dictionary Based Video Face Recognition Algorithm

Recent studies in face recognition [194, 198, 199] have shown that generating image sig-

natures based on a dictionary is more efficient for matching images across large variations

than direct comparison between two images or some of its features. In this chapter, video

based face recognition is addressed by computing a discriminative video signature using a

dictionary of still face images. The proposed algorithm congregates abundant information

present in multiple video frames to generate a discriminative video signature. It facilitates

in characterizing an individual as it embeds the information in the form of a ranked list of

images under similar intra-personal settings from the dictionary. Figure 5.2 shows different

stages of the proposed algorithm which are elaborated in the following subsections.

5.2.1 Dictionary

Dictionary is a large collection of still face images where every individual has multiple

images capturing a wide range of intra-personal variations i.e. pose, illumination, and

expression variations. Our definition of dictionary is different from the dictionary in sparse

representation based approaches [184, 187]. They represent a dictionary as a collection of

atoms such that the number of atoms exceeds the dimension of the signal space, so that

any signal can be represented by more than on combination of different atoms. In this

chapter, the dictionary comprises 38, 488 face images pertaining to 337 individuals from

the CMUMulti-PIE [9] database captured in multiple sessions. OpenCV’s boosted cascade

of Haar-like features provide the face boundaries and eye-coordinates. These boundaries

are used to detect and crop faces from the dictionary images and eye-coordinates are used

to normalize the detected image with respect to rotation. The normalized face images are

resized to 196×224 pixels with inter-eye distance of 100 pixels.
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5.2.2 Computing Ranked List

Let V be the video of an individual comprising n frames where each frame depicts the

temporal variations of the individual. Face region from each frame is detected1 and pre-

processed2. Face regions corresponding to different frames across a video are represented

as {F1, F2, ..., Fn}. To generate ranked lists, each frame is compared with all the images

in the dictionary. Since the dictionary consists of a large number of images and each

video has multiple frames; it is essential to compute the ranked list in a computationally

efficient manner. Linear discriminant analysis (LDA), level-1 feature, is therefore used to

generate a ranked list by congregating images from the dictionary that are similar to the

input frame. A linear discriminant function [202] is learned from the dictionary images

that captures the variations in pose, illumination, and expression. The linear discriminant

function learns these variations and retrieves images from the dictionary that are similar

to the input video frame i.e. images with similar pose, illumination, and expression. The

ranking of retrieved images from such a dictionary is found to be more discriminative

for face recognition than that of a signature based on the pixel intensities or some image

features [198]. Each column of the projection matrix W represents a projection direction

in the subspace and the projection of an image onto the subspace is computed as:

Y = W TX (5.1)

where X is an input image and Y is its subspace representation. The input frame Fi and

all images in the dictionary are projected onto the subspace. The Euclidean distance is

computed between the subspace representations of the input frame Fi and each of the

dictionary images. An ordered list of images is retrieved from the dictionary based on

their similarity3 to the input frame. To generate a ranked list Ri corresponding to the

input frame Fi, retrieved dictionary images are positioned based on their similarity to Fi

with the most similar image positioned at the top of the list. For a video V , the proposed

algorithm computes a set of ranked list {R1,R2, ...,Rn} corresponding to the n frames of

the video.

1OpenCV’s boosted cascade of haar-like features is used for face detection in near-frontal videos. For
profile-face videos, a tracking technique [200] is used to track and crop faces. Obtaining cropped faces
from videos was a combination of automatic and manual tasks where we located the tracker for the face
region in the first frame each time.

2A multi-scale retinex with wavelet based de-noising technique [201] is utilized to enhance the quality
of poor quality video frames before computing the ranked list.

3The distance scores computed using level-1 features are normalized in range {0-1} using min-max
normalization and then converted into similarity scores.
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5.2.3 Clustering, Re-ranking, and Fusion

Multiple ranked lists computed across n frames of a video have significant amount of over-

lap in terms of positioning of the dictionary images. Due to this redundant information,

it is computationally expensive and inefficient to compare multiple ranked lists across

two videos. Therefore, multiple ranked lists of a video are combined to generate a single

composite ranked list, denoted as R′. As shown in Figure 5.3, the proposed algorithm

generates a composite ranked list in three steps. First, each ranked list corresponding to

a video frame is partitioned into different clusters and reliability of each cluster is calcu-

lated. Secondly, the similarity scores of images within a cluster are adjusted based on the

reliability of that cluster [203]. Finally, multiple ranked lists of a video are fused based

on the adjusted similarity scores of images to generate a composite ranked list as the

video signature. The video signature thus obtained minimizes the distance from all the

constituent ranked lists. These stages are described in Algorithm 3 and are elaborated

below.

Figure 5.3: Illustrates clustering based re-ranking and fusion to form the video signature.
Clustering based re-ranking associates dictionary images to different clusters and adjusts their
similarity scores. It facilitates to bring images similar to the query frame towards the top of
the ranked list. The lists are then re-ranked using the adjusted scores and are finally combined
to generate the video signature.
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Algorithm 3 Fusing ranked lists with clustering and re-ranking.

Input: A set of ranked lists R1,R2, ....,Rn from multiple frames in a video V .
Iterate: i= 1 to n (number of ranked lists)
Clustering: Partition ranked list Ri into different clusters Ci,1, Ci,2, ..., Ci,k, where k
is the number of clusters.
end iterate.
Iterate: i= 1 to n, j= 1 to k.
Reliability: Compute reliability of cluster r(Ci,j).
Re-ranking: Adjust the similarity score of each image d based on the reliability of the
cluster it belongs.
Sim∗

i (d)=Simi(d)× (1 + r(Ci,j)), d ∈ Ci,j .
end iterate.
Fusion: Compute an ordered composite ranked list R′ where similarity score of an
image d is given as:

SSd=
∑n

i=1
Sim∗

i (d)
n

.
Output: Final composite ranked list R′ for video V .

5.2.3.1 Clustering

Multiple frames in a video exhibit different intra-personal variations; therefore, each ranked

list positions dictionary images based on the similarity to the input frame. Images in the

ranked list are further partitioned into different clusters such that if an image in a cluster

has high similarity to the input frame, then all images in that cluster tend to be more

similar to the input frame. The main idea behind clustering is to congregate images

in a ranked list into different clusters where each cluster represents a particular viewing

condition i.e. a specific pose, illumination or expression. Let Ri be the ith ranked list of

a video corresponding to frame Fi, then {Ci,1, Ci,2, ..., Ci,k} form k clusters of Ri. In this

chapter, K-means clustering [204] which is an unsupervised, non-deterministic technique

for generating a number of disjoint and flat (non-hierarchical) clusters is used to cluster

similar images with an equal cardinality constraint. To guarantee that all clusters have

equal number of data points, k centroids are initially selected at random. For each point,

similarity to the nearest cluster is computed and a heap is build. Similarity is measured

using the Euclidean distance in LDA projection space, as described in Eq. 5.1. A data

point is drawn from the heap and assigned to the nearest cluster, unless that cluster is

already full. If the nearest cluster is full, distance to the next nearest cluster is computed

and the data is re-inserted into the heap. The process is repeated till the heap is empty

i.e. all the data points are assigned to a cluster. It guarantees that all the clusters contain

equal number of data points (±1 data points per cluster). K-means clustering is used

as it is computationally faster and produces tighter clusters than hierarchical clustering
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techniques. After clustering, each ranked list Ri has a set of clusters Ci,1, Ci,2,..., Ci,k,

where k is the number of clusters. K-means clustering is affected by the initialization of

initial centroid points; however, we start with five different random initializations of k

clusters. Finally, clusters which minimize the overall sum of square distances are selected.

5.2.3.2 Re-ranking

Clusters across multiple ranked lists overlap in terms of common dictionary images. Since

the overlap between the clusters depends on the size of each cluster, it is required that all

the clusters should be of equal size. Higher the overlap between the clusters, more likely

that they contain images with similar appearances (i.e. with similar pose, illumination,

and expression). Based on this hypothesis, the reliability of each cluster is computed as

the weighted sum of similarities between the cluster and other clusters across multiple

ranked lists [203]. The reliability r(CA,j) of a cluster CA,j in ranked list A is computed

as shown in Eq. 5.2.

r(CA,j) =

n
∑

i=1,i 6=A

k
∑

p=1

[

SimFC(Fi, Ci,p)

normA
Sim(CA,j, Ci,p)

]

(5.2)

where

normA =

n
∑

i=1,i 6=A

k
∑

p=1

[SimFC(Fi, Ci,p)] (5.3)

SimFC(FA, CA,j) =

∑

d∈CA,j
||FA − d||2

|CA,j|
(5.4)

Sim(CA,j , CB,j) = |CA,j ∩CB,j | (5.5)

where d is an image from the dictionary, normA is a normalization factor for clusters

in the ranked list RA, |CA,j| is the number of images in cluster CA,j, FA is the current

frame of the video, and ||FA − d||2 represents the similarity between the input frame

and a dictionary image computed using the Euclidean distance1 between their subspace

representations. The similarity between frame Fi and cluster Ci,j is measured as the

average similarity score of all images in that cluster to the input frame Fi, as shown in Eq.

5.4. The similarity between two clusters is estimated in terms of the number of common

images as shown in Eq. 5.5. Higher the reliability of a cluster, higher is the contribution

of its constituent images. The similarity scores of images in a cluster are adjusted based

on the reliability of the cluster. It enhances the similarity scores of images from a cluster

1The distance scores computed using level-1 features are normalized in range {0-1} using min-max
normalization and then converted into similarity scores.
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that exhibits similar settings as the input video frame and reduces the similarity scores of

images from clusters which exhibit different settings i.e. pose, illumination, and expression

variation. The reliability score of a cluster is then used to adjust the similarity scores of

all images belonging to that cluster, as shown in Eq. 5.6:

Sim∗
i (d) = Simi(d)× [1 + r(Ci,j)],∀ d ∈ Ci,j (5.6)

where Simi(d) is the similarity score of an image d in ranked list Ri computed using

level-1 features and r(Ci,j) is the reliability of the jth cluster of the ith ranked list, Ci,j,

such that d ∈ Ci,j.

5.2.3.3 Fusion

The ranked lists across multiple frames have redundant information and matching such

ranked lists across two videos can be computationally inefficient. Therefore, it is impera-

tive to compute a composite ranked list as the video signature. Once the similarity scores

of images are adjusted across all the ranked lists, multiple ranked lists are fused into a

final composite ranked list, R′. The final similarity score of an image d (denoted as SSd)

is the average of adjusted similarity scores of image d across all the ranked lists, as shown

in Eq. 5.7.

SSd =

∑n
i=1 Sim

∗
i (d)

n
(5.7)

where n is the number of frames in a video. There are different types of fusion methods

proposed in the literature [125, 205] such as sensor level, feature level, score level, and

decision level fusion. Chen et al. [195] proposed to concatenate n sub-dictionaries using

a use joint sparsity coefficient approach to make a combined decision. However, in the

proposed algorithm, adjusted similarity scores of all images in the dictionary are averaged

across multiple ranked lists. The final composite ranked list R′ of a video is generated by

ordering all images from dictionary such that the image with maximum adjusted similarity

score (SS) is positioned at the top of the list.

5.2.4 Matching the Composite Ranked Lists

To match two videos, their composite ranked lists obtained after clustering based re-

ranking and fusion are compared. The discounted cumulative gain (DCG) [197] measure

is used to compare two ranked lists. DCG measure is widely used in information retrieval

domain [206] to compare the lists of documents. Each document in the ranked list is
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arranged based on its similarity to the input query and also has a relevance score provided

by a domain expert (or the user). It uses both these attributes (i.e. rank and relevance)

to compare two ranked lists. The relevance in our context is the usefulness of a dictionary

image in characterizing the individual in a video. The relevance reld of a dictionary image

d is computed as the maximum similarity score of the image across multiple frames of the

video, as shown in Eq. 5.8.

reld = arg max
1≤i≤n

{Simlevel2(d, Fi)} (5.8)

where n is the number of frames in a video, Simlevel2(d, Fi) is the similarity score of

a dictionary image d with the frame Fi computed using level-2 features (LBP) and χ2

distance measure. It is observed that the similarity between a video frame and images in

the ranked list drop after a particular rank and the order of images is less discriminative

beyond that point. Therefore, images retrieved till rank q are considered in the video

signature and their relevance is computed. Now, the images in the composite ranked list

R′ are positioned based on level-1 features and have a relevance score computed using

level-2 features.

The DCG measure captures the observation that relevant images are more useful

when appearing earlier in the ranked list. Greater the rank of an image, smaller is the

contribution of its relevance to the final decision. Similarity is accumulated from top of the

ranked list to the bottom by discounting the relevance score of an image by its position.

Therefore, DCG measure is more efficient in matching two ranked list than just comparing

the overlap between two lists (later shown in results). As shown in Eq. 5.9, DCG measure

discounts the relevance of an image by the logarithm of its rank.

DCGq =
<b
∑

i=1

reli +

q
∑

i=b

reli
logb(i)

(5.9)

where reli is the relevance score of an image at rank i and the DCG is computed till rank

q. In our experiments, q = 100 and logarithm to the base b = 2 are empirically set to

yield the best performance. Further, the DCG value is normalized by dividing it with

ideal discounted cumulative gain (IDCG) to obtain normalized discounted cumulative

gain nDCG, as shown in Eq. 5.10.

nDCGq =
DCGq

IDCGq
(5.10)

IDCG at rank q is obtained by calculating DCG values when the images in the ranked list

are positioned based on their relevance instead of similarity scores computed using level-1
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features (i.e. the image with maximum relevance is positioned at the top of the list). To

compute the similarity between two ranked lists, a two sided nDCG measure is used. For

two ranked lists R′
1 and R′

2, nDCGq for R′
1 with respect to R′

2 at rank q is computed

by considering R′
2 as the ideal ranking of images. Similarly, nDCGq for R′

2 with respect

to R′
1 is computed by considering R′

1 as the ideal ranking of images. The final similarity

Ksim between two lists R′
1 and R′

2 is the average of the two nDCG values.

Ksim(R′
1, R

′
2) =

1

2
{nDCGq(R

′
1,R

′
2) (5.11)

+ nDCGq(R
′
2,R

′
1))}

5.2.5 Dictionary Based Video Face Recognition Algorithm

The proposed algorithm for computing the video signatures and matching is summarized

below:

1. For a given video pair, frames from each video are extracted and pre-processed. Face

region from each frame is detected and resized to 196× 224 pixels.

2. For each frame in a video, a ranked list of still face images from the dictionary is

computed using level-1 features. The retrieved dictionary images are arranged in a

ranked list such that the image with the maximum similarity score is positioned at

the top of the list.

3. Ranked list across multiple frames of a video are combined to form a video signature

using clustering based re-ranking and fusion as elaborated in Algorithm 3.

4. To match two videos, their video signatures are compared using the nDCG measure

that incorporates scores computed using both level-1 (rank) and level-2 (relevance)

features.

The proposed video based face recognition algorithm efficiently computes the video

signature and transforms the problem of video based face recognition into matching two

ranked lists. Generally, in face recognition applications, level-1 and level-2 features are

sufficient for efficiently matching face images. In some law enforcement applications such

as matching identical twins or look-alikes, level-3 features are widely used as an addi-

tional layer of discrimination over level-1 and level-2 features. However, level-3 features

are extracted from good quality high resolution face images which are generally not avail-

able in the application focussed in this research i.e. face recognition from unconstrained
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videos. Therefore, only level-1 and level-2 features are used in this chapter for computing

a discriminative video signature.

5.3 Experimental Results

The efficacy of the proposed algorithm is evaluated on multiple databases with different

scenarios such as video-to-still, still-to-video, and video-to-video. For a thorough analysis,

the performance of individual components of the proposed algorithm is evaluated along

with comparing it with the min-max normalization and sum rule fusion [125], referred to

as MNF, for combining multiple ranked lists across the video frames. The performance is

also compared with FaceVACS which is a commercial off-the-shelf face recognition system

(denoted as COTS). Section 5.3.1 explains the databases used in this chapter, Section 5.3.2

elaborates the experimental protocol, and finally Section 5.3.3 lists the key observations

and analysis.

5.3.1 Databases

The experiments are performed on two publicly available video databases: The YouTube

faces database [6] and MBGC v2 video challenge database [7]. The YouTube faces database

[6] is the largest available unconstrained video database comprising 3, 425 videos of 1, 595

different individuals downloaded from YouTube where each video has ~180 frames on aver-

age. The database provides 10-fold pair-wise matching (‘same’/‘not-same’) test benchmark

protocol for comparison with existing algorithms. 5, 000 video pairs are randomly selected

from the database, half of which are pairs of videos of the same individual, and half of

different individuals. As per the given protocol [6], these pairs are further divided into 10

splits where each split contains 250 ‘same’ and 250 ‘not-same’ pairs. Further details about

the database are available in [6].

The MBGC v2 video challenge database [7] comprises videos in standard (720 × 480)

and high definition (1440 × 1080) formats pertaining to individuals either walking or

performing some activity. From the MBGC v2 video challenge database, experiments are

performed on the data collected from the University of Notre Dame. The experiments are

performed for matching videos of individuals under three settings, 1) walking vs walking

(WW), 2) walking vs activity (WA), and 3) activity vs activity (AA). Further, to evaluate

the performance of the proposed algorithm for still-to-video and video-to-still matching,

face images pertaining to 147 individuals from the MBGC v2 still portal are utilized. These
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individuals have good quality still face images and their corresponding videos. Figure 5.4

shows still face images along with samples from activity and walking video frames.

Figure 5.4: Sample images from the MBGC v2 database (a) still face images, (b) frames
from activity video, and (c) frames from walking video.

5.3.2 Protocol

The efficacy of the proposed algorithm for video based face recognition is evaluated in ver-

ification mode (1:1 matching). The performance of the proposed algorithm is compared

with existing video based face recognition algorithms using the experimental protocol de-
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fined in [6] where the verification accuracy is reported at equal error rate (EER) along with

area under the curve (AUC). For matching two videos using COTS, set-to-set matching is

used where each frame in the first video is matched to all the frames in the second video.

The mean score obtained corresponding to all frames of the second video is assigned as

the similarity score of the frame in the first video. The final similarity score of the first

video is the average score of all the frames in that video. In MNF, similarity scores across

multiple ranked lists are normalized using min-max score normalization [207]. The score

for each dictionary image is then re-computed as the average score across all the ranked

lists. Finally, the combined ranked list is generated based on the averaged similarity scores

where the dictionary image with the largest similarity score is positioned at the top of the

list. The experimental protocol for the two databases are further elaborated below:

5.3.2.1 YouTube Faces Database

The performance of the proposed algorithm is evaluated using the experimental protocol

defined by Wolf et al. [6]. In this experiment both gallery and probe consist of videos

and training is performed as two class problem with ‘same’/‘not-same’ labels. In our

experiments, ten splits provided along with the database are used. Training is performed

on nine splits and the performance is computed on the tenth split. The final performance

is reported as an average of 10 folds. In this protocol, the information about the subject’s

label associated with the video is discarded and only the information about whether a pair

is ‘same’ or ‘not-same’ is retained.

On the YouTube faces database, the performance of the proposed algorithm is com-

pared with the benchmark test results provided with the database [6]. For performance

comparison LBP descriptor with matched background similarity (MBGC (mean) LBP),

minimum distance (mindst LBP), maximum correlation measures (||U1′U2|| LBP) and

FPLBP descriptor with matched background similarity (MBGC (mean) FPLBP), min-

imum distance (mindst FPLBP), maximum correlation measures (||U1′U2|| FPLBP),

APEM+FUSION [208], STFRD+PMML [209], VSOF+OSS [210] and one recently pro-

posed algorithm, referred to as Bhatt et al. [189], are used. In the proposed approach,

videos from the YouTube faces database are pre-processed using multi-scale retinex with

wavelet based denoising. Experiments are performed to evaluate the performance enhance-

ment due to different stages of the proposed algorithm on the YouTube faces database.

First, to evaluate the performance gain due to clustering based re-ranking and fusion steps,

the performance is compared when ranked list across multiple frames are combined using

the MNF approach. Secondly, to evaluate the gain in the performance due to nDCG
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measure, the performance is evaluated when two ranked lists are compared using the dis-

tance measure proposed by Schroff et al. [198]. Their distance measure only considers the

overlap between two ranked lists and ignores other information such as relevance of images

in the ranked list. It should be noted that while evaluating the gain in performance due

to an individual step, all other steps in the proposed algorithm remain the same.

5.3.2.2 Multi Biometric Grand Challenge v2 Database

Multiple experiments are performed on this database to evaluate the efficacy of the pro-

posed algorithm. Specifically, the algorithm is evaluated for two different scenarios: (1)

matching still face images with videos and (2) matching videos with videos.

Matching still face images with videos: In many real world applications, such as

surveillance, it is required to match still face images with videos for authenticating the

identity of individuals. In this experiment, still face images from the MBGC v2 still

portal and videos (comprising both walking and activity videos) from the MBGC v2 video

challenge database [7] pertaining to 147 subjects are used. To evaluate the efficacy of

the proposed algorithm, experiments are performed with 10 times repeated random sub-

sampling (cross validations). In each experiment, training is performed on 47 subjects

and the performance in reported on the remaining 100 subjects. This experiment further

comprises two different subsets:

• Matching video probe with still gallery images: In this experiment, the probe is a

video of an individual whose identity is to be matched against a gallery of still face

images. In this experiment, the composite ranked list of a probe video is compared

with the ranked list computed for each of the gallery images. The ranked list of

an image in the gallery is computed by positioning the images retrieved from the

dictionary based on their level-1 similarity scores. The experiment is further divided

as: 1) probe comprises 618 walking videos pertaining to 100 subjects and 2) probe

comprises 513 activity videos pertaining to 100 subjects. In both the cases the

gallery consists of 100 still face images, one image per subject.

• Matching still probe with video gallery : In this experiment, the probe is a still face

image and the gallery comprises videos of individuals. The ranked list of a still

probe image is compared with the composite ranked list of each video in the gallery.

The experiment is divided as: 1) gallery comprises 100 walking videos and 2) gallery

comprises 100 activity videos. In both the cases, the probe comprises 1543 still face

images pertaining to 100 subjects.
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Matching videos with videos: The proposed algorithm is evaluated for matching video-

to-video face information where both gallery and probe comprise videos of individuals.

The performance of the proposed algorithm on the MBGC v2 video challenge database

is evaluated under three different scenarios, 1) walking vs walking (WW), 2) walking vs

activity (WA), and 3) activity vs activity (AA). In the MBGC v2 video challenge protocol,

verification experiments are specified by two sets: target and query. The protocol requires

the algorithm to match each target (gallery) sequence with all the query (probe) sequences.

In this experiment, the composite ranked list of a probe video is compared with the

composite ranked lists of the gallery videos.

5.3.3 Results and Analysis

The proposed algorithm utilizes the observation that a discriminative video signature can

be computed using a dictionary of still face images. Key results and observations from

the experiments are summarized below:

• For both still images and videos, a dictionary of non-overlapping individuals is used

to generate discriminative signatures represented as ranked lists of images. The re-

sults suggest that the representation based on dictionary is very efficient for matching

individuals across large intra-personal variations in videos.

Figure 5.5: Illustrates the variations in equal error rate by varying the number of clusters.
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• Figure 5.5 shows that the performance is dependent on the number of clusters. In

our experiments, the number of clusters k is varied from 1 to 35. It is observed

that all the variations in dictionary images can be broadly grouped into 15 different

categories of pose, illumination, and expression. This observation also corroborates

with our experiment to empirically determine the number of clusters as shown in

Figure 5.5 where k = 15 yields the lowest EER. If the number of clusters is less,

images are not segregated in the cluster representing the exact viewing conditions. It

results in erroneously updating the similarity scores of images based on the reliability

of the cluster which increases the error rate. On the other hand, large number of

clusters also increases the error rates and the computational cost.

• The proposed algorithm utilizes the taxonomy of facial features to compute the

initial ranked lists using computationally efficient level-1 features and further utilizes

more discriminative level-2 features to compute the relevance of images in the final

composite ranked list. This selection of features for computing the ranked lists and

relevance makes the proposed algorithm discriminative and computationally efficient.

5.3.3.1 Results on YouTube database

• The results in Table 5.2 and receiver operating characteristic (ROC) curves in Figure

5.6 demonstrate the performance of the proposed algorithm with benchmark results

on the YouTube faces database [6]. The proposed algorithm outperforms existing

algorithms and COTS for video-to-video face recognition. The proposed algorithm

achieves an average accuracy of 80.7% at EER of 19.4%. The proposed algorithm

also achieves a higher area under the curve of 90.5% as compared to other algorithms.

• To evaluate the gain in performance due to clustering, re-ranking, and fusion, the

performance of the proposed algorithm is compared when multiple ranked lists are

combined using min-max normalization and sum-rule fusion (referred to as MNF).

Table 5.2 shows that clustering based re-ranking and fusion reduces the EER by ~9%.

This gain can be attributed to the observation that images with similar appearances

are clustered together and similarity scores of images are adjusted based on the

reliability of the clusters.

• To match two video signatures, a two-sided nDCG measure is used that seamlessly

utilizes both level-1 (ranks) and level-2 (relevance) features. The performance gain

due to two sided nDCG measure is evaluated by comparing the performance of the
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Algorithm
Verification

SD AUC EER
Accuracy

(%) (%) (%)
at EER (%)

mindst LBP 65.7 1.7 70.7 35.2

mindst FPLBP 65.6 1.8 70.0 35.6

||U1′U2|| LBP 65.4 2.0 69.8 36.0

||U1′U2|| FPLBP 64.3 1.6 69.4 35.8

MBGS(mean) FPLBP 72.6 2.0 80.1 27.7

MBGS(mean) LBP 76.4 1.8 82.6 25.3

COTS 67.9 2.3 74.1 33.1

MNF 76.4 2.1 81.6 24.3

Schroff et al. [198] 77.5 1.6 83.8 23.6

Bhatt et al. [189] 78.3 1.7 85.8 21.6

APEM-FUSION [208] 79.1 1.5 86.6 21.4

STFRD+PMML [209] 79.5 2.5 86.6 19.9

VSOF+OSS [210] 79.7 1.8 89.4 20.0

Proposed 80.7 1.4 90.5 19.4

Table 5.2: Comparing the proposed algorithm with the benchmark test results and COTS
on the YouTube faces database [6].

proposed algorithm when two signatures are matched using the similarity measure

used by Schroff et al. [198]. Existing approaches only compute the overlap between

two lists while discarding other information embedded in the lists, whereas, the

results in Table 5.2 show that the two sided nDCG measure reduces the EER by

~7%.

• Existing approaches that use set-to-set similarities do not consider that multiple

frames capture different intra-personal variations. Matching such diverse image sets

independently leads to sub-optimal performance. However, the proposed algorithm

combines the diverse information from multiple frames to form a composite video

signature to match two videos. Figure 5.7 shows some successful and unsuccessful

verification examples by the proposed algorithm. Figure 5.8 show the confidence

interval for different algorithms proposed for video based face recognition.

• The proposed algorithm has different stages such as computing ranked lists for each

video frame, clustering, re-ranking and fusion for combining multiple ranked lists into

a discriminative video signature. Finally, two video signatures are matched using

two sided nDCG measure. The algorithm takes about 0.06 seconds to compute the

ranked list for a single frame, 0.04 seconds to cluster a ranked list, 0.04 seconds for
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Figure 5.6: ROC curves comparing the performance of the proposed algorithm with bench-
mark results on the YouTube faces database [6]. (Best viewed in color). The results from the
YouTube database website are as of October, 2013.

re-ranking the similarity scores within a ranked list. Further, for computing the sig-

nature for a video with 100 frames, fusing 100 ranked lists takes around 1.3 seconds.

Therefore, total time to compute a composite ranked list for a video with 100 frames

is 100 × (0.06 + 0.04 + 0.04) + 1.3 = 15.3 seconds. The time is reported on 2 GHz

Intel Duo Core processor with 4 GB RAM under C# programming environment.

5.3.3.2 Results on MBGC v2 database

• Surveillance applications generally require matching an individual in a live-video

stream with a watch-list database consisting of still face images. The proposed

algorithm can efficiently represent both still face images and videos as ranked lists

of still face images from the dictionary. ROC curves in Figure 5.9 show the efficacy

of the proposed algorithm for matching both walking and activity videos as probe

with still gallery images from the MBGC v2 database. Table 5.3 demonstrates that

the proposed algorithm yields at least 1.3% lower equal error rate as compared to
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Figure 5.7: Illustrating examples when the proposed algorithm correctly classified (a) ‘same’,
(b) ‘not-same’ video pairs from the YouTube faces database [6]. Similarly, examples when the
proposed algorithm incorrectly classified (c) ‘same’ and (d) ‘not-same’ video pairs.

other algorithms for matching video probe with still gallery images.

• Matching a still probe image with video gallery also has a very important law en-

forcement application when a known individual has be identified at a crime scene

using multiple surveillance videos of the crime scene. The results in Figure 5.10 and

Table 5.3 demonstrate the efficacy of the proposed algorithm for such scenarios. It

yields a lower equal error rate of 17.8% and 20.1% (at least 5.2% lower than other

algorithms) for matching still probe images with the gallery consisting of videos

of individuals walking or performing some activity from the MBGC v2 database

respectively.

• The results in Table 5.4 and Figures 5.11, 5.12, 5.13 show the efficacy of the proposed

algorithm for matching unconstrained videos i.e. where the individual is walking or

performing some activity. The proposed algorithm outperforms COTS and MNF
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Figure 5.8: Illustrates the confidence interval for different algorithms for video based face
recognition on the YouTube faces database.

approach for all the three matching scenarios i.e walking vs walking (WW), walking

vs activity (WA), and activity vs activity (AA).

• The proposed algorithm performs better for walking vs walking experiment as com-

pared to the other two scenarios that involve videos of individuals performing some

activities. As shown in Figure 5.4, activity videos present a challenging scenario

because the quality of facial region is severely deteriorated by the presence of pose,

illumination, and expression variations.

• Unlike many existing techniques that are affected by unequal number of frames in

two videos, the proposed algorithm mitigates such limitations and can efficiently

match two videos regardless of the number of frames in each video. As shown in

Table 5.3, the proposed algorithm can also match still face images, analogous to a

video with single frame, with videos comprising multiple frames.

5.4 Summary

With advancements in technology, reduction in the cost of sensor (video camera), and

several limitations of face recognition from still images in unconstrained scenario, video
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Gallery Probe Algorithm
Verification

SD AUC EER
Accuracy

(%) (%) (%)
at EER(%)

Still Walking
COTS 73.2 2.1 79.6 27.1

images videos
MNF 78.3 1.7 85.0 22.7

Proposed 80.6 1.4 87.6 19.2

Still Activity
COTS 68.4 1.9 75.5 31.9

images videos
MNF 76.5 1.8 82.1 24.4

Proposed 77.8 1.5 84.0 22.7

Walking Still
COTS 70.7 2.2 79.4 29.3

videos images
MNF 77.1 2.0 86.0 23.7

Proposed 82.6 1.7 90.4 17.8

Activity Still
COTS 69.2 2.0 76.5 31.3

videos images
MNF 74.3 1.7 83.8 25.3

Proposed 79.8 1.5 87.7 20.1

Table 5.3: Comparing the proposed algorithm with COTS and MNF on the MBGC v2 [7]
database for matching still face images with videos.

Protocol Algorithm
Verification

AUC EER
Accuracy

(%) (%)
at EER(%)

Walking COTS 55.7 59.1 44.3
vs MNF 59.9 63.6 40.1

walking (WW) Proposed 62.2 67.0 37.8

Activity COTS 52.5 53.8 47.5
vs MNF 54.4 55.3 45.6

walking (AW) Proposed 57.3 59.8 42.7

Activity COTS 50.2 50.6 49.8
vs MNF 51.5 52.2 48.5

activity (AA) Proposed 54.1 55.4 45.9

Table 5.4: Comparing the proposed algorithm with COTS and MNF on different protocols
of the MBGC v2 video challenge database [7].
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Figure 5.9: ROC curves comparing the performance of the proposed algorithm with COTS
and MNF on the MBGC v2 database [7] for matching activity and walking videos with the
gallery comprising still face images.

based face recognition has gained significant attention from the research community. Mul-

tiple frames in a video depict the temporal and intra-class variations that can be leveraged

for efficient face recognition. The proposed video based face recognition algorithm cap-

tures the observation that a discriminative video signature can be generated by combining

the abundant information available across multiple frames of a video. It assimilates this

information as a ranked list of still face images from a large dictionary. It starts with

generating a ranked list for every frame in the video using computationally efficient level-

1 features. Multiple ranked lists across the frames are then optimized using clustering

based re-ranking and finally fused together to generate the video signature. Usefulness

(relevance) of images in the video signature is computed using level-2 features. The video

signature thus embeds large intra-personal variations across multiple frames which signif-

icantly improves the recognition performance. Finally, to match two videos, their video

signatures (ordered ranked lists) are compared using a DCG measure that seamlessly uti-

lizes both ranking and relevance of images in the signature. This chapter transforms the

problem of video based face recognition into comparing two ordered lists of images. The

usability of the proposed algorithm is evaluated under different operating scenarios such as
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Figure 5.10: ROC curves comparing the performance of the proposed algorithm with COTS
and MNF on the MBGC v2 database [7] for matching still face images with gallery comprising
activity and walking videos. (Best viewed in color)

matching still images with videos and matching video with videos. Several experiments on

unconstrained video databases show that the proposed algorithm consistently outperforms

existing algorithms including a commercial face recognition system.

As future research direction, we plan to reduce the computational time of the proposed

algorithm. The proposed algorithm utilizes the abundant information in a video to yield

better face recognition performance across large variations. Therefore, it requires more

computational time as compared to still face recognition algorithms. Multiple frames of a

video are processed independently of each other, therefore, processing them in a parallel

fashion may enhance the computational efficiency of the proposed approach. Moreover,

videos exhibit wide intra-personal variations such as pose, illumination, and expression

variations of an individual. Detecting face regions from such unconstrained videos may

be challenging and the performance of video based face recognition algorithms is often

dependent on the face detection algorithm.
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Figure 5.11: ROC curves showing the performance of the proposed algorithm on the MBGC
v2 video challenge database [7] for matching walking vs walking (WW).

Figure 5.12: ROC curves showing the performance of the proposed algorithm on the MBGC
v2 video challenge database [7] for matching walking vs activity (WA).
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Figure 5.13: ROC curves showing the performance of the proposed algorithm on the MBGC
v2 video challenge database [7] for matching activity vs activity (AA) videos (Best viewed in
color).
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Chapter 6

Conclusions and Future Work

This dissertation formally defines a covariate in face recognition and categorizes several

challenges in face recognition as existing and emerging covariates. Figure 6.1 shows the

categorization of face recognition techniques based on covariates. Existing covariates of

face recognition such as pose, illumination, expression, aging, and disguise have been ex-

tensively studied and several algorithms are proposed to mitigate their effect. Apart from

existing covariates, the emerging covariates such as matching sketches with digital images,

faces altered due to plastic surgery, low resolution face images, and faces from videos are

some new research directions in face recognition. The covariates addressed in this disser-

tation have recently gained attention due to their significance in law enforcement appli-

cations. One of the limitations in developing robust solutions for face recognition is the

lack of large databases for these emerging covariates. The availability of publicly available

large databases will allow better understanding and characterization of these covariates

thus leading to better quality solutions. This dissertation presents several algorithms to

address these covariates and further instigates multiple research directions.

6.1 Conclusion

In this dissertation, we first developed an automated algorithm for matching forensic

sketches with digital face images. The algorithms starts by enhancing the quality of foren-

sic sketches and digital face images to eliminate distortions and noise introduced due to

the excessive use of charcoal pencil, paper quality, and scanning (device noise/errors). A

multi-scale circular weber’s local descriptor (MCWLD) is proposed for encoding discrim-

inative micro patterns from local regions of sketches and digital face images at multiple

scales. Further, a memetic algorithm is developed to assign optimal weights to differ-

ent local regions of face for matching using weighted χ2 distance. We also evaluated
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Figure 6.1: Progression in face recognition with respect to different covariates.

human performance for matching sketches with digital face images and found that the

information collected from individuals corroborate with our observation that local regions

provide discriminating information for efficient face recognition. Comprehensive experi-

mental evaluation on different sketch databases show that the proposed algorithm yields

better identification performance compared to existing face recognition algorithms and

two commercial face recognition systems. Finally, we prepared a sketch database, namely

IIIT-D sketch database [51], that comprises viewed, semi-forensic, and forensic sketches

for instigating further research in understanding progression from matching viewed to

semi-forensic to forensic sketches.

With widespread popularity and acceptability of plastic surgery procedures, it is im-

perative for face recognition algorithms to efficiently match pre-and post-surgery images.

We developed a multi-objective evolutionary algorithm for matching face images altered

due to plastic surgery. The algorithms first generates a set of 40 non-disjoint face gran-

ules of varying shapes and sizes. Scale invariant feature transform (SIFT) and extended

uniform circular local binary patterns (EUCLBP) features are extracted from different

face granules and are selectively combined using evolutionary genetic algorithm. The

multi-objective genetic algorithm simultaneously optimizes feature selection and weight

assignment for different face granules. The evolutionary selection of feature extractor al-

lows switching between two feature extractors (SIFT and EUCLBP) and helps in encoding

discriminatory information for each face granule. We analyzed the effect of different types

of plastic surgery procedures (i.e. local and global plastic surgery) and the performance
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of individual face granules. Experimental evaluation under different protocols, including

large scale matching, on the IIIT-D plastic surgery database [8] show that the proposed

algorithm outperforms existing algorithms including a commercial system when matching

surgically altered face images.

A very important law enforcement application is performing face recognition from low

resolution surveillance quality images. Face recognition algorithms are generally trained

for matching high resolution images and the performance is severely compromised when

it encounters a situation where a low resolution probe is matched with a high resolution

gallery image. We pose the problem of cross-resolution face matching as a transfer learning

problem and propose a co-transfer learning framework. To facilitate knowledge transfer

with probe instances in the target domain, a co-training algorithm is developed which

assigns pseudo labels to the unlabeled probe instances. Cross-pollination of these two

paradigms in the proposed framework enhances the performance of cross-resolution face

recognition. Experiments are performed on four publicly available databases, namely,

CMU Multi-PIE [9], ChokePoint [11], SCface [10], and MBGC v2 [211] databases. The

performance evaluation with existing, super-resolution and commercial face recognition

algorithms show the efficacy of the proposed co-transfer learning algorithm for cross-

resolution face matching.

Videos provide abundant information in terms of multiple frames which capture wide

intra-personal variations of an individual. This abundant information can be leveraged

for efficient face recognition. This dissertation proposes a video based face recognition

algorithm which computes a discriminative video signature as an ordered list of still face

images. The algorithm begins by comparing each video frame with all still face images in

the dictionary and generates an ordered list in which each image from the dictionary is

ranked based on its similarity to the input frame. Multiple ordered lists across different

video frames are combined into a composite ranked list using clustering based re-ranking

and fusion algorithm. The final composite list constitutes the video signature and mini-

mizes the distance from all the ordered lists corresponding to multiple video frames. To

match two videos, their composite video signatures are compared using a normalized dis-

counted cumulative gain measure. The nDCG measure encodes both rank in the ordered

list as well as usefulness of images for characterizing the individual in the video. Exper-

imental evaluation on the YouTube faces [6] and the MBGC v2 [211] databases under

different video based face recognition scenarios such as matching still face images with

videos and matching videos with videos show that the proposed algorithm outperforms

existing algorithms including a commercial face recognition system.
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6.2 Future Work

This dissertation offers several algorithms for emerging covariates of face recognition; how-

ever, it also instigates some future research directions for making face recognition robust

and scalable. We conclude this dissertation with some possible future research directions

that can be explored for addressing the emerging covariates of face recognition.

• This dissertation presents a classification of different challenges in face recognition

as existing and emerging covariates. This classification is based on the maturity of a

covariate in terms of how extensively it has been studied in the literature. A possible

future research direction could be to have a taxonomy of these covariates beyond

simple existing and emerging covariates.

• Matching sketches with digital face images has been one of the most important cues

in apprehending criminals, finding missing individuals, and recognizing individuals

when the face is reconstructed as a composite sketch post-mortem. It has gained

significant attention from the research community and several algorithms have been

proposed for matching sketches with digital face images. However, law enforcement

agencies are progressively shifting from hand-drawn sketches to composite sketches

which are drawn using software tools. These tools facilitates an eyewitness to select

the most resembling facial template for each feature based on his/her recollection

from the crime scene. Preparing composite sketches require less effort both in terms

of cost as well as time as compared to hand-drawn sketches. However, the problem

of matching composite sketches with digital face images is not limited to the effects

of variations in composite sketches and digital face images. In real world scenarios,

it is often required to match composite sketches and digital face images with age

variations; e.g., in cases for finding missing individuals and recognizing individuals

when the face is reconstructed as a composite sketch after death. Age variations

further make this problem arduous as it changes the structural geometry and face

texture. Therefore, matching composite sketches with digital face images across age

variations is an important research direction. We believe that large databases with

composite sketches and digital face images with age variations will lead to better

understanding of the problem.

• The allure for plastic surgery is experienced worldwide and is driven by factors such

as the availability of advanced technology, affordable cost and the speed with which
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these procedures are performed. According to the statistics provided by the Ameri-

can society of aesthetic plastic surgery [101], more and more individuals are expected

to undergo facial plastic surgery for cosmetic and medical reasons. Therefore, it is

imperative for face recognition algorithms to be robust for matching face images

altered due to plastic surgery. This dissertation presents an efficient algorithm for

matching pre- and post-surgery images, however, the results and analysis inspire

further research in this important area. Face recognition algorithms should be ca-

pable of automatically detecting facial regions that have variations possibly due to

plastic surgery. Understanding the effects of plastic surgery in thermal-infrared im-

agery can be one of the possible future research direction. The research in plastic

surgery is primarily focussed around a single publicly available database, IIIT-D

plastic surgery database [8]. Preparing large scale databases for different types of

plastic surgery procedures in visible as well as thermal-infrared imagery will lead to

better understanding of the non-linear variations introduced due to plastic surgery.

• The generality of face recognition has lead to several challenging applications such as

matching low resolution images from surveillance cameras. Surveillance images serve

as the primary evidence in leading the investigation and recognizing the individuals

at the end. It is therefore desirable to build a system where surveillance cameras

coupled with a face recognition algorithm can be used to automatically identify in-

dividuals from a watch-list. The progression in face recognition has made it possible

to recognize low resolution surveillance face images against watch-list database [212]

to an acceptable level. However, these efforts could not foil any of the anti-social

activities. One of the possible future research directions is to develop a real time face

recognition algorithm coupled with surveillance system [213] that can upfront raise

an alarm by identifying individuals who have committed crime or with the intent to

commit crime.

• Video based face recognition has gained significant attention due to limitations of

still images in addressing the wide intra-personal variations of face in many real world

applications. Unlike still face images, videos provide abundant information that can

be leveraged to compensate for these variations and enhance the performance of face

recognition. It is our belief that videos have the potential to address face recognition

in uncontrolled and unconstrained environments. The results presented in this dis-

sertation encourages further research in video based face recognition i.e. still to video

matching and video-to-video matching. Video based face recognition for identifying
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an individual from a video against a watch-list requires open-set identification. One

of the possible future directions, often required by law enforcement agencies, is video

based face recognition in open-set scenarios where the existing research is very lim-

ited. Another possible research direction is to combine other modalities such as iris,

voice, and gait for more robust identification from videos.

• Real world applications require efficient video based face recognition techniques that

can identify individuals from videos captured through surveillance cameras. Cur-

rently, surveillance cameras help law enforcement agencies in tracking the activities

of individuals or identifying them using manual intervention. However, an efficient

low resolution face recognition system coupled with surveillance cameras can signif-

icantly speed up the accuracy and speed of this process. Therefore, developing low

resolution face recognition algorithms for videos can be one of the interesting future

research directions.
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Appendix B

Error Bounds for the Ensemble

Using the square loss function l∗(z, y) = (z − y)2 and the exponential weighting update

function, bounds of an ensemble are given as:
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The above equation is derived by following the proof in [164]. Using this, the error

bounds of an ensemble are derived as follows: The error at the ith step is represented as
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Combining Eqs. 1 and 2, we have
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