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Abstract 
 

With about 19 million occurrences and 10 million mortalities in 2020, “Cancer” is the second 

leading source of mortality worldwide (WHO GLOBOCAN). The top three continents burdened 

with cancer deaths are Asia (58.3 percent), Europe (19.6 percent) and Latin America (7.2 percent). 

As of today, patient management in cancer care involves three broad steps: (a) screening and 

diagnosis, (b) risk assessment and prognosis, and (c) therapy. Since therapeutic intervention 

follows the risk assessment step, it is known to be the most critical phase in the cancer care and 

treatment. Risk estimation is done by means of multiple staging schemes for most cancers. The 

'TNM system' for which the staging directives are issued by the “American Joint Committee on 

Cancer” (AJCC) and the “Union for International Cancer Control” (UICC), is the most extensively 

used system. The overall stage in the TNM system is determined when a letter (often with a 

number) is allocated to the cancer to describe the stages of T: tumour, N: node  and M: metastasis 

, in which T specifies the size and location of the initial tumour, N indicates cancer spread to the 

adjacent lymph nodes, and M shows the cancer spread to distant body parts. The traditional TNM 

staging only involved anatomical considerations, but the modern staging system is continuously 

revised to provide details on other characteristics such as cancer biomarkers that include the 

profile/status of certain molecules that are altered in cancer tissues and clinical characteristics such 

as the location of tumour or age. These insights are integrated into the staging processes for various 

kinds of cancer, which makes it more reliable and useful to both doctors and patients. For example 

the recent inclusion of HER2 status was a result of a new Neo-Bioscore staging system, thereby 

allowing more precise prognostic stratification of all breast cancer subtypes . The addition of ‘Age’ 

in Thyroid cancer staging has also been reported to improve risk assessment. 

The heterogeneity associated with cancer is a major hurdle in the formulation of “cancer 

biomarkers”, as each cancer is comprised of multiple phenotypes and frequently responds 

differently to the same therapeutic intervention. This heterogeneity exists because of the aberrant 

behaviour of cancer cells, not just in different types of cancer, but even in same cancer type. In 

order to resolve this and persuade a “personalized medicine” approach, modern oncologists are 

actively seeking to develop a thorough understanding of the molecular processes that drive cancer. 

Biomarker development using genomic and proteomic data is now considered to be a superior 

means of carefully approaching the problem of cancer heterogeneity. This is largely achieved by 

a detailed study of data obtained from subcellular processes that drive oncogenesis. In this study, 

we focused on a prominent cellular pathway, Apoptosis, which has a strong and proven 

background in the growth and development of cancer. In the framework of genomic data, for the 



 iv 

particular case of thyroid cancer, we demonstrate that certain genes belonging to the apoptotic 

pathway are associated with patient survival. The elevation and suppression of mRNA levels of 

these genes may be responsible for an aggressive or a mild phenotype of thyroid cancer thereby 

affecting patient outcome. The proposed signature in a further analysis was shown to perform 

better than AJCC staging, for risk stratification purposes,. The identified genes also exhibit a 

differential expression between normal and cancerous tissue, suggesting their ability to distinguish 

between individuals with and without cancer. Further, it was shown that the application of a similar 

approach to a pan-cancer analysis revealed universal gene signatures that have prognostic 

significance across various cancer types. This is in contrast with the conventional cancer-specific 

biomarker development process. The study centred at identification of prognostic biomarker and 

devised a 11 gene panel that is applicable across 27 cancer types. Although, the panel’s efficiency 

is seen to differ among cancer types, a substantial stratification is achieved in all cases. In addition 

to this, the study provides a new cross cancer biomarker development approach and sheds light on 

a new gene signature that can be used in patients with brain or kidney cancer. In the area of cancer 

treatment and rehabilitation, the practical realisation of such versatile biomarkers poses enormous 

benefits. 

 

Gene expression profiling is a very accurate strategy for the understanding of cancer and its 

prognosis, but, in the context of signalling networks, the activity of these genes depends on their 

translation into functional proteins. Because fundamental protein families controlling the apoptotic 

pathway together with their roles are commonly known, an in-depth study of the proteomic profiles 

of different tissues retrieved from cancer diagnosed individuals is anticipated to enhance our 

comprehension of tumour pathogenesis, prognosis, and recognition of therapeutic targets. To this 

end, the analysis included a proteomic dataset with the expression profile of Bcl2 family proteins 

in the scope of colo-rectal cancer. Information from previous apoptotic pathway studies has been 

used to establish a predictive biomarker for the estimation of response to treatment in colorectal 

cancer patients. This research illuminated the synergistic function of proteins in conferring 

therapeutic “resistance” to colorectal cancer and the critical role of apoptosis. The prognostic 

power of the biomarker was compared to different clinical features and methods. The method was 

released into public domain by the means of a web-server, thereby enforcing its practical utility to 

both researchers and clinicians. 

However, a major problem with biomarkers focused on "omics" is that inclusion of these 

biomarkers makes staging processes more complicated, rendering them difficult for people to 
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understand. Thus, considering their outstanding success in cohort trials, most biomarkers have not 

yet been applied to the staging schemes. Therefore, our current research also examines the 

importance of numerous 'clinical factors/features' that collectively include pathological features, 

demographic characteristics, lifestyle-related features, anatomical characteristics, blood protein 

status (such as ER) in evaluating cancer patients' survival outcomes. Apart from the comprehensive 

assessment of clinical factors and their integration to the gene/protein signatures proposed above, 

we explicitly studied the case of "Melanoma" and looked at the prognostic power of genomic 

information pertaining to many cancer-associated pathways as well as clinical factors. We 

demonstrate that a prognostic model that incorportates only clinical factors is superior to the model 

focused on gene expression. This research also illustrates the significance of clinical factors for 

risk assessment. It shows how the schematic incorporation of existing clinical features into the 

staging process can be more successful. It also indicates that while omics-based biomarkers could 

be desirable due to their inherent biological correlation, clinical factors should not be undermined. 

On the basis of this pretext, the study is further expanded to the pan-cancer framework of designing 

risk prediction models by using only clinical factors. The clinical factors concerned include a wide 

variety of characteristics, ranging from inherent or heritable factors, different extrinsic risk factors, 

physiological features and surgical or therapeutic procedures used. The study established risk 

prediction models that are easy to apply and understand. Models were also evalauted against 

staging systems in various cancer cohorts. 

Overall, the study discussed in this thesis suggests some novel prognostic biomarkers and 

approaches for improved risk management in cancer patients. On the one side, the pipeline used 

in the analysis exploited a key cellular mechanism by using recent "omics"-based information. On 

the other hand, different clinical factors were examined both independently and in conjunction 

with proposed biomarker genes/proteins in regard to patient survival. The study discussed here can 

be useful for the development of better therapeutic modalities and thereby aid in the advancement 

of cancer research. 
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1.1 Cancer 
Cancer is the name of a group of more than a hundred diseases which share their fundamental 

origin in the malfunction of cellular machinery. Cellular organization of human tissues has made 

possible the creation of an unprecedented variety of anatomical designs. Most of this plasticity of 

architecture can be traced back to the fact that the human cells are endowed with great control and 

flexibility. Most forms of cells in the human body encapsulate a full human genome i.e. far more 

knowledge than any of these cells would ever need. Several cells maintain the capacity to expand 

and differentiate even after organism construction has been completed. The continued ability to 

proliferate and partake in tissue formation (morphogenesis) allows it to sustain adult tissues during 

the lifespan of the organism. Such maintenance may include the repair of defects and the 

reinforcement of cells that have suffered damage after long periods of action.  

 

At the same time, this mobility and autonomy pose a significant problem, in that individual cells 

within the organism may obtain access to information that is typically inaccessible to them in their 

genes and perform functions that are inadequate for the preservation and operation of normal 

tissue. Furthermore, their genomic sequences are vulnerable to manipulation by various 

Figure 1.1 The growth and progression of Cancer. Cancer cells (both benign and malignant) 
multiply abnormally as compared to normal cells. Malignant tumour cells invade other body 
parts while benign are localized. (Image by Cancer Research UK, CC BY-SA 4.0, via Wikimedia Commons) 
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mechanisms which modify the structure and, consequently, the information content of the genome. 

The resulting genetic mutations may redirect cells into the acquisition of new, often highly 

irregular phenotypes. Such modifications may be inconsistent with the standard roles of these cells 

in organismic function and biology. Modifications in cell growth and death programmes may be 

among these undesirable changes, and these may in turn contribute to the emergence of vast 

populations of cells that no longer follow the laws regulating natural tissue maintenance and repair. 

These rogue cells that form a ‘tumour’, also known as cancer cells, are the product of natural 

growth gone haywire. Cancer cells somehow learn to survive through exceptional precautions 

taken by the organism to deter their emergence. In creating the varied tissues that make organismic 

survival viable, normal cells are deliberately programmed to cooperate with each other. Cancer 

cells, on the other hand, have an agenda that is very different and more focused. They seem to be 

driven by only one consideration: creating more copies of themselves (Figure 1.1). Genetic 

alterations that lead to cancer appear to affect three major groups of genes—proto-oncogenes, 

tumour suppression genes, and DNA repair genes; which are primarily involved in controlling cell 

growth, repair and division processes. However, when these genes are altered in specific manner, 

they may become cancer-causing genes that cause cells to expand and survive when they are not 

permitted to do so. 

Cancerous tumours are often categorized as benign or malignant tumours. Tumours that are 

malignant, can migrate to or infect surrounding tissues. (Figure 1.1) Benign tumors, on the other 

hand, do not grow into, or enter, surrounding tissues. A cancer that has expanded from the location 

where it began to spread to another place in the body is termed as metastatic cancer. Treatment 

can help to extend the lives of certain patients with metastatic cancer. In general, however, the 

main aim of metastatic cancer therapy is to monitor or reduce the effects of cancer growth. 

Metastatic cancers can cause significant harm to the functioning of the body and are the leading 

cause of deaths. However, depending on the type of cancer, several health-related complications 

can arise even for non-metastatic or primary cancers, some of which can be life threatening. 

Further, there’s always a risk for metastatic growth due to the unpredictable nature of the cancer 

progression. Thus, clinical interference is inevitable for a cancer patient despite the intensity/extent 

of cancer. 
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1.2 Clinical management in Cancer 
Cancer is one of the leading causes of death in the world. Cancer prevalence has been observed to 

increase dramatically with age, meaning that three of every 100 individuals develop cancer every 

year above the age of 60. In the last 30 years, the incidence of cancer cases has grown by about 

one-third. Latest figures show that the number of cases is already increasing at a rate of almost 1.5 

per cent per year. It is estimated that proportion of the cancer-population over 65 would rise from 

16% in 2004 to 23% by 2030, further escalating the total incidence (Bray and Møller, 2006).  

The primary methods of treating cancer for many years have been surgery and radiotherapy. 

Controlling the primary tumour is a problem since it is responsible for major symptoms and health 

depletion of the patient. Also, failure to control the disease locally means certain death. As 

discussed in previous section, the most important cause of death is metastatic spread, which is the 

extension of the tumour of the cancer to other body parts. Therefore, early detection of cancer and 

treatment is vital. Once metastasized, it is almost difficult to treat the cancer patient. The prognosis 

in that case is not changed by the treatment of the primary tumour, although the symptoms can be 

mitigated. 

Cancer is a chronic illness, and much like all other chronic medical conditions, cancer patients 

have families, careers and other obligations. The target of modern healthcare system, therefore, is 

to cure cancer if possible and, if not curable, to manage symptoms in order to increase the quality 

of life and to extend the life of the person by a significant time. For example in elderly population 

which are more prone to risk of death, a more careful and precise care system is required. Cancer 

is continually handled in a multidisciplinary team environment to boost the result and reduce the 

morbidity. Some centres make recommendations on multidisciplinary tumour committees, and 

some centres have specialized multidisciplinary facilities. Multidisciplinary team members cover 

doctors, radiation and surgical oncologists/hematologists, palliative care specialists, radiologists, 

pathologists, general physicians, nurses and allied health professionals. While, the patient 

management in cancer is a complicated and cancer specific process, it can be categorized into three 

broad steps viz. screening and diagnosis, evaluation of tumor extent and risk, and treatment. These 

steps are explained in the following sections. 
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1.3 Screening and diagnosis 
The individuals which experience certain symptoms or difficulties along-with individuals who are 

at higher risk are often advised to undergo routine screening tests for different cancers. The goal 

of cancer screening is to allow the diagnosis earlier and thereby improve the survival rate. Highly 

responsive tests are important if the condition is curable at an early stage and if the effects of a 

false-positive result are not medically or mentally significant for patients. To cite some examples, 

smear test is a sensitive examination for cervical cancer and the diagnosis of cervical cancer can 

be readily confirmed by biopsy. Ultrasound and serum CA-125 screening is less sensitive but may 

prove to be of benefit for ovarian cancer. Breast, cervix and lung cancer are so prevalent at certain 

ages and in certain communities that screening is a realistic proposition. Clearly, the frequency of 

tumours must be high enough to warrant the screening programme. Table 1.1 lists the symptoms 

and currently used screening/diagnostic tests of a few prevalent cancers.  

 

Table 1.1 Some common symptoms and screening tests used for diagnosis of different cancers 

Cancer-type General symptoms Common diagnostic tests 

Breast cancer lump, blood discharge from the nipple, change 

in shape or texture 

mammography 

Cervical cancer bleeding, foul vaginal discharge, lower back or 

abdominal pain 

cervical smear 

Colorectal cancer abdominal pain, blood in stool, change in bowel 

habits, stool inconsistency 

faecal occult blood testing, rectal exam, 

flexible sigmoidoscopy 

Lung cancer cough with blood, chest pain, weight loss chest radiography, chest CT scan 

Ovarian and 

Uterine cancers 

abdominal pain, bloating, loss of appetite pelvic ultrasound, CA-125 

Skin cancer unusual growth or change in a mole self-examination 

Gastric cancer bloating, nausea, heartburn, indigestion radiological and endoscopic examination 

Prostate cancer difficulty in urination,  prostate-specific antigen (PSA) 

These initial screening tests, if positive, are followed by biopsies for further confirmation of 

cancer. There are very few situations under which the diagnosis of tumour is rendered in the 

absence of pathological validation, especially because screening tests have gotten less invasive 
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over the last few years. A clinical diagnosis exclusively (no biopsy) is most commonly made in 

the case of severe/advanced disease in a low performance patient, where anti-cancer treatment 

does not increase quality of life or longevity. Thus, the major proportion of patients are diagnosed 

with cancer confirmed by tissue pathology. For this, the most important point is the retrieval of 

tissue sample through the least invasive method. For example fine needle aspiration biopsy 

(FNAB) for examination of lymph nodes in patients with lung or abdominal mass. These least 

invasive techniques such as FNAB or core biopsy enable effective staging and treatment strategy. 

The second-most vital point which is specifically paid attention to is the amount of tissue which is 

collected from the patient.   

1.4 Risk evaluation and prognosis 
After the cancer is diagnosed, the tumour extent and related risk is estimated. While the general 

prognosis of malignant tumours is most often summarised by showing the percentage of patients 

surviving at 5 or 10 years of age, these estimates generally disguise a wide variance in survival, 

spanning from treatment to demise within a few months of diagnosis. The hunt for prognostic 

markers has drawn the interest of oncologists for several years. The aim is to classify those patients 

for which a treatment plan is likely to be effective (for example surgery) and, likewise, those with 

whom it is supposed to fail, normally due to tumour spread past the primary site that is evident or 

visible. A new approach needs to be taken for these patients. The following sections elaborate 

various techniques which are currently used and/or are topics of active research. 

 

1.4.1 Cancer staging: The TNM system 

One component of the evaluation of factors which affect prognosis of any particular patient is the 

staging of the magnitude of the disease at diagnosis. The main features of careful tumour staging 

are: (i) it should be a standardized way to document primary tumour characteristics (ii) it should 

provide an efficient prognostic estimate (iii) it should complement the biological understanding of 

tumor and (iv) it should assist in efficient treatment design and planning for a patient. Out of the 

various staging systems available, the TNM staging system of American Joint Committee on 

Cancer (AJCC) is the most widely used for solid tumours such as breast- 

 

 



 7 

 

 

 

-cancer, head and neck cancers and lung cancer. The AJCC’s TNM system is simple to grasp and 

draws attention due to its relevance in cancer prognosis. However, it has certain limitations in 

some cancers such as leukaemias and lymphomas, for which specialized systems exist. Table 1.2 

mentions various staging systems other than AJCC’s TNM. 

 

There are three major biological components involved in the AJCC TNM staging i.e. extent and 

size of localized primary tumour (T), spread to nearby lymph nodes (N) and distant metastasis 

(M). Each of these have further divisions, generally notated using numeric or alphabetical suffixes 

(such as T1a, M0 etc.). Although, the definitions vary according to the type of cancer, it broadly 

follows the rules given in Table 1.3. 

 

 

 

 

 

 

 

Table 1.2 Cancer staging systems excluding AJCC TNM. 

Staging system Details 

Ann Arbor Lymphomas; uses roman numerals I-IV and E,S 

Duke’s Colon cancer; similar to TNM, A-D for tumor spread, B & C have 

further divisions 

WHO-CNS Central nervous system; uses histological features 

FIGO Gynecological cancers; similar to TNM, Stage 0 doesn’t exist 

Cotsworld Lymphoma; modifications to Ann Arbor, Stage III with further 

divisions 

CIN Cervical intraepithelial neoplasia; staged in grades (I-III), caused by 

HPV 
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Table 1.3 The TNM staging rules. 

T Stage N Stage M Stage 

x -cannot be assessed x -cannot be assessed 0 -no metastasis 

0 -no evidence of primary 

tumour 

0 -no nodes 1 -distant metastasis 

observed 

is -in situ or localized 

tumour 

1-3 -increasing number 

implies increasing 

number of nodes and/or 

size of nodes 

  

1-4 -increasing number 

implies bigger size and 

degree of invasion in 

the organ 

    

 

 

 

 

After the TNM assessment a Stage (0-IV) is assigned, wherein increasing number is a 

representative of severity of the associated cancer with Stage IV being the deadliest and often 

incurable cancer stage. Figure 1.2 explains the staging process in melanoma (skin cancer) based 

on the tumour spread into the skin layers and beyond. The stages are often divided into further 

substages. A detailed staging process involving sub-staging in colon cancer is illustrated in Figure 

1.3. 
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1.4.2 Non-anatomical prognostic factors 
Apart from the information obtained from analyzing cancer spread associated parameters such as 

the ones involved TNM staging, various other factors are often considered in risk evaluation of 

cancer patients. These factors can be inclusive of clinical factors such as age, heritable genetic 

traits, genomic factors such as expression or mutation status of certain genes, concentration levels 

of certain proteins in blood or serum, environmental factors such as exposure to radiation to 

lifestyle related factors such as diet and smoking/drinking habit.  

Previous experiments have shown that cancer cells release certain substances in the blood, known 

as tumor markers, which are often used at a preliminary screening level. Another group of 

substances known as tumour biomarkers, on the other hand, are not directly expressed by tumour 

cells but show an altered level when compared with a normal body. These altered levels may 

indicate presence of tumour and are used at both diagnostic and prognostic levels. Some commonly 

used markers in cancer are: 

 

Figure 1.2 The AJCC TNM staging of melanoma of the skin. Here, a: without ulceration, b: with ulceration. 
(Source: biorender.com) 
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• Prostate-specific antigen (PSA): PSA is a protein in the blood whose levels are increased 

in prostate cancer. PSA levels are used, to determine how a patient has responded to 

therapy. They are also used to scan for recurrence of the tumour. However, only PSA test 

cannot confirm the prostate cancer diagnosis. 

 

• Alpha-fetoprotein (AFP): AFP levels can be measured via blood tests. A high amount of 

AFP is suggestive of liver cancer or germ cell tumors of the testes or ovaries. However, 

elevated AFP levels are also found in pregnant women and can also be caused by disorders 

such as chronic active hepatitis. 

 
 

• Human chorionic gonadotropin (HCG): An increase in hCG or b-hCG in blood is 

indicative of cancer in the liver, pancreas, testis, ovary, stomach and lung. It is also elevated 

during pregnancy and thus must be ruled out before.  

 

• Carcinoembryonic antigen (CEA): The most popular cancer in which this tumour 

indicator is used is colorectal cancer, although many other cancers, such as epithelial 

cancers, also exhibit an increase in its levels. 

 

• CA 125: Cancer antigen 125 (CA 125) is a protein in blood which is mainly associated 

with ovarian cancer diagnosis and management. CA 125 levels have been observed to be 

elevated in other cancers such as uterine, pancreatic, colorectal, breast and cervix.   

 

• CA 19-9: Cancer antigen 19-9 (CA 19-9) is a protein whose high levels are consistent with 

colon, lung, and bile duct cancers. Elevated levels of CA 19-9 can suggest advanced 

pancreatic cancer, but noncancerous disorders, including gallstones, pancreatitis, liver 

cirrhosis and cholecystitis, are also associated with it. 
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 Figure 1.3 The AJCC TNM staging in colon cancer. (Permission to use. For the National Cancer 
Institute © 2018 Terese Winslow LLC, U.S. Govt. has certain rights) 



 12 

Other markers which are prominently used for specific cancers include thyroglobulin (thyroid 

cancer), chromogranin-A (neuroendocrine carcinoma), neuron specific enolase (lung small cell 

carcinoma), lactate dehydrogenase (melanoma, lung cancer, germ cell cancers) and CA 15-3 

(breast cancer). Several genetic biomarkers/tests for cancer prognosis have also been proposed and 

some of them are in active use at a clinical level such as OncotypeDx (breast cancer), DecisionDx 

(melanoma) and Oncodefender-CRC (colorectal cancer). Much of these markers/biomarkers are 

used as adjunct tools for diagnosis, prognosis and management in cancer patients and they are not 

often relied on blindly due to their limitations. As a result, only a handful of these are included in 

the AJCC staging along with other factors (Table 1.4). The hunt for efficient cancer biomarkers is 

an ongoing process and demands multidisciplinary efforts. Further, AJCC staging principles are 

regularly updated to include novel prognostic factors and provided in AJCC staging manual (Amin 

et al., 2017). 

Table 1.4 Non-anatomical prognostic factors included in AJCC staging (2018) 

 

Cancer Prognostic Factor Test 

Melanoma LDH Blood test 

Prostate cancer PSA 

Gleason Score 

Blood test 

 

Breast cancer ER, PR, HER2 status 

OncotypeDx 

Genetic test (biopsy) 

Genetic test (biopsy) 

Testicular cancer LDH, HCG, AFP Blood (LDH/AFP/HCG) or urine test (HCG) 

Gestational 

trophoblastic 

neoplasms 

Risk Score Clinical factors (Monitoring of patient) 

Thyroid cancer Age Clinical factors (Monitoring of patient) 

Retinoblastoma Rb1 mutations Genetic test (tissue sample)  

Primary cutaneous 

lymphomas 

Peripheral blood involvement Peripheral blood smear test 

Oropharyngeal cancer p16/ HPV status HPV test (tissue sample) 

Gastrointestinal 

stromal tumour 

Mitotic rate Biopsy 
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1.5 Treatment 
Similar to any other treatment, the main aim of cancer treatment is to cure cancer in diagnosed 

patients. Wherever, this is not possible such as in late stage patients, the treatment often involves 

shrinking the cancer or deterring the cancer growth to allow the patients to have a longer life span 

which is symptom free. There are two major steps involved in cancer treatment: (i) Primary 

treatment which is focused on removal of primary tumour and/or killing of all the cancer cells. 

Surgery is the most common primary treatment, however, depending on the sensitivity of cancer 

cells to chemo or radiotherapy, those treatments may also be used. (ii) Adjuvant therapy wherein 

the main goal is to kill cancer cells that remain after primary treatment, so as to avoid cancer 

recurrence. Most commonly used methods involve chemotherapy, radiotherapy and hormone 

therapy. Figure 1.4 mentions the treatment options currently in practice and are explained in 

details below: 

 

• Surgery- The main aim of cancer surgery is to heal your cancer by extracting all of it from 

the body. Typically, the surgeon does this by cutting and removing the cancerous tissue 

Figure 1.4 Types of cancer treatment 
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while leaving the adjacent healthy tissue unaltered. In order to decide if the cancer has 

spread, the surgeon can even remove several lymph nodes in the region. This lets the doctor 

determine the likelihood that you will be healed, as well as the need for further care. For 

example mastectomy is the removal of a whole breast in the case of breast cancer surgery 

while lumpectomy is removal of a part of breast. Similarly, in lung cancer surgery, 

lobectomy is removal of a part of lung and pneumonectomy is the removal of whole lung. 

Surgery is often combined with other treatments such as chemo or radiotherapy. 

 

• Hormonal Therapy- Hormone therapy or hormonal therapy or endocrine therapy is a 

cancer therapy that delays or prevents the development of cancers that use hormones for 

growth. Hormone treatment can be divided into two broad classes, those that inhibit the 

body's capacity to generate hormones and those that meddle with the function of hormones 

in the body. Hormone therapy is most widely used to treat prostate and breast tumours that 

use growth hormones. It is also commonly used along with other cancer therapies. 

 

• Bone Marrow Transplant- For blood cancers such as lymphomas and leukemias, the 

target for both chemotherapy and radio therapy is often bone marrow. As a result, stem 

cells are damaged which causes a fall in production of healthy blood cells and leads to 

several health issues. To deal with this, stem cells are transplanted from a healthy donor. 

Donor stem cells restore the bone marrow and blood cell production. 

 

• Chemotherapy- Chemotherapy is a method of cancer treatment that involves drugs to 

destroy cancer cells. Chemotherapy operates by preventing or slowing down the 

progression of cancer cells that expand and multiply rapidly. Chemotherapy is used to treat 

cancer, minimize the risk that it will return or interrupt or slow down its growth. 

Chemotherapy is also used to reduce tumours that cause discomfort and other 

complications. Chemotherapy is performed in various ways, including oral, intravenous, 

infusion, intra-arterial, etc. 

 

• Radiotherapy- Radiation or Radio therapy is a method of cancer treatment that destroys 

cancer cells using beams of strong radiation. By disrupting the genetic material that 
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regulates how cells expand and differentiate, radiotherapy destroys cells. Although 

radiotherapy kills both healthy and cancerous cells, its purpose is to kill as few 

normal/healthy cells as possible. Much of the damage caused by radiation will also be 

healed by normal cells. The treatment is distributed over several weeks to allow this healing 

process. Examples of cancers sensitive to radiotherapy include lymphoma and seminoma 

of testis. 

 

• Immunotherapy- Immunotherapy is a form of cancer treatment that improves the body's 

natural defenses against cancer. It uses chemicals made by the body to enhance the way 

the immune system operates to detect and kill cancer cells. The immune system consists of 

a complicated mechanism used by the body to combat disease. This mechanism includes 

cells, organs, and proteins. Cancer can usually bypass many of the normal defences of the 

immune system, enabling cancerous cells to continue growing. Various forms of 

immunotherapies function in various ways. Some of these help the immune system to stop 

or slow the growth of cancer cells. Others help the immune system to destroy cancer cells 

or stop cancer from spreading to other parts of the body. Immunotherapy can be used alone 

or in conjunction with other cancer treatments. There are several forms of immunotherapy 

including monoclonal antibodies and tumour agnostic therapies (such as control point 

inhibitors), oncolytic viral treatment, T-cell therapy, and cancer vaccines. 

 

• Personalized Therapy- Personalized therapy or Precision therapy is a means for health 

care providers to provide and prepare personalised care for their patients, depending on the 

genes of the individual or the genes in their cancer cells. Precision therapy explores how a 

certain gene alteration/mutation could influence a person's likelihood of having cancer and 

how their genes could affect treatment. The method incorporates knowledge from genetic 

testing to help clinicians establish a treatment strategy that typically contains very detailed 

guidelines. Precision medicine can help allow a more precise diagnosis and improve 

recovery in some cases. In other cases, it can encourage people to make choices about 

healthier behaviours, early screening tests, and other protective measures whether they are 

at risk for a specific cancer. 
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1.6 Apoptosis in cancer: biological and therapeutic role 
As discussed above, cancer cells acquire certain capabilities through which they grow and survive. 

Out of the major hallmarks of cancer, evasion of apoptosis is one of prominent hallmark. A large 

number of recent advances in oncology are focused on developing chemotherapeutic drugs that 

kill cancer cells via induction of apoptosis. Apoptosis is a precisely regulated cell death event with 

distinctive genetic and biochemical mechanisms that play a crucial role in the growth and 

homeostasis of normal tissues. It leads to removing excessive and undesirable cells in order to 

maintain a healthy equilibrium between cell viability and cell depletion in organisms. Previous 

studies suggest that inadequate apoptosis can propagate as cancer or autoimmune disorders. 

Dysfunction of the apoptotic pathway not only facilitates carcinogenesis, but also makes cancer 

cells immune to treatment. 

Apoptotic cells show peculiar features during the apoptotic process. Usually, the cell starts to 

shrink after the cleavage of laminates and actin filaments in the cytoskeleton. The apoptotic 

degradation of chromatin in the nucleus frequently contributes to nuclear condensation. Cells 

further keep shrinking, packing themselves in a manner that requires macrophages to eliminate 

Figure 1.5 The pathways involved in apoptosis. (source: biorender.com) 
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them. These phagocytic cells (macrophages) are responsible for removing apoptotic cells from 

tissues in a neat and orderly way. In order to facilitate their phagocytosis, apoptotic cells also 

undergo changes in the plasma membrane that cause a macrophage response. One such 

modification is the translocation of phosphatidylserine from the interior of the cell to the external 

surface. The final stages of apoptosis are also indicated by the formation of membrane blebs or 

blisters.  

The key players of apoptosis are caspases, since they act as both executioners as well as initiators 

of apoptotic process. There are two major pathways that initiate the caspases: the intrinsic or 

mitochondrial pathway and the extrinsic pathway. Both of these lead to a common pathway 

involving executioner caspases. This is followed by cleavage of caspase-activated 

deoxyribonuclease inhibitor that is critical for nuclear apoptosis. In conjunction, downstream 

caspases cause cleavage of DNA repair proteins, protein kinases, inhibitory endonuclease subunits 

and cytoskeletal proteins. They also have an impact on the cell cycle related signaling pathways 

and cytoskeleton, which together lead to the expected morphological variations in cell death. The 

intrinsic pathway of apoptosis is a programmed mechanism within the cell through which various 

stresses are dealt with for example hypoxia, DNA damage that cannot be repaired, high oxidative 

stress etc. The apoptotic outcome in this pathway depends on the integrity of mitochondrial 

membrane, which, when disrupted results in the release of molecules which activate executioner 

caspases. The regulators of this pathway are mainly proteins of Bcl2 family which are divided into 

two groups i.e. pro-apoptotic and anti-apoptotic molecules. As the name implies, pro-apoptotic 

molecules cause the increase in mitochondrial membrane permeability whereas anti-apoptotic 

molecules obstruct this process. The extrinsic pathway on the other hand consists of specialized 

death receptors which are activated by certain (death) ligands. A subsequent activation of initiator 

caspases and thereafter executioner caspases then leads to cell demise. The mechanism is 

demonstrated in Figure 1.5 and a detailed explanation is provided in the next chapter. 

 

1.7 Origin of proposal and thesis objectives 

A lot of efforts have been invested in the past decades, to maneuver the apoptotic machinery in an 

anti-cancer direction. Several key regulators and their roles in this complicated mechanism have 

been elucidated. Briefly, it has been observed that certain components and parts of the apoptotic 

process are compromised in cancer cells due to which these damaged cells refuse to die and 
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propagate the damage into further generations. This current understanding of the apoptotic 

pathways has led to the development of drugs which target these crucial elements and restore the 

survival/death balance. Additionally, the altered levels or status of the apoptotic regulators are also 

utilized for cancer prognosis and risk prediction. However, there still remains the challenge for 

development of novel prognostic biomarkers/methods for risk evaluation of cancer patients. 

Additionally, due to the relevance of various clinical factors in cancer development and growth, 

these upcoming methods should integrate relevant features in order to complement the existing 

risk prediction systems or replace them entirely. The novel prognostic methods can be utilized for 

more accurate risk estimation and thereby effective therapeutic planning.  
In order to augment the knowledge regarding the role of apoptotic pathway in conjunction with 

clinical factors in cancer prognosis, the current studies aim to evaluate the prognostic strength of 

various apoptotic genes/proteins. This information is further used to develop models which could 

be utilized for risk evaluation in different cancers. Wherever possible, a comprehensive contrast is 

made between the clinical factors and expression-based models. The resultant models thus involve 

the most relevant features only. The in-silico models proposed in the study are intended to bear 

the following major characteristics: (a) They should be minimally invasive, (b) They should be 

cost effective, (c) They should be universal or applicable across many cancer types, (d) They utilize 

recent data and (e) They are serviceable to community in the form of free web-based service or 

mobile app. The study is broadly categorized according to the following objectives: 

 

(a) Development of proteomic data based prognostic models 

(b) Development of genomic data based prognostic models 

(c) Development of clinical factors-based prognostic models 

(d) Development of universal prognostic models 

 

1.8 Thesis organization 
The specific aim of this thesis involves a comprehensive analysis of apoptosis related molecular 

data (protein/gene expression) in the context of cancer prognosis. However, since traditional 

methods employ clinical data for risk prediction/staging in cancer, one cannot simply ignore their 

relevance. To address both these issues, our study delves into delineating the prognostic ability of 

both clincal and molecular data for various cancers. We specifically address three major cancer-
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types (i) Colorectal cancer: To illuminate the predictive strength of apopotosis related proteins in 

therapeutic decision making; (ii) Thyroid Cancer: The superiority of gene expression based 

prognostic models as compared to traditional methods; (iii) Melanoma: The conflicting case 

wherein expression based methods fail and clinical data based approach triumphs and (iv) 

Universal prognostic biomarker: Establishing a generic biomarker which can be applicable across 

a range of cancers. Overall, This thesis is organized into eight chapters containing the information 

as explained below: 

 

Chapter 1- Introduction to cancer and the fundamental biological understanding of the condition 

is presented. This is followed by the brief information about the clinical management pipeline 

currently used in the healthcare system and the relevance of risk evaluation procedures involved. 

Finally, the role of apoptotic pathway in carcinogenesis and cancer treatment is discussed. The end 

of this chapter emphasizes the need to study apoptotic mechanism in contrast to other c linical 

factors for identification of novel prognostic biomarkers and development of efficient risk 

prediction models. 

 

Chapter 2- This chapter presents a literature survey regarding the cancer biomarkers and the 

relevance of omics-based biomarkers in cancer management. It also highlights the importance of 

various clinical ‘risk’ factors associated with cancer. The apoptotic pathways are presented in 

detail and discussed in the context of biomarker discovery and treatment. Briefly, this chapter lays 

down the motivation behind the study. 

 

Chapter 3- Apoptosis related proteins have been widely associated with the prognosis of colorectal 

cancer in the past. This chapter covers a study, wherein, proteomic data related to intrinsic 

mitochondrial pathway proteins was utilized to develop a novel predictive biomarker for colorectal 

cancer patients. The proposed biomarker is evaluated against several clinical factors and a 

previously established biomarker. Ultimately, a web-based tool, which encompasses the proposed 

biomarker, is presented for risk prediction in colorectal cancer patients. 

 
Chapter 4- At the gene regulatory level, the mechanism of apoptosis is a sophisticated multi-level 

process involving a wide quantity of genes. Some of these genes are also part of other mechanistic 
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pathways. Since the apoptotic defect can arise at any of the several regulatory steps in this process, 

in this chapter, the genomic data corresponding to the complete apoptotic regulatory pathway is 

employed.  Thereafter the prognostic relevance of each of these genes is analyzed in the context 

of thyroid cancer.  Key genes are identified and validated through their published roles in thyroid 

cancer. Other validation studies such as differential expression amongst tumor and normal tissues 

as well as protein level expressions are also studied. The importance of clinical features and the 

benefit of integrating ‘age’ in the proposed genetic biomarker is also discussed. 

 

Chapter 5- In this chapter, a comparative analysis amongst the various cancer related pathways, 

including apoptosis, and clinical factors is investigated through the lens of “prognostic value” for 

the case of melanoma. Developed models are assessed for their predictive ability and, 

subsequently, the superior significance of clinical factors in melanoma prognosis is established. A 

novel risk grading method is proposed and compared against a popular tool. Ultimately, the usage 

and functionality of the web-resource and mobile application, which implements the proposed 

prognostic model is presented. 

 

Chapter 6- The major aim of this chapter is to extend the concept of chapter 4 to other cancers and 

utilize the information for developing universal prognostic models. A universal prognostic 

biomarker which is applicable across a variety of cancers can have a huge implication for the 

future. The chapter discusses the development of a 11-gene based biomarker and further proposes 

a strategy for development of cross-cancer biomarkers.  

 

Chapter 7- The penultimate chapter of this thesis discusses the role of various extrinsic and 

intrinsic risk factors in Cancer. Due to their major contribution in cancer risk and mortality, clinical 

features such as lifestyle related habits including smoking/drinking, age, gender, race, heritable 

factors, environmental exposure etc. need to be further explored in conjunction to existing staging 

system. However, due to the emergence of “omics” based biomarkers, these have been largely 

undermined and are a matter of consistent debate. This chapter focusses on mining the prognostic 

strength of various clinical factors and offers novel models for risk assessment in multiple cancers.  
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Chapter 8- This chapter concludes the thesis work with a brief outline of the work and its 

contribution to the field of Cancer.  

 

Github Repository 
A Github repository (https://github.com/raghavagps/Chakit_Thesis) is also provided with the 

necessary datasets and scripts. 
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2.1 Cancer: A global nuisance 
Cancer is the second leading cause of deaths worldwide, with around one in every six deaths in 

2018. In United States alone, 1806590 new cancer cases and 606520 deaths have been projected 

for the year 2020, in a latest report by American Cancer Society (Siegel et al., 2020). According 

to this estimation, Lung cancer is the major cause of deaths in both the sexes (23% in males and 

22% in females) while 10% of all the cancer related deaths in Males is due to Prostate cancer and 

15% of all the cancer related deaths in females is due to Breast cancer. Colo-rectal cancer is now 

the third leading cause of death in both the sexes followed by other cancers as opposed to its second 

rank in 2017 (Figure 2.1a), due to implementation of strict screening and prognostic procedures. 

The National Cancer Registry Programme report for the year 2020 also estimated a whopping 

1392179 cancer incidences in India (Mathur et al., 2020). While a lot of clinical efforts and ground-

breaking research has been responsible for the 29% overall decline of cancer deaths from the peak 

cancer death rate of 1991, the rates are still increasing, however, with a slower momentum. Figure 

2.1b shows the trend of increasing death rates after 1990. As per the data, the concern is very 

serious since a cancer mortality-free future is still unforeseeable. The WHO-GLOBOCAN 

database states that, owing to increased socio-economic growth, rates and types of cancer cases 

from developed countries are increasingly moving towards developing countries. Additionally, 

due to their geographical spread, there are certain different cancer forms and local risk factors for 

each region, such as dietary habits and environmental exposure, which also play a major role in 

the occurrence of new cancer cases. From these points, it is quite clear that cancer is a global 

burden, and there is an immediate need to design solutions to treat this disease to boost patients' 

life expectancy. 

 

2.2 Factors associated with risks of cancer 
Cancer is unpredictable and as a result, typically, it is not possible to determine precisely why one 

individual gets cancer and another person does not. But various studies and statistical tests have 

found that certain risk factors (hereby used collectively in the term ‘clinical factors/features’) 

strengthen the likelihood of an individual getting cancer. However, there are also factors that are 

associated with a lower cancer risk which are often referred to as protective risk factors or 

protective factors. 
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 Figure 2.1 The global mortality burden of Cancer. (a) Distribution by cancer types. (b) The death rate 
trend of various cancers. (source: http://ourworldindata.org/) 
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Cancer risk factors include proximity, as well as certain habits, to toxins or other compounds. They 

also involve factors, such as age and family history of cancers. Broadly the factors associated with 

risk of getting cancer or intensification of cancer can be divided into four major categories as 

shown in Figure 2.2 and explained below: 

 

2.2.1 Internal or Heritable factors 

Some forms of cancer tend to occur in some families. This could be because family members share 

some habits or conditions that raise the risk of cancer. Just about 5% to 10% of all cancers are 

directly caused by hereditary mutations inherited by the parent. Most family cancer syndromes are 

caused by hereditary mutations in tumour suppression genes. The most common examples of 

heritable cancers are HBOC or hereditary breast or ovarian cancer, Lynch syndrome and Li-

Fraumeni syndrome. HBOC is caused by inherited mutations in BRCA1 or BRCA2 genes (Grill 

et al., 2020; Hodgson and Turashvili, 2020; Yoshida, 2020). In addition to breast and ovarian 

cancer, this mutation may also lead to fallopian tube cancer, pancreatic cancer, primary peritoneal 

cancer, prostate cancer and male breast cancer, as well as other cancers. The most common 

hereditary syndrome that raises the risk of colon cancer in an individual is Lynch syndrome. It is 

caused by mutation in any of several genes for mismatch repair (MMR) such as MLH1, MSH6, 

PMS2 etc. (Sinicrope, 2018; Lynch et al., 2015). Li-Fraumeni is a rare inherited syndrome which 

Figure 2.2 The risk factors associated with Cancer. 
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can cause a number of cancers to develop. Inherited mutations in the TP53 gene, which is a tumour 

suppressor gene and CHEK2 gene which is involved in DNA damage repair, are most frequent in 

this disorder (Grill et al., 2020; Guha and Malkin, 2017; Correa, 2016). In their lifetime, 

individuals with this syndrome can develop more than one cancer. They also seem to have a higher 

risk from radiation therapy of getting cancer. 

 

2.2.2 Environmental or occupational exposure 

The environmental exposure basically involves exposures to radiation and other chemicals. Some 

major contributors to environment related cancer risk are air and water pollution, ionizing radiation 

such as X-rays and non-ionizing radiation such as UV rays. Air pollution has been claimed to 

increase the risk of lung cancer. The water treatment involves chlorination which is known to 

generate mutation-causing substances and thereby increase the risk of cancer for example 

genitourinary cancer (Koivusalo and Vartiainen, 1997; Mughal, 1992). The presence of arsenic in 

ground water is also presents a comparable risk (Christoforidou et al., 2013; Smith et al., 1992). It 

has been documented that ionizing radiation induces 1-3 percent of all cancers. In fact, radiation 

greatly raises the risk of leukemia, as well as breast, thyroid, bladder and lung cancer. In fact, the 

cancer patients treated with radiation are also at high risk of developing cancers and therefore 

radiotherapy is always assessed carefully. Ultraviolet radiation, and also magnetic and electrical 

fields, are involved in non-ionizing radiation. UV is mainly absorbed from sun-rays which induces 

cancers of the skin (Watson et al., 2016; Narayanan et al., 2010). Prolonged burning of the skin 

because of too much UV radiation, notably in childhood and youth, is the main cause of cutaneous 

melanoma. Fair-skinned, blue-eyed individuals with easily burnt and badly tanned skin are 

especially at risk. Occupational or work-related exposure mainly consists of individuals who are 

exposed to carcinogens, have a sedentary or low physical activity work life or are relatively more 

exposed to sun such as fishermen/seamen (Brown et al., 2012; Kerr et al., 2017). 

 

2.2.3 Unmodifiable demographic factors 

The unmodifiable risk factors of cancer contain factors like age, gender, ethnicity and socio-

economic level. As the name implies, these factors cannot be controlled or modified. Aging is 

linked with most cancers. The longer a human lives, the more likely it is that their cells will 

accumulate alterations that causes cancer. With age, cells' ability to resist and rebound from these 
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defects weakens. Age for example is included in the AJCC staging of thyroid cancer and is 

believed to a significant factor. There are substantial differences between male and female in the 

rates of cancers other than gender-only cancers (such as breast cancer and prostate cancer) (Kim 

et al., 2015; Donington and Colson, 2011). For example the age-adjusted laryngeal cancer 

morbidity in males, for example, is almost ten-fold relative to females. Melanoma is a prime 

example of ethnicity/race associated cancer, since skin color is directly associated with melanin 

and thereby melanocytic tumours (Gloster and Neal, 2006). 

 

2.2.4 Modifiable lifestyle factors 

Unlike the demographic factors, the lifestyle related factors such as diet, living habits, physical 

activity etc. are completely under control of the individuals. The single most significant factor in 

rising cancer risk is the consumption of tobacco products (Sasco et al., 2004; Loeb et al., 1984; 

Samet, 2013). The risk of contracting lung cancer is directly correlated with the age people start 

smoking along-with the daily amount. The consumption of heavy drinking also raises cancer risk 

and induces some apparent health issues (Boffetta and Hashibe, 2006; Braillon, 2018). It is 

considered that diet has the greatest effects on the risk of gastric, breast and lung cancer (Kerr et 

al., 2017; Grosso et al., 2017; Key et al., 2020). Cancer tissue requires energy and minerals, so 

diet can have an effect not only on cancer formation, but also on its development. The risk of 

cancer can be raised by consuming processed meat. Numerous studies have found the link between 

physical exercise and the prevention of cancer (Kerr et al., 2017; Brown et al., 2012). Scientific 

evidence has accrued that physical exercise is especially protective against cancer of the breast, 

prostate, endometrium and colon. The cancer preventive impact of physical activity can be 

enhanced by fast exercise multiple days a week. 

 
2.3 Cancer Biomarkers 

Cancer biomarkers are biological molecules made in response to the tumour by either the tumour 

cells or any other body cells. These  molecules are often used in risk estimation, as a diagnostic, 

prognostic or predictive indicator of a patient's outcome. Table 2.1 lists the FDA approved 

biomarkers for various cancers. The subpopulations of patients which are most likely to respond 

to a given therapy can also be identified by cancer biomarkers (Goossens et al., 2015). Biomarkers 
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may include chromosomes, gene products, particular cells, chemicals, enzymes, or hormones that 

are measurable in the blood, urine, tissues,  

Table 2.1 The list of FDA approved cancer biomarkers 

Biomarker Cancer Utility 
Prostate-specific antigen (PSA)  Prostate cancer Screening, Diagnosis 
Carbohydrate antigen 125 (CA125)  Ovarian cancer Diagnosis, Prognosis, 

Predictive 
Carcinoembryonic antigen (CEA)  Colorectal/hepatic cancer Prognosis, Predictive 
Carbohydrate antigen 15.3 (CA 15-3)  Breast cancer Predictive 
Estrogen, progesterone receptors (ER and PR)  Breast cancer Predictive (Hormonal therapy) 
HER2 Breast cancer Predictive (Traztuzumab 

therapy) 
Carbohydrate antigen 27.29 (CA27.29)  Breast cancer Predictive 
Human chorionic gonadotropin-β (HCG-β)  Testicular cancer Diagnosis, Staging, Predictive 
Alfa-fetoprotein  Hepatocellular carcinoma Diagnosis, Predictive 
Calcitonin Medullary thyroid carcinoma Diagnosis, Predictive 
Thyroglobulin Thyroid cancer Predictive 
CA 19-9 Pancreatic cancer Diagnosis 
Nuclear matrix protein 22 (NMP-22)  Bladder cancer Screening, Prognosis 
Prostate cancer antigen 3 (PCA3)  Prostate cancer Prognosis 

or fluids of the body (Rhea and Molinaro, 2011). In certain patients with a particular form of 

cancer, genetic modifications in cancer cells, including point mutations, gene rearrangement or 

amplification, and resulting disruptions of cell division and proliferation are manifested by the 

release of biomarkers of those alterations. These can be used as biomarkers for the diagnosis of 

cancer or for forecasting reactions to different therapies (Sidransky, 2002; Vogelstein and Kinzler, 

2004; Weissleder and Ntziachristos, 2003). Apart from screening biomarkers, which were covered 

in the last chapter, the major types of cancer biomarkers are explained below: 

2.3.1 Diagnostic biomarkers 

A diagnostic biomarker is used to identify individuals who have cancer. In comparison to a 

screening biomarker that would be applicable exclusively to symptomatic people, a diagnostic 

biomarker would be used only for asymptomatic cases. Interestingly, the properties of an optimal 

biomarker for diagnosis are identical to those for screening. Notably, most well-established 
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screening biomarkers could be used as diagnostic markers and PSA is a well-recognized example. 

The most widely used screening technique for prostate cancer is PSA paired with a digital rectal 

exam. Presently used cancer biomarkers have poor diagnostic sensitivity and specificity in contrast 

to the higher sensitivity expected from a good diagnostic biomarker (Pavlou et al., 2013). For 

example, one of the best and most well-established diagnostic markers of multiple myeloma 

remains the Bence-Jones protein in urine (Kulasingam and Diamandis, 2008). However, some 

biomarkers have proven useful in verifying diagnosis, often in combination with other biomarkers. 

These have been used, in particular, to classify primary tumours with uncertain primary and/or 

other clinical imaging methods in metastatic cases. These combinations are known as biomarker 

panels or signatures (Henry and Hayes, 2012). For example Mor et al. (Mor et al., 2005) stated in 

2005 that a panel composed of four biomarkers  (prolactin, osteopontin, leptin, and insulin-like 

growth factor 2) had a 95 percent sensitivity and a 95 percent specificity for ovarian cancer 

diagnosis jointly. In a further study, by addition of two more biomarkers to this panel (CA-125 

and macrophage inhibitory factor), the specificity was shown to increase to 99.4% (Visintin et al., 

2008).  

 

2.3.2 Prognostic biomarkers 

Prognosis is the likelihood of any patient's treatment or possible future. At the time of diagnosis, 

a prognostic marker is a patient trait attribute irrespective of therapy; thus, a prognostic marker 

will provide details about the disease's likely outcome. The degree of increase in prognostic 

biomarker levels typically represents tumour burden, thus higher biomarker elevation reflects poor 

prognosis and vice versa. Prognostic biomarker can also be used in the staging system for cancer 

or the grouping of tumor-node-metastasis (TNM). For example very high levels of biomarkers 

such as AFP, LDH, and HCG-β can suggest advanced cancer with grim prognosis and result in 

testicular cancer, so that such biomarkers could be used for staging in the TNMS system with a 

site-specific prognostic factor (Szymendera et al., 1981). A widely used prognostic and predictive 

biomarker is Estrogen receptor (ER) for breast cancer patients. ER positive patients have a good 

prognosis as well as respond to selective ER modulators and inhibitors. On the other hand, ER 

negative patients have a poor prognosis and also do not respond well to hormonal therapy (Duffy, 

2005). In the same context, Progestrone receptor (PR) and HER2 levels are often used for their 

prognostic and predictive value in breast cancer patient management (Burstein et al., 2001).  
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2.3.3 Predictive biomarkers 

The response to numerous therapeutic procedures is often assessed by utilizing a predictive 

biomarker; hence, a predictive biomarker is the fundamental ‘term’ for personalised medicine 

(Pavlou et al., 2013). Predictive biomarkers are used in therapeutic monitoring, in patient follow 

up procedures and in assessing tumour recurrence or metastasis likelihood. Much before the 

availability of the clinical or radiological evidence of cancer recurrence, it may be biochemically 

identified by increasing predictive biomarker levels. Continued follow-up during and after therapy 

for cancer patients may reflect their condition if biomarker levels have not been elevated or stay 

at baseline, suggesting effective therapy or remission. The elevation in the level of biomarker 

above the basal level, on the other hand, suggests disease recurrence. Before all other diagnostic 

approaches, a predictive biomarker may be a warning indicator of recurrence about as early as 3–

12 months. Many biomarkers, such as CEA in CRC cancers, CA125 in ovarian cancers, or PSA in 

prostatic cancer, may be used to control treatment or diagnose recurrence or metastasis 

(Kretschmer and Tilki, 2017). As a screening marker for pancreatic cancer, CA19-9 was approved 

by the FDA in 2002 (Luo et al., 2020).  

 

2.4 ‘omics’-based biomarkers and genetic tests 
The emerging area of precision medicine in cancer relies on the information provided by a recent 

field known as ‘omics’ which involves several related areas such as genomics, proteomics, 

transcriptomics, metabolomics etc (Ielapi et al., 2020). The contribution of genomics-which 

studies the whole genome- and proteomics-which studies the protein repertoire-to precision 

medicine has gained the greatest share of coverage since the success of the Human Genome 

Project. Omics tools are high-throughput techniques that generate vast quantities of data about 

molecules of interest. Examples include next-generation sequencing, for genomics and 

transcriptomics research, and mass spectrometry used in proteomics. The omics technologies have 

contributed significantly in the identification of relevant biomarkers in cancer (Olivier et al., 

2019). The data retrieved from omics techniques are analyzed to determine biomarker role in 

specific cancer occurrence, or in cancer prognosis, or in assessing the response to a particular 

therapeutic intervention. The ability to generate a thorough disease characterization makes it easier 

to stratify patients into well-defined personalised management and treatment classes, which is the 
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cornerstone of precision medicine. Various genomics based biomarkers have shown excellent 

performance in different cancer cohort studies (Quezada et al., 2017). Some of these are 

commercially available as ‘genetic tests’ and are increasingly being used at the clinical level. Few 

prominent examples include OncotypeDX (colon cancer), Prolaris (prostate cancer), Melagenix 

(melanoma), Mammaprint (breast cancer), SPOT-Light HER2 CISH (breast cancer), ImmunoCyt 

(bladder cancer), MESOMARK (mesothelioma), OvaSure (ovarian cancer), HybriTech (prostate 

cancer) etc (Ebell, 2019; Brandao et al., 2019; Mian et al., 1999; Beyer et al., 2007; Kretschmer 

and Tilki, 2017). 

 

2.5 Cancer management through survival curves 
When an individual is diagnosed with cancer, he/she is often presented with a survival estimate 

depending on the stage of the disease. This is typically assessed by means of a survival plot, 

wherein in the outcome of a patient population is shown in terms of curves (Rich et al., 2010). The 

likelihood of survival in 5- or 10-years is the most common retort from a survival plot. A similar 

graph is also utilized to discuss the efficacy of a treatment. It is therefore important to understand 

how the survival curves are obtained as well as represented. A survival curve is a plot of the 

fraction of patients as a function of time. Thus, the vertical axis represents the survival chance and 

the horizontal axis is the time to a certain event such as time to death (overall survival) or time to 

disease relapse (disease free survival). Figure 2.3 illustrates a typical survival plot wherein two 

Figure 2.3  Survival curves for patient management in cancer 
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population groups A and B are segregated based on the stratifying condition, S. Survival plots are 

heavily used for assessment of biomarkers and risk factors in a specific cancer population. 

However, they can also be used amongst groups with different pathological conditions such as two 

different cancer types.  

 

2.6 Apoptotic pathways 
A comprehensive knowledge of the mechanism of Apoptosis is vital to understand the 

pathogenesis of cancer and other conditions. This understanding, subsequently helps in the 

identification of key molecules, thereby motivating development of novel biomarkers and/or drugs 

that target these molecules. As discussed in the earlier chapter, the most central players in apoptotic 

process are caspases (Li and Yuan, 2008). Caspases by their function as both initiators and 

executioners drive the cell death events, in response to certain extra-cellular or intra-cellular 

stimuli. There are two major pathways through which the initiation of caspases takes place (a) the 

intrinsic or mitochondrial pathway and (b) the extrinsic or death receptor pathway. Both of these 

pathways converge to a conjoint pathway known as the execution pathway that ultimately activates 

the executioner caspases (caspase 3/7) and lead the cell to its demise. Details regarding both these 

pathways is given in the following sections. 

 

2.6.1 The intrinsic or Mitochondrial apoptotic pathway 

As the name implies, this pathway is activated due to various intra-cellular stresses such as 

oxidative stress, radiation, DNA damage etc. The quintessential event for intrinsic apoptosis to 

take place is the loss of mitochondrial membrane’s integrity also known as MOMP (mitochondrial 

outer membrane permeabilization) (Kim, 2005). MOMP leads to the release of mitochondrial 

cytochrome-c into the cytosol which binds with APAF1 to form a ring-shaped complex known as 

Apoptosome (Yuan and Akey, 2013). Apoptosome provides a platform for pro-caspase 9 to 

caspase 9 conversion, which subsequently activates caspase 3/7 and steers the cell to its fate (Jin 

and El-Deiry, 2005). The regulation of this process is managed by Bcl2 family of proteins which 

are divided into two classes: pro-apoptotic proteins and anti-apoptotic proteins (Reed et al., 1996). 

Pro-apoptotic proteins such as Bax and Bak,,when activated, locate themselves to mitochondrial 

membrane and cause mitochondrial pore formation. The anti-apoptotic proteins such as Bcl2, Bcl-

XL and Mcl1, on the other hand, inhibit pro-apoptotic proteins by binding to them (Ghobrial et 
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al., 2005). There is a specific category of pro-apoptotic proteins known as BH3 only proteins such 

as Bid, Bim, Puma, Noxa etc. which sense the death stimuli and activate Bax/Bak. Yet another 

class of proteins exist, known as inhibitors of apoptosis (IAPs) which inhibit the activity of 

executioner caspases and prevent cell death (Elmore, 2007). A common example is XIAP. 

However, mitochondrial proteins such as SMAC/DIABLO are known to neutralize IAPs. An 

illustration of this process is shown in Figure 2.4. The aim of any cancer therapy that targets the 

intrinsic pathway is to cause MOMP and induce death of cancer cells. This is often achieved by 

restoring the dysregulated balance between constitutive proteins. Additionally, the measurement 

of protein levels of this pathway can also act as a potential biomarker (Scherr et al., 2016; Charles 

and Rehm, 2014; Zeestraten et al., 2013).  

 

Figure 2.4 Detailed mechanism of pathways involved in the process of apoptosis 
(source: biorender.com) 
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2.6.2 The extrinsic pathway 

Contrary to the intrinsic pathway, the extrinsic pathway is triggered via extrinsic death stimuli or 

extracellular death ligands such as FASL (FAS ligand) or TRAIL (TNF-related apoptosis-inducing 

ligand) in response to extra-cellular environment. These death ligands are recognized by 

specialized receptors present on the surface of the cell known as death receptors or DRs For 

example FASL is recognized by FAS (or Apo1) and TRAIL is recognized by TRAIL-R. The 

process involved in extrinsic pathway of apoptosis is well-established in many of the previous 

studies (Elmore, 2007; Jin and El-Deiry, 2005; Guicciardi and Gores, 2009). Upon binding to DRs, 

a DISC or death inducing signaling complex is formed. DISC is a complex which involves proteins 

such as FADD (DD-containing Fas-associated death domain), procaspases 8/10 and cFLIPS 

(cellular FLICE inhibitory proteins) (Bredesen et al., 2006). The procspases 8,10 are cleaved to 

their activated caspase forms leaving their pro-domains on the DISC. The activated caspases 

thereafter trigger the executionary caspases 3,7 leading to apoptosis. Caspase 8 is also responsible 

in truncation of Bid to its activated form tBID which then activates the pro-apoptotic molecules 

Bak/Bax thereby leading to MOMP. Figure 2.4 clearly represents this process. 

 

2.7 Apoptosis related molecules as cancer biomarkers 
Cancer is a highly complex cluster of ailments that represent fundamental anomalies that alternate 

with natural cell activity including abnormal cell growth and expansion. The biological 

mechanisms for the development of cancer are generally classified into six processes: proliferative 

signalling, preventing growth suppression, resistance to apoptosis or cell death, allowing 

replicative immortality, causing angiogenesis, and finally initiating invasion and metastasis 

(Hanahan and Weinberg, 2000). The identification and development of novel cancer biomarkers 

and their increasing therapeutic efficacy in cancer patients can be attributed to a detailed 

understanding of the altered molecular pathways and cellular processes driving carcinogenesis. 

Amongst these mechanisms, apoptosis is the most widely studied, which has led to the 

identification of several key molecules. These molecules have been identified as biomarkers in 

various cancers. We use the database CIViCmine (Lever et al., 2019) to mine the information 
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regarding the role of different apoptosis related genes in biomarker development. Figure 2.5a 

shows the role of some major genes as prognostic, predictive and diagnostic biomarkers in various 

Figure 2.5 The role of apoptotic genes as cancer biomarkers. (a) Figure showing the distribution of roles as 
prognostic, predictive and diagnostic biomarker across various cancers. (b) The number of publications reporting the 
biomarker role of the specific gene. (data source: CIViCmine database ) 



 36 

published studies across different cancers. Figure 2.5b reports the number of published studies 

which report these findings. From these results, it is quite clear that the role of Bcl2 as biomarker 

has been reported the highest number of times with half of the studies mentioning it as a prognostic 

biomarker. Amongst the pro-apoptotic genes, Bax is seen to be the most reported molecule with 

majority of the studies mentioning it as prognostic biomarker. Several researchers have also 

claimed that Bcl2/Bax ratio is an effective indictor of cancer prognosis (Vucicevic et al., 2016; 

Csuka et al., 1997). Apart from this, a number of studies have also looked at the protein expression 

profile of apoptosis related molecules and associated their levels with cancer risk. Some recent 

examples include association of Caspases 3/6, XIAP and APAF1 with patient survival in 

Melanoma (Charles and Rehm, 2014); the expression of Bcl2, Fas/FasL and TRAIL as prognostic 

biomarkers in colorectal cancer (Zeestraten et al., 2013); the expression of BIK as biomarker for 

tumor recurrence in gastric cancer (Pandya et al., 2020); MCL1 expression in lung cancer (Nakano 

et al., 2020) and other molecules of signalling pathway (Bai et al., 2011; Ding et al., 2020; Zeng 

et al., 2019; Ma et al., 2019).  

 

2.8 Apoptosis as target in cancer therapy 
Each impairment or anomaly along the apoptotic mechanisms can also be an important focus of 

cancer therapy. Drugs or therapeutic methods that can revert the pathways to normality of 

apoptotic signalling have the ability to kill cancer cells, which depend on these defects to remain 

alive. Several recent and substantial results have opened new doors to possible new types of anti-

cancer therapies. The use of chemotherapeutic drugs to block the Bcl2 family of anti-apoptotic 

proteins and the silencing of upregulated proteins or genes involved are several possible treatment 

methods. The first agent targeting Bcl2 to enter clinical trials was Oblimersen sodium. Examples 

of drugs that affects expression of Bcl2 family of proteins include ABT-737, ABT-263 and GX15-

070. The BH3 mimetics, so called because they imitate the binding of these proteins to the Bcl2 

protein hydrophobic groove, are another class of drugs. In animal models with a high percentage 

of cures, these mimetics have been shown to induce regression of existing tumours. For example 

ABT 737 has been shown to bind with Bcl2, BclXL and BclW and inhibit their function. It has 

also been stated that other BH3 mimetics, such as ATF4, ATF3 and NOXA, bind to and inhibit 

Mcl-1. Apart from this, some experiments have shown that an improvement in apoptosis could be 

accomplished by silencing genes coding for the Bcl-2 family of anti-apoptotic proteins. Silencing 
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Bmi-1 in MCF breast cancer, for example, was shown to make the cancer cells more vulnerable to 

doxorubicin. Further, the most potent apoptosis inhibitor of all IAPs has been reported to be XIAP. 

Antisense methods and short interfering RNA (siRNA) molecules are some of the experimental 

therapies targeting XIAP. Using the antisense method, XIAP inhibition is documented to result in 

increased in vitro radiotherapy regulation of tumours. XIAP antisense oligonucleotides have been 

shown to  

show elevated chemotherapeutic function in lung cancer cells if used simultaneously with  

anticancer drugs. Lastly, several therapeutic agents have been developed to activate caspases  

 

Table 2.2 The list of drug molecules that target apoptotic pathway. 

 
Drug Alias Target Used in 

combination with 
Benefactor Cancer/condition 

ABT263 - Bcl2 family erlotinib/irinotecan Abbott Solid cancers 
ABT263 - Bcl2 family docetaxel Abbott Solid cancers 
ABT263 - Bcl2 family paclitaxel Abbott Chronic lymphocytic 

leukaemia 
ABT263 - Bcl2 family - Genetetch Chronic lymphocytic 

leukaemia 
AT101 Gossypol Bcl2 family - Roswell park cancer 

institute 
Chronic lymphocytic 
leukaemia, Chronic B-cell 
leukaemia 

AT406 - IAPs - Ascenta Solid cancers, Lymphoma 
AT406 - IAPs - Ascenta Acute myelogenous 

leukaemia 
ENZ3042 - IAPs - Therapeutic advances in 

childhood leukaemia 
consortium 

Acute, childhood, T cell 
lymphoblastic leukaemia 

GX15070MS Obotoclax Bcl2 family - Children's oncology 
group 

Leukaemia, Lymphoma 

GX15070MS Obotoclax Bcl2 family - Arthur G James cancer 
hospital and Richard J 
Solove research institute 

Lymphoma 

HGS1029 - IAPs - Human Genome 
Sciences 

Solid cancers 

HGS1029 - IAPs - Human Genome 
Sciences 

Solid cancers 

LCL161 - IAPs - Novartis Solid cancers 
RO5458640 - TWEAK 

ligand 
- Hoffmann-La Roche Solid cancers 
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synthetically. For example Apoptin, originally derived from the chicken anaemia virus, is a 

caspase-inducing agent. In some trials, caspase-based gene therapy has been attempted in addition 

to caspase-based drug therapy. It was observed that the effects of this therapy caused significant 

apoptosis and reduced the volume of the tumour. Table 2.2 lists some molecules that are 

undergoing/completed clinical trials and target apoptosis. 
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3.1 Introduction 

Large bowel cancer or Colorectal cancer (colon and rectum) is one of the most lethal cancers with 

the second largest death rate amongst all cancers in the west. According to the latest colorectal 

cancer statistics provided by the American Cancer Society (Siegel et al., 2020), in US alone, 

around 147,950 incidences and 53,200 deaths are estimated for the year 2020 which includes 3,640 

deaths in people with age less than 50 years. It is also observed that while incidence and mortality 

rates have shown a decline in the age group of more than 50 years, an increase in both these rates 

has been seen for individuals with age less than 50 years. Globally, around 10% of all the deaths 

due to various cancers have been attributed to colorectal cancer, for the year 2020 (Global Cancer 

Observatory). Also, amongst the number of deaths due to colorectal cancers, Asian countries 

account for the maximum number of deaths. The number of incidences also follow a similar pattern 

(Figure 3.1). The GCO database from WHO provides updated fact-sheets about information 

regarding country-wise incidences and mortality rates based on sexes and age groups. The cause 

for this geographic disparity has generally been associated with diverse dietary habits across the 

world as well as distinct environmental exposures. Other lifestyle related factors (such as physical 

Figure 3.1 Global incidence and mortality rates of colo-rectal cancer (Data source: GCO,WHO) 
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activity, obesity, alcohol intake and smoking) have also been reported to play an important role in 

CRC development and progression.  

Once the individuals encounter some specific symptoms such as rectal bleeding, vomiting, 

obstruction, pain etc. related to different colon or rectum sites (Figure 3.2); they are advised by 

the doctors to undergo certain screening procedures for CRC detection. Detecting CRC at its 

earliest stage provides the greatest chance for a cure. The most common screening procedures used 

currently include faecal occult blood testing, digital rectal examination and sigmoidoscopy. 

Screening has been shown to reduce the risk of mortality due to CRC, however, clinicians 

generally recommend people with an average risk of CRC begin screening around age 

50. Screening is followed by staging for which Duke’s staging method is most widely used and 

information regarding other prognostic factors such as degree of penetration of the primary 

tumour, lymph node involvement, resection margins, vascular or lymphatic invasion and large-

bowel obstruction is also considered. Once the cancer extent is established, patients undergo 

various treatment procedures depending on their situation and health. For early stage CRC patients 

surgical resection procedures such as polypectomy, laparoscopy, endoscopic mucosal resection 

Figure 3.2 The parts of colon and rectum  

(Image from https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm, CC BY-SA 4.0 via 
Wikimedia Commons) 
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and partial colectomy are employed. For advanced stages, surgery is either followed by 

chemotherapy or vice-versa.  

Chemotherapeutics are the class of drugs which target specific cellular targets and destroy cancer 

cells. Mainstay chemotherapeutics for CRC treatment include 5-FU, oxaliplatin and irinotecan. 

While, the ongoing advancement in the field of genomics is leading the development of novel 

chemotherapeutics, the success rate of these chemotherapeutics is not at par. The failure of a 

therapy adds to both health (due to toxic side effects of chemotherapy) and financial burden on the 

lives of the patients. As a solution this problem, modern clinicians usually evaluate the therapy’s 

success/failure rate based on certain biomarker levels in the patient’s body. Several of these 

predictive biomarkers have been previously established (Lee and Chan, 2011; Koncina et al., 

2020) for CRC. Predictive biomarkers measure the likelihood of response or lack of response of a 

particular therapy, and allow identification of patients most likely to benefit from a given 

treatment, thus sparing other patients from toxicities of ineffective therapies. These biomarkers are 

majorly molecules associated with biological conditions or processes that are inconsistent amongst 

cancer and non-cancer population. One such condition is dysregulated cell death or apoptosis 

process in cancer. The insights achieved from understanding the apoptosis process in cancer has 

shed light on the variation in the expression of Bcl2 family proteins, its role in tumorigenesis and 

prognosis (Yang et al., 2009; Stoian et al., 2014; Liao et al., 2018; Yi et al., 2016; Li et al., 1998). 

A recent mathematical study, involving the proteins of mitochondrial type 2 pathway, has also 

proposed a predictive biomarker for therapy response in CRC (Lindner et al., 2013; Andreas U. 

Lindner et al., 2017). 

In regard to this, the current study utilized a dataset containing Stage III CRC cohort of patients 

which have undergone Xelox and Folflox chemotherapy regimens. Both Xelox and Folflox are 

oxaliplatin based drugs used for advanced stage patients. Oxaliplatin is known to cause DNA 

damage in colon/rectal cancer cells, thereby inducing Bax translocation to mitochondrial 

membrane and ultimately resulting in cell demise. However, the crucial balance between the pro-

apoptotic and anti-apoptotic proteins can be a decisive factor for the efficacy of these 

chemotherapy regimens. The failure of these regimens can lead to a huge burden on patients in 

termns of toxic side effects and a significant loss of resources. The prediction of therapy outcome 

can be a huge development in the CRC patient management. Since, the therapies are mainly based 
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on protein function, the prediction method needs to be developed on protein expression data. This 

method should further encompass the intricate proapoptotic-anitapoptotic balance. In this study, 

we gauged the predictive potential of expression of proteins from the Bcl2 family in stratifying 

patients into high risk (non-responder) and low risk (responder) groups. By means of various 

statistical and machine learning models, we established a protein signature which can be used to 

predict the response of Xelox/Folflox chemotherapy and provided a comprehensive comparison 

with clinical factors and another popular biomarker. We developed a web-based tool, to provide 

service to the community,  which can be utilized by clinicians for classifying patients into risk 

groups. Further, by utilizing an external web-based tool, we show that the Bcl2 protein expression 

data can also stratify stage III colon and rectal patients into high/low risk groups beforehand.  

3.2. Materials and methods 

3.2.1 Dataset and pre-processing 

The 'CRC stage III cohort' dataset used for this analysis was derived from (Andreas U. Lindner et 

al., 2017). The dataset was retrieved by permission from the authors on 24th Sept 2018. It includes 

information from primary tumour samples of Formalin-fixed paraffin-embedded (FFPE) from 134 

subjects treated with FOLFOX and XELOX therapy regimens.  In particular, it comprises of Bcl2 

family protein levels in Nano-Molar (nM) retrieved by reverse-phase protein array (RPPA). 

Additionally, the dataset also provides full clinical details such as overall survival (OS) time, 

censoring information, lympho-vascular invasion, M staging; gathered from patients’ medical 

surveillance. The data was normalized prior to further analysis. This dataset (n=134) was further 

used to compare the model developed in this study with a previous model DR_MOMP as applied 

to the same dataset 

 

3.2.2 Model development and conceptualization of ‘Risk Score’ 

Multiple linear regression (MLR) models using Python's sklearn package (v0.20.3) have been 

applied to fit protein expression levels with the OS time. Ordinary least squares, Lasso regression,  

Ridge regression, Lasso-Lars regression, Bayesian ridge regression and Elastic-net regression 
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models are the approaches used to approximate the regression coefficients. The model training and 

test evaluations were executed out by means of a five-fold cross-validation procedure.  The 

incorporation of all “five” predicted test datasets (predicted OS) was utilized to categorise the 

actual survival time (OS) at mean/median cut-offs using Cox survival analysis. Coefficient 

optimization and regularisation have been accomplished using built-in approaches such as 

RidgeCV, LassoCV, LassoLarsCV, etc. 

We also implemented a parameter optimization technique, wherein, the coefficients (w) of the sum 

β defined (for a given sample) as 

β = wBak[Bak]+wBax[Bax]+wBcl2[Bcl2]+wBclXL[BclXL]+wMcl1[Mcl1] 

 were optimized using five training sets derived from the complete dataset. For each training set i, 

a βi with optimized coefficient set wi, was obtained which maximized the objective function 

Figure 3.3 Pseudocode for parameter optimization technique (doi: 10.1371/journal.pone.0217527) 
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‘Hazard Ratio’ at mean and median cut-offs. The pseudocode for the algorithm is shown in Figure 

3.3. Subsequently, β* was constructed where each coefficient is taken to be the mean of five 

coefficients obtained from the training sets earlier, For example  

wBak*=( wBak1+ wBak2+ wBak3+ wBak4+ wBak5)/5 

 The standardized version of β* was termed as ‘Risk Score’. 

3.2.3 Evaluation metrics  

Hazard ratios (HR) and Confidence intervals (CI) were calculated to estimate the probability of 

mortality linked with high-risk/low-risk classes stratified with the univariate unadjusted Cox-PH 

models on the basis of mean/median values of different variables. In order to better evaluate 

various covariates, multivariate Cox-PH models were used to determine the relative death risks 

related to various variables. In order to assess the survival curves of high- and low-risk factions, 

Kaplan-Meier (KM) plots were employed. Survival tests were conducted using the 'survival' 

library in R on these datasets. Using log-rank tests, statistical significance was calculated between 

the survival curves. In order to measure the value of the explanatory variables used for HR 

estimates, Wald tests were conducted. 

3.3 Results 

3.3.1 BclXL protein expression as biomarker 

We performed a Cox-PH univariate survival analysis using the numerical variables provided in the 

dataset i.e. protein levels and patient age. Based on these multiple single variables at the median 

cutoff, we segregated high and low risk patients. According to this analysis, the findings in Table 

3.1 indicate the HR, CI and p values. On the basis of each protein’s concentration, we calculated 

hazard ratios and CIs to analyse if either of them would serve as a predictive marker that 

distinguishes responsive or low risk patients with non-responsive or high risk patients. HR spanned 

from 1.3 (age) to 20.877 (BclXL), as seen in Table 3.1. On the basis of both mean (HR = 7.19, p-

value = 0.0004) and median (HR = 20.81, p = 0.0030) cut-offs, BclXL was capable of separating 

high and low risk CRC patients, thereby reaching optimum distinction.  
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Table 3.1 The performance of univariate survival models developed on different variables and 
their combination; BclXL showed the highest performance. 

CRC Stage III (n=134) Median Cutoff   
Variable HR (%95CI) p-value 

Age 1.3 (0.54-3.14) 0.55 
Bax 1.34 (0.55-3.23) 0.52 
Bak 2.79 (1.07-7.3) 0.04 
Bcl2 1.25 (0.51-3.02) 0.62 
BclXL 20.81 (2.7-155.5) 0.003 
Mcl1 1.64 (0.67-4.03) 0.27 
Bcl2+BclXL+Mcl1+Bax+Bak 6.37 (1.86-21.73) 0.003 
Bcl2+BclXL+Mcl1-Bax-Bak 2.49 (0.95-6.47) 0.06 

*CI: Confidence Interval, HR:Hazard ratio, samples>median (variable) were taken as high-risk 
group 

3.3.2 Multiple linear regression models for risk assessment 

We measured variations in mean concentrations of all proteins amongst patients who survived the 

trial and patients who succumbed to death or those whose cancer relapsed in order to claim BclXL 

as an exclusive predictive biomarker. On each of these proteins, a t-test was conducted, and it was 

found that Bak (p = 0.0042), Bax (p = 0.0094), BclXL (p = 3.5e-05) and Mcl1 (p = 0.02) levels 

varied significantly between the two classes.  

Table 3.2 The peformance of prognostic models developed using regression based techniques on 
multiple variables. 

*HR: Hazard Ratio, LR: Linear Regression, patients with <mean (predicted OS) or <median 
(predicted OS) were taken as high risk group. 

Model Mean Cutoff  Median Cutoff  
Name HR p-value HR p-value 

LR 3.19 0.0132 3.27 0.0219 
Ridge 3.34 0.0101 3.27 0.0219 
Lasso 1.79 0.196 2.09 0.1170 
LassoLars 2.44 0.0472 6.34 0.0032 
Elastic-net 1.79 0.1960 2.15 0.1030 
Bayesian ridge 2.08 0.1010 2.64 0.0469 
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In conjunction with BclXL, this finding demonstrated the importance of other proteins and 

dismissed the idea of using BclXL as the exclusive biomarker. As a result, we used the total protein 

concentration (sum) and difference between anti-apoptotic protein levels and pro-apoptotic protein 

levels to stratify risk groups. The results depicted in Table 3.1 show that total concentration levels 

were able to classify the two classes with a maximum HR = 6.37, p-value = 0.0030 at the median 

cutoff. This motivated us to use multiple linear regression models with protein levels as 

independent variables and OS as target or dependent variable. It was found that the model based 

on LassoLars worked better than other models and obtained a maximal HR value of 6.34 with p-

value = 0.0032 at the median cutoff using the the predicted OS (Table 3.2). Although this approach 

utilized multiple protein data and offered predicted OS as a predictive biomarker that performs 

better than many previously developed markers, it still underperformed in contrast to BclXL levels. 

Table 3.3 Hazard Ratio (HR) of prognostic models developed using parameter-optimization 
technique. Risk Score (RS) was computed using a simple linear function by optimizing weights. 

*Samples with <mean or <median cutoff were taken to be as high risk group, w is the set of 

coefficients for different proteins 

Case Mean  Median  
w=(wBak, wBax,  wBcl2,  wBclXL, wMcl1) HR p-value HR p-value 

Set1, w=(0, 0.2, -0.1, -0.8, -0.9) 33.23 0.0006 22.96 0.0023 
Set2, w=(0, 0.1, -0.1, -0.9, -0.3) 18.88 8e-05 22.96 0.0023 
Set3, w=(0, 0.2, 0, 0.9, 0) 15.94 0.0002 21.54 0.0028 
Set4, w=(0, 0.2, -0.2, -0.9, -0.8) 11.26 0.0001 22.41 0.0024 
Set5, w=(0.1, 0, -0.1, -0.7, -0.7) 11.03 0.0001 10.35 0.0017 
Overall, w=(0.02, 0.14, -0.1, -0.84, -0.54) 38.13 0.0004 22.27 0.0025 
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3.3.3 Risk Score (RS) as the most significant biomarker 

As outlined earlier, RS was constructed by a parameter optimization technique wherein different 

training sets were utilized to optimize weights for protein concentrations. The results for different 

subsets are summarized in Table 3.3. Patients with RS < 0 (mean) and RS < 0.266 (median), are 

found to be at higher risk with HR = 38.13 (p-value = 0.0004) and 22.27 (p-value = 0.0025) 

respectively, than patients with RS ≥ 0 and RS ≥ 0.266. Kaplan Meier plots for this case are shown 

in Figure 3.4. The number of samples in high/low risk group after the stratification is performed 

are provided at the bottom of respective KM plots with the title ‘Number at risk’. The red line 

displays the samples in low risk group and blue is representative of samples in high risk group 

The weights in Table 3.3 are reflective of the contribution of each of the apoptotic proteins in the 

sum (b). It was observed that the coefficients obtained for the pro-apoptotic proteins (Bak and 

Bax) in the linear sum RS  were positive, whereas, the coefficients for anti-apoptotic proteins were 

negative. Further, it was seen that a decrease in RS (due to increase in anti-apoptotic proteins) 

increases the survival risk (HR>>1). Biologically, this implies that the when the concentration of 

Figure 3.4 Kaplan Meier risk prediction survival curves for CRC patients, based on mean (RS = 0) and median (RS = 
0.266) cutoffs. (a) The risk of patients with “RS < 0” was approximately 38 times higher compared to patients with 
“RS ³ 0” (HR = 38.13, p = 0.0004). (b) In patients with “RS < 0.266”, the risk was nearly 22 times higher than in 
patients with “RS ³ 0.266” (HR = 22.27, p = 0.0025). (doi: 10.1371/journal.pone.0217527) 
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anti-apoptotic proteins is higher, the process of apoptosis comes to a halt. This might be a strategy 

employed by cancer cells to avoid their elimination. Subsequently, the risk of death is increased. 

3.3.4 Risk Score vs. Clinical features 

A multivariate analysis using cox proportional hazard models, was performed to see the 

association of other clinico-pathological features present in the dataset with the mortality risk of 

patients. The findings for  mean cutoff are reported in Figure 3.5, clearly showing that RS exceeds 

every other predictor in terms of OS based distinction of patients. RS is shown to be associated 

with nearly 30 times elevated mortality risk in “high-risk patients” as compared to “low-risk 

patients” in CRC cohort (HR = 29.44, p-value = 0.001) in the case of mean cuttoff. RS also 

stratified clinical risk groups as shown in Figure 3.6.  

Figure 3.5 RS is revealed as the most significant covariate in the Multivariate survival analysis. (doi: 
10.1371/journal.pone.0217527) 
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Figure 3.6 KM plots representing the sub-classification of clinical risk groups by RS (mean cutoff) (a) Patients with 
age>60 (HR=8.04, p=0.0017) (b) Males (HR = 15.91, p= 0.0091) (c) Positive lymphovascular invasion (HR = 24.92, 
p=0.0018) (d) Righ tumor location (HR = 20.16, p=0.0046) (e) N1 stage patients (HR = 21.11, p=0.0046) and (e) T4 
stage patients (HR = 13.65, p=0.0124). (doi: 10.1371/journal.pone.0217527) 
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3.3.5 Comparison with existing tool 

 Recently, 134 chemotherapy-treated stage III CRC patients have been graded into risk 

(responder/non-responder) categories using the DR_MOMP model. The high-risk group identified 

by DR_MOMP was found to have nearly five times the risk of mortality (HR= 5.2, p-value = 0.02) 

relative to the low-risk group. (Andreas U Lindner et al., 2017). The CRC stage III cohort dataset 

contains an additional recurrence information stating that 95 patients were alive during the 5- 

Figure 3.7 Comparative assessment of RS with DR_MOMP (a) Improvement in sensitivity (73.68%), specificity 
(66.66%) and accuracy (71.64%) by using RS, as compared to sensitivity (60%), specificity (58.9%) and accuracy 
(59.7%) of DR_MOMP’s zη. (b) Corresponding improvement in prediction of responders (RS>0) and non-
responders (RS<=0) with reduced false positives/negatives. (doi: 10.1371/journal.pone.0217527) 
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-years study period and 39 patients with cases of recurrences/deaths. A comparison between zη of 

DR_MOMP, and RS was performed on the basis of prediction of recurrence/death vs survival 

outcomes when concentrations of apoptotic family proteins are known. RS showed a prediction 

accuracy of 71.64% at mean cutoff, as compared to 59.7% of zη. Results are summarized in Figure 

3.7. 

 

3.3.6 External validation and biological support 

To the best of our knowledge, an external dataset with quantified protein expression data as well 

as survival data for CRC patients was not available. Therefore, to validate our findings we utilized 

an external web-tool TRGAted (Borcherding et al., 2018), which utilizes Level 4 data from the 

reverse-phase protein arrays for each cancer type were downloaded from the TCPA Portal (Date 

Downloaded: 11/10/17) to predict risk groups corresponding to OS in various cancer types. We 

selected the proteins “BCL2, BCLXL, ,BAK and BAX” for Stage III COAD and READ patients.  

It is to be noted that MCL1 expression was not available. Figure 3.8 shows the survival plots for 

risk stratification based on these proteins. Significant HR was observed in both the cohorts 

(COAD: 0.291-1=3.43 and READ: 4.24) corroborating our findings. The lower HR as compared 

to RS on the previous dataset is posiibly due to absence of MCL1 expression.  This is evident from 

the coefficients in RS, which implies that while Bak, Bcl2 and Bax are somewhat less relevant for 

prognostic studies, BclXL and Mcl1 on the other hand, are the two dominating proteins to look at 

while stratifying CRC patients. These results also correlate with isolated studies on BclXL and 

Mcl1 which showed their relevance as prognostic markers in the past (Krajewska et al., 1996; Cho 

et al., 2017).  Several other studies in the past have shed light on the key roles of Bcl2 family 

proteins in colorectal cancer. In one of these studies, the small molecule drug ABT-737, which 

inhibits BclXL and Bcl2, was used to culture human CRC tissue ex vivo. The number of apoptotic 

tumour cells increased considerably after treatment with ABT-737 compared to controls, whereas 

proliferation levels remained unchanged. The study concluded that Bcl-xL is a driver in colorectal 

carcinogenesis and cancer development and is a valuable therapeutic target (Scherr et al., 2016). 

In another study, it was shown that Apigenin which is a natural flavoid, induced the apoptosis of 

colon cancer cells by inhibiting the phosphorylation of STAT3 and consequently downregulating 

the anti-apoptotic proteins Bcl-xL and Mcl1 (Maeda et al., 2018). Many other studies such as 
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(Jokinen and Koivunen, 2015; Tong et al., 2017) also confirm the dominant anti-apoptotic roles 

of BclXL and Mcl1 in colon cancer. 

 

 

3.3.7 Combining RS and patient age enhances stratification 

In order to see if certain hybrid combinations could further add significance to the existing protein-

based RS, clinical variables were added to RS and allotted optimised weights through an iterative 

process as before. Various combinations of single features and multi-features were attempted and 

it was noticed that the combination of β* with age showed the most impactful modification of all 

single and multiple-feature combinations and used the least number of clinical variables. Adding 

more attributes to this quantity did not alter the output. This combination was called the Hybrid 

Risk Score (RSH). An HR value of 40.11 and a p-value of 0.0003 was obtained for patients with 

RSH>median(RSH). Figure 3.9 displays the KM plot referring to the stratification of patients by 

RSH. This hybrid combination also enhanced the accuracy of the estimation of 

favourable/unfavourable predictions by 1.5% to 73.13% with sensitivity and specificity values of 

75.78% and 66.66%, respectively. 

Figure 3.8 Figure shows the result of stratification of Stage III patients by RPPA data of Bcl2, Bax, Bak and BclXL utilizing 
TRGAted web-tool (a) Risk stratification of COAD patients (b) Risk stratification of READ patients. (source: TRGAted) 
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3.4 Web Service and functionality 

In order to provide support to the society, we built a web server ‘CRCRpred’, which is freely 

accessible at https://webs.iiitd.edu.in/raghava/crcrpred. In order to predict responders (low-risk) 

and non-responders (high-risk) Stage III patients, given the expression levels of the necessary Bcl2 

family proteins, this web server implements the current analysis. Figure 3.10 displays the basic 

features, and the two prediction modules with their brief explanations as follows:  

3.4.1 Single-protein prediction 

Sometimes, the user would not have the concentration of all the necessary Bcl2 family proteins, 

mostly because the quantification of protein levels is a difficulty in itself. Keeping this in mind, 

we included this module for the user where, with minimal knowledge of the concentration(s) of 

one or more proteins, the risk probability can be estimated. The output here is a protein-wise 

Figure 3.9 Combination of RS with Patient age improves risk stratification. (doi: 10.1371/journal.pone.0217527) 
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prediction. The input concentration is supplied to a linear regression model and the risk probability 

is calculated. This model consists of fitting “bin-wise” mean protein levels with the likelihood of 

high-risk patients in the bin. High risk and low risk stratification of patients was conducted on the 

basis of median OS in the CRC cohort.  

3.4.2 Multiple-proteins prediction 

This module measures a patient's risk score (RS) based on the RS calculation of all five proteins 

for the patient. Thus the concentration of all five proteins must be known before-hand. The patient 

is listed in the high/low risk group on the basis of the cutoff, RS = 0. The gap from the cut-off 

point is presented to the user as a percentage of risk along with the risk score. 

 

Figure 3.10 Usage of web-service “CRCRpred” for risk estimation in CRC patients by Bcl2 family protein 
expression data 
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3.5 Conclusion and Summary 

Colorectal cancer is a life-threatening illness with worldwide prevalence that needs improved 

treatment and patient management techniques. This improvement is only possible if patient-

selective therapy or personalized therapy decisions are made. In the past expression profile of 

apoptotic regulators, specifically of Bcl2 family proteins, has been linked with CRC prognosis and 

carcinogenesis. Monitoring the protein profile of this pathway is thought to be a good technique 

for distinguishing high and low risk patients in a post-diagnosis pre-therapeutic situation to assess 

the success rate of a therapy. However, the pattern in this protein concentration profile is not 

always consistent, partially due to variance in the expression of functional paralogues and/or 

genetic/epigenetic changes. In this study, we found that limiting the detection of high/low risk 

CRC cases to a single marker protein (e.g. BclXL alone) could not be a reasonable way to solve 

this issue. First, we took a combined pro-and anti-apoptotic protein concentration, both of which 

are strongly regulated in the event of cell stress, such as tumours. We then analysed linear 

combinations of Bcl2 family proteins and developed a Risk Score (RS) which is a residue of the 

altered protein profile. RS is seen to perform the risk stratification task significantly than one of 

the previously suggested biomarker. We further found that the combination of patient age with 

expression profile enhances the performance by a significant amount. 

 

 

 

† 

 

 

 
† Lathwal A*, Arora C*, Raghava GPS. Prediction of risk scores for colorectal cancer patients from the 
concentration of proteins involved in mitochondrial apoptotic pathway. PLoS One. 2019 *joint first author 
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4.1 Introduction 

The prevalence of thyroid cancer has been on a consistent rise, with the largest growth among all 

cancers (Mao and Xing, 2016). In 2020, thyroid cancer incidences were close to 586202 with 

43646 reported deaths. Figure 4.1 shows the distribution of incidences and deaths of thyroid 

cancer globally. As it can be seen, Asia has the highest number of incidences as well as deaths 

followed by Europe. Thyroid cancer is around three times more prominent in females and is related 

to increased death risk with age. 

Thyroid is a ‘butterfly’ shaped gland which is located near the base of the throat. There are two 

lobes in the thyroid gland-left and right lobes-which are separated by a thin tissue called as isthmus. 

The thyroid gland is responsible for secretion of hormones. Thyroid cancer can be classified into 

four major subtypes: i) papillary thyroid carcinoma (PTC), ii) follicular thyroid carcinoma (FTC), 

iii) medullary thyroid carcinoma (MTC), and iv) anaplastic thyroid carcinoma (ATC).  Out of 

these, PTC and FTC are well differentiated tumour whereas ATC is poorly differentiated. 

However, PTC is the most prevalent malignant subtype, accounting for around 80-85% of all 

occurences of thyroid cancer (LiVolsi, 2011). PTC is generally linked with a good prognosis but 

indicates a bad prognosis for 20-30 percent of the patients. The existence of tumour metastases 

and relapses are primarily the causes of it. In certain cases it has also been shown that PTC  

Figure 4.1 Thyroid cancer prevalence across the globe. (source: WHO-GCO) 
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progresses/transforms in a more violent state, such as ATC. Due to which, there’s a need for 

development of novel prognostic methods such that risk can be evaluated before-hand and life 

losses could be minimized. 

It has been found that high expression of FOXE1, a member of the forkhead family, acts as a 

tumour suppressor in PTC. Additionally, it is reported as one of the many PTC biomarkers. In the 

early phase of PTC, high expression of FOXE1 was observed to negatively control PDFGA 

expression and hence affect PTC migration, spread and infiltration. In PTC samples, proteoglycans 

genes were also found to be overexpressed (Reyes et al., 2019). Similarly, lower VHL gene 

expression has been found to be consistent with aggressive PTC and DFI characteristics 

(Todorovic et al., 2018). Bhalla et al (Bhalla et al., 2020) published about 36 transcripts of RNA 

Figure 4.2 The anatomy of Thyroid gland (Permission to use. For the National Cancer Institute 
© 2018 Terese Winslow LLC, U.S. Govt. has certain rights) 



 61 

whose profiles of expression were used to identify patients with early and late-stage PTC . In 

addition to the above results, previous studies have recorded a number of eligible genes and 

biomarkers (Soares et al., 2014; Bian et al., 2020; Li et al., 2019). The methods to accurately mine 

key genes from essential pathways, that can serve as prognostic biomarkers, need to be improved.  

The mechanism for programmed cell-death in multicellular organisms is one such crucial process 

which is commonly known as “Apoptosis”. Apoptosis is the process for eliminating cells in 

multicellular organisms. Dysregulation of apoptosis is responsible for many diseases including 

cancer. Numerous studies have identified key biomarkers linked with the cellular apoptosis. 

Charles EM et al present the literature related to the apoptotic molecules implicated as biomarkers 

in melanoma (Charles and Rehm, 2014). Another review provides extensive information related 

to apoptotic biomarkers such as p53, Bcl2, Fas/FasL, TRAIL in colorectal cancer (Zeestraten et 

al., 2013). Several other studies have also identified key molecules with prognostic roles in other 

cancers like gastric cancer (Bai et al., 2011; Ding et al., 2020), breast cancer (Pandya et al., 2020), 

lung cancer (Nakano et al., 2020), bladder urothelial carcinoma (Zeng et al., 2019), glioblastoma 

(Liu et al., 2019) and osteosarcoma (Ma et al., 2019). Apoptosis has also been found to have a 

crucial role in carcinogenesis of thyroid cancer. Alterations in an increasing number of apoptotic 

molecules such as p53, Bcl2, Bcl-XL, Bax, p73, Fas/FasL, PPARG, TGFb and NFKb have been 

associated with thyroid cancer (Wang and Baker, 2006). Since apoptotic resistance is mostly 

accounted for tumour proliferation and aggressiveness, apoptotic pathway has also emerged as a 

crucial target to develop anticancer treatments for thyroid tumours. For example, paclitaxel and 

manumycin are known to stimulate p21 expression and induce apoptosis in ATC (Yang et al., 

2003). Lovastin inhibits protein geranylation of the Rho family and thus induces apoptosis in ATC 

(Wang et al., 2001). UCN-01 inhibits expression of Bcl-2, leading to apoptosis (Rinner et al., 

2004). Since apoptosis in PTC is a complicated multistep process involving a number of genes, it 

remains poorly understood and needs to be further explored at a genetic level.  

Many of the current and past studies are primarily focussed on employing gene expression data 

for development of prognostic models. This is particularly due to the ease of extraction of 

expression data, as compared to protein data. In this study, we exploited the mRNA expression 

data obtained from The Cancer Genome Atlas-Thyroid Carcinoma (TCGA-THCA) cohort and 

identified key apoptotic genes that are associated with PTC prognosis. We further constructed 
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multiple risk stratification models using these genes and evaluated the potential of these models 

for prognosis using univariate and multivariate analyses, Kaplan Meier survival curves and other 

standard statistical tests. The 9 gene voting based model was found to perform the best and also 

stratified high risk clinical groups significantly. Finally, after a comprehensive prognostic 

comparison with other clinico-pathological factors, we developed a hybrid model which combines 

expression profile of nine genes with ‘Age’ to predict High and Low risk PTC patients with high 

precision. Moreover, we further validated the expression patterns of the prognostic genes by 

GEPIA and HPA database respectively and also verified their important biological processes. We 

also catalogued candidate small molecules that can modulate the expression of these genes and 

could be potentially employed in efficient treatment of PTC patients. 

 

4.2 Materials and Methods 

4.2.1 Dataset and pre-processing 

The intial dataset comprised of RSEM normalized RNAseq values for 573 Thyroid Carcinoma 

samples that were retrieved in a processed data-table from ‘The Cancer Genome Atlas’ using 

TCGA Assembler-2 (Wei et al., 2018) on 14th Oct 2019. The dataset, however, is open access and 

can also be retrieved through the TCGA-GDC portal (https://portal.gdc.cancer.gov) with the 

project name ‘TCGA-THCA’ or firebrowse (http://firebrowse.org). The list of genes involved in 

the apoptotic pathway were taken from previous study (Sanchez-Vega et al., 2018) . Within which, 

data about overall survival (OS) and censoring information was accessible for 505 samples. Thus, 

the ultimate dataset was condensed to 505 samples, using in-house python and R-scripts, 

constituting RNAseq values for 165 apoptotic genes. 

4.2.2 Feature selection and model development 

We screened the genes related to the overall survival of the patients in TCGA datasets using 

univariate cox regression via ‘Survival’ package in R. Genes that were significantly related to the 

OS of the patients were selected for further analysis. Cox regression was implemented by taking 

the median cut-off values of the genes under consideration. BPM genes were directly correlated 
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with the low survival of the patients, whereas GPM genes were associated with a better outcome 

in the patients. Various regression models from ‘sklearn package in Python were implemented to 

fit the gene expression values against the OS time. We also utilized different clinical features to 

access their contribution in predicting the OS of the PTC patients. We also implemented prognostic 

index-based models which were formulated as follows: 

PI = β1Z1+ β2Z2+...+ βnZn 

Where β is the regression coefficient for any gene Z, calculated via univariate cox regression. PI 

was implemented to categorize patients in high and low risk groups based on best cutoff 

determined via cutp in ‘survMisc’ package. Further, voting models were also used wherein 

corresponding to an individual gene expression, a risk label ‘High Risk’ or ‘Low Risk’ was 

assigned to each patient. Thus, for n survival associated genes, every patient was denoted by a 

‘risk’ vector of n risk labels. In gene voting based method, the patient is ultimately classified into 

one of the high/low risk categories based on the dominant ‘label’ (i.e. occurring more than at least 

n/2 times) in this vector. 

4.2.3 Evaluation Metrics 

We determined all the statistical metrics such as hazard ratio (HR), p-values, log-rank, 

Concordance, Wald test to evaluate the performance of the models. HR was used to assess the 

relative risk related to high and low risk groups. The overall workflow of the study can be found 

in the Figure 4.3. 
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Figure 4.3 Overall workflow of the study  

4.3 Results 

4.3.1 Identification of prognostic biomarkers and model development 

Five good prognostic marker (GPM) and four bad prognostic marker (BPM) genes were found to 

be associated with OS by means of univariate Cox-PH analysis.  The reported GPM genes were 

ANXA1, CLU, PSEN1, TNFRSF12A and GPX4 while BPM genes were TGFBR3, TIMP3, LEF1 

and BNIP3L. Table 4.1 shows the results for these genes along with the metrics associated with 

stratification of high/low risk patients at median cutoff. 
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Table 4.1 The results of univariate cox regression with “>median” cutoff. Genes with HR>1” are 
bad prognostic markers while “HR<1” are good prognostic markers. 

 Gene HR p-value C %95 CI L %95 CI U logrank-p 

1. ANXA1 0.14 2.82 x10-3 0.72 0.04 0.51 7.35x10-4 

2. TGFBR3 5.68 7.90 x10-3 0.62 1.58 20.49 2.82 x10-3 

3. CLU 0.18 8.15 x10-3 0.53 0.05 0.64 2.92 x10-3 

4. PSEN1 0.15 1.20 x10-2 0.71 0.03 0.66 2.38 x10-3 

5. TNFRSF12A 0.25 1.57 x10-2 0.51 0.08 0.77 1.30 x10-2 

6. GPX4 0.27 2.98 x10-2 0.62 0.09 0.88 2.09 x10-2 

7. TIMP3 3.49 3.52 x10-2 0.68 1.09 11.18 2.53 x10-2 

8. LEF1 3.36 4.10 x10-2 0.68 1.05 10.77 3.00 x10-2 

9. BNIP3L 4.56 4.78 x10-2 0.68 1.01 20.46 2.05 x10-2 

*HR: Hazard Ratio, C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper, 
Logrank-p: p-value for logrank test 

4.3.2 Gene expression profile based risk models 

Using the expression profile of nine survival related apoptotic genes, multiple risk stratification 

models focused on MLR, prognostic index and gene voting were built. Table 4.2 displays the 

results corresponding to the performance of various models. Among these, with HR=41.59 and 

p~10-4 with a C-value of 0.84, the efficiency of the gene voting model was observed to be the 

highest. In addition, the survival curves of high/low risk classes were substantially differentiated 

by a voting-based model with a logrank-p~10-8. As shown in KM plot (Figure 4.4), the ten-year 

survival rate for low risk patients was approximately around 98%, which dropped to 40% for high 

risk patients. PI based model performed the second best with HR=17.55 and p~10-3, and 

regression-based RF model was the third best (and top amongst MLR models) with HR=3.09 but 

p-value was found to be statistically insignificant. 
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Table 4.2 The efficiency of various risk models constructed by leveraging nine gene expression 
profile.  

 Model HR p-value C %95 CI L %95 CI U logrank-p 

1. Voting based 41.59 3.36 x10-4 0.84 5.42 319.17 3.80 x10-8 

2. PI 17.55 5.88 x10-3 0.65 2.29 134.72 6.73 x10-5 

3. RF 3.09 8.43 x10-2 0.68 0.86 11.09 5.91 x10-2 

4. Linear 1.59 3.98 x10-1 0.54 0.54 4.65 4.04 x10-1 

5. KNN 1.09 8.68 x10-1 0.56 0.38 3.12 8.68 x10-1 

6. Lasso 1.07 9.06 x10-1 0.52 0.37 3.08 9.06 x10-1 

7. ElasticNet 1.07 9.06 x10-1 0.52 0.37 3.08 9.06 x10-1 

8. LassoLars 1.06 9.18 x10-1 0.52 0.37 3.06 9.18 x10-1 

9. Ridge 0.84 7.43 x10-1 0.50 0.29 2.42 7.44 x10-1 

*HR: Hazard Ratio, C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper, Logrank-p: p-value for 
logrank test, PI: Prognostic Index, RF: Random Forest, KNN: K-Nearest Neighbour 

 

Figure 4.4 Gene voting model based risk stratification. KM plot illustrated here shows that patients 
with more than five "high risk" labels are at 41 fold higher risk than other patients (HR=41.59, 
p=3.36x10-4, C=0.84, logrank-p=3.8x10-8). High Risk: Blue, Low Risk:Red. (doi: 
10.1101/2020.11.25.397547) 
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4.3.3 Sub-classification of patients belonging to clinical high-risk groups 

In order to investigate the correlation between different clinical features and the survival of PTC 

patients, cox univariate regression model was implemented (Table 4.3). We found that none of 

the clinical features were of much importance in the case of PTC patients except Age and 

Pathologic stage. Figure 4.5 shows the sub-stratification by 9 gene model in the form of KM plots. 

A significant separation between the survival curves is seen, as denoted by logrank test’s p-values.  

Table 4.3 Univariate regression incorporating clinical features. “Age” is found to be the most 

critical factor.. 

Factor Strata N HR p-value C %95 CI logrank-p 

Age >60 vs <=60 505 48.65 1.85 x10-4 0.86 6.35 372.82 7.32 x10-9 

Pathologic Stage Stage III/IV vs I/II 503 9.23 6.61 x10-4 0.76 2.57 33.17 1.05 x10-4 

Tumour Focality Unifocal vs 

Multifocal 

495 5.92 8.77 x10-2 0.67 0.77 45.53 2.84 x10-2 

Pathologic T stage T3,T4 vs T1,T2 503 2.42 1.36 x10-1 0.66 0.76 7.75 1.17 x10-1 

Pathologic N stage N1 vs N0 455 1.61 4.36 x10-1 0.61 0.48 5.37 4.26 x10-1 

Pathologic M stage M1 vs M0 291 5.67 3.15 x10-2 0.58 1.17 27.52 7.00 x10-2 

Race White vs Others 413 2.20 4.49 x10-1 0.56 0.29 16.81 3.96 x10-1 

Gender Male vs Female 505 2.11 1.85 x10-1 0.52 0.70 6.33 2.04 x10-1 

Laterality Bilateral vs 

Unilateral 

499 2.09 3.46 x10-1 0.49 0.45 9.63 3.85 x10-1 

Extrathyroidal 

extension 

Yes vs No 487 1.55 4.23 x10-1 0.64 0.53 4.51 4.20 x10-1 

Residual Tumour R1,R2 vs R0 443 3.53 4.49 x10-2 0.73 1.03 12.09 6.40 x10-2 

*boldface represents statistically significant results (p-val, logrank p<0.05), HR: Hazard Ratio, 
C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper, logrank-p: p-value for 
logrank test, N: No. of Samples 
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Figure 4.5 Sub-stratification of clinical “high risk” groups by voting model. (a) 113 patients whose age was greater than 60 
years were segregated into “high” and “low risk” groups with an HR of 9.49, p=3.08x10-2 and C=0.72. (b) 167 Stage III/IV 
patients were segregated into “high” and “low risk” groups with an HR of 15, p=0.01 and C=0.81. p-values from logrank tests 
are shown in the KM plots. (doi: 10.1101/2020.11.25.397547) 

Figure 4.6 Risk stratification using hybrid models. (a) Voting model and Age were found to be independently associated covariates 
in a multivariate survival analysis. (b) KM plot for risk stratification by hybrid model with age cutoff of 60 years (HR=54.82, 
p=1.18x10-4, C=0.87, %95CI: 7.14-420.90 and logrank-p=2.3x10-9).  (c) KM plot for risk stratification by hybrid model with age 
cutoff of 65 years (HR=57.04, p~10-4, C=0.88, %95CI: 7.44-437.41  and logrank-p=1.4x10-9) (doi: 10.1101/2020.11.25.397547) 
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4.3.4 Combination of age and gene voting model works best for risk-stratification 

We found that patient age and gene voting model were independent covariates (Figure 4.6a). Next, 

by integrating “patient age” with the “nine-gene voting” model for risk stratification task, we 

established a hybrid voting model. As a result, the risk vector associated with each patient was 

now a 10-bit vector with 1 bit assigned to age. We found that when the age cutoff was set at 65 

years (HR=57.04, C=0.88) relative to 60 years (HR=54.82, C=0.87), the model peformed better. 

Although there is a better distinction between the risk categories in the previous case, the 5 and 

10-year survival in both models is similar.  

4.4 Predictive validation 

It is essential to establish that the model is not biased in the terms of data used. We therefore 

validated the performance of our models by a statistical approach. Using sub-samples of the entire 

dataset, we conducted a “predictive” evaluation of our models. For 100 iterations each, sampling 

sizes of 50 percent, 70 percent and 90 percent were selected. HR and C indexes corresponding to 

the 9-gene voting model and hybrid variants were tested for each iteration. Boxplots corresponding 

to the findings are seen in Figure 4.7. The figure reveals that the hybrid variant with an age cut-

off of >65 years performs the highest in terms of HR and C values relative to other models. 

Consequently, an AUROC value, which denoted the classification capacity of the model, was 

determined. The model was seen to do well at the cut-off of 6 years out of different cut-offs used 

(2-10 years). A maximal AUROC value of 0.92 was achieved at this cut-off. Figure 4.8b reflects 

the ROC curve. It is important to note that this method has a limitation that same data points can 

be selected repetitively, thus making the results inaccurate. To avoid this, it is important to have a 

significant number of iterations. A benefit of using this approach, however, is that it is unbiased 

and can be applied to small datasets. 
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Figure 4.8 Hybrid models for classification of PTC patients using OS. (a) Terminology used for evaluation 
of confusion matrix. Initial risk labelling was done using an OS cutoff with patients having “OS> cutoff” 
labelled as positive or low risk and vice-versa for patients with “OS≤cutoff”. (b) ROC curve for hybrid 
model using age cutoff of 65 years. AUROC of 0.92 was obtained. (doi: 10.1101/2020.11.25.397547) 

 

Figure 4.7 Predictive validation of voting based model and hybrid models. (a) Grouped boxplots corresponding to estimated 
Hazard Ratio (y-axis) for 100 iterations of data sampling (x-axis). (b) Similarly, estimation of Concordance index (y-axis) for 
different models using random sampling (x-axis). (doi: 10.1101/2020.11.25.397547) 
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(num(T)=512; num(N)=337)
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Figure 4.9  Boxplots representing the differential gene expression between normal and tumour samples 
on a log scale. GEPIA webserver was used to plot these by using TCGA THCA dataset. T: Tumour in 
red, N: Normal (TCGA,GTEX) in grey. (doi: 10.1101/2020.11.25.397547) 
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4.5 Validation of the Prognostic Gene Signature 

With the aid of the GEPIA server, we contrasted the expression of these genes in healthy 

individuals (TCGA and GTEX normal samples) to patients with cancer (Tang et al., 2017). Based 

on the results from GEPIA, it is found that the expression of ANXA1, CLU, PSEN1, TNFRSF12A 

and GPX4 were up-regulated in THCA, while the expression of TGFBR3 and TIMP3 were down-

regulated thus elucidating their role in PTC oncogenesis (Figure 4.9). While, the expression of 

LEF1 and BNIP3L found no significant difference. Thus, it indicates that the seven genes can be 

considered as differentially expressed genes (DEGs) in THCA compared to normal samples. 

In addition, the protein expression patterns of the prognostic genes in THCA were performed using 

immunostaining data available at HPA (Figure 4.10). The results showed that ANXA1 and PSEN1  

Figure 4.10 The protein expression patterns of the prognostic genes validated by HPA. (A) ANXA1, (B) 
PSEN1, (C) CLU, (D) TNFRSF12A, (E) GPX4, (F) TGFBR3. The staining intensity were annotated as 
High, Medium, Low and Not detected. The bar plots represents the number of samples with different 
staining intensity in HPA. (source: Human Protein Atlas, HPA) 
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were highly expressed in THCA. Further medium expression of GPX4 and TNFRSF12A were 

observed in THCA. Low expression of CLU was observed in THCA, but their expression was high 

at mRNA level. No expression of TGFBR3 was observed in THCA. The expression of LEF1 and 

BNIP3L was not detected in THCA tissues. These results validated our findings except CLU. 

However, the expression of TIMP3 was not recorded in HPA.  

Additionally, out of these genes, ANXA1 or annexin A1 expression has been shown to be associated 

with differentiation in PTC (Petrella et al., 2006). Western blotting experiments showed high 

levels of ANXA1 in papillary thyroid carcinoma and follicular cells while undifferentiated thyroid 

carcinoma cells had low levels of ANXA1 protein. TGFBR3 gene was found to be differentially 

expressed between normal and PTC samples and was shown to be related with progression free 

interval (M. Wu et al., 2019). The encoded TGFBR3 protein is a membrane proteoglycan and is 

known to function as a co-receptor along-with other TGF-beta receptor superfamily members. 

Reduced expression of the TGFBR3 protein has also been observed in various other cancers. CLU 

protein is a secreted chaperone which has been previously suggested to be involved in apoptosis 

and tumour progression. Altered CLU expression has also been proposed as biomarker for 

assessment of indeterminate thyroid nodules (Fuzio et al., 2015). PSEN1 mutations have been 

shown to be linked with MTC (Chang et al., 2018). TNFRSF12A was linked to aging and thyroid 

cancer (Lian et al., 2020) and also shown to be a PTC prognostic biomarker in yet another study 

(Qiu et al., 2018). GPX4 is an essential seleno-protein shown to be associated with aging and 

cancer (McCann and Ames, 2011). TIMP3 levels were found to be associated with BRAF 

mutations in PTC (Zarkesh et al., 2018). LEF1 expression was found to be up-regulated in PTC 

(Dong et al., 2017) and BNIP3L-CDH6 interaction has been linked with defunct autophagy and 

epithelial to mesenchymal transition (EMT) in PTC (Gugnoni et al., 2017). 

4.6 Therapeutic application 

We found potential drug molecules using the ‘Cmap2 database’ (Musa et al., 2018; Lamb et al., 

2006). As an input to ‘Cmap2’ a list of probe ids relating to up - regulated and down - regulated 

genes was used. The output consisted of a list of small molecules ranked on the basis of enrichment 
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scroes and p-values. Lomustine (enrichment =-0.908, p=0.0001) and Deferoxamine (enrichment 

= 0.663, p=0.0006) were the top 2 negative and positively enriched molecules. Lomustine is an 

alkylating nitrosourea compound that has been associated with the activation of apoptosis in past 

studies, and is already used in chemotherapy, particularly in brain tumours. (Shinwari et al., 2008). 

Deferoxamine (DFO) is a chelator of iron that decreases the amount of iron in cells. The drug 

molecules could modify/change gene expression as a possible therapy in high-risk patients. 
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Risk Prediction using Clinical Features 
 

Melanoma of the Skin 

5 
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5.1 Introduction 

Skin cancer is caused by the result of genomic defects in the skin cells. The resultant abnormal 

skin cells grow uncontrollably into a mass of tumour cells. Skin cancer often develops on sun-

exposed areas of the skin such as arms, legs, face etc., however, it can also occur in other less 

exposed areas of the skin such as palms, beneath the fingernails or toenails. Skin cancer arises in 

the outermost layer of the skin i.e. epidermis. It is primarily of three types - basal cell carcinoma, 

squamous cell carcinoma and melanoma – related to the three types of skin cells. The topmost 

layer of epidermis is made up of cells called as squamous cells which form the skin lining, while 

the lowermost layer of epidermis is made up of basal cells which are responsible for production of 

new cells (Figure 5.1). A third type of cells known as melanocytes are found in the lower 

epidermis. “Melanocytes” are the class of cells which synthesize ‘Melanin’- the pigment which 

gives the “skin” its characteristic colour. Out of different types of skin cancers, melanoma or 

cutaneous melanoma – which arises in melanocytes - is the most deadliest form of skin cancer 

(Ossio et al., 2017).  

Figure 5.1 The anatomy of the skin (source: biorender.com) 
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The mortality rate due to melanoma has drastically increased since the last 30 years. According to 

the latest melanoma cancer statistics provided by the American Cancer Society (Siegel et al., 

2020), in US alone, around 100,350 incidences and 6,850 deaths are estimated for the year 2020. 

Globally, around 324,635 incidences and 57,043 deaths are estimated for the year 2020 (Global 

Cancer Observatory). Also, amongst the number of deaths due to melanoma, European  countries 

account for the maximum number of deaths. The number of incidences also follow a similar pattern 

(Figure 5.2). Presently, the choice of therapy for melanoma patients is based on their segregation 

into different risk groups. This prognostication is performed by using AJCC TNM staging system 

(Balch et al. 2009) which mainly includes assessment of anatomical features from tissue samples. 

The advent of high throughput sequencing techniques and availability of an explosive amount of 

genomic data has led to the elucidation of several underlying mechanisms associated with 

carcinogenesis. This insight has helped to reveal certain genes and proteins whose altered 

expression and/or mutation profile is utilized as potential biomarkers in some cancers. However, 

due to the gigantic amount of genomic data and a plethora of query molecules,  identification of 

minimal but relevant features for risk assessment is still a challenge. It is also imperative that the 

novel features should complement the existing staging system and must be easily extractable for 

clinical feasibility. In the specific case of melanoma, a few protein candidates, including lactate 

Figure 5.2 The global incidence and mortality rates of melanoma. (Source: WHO-GCO). 
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dehydrogenase (LDH), C-reactive protein and S100B, have been substantially correlated with 

prognostication (Gershenwald et al., 2017; Deichmann et al., 2004; Weide et al., 2012). Of all 

these, only LDH for metastasis categorization has been used in the AJCC staging system so far. It 

is seen, however, to perform well only in patients with Stage IV disease. Another known example 

of multiple protein-based biomarkers-NCOA3, SPP1, and RGS1 signature-has been shown to be 

a major indicator of sentinel lymph node status status and disease-specific survival relative to other 

clinical characteristics. This 3-protein marker, while validated (Kashani-Sabet et al., 2017), was 

also not included in the AJCC staging criteria. The most notable examples for single and multiple 

gene expression profile (GEP) based biomarkers include TRPM1 expression (Brozyna et al., 

2017), NRAS mutation status (Johnson et al., 2015), BRAF mutation status (Long et al., 2017), 

circulating miRNA biomarkers (Mumford et al., 2018), DecisionDx-Melanoma (31 GEP) (Cook 

et al., 2018), Melagenix (9 GEP) , ITLP group  (Meves et al., 2015) and 53-gene immune GEP 

(Sivendran et al., 2014). The Melagenix (9 GEP) prognostic predictor was able to distinguish high 

and low-risk patients based on overall survival, DecisionDx-Melanoma differentiated patients 

based on relapse-free survival, distant metastasis-free survival and microsatellite instability. Also, 

the 53-gene immune GEP and ITLP are predictive models for metastasis progression and SLN 

positivity. However, none of the GEP based methods have been included in the AJCC staging 

system.  We used gene expression data from over 20,000 genes in 449 melanoma patients to find 

GEP-based prognostic indicators in this study. We also considered genes from multiple cancer-

associated pathways and created risk prediction models to examine the comparative prognostic 

value of apoptotic pathway genes. We compare the efficacy of GEP-based approaches to clinical 

factors and, as previously, attempt to construct combinatorial models. Finally, we offer a model 

that relies solely on clinical characteristics and outperforms GEP-based risk prediction approaches. 

The dataset utilized in the study comprised of gene-expression data retrieved from TCGA. The 

ease of extracting expression from the patients is the motivation behind using the dataset. The 

study's overall relevance is that it not only prioritises biological pathways important to overall 

survival, but it also provides a risk classification technique based on clinical features already in 

use. Superiority of clinical data presented here may not come as a surprise in lieu of traditional 

approaches, but certainly offers a topic of debate for the current emphasis on sophisticated omica 

based approaches. The proposed method can be used in conjunction with current staging system 

and be helpful in efficient management of melanoma patients. 
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5.2 Materials and methods 

5.2.1 Dataset and pre-processing 

Initial dataset including RSEM normalized RNAseq expression values for 458 patients with Skin 

melanoma were obtained in the form of a processed data-table from the Cancer Genome Atlas 

using TCGA Assembler 2 (Wei et al., 2018) on 22nd May 2019. The dataset, however, is open 

access and can also be retrieved through the TCGA-GDC portal (https://portal.gdc.cancer.gov) 

with the project name ‘TCGA-SKCM’ or firebrowse (http://firebrowse.org. In this dataset, 

information on survival and censoring was available for 449 patients. Consequently, the dataset 

was reduced to 449 samples that had RNAseq values for 20530 genes. Following a similar 

approach to (Wang et al., 2018), genes without expression data for more than 50% of the samples 

were rejected. The final dataset comprises of 449 samples with expression data corresponding to 

17,292 genes. Furthermore, the final dataset was normalized using the quantile normalization 

method, which has been widely used in the past for similar studies (He et al., 2019).  

5.2.2 Identification of prognostic genes and development of risk prediction models 

We collected the list of 11 cancer-related pathways and the genes associated with those pathways 

from a recent study (Sanchez-Vega et al., 2018). Thereafter, we screened the genes related to the 

overall survival of the patients via Survival package in R. Risk groups were segregated on the basis 

of mean and median expression values of the genes, using the univariate unadjusted Cox-

Proportional Hazard (Cox-PH) regression models. Genes that were significantly related to the OS 

of the patients were selected for further analysis. BPM and GPM genes are defined as in earlier 

studies. A similar screening process was implemented for all 20,530 genes. We also utilized 

different clinical features which includes age, gender, N staging, T staging, Breslow thickness, 

tumor stage etc. to access their contribution in predicting the OS of the CM patients.. Thereafter, 

regression models from ‘caret’ package were implemented to fit the gene expression values against 

the OS time. The fitting and test evaluations were carried using a five-fold cross-validation 

scheme. Hyperparameter optimization and regularization was achieved using the in-built function 

‘expand.grid’. The predicted OS from various regressors was used to classify high and low risk 

patients. We also used prognostic index (PI) based method to multiplex different gene expression 
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profiles together. Here, PI=𝛽1g1+𝛽2g2+...+𝛽ngn; wherein 𝛽 represents regression coefficient 

obtained for a gene g from a univariate Cox-PH model. PI was then used for risk stratification 

purposes. 

5.2.3 Evaluation metrics 

Hazard ratios were calculated to predict the risks of death associated with the high risk and low 

risk groups based on the overall survival time of patients. To assess survival curves of low - and 

high-risk groups, Kaplan-Meier (KM) plots were used. Survival tests were conducted using 

'survival' and 'survminer' packages in R (V.3.4.4, The R Foundation). Utilizing log-rank tests, 

statistical significance was calculated between the survival curves. The assessment of the 

importance of the explanatory variables used in the HR measurements was done by Wald tests. 

The concordance index (C) showed the power of the model's predictive potential (Dyrskjot et al., 

2017). P-values smaller than 0.05 were deemed to be significant. The overall workflow of the 

study is illustrated in Figure 5.3. 
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5.3   Results 

5.3.1 Models based on genes related to cancer pathways 

Amongst the 11 cancer related pathways, many have been associated with melanoma 

tumorigenesis. Table 5.1 shows the PMIDs of few example studies which have explored the role 

of these pathways in CM progression and/or development. Combined gene count is the sum of 

GPM and BPM genes. The GPM, BPM and combined genesets were used for machine-learning 

as well as PI model development. Overall, PI models show the best results as shown in Table 5.2. 

Out of these, the combination of 29 apoptosis GPM genes with 7 NOTCH combined genes 

performed the best with an HR=2.57 and p~10-8. Figure 5.4 shows the KM plots for PI for 

apoptotic genes and PI based on combination of Apoptosis and NOTCH genes.  

Figure 5.3 Overall workflow of the study 
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Table 5.1 Genes linked to cancer-associated pathways. PMIDs are given for studies linked to the 

involvement of the pathways in “Melanoma” and gene count before and after univariate Cox-PH 

study. 

S. no. Pathway PMID No. of 
Genes 

No. of 
GPM 

No. of 
BPM 

Combined 

1 NRF2 27344172, 18353146 481 27 26 53 
2 P53 32377702, 31374895 201 17 16 33 
3 Apoptosis 32687246, 32645331 161 29 4 33 
4 WNT 32659938, 32073511 151 7 9 16 
5 CELL-CYCLE - 128 4 17 21 

6 PI3K-AKT 32626712, 32558531 105 18 11 29 
7 TGF-𝛽 31667872, 31599708 86 3 1 4 
8 NOTCH 30569717, 30941830 47 3 4 7 
9 MYC 32283126 25 2 2 4 
10 RAS 32605090, 32568870 23 2 1 3 
11 HIPPO 32407182, 32561850 22 1 2 3 

*GPM: Good prognostic marker, BPM: Bad prognostic marker 

 

Table 5.2 Risk segregation based on the prognostic index (PI). The table shows the results for each 

pathway and the resulting set of genes used. Patients with PI smaller than the median threshold are 

at lower risk than people with PI higher than the cutoff.  

S. no. Pathway Gene set HR p-value C 
1 NRF2 GPM 1.87 1.2x10-4 0.58 
2 P53 Combined 2.20 1.5x10-6 0.61 
3 Apoptosis GPM 2.52 3.2x10-8 0.62 
4 WNT GPM 1.97 3.6x10-5 0.59 
5 CELL-CYCLE GPM 1.48 1.6x10-2 0.57 
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*HR: Hazard Ratio, C: Concordance Index, GPM: Good prognostic marker, BPM: Bad prognostic 

marker 

5.3.2 Models based on total genes 

We have developed related models for the overall GPM (1343), BPM (1294) and the combined 

gene set (2637), in addition to developing models for pathway-specific gene sets. Feature selection 

was conducted on each of these three gene sets to extract the most relevant genes using random 

survival forests-variable hunting for 100 iterations. 58 GPM genes, 52 BPM genes and 129 

combined genes resulted from rfSRC feature selection. The SVR model illustrates that HR, p-

6 PI3K-AKT GPM 1.82 2.4x10-4 0.58 
7 TGF-𝛽 BPM 1.48 1.6x10-2 0.53 
8 NOTCH Combined 2.26 9.4x10-7 0.60 
9 MYC BPM 1.67 1.8x10-3 0.57 
10 RAS BPM 1.79 4.5x10-4 0.56 
11 HIPPO Combined 1.67 1.9x10-3 0.55 

 
12 Apoptosis+NOTCH GPM+Combined 2.57 1.5x10-8 0.62 

Figure 5.4 Kaplan Meier risk stratification plots of patients with CM. (a) Based on the Apoptotic Genes 
Prognostic Index. Patients with “PI ³ median(PI)” are at higher risk than patients with “PI < median(PI)” with 
HR=2.52 and p-val=3x10-8, depending on the GPM genes. (b) Based on the prognostic index of merged genes 
of apoptotic GPM and NOTCH. Patients with “PI ³ median(PI)” with HR=2.57 and p-val=1.5x10-8 are at higher 
risk than patients with PI < median(PI). (doi: 10.1016/j.heliyon.2020.e04811) 
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value and concordance index have been enhanced (HR 2.77, p~10-9, C 0.63). Using the chosen 

GPM, BPM and combined genes, prognostic index-based and MLR-based stratification was 

subsequently carried out. A contrast with the 52 complete BPM based models of apoptotic gene-

based PI models, NOTCH gene-based regression models, apoptosis and NOTCH genes 

combination models. 

5.3.3 Clinical-features versus GEP models 

Patients have been stratified using clinical features such as AJCC pathological staging, age, TNM 

staging, Breslow thickness, gender and ulceration status in order to see if the models built earlier 

in this analysis work better than the previously identified prognostic markers. These results can be 

found in Table 5.3. While our findings align with previously recorded results, such as patients 

over 63 years of age, males, patients with metastasized tumours, patients with stage III/IV, etc., 

are at higher risk and thus display a high HR value, some of them are either marginal or have a 

low HR/high p-value except for Breslow thickness. 

Table 5.3 Risk assessment using clinical features in CM patients. The column “N” is the number 

of observations for which respective information is available. 

 *HR: Hazard Ratio, N: No. of Samples 

Factor Strata N HR p-value 
Age >63y vs ≤63y 449 1.83 4x10-4 

 continuous 449 1.02 1.9x10-6 
AJCC 6th ed. Stage III,IV vs I,II 138 1.60 0.071 
AJCC 7th ed. Stage III,IV vs I,II 215 2.26 0.025 
N staging N1, N2, N3 vs N0 396 1.82 9x10-4 

 
T staging T2, T3, T4 vs Tis, T1 378 1.68 4.8x10-2 

M staging M1 vs M0 423 1.90 9.9x10-2 

Breslow thickness >3mm vs ≤3mm 342 2.45 3x10-6 

 continuous 342 1.03 10-4 
Gender Male vs Female 449 1.20 0.277 
Ulceration status Yes vs No 300 2.06 5x10-4 
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It was observed that patients with a Breslow thickness greater than 3 mm had a 2.45 times higher 

mortality chance than patients with a smaller Breslow thickness. In comparison, relative to using 

BPM genes alone, an SVR model incorporating the 52 total BPM genes and Breslow thickness 

improved the output even further. At the median cutoff, which is the highest for other 

combinatorial models as well as previous models, an HR value of 3.19 with a p-value ~ 10-10 and 

a C value of 0.65 was achieved. This group of 52 genes was analysed for gene enrichment and the 

findings revealed that the following terms were enriched in various categories of GO: (i) molecular 

function - “catalytic activity”,  (ii) biological process - “cellular process” and (iii) protein class – 

transferase. The “pathway” enrichment of the related proteins shows that KRT4, KRT13, KRT27 

and SPRR3 proteins are involved in the cornification process, which is closely associated with the 

risk of skin cancer (Eckhart et al., 2013). 

 

5.3.4 Superiority of Clinico-pathological features-based model  

In order to incorporate the prognostic value of significant clinical characteristics, we devised a 

new ensemble framework. A risk point (r) was allocated to the entries corresponding to each 

clinical feature as r=1, 0 or -1 depending on the risk category (high risk: r=1, low risk: r=-1, 

unavailable: r=0), as per Table 5.3. Various linear combinations comprising of two or more 

features were evaluated and the best results were achieved with the combination of Breslow 

thickness, N staging, M staging and Ulceration status. We termed this combination as Risk Grade 

(RG) where RG for a patient is defined as:  

RG= r (Breslow thickness) +r (N staging) +r (M staging) + r (Ulceration status) 

The hazard ratio for RG was 6.40 with a p-value of 2.49x10-15. Patients with RG>1 were at higher 

risk than patients that had an RG ≤1, as represented by the KM plot in Figure 5.5. For high-risk 

cases, the 10-year mortality rate is seen to plunge to zero, while patients in the low-risk category 

have a 50 percent chance of survival. It should also be noticed that RG was able to stratify high 

(RG>1) and low risk (RG ≤ 1) patients with a substantial HR of 4.04 (95 percent CI 2.09-7.79) 

with a p-value of 3x10-55 even if only the patients with information available for all four clinical 

features were included (~259 patients) (Wald test p-val=3x10-5, logrank test p-val=6x10-6). 
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5.4 CMcrpred: web-interface and android application for risk prediction 
A web server called 'CMcrpred' (http://webs.iiitd.edu.in/raghava/cmcrpred/) and Android 

application has been developed and is freely available in the Google Play store. Users can estimate 

the survival outcome and risk of a “patient with melanoma” with these facilities. A comprehensive 

estimate of the survival chance of a patient belonging to a given RG is given by the web server. 

On the other hand, for easy utility by doctors and / or patients, we have made the Android 

application less informative and more user-friendly. The web server was developed to configure 

browsing devices using a responsive HTML design.The usage for web-server and mobile 

application is shown  in Figure 5.6. 

 

Figure 5.5 Kaplan Meier risk stratification plot based on Risk Grade for CM patients (RG). There is a greater 
chance of mortality for patients with “RG >1” than for patients with “RG <= 1” with HR=6.40 and p-
val=2.49x10-15. (doi: 10.1016/j.heliyon.2020.e04811) 
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Figure 5.6 Web-server and android application functionality of CMcrpred 
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5.5  Comparative validation  

We performed a comparative assessment of the strength of RG as prognostic marker by employing 

a popular melanoma survival prediction model. In order to do this, we used our dataset’s features 

as input to the web-server ‘AJCC individualised melanoma patients outcome prediction tool’ 

(Soong et al., 2010) for prediction of 5 and 10-year survival probabilities of the patient samples in 

our dataset. The web-server required a total of seven input features i.e whether patient had 

localized melanoma or regional melanoma, tumour-thickness, age, tumor burden, lesion site, 

number of nodes and ulceration status. A pre-computed RG score based on the ensemble model 

for was used to classify the patients based on 5 and 10-year predicted probabilities. Figure 5.7 

shows the web-server predicted survival rates between two risk groups (RG>1 or High Risk vs 

RG<=1 or Low Risk) in the form of a boxplot. RG was successfully able to segregate predicted 

low and high survival groups. Additionally, RG also requires lesser number of features than 

“AJCC individualised melanoma patients outcome prediction tool” for survival prediction.  

 

 

Figure 5.7 Boxplot reflecting the independent segregation of risk classes by RG based on the "AJCC 
individualised melanoma patients outcome prediction tool" projected 5- and 10-year survival rates. The 
method was used to make a total of 162 forecasts, of which 116 were low-risk patients (RG<=1) and 
remaining were at high-risk (RG>1). (doi: 10.1016/j.heliyon.2020.e04811) 
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5.6 Conclusion and summary 

One of the main obstacles in the successful treatment of melanoma is precise risk evaluation of 

patients. This task is achieved by American Joint Committee on Cancer (AJCC) tumour staging 

system. The AJCC system is based on clinical features such as Breslow thickness, number of 

lymph nodes, distant metastasis etc. However, much of the emerging risk prediction approaches 

are based on genomic or gene-expression profile (GEP) owing to developments in technology. In 

this study, we sought to build novel biomarkers focused on GEP and clinico-pathological features 

and measured their prognostic power as opposed to current prognostic technique. Using gene 

expression associated with various cancer-related pathway genes, we developed risk prediction 

models and obtained a maximal hazard ratio (HR) of 2.52 with a p-value of ~ 10-8 for the apoptotic 

pathway. Another model improved the HR to 2.57, based on a hybrid of apoptotic and notch 

pathway genes. Further, we built models focusing on individual clinical characteristics and 

obtained a maximum HR of 2.45 for Breslow thickness with a p-value of ~ 10-6. Models using the 

best features of clinical and gene expression data were also established and a cumulative HR of 

3.19 with a p-value of ~ 10-9 was obtained. Finally, using clinical factors only, we established a 

new ensemble approach and obtained a maximum HR of 6.40 with p-value 10-15. A web-based 

platform and an android app called 'CMcrpred' are available to promote the science community 

centered on this approach at (https://webs.iiitd.edu.in/raghava/cmcrpred/) and Google Play Store, 

respectively. This analysis shows that approaches focused on GEP-based profiles as well as 

commonly used AJCC staging are superseded our recent ensemble approach based on only clinical 

features. It also highlights the need to exploit the full potential of clinical factors for 

prognostication in cancer patients.  

 

§ 

 

 
§ Arora C, Kaur D, Lathwal A, Raghava GPS. 2020. Risk prediction in cutaneous melanoma 
patients from their clinico-pathological features: superiority of clinical data over gene expression 
data. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04811 
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6.1 Introduction 

Cancer is the leading cause of death worldwide and its development has been attributed to various 

regulatory factors (Sever and Brugge, 2015). The exploration of these regulatory mechanisms that 

lead to cancer has been a hot topic in recent years. Based on the exploration of these processes, 

there exists a plethora of biomarkers and risk prediction methods. Majority of these 

biomarkers/methods are specific only to a particular cancer and fail when employed for other 

cancers. However, with the increase in omics data, a few pan-cancer prognostic biomarkers have 

also been developed. Notable examples include a comprehensive analysis wherein the multi-omics 

data for 13 cancers was used to identify 7 genes associated with survival in 13 cancers (Zhao et 

al., 2020), a maximum risk stratification with HR=3.03, p=0.044 in THCA patients by employing 

mRNA expression of Siglec-15 in 8 cancers (Li et al., 2020), another study showed that the mRNA 

expression levels of the gene, Long intergenic non-coding RNA 1614 can be used to segregate risk 

groups in 11 cancers based on overall survival, with the maximum separation achieved in THCA 

patients with HR=4.047 and p=0.010 (Wang et al., 2020). A few other studies have also elucidated 

the prognostic potential of genes such as WISP1 whose expression was shown to differ between 

cancer and adjacent normal tissues (Liao et al., 2020), FUNDC1 whose expression was linked to 

prognosis in 8 cancers with a maximal risk separation in LIHC (Yuan et al., 2019) and HSP90AA1 

whose differential expression was observed in 8 cancers and was found to be a prognostic 

biomarker in hepatocellular carcinoma (Chen et al., 2020). Apart from these, Tumor mutational 

burden and indel burden have also been recently shown to be linked with prognosis in 14 cancers 

with the best performance in CHOL (H.-X. Wu et al., 2019). While these studies are promising, 

the challenge for finding more accurate biomarkers which offer prognostic value across a large 

number of cancers remains open. Since a multitude of factors cause heterogeneity of cancer, more 

efforts are required towards thorough investigation of cardinal molecular processes that have been 

associated with cancer progression and development in the past. Apoptosis is also one of the widely 

studied processes in the context of development of prognostic biomarkers and therapeutics which 

target its key components. In thyroid cancer, alterations in apoptotic molecules such as p53, BCL2, 

BCL-XL, BAX, p73, Fas/FasL, PPARG, TGFb and NFKb have also been associated with 

carcinogenesis (Wang and Baker, 2006). The downregulation of tumour suppressor gene, p53, 

leading to tumour development and progression is perhaps the most popular example (Bauer and 
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Helfand, 2006). Other examples include the downregulation of levels of pro-apoptotic BCL2 

family proteins such BCL2, BCL-XL, MCL1 and upregulation of anti-apoptotic BCL2 family 

proteins such as BAX, BAK in cancers such as colorectal cancer, melanoma, gastric cancer etc 

(Frenzel et al., 2009).  However, the scope of these studies was limited to specific cancers with a 

limited set of genes/proteins. Since apoptosis consists of a large number of regulatory 

genes/proteins, gauging the prognostic significance of maximum number of genes/proteins 

involved in apoptosis across several cancers can offer a better understanding. It may also reveal 

several novel targets and help in development of finer biomarkers for cancer prognosis.  

6.2 Materials and methods 

6.2.1 Dataset and pre-processing 

Normalized gene expression datasets (RSEM) and raw counts  for 33 cancer cohorts were obtained 

from ‘The Cancer Genome Atlas’ (TCGA) using TCGA Assembler-2 (Wei et al., 2018) in Oct 

2019. The dataset, however, is open access and can also be retrieved through the TCGA-GDC 

portal (https://portal.gdc.cancer.gov) with the TCGA project names or firebrowse 

(http://firebrowse.org). A ‘pan-cancer’ dataset was formed by combining all the samples with raw 

expression values of genes across 33 cancers (Github: 

https://github.com/raghavagps/Chakit_Thesis). A list of 165 apoptosis genes was obtained from 

(Sanchez-Vega et al., 2018), also available at Github. The gene expression data for these 165 genes 

were extracted from the downloaded TCGA cancer datasets and pan-cancer dataset. In all the 

datasets, only those patient samples were retained for whom overall-survival and censoring 

information were available. The number of samples in pan-cancer dataset was 9569 while the 

number of samples in each cancer cohort, N, is mentioned in Table 6.1. TCGA abbreviations for 

cancers are used. 

6.2.2 Survival prediction models 

Univariate unadjusted Cox proportional hazards (Cox-PH) regression models were used to screen 

survival-associated genes from their expression data. R packages ‘survival’ and ‘survminer’ were 

used to implement the Cox-PH models. Using these, Hazard ratios (HR) were computed along-

with confidence intervals (%95 CI) and p-values. HR is the ratio of hazard rates representing the 
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death risk associated with one group as compared with another by using an appropriate cutoff of 

gene-expression. For comparison of survival curves between two risk groups, we used Kaplan-

Meier (KM) plots and log-rank tests. Survival associated genes were identified with HR greater 

than or less than 1 and p<0.05. Concordance (C) was used to evaluate the model’s predictive 

performance. As implemented in (Lathwal et al., 2020; Arora et al., 2020), Prognostic Index (PI) 

for n genes, g1, g2, … gn with cox coefficients β1, β2 … βn obtained from the univariate Cox-PH 

analyses using median cut-offs,  was defined as, PI=B.g, where g=[g1   g2   g3 …. gn] and B=[ β1  

β2  β3 … βn]. Thereafter, risk groups were segregated by using univariate Cox-PH regression 

model. The cut-off value for PI was evaluated using cutp from ‘survMisc’ package in R. Model’s 

performance is estimated using HR, p, %95 CI and C values. Further, for an n-gene voting model, 

a n-bit vector is assigned to each patient sample. Thereafter, each bit is labelled as high or low risk 

on the basis of corresponding classification by individual genes, using Cox-PH univariate models. 

Finally, the sample is allotted an overall risk label decided by majority of the labelled bits (i.e. 

greater than n/2 labels). The overall workflow is illustrated in Figure 6.1. 

6.3 Results 

6.3.1 Identification of prognostic biomarker genes 

A univariate Cox-PH survival analysis was performed for 165 genes using each cancer’s dataset. 

Genes were classified as good prognostic marker (GPM) or bad prognostic marker (BPM). Table 

6.1 shows the number of survival associated genes for each cancer among other details. It is seen 

that in most of the cancers BPM genes are more than GPM genes, showing the detrimental role of 

the upregulated expression of some apoptotic genes in cancer. Table 6.1 also mentions the top 

genes (at most ten) for each cancer on the basis of p-values obtained from univariate survival 

analysis. None of the 165 genes were significantly associated with survival in 3 cancers: DLBC, 

TCGT and PCPG. 
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 Table 6.1 The table shows the no. of patient samples (N), no. of BPM and GPM genes and 
top ten survival associated genes for 33 cancers. 

* N: No. of samples, BPM: Bad prognostic marker, GPM: Good prognostic marker 

Cancer N BPM GPM Total Top Genes 

LGG 511 77 17 94 WEE1,BTG3,BMP2,PLAT,SMAD7,ANXA1,PEA15,CDK2,HSPB1,SOD2 

 
 

KIRC 532 50 32 82 CASP9,F2,TIMP1,IL6,CDC25B,ADD1,CCNA1,BAK1,SLC20A1,TIMP3 
 MESO 86 33 15 48 HMGB2,TOP2A,BRCA1,PLAT,SLC20A1,WEE1,PPP2R5B,MADD,PDCD4,LMNA 
 SKCM 449 10 33 43 TNFSF10,SATB1,DPYD,BIRC3,SOD2,F2R,CYLD,GCH1,CD69,PSEN2 
 PAAD 178 34 7 41 CASP4,TNFSF10,PSEN1,CD44,CASP2,EMP1,TOP2A,DPYD,CCND1,HMGB2 
 ACC 79 22 14 36 TOP2A,PEA15,BRCA1,H1F0,HMGB2,MADD,CDK2,SPTAN1,CYLD,SQSTM1 
 BRCA 1091 10 25 35 PTK2,NEFH,IGF2R,PLAT,DNM1L,XIAP,ETF1,NEDD9,IRF1,RARA 
 LAML 173 14 16 30 PDCD4,ISG20,LMNA,NEDD9,CCND2,PSEN1,HGF,SOD1,ADD1,CD44 
 HNSC 519 19 10 29 CCND1,BMF,CCNA1,BAK1,PSEN1,APP,TIMP1,BCAP31,SLC20A1,TNFRSF12A 
 UVM 80 17 12 29 ERBB3,ISG20,EREG,TIMP3,LEF1,SATB1,TXNIP,PPP2R5B,ERBB2,PTK2 
 CESC 304 16 10 26 EREG,CASP2,MGMT,CD2,IL1B,IGF2R,APP,NEFH,TIMP2,GCH1 
 KIRP 287 21 3 24 BCL2L10,TOP2A,PMAIP1,MCL1,LEF1,PPP2R5B,PEA15,DCN,IRF1,H1F0 
 SARC 257 7 16 23 CTH,RNASEL,GSN,IRF1,SPTAN1,CASP1,BTG2,CFLAR,TNF,CASP2 
 BLCA 404 7 15 22 EMP1,GCH1,HMGB2,GSTM1,CASP7,ANXA1,IFNGR1,ETF1,SLC20A1,AIFM3 
 LIHC 369 12 4 16 MGMT,ETF1,RARA,GPX3,EREG,CD2,DAP3,GPX4,FASLG,CDC25B 
 STAD 413 13 3 16 CAV1,CD44,PDGFRB,DNAJC3,EREG,TGFB2,CTNNB1,DFFA,BCL2L11,CASP6 
 LUSC 488 12 3 15 CD14,BTG3,EREG,CCND2,PTK2,PAK1,ADD1,HSPB1,TIMP3,SMAD7 
 LUAD 497 9 5 14 EREG,VDAC2,BBC3,SLC20A1,BTG2,TOP2A,RELA,CD2,GPX4,ETF1 
 ESCA 183 6 7 13 ENO2,IL18,TOP2A,DAP,BCL2L1,PMAIP1,ISG20,IL1A,TSPO,SATB1 
 COAD 297 5 5 10 BCL10,CASP4,FAS,IL6,GSR,TIMP1,BGN,LUM,ERBB2,BTG2 
 OV 305 4 5 9 DAP,CASP8,EMP1,BIRC3,CASP2,WEE1,PSEN1,NEDD9,SOD1 
 THCA 505 4 5 9 ANXA1,TGFBR3,CLU,PSEN1,TNFRSF12A,GPX4,TIMP3,LEF1,BNIP3L 
 KICH 65 6 2 8 IFNB1,MADD,BIK,GSR,TOP2A,PTK2,DAP3,CLU 
 GBM 160 6 1 7 HSPB1,FDXR,TXNIP,ANKH,EGR3,F2R,IER3 
 UCEC 541 5 0 5 BCL2L1,MCL1,AVPR1A,SLC20A1,ISG20 
 UCS 57 2 3 5 MGMT,HGF,BMF,H1F0,PTK2 
 CHOL 36 3 1 4 PSEN1,BNIP3L,EREG,JUN 
 THYM 119 2 2 4 IER3,SOD2,CD2,LEF1 
 PRAD 497 1 1 2 SATB1,IER3 
 READ 96 1 1 2 BRCA1,DNAJC3 
 DLBC 47 0 0 0 - 

PCPG 179 0 0 0 - 

TGCT 133 0 0 0 - 
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6.3.2 Cancer-specific prognostic models 

 Top genes mentioned in Table 6.1 were used to construct models for risk stratification in 30 

cancers excluding TCGT, PCPG and DLBC. Both gene voting- based models and PI models were 

used to segregate patients into risk groups. HR, p-values and C index were then calculated. Voting 

models showed the best results and are shown in Table 6.2 (Results for PI models are not shown). 

For the case of PRAD and READ (2 genes each), a tie case was considered as High Risk. We also 

performed a GO functional enrichment for finding out the top molecular function (least p value) 

in the case of these cancers for top genes. Figure 6.2a shows the results for this. Figure 6.2b 

shows the distribution of cancers enriched to each function. We find that the molecular function 

‘enzyme binding’ was enriched in most of the cancers viz. ACC, CESC, LUSC, SARC, STAD 

and UVM. Amongst these CESC and LUSC also have ‘enzyme binding’ as their top specific 

enriched function with p~10-5. There was a total of 26 genes from apoptotic pathway related to 

this common function. The analysis was done to see which are the underlying molecular functions 

Figure 6.1 The overall workflow of the study 
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where these prognostic genes are involved in. ‘enzyme binding’ was the most common function 

amongst cancers.  

Table 6.2 The performance of cancer-specific prognostic models. 

 

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper 
 

 

Cancer HR p-value logrank-p C %95 CI L           %95 CI U 
THCA 41.59 3.36x10-4 3.81x10-8 0.84 5.42 319.17 
UVM 40.50 5.32x10-4 5.12x10-7 0.85 4.99 328.82 
KICH 25.61 2.27x10-3 3.53x10-5 0.83 3.19 205.6 
ACC 22.68 7.95x10-7 1.63x10-10 0.81 6.57 78.31 
THYM 12.53 2.42x10-2 6.98x10-3 0.79 1.39 112.93 
UCEC 10.42 4.51x10-4 1.13x10-4 0.7 2.81 38.6 
CHOL 8.72 4.75x10-4 2.45x10-4 0.77 2.59 29.4 
PRAD 8.42 4.41x10-3 4.20x10-3 0.65 1.94 36.5 
READ* 7.45 6.50x10-2 2.56x10-2 0.72 0.88 62.93 
KIRP 5.10 6.64x10-5 1.27x10-5 0.72 2.29 11.37 
LGG 4.99 2.88x10-12 1.54x10-13 0.72 3.18 7.83 
CESC 4.92 2.14x10-8 2.98x10-9 0.71 2.82 8.6 
LIHC 4.58 7.91x10-11 2.24x10-11 0.7 2.89 7.24 
PAAD 4.41 4.23x10-7 1.72x10-7 0.69 2.48 7.85 
COAD 4.08 5.05x10-5 2.42x10-5 0.67 2.07 8.05 
MESO 3.99 1.67x10-6 2.00x10-6 0.68 2.26 7.03 
KIRC 3.96 5.41x10-16 3.03x10-17 0.68 2.84 5.53 
LAML 3.96 3.92x10-12 5.07x10-12 0.67 2.68 5.84 
ESCA 3.80 2.19x10-6 3.32x10-6 0.65 2.19 6.61 
UCS 3.61 8.77x10-4 6.13x10-4 0.68 1.69 7.67 
BRCA 3.45 2.36x10-9 6.76x10-10 0.67 2.3 5.18 
BLCA 3.41 6.35x10-10 3.51x10-10 0.66 2.31 5.02 
STAD 3.35 2.78x10-7 1.39x10-7 0.64 2.11 5.31 
SARC 2.81 1.32x10-5 1.03x10-5 0.67 1.77 4.48 
LUAD 2.76 6.94x10-8 4.82x10-8 0.63 1.91 3.99 
HNSC 2.36 9.24x10-8 5.80x10-8 0.62 1.72 3.24 
LUSC 2.21 1.26x10-6 1.30x10-6 0.61 1.6 3.04 
OV 2.19 1.38x10-6 1.16x10-6 0.61 1.59 3 
GBM 2.07 3.73x10-4 3.22x10-4 0.61 1.38 3.09 
SKCM 1.99 2.18x10-5 2.55x10-5 0.59 1.45 2.75 
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Figure 6.2 GO enrichment analysis in individual cancer cohorts. (a) the top enriched GO molecular function for each cancer 
corresponding to top genes. x-axis is the -log10 (p-value) and y corresponds to the enriched function corresponding to the 
cancer. (b) Heatmap showing enriched GO molecular functions by top genes for each cancer. Number of genes are encoded 
by different colours. 
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6.3.3 Universal prognostic biomarkers and prognostic models 

We found that there are 11 genes that play a prognostic role in more than or equal to 8 cancers (in 

at least 25% cancers). Figure 6.3a shows the role of these genes as BPM or GPM in different 

cancers. Figure 6.3b shows the 27 cancers associated with these genes. Most of the genes play a 

BPM role i.e. their elevated expression prevents cellular apoptosis and thus promotes tumor 

progression (High Risk patients). CD2 and SATB1 play a GPM role i.e. their high expression is 

linked with Low Risk patients. Whereas, CASP2 plays both kind of roles. Prognostic PI and voting 

models were constructed using the multi-cancer genes (11 gene panel) in 27 cancers. Results for 

voting models are shown in Table 6.3. This universal model performed best in UVM, THYM, 

PRAD, KICH and ACC based on HR and C index, where it can be readily used as a single 

prognostic test. Though in other cancers, the risk prediction performance of this 11 gene panel was 

moderate (THCA, UCEC and PAAD) to poor and thus for them, cancer specific prognostic 

biomarkers should be relied on for a better risk prognosis. 

 
 

 

 
 
 
 
 

Figure 6.3 Multi-cancer survival genes. (a) Shows the distribution of role of each of these 11 genes across 27 
cancers. y-axis shows the number of cancers in which the corresponding gene plays prognostic role. (b) Red blocks 
indicate that the gene is survival associated with the cancer. 
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Table 6.3 Universal prognostic model for risk prediction in 27 cancers. 

Cancer HR p-value logrank-p C %95 CI L %95 CI U 
UVM 11.74 1.80x10-3 1.77x10-4 0.71 2.50 55.17 
THYM 10.12 4.07x10-2 1.48x10-2 0.77 1.10 92.91 
PRAD 8.94 4.07x10-2 1.01x10-2 0.62 1.10 72.80 
KICH 7.41 1.27x10-2 4.98x10-3 0.72 1.53 35.75 
ACC 7.37 3.09x10-5 3.77x10-6 0.73 2.88 18.86 
THCA 4.81 4.94x10-3 3.93x10-3 0.74 1.61 14.37 
UCEC 4.49 1.04x10-2 1.07x10-2 0.64 1.42 14.18 
PAAD 4.17 4.21x10-6 7.61x10-7 0.69 2.27 7.65 
MESO 3.45 1.29x10-5 1.75x10-5 0.65 1.98 6.02 
CHOL 3.22 4.15x10-2 4.89x10-2 0.65 1.05 9.91 
CESC 2.93 1.96x10-4 8.11x10-5 0.65 1.67 5.17 
KIRP 2.93 2.85x10-3 2.58x10-3 0.65 1.45 5.95 
LIHC 2.92 6.27x10-6 2.38x10-5 0.61 1.83 4.65 
KIRC 2.87 1.14x10-9 1.55x10-10 0.63 2.04 4.03 
LGG 2.75 6.37x10-6 2.69x10-6 0.66 1.77 4.26 
LUAD 2.47 9.02x10-7 1.09x10-6 0.63 1.72 3.54 
BLCA 2.38 2.11x10-5 5.74x10-5 0.59 1.59 3.54 
STAD 2.28 1.06x10-3 5.75x10-4 0.61 1.39 3.73 
UCS 2.19 4.14x10-2 3.72x10-2 0.58 1.03 4.66 
SKCM 2.07 4.19x10-5 9.45x10-5 0.58 1.46 2.93 
ESCA 2.03 9.00x10-3 8.56x10-3 0.60 1.19 3.45 
HNSC 1.95 3.19x10-5 2.49x10-5 0.60 1.42 2.67 
BRCA 1.90 2.08x10-3 1.57x10-3 0.61 1.26 2.86 
SARC 1.72 3.16x10-2 3.86x10-2 0.56 1.05 2.81 
LAML 1.68 6.55x10-3 7.46x10-3 0.58 1.16 2.45 
LUSC 1.59 8.86x10-3 1.12x10-2 0.54 1.12 2.25 
OV 1.53 1.51x10-2 1.83x10-2 0.53 1.09 2.17 

 
*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper 
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6.3.4 External validation of the universal prognostic model 

The evaluation of the performance of the universal model on external cohorts is necessary for its 

practical translation. Therefore, we assessed the prognostic strength of the obtained eleven gene 

signature on various datasets. We utilized a specialized tool, SurvExpress, developed for the 

validation of biomarker on multiple cancer types (Aguirre-Gamboa et al., 2013). SurvExpress 

constructed a prognostic index based model of the 11 genes that were provided. Table 6.4 

represents the result of the universal model on different cancer cohorts. The cohorts for which the 

expression data was unaivalable were rejected for the analysis.  As observed from the results the 

universal model performed best for prostate cancer (HR=5.88) which is in corroboration with its 

performance on TCGA PAAD dataset (HR=4.49). The model is also seen to perform significantly 

in a variety of cancer types such as kidney cancer, ovarian cancer, colon cancer, lung cancer etc. 

thereby strengthening its employability as a multi-cancer risk prediction model. 

 

Table 6.4 External validation of Universal prognostic model  

S.no. Dataset/GEO accession HR p-value C %95CI logrank-p 
1 Zhao Renal Kidney GSE3538 3.03 1.84x10-6 0.69 1.92-4.79 4.82 x10-7 
2 Tothill Bowtell Survival Ovarian 

GSE9891 
3.97 2.17 x10-10 0.76 2.6-6.09 6.15 x10-12 

3 OV-AU - ICGC Ovarian Cancer - 
Serous cystadenocarcinoma 

2.4 6.01 x10-4 0.65 1.46-3.96 4.20 x10-4 

4 Sheffer-Domany-Colon-GSE41258 3.35 5.04 x10-8 0.7 2.17-5.18 6.29 x10-9 
5 Gulzar-Prostate-GSE40272 5.88 1.20 x10-3 0.84 2.01-17.24 1.80 x10-4 
6 Tomida Lung GSE13213 3.97 2.41 x10-5 0.75 2.09-7.54 5.43 x10-6 
7 Hoshida Golub Liver GSE10186 2.46 1.70 x10-2 0.65 1.17-5.15 1.40 x10-2 
8 PACA-AU - ICGC - Pancreatic 

Cancer - Ductal adenocarcinoma 
2.59 2.05 x10-6 0.67 1.75-3.84 8.67 x10-7 

9 Peters C.Fitzgerald Esophagus 
GSE19417  

2.8 1.00 x10-4 0.64 1.67-4.72 5.59 x10-5 

10 Lenz Staudt Lymphoma GSE10846 2.68 8.09 x10-9 0.7 1.91-3.74 1.91 x10-9 
*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, logrank-p: p-value for logrank 
test 
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6.3.5 Development of cross-cancer prognostic models 

It is interesting to find out which genes are shared across cancers in the context of their association 

with patient overall survival. The accomplishment of this task was carried out by calculating 

pairwise similarity between cancers c1 and c2 using Jaccard similarity index defined as: 

J(c1,c2)=(|c1 ∩c2|)/(|c1 ∪ c2|) 

Where c1and c2 represent the set of genes that are associated with survival in cancer c1 and cancer 

c2, respectively. Figure 6.4 shows the dendrograms representing hierarchical clustering plots on 

the basis of shared GPM genes, shared BPM genes and shared total survival genes (both BPM and 

GPM). Based on the Jaccard similarity index Jall=0.34, LGG-KIRC pair was found to be most 

similar in the context of survival related genes. An intersection between the set of top 20 genes 

(based on p-values) of both the cancers was used to develop risk stratification models.  

The conjoined set consisted of 15 genes viz. BTG3, CDK2, SOD2, TOP2A, HMGB2, TIMP1, 

ISG20, TNFRSF12A, AFNB1, ADD1, CASP8, CDC25B, IFITM3, CD44 and GPX1. PI models 

were developed for both the cancers as follows: 

Figure 6.4 Hierarchical clustering of cancers based on (a) shared GPM genes (b) shared BPM genes 
and (c) all shared survival related genes. 
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PILGG=1.19 × BTG3 +1.07 × CDK2 +0.99 × SOD2 +1.07 × TOP2A +0.99 × HMGB2 +0.98 × 

TIMP1 +0.89 × ISG20 +0.91 × TNFRSF12A +0.91 × IFNB1 -0.81 × ADD1 +0.79 × CASP8 +0.77 

× CDC25B +0.76 × IFITM3 +0.74 × CD44 +0.74 × GPX1 

 

PIKIRC=0.6 × BTG3 +0.7 × CDK2 +0.56 × SOD2 +0.54 × TOP2A +0.6 × HMGB2 +0.9 × TIMP1 

+0.55 × ISG20 +0.61 × TNFRSF12A +0.57 × IFNB1 -0.79 × ADD1 +0.54 × CASP8 +0.82 × 

CDC25B +0.53 × IFITM3 +0.52 × CD44 +0.57 × GPX1 

 

Using these, risk stratification was performed in the respective cancer as well as another cancer. 

While PILGG in LGG segregated the risk groups with HR=4.77, p-value=3.51x10-9, C=0.68, %95CI 

2.84-8.01 and logrank-p=3.41x10-11; it showed a performance of  HR=2.95, p-value=1.44x10-11, 

C=0.64, %95CI 2.15-4.04 and logrank-p=1.37x10-11 in KIRC. Similarly, PIKIRC in KIRC stratified 

Figure 6.5 Development of cross-cancer prognostic models: LGG-KIRC. (a) KM plots representing 
the segregation of risk groups by PILGG in LGG cohort and in (b) KIRC cohort. (c) KM plots 
representing the segregation of risk groups by PIKIRC in KIRC cohort and in (d) LGG cohort.  
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high and low risk patients with HR=3.27, p-value=1.82x10-13, C=0.66, %95CI 2.39-4.49 and 

logrank-p=1.31x10-13 and in LGG with HR=4.23, p-value=1.88x10-9, C=0.69, %95CI 2.64-6.77 

and logrank-p=1.07x10-10. KM plots corresponding to these are shown in Figure 6.5. It is also 

interesting to observe the same nature of these genes in both the cancers, as evident from the β 

values. 

 
6.4 Screening of drug molecules 

We further utilized the Cmap2 database and screened the potential drug molecules which could 

help reduce risk of death associated with high risk groups in LGG and KIRC. After querying the 

list of 15 genes above, we obtained the ranked therapeutic molecules. Top two enriched candidates 

were Genistein (enrichment=0.592, p=0) and Hexestrol (enrichment=0.918, p=0.00004). 

Genistein, is an isoflavone found in soy products which has recently drawn attention of the 

scientific community due to its potential use in treatment of cancer. Genistein is well known to 

induce apoptosis and prevent metastasis and has been shown to benefit colorectal and breast cancer 

patients (Spagnuolo et al., 2015; Tuli et al., 2019). Another top enriched molecule, Hexestrol, is a 

synthetic estrogen which was previously used for treatment of prostate and breast cancer but has 

been discontinued in most of the countries. However, Genistein continues to be a focus of attention 

in the scientific community for its anti-cancer effects.  

6.5 Conclusion and summary 

Numerous cancer-specific prognostic models have been developed in the past, wherein one model 

is applicable for only one type of cancer.  In this study, an attempt has been made to identify 

universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk 

across different types of cancer patients. In order to accomplish this, we gauged the prognostic role 

of expression of 165 apoptotic pathway genes across 33 cancers in the context of patient overall 

survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-

specific prognostic models achieved a minimum HRSKCM=1.99 and maximum HRTHCA=41.59. 

Further, a comprehensive analysis was performed to identify universal biomarker genes across 

many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEF1, 

CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG and CD2) and stratified risk groups across 27 
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cancers (maximum HRUVM=11.74, minimum HROV=1.53).Further, we clustered different cancers 

on the basis of shared survival related apoptosis genes. This clustering approach proved helpful in 

development of cross-cancer prognostic models. To show the efficacy of this strategy, a prognostic 

model consisting of 15 genes was thereby developed for LGG-KIRC pair (HRKIRC=3.27, 

HRLGG=4.23). Additionally, we also extracted small molecules which could potentially be utilized 

as therapeutic candidates in LGG-KIRC high risk groups. Apart from providing a comprehensive 

evaluation of the prognostic potential of apoptotic genes in various cancer types, our study could 

be helpful in designing versatile risk management and therapeutic strategies across different cancer 

patients. 
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7.1 Introduction 

Conventional risk evaluation or prognostic methods in cancer care involve anatomical features 

derived from patient tissue samples. These features involve assessment of primary tumour 

characteristics and the spread to other body parts, as implemented in various staging systems such 

as AJCC TNM staging (Amin et al., 2017). However, several other extrinsic and intrinsic factors 

have been widely associated with cancer risk in the past. While some of these have been included 

in the staging systems such as Age in thyroid cancer (Kazaure et al., 2018), others are yet under 

scrutiny. Likewise, while ER, PR and HER2 status are now included in breast cancer staging, the 

intrinsic heritable risk factor associated with HBOC i.e. BRCA 1/2 mutations are only used as 

monitoring variables and aren’t directly involved in the staging scheme. The contribution of risk 

factors versus underlying genetic factors has been a consistent matter of debate in scientific 

literature. According to a number of studies (Wild et al., 2015; Song and Giovannucci, 2015; 

Ashford et al., 2015), majority of the cancers are associated with extrinsic risk factors in rebuttal 

Figure 7.1 External risk factors and cancer mortality (source: ourworldindata.org) 
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to the study (Tomasetti and Vogelstein, 2015) which claimed that only one third of the cancers are 

caused by extrinsic factors or pre-disposed (heritable) factors. Some of the widely studied extrinsic 

factors associated with cancer risk are age, tobacco and alcohol consumption, lack of physical 

activity, dietary habits, pollution and environmental exposures. Figure 7.1 shows the number of 

cancer deaths which are collectively associated to these factors with cervical cancer being the 

topmost. From a death toll of 5.7M in 1990 to a death toll of 8.8M in 2017, the mortality associated 

with cancer has shown a significant increase. The two major reasons reported for this increase is 

the increase in population and the increase in aged population across the world. Due to the progress 

in healthcare, the world has witnessed a large aging population (due to increase in average human 

life expectancy) and with that the number of cancer related deaths. With the increment in age, cells 

are supposed to lose their efficacy to fight against cancer and as a result cancer is widely termed 

as an old age disorder. Figure 7.2a shows the cancer prevalence by age in 2017. It is clear that 

people aged above 50 are more prone to cancer and related risk of death. Figure 7.2b shows this 

trend in death rate and the significant amount of deaths related to people with age>50. Another 

prominent factor attributed to risk of developing cancer is tobacco smoking. About 85% of lung 

cancers are caused by smoking, with an additional proportion caused by non-smokers being 

exposed to secondhand smoke (Warren and Cummings, 2013). The risk of lung cancer depends on 

the dosage, but can be significantly decreased with the cessation of tobacco use, especially if the 

person ceases smoking early in life. The spike in the prevalence of lung cancer follows increases 

in tobacco smoking in various countries across the globe. Bad clinical effects, including elevated 

treatment-related toxicity, increased risk of second primary cancer, reduced quality of life, and 

decreased mortality, are correlated with continuing tobacco use following diagnosis of cancer 

patients (Samet, 2013). The rate of deaths due to smoking is reported to be higher in richer 

countries. The GBD (Global Burden of Disease) Compare tool (https://vizhub.healthdata.org/gbd-

compare/) was used to analyze the death rates due to various external risk factors such as diet and 

nutrition, occupational exposures, consumption of intoxicated substances, pollution, physical 

activity etc. The results are shown in Figure 7.3. As implied from the results, tobacco smoking 

was the biggest cause of cancer deaths followed by alcohol consumption and obesity. Although, 

the number of deaths attributed to these factors were less as compared to other biological 

alterations, they can be used in conjunction with other relevant factors such as TNM stages for a 

better prognostic evaluation. It is also worth mentioning that treatment procedures may also 



 108 

contribute to increased death risk such as radiation exposure in radiotherapy may result into 

second-hand cancer or other disorders (Toma-Dasu et al., 2017; Mazonakis and Damilakis, 2017), 

Figure 7.2 Cancer versus age. (a) Figure shows the cancer patients belonging to different age groups. 
(b) The increase in cancer death rates by different age groups. (source: ourworldindata.org) 
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exposure to toxic chemicals in chemotherapy can lead to other cancers and surgical procedures 

such as in old age patients or advanced cancer stage patients can aggravate their health conditions 

(Willaert and Ceelen, 2015).  

 The aim of this study is to utilize various intrinsic, extrinsic and anatomical factors to develop risk 

prediction models for multiple cancers. These features are collectively termed as ‘clinical factors’ 

for the purpose of our study. The patient information and registry variables were retrieved from 

Figure 7.3 The death rates corresponding to different risk factors across multiple cancers. (source: The GBD 
(Global Burden of Disease) Compare tool (https://vizhub.healthdata.org/gbd-compare/) 
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TCGA database corresponding to 33 different cancers. Thereafter machine learning based 

techniques and survival analysis were used to construct models which accomplish this task.  

7.2 Methods 

7.2.1 Dataset 

 The datasets used in this study (TCGA-biospecimen) were obtained from TCGA using TCGA-

Assembler 2 in Sept-2019. The datasets, however, are open access and can also be retrieved 

through the TCGA-GDC portal (https://portal.gdc.cancer.gov) with the TCGA project names or 

firebrowse (http://firebrowse.org).The datasets comprised of biospecimen data and clinico-

pathological information about patients belonging to 33 types of cancer. For each cancer clinical 

features missing in more than half of the samples were removed. Also, samples lacking overall 

survival time information and censoring data were removed. Samples with survival time greater 

than median overall survival time were labelled as low risk and vice-versa for high risk. Each 

cancer-type had a large number of features, of which several were exclusive to the cancer-type 

while some of them were common such as age, gender etc. A table mentioning the features for 

each cancer-type has been given in the Appendix A as well as at 

https://github.com/raghavagps/Chakit_Thesis. 

7.2.2 Feature selection and model development 

Firstly, chi-square tests (from ‘Scipy’ in Python) were used to reduce the feature set corresponding 

to each cancer based on p<0.05. Decision tree classifier was used to fit the feature set and best 

parameters were estimated using GridSearchCV from ‘sklearn’ with cv=5. Thereafter, recursive 

feature elimination method (RFECV) from ‘sklearn’ was implemented to eliminate features with 

no additional input in machine learning model’s performance. The final feature set was used for 

training and testing using a five-cross validation technique. Predicted labels were then used for 

survival analysis and stratification of risk groups. Figure 7.4 explains the process visually. 

7.2.3 Construction of risk matrices 
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 For each cancer, a risk matrix was constructed wherein a risk probability (being at high risk) value 

was allocated in place of each clinical feature. This probability value for a clnical feature, f, was 

calculated using the formula : p(f)=nHigh Risk/(nHigh Risk + nLow Risk), where nHigh Risk  is the number of 

patients with feature f that are at high risk (according to OS) and nLow Risk are the number of patients 

with feature f that are at low risk. The missing/unknown features were replaced with a 50% risk 

probability. After the risk matrix was obtained a risk vector was created. Each element of risk 

vector corresponded to the mean of risk probabilities for different clinical features, for a patient. 

Recursive feature elimination was used for feature selection based on HR values. The construction 

of risk matrix and implementation for survival prediction is explained in Figure 7.4. 

7.2.4 Survival prediction models 

As implemented earlier, Univariate Cox proportional hazards (Cox-PH) regression models were 

used from R packages ‘survival’ and ‘survminer’. Using these, Hazard ratios (HR) were computed 

Figure 7.4 Overall design of the study 
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along-with confidence intervals (%95 CI), Concordance and p-values. For comparison of survival 

curves between two risk groups, we used Kaplan-Meier (KM) plots and log-rank tests.  

7.3 Results 

7.3.1 Cancer staging based prognosis 

The AJCC staging information about each cancer was used to stratify the risk groups on the basis 

of two risk classes. High risk class contains patients with Stage 3/4 or associated substages and 

low risk class contains Stage 1/2 or associated substages. The pathological staging was used 

wherever possible, since it is considered to be more accurate. In the cases where pathological 

staging information was not available, clinical staging was used. Table 7.1 shows the risk 

stratification using staging and the associated metrics obtained from Cox survival analysis. The 

highest HR was observed for THCA (HR=9.22, p=10-4) and the lowest for CHOL, possibly due to 

a small data size. Cancers for which staging information wasn’t available. 

Table 7.1 Staging based risk stratification. cs: only clinical staging data available 

Cancer type Samples HR p-value C 
THCA 505 9.22 6.64E-04 0.76 
ACC 90 7.82 2.32E-06 0.74 
KIRP 258 4.86 7.76E-05 0.78 
KICH 112 4.69 1.68E-02 0.66 
UCEC (cs) 544 4.48 8.98E-07 0.70 
KIRC 530 4.35 8.74E-18 0.70 
UVM 79 3.33 1.18E-01 0.62 
BLCA 406 3.24 4.14E-05 0.59 
ESCA 166 3.09 6.24E-04 0.61 
DLBC (cs) 41 3.05 3.38E-01 0.62 
LUAD 495 2.78 5.75E-08 0.64 
READ 161 2.72 2.37E-01 0.44 
BRCA 1083 2.47 5.93E-06 0.66 
STAD 411 2.39 7.05E-04 0.60 
UCS (cs) 57 2.29 3.20E-02 0.62 
COAD 447 2.20 6.71E-03 0.58 
SKCM 414 1.60 6.29E-03 0.58 
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*HR: Hazard ratio, C: Concordance Index 
 

7.3.2 Age and gender versus survival risk  

We performed an exploratory analysis, to explore the role of a few common features in cancer 

risk. Figure 7.5 shows the distribution of high risk patients i.e. the patients which survived less 

than the median overall survival time of the dataset, with respect to Age, Gender, Ethnicity and 

Stage. Staging, is already a validated method of risk determination, and has also been analysed in 

the context of survival in the previous section is seem to play an expected role with majority of 

OV (cs) 580 1.60 1.27E-01 0.52 
HNSC 451 1.58 3.48E-02 0.55 
LIHC 351 1.48 1.17E-01 0.53 
LUSC 487 1.48 3.48E-02 0.53 
CESC (cs) 300 1.40 2.22E-01 0.54 
TGCT 126 1.22 9.99E-01 0.75 
PAAD 182 1.19 7.67E-01 0.49 
HNSC (cs) 512 1.11 5.60E-01 0.51 
MESO 86 1.07 8.17E-01 0.49 
CHOL 45 0.71 4.87E-01 0.54 

Figure 7.5 Distribution of high risk patients by various clinical factors. 
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low surviving patients belonging to Stage 3/4.  Patients whose age at the time of diagnosis is greater 

than 50 years is seen to be at a higher survival risk than patients <50 years. This trend is akin to 

what has already been observed earlier (Figure 7.2). Except the cancers which are exclusively 

related to gender such as gynaecological cancers and breast cancer in the case of females and 

prostate or testicular cancer in the case of males, the risk is seen to be gender biased in a few cancer 

types. For example females are at higher risk of death due to thyroid cancer (THCA) and males 

are at a higher risk of death due to lung cancer (LUSC). These results corroborate the previous 

epidemiological findings. The figure also shows a huge proportion of high cancer risk patients 

belinging to the Not Hispanic/latino class, however this result is mostly due to low Hispanic patient 

data and cannot be relied on. To manage the imbalance between data, chi-square feature selection 

was implemented and poor features were removed. For example Table 7.2 shows the selected 

features for Breast cancer (BRCA) and their corresponding chi square test p-values. 

Table 7.2 Chi-square test results for Breast cancer (BRCA) dataset 

Feature name Sub-groups p-value 
gender Male, Female <1e-5 
menopause_status Post, Pre, Peri <1e-5 
race White, Black, Asian <1e-5 
ethnicity Hispanic, Not hispanic <1e-5 
history_neoadjuvant_treatment No, Yes <1e-5 
tumor_status Tumor free, With tumor <1e-5 
method_initial_path_dx Core needle biopsy 

Tumor resection 
Fine needle aspiration biopsy 
Excisional biopsy 
Cytology 
Incisional biopsy 

<1e-5 

surgical_procedure_first Modified radical mastectomy 
Lumpectomy 
Simple mastectomy 

<1e-5 

margin_status Negative, Positive, Close <1e-5 
axillary_staging_method Axillary lymph node dissection alone 

Sentinel node biopsy alone 
Sentinel lymph node biopsy plus axillary dissection 
No axillary staging 

<1e-5 

micromet_detection_by_ihc No, Yes <1e-5 
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lymph_nodes_examined No, Yes <1e-5 
lymph_nodes_examined_count 0-3, 3-9, 9-16, 16-44 2.7e-5 
ajcc_tumor_pathologic_pt T1, T2, T3, T4 <1e-5 
ajcc_nodes_pathologic_pn N0, N1, N2, N3 <1e-5 
ajcc_metastasis_pathologic_pm M0, M1 <1e-5 
ajcc_pathologic_tumor_stage Stage I, Stage II, Stage III, Stage IV <1e-5 
er_status_by_ihc Positive, Negative <1e-5 
pr_status_by_ihc Positive, Negative <1e-5 
her2_status_by_ihc Positive, Negative, Equivocal <1e-5 
histological_subtype Infiltrating ductal carcinoma 

Infiltrating lobular carcinoma 
Mucinous carcinoma 
Metaplastic carcinoma 
Medullary carcinoma 

<1e-5 

 

7.3.2 Decision trees based risk prediction models 

The feature set obtained after the Chi-square selection method was used for building decision tree 

based classifiers for each cancer. Numerical features were taken as it is where-as categorical 

features were encoded. Samples with missing feature values were removed. The labels for binary 

classification was ‘High risk’ or ‘Low risk’ based on the overall survival time and the features  
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Figure 7.6 Decision tree for risk prediction in Colon Adenocarcinoma (COAD) 

were further reduced using a recursive feature elimination technique (RFECV with cv=5). The 

features were ranked and only the top 10 ranked features were taken for model development. Each 

decision tree based model was evaluated using a five-fold cross validation scheme. The predicted 

labels for each cancer were used to stratify risk groups. Table 7.3 shows the results for 

corresponding cancer types. As an example Figure 7.6 shows the decision tree constructed for 

Colon cancer (COAD). The obtained tree utilized features such as race, weight, ajcc staging and 

edition and KRAS mutation status for developing the model.  

Table 7.3 Decision trees based risk prediction models using clinical factors 

Cancer type Samples HR p-value C 
UVM 79 3.47 1.12E-02 0.62 
DLBC 47 2.62 4.04E-02 0.59 
PRAD 500 2.61 3.70E-02 0.61 
KIRP 288 2.32 1.94E-03 0.61 
KICH 112 2.09 2.53E-02 0.61 
LIHC 299 1.60 3.95E-03 0.56 
CHOL 45 1.53 3.55E-02 0.53 
ACC 92 1.46 3.13E-02 0.53 
PAAD 185 1.41 1.76E-02 0.52 
UCEC 445 1.38 3.70E-02 0.55 
BRCA 969 1.29 2.27E-02 0.54 
CESC 307 1.26 4.04E-02 0.53 
MESO 86 1.24 4.35E-02 0.57 
LAML 200 1.23 3.39E-02 0.51 
ESCA 184 1.22 4.80E-02 0.48 
SARC 259 1.20 4.38E-02 0.52 
GBM 594 1.18 8.95E-03 0.53 
READ 170 1.17 8.36E-02 0.59 
LUAD 503 1.16 4.13E-02 0.51 
THCA 507 1.13 8.24E-02 0.57 
STAD 438 1.12 6.17E-02 0.51 
SKCM 345 1.11 5.59E-02 0.52 
PCPG 179 1.11 9.13E-02 0.52 
OV 584 1.08 5.25E-02 0.50 
KIRC 533 1.07 6.72E-02 0.50 
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HNSC 526 1.04 8.06E-02 0.50 
COAD 250 1.03 9.67E-02 0.53 
LUSC 491 1.03 8.60E-02 0.51 
THYM 123 1.01 9.89E-02 0.48 
UCS 57 1.01 9.86E-02 0.52 
BLCA 408 1.00 9.90E-02 0.50 

*HR: Hazard ratio, C: Concordance Index 
 

In Table 7.3, the results for models with an HR value>1.5 and p<0.05 are highlighted in red. The 

decision tree model for UVM shows the highest risk stratification ability with HR=3.47. The 

number of features utilized by this model were 14 including features such as M stage, T stage, 

ethnicity, history of prior disease etc. It should be noted that the risk stratification ability of this 

model improved in comparison to AJCC Staging in Table 7.2. However most of the models 

performed poorly and weren’t able to classify risk groups. Therefore, we implemented another 

algorithm for model development which is explained in the following section. 

7.3.3 Risk matrices and survival prediction 

Each subclass of a clinical factor (such as in Table 7.2) is attributed a risk probability value. This 

probability is calculated as explained in materials and methods section. Therefore, the data matrix 

corresponding to a cancer is converted to a risk matrix. Further, risk vectors are calculated by 

utilizing different feature columns. A recursive elimination technique is employed to choose the 

best features. The risk vector corresponding to the best features is the one that significantly 

stratifies the survival risk groups. Patients with a mean risk probability <0.5 are termed as ‘Low-

risk’ and vice versa. Table 7.4 shows the result corresponding to this. The model corresponding 

to Rectal adenocarcinoma (READ) performed the best with an HR of 24.71 and three features 

including BRAF mutation status, Tumor status and history of past malignancy.  

Table 7.4 Risk matrix based risk prediction models using clinical factors 

Cancer Features HR p-value C %95 CI L %95 CI U 
READ 3 24.71 2.48E-02 0.58 1.50 406.67 
THCA 3 22.49 1.83E-06 0.86 6.26 80.76 
CHOL 5 21.89 8.32E-06 0.77 5.63 85.03 



 118 

TGCT 6 13.92 3.55E-02 0.79 1.20 161.92 
UCS 4 13.84 4.12E-04 0.69 3.22 59.50 
ACC 3 13.04 7.59E-08 0.77 5.11 33.24 
PCPG 6 12.91 4.04E-02 0.58 1.12 148.99 
THYM 4 9.31 1.10E-02 0.71 1.67 52.01 
KIRP 4 8.97 3.56E-09 0.80 4.33 18.59 
BRCA 4 8.79 3.07E-02 0.54 1.22 63.11 
PRAD 5 8.40 5.80E-03 0.75 1.85 38.09 
CESC 2 8.01 4.42E-02 0.51 1.06 60.79 
KIRC 6 7.90 1.04E-32 0.75 5.62 11.10 
COAD 5 7.62 2.77E-12 0.77 4.31 13.46 
LUAD 2 7.61 4.70E-02 0.51 1.03 56.35 
LUSC 2 6.37 9.36E-05 0.52 2.52 16.14 
KICH 2 6.27 5.00E-03 0.63 1.74 22.58 
UCEC 5 5.64 8.59E-05 0.64 2.38 13.37 
BLCA 5 5.64 2.69E-09 0.57 3.19 9.97 
HNSC 2 5.57 1.12E-24 0.71 4.01 7.74 
LIHC 6 4.83 8.00E-03 0.52 1.51 15.49 
UVM 3 4.83 1.07E-02 0.69 1.44 16.20 
LGG 6 3.61 3.05E-09 0.69 2.36 5.52 
STAD 3 2.95 3.76E-03 0.55 1.42 6.12 
PAAD 6 2.91 2.50E-05 0.66 1.77 4.79 
SKCM 3 2.88 1.46E-09 0.62 2.05 4.06 
LAML 4 2.78 5.25E-03 0.55 1.36 5.70 
SARC 2 2.72 8.36E-05 0.60 1.65 4.47 
ESCA 5 2.47 1.14E-03 0.64 1.43 4.27 
GBM 2 2.37 5.27E-05 0.53 1.56 3.60 
OV 4 1.66 5.10E-04 0.55 1.25 2.20 

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper 
 
7.4 Clinical data VS. Molecular data in cancer prognosis 

A comparative analysis between the results presented here in Table 7.4 (risk matrix based methods) 

and bottom ten cancers of Table 6.3 (expression based cancer-specific models) can be presented 

in the form of the following Table 7.5. As observed, the performance is significantly increased in 

BRCA, LUAD, BLCA, LUSC and HNSC when clinical data is used. For SKCM, the model 

presented in Chapter 5 is still superior in performance. In all other cancers, both type of models 
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showed a similar performance. The results, therefore, further emphasize the importance of using 

clinical data as opposed to more sophisticated omics based approached.  

Table 7.5 The table shows the comparsion between clinical data based models, HR(CL) and 

expression data based models from Chapter 6, HR (EXP). 

Cancer HR (EXP) p-value C HR (CL) p-value C 
SKCM 1.99 2.18x10-5 0.59 2.88 1.46E-09 0.62 
GBM 2.07 3.73x10-4 0.61 2.37 5.27E-05 0.53 
OV 2.19 1.38x10-6 0.61 1.66 5.10E-04 0.55 
LUSC 2.21 1.26x10-6 0.61 6.37 9.36E-05 0.52 
HNSC 2.36 9.24x10-8 0.62 5.57 1.12E-24 0.71 
LUAD 2.76 6.94x10-8 0.63 7.61 4.70E-02 0.51 
SARC 2.81 1.32x10-5 0.67 2.72 8.36E-05 0.6 
STAD 3.35 2.78x10-7 0.64 2.95 3.76E-03 0.55 
BLCA 3.41 6.35x10-10 0.66 5.64 2.69E-09 0.57 
BRCA 3.45 2.36x10-9 0.67 8.79 3.07E-02 0.54 

*HR: Hazard Ratio, C: Concordance Index, EXP: Expression based, CL: Clinical data based 

7.5 Conclusion and summary 

Risk evaluation is a crucial step in cancer management. A careful prognosis is often required for 

strategic planning of therapeutic intervention. This has lead to development of several prognostic 

methods and identification of biomarkers. However, modern oncology research  seems to be biased 

towards omics based techniques and consistently ignores the contribution and role of other intrinsic 

and extrinsic risk factors. Past studies have revealed important roles of various factors in the 

development of cancer such as tobacco smoking in lung cancer, radiation exposure in thyroid 

cancer etc. On on hand, some factors can be modified/controlled as prevention tactics for cancer, 

on other hand some of these can be exploited for risk evaluation in cancer patients. In the current 

study, we examined a plethora of ‘clinical factors’ obtained from monitoring of a large number of 

cancer patients. The prognostic strength of these factors was probed by two approaches, first being 

the machine learning based classification of patients into risk groups. Since, the majority of the 

considered factors were categorical, decision trees which handle both numerical and categorical 

features, were used to build ML models. Second, approach involved construction of a ‘risk matrix’ 
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wherein each entry replaces a clinical “characteristic” with a probability value representing the 

likelihood of death risk. A few prognostic models based on decision tree based method was seen 

to perform better than the conventional staging, whereas the risk matrix based approach proved to 

be superior and provided better stratification models. These models employ minimal number of 

features and also have an anhanced prognostic potential as compared to conventional staging. 

Overall this study highlights the strength of clinical factors in cancer prognosis, and motivates 

further research into the untapping the potential of such factors for advancement in cancer care 

and management.  
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Cancer is the second leading cause of mortality globally (Siegel et al., 2020). For treatment and 

management of cancer patients, a crude pipeline that is generally followed by oncologists 

worldwide consists of the following broad steps (a)  Screening: Early physical examinations or lab 

tests on suspicion of cancer and also various tumour biomarker/marker tests (b)  Diagnosis: which 

includes imaging tests such as CT scans, PET, MRI, X-rays etc., invasive procedures such as 

biopsy and  endoscopy and/or blood or genetic tests for cancer biomarkers (c)  Risk evaluation: 

primarily includes cancer staging for evaluation of severity and prognosis and (d)  Therapeutic 

decision making involving surgical resection if cancer is localized and/or therapies such as 

chemotherapy , radiotherapy , immunotherapy etc. if cancer has metastasized to other tissues/body 

parts. Since, therapeutic intervention in majority of the cases follows the cancer staging system, it 

is considered to be the most important step in clinical management of cancer patients. For most of 

the cancers, the guidelines for staging is provided by American Joint Committee on Cancer (AJCC) 

and the Union for International Cancer Control (UICC). This is commonly known as the TNM 

staging system. As discussed in chapter 1, in the TNM system, the overall stage is determined 

after the cancer is assigned a letter or number to describe the tumor (T), node (N), and metastasis 

(M) categories wherein, T describes the size and location of original (primary) tumor, N tells 

whether the cancer has spread to the nearby lymph nodes and M tells whether the cancer has spread 

(metastasized) to distant parts of the body. The staging system many a times also includes 

information about other features such as levels of some molecular markers (PSA in Prostate 

cancer), age of the patient (Thyroid cancer), presence/absence of specific proteins (ER, PR or HER 

in Breast cancer), tumor location (esophageal cancer) etc.   Although, not all cancers are staged 

using the TNM system, for example Staging systems other than the TNM system are often used 

for Hodgkin and non-Hodgkin lymphomas, as well as for some other cancers. The International 

Federation of Gynecologists and Obstetricians (FIGO) has a staging system for cancers of the 

female reproductive organs. However, the TNM stages closely match the FIGO stages, which 

makes it fairly easy to convert stages between these 2 systems.   Once the values for T, N, and M 

(and any other factors that affect stage) have been determined, they are combined to assign an 

overall stage. For most cancers, the stage is a Roman numeral from I (1) to IV (4). Stage I cancers 
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are less advanced and often have a better prognosis. Higher stage cancers typically have spread 

farther, so they might require more intense or different treatment.  However, due to complexities 

associated with cancer, modern oncologists are always learning more about cancer growth and 

progression, and best treatment strategies. Over time, some of these findings are added to the 

staging systems for different types of cancer, which helps make them more accurate and valuable 

to both doctors and patients. Notable examples include addition of Gleason Score (Chen and Zhou, 

2016) in prostate cancer staging; ER, PR, and HER2 in breast cancer staging; and LDH in 

melanoma (Gershenwald et al., 2017) staging in the AJCC 8th edition staging (Amin et al., 2017). 

The inclusion of HER2 status was a result of a new Neo-Bioscore staging system developed by 

researchers at MD Anderson Cancer Center, thereby allowing more precise prognostic 

stratification of all breast cancer subtypes (Mittendorf et al., 2016).  

A huge challenge in cancer biomarker development is the heterogeneity associated with cancer 

since each cancer is composed of varied phenotypes and often responds differently to same 

therapeutic intervention. This heterogeneity arises due to the aberrant behavior in the cells of an 

individual cancer type. To tackle this, modern oncologists are continuously putting efforts to gain 

a detailed knowledge of the cellular mechanisms that drive cancer. It is now believed that 

biomarker development utilizing the genomic and proteomic information is a superior way of 

carefully addressing the issue of cancer heterogeneity. Thus, identification of novel biomarkers, 

now-a-days, largely relies on the “omics” technologies. The earlier notion of a single biomarker 

has now been replaced with multi-panel biomarkers or signatures consisting of genes or proteins 

thereby revealing the vital fingerprint correlated with a given cancer.  

Genomics has been used widely for the detection and recognition of biomarkers. The availability 

of genome sequencing technologies and microarray expression methods [29] provide a reliable 

and minimally invasive feature extraction system. This helps researchers to go another step 

forward, developing and producing a biological drug with a deeper knowledge of 

pharmacogenomics, thereby allowing biomarkers to investigate the effects of genetic variation, 

creating novel strategies for personally treating patients. In this study, we focused on a prominent 

cellular mechanism, apoptosis, which has a strong and proven foundation in cancer growth and 

development, as presented in chapter 1 and 2. In chapter 4 of this thesis, we show that certain 

genes belonging to the apoptotic pathway are correlated with patient survival in Thyroid cancer 
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(papillary thyroid carcinoma). The elevation and suppression of mRNA levels of these genes may 

be responsible in an aggressive or a mild phenotype of cancer thereby affecting patient outcome. 

The proposed signature in a further analysis was seen to perform better than AJCC staging for risk 

stratification purposes. A comprehensive evaluation of other clinical factors motivated the addition 

of patient age to this signature, thereby resulting in a genomic-clinical hybrid panel. The identified 

genes also show a differential behavior amongst normal and cancerous tissue implying their power 

to distinguish between people with cancer and without cancer. To guide this study in the direction 

of personalized medicine, candidate drug molecules were identified which could potentially 

modulate the expression levels of both adverse and beneficial genes and potentially reduce the 

severity of the disease.  

Chapter 6 of this thesis also utilized the genomic data of apoptotic pathway genes in order to 

identify universal gene signatures which hold prognostic value across different cancer types. This 

is in contrast to the typical process of development of cancer-specific biomarkers. The study 

centered at identification of prognostic biomarker apoptotic genes across different cancer types 

and devised a 11 gene panel that is applicable across 27 cancer types. Though performance of the 

panel is seen to vary amongst cancer types, a significant stratification is achieved in all the cases. 

In addition to this, the analysis presented in the chapter also offered a novel strategy of cross cancer 

biomarker development and sheds light on a novel gene signature which can be used in both brain 

cancer and kidney cancer patients. Apart from its prognostic relevance, the underlying nature of 

the genes could also motivate development of common therapeutic strategies in cells with different 

types of origin (glial cells in nervous system vs. tissue lining cells in kidneys). Further, the study 

also put forward cancer-specific risk prediction models based on expression levels of apoptotic 

genes.  

Gene expression profiling is a very reliable technique for classification of Cancer and 

prognostication, though, in the form of signalling networks, the function of these genes depends 

on their translation into functional proteins. This understanding is achieved by studying the 

proteins through the application of proteomics. Proteomics is based on the analysis of 

determination of levels of translated proteins in a given specimen, tissue or organism. Since, the 

fundamental protein families regulating the apoptotic pathway along with their functions is largely 

understood (Chapter 2), it is expected that an in-depth analysis of the proteomic profiles of 
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different tissue sampled collected from cancer patients would improve our knowledge of tumour 

pathogenesis, prognosis, and identification of therapeutic targets. To this endeavor, Chapter 3 

incorporated a proteomic dataset with expression profile of Bcl2 family proteins in the context of 

colo-rectal cancer. The study analyzed different protein expression based models and developed a 

novel protein signature for predicting (Folflox and Xelox) therapy responders and non-responders 

in Stage III CRC patients. The proposed signature assigns each patient with a ‘risk score’ based 

on the expression value of 5 pro- and anti-apoptotic proteins. A greater score is indicative of failure 

of therapy and higher mortality risk for the given patient. This study illuminates the synergistic 

role of the proteins in conferring therapeutic resistance in CRC and vital role of apoptosis. As a 

practical applicability of the proposed model, the in-house web-server ‘CRCRpred’ 

(https://webs.iiitd.edu.in/raghava/crcrpred) can be further exploited by both clinicians and 

patients. This resource can be beneficial in therapy planning and personalized treatment.  

The aforesaid “omics” technologies and subsequent data has led to the development of an 

extensive variety of cancer biomarkers, for cancer risk assessment purposes. This also includes the 

biomarkers/models developed in the current study. However, at the same time, much of these 

newer findings often makes the staging systems more complex than they were in the past, which 

can make it harder for people to understand them. Therefore, despite their excellent performance 

in the cohort studies, majority of the biomarkers haven’t yet been added to the staging systems. 

For that reason, our current study also explores the roles of various ‘clinical factors’ which 

collectively include pathological features, demographic features, lifestyle related features, 

anatomic features, blood protein level status (such as ER) etc. in predicting survival outcome of 

cancer patients. Chapter 4 of the thesis thoroughly examines the prognostic strength of genomic 

data corresponding to cancer-associated pathways as well as clinical factors in Melanoma patients. 

Multiple gene expression-based risk prediction models are developed and evaluated in comparison 

with clinical factors. Models were also constructed based on combination of best genomic features 

and clinical features. However, the model which had only clinical factors performed superior to 

all the other models. This study therefore highlights the importance of clinical factors in risk 

assessment. It indicates how a schematic integration of existing clinical features in the staging 

process can be more efficient. It also hints that, while, the omics-based biomarkers can be alluring 

due to their innate biological association, clinical factors should not be undermined. Based on this 
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pretext, the analysis presented in Chapter 7 of the thesis takes on a pan-cancer approach of 

developing risk prediction models by employing clinical factors only. The clinical factors herein 

are inclusive of a wide range of features spanning from intrinsic or heritable factors, various 

extrinsic risk factors, anatomical features and surgical methods or therapy procedures employed. 

The goal of the study was to develop risk prediction models which are easy to implement and 

comprehend. The models were assessed against the staging schemes in different cancer for their 

efficacy in risk evaluation in lieu of current standards. 

Overall, the work presented in this thesis proposes several novel prognostic biomarkers and 

methods for better risk evaluation in cancer patients. On one hand, the pipeline used in the study 

exploited a crucial cellular mechanism by utilizing recent “omics” based data and modelling 

techniques. On the other hand, various clinical features were evaluated both individually and as 

combination to suggested biomarker genes/proteins in lieu of patient survival. The comprehensive 

analysis of apoptosis molecules shed light on the risk prediction ability of the expression data in 

various cancers such as protein expression as therapeutic predictive marker in Colon and Rectal 

cancer (Chapter 3) and gene expression in Thyroid cancer (Chapter 4). However, some exceptional 

cases were also observed such as Melanoma where apoptosis expression based prognostic markers 

failed to stratify risk groups efficiently. This is clearly observed in ‘cancer-specific’ models 

presented in  Chapter 6 where Model for SKCM has the lowest performance. Thus, this specific 

case was exclusively addressed in Chapter 5, wherein other pathways and clinical features were 

studied. This resulted in a solely clinical features based risk model and trumped various other 

expression based models. The enhancement due to clinical feature addition is also obvious in 

hybrid approaches implemented in Chapter 3 and 4. Subsequently, a thorough analysis of clinical 

features was performed in Chapter 7. Following this, a comparison between expression based and 

clinical data based models was established.  

This work addresses various aspects of molecular and clinical data in prognosis of cancer patients, 

however, it will be naïve to say that the approaches taken here are complete/accurate. Ideally, a 

more holistic way of model development is required, which has to involve several other factors 

such as epigenomics, metabolomics, single-cell studies etc. owing to the heterogenous nature of 

the disease. Herein, although, we utilized a reductionist approach, due to several limitations 

pertaining to time, resources and computational power, the inclusion of clinical data can be 



 127 

considered as a step towards holistic understanding. To conclude, the work presented here, in its 

current form albeit after thorough clinical validations, can be beneficial for designing better 

treatment strategies and thereby help in progress of cancer research. 
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APPENDIX A 

Table A1 The list of clinical features corresponding to each cancer-type (Chapter-7), before 

feature selection was implemented. The feature annotation follows the TCGA annotation for 

clinical data. 

Cancer Features 
ACC gender, race, ethnicity, history_other_malignancy, 

history_neoadjuvant_treatment, tumor_status, residual_tumor, 
history_adrenal_hormone_excess, age_at_diagnosis, 
cytoplasm_presence_less_than_equal_25_percent, clinical_M, pathologic_T 

BLCA gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, 
noninvasive_bladder_history, tumor_status, occupation_current, 
tobacco_smoking_history_indicator, radiation_treatment_adjuvant, 
tobacco_smoking_pack_years_smoked, pharmaceutical_tx_adjuvant, 
histologic_subtype, age_at_diagnosis, ajcc_staging_edition, 
ajcc_tumor_pathologic_pt, lymphovascular_invasion, 
ajcc_nodes_pathologic_pn, lymph_nodes_examined, 
lymph_nodes_examined_count, lymph_nodes_examined_he_count, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
incidental_prostate_cancer_indicator, new_tumor_event_dx_indicator, 
anatomic_neoplasm_subdivision, histological_type, 
neoplasm_histologic_grade 

BRCA gender, menopause_status, race, ethnicity, history_neoadjuvant_treatment, 
tumor_status, age_at_diagnosis, method_initial_path_dx, 
surgical_procedure_first, margin_status, axillary_staging_method, 
micromet_detection_by_ihc, lymph_nodes_examined, 
lymph_nodes_examined_count, ajcc_tumor_pathologic_pt, 
ajcc_nodes_pathologic_pn, ajcc_metastasis_pathologic_pm, 
ajcc_pathologic_tumor_stage, er_status_by_ihc, pr_status_by_ihc, 
her2_status_by_ihc, histological_type 
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CESC gender, menopause_status, height_cm_at_diagnosis, weight_kg_at_diagnosis, 
race, history_hormonal_contraceptives_use, pregnancies_count_total, 
pregnancies_count_live_birth, history_neoadjuvant_treatment, tumor_status, 
pregnant_at_diagnosis, ecog_score, age_at_diagnosis, 
history_other_malignancy, histologic_diagnosis, 
keratinization_squamous_cell, tumor_grade, ajcc_nodes_pathologic_pn, 
hysterectomy_type, lymph_nodes_examined, lymph_nodes_examined_count, 
ajcc_tumor_pathologic_pt, ajcc_metastasis_pathologic_pm, 
ajcc_staging_edition, radiation_treatment_adjuvant.1, 
pharmaceutical_tx_adjuvant.1, clinical_stage 

CHOL gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, tumor_status, 
family_history_cancer_indicator, family_history_cancer_relationship, 
history_hepato_carcinoma_risk_factors, radiation_treatment_adjuvant, 
pharmaceutical_tx_adjuvant, ablation_embolization_tx_adjuvant, 
histologic_diagnosis, definitive_surgical_procedure, tumor_grade, 
residual_tumor, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
vascular_invasion, perineural_invasion, child_pugh_classification, 
ca_19_9_level, alpha_fetoprotien_at_procurement, 
platelet_count_preresection, prothrombin_time_INR_at_procurement, 
serum_albumin_preresection, bilirubin_total, creatinine_level_preresection, 
ishak_fibrosis_score, ecog_score, new_tumor_event_dx_indicator, 
age_at_diagnosis 

COAD histologic_diagnosis, gender, race, ethnicity, history_other_malignancy, 
history_neoadjuvant_treatment, ajcc_staging_edition, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, residual_tumor, 
tumor_status, cea_level_pretreatment, vascular_invasion_indicator, 
lymphovascular_invasion_indicator, kras_gene_analysis_indicator, 
braf_gene_analysis_indicator, history_other_malignancy.1, 
history_colon_polyps, weight_kg_at_diagnosis, height_cm_at_diagnosis, 
family_history_colorectal_cancer, age_at_diagnosis, 
anatomic_neoplasm_subdivision 
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DLBC histologic_diagnosis, history_other_malignancy, 
history_neoadjuvant_treatment, gender, race, ethnicity, 
weight_kg_at_diagnosis, height_cm_at_diagnosis, age_at_diagnosis, 
clinical_stage 

ESCA gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, tumor_status, 
esophageal_tumor_location_centered, esophageal_tumor_location_involved, 
histologic_diagnosis, tumor_grade, age_at_diagnosis, ajcc_staging_edition, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, residual_tumor 

GBM gender, race, ethnicity, history_neoadjuvant_treatment, tumor_status, 
karnofsky_score, age_at_diagnosis, histological_type 

HNSC anatomic_organ_subdivision, laterality, gender, race, 
history_other_malignancy, history_neoadjuvant_treatment, 
lymph_node_neck_dissection_indicator, lymph_nodes_examined, 
lymph_nodes_examined_count, lymph_nodes_examined_he_count, 
margin_status, tumor_status, ajcc_staging_edition, ajcc_tumor_pathologic_pt, 
ajcc_nodes_pathologic_pn, ajcc_pathologic_tumor_stage, 
extracapsular_spread_pathologic, tumor_grade, lymphovascular_invasion, 
perineural_invasion, tobacco_smoking_history_indicator, 
alcohol_history_documented, age_at_diagnosis, clinical_M, clinical_N, 
clinical_T, clinical_stage, tissue_source_site 

KICH histologic_diagnosis, sarcomatoid_features, laterality, gender, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_clinical_cm, ajcc_pathologic_tumor_stage, age_at_diagnosis 

KIRC histologic_diagnosis, tumor_grade, laterality, gender, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, tumor_status, 
serum_calcium_level, hemoglobin_level, platelet_count, white_cell_count, 
age_at_diagnosis 
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KIRP histologic_diagnosis, tumor_type, laterality, gender, race, ethnicity, 
height_cm_at_diagnosis, weight_kg_at_diagnosis, history_other_malignancy, 
history_neoadjuvant_treatment, age_at_diagnosis, lymph_nodes_examined, 
ajcc_staging_edition, ajcc_tumor_clinical_ct, ajcc_nodes_clinical_cn, 
ajcc_metastasis_clinical_cm, ajcc_clinical_tumor_stage, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, tumor_status 

LAML gender, race, ethnicity, history_other_malignancy, 
history_hematologic_disorder, history_neoadjuvant_treatment, 
history_neoadjuvant_hydroxyurea_tx, history_exposure_leukemogenic_agents, 
cells_used_for_analysis_source, age_at_diagnosis, 
percent_blasts_peripheral_blood, fab_category, 
cyto_and_immuno_test_performed, cyto_and_immuno_test_percentage, 
percent_cellularity, wbc_24hr_of_banking, hemoglobin_24hr_of_banking, 
platelet_count_preresection, blast_count, promyelocytes_count, 
segs_24hr_of_banking, basophils_count, abnormal_lymphocyte_percent, 
promonocytes_24hr_of_banking, fish_abnormality_detected, 
test_performed_indicator, fish_performed_outcome, 
molecular_studies_others_performed, molecular_abnormality_results, 
molecular_abnormality_percent, atra_exposure, informed_consent_verified 

LIHC gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, 
history_neoadjuvant_treatment, tumor_status, 
family_history_cancer_indicator, history_hepato_carcinoma_risk_factors, 
radiation_treatment_adjuvant, pharmaceutical_tx_adjuvant, 
ablation_embolization_tx_adjuvant, histologic_diagnosis, 
definitive_surgical_procedure, tumor_grade, residual_tumor, 
ajcc_staging_edition, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
vascular_invasion, child_pugh_classification, 
alpha_fetoprotien_at_procurement, alpha_fetoprotien_norm_range_lower, 
platelet_count_preresection, platelet_norm_range_lower, 
prothrombin_time_INR_at_procurement, serum_albumin_preresection, 
bilirubin_total_norm_range_upper, bilirubin_total_norm_range_lower, 
age_at_diagnosis 
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LUAD histologic_diagnosis, gender, submitted_tumor_site, race, ethnicity, 
history_other_malignancy, anatomic_organ_subdivision, 
histologic_diagnosis.1, residual_tumor, ajcc_staging_edition, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, pulmonary_function_test_indicator, 
kras_gene_analysis_indicator, egfr_mutation_status, 
tobacco_smoking_history_indicator, history_neoadjuvant_treatment, 
tumor_status, age_at_diagnosis 

LUSC histologic_diagnosis, gender, race, ethnicity, history_other_malignancy, 
anatomic_organ_subdivision, histologic_diagnosis.1, residual_tumor, 
ajcc_staging_edition, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
egfr_mutation_status, eml4_alk_translocation_status, 
history_neoadjuvant_treatment, tumor_status, age_at_diagnosis 

MESO gender, race, ethnicity, history_other_malignancy, 
history_neoadjuvant_treatment, pleurodesis_performed_prior, tumor_status, 
history_asbestos_exposure, primary_occupation, occupation_primary, 
radiation_treatment_adjuvant, pharmaceutical_tx_adjuvant, laterality, 
histologic_diagnosis, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, residual_tumor, 
creatinine_prior_tx, mesothelioma_detection_method, age_at_diagnosis 

OV gender, race, ethnicity, history_neoadjuvant_treatment, tumor_status, 
tumor_grade, residual_disease_largest_nodule, age_at_diagnosis, 
anatomic_neoplasm_subdivision, clinical_stage, histological_type 

PAAD invasive_adenocarcinoma_indicator, histologic_diagnosis, 
tumor_sample_type, gender, race, ethnicity, history_other_malignancy, 
history_neoadjuvant_treatment, tumor_grade, grade_tier_system, 
tumor_resected_max_dimension, residual_tumor, ajcc_staging_edition, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, tumor_status, 
diabetes_diagnosis_indicator, history_chronic_pancreatitis, 
family_history_cancer_indicator, radiation_treatment_adjuvant, 
age_at_diagnosis, anatomic_neoplasm_subdivision 
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PCPG gender, race, ethnicity, history_other_malignancy, 
history_pheo_or_para_include_benign, history_neoadjuvant_treatment, 
tumor_status, laterality, histologic_diagnosis, age_at_diagnosis 

PRAD histologic_diagnosis, zone_of_origin, gleason_pattern_primary, 
gleason_pattern_secondary, gleason_score, laterality, tumor_level, gender, 
history_other_malignancy, history_neoadjuvant_treatment, 
ct_scan_ab_pelvis_indicator, mri_at_diagnosis, lymph_nodes_examined, 
lymph_nodes_examined_count, lymph_nodes_examined_he_count, 
residual_tumor, tumor_status, biochemical_recurrence_indicator, 
radiation_treatment_adjuvant, new_tumor_event_dx_indicator, 
age_at_diagnosis, clinical_M, clinical_T, pathologic_T, 
targeted_molecular_therapy 

READ histologic_diagnosis, gender, race, history_other_malignancy, 
history_neoadjuvant_treatment, ajcc_tumor_pathologic_pt, 
ajcc_nodes_pathologic_pn, ajcc_metastasis_pathologic_pm, 
ajcc_pathologic_tumor_stage, residual_tumor, tumor_status, 
braf_gene_analysis_indicator, kras_gene_analysis_indicator, 
history_other_malignancy.1, family_history_colorectal_cancer, 
age_at_diagnosis, anatomic_neoplasm_subdivision 

SARC gender, race, ethnicity, history_other_malignancy, 
history_neoadjuvant_treatment, tumor_status, histologic_diagnosis, 
age_at_diagnosis, margin_status, residual_tumor, tumor_total_necrosis, 
disease_multifocal_indicator, locoregional_recurrence_indicator, 
metastatic_disease_confirmed, nte_lesion_radiologic_length 

SKCM gender, weight_kg_at_diagnosis, race, history_other_malignancy, 
history_neoadjuvant_treatment, tumor_status, breslow_thickness_at_diagnosis, 
clark_level_at_diagnosis, primary_melanoma_tumor_ulceration, 
age_at_diagnosis, ajcc_staging_edition, ajcc_tumor_pathologic_pt, 
ajcc_nodes_pathologic_pn, ajcc_metastasis_pathologic_pm, 
ajcc_pathologic_tumor_stage 

STAD histologic_diagnosis, tumor_grade, gender, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, residual_tumor, 
ajcc_staging_edition, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
family_history_of_stomach_cancer, age_at_diagnosis, 
anatomic_neoplasm_subdivision 



 134 

TGCT race, ethnicity, history_other_malignancy, history_of_undescended_testis, 
history_hypospadias, history_fertility, family_history_testicular_cancer, 
family_history_other_cancer, history_neoadjuvant_treatment, tumor_status, 
laterality, testis_tumor_macroextent, histologic_diagnosis, 
histologic_diagnosis_percent, intratubular_germ_cell_neoplasm, 
ajcc_staging_edition, ajcc_tumor_clinical_ct, ajcc_nodes_clinical_cn, 
ajcc_metastasis_clinical_cm, ajcc_clinical_tumor_stage, 
ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
serum_markers, pre_orchi_hcg, first_treatment_success, age_at_diagnosis, 
gender 

THCA gender, race, ethnicity, history_other_malignancy, 
history_neoadjuvant_treatment, tumor_status, history_thyroid_disease, 
history_radiation_exposure, histologic_diagnosis, laterality, tumor_focality, 
tumor_size_width, tumor_size_width.1, tumor_size_width.2, age_at_diagnosis, 
lymph_nodes_preop_imaging, lymph_nodes_preop_imaging_type, 
lymph_nodes_examined, lymph_nodes_examined_count, 
lymph_nodes_examined_he_count, extrathyroidal_extension, residual_tumor, 
ajcc_staging_edition, ajcc_tumor_pathologic_pt, ajcc_nodes_pathologic_pn, 
ajcc_metastasis_pathologic_pm, ajcc_pathologic_tumor_stage, 
genotypic_analysis_detected 

THYM gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, tumor_status, 
radiation_treatment_adjuvant, pharmaceutical_tx_adjuvant, 
ablation_embolization_tx_adjuvant, method_initial_path_dx, masaoka_stage, 
history_myasthenia_gravis, new_tumor_event_dx_indicator, age_at_diagnosis 

UCEC gender, menopause_status, height_cm_at_diagnosis, weight_kg_at_diagnosis, 
race, ethnicity, history_neoadjuvant_treatment, tumor_status, 
histologic_diagnosis, age_at_diagnosis, method_initial_path_dx, 
surgical_approach_at_diagnosis, peritoneal_washing, tumor_invasion_percent, 
residual_tumor, lymph_nodes_pelvic_examined_count, 
lymph_nodes_pelvic_pos__by_he, clinical_stage, neoplasm_histologic_grade 
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UCS gender, menopause_status, history_menopausal_hormone_therapy, 
history_tamoxifen_use, hypertension_diagnosis, diabetes_diagnosis_indicator, 
pregnancies_full_term_count, history_colorectal_cancer, 
height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, tumor_status, 
vital_status, treatment_outcome_first_course, radiation_treatment_adjuvant, 
pharmaceutical_tx_adjuvant, surgical_approach_at_diagnosis, 
peritoneal_washing, tumor_invasion_percent, 
lymph_nodes_pelvic_examined_count, lymph_nodes_aortic_examined_count, 
new_tumor_event_dx_indicator, age_at_diagnosis, 
anatomic_neoplasm_subdivision, clinical_stage, residual_tumor 

UVM gender, height_cm_at_diagnosis, weight_kg_at_diagnosis, race, ethnicity, 
history_other_malignancy, history_neoadjuvant_treatment, tumor_status, 
histologic_diagnosis.1, tumor_thickness, tumor_thickness_measurement, 
ajcc_tumor_clinical_ct, ajcc_metastasis_clinical_cm, 
ajcc_clinical_tumor_stage, ajcc_tumor_pathologic_pt, 
ajcc_nodes_pathologic_pn, ajcc_metastasis_pathologic_pm, 
ajcc_pathologic_tumor_stage, age_at_diagnosis 
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