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Abstract

With about 19 million occurrences and 10 million mortalities in 2020, “Cancer” is the second
leading source of mortality worldwide (WHO GLOBOCAN). The top three continents burdened
with cancer deaths are Asia (58.3 percent), Europe (19.6 percent) and Latin America (7.2 percent).
As of today, patient management in cancer care involves three broad steps: (a) screening and
diagnosis, (b) risk assessment and prognosis, and (c) therapy. Since therapeutic intervention
follows the risk assessment step, it is known to be the most critical phase in the cancer care and
treatment. Risk estimation is done by means of multiple staging schemes for most cancers. The
"TNM system' for which the staging directives are issued by the “American Joint Committee on
Cancer” (AJCC) and the “Union for International Cancer Control” (UICC), is the most extensively
used system. The overall stage in the TNM system is determined when a letter (often with a
number) is allocated to the cancer to describe the stages of T: tumour, N: node and M: metastasis
, in which T specifies the size and location of the initial tumour, N indicates cancer spread to the
adjacent lymph nodes, and M shows the cancer spread to distant body parts. The traditional TNM
staging only involved anatomical considerations, but the modern staging system is continuously
revised to provide details on other characteristics such as cancer biomarkers that include the
profile/status of certain molecules that are altered in cancer tissues and clinical characteristics such
as the location of tumour or age. These insights are integrated into the staging processes for various
kinds of cancer, which makes it more reliable and useful to both doctors and patients. For example
the recent inclusion of HER2 status was a result of a new Neo-Bioscore staging system, thereby
allowing more precise prognostic stratification of all breast cancer subtypes . The addition of ‘Age’
in Thyroid cancer staging has also been reported to improve risk assessment.

The heterogeneity associated with cancer is a major hurdle in the formulation of “cancer
biomarkers”, as each cancer is comprised of multiple phenotypes and frequently responds
differently to the same therapeutic intervention. This heterogeneity exists because of the aberrant
behaviour of cancer cells, not just in different types of cancer, but even in same cancer type. In
order to resolve this and persuade a “personalized medicine” approach, modern oncologists are
actively seeking to develop a thorough understanding of the molecular processes that drive cancer.
Biomarker development using genomic and proteomic data is now considered to be a superior
means of carefully approaching the problem of cancer heterogeneity. This is largely achieved by
a detailed study of data obtained from subcellular processes that drive oncogenesis. In this study,
we focused on a prominent cellular pathway, Apoptosis, which has a strong and proven
background in the growth and development of cancer. In the framework of genomic data, for the



particular case of thyroid cancer, we demonstrate that certain genes belonging to the apoptotic
pathway are associated with patient survival. The elevation and suppression of mRNA levels of
these genes may be responsible for an aggressive or a mild phenotype of thyroid cancer thereby
affecting patient outcome. The proposed signature in a further analysis was shown to perform
better than AJCC staging, for risk stratification purposes,. The identified genes also exhibit a
differential expression between normal and cancerous tissue, suggesting their ability to distinguish
between individuals with and without cancer. Further, it was shown that the application of a similar
approach to a pan-cancer analysis revealed universal gene signatures that have prognostic
significance across various cancer types. This is in contrast with the conventional cancer-specific
biomarker development process. The study centred at identification of prognostic biomarker and
devised a 11 gene panel that is applicable across 27 cancer types. Although, the panel’s efficiency
is seen to differ among cancer types, a substantial stratification is achieved in all cases. In addition
to this, the study provides a new cross cancer biomarker development approach and sheds light on
a new gene signature that can be used in patients with brain or kidney cancer. In the area of cancer
treatment and rehabilitation, the practical realisation of such versatile biomarkers poses enormous

benefits.

Gene expression profiling is a very accurate strategy for the understanding of cancer and its
prognosis, but, in the context of signalling networks, the activity of these genes depends on their
translation into functional proteins. Because fundamental protein families controlling the apoptotic
pathway together with their roles are commonly known, an in-depth study of the proteomic profiles
of different tissues retrieved from cancer diagnosed individuals is anticipated to enhance our
comprehension of tumour pathogenesis, prognosis, and recognition of therapeutic targets. To this
end, the analysis included a proteomic dataset with the expression profile of Bcl2 family proteins
in the scope of colo-rectal cancer. Information from previous apoptotic pathway studies has been
used to establish a predictive biomarker for the estimation of response to treatment in colorectal
cancer patients. This research illuminated the synergistic function of proteins in conferring
therapeutic “resistance” to colorectal cancer and the critical role of apoptosis. The prognostic
power of the biomarker was compared to different clinical features and methods. The method was
released into public domain by the means of a web-server, thereby enforcing its practical utility to

both researchers and clinicians.

However, a major problem with biomarkers focused on "omics" is that inclusion of these

biomarkers makes staging processes more complicated, rendering them difficult for people to

iv



understand. Thus, considering their outstanding success in cohort trials, most biomarkers have not
yet been applied to the staging schemes. Therefore, our current research also examines the
importance of numerous ‘clinical factors/features' that collectively include pathological features,
demographic characteristics, lifestyle-related features, anatomical characteristics, blood protein
status (such as ER) in evaluating cancer patients' survival outcomes. Apart from the comprehensive
assessment of clinical factors and their integration to the gene/protein signatures proposed above,
we explicitly studied the case of "Melanoma" and looked at the prognostic power of genomic
information pertaining to many cancer-associated pathways as well as clinical factors. We
demonstrate that a prognostic model that incorportates only clinical factors is superior to the model
focused on gene expression. This research also illustrates the significance of clinical factors for
risk assessment. It shows how the schematic incorporation of existing clinical features into the
staging process can be more successful. It also indicates that while omics-based biomarkers could
be desirable due to their inherent biological correlation, clinical factors should not be undermined.
On the basis of this pretext, the study is further expanded to the pan-cancer framework of designing
risk prediction models by using only clinical factors. The clinical factors concerned include a wide
variety of characteristics, ranging from inherent or heritable factors, different extrinsic risk factors,
physiological features and surgical or therapeutic procedures used. The study established risk
prediction models that are easy to apply and understand. Models were also evalauted against

staging systems in various cancer cohorts.

Overall, the study discussed in this thesis suggests some novel prognostic biomarkers and
approaches for improved risk management in cancer patients. On the one side, the pipeline used
in the analysis exploited a key cellular mechanism by using recent "omics"-based information. On
the other hand, different clinical factors were examined both independently and in conjunction
with proposed biomarker genes/proteins in regard to patient survival. The study discussed here can
be useful for the development of better therapeutic modalities and thereby aid in the advancement

of cancer research.
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1.1 Cancer

Cancer is the name of a group of more than a hundred diseases which share their fundamental
origin in the malfunction of cellular machinery. Cellular organization of human tissues has made
possible the creation of an unprecedented variety of anatomical designs. Most of this plasticity of
architecture can be traced back to the fact that the human cells are endowed with great control and
flexibility. Most forms of cells in the human body encapsulate a full human genome i.e. far more
knowledge than any of these cells would ever need. Several cells maintain the capacity to expand
and differentiate even after organism construction has been completed. The continued ability to
proliferate and partake in tissue formation (morphogenesis) allows it to sustain adult tissues during
the lifespan of the organism. Such maintenance may include the repair of defects and the

reinforcement of cells that have suffered damage after long periods of action.
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Figure 1.1 The growth and progression of Cancer. Cancer cells (both benign and malignant)
multiply abnormally as compared to normal cells. Malignant tumour cells invade other body
parts while benign are localized. (Image by Cancer Research UK, CC BY-SA 4.0, via Wikimedia Commons)

At the same time, this mobility and autonomy pose a significant problem, in that individual cells
within the organism may obtain access to information that is typically inaccessible to them in their
genes and perform functions that are inadequate for the preservation and operation of normal

tissue. Furthermore, their genomic sequences are vulnerable to manipulation by various



mechanisms which modify the structure and, consequently, the information content of the genome.
The resulting genetic mutations may redirect cells into the acquisition of new, often highly
irregular phenotypes. Such modifications may be inconsistent with the standard roles of these cells
in organismic function and biology. Modifications in cell growth and death programmes may be
among these undesirable changes, and these may in turn contribute to the emergence of vast
populations of cells that no longer follow the laws regulating natural tissue maintenance and repair.
These rogue cells that form a ‘tumour’, also known as cancer cells, are the product of natural
growth gone haywire. Cancer cells somehow learn to survive through exceptional precautions
taken by the organism to deter their emergence. In creating the varied tissues that make organismic
survival viable, normal cells are deliberately programmed to cooperate with each other. Cancer
cells, on the other hand, have an agenda that is very different and more focused. They seem to be
driven by only one consideration: creating more copies of themselves (Figure 1.1). Genetic
alterations that lead to cancer appear to affect three major groups of genes—proto-oncogenes,
tumour suppression genes, and DNA repair genes; which are primarily involved in controlling cell
growth, repair and division processes. However, when these genes are altered in specific manner,
they may become cancer-causing genes that cause cells to expand and survive when they are not
permitted to do so.

Cancerous tumours are often categorized as benign or malignant tumours. Tumours that are
malignant, can migrate to or infect surrounding tissues. (Figure 1.1) Benign tumors, on the other
hand, do not grow into, or enter, surrounding tissues. A cancer that has expanded from the location
where it began to spread to another place in the body is termed as metastatic cancer. Treatment
can help to extend the lives of certain patients with metastatic cancer. In general, however, the
main aim of metastatic cancer therapy is to monitor or reduce the effects of cancer growth.
Metastatic cancers can cause significant harm to the functioning of the body and are the leading
cause of deaths. However, depending on the type of cancer, several health-related complications
can arise even for non-metastatic or primary cancers, some of which can be life threatening.
Further, there’s always a risk for metastatic growth due to the unpredictable nature of the cancer
progression. Thus, clinical interference is inevitable for a cancer patient despite the intensity/extent

of cancer.



1.2 Clinical management in Cancer

Cancer is one of the leading causes of death in the world. Cancer prevalence has been observed to
increase dramatically with age, meaning that three of every 100 individuals develop cancer every
year above the age of 60. In the last 30 years, the incidence of cancer cases has grown by about
one-third. Latest figures show that the number of cases is already increasing at a rate of almost 1.5
per cent per year. It is estimated that proportion of the cancer-population over 65 would rise from
16% in 2004 to 23% by 2030, further escalating the total incidence (Bray and Moller, 2006).

The primary methods of treating cancer for many years have been surgery and radiotherapy.
Controlling the primary tumour is a problem since it is responsible for major symptoms and health
depletion of the patient. Also, failure to control the disease locally means certain death. As
discussed in previous section, the most important cause of death is metastatic spread, which is the
extension of the tumour of the cancer to other body parts. Therefore, early detection of cancer and
treatment is vital. Once metastasized, it is almost difficult to treat the cancer patient. The prognosis
in that case is not changed by the treatment of the primary tumour, although the symptoms can be
mitigated.

Cancer is a chronic illness, and much like all other chronic medical conditions, cancer patients
have families, careers and other obligations. The target of modern healthcare system, therefore, is
to cure cancer if possible and, if not curable, to manage symptoms in order to increase the quality
of life and to extend the life of the person by a significant time. For example in elderly population
which are more prone to risk of death, a more careful and precise care system is required. Cancer
is continually handled in a multidisciplinary team environment to boost the result and reduce the
morbidity. Some centres make recommendations on multidisciplinary tumour committees, and
some centres have specialized multidisciplinary facilities. Multidisciplinary team members cover
doctors, radiation and surgical oncologists/hematologists, palliative care specialists, radiologists,
pathologists, general physicians, nurses and allied health professionals. While, the patient
management in cancer is a complicated and cancer specific process, it can be categorized into three
broad steps viz. screening and diagnosis, evaluation of tumor extent and risk, and treatment. These

steps are explained in the following sections.



1.3 Screening and diagnosis

The individuals which experience certain symptoms or difficulties along-with individuals who are
at higher risk are often advised to undergo routine screening tests for different cancers. The goal
of cancer screening is to allow the diagnosis earlier and thereby improve the survival rate. Highly
responsive tests are important if the condition is curable at an early stage and if the effects of a
false-positive result are not medically or mentally significant for patients. To cite some examples,
smear test is a sensitive examination for cervical cancer and the diagnosis of cervical cancer can
be readily confirmed by biopsy. Ultrasound and serum CA-125 screening is less sensitive but may
prove to be of benefit for ovarian cancer. Breast, cervix and lung cancer are so prevalent at certain
ages and in certain communities that screening is a realistic proposition. Clearly, the frequency of
tumours must be high enough to warrant the screening programme. Table 1.1 lists the symptoms

and currently used screening/diagnostic tests of a few prevalent cancers.

Table 1.1 Some common symptoms and screening tests used for diagnosis of different cancers

Cancer-type

General symptoms

Common diagnostic tests

Breast cancer

Cervical cancer

Colorectal cancer

Lung cancer
Ovarian and
Uterine cancers
Skin cancer
Gastric cancer

Prostate cancer

lump, blood discharge from the nipple, change
in shape or texture

bleeding, foul vaginal discharge, lower back or
abdominal pain

abdominal pain, blood in stool, change in bowel
habits, stool inconsistency

cough with blood, chest pain, weight loss

abdominal pain, bloating, loss of appetite

unusual growth or change in a mole
bloating, nausea, heartburn, indigestion

difficulty in urination,

mammography

cervical smear

faecal occult blood testing, rectal exam,
flexible sigmoidoscopy

chest radiography, chest CT scan
pelvic ultrasound, CA-125

self-examination
radiological and endoscopic examination

prostate-specific antigen (PSA)

These initial screening tests, if positive, are followed by biopsies for further confirmation of
cancer. There are very few situations under which the diagnosis of tumour is rendered in the

absence of pathological validation, especially because screening tests have gotten less invasive



over the last few years. A clinical diagnosis exclusively (no biopsy) is most commonly made in
the case of severe/advanced disease in a low performance patient, where anti-cancer treatment
does not increase quality of life or longevity. Thus, the major proportion of patients are diagnosed
with cancer confirmed by tissue pathology. For this, the most important point is the retrieval of
tissue sample through the least invasive method. For example fine needle aspiration biopsy
(FNAB) for examination of lymph nodes in patients with lung or abdominal mass. These least
invasive techniques such as FNAB or core biopsy enable effective staging and treatment strategy.
The second-most vital point which is specifically paid attention to is the amount of tissue which is

collected from the patient.

1.4 Risk evaluation and prognosis

After the cancer is diagnosed, the tumour extent and related risk is estimated. While the general
prognosis of malignant tumours is most often summarised by showing the percentage of patients
surviving at 5 or 10 years of age, these estimates generally disguise a wide variance in survival,
spanning from treatment to demise within a few months of diagnosis. The hunt for prognostic
markers has drawn the interest of oncologists for several years. The aim is to classify those patients
for which a treatment plan is likely to be effective (for example surgery) and, likewise, those with
whom it is supposed to fail, normally due to tumour spread past the primary site that is evident or
visible. A new approach needs to be taken for these patients. The following sections elaborate

various techniques which are currently used and/or are topics of active research.

1.4.1 Cancer staging: The TNM system

One component of the evaluation of factors which affect prognosis of any particular patient is the
staging of the magnitude of the disease at diagnosis. The main features of careful tumour staging
are: (1) it should be a standardized way to document primary tumour characteristics (ii) it should
provide an efficient prognostic estimate (iii) it should complement the biological understanding of
tumor and (iv) it should assist in efficient treatment design and planning for a patient. Out of the
various staging systems available, the TNM staging system of American Joint Committee on

Cancer (AJCC) is the most widely used for solid tumours such as breast-



Table 1.2 Cancer staging systems excluding AJCC TNM.

Staging system Details

Ann Arbor Lymphomas; uses roman numerals I-IV and E,S

Duke’s Colon cancer; similar to TNM, A-D for tumor spread, B & C have
further divisions

WHO-CNS Central nervous system; uses histological features

FIGO Gynecological cancers; similar to TNM, Stage 0 doesn’t exist

Cotsworld Lymphoma; modifications to Ann Arbor, Stage III with further
divisions

CIN Cervical intraepithelial neoplasia; staged in grades (I-III), caused by
HPV

-cancer, head and neck cancers and lung cancer. The AJCC’s TNM system is simple to grasp and
draws attention due to its relevance in cancer prognosis. However, it has certain limitations in
some cancers such as leukaemias and lymphomas, for which specialized systems exist. Table 1.2

mentions various staging systems other than AJCC’s TNM.

There are three major biological components involved in the AJCC TNM staging i.e. extent and
size of localized primary tumour (T), spread to nearby lymph nodes (N) and distant metastasis
(M). Each of these have further divisions, generally notated using numeric or alphabetical suffixes
(such as Tla, MO etc.). Although, the definitions vary according to the type of cancer, it broadly

follows the rules given in Table 1.3.



Table 1.3 The TNM staging rules.

T Stage N Stage M Stage
X -cannot be assessed X -cannot be assessed 0 -no metastasis
0 -no evidence of primary | 0 -no nodes 1 -distant metastasis
tumour observed
is  -in situ or localized 1-3  -increasing number
tumour implies increasing

number of nodes and/or

size of nodes

1-4 -increasing number
implies bigger size and
degree of invasion in

the organ

After the TNM assessment a Stage (0-IV) is assigned, wherein increasing number is a
representative of severity of the associated cancer with Stage IV being the deadliest and often
incurable cancer stage. Figure 1.2 explains the staging process in melanoma (skin cancer) based
on the tumour spread into the skin layers and beyond. The stages are often divided into further
substages. A detailed staging process involving sub-staging in colon cancer is illustrated in Figure

1.3.
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Figure 1.2 The AJCC TNM staging of melanoma of the skin. Here, a: without ulceration, b: with ulceration.
(Source: biorender.com)

1.4.2 Non-anatomical prognostic factors

Apart from the information obtained from analyzing cancer spread associated parameters such as
the ones involved TNM staging, various other factors are often considered in risk evaluation of
cancer patients. These factors can be inclusive of clinical factors such as age, heritable genetic
traits, genomic factors such as expression or mutation status of certain genes, concentration levels
of certain proteins in blood or serum, environmental factors such as exposure to radiation to
lifestyle related factors such as diet and smoking/drinking habit.

Previous experiments have shown that cancer cells release certain substances in the blood, known
as tumor markers, which are often used at a preliminary screening level. Another group of
substances known as tumour biomarkers, on the other hand, are not directly expressed by tumour
cells but show an altered level when compared with a normal body. These altered levels may
indicate presence of tumour and are used at both diagnostic and prognostic levels. Some commonly

used markers in cancer are:



Prostate-specific antigen (PSA): PSA is a protein in the blood whose levels are increased
in prostate cancer. PSA levels are used, to determine how a patient has responded to
therapy. They are also used to scan for recurrence of the tumour. However, only PSA test

cannot confirm the prostate cancer diagnosis.

Alpha-fetoprotein (AFP): AFP levels can be measured via blood tests. A high amount of
AFP is suggestive of liver cancer or germ cell tumors of the testes or ovaries. However,
elevated AFP levels are also found in pregnant women and can also be caused by disorders

such as chronic active hepatitis.

Human chorionic gonadotropin (HCG): An increase in hCG or b-hCG in blood is
indicative of cancer in the liver, pancreas, testis, ovary, stomach and lung. It is also elevated

during pregnancy and thus must be ruled out before.

Carcinoembryonic antigen (CEA): The most popular cancer in which this tumour
indicator is used is colorectal cancer, although many other cancers, such as epithelial

cancers, also exhibit an increase in its levels.

CA 125: Cancer antigen 125 (CA 125) is a protein in blood which is mainly associated
with ovarian cancer diagnosis and management. CA 125 levels have been observed to be

elevated in other cancers such as uterine, pancreatic, colorectal, breast and cervix.

CA 19-9: Cancer antigen 19-9 (CA 19-9) is a protein whose high levels are consistent with
colon, lung, and bile duct cancers. Elevated levels of CA 19-9 can suggest advanced
pancreatic cancer, but noncancerous disorders, including gallstones, pancreatitis, liver

cirrhosis and cholecystitis, are also associated with it.
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Other markers which are prominently used for specific cancers include thyroglobulin (thyroid
cancer), chromogranin-A (neuroendocrine carcinoma), neuron specific enolase (lung small cell
carcinoma), lactate dehydrogenase (melanoma, lung cancer, germ cell cancers) and CA 15-3
(breast cancer). Several genetic biomarkers/tests for cancer prognosis have also been proposed and
some of them are in active use at a clinical level such as OncotypeDx (breast cancer), DecisionDx
(melanoma) and Oncodefender-CRC (colorectal cancer). Much of these markers/biomarkers are
used as adjunct tools for diagnosis, prognosis and management in cancer patients and they are not
often relied on blindly due to their limitations. As a result, only a handful of these are included in
the AJCC staging along with other factors (Table 1.4). The hunt for efficient cancer biomarkers is
an ongoing process and demands multidisciplinary efforts. Further, AJCC staging principles are

regularly updated to include novel prognostic factors and provided in AJCC staging manual (Amin

etal.,2017).

Table 1.4 Non-anatomical prognostic factors included in AJCC staging (2018)

Cancer Prognostic Factor Test
Melanoma LDH Blood test
Prostate cancer PSA Blood test

Breast cancer

Testicular cancer
Gestational
trophoblastic
neoplasms

Thyroid cancer
Retinoblastoma
Primary cutaneous
lymphomas
Oropharyngeal cancer
Gastrointestinal

stromal tumour

Gleason Score

ER, PR, HER2 status
OncotypeDx

LDH, HCG, AFP
Risk Score

Age
Rb1 mutations

Peripheral blood involvement

pl6/ HPV status

Mitotic rate

Genetic test (biopsy)
Genetic test (biopsy)
Blood (LDH/AFP/HCG) or urine test (HCG)

Clinical factors (Monitoring of patient)

Clinical factors (Monitoring of patient)
Genetic test (tissue sample)

Peripheral blood smear test

HPYV test (tissue sample)
Biopsy
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1.5 Treatment

Similar to any other treatment, the main aim of cancer treatment is to cure cancer in diagnosed

patients. Wherever, this is not possible such as in late stage patients, the treatment often involves

Hormonal Immunotherapy
therapy
Cancer
Treatment
Surgery Radiotherapy
Bone marrow Personalized

transplant therapy

Chemotherapy

Figure 1.4 Types of cancer treatment

shrinking the cancer or deterring the cancer growth to allow the patients to have a longer life span
which is symptom free. There are two major steps involved in cancer treatment: (i) Primary
treatment which is focused on removal of primary tumour and/or killing of all the cancer cells.
Surgery is the most common primary treatment, however, depending on the sensitivity of cancer
cells to chemo or radiotherapy, those treatments may also be used. (ii) Adjuvant therapy wherein
the main goal is to kill cancer cells that remain after primary treatment, so as to avoid cancer
recurrence. Most commonly used methods involve chemotherapy, radiotherapy and hormone
therapy. Figure 1.4 mentions the treatment options currently in practice and are explained in

details below:

e Surgery- The main aim of cancer surgery is to heal your cancer by extracting all of it from

the body. Typically, the surgeon does this by cutting and removing the cancerous tissue
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while leaving the adjacent healthy tissue unaltered. In order to decide if the cancer has
spread, the surgeon can even remove several lymph nodes in the region. This lets the doctor
determine the likelihood that you will be healed, as well as the need for further care. For
example mastectomy is the removal of a whole breast in the case of breast cancer surgery
while lumpectomy is removal of a part of breast. Similarly, in lung cancer surgery,
lobectomy is removal of a part of lung and pneumonectomy is the removal of whole lung.

Surgery is often combined with other treatments such as chemo or radiotherapy.

Hormonal Therapy- Hormone therapy or hormonal therapy or endocrine therapy is a
cancer therapy that delays or prevents the development of cancers that use hormones for
growth. Hormone treatment can be divided into two broad classes, those that inhibit the
body's capacity to generate hormones and those that meddle with the function of hormones
in the body. Hormone therapy is most widely used to treat prostate and breast tumours that

use growth hormones. It is also commonly used along with other cancer therapies.

Bone Marrow Transplant- For blood cancers such as lymphomas and leukemias, the
target for both chemotherapy and radio therapy is often bone marrow. As a result, stem
cells are damaged which causes a fall in production of healthy blood cells and leads to
several health issues. To deal with this, stem cells are transplanted from a healthy donor.

Donor stem cells restore the bone marrow and blood cell production.

Chemotherapy- Chemotherapy is a method of cancer treatment that involves drugs to
destroy cancer cells. Chemotherapy operates by preventing or slowing down the
progression of cancer cells that expand and multiply rapidly. Chemotherapy is used to treat
cancer, minimize the risk that it will return or interrupt or slow down its growth.
Chemotherapy is also used to reduce tumours that cause discomfort and other
complications. Chemotherapy is performed in various ways, including oral, intravenous,

infusion, intra-arterial, etc.

Radiotherapy- Radiation or Radio therapy is a method of cancer treatment that destroys

cancer cells using beams of strong radiation. By disrupting the genetic material that

14



regulates how cells expand and differentiate, radiotherapy destroys cells. Although
radiotherapy kills both healthy and cancerous cells, its purpose is to kill as few
normal/healthy cells as possible. Much of the damage caused by radiation will also be
healed by normal cells. The treatment is distributed over several weeks to allow this healing
process. Examples of cancers sensitive to radiotherapy include lymphoma and seminoma

of testis.

Immunotherapy- Immunotherapy is a form of cancer treatment that improves the body's
natural defenses against cancer. It uses chemicals made by the body to enhance the way
the immune system operates to detect and kill cancer cells. The immune system consists of
a complicated mechanism used by the body to combat disease. This mechanism includes
cells, organs, and proteins. Cancer can usually bypass many of the normal defences of the
immune system, enabling cancerous cells to continue growing. Various forms of
immunotherapies function in various ways. Some of these help the immune system to stop
or slow the growth of cancer cells. Others help the immune system to destroy cancer cells
or stop cancer from spreading to other parts of the body. Immunotherapy can be used alone
or in conjunction with other cancer treatments. There are several forms of immunotherapy
including monoclonal antibodies and tumour agnostic therapies (such as control point

inhibitors), oncolytic viral treatment, T-cell therapy, and cancer vaccines.

Personalized Therapy- Personalized therapy or Precision therapy is a means for health
care providers to provide and prepare personalised care for their patients, depending on the
genes of the individual or the genes in their cancer cells. Precision therapy explores how a
certain gene alteration/mutation could influence a person's likelihood of having cancer and
how their genes could affect treatment. The method incorporates knowledge from genetic
testing to help clinicians establish a treatment strategy that typically contains very detailed
guidelines. Precision medicine can help allow a more precise diagnosis and improve
recovery in some cases. In other cases, it can encourage people to make choices about
healthier behaviours, early screening tests, and other protective measures whether they are

at risk for a specific cancer.
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1.6 Apoptosis in cancer: biological and therapeutic role

As discussed above, cancer cells acquire certain capabilities through which they grow and survive.

Out of the major hallmarks of cancer, evasion of apoptosis is one of prominent hallmark. A large

Death Ligand

‘

Death receptor Cell Membrane

: Cytosol
: Cellular stress Mitochondria
: conditions .
: P /( ( U | %
. i~ Y e = L/\\\
Downstream : Downstream WL e ~ b
signalling : signalling AN, LT \J_/,
. ol ° S~ -
E | o
: MOMP o
: =
- | & -
| al® — - .
4 H - ‘ °
! Anti-apoptotic Pro-apoptotic *
proteins proteins ° e
. ° -
Initiator H °
caspases °
L
Executioner &
caspases Initiator caspases

Executioner ; n )
caspases & Apoptosis &

Figure 1.5 The pathways'involved in apoptosis. (source: biorender.com)

number of recent advances in oncology are focused on developing chemotherapeutic drugs that
kill cancer cells via induction of apoptosis. Apoptosis is a precisely regulated cell death event with
distinctive genetic and biochemical mechanisms that play a crucial role in the growth and
homeostasis of normal tissues. It leads to removing excessive and undesirable cells in order to
maintain a healthy equilibrium between cell viability and cell depletion in organisms. Previous
studies suggest that inadequate apoptosis can propagate as cancer or autoimmune disorders.
Dysfunction of the apoptotic pathway not only facilitates carcinogenesis, but also makes cancer
cells immune to treatment.

Apoptotic cells show peculiar features during the apoptotic process. Usually, the cell starts to
shrink after the cleavage of laminates and actin filaments in the cytoskeleton. The apoptotic
degradation of chromatin in the nucleus frequently contributes to nuclear condensation. Cells

further keep shrinking, packing themselves in a manner that requires macrophages to eliminate
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them. These phagocytic cells (macrophages) are responsible for removing apoptotic cells from
tissues in a neat and orderly way. In order to facilitate their phagocytosis, apoptotic cells also
undergo changes in the plasma membrane that cause a macrophage response. One such
modification is the translocation of phosphatidylserine from the interior of the cell to the external
surface. The final stages of apoptosis are also indicated by the formation of membrane blebs or
blisters.

The key players of apoptosis are caspases, since they act as both executioners as well as initiators
of apoptotic process. There are two major pathways that initiate the caspases: the intrinsic or
mitochondrial pathway and the extrinsic pathway. Both of these lead to a common pathway
involving executioner caspases. This is followed by cleavage of caspase-activated
deoxyribonuclease inhibitor that is critical for nuclear apoptosis. In conjunction, downstream
caspases cause cleavage of DNA repair proteins, protein kinases, inhibitory endonuclease subunits
and cytoskeletal proteins. They also have an impact on the cell cycle related signaling pathways
and cytoskeleton, which together lead to the expected morphological variations in cell death. The
intrinsic pathway of apoptosis is a programmed mechanism within the cell through which various
stresses are dealt with for example hypoxia, DNA damage that cannot be repaired, high oxidative
stress etc. The apoptotic outcome in this pathway depends on the integrity of mitochondrial
membrane, which, when disrupted results in the release of molecules which activate executioner
caspases. The regulators of this pathway are mainly proteins of Bcl2 family which are divided into
two groups i.e. pro-apoptotic and anti-apoptotic molecules. As the name implies, pro-apoptotic
molecules cause the increase in mitochondrial membrane permeability whereas anti-apoptotic
molecules obstruct this process. The extrinsic pathway on the other hand consists of specialized
death receptors which are activated by certain (death) ligands. A subsequent activation of initiator
caspases and thereafter executioner caspases then leads to cell demise. The mechanism is

demonstrated in Figure 1.5 and a detailed explanation is provided in the next chapter.

1.7 Origin of proposal and thesis objectives

A lot of efforts have been invested in the past decades, to maneuver the apoptotic machinery in an
anti-cancer direction. Several key regulators and their roles in this complicated mechanism have
been elucidated. Briefly, it has been observed that certain components and parts of the apoptotic

process are compromised in cancer cells due to which these damaged cells refuse to die and
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propagate the damage into further generations. This current understanding of the apoptotic
pathways has led to the development of drugs which target these crucial elements and restore the
survival/death balance. Additionally, the altered levels or status of the apoptotic regulators are also
utilized for cancer prognosis and risk prediction. However, there still remains the challenge for
development of novel prognostic biomarkers/methods for risk evaluation of cancer patients.
Additionally, due to the relevance of various clinical factors in cancer development and growth,
these upcoming methods should integrate relevant features in order to complement the existing
risk prediction systems or replace them entirely. The novel prognostic methods can be utilized for
more accurate risk estimation and thereby effective therapeutic planning.

In order to augment the knowledge regarding the role of apoptotic pathway in conjunction with
clinical factors in cancer prognosis, the current studies aim to evaluate the prognostic strength of
various apoptotic genes/proteins. This information is further used to develop models which could
be utilized for risk evaluation in different cancers. Wherever possible, a comprehensive contrast is
made between the clinical factors and expression-based models. The resultant models thus involve
the most relevant features only. The in-silico models proposed in the study are intended to bear
the following major characteristics: (a) They should be minimally invasive, (b) They should be
cost effective, (¢) They should be universal or applicable across many cancer types, (d) They utilize
recent data and (e) They are serviceable to community in the form of free web-based service or

mobile app. The study is broadly categorized according to the following objectives:

(a) Development of proteomic data based prognostic models
(b) Development of genomic data based prognostic models
(c) Development of clinical factors-based prognostic models

(d) Development of universal prognostic models

1.8 Thesis organization

The specific aim of this thesis involves a comprehensive analysis of apoptosis related molecular
data (protein/gene expression) in the context of cancer prognosis. However, since traditional
methods employ clinical data for risk prediction/staging in cancer, one cannot simply ignore their
relevance. To address both these issues, our study delves into delineating the prognostic ability of

both clincal and molecular data for various cancers. We specifically address three major cancer-
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types (i) Colorectal cancer: To illuminate the predictive strength of apopotosis related proteins in
therapeutic decision making; (ii) Thyroid Cancer: The superiority of gene expression based
prognostic models as compared to traditional methods; (iii) Melanoma: The conflicting case
wherein expression based methods fail and clinical data based approach triumphs and (iv)
Universal prognostic biomarker: Establishing a generic biomarker which can be applicable across
a range of cancers. Overall, This thesis is organized into eight chapters containing the information

as explained below:

Chapter 1- Introduction to cancer and the fundamental biological understanding of the condition
is presented. This is followed by the brief information about the clinical management pipeline
currently used in the healthcare system and the relevance of risk evaluation procedures involved.
Finally, the role of apoptotic pathway in carcinogenesis and cancer treatment is discussed. The end
of this chapter emphasizes the need to study apoptotic mechanism in contrast to other c linical
factors for identification of novel prognostic biomarkers and development of efficient risk

prediction models.

Chapter 2- This chapter presents a literature survey regarding the cancer biomarkers and the
relevance of omics-based biomarkers in cancer management. It also highlights the importance of
various clinical ‘risk’ factors associated with cancer. The apoptotic pathways are presented in
detail and discussed in the context of biomarker discovery and treatment. Briefly, this chapter lays

down the motivation behind the study.

Chapter 3- Apoptosis related proteins have been widely associated with the prognosis of colorectal
cancer in the past. This chapter covers a study, wherein, proteomic data related to intrinsic
mitochondrial pathway proteins was utilized to develop a novel predictive biomarker for colorectal
cancer patients. The proposed biomarker is evaluated against several clinical factors and a
previously established biomarker. Ultimately, a web-based tool, which encompasses the proposed

biomarker, is presented for risk prediction in colorectal cancer patients.

Chapter 4- At the gene regulatory level, the mechanism of apoptosis is a sophisticated multi-level

process involving a wide quantity of genes. Some of these genes are also part of other mechanistic

19



pathways. Since the apoptotic defect can arise at any of the several regulatory steps in this process,
in this chapter, the genomic data corresponding to the complete apoptotic regulatory pathway is
employed. Thereafter the prognostic relevance of each of these genes is analyzed in the context
of thyroid cancer. Key genes are identified and validated through their published roles in thyroid
cancer. Other validation studies such as differential expression amongst tumor and normal tissues
as well as protein level expressions are also studied. The importance of clinical features and the

benefit of integrating ‘age’ in the proposed genetic biomarker is also discussed.

Chapter 5- In this chapter, a comparative analysis amongst the various cancer related pathways,
including apoptosis, and clinical factors is investigated through the lens of “prognostic value” for
the case of melanoma. Developed models are assessed for their predictive ability and,
subsequently, the superior significance of clinical factors in melanoma prognosis is established. A
novel risk grading method is proposed and compared against a popular tool. Ultimately, the usage
and functionality of the web-resource and mobile application, which implements the proposed

prognostic model is presented.

Chapter 6- The major aim of this chapter is to extend the concept of chapter 4 to other cancers and
utilize the information for developing universal prognostic models. A universal prognostic
biomarker which is applicable across a variety of cancers can have a huge implication for the
future. The chapter discusses the development of a 11-gene based biomarker and further proposes

a strategy for development of cross-cancer biomarkers.

Chapter 7- The penultimate chapter of this thesis discusses the role of various extrinsic and
intrinsic risk factors in Cancer. Due to their major contribution in cancer risk and mortality, clinical
features such as lifestyle related habits including smoking/drinking, age, gender, race, heritable
factors, environmental exposure etc. need to be further explored in conjunction to existing staging
system. However, due to the emergence of “omics” based biomarkers, these have been largely
undermined and are a matter of consistent debate. This chapter focusses on mining the prognostic

strength of various clinical factors and offers novel models for risk assessment in multiple cancers.
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Chapter 8- This chapter concludes the thesis work with a brief outline of the work and its

contribution to the field of Cancer.

Github Repository
A Github repository (https://github.com/raghavagps/Chakit Thesis) is also provided with the

necessary datasets and scripts.
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2.1 Cancer: A global nuisance

Cancer is the second leading cause of deaths worldwide, with around one in every six deaths in
2018. In United States alone, 1806590 new cancer cases and 606520 deaths have been projected
for the year 2020, in a latest report by American Cancer Society (Siegel ef al., 2020). According
to this estimation, Lung cancer is the major cause of deaths in both the sexes (23% in males and
22% in females) while 10% of all the cancer related deaths in Males is due to Prostate cancer and
15% of all the cancer related deaths in females is due to Breast cancer. Colo-rectal cancer is now
the third leading cause of death in both the sexes followed by other cancers as opposed to its second
rank in 2017 (Figure 2.1a), due to implementation of strict screening and prognostic procedures.
The National Cancer Registry Programme report for the year 2020 also estimated a whopping
1392179 cancer incidences in India (Mathur et al., 2020). While a lot of clinical efforts and ground-
breaking research has been responsible for the 29% overall decline of cancer deaths from the peak
cancer death rate of 1991, the rates are still increasing, however, with a slower momentum. Figure
2.1b shows the trend of increasing death rates after 1990. As per the data, the concern is very
serious since a cancer mortality-free future is still unforeseeable. The WHO-GLOBOCAN
database states that, owing to increased socio-economic growth, rates and types of cancer cases
from developed countries are increasingly moving towards developing countries. Additionally,
due to their geographical spread, there are certain different cancer forms and local risk factors for
each region, such as dietary habits and environmental exposure, which also play a major role in
the occurrence of new cancer cases. From these points, it is quite clear that cancer is a global
burden, and there is an immediate need to design solutions to treat this disease to boost patients'

life expectancy.

2.2 Factors associated with risks of cancer

Cancer is unpredictable and as a result, typically, it is not possible to determine precisely why one
individual gets cancer and another person does not. But various studies and statistical tests have
found that certain risk factors (hereby used collectively in the term ‘clinical factors/features’)
strengthen the likelihood of an individual getting cancer. However, there are also factors that are
associated with a lower cancer risk which are often referred to as protective risk factors or

protective factors.
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Cancer deaths by type, World, 2017

Total annual number of deaths from cancers across all ages and both sexes, broken down by cancer type.
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Cancer deaths by type, World, 1990 to 2017
Annual cancer deaths by cancer type, measured as the total number of deaths across all age categories and both
sexes.
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Figure 2.1 The global mortality burden of Cancer. (a) Distribution by cancer types. (b) The death rate
trend of various cancers. (source: http://ourworldindata.org/)
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Cancer risk factors include proximity, as well as certain habits, to toxins or other compounds. They
also involve factors, such as age and family history of cancers. Broadly the factors associated with
risk of getting cancer or intensification of cancer can be divided into four major categories as

shown in Figure 2.2 and explained below:

Risk Factors for Cancer

®

Internal or Heritable Environmental and Unmodifiable Modifiable Lifestyle
factors Occupational exposure Demographic Factors Related Factors

O,

Figure 2.2 The risk factors associated with Cancer.

2.2.1 Internal or Heritable factors

Some forms of cancer tend to occur in some families. This could be because family members share
some habits or conditions that raise the risk of cancer. Just about 5% to 10% of all cancers are
directly caused by hereditary mutations inherited by the parent. Most family cancer syndromes are
caused by hereditary mutations in tumour suppression genes. The most common examples of
heritable cancers are HBOC or hereditary breast or ovarian cancer, Lynch syndrome and Li-
Fraumeni syndrome. HBOC is caused by inherited mutations in BRCA1 or BRCA2 genes (Grill
et al., 2020; Hodgson and Turashvili, 2020; Yoshida, 2020). In addition to breast and ovarian
cancer, this mutation may also lead to fallopian tube cancer, pancreatic cancer, primary peritoneal
cancer, prostate cancer and male breast cancer, as well as other cancers. The most common
hereditary syndrome that raises the risk of colon cancer in an individual is Lynch syndrome. It is
caused by mutation in any of several genes for mismatch repair (MMR) such as MLH1, MSH6,
PMS2 etc. (Sinicrope, 2018; Lynch et al., 2015). Li-Fraumeni is a rare inherited syndrome which
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can cause a number of cancers to develop. Inherited mutations in the TP53 gene, which is a tumour
suppressor gene and CHEK?2 gene which is involved in DNA damage repair, are most frequent in
this disorder (Grill et al., 2020; Guha and Malkin, 2017; Correa, 2016). In their lifetime,
individuals with this syndrome can develop more than one cancer. They also seem to have a higher

risk from radiation therapy of getting cancer.

2.2.2 Environmental or occupational exposure

The environmental exposure basically involves exposures to radiation and other chemicals. Some
major contributors to environment related cancer risk are air and water pollution, ionizing radiation
such as X-rays and non-ionizing radiation such as UV rays. Air pollution has been claimed to
increase the risk of lung cancer. The water treatment involves chlorination which is known to
generate mutation-causing substances and thereby increase the risk of cancer for example
genitourinary cancer (Koivusalo and Vartiainen, 1997; Mughal, 1992). The presence of arsenic in
ground water is also presents a comparable risk (Christoforidou ef al., 2013; Smith ef al., 1992). It
has been documented that ionizing radiation induces 1-3 percent of all cancers. In fact, radiation
greatly raises the risk of leukemia, as well as breast, thyroid, bladder and lung cancer. In fact, the
cancer patients treated with radiation are also at high risk of developing cancers and therefore
radiotherapy is always assessed carefully. Ultraviolet radiation, and also magnetic and electrical
fields, are involved in non-ionizing radiation. UV is mainly absorbed from sun-rays which induces
cancers of the skin (Watson ef al., 2016; Narayanan ef al., 2010). Prolonged burning of the skin
because of too much UV radiation, notably in childhood and youth, is the main cause of cutaneous
melanoma. Fair-skinned, blue-eyed individuals with easily burnt and badly tanned skin are
especially at risk. Occupational or work-related exposure mainly consists of individuals who are
exposed to carcinogens, have a sedentary or low physical activity work life or are relatively more

exposed to sun such as fishermen/seamen (Brown et al., 2012; Kerr et al., 2017).

2.2.3 Unmodifiable demographic factors

The unmodifiable risk factors of cancer contain factors like age, gender, ethnicity and socio-
economic level. As the name implies, these factors cannot be controlled or modified. Aging is
linked with most cancers. The longer a human lives, the more likely it is that their cells will

accumulate alterations that causes cancer. With age, cells' ability to resist and rebound from these
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defects weakens. Age for example is included in the AJCC staging of thyroid cancer and is
believed to a significant factor. There are substantial differences between male and female in the
rates of cancers other than gender-only cancers (such as breast cancer and prostate cancer) (Kim
et al., 2015; Donington and Colson, 2011). For example the age-adjusted laryngeal cancer
morbidity in males, for example, is almost ten-fold relative to females. Melanoma is a prime
example of ethnicity/race associated cancer, since skin color is directly associated with melanin

and thereby melanocytic tumours (Gloster and Neal, 2006).

2.2.4 Modifiable lifestyle factors

Unlike the demographic factors, the lifestyle related factors such as diet, living habits, physical
activity etc. are completely under control of the individuals. The single most significant factor in
rising cancer risk is the consumption of tobacco products (Sasco et al., 2004; Loeb et al., 1984;
Samet, 2013). The risk of contracting lung cancer is directly correlated with the age people start
smoking along-with the daily amount. The consumption of heavy drinking also raises cancer risk
and induces some apparent health issues (Boffetta and Hashibe, 2006; Braillon, 2018). It is
considered that diet has the greatest effects on the risk of gastric, breast and lung cancer (Kerr et
al., 2017; Grosso et al., 2017; Key et al., 2020). Cancer tissue requires energy and minerals, so
diet can have an effect not only on cancer formation, but also on its development. The risk of
cancer can be raised by consuming processed meat. Numerous studies have found the link between
physical exercise and the prevention of cancer (Kerr ef al., 2017; Brown et al., 2012). Scientific
evidence has accrued that physical exercise is especially protective against cancer of the breast,
prostate, endometrium and colon. The cancer preventive impact of physical activity can be

enhanced by fast exercise multiple days a week.

2.3 Cancer Biomarkers

Cancer biomarkers are biological molecules made in response to the tumour by either the tumour
cells or any other body cells. These molecules are often used in risk estimation, as a diagnostic,
prognostic or predictive indicator of a patient's outcome. Table 2.1 lists the FDA approved
biomarkers for various cancers. The subpopulations of patients which are most likely to respond

to a given therapy can also be identified by cancer biomarkers (Goossens et al., 2015). Biomarkers
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may include chromosomes, gene products, particular cells, chemicals, enzymes, or hormones that

are measurable in the blood, urine, tissues,

Table 2.1 The list of FDA approved cancer biomarkers

Biomarker

Prostate-specific antigen (PSA)
Carbohydrate antigen 125 (CA125)

Carcinoembryonic antigen (CEA)
Carbohydrate antigen 15.3 (CA 15-3)

Cancer
Prostate cancer
Ovarian cancer

Colorectal/hepatic cancer
Breast cancer

Utility
Screening, Diagnosis
Diagnosis, Prognosis,
Predictive
Prognosis, Predictive

Predictive

Estrogen, progesterone receptors (ER and PR) Breast cancer Predictive (Hormonal therapy)

HER2 Predictive (Traztuzumab
therapy)

Predictive

Breast cancer

Carbohydrate antigen 27.29 (CA27.29) Breast cancer

Human chorionic gonadotropin-f (HCG-p) Testicular cancer Diagnosis, Staging, Predictive

Alfa-fetoprotein Hepatocellular carcinoma Diagnosis, Predictive

Calcitonin Medullary thyroid carcinoma  Diagnosis, Predictive
Thyroglobulin Thyroid cancer Predictive
CA 19-9 Pancreatic cancer Diagnosis

Nuclear matrix protein 22 (NMP-22) Bladder cancer Screening, Prognosis

Prostate cancer antigen 3 (PCA3) Prostate cancer Prognosis

or fluids of the body (Rhea and Molinaro, 2011). In certain patients with a particular form of
cancer, genetic modifications in cancer cells, including point mutations, gene rearrangement or
amplification, and resulting disruptions of cell division and proliferation are manifested by the
release of biomarkers of those alterations. These can be used as biomarkers for the diagnosis of
cancer or for forecasting reactions to different therapies (Sidransky, 2002; Vogelstein and Kinzler,
2004; Weissleder and Ntziachristos, 2003). Apart from screening biomarkers, which were covered

in the last chapter, the major types of cancer biomarkers are explained below:

2.3.1 Diagnostic biomarkers

A diagnostic biomarker is used to identify individuals who have cancer. In comparison to a
screening biomarker that would be applicable exclusively to symptomatic people, a diagnostic
biomarker would be used only for asymptomatic cases. Interestingly, the properties of an optimal

biomarker for diagnosis are identical to those for screening. Notably, most well-established
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screening biomarkers could be used as diagnostic markers and PSA is a well-recognized example.
The most widely used screening technique for prostate cancer is PSA paired with a digital rectal
exam. Presently used cancer biomarkers have poor diagnostic sensitivity and specificity in contrast
to the higher sensitivity expected from a good diagnostic biomarker (Pavlou et al., 2013). For
example, one of the best and most well-established diagnostic markers of multiple myeloma
remains the Bence-Jones protein in urine (Kulasingam and Diamandis, 2008). However, some
biomarkers have proven useful in verifying diagnosis, often in combination with other biomarkers.
These have been used, in particular, to classify primary tumours with uncertain primary and/or
other clinical imaging methods in metastatic cases. These combinations are known as biomarker
panels or signatures (Henry and Hayes, 2012). For example Mor et al. (Mor et al., 2005) stated in
2005 that a panel composed of four biomarkers (prolactin, osteopontin, leptin, and insulin-like
growth factor 2) had a 95 percent sensitivity and a 95 percent specificity for ovarian cancer
diagnosis jointly. In a further study, by addition of two more biomarkers to this panel (CA-125
and macrophage inhibitory factor), the specificity was shown to increase to 99.4% (Visintin et al.,

2008).

2.3.2 Prognostic biomarkers

Prognosis is the likelihood of any patient's treatment or possible future. At the time of diagnosis,
a prognostic marker is a patient trait attribute irrespective of therapy; thus, a prognostic marker
will provide details about the disease's likely outcome. The degree of increase in prognostic
biomarker levels typically represents tumour burden, thus higher biomarker elevation reflects poor
prognosis and vice versa. Prognostic biomarker can also be used in the staging system for cancer
or the grouping of tumor-node-metastasis (TNM). For example very high levels of biomarkers
such as AFP, LDH, and HCG- can suggest advanced cancer with grim prognosis and result in
testicular cancer, so that such biomarkers could be used for staging in the TNMS system with a
site-specific prognostic factor (Szymendera et al., 1981). A widely used prognostic and predictive
biomarker is Estrogen receptor (ER) for breast cancer patients. ER positive patients have a good
prognosis as well as respond to selective ER modulators and inhibitors. On the other hand, ER
negative patients have a poor prognosis and also do not respond well to hormonal therapy (Dufty,
2005). In the same context, Progestrone receptor (PR) and HER2 levels are often used for their

prognostic and predictive value in breast cancer patient management (Burstein et al., 2001).
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2.3.3 Predictive biomarkers

The response to numerous therapeutic procedures is often assessed by utilizing a predictive
biomarker; hence, a predictive biomarker is the fundamental ‘term’ for personalised medicine
(Pavlou et al., 2013). Predictive biomarkers are used in therapeutic monitoring, in patient follow
up procedures and in assessing tumour recurrence or metastasis likelihood. Much before the
availability of the clinical or radiological evidence of cancer recurrence, it may be biochemically
identified by increasing predictive biomarker levels. Continued follow-up during and after therapy
for cancer patients may reflect their condition if biomarker levels have not been elevated or stay
at baseline, suggesting effective therapy or remission. The elevation in the level of biomarker
above the basal level, on the other hand, suggests disease recurrence. Before all other diagnostic
approaches, a predictive biomarker may be a warning indicator of recurrence about as early as 3—
12 months. Many biomarkers, such as CEA in CRC cancers, CA125 in ovarian cancers, or PSA in
prostatic cancer, may be used to control treatment or diagnose recurrence or metastasis
(Kretschmer and Tilki, 2017). As a screening marker for pancreatic cancer, CA19-9 was approved

by the FDA in 2002 (Luo et al., 2020).

2.4 ‘omics’-based biomarkers and genetic tests

The emerging area of precision medicine in cancer relies on the information provided by a recent
field known as ‘omics’ which involves several related areas such as genomics, proteomics,
transcriptomics, metabolomics etc (Ielapi et al., 2020). The contribution of genomics-which
studies the whole genome- and proteomics-which studies the protein repertoire-to precision
medicine has gained the greatest share of coverage since the success of the Human Genome
Project. Omics tools are high-throughput techniques that generate vast quantities of data about
molecules of interest. Examples include next-generation sequencing, for genomics and
transcriptomics research, and mass spectrometry used in proteomics. The omics technologies have
contributed significantly in the identification of relevant biomarkers in cancer (Olivier et al.,
2019). The data retrieved from omics techniques are analyzed to determine biomarker role in
specific cancer occurrence, or in cancer prognosis, or in assessing the response to a particular
therapeutic intervention. The ability to generate a thorough disease characterization makes it easier

to stratify patients into well-defined personalised management and treatment classes, which is the
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cornerstone of precision medicine. Various genomics based biomarkers have shown excellent
performance in different cancer cohort studies (Quezada et al., 2017). Some of these are
commercially available as ‘genetic tests’ and are increasingly being used at the clinical level. Few
prominent examples include OncotypeDX (colon cancer), Prolaris (prostate cancer), Melagenix
(melanoma), Mammaprint (breast cancer), SPOT-Light HER2 CISH (breast cancer), ImmunoCyt
(bladder cancer), MESOMARK (mesothelioma), OvaSure (ovarian cancer), HybriTech (prostate
cancer) etc (Ebell, 2019; Brandao et al., 2019; Mian et al., 1999; Beyer et al., 2007; Kretschmer
and Tilki, 2017).

2.5 Cancer management through survival curves

When an individual is diagnosed with cancer, he/she is often presented with a survival estimate
depending on the stage of the disease. This is typically assessed by means of a survival plot,
wherein in the outcome of a patient population is shown in terms of curves (Rich et al., 2010). The

likelihood of survival in 5- or 10-years is the most common retort from a survival plot. A similar

Cancer type Breast Cancer Lung Cancer
Age with a specific  Age<60 Age>60
Group A cancer
,,,,,,,,,,, ‘ Prognostic Good prognosis Poor prognosis
‘ biomarker
Predictive Therapy Therapy non-
“““““““““““““““““ biomarker responders responders
Group B Diagnostic Without cancer With cancer
biomarker
‘ ‘ Therapy choice Therapy T1 Therapy T2
Syrs. 10 yrs.
Time to event (T)

Figure 2.3 Survival curves for patient management in cancer

graph is also utilized to discuss the efficacy of a treatment. It is therefore important to understand
how the survival curves are obtained as well as represented. A survival curve is a plot of the
fraction of patients as a function of time. Thus, the vertical axis represents the survival chance and
the horizontal axis is the time to a certain event such as time to death (overall survival) or time to

disease relapse (disease free survival). Figure 2.3 illustrates a typical survival plot wherein two
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population groups A and B are segregated based on the stratifying condition, S. Survival plots are
heavily used for assessment of biomarkers and risk factors in a specific cancer population.
However, they can also be used amongst groups with different pathological conditions such as two

different cancer types.

2.6 Apoptotic pathways

A comprehensive knowledge of the mechanism of Apoptosis is vital to understand the
pathogenesis of cancer and other conditions. This understanding, subsequently helps in the
identification of key molecules, thereby motivating development of novel biomarkers and/or drugs
that target these molecules. As discussed in the earlier chapter, the most central players in apoptotic
process are caspases (Li and Yuan, 2008). Caspases by their function as both initiators and
executioners drive the cell death events, in response to certain extra-cellular or intra-cellular
stimuli. There are two major pathways through which the initiation of caspases takes place (a) the
intrinsic or mitochondrial pathway and (b) the extrinsic or death receptor pathway. Both of these
pathways converge to a conjoint pathway known as the execution pathway that ultimately activates
the executioner caspases (caspase 3/7) and lead the cell to its demise. Details regarding both these

pathways is given in the following sections.

2.6.1 The intrinsic or Mitochondrial apoptotic pathway

As the name implies, this pathway is activated due to various intra-cellular stresses such as
oxidative stress, radiation, DNA damage etc. The quintessential event for intrinsic apoptosis to
take place is the loss of mitochondrial membrane’s integrity also known as MOMP (mitochondrial
outer membrane permeabilization) (Kim, 2005). MOMP leads to the release of mitochondrial
cytochrome-c into the cytosol which binds with APAF1 to form a ring-shaped complex known as
Apoptosome (Yuan and Akey, 2013). Apoptosome provides a platform for pro-caspase 9 to
caspase 9 conversion, which subsequently activates caspase 3/7 and steers the cell to its fate (Jin
and El-Deiry, 2005). The regulation of this process is managed by Bcl2 family of proteins which
are divided into two classes: pro-apoptotic proteins and anti-apoptotic proteins (Reed et al., 1996).
Pro-apoptotic proteins such as Bax and Bak,,when activated, locate themselves to mitochondrial
membrane and cause mitochondrial pore formation. The anti-apoptotic proteins such as Bcl2, Bcl-

XL and Mcll, on the other hand, inhibit pro-apoptotic proteins by binding to them (Ghobrial et
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al., 2005). There is a specific category of pro-apoptotic proteins known as BH3 only proteins such
as Bid, Bim, Puma, Noxa etc. which sense the death stimuli and activate Bax/Bak. Yet another
class of proteins exist, known as inhibitors of apoptosis (IAPs) which inhibit the activity of
executioner caspases and prevent cell death (Elmore, 2007). A common example is XIAP.
However, mitochondrial proteins such as SMAC/DIABLO are known to neutralize IAPs. An
illustration of this process is shown in Figure 2.4. The aim of any cancer therapy that targets the
intrinsic pathway is to cause MOMP and induce death of cancer cells. This is often achieved by
restoring the dysregulated balance between constitutive proteins. Additionally, the measurement
of protein levels of this pathway can also act as a potential biomarker (Scherr et al., 2016; Charles

and Rehm, 2014; Zeestraten et al., 2013).
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Figure 2.4 Detailed mechanism of pathways involved in the process of apoptosis
(source: biorender.com)
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2.6.2 The extrinsic pathway

Contrary to the intrinsic pathway, the extrinsic pathway is triggered via extrinsic death stimuli or
extracellular death ligands such as FASL (FAS ligand) or TRAIL (TNF-related apoptosis-inducing
ligand) in response to extra-cellular environment. These death ligands are recognized by
specialized receptors present on the surface of the cell known as death receptors or DRs For
example FASL is recognized by FAS (or Apol) and TRAIL is recognized by TRAIL-R. The
process involved in extrinsic pathway of apoptosis is well-established in many of the previous
studies (Elmore, 2007; Jin and El-Deiry, 2005; Guicciardi and Gores, 2009). Upon binding to DRs,
a DISC or death inducing signaling complex is formed. DISC is a complex which involves proteins
such as FADD (DD-containing Fas-associated death domain), procaspases 8/10 and cFLIPS
(cellular FLICE inhibitory proteins) (Bredesen et al., 2006). The procspases 8,10 are cleaved to
their activated caspase forms leaving their pro-domains on the DISC. The activated caspases
thereafter trigger the executionary caspases 3,7 leading to apoptosis. Caspase 8 is also responsible
in truncation of Bid to its activated form tBID which then activates the pro-apoptotic molecules

Bak/Bax thereby leading to MOMP. Figure 2.4 clearly represents this process.

2.7 Apoptosis related molecules as cancer biomarkers

Cancer is a highly complex cluster of ailments that represent fundamental anomalies that alternate
with natural cell activity including abnormal cell growth and expansion. The biological
mechanisms for the development of cancer are generally classified into six processes: proliferative
signalling, preventing growth suppression, resistance to apoptosis or cell death, allowing
replicative immortality, causing angiogenesis, and finally initiating invasion and metastasis
(Hanahan and Weinberg, 2000). The identification and development of novel cancer biomarkers
and their increasing therapeutic efficacy in cancer patients can be attributed to a detailed
understanding of the altered molecular pathways and cellular processes driving carcinogenesis.
Amongst these mechanisms, apoptosis is the most widely studied, which has led to the
identification of several key molecules. These molecules have been identified as biomarkers in

various cancers. We use the database CIViCmine (Lever et al., 2019) to mine the information
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regarding the role of different apoptosis related genes in biomarker development. Figure 2.5a

shows the role of some major genes as prognostic, predictive and diagnostic biomarkers in various
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Figure 2.5 The role of apoptotic genes as cancer biomarkers. (a) Figure showing the distribution of roles as
prognostic, predictive and diagnostic biomarker across various cancers. (b) The number of publications reporting the
biomarker role of the specific gene. (data source: CIViCmine database )
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published studies across different cancers. Figure 2.5b reports the number of published studies
which report these findings. From these results, it is quite clear that the role of Bcl2 as biomarker
has been reported the highest number of times with half of the studies mentioning it as a prognostic
biomarker. Amongst the pro-apoptotic genes, Bax is seen to be the most reported molecule with
majority of the studies mentioning it as prognostic biomarker. Several researchers have also
claimed that Bcl2/Bax ratio is an effective indictor of cancer prognosis (Vucicevic et al., 2016;
Csuka et al., 1997). Apart from this, a number of studies have also looked at the protein expression
profile of apoptosis related molecules and associated their levels with cancer risk. Some recent
examples include association of Caspases 3/6, XIAP and APAF1 with patient survival in
Melanoma (Charles and Rehm, 2014); the expression of Bcl2, Fas/FasL and TRAIL as prognostic
biomarkers in colorectal cancer (Zeestraten et al., 2013); the expression of BIK as biomarker for
tumor recurrence in gastric cancer (Pandya et al., 2020); MCLI1 expression in lung cancer (Nakano
et al., 2020) and other molecules of signalling pathway (Bai ef al., 2011; Ding et al., 2020; Zeng
etal.,2019; Ma et al., 2019).

2.8 Apoptosis as target in cancer therapy

Each impairment or anomaly along the apoptotic mechanisms can also be an important focus of
cancer therapy. Drugs or therapeutic methods that can revert the pathways to normality of
apoptotic signalling have the ability to kill cancer cells, which depend on these defects to remain
alive. Several recent and substantial results have opened new doors to possible new types of anti-
cancer therapies. The use of chemotherapeutic drugs to block the Bcl2 family of anti-apoptotic
proteins and the silencing of upregulated proteins or genes involved are several possible treatment
methods. The first agent targeting Bcl2 to enter clinical trials was Oblimersen sodium. Examples
of drugs that affects expression of Bcl2 family of proteins include ABT-737, ABT-263 and GX15-
070. The BH3 mimetics, so called because they imitate the binding of these proteins to the Bcl2
protein hydrophobic groove, are another class of drugs. In animal models with a high percentage
of cures, these mimetics have been shown to induce regression of existing tumours. For example
ABT 737 has been shown to bind with Bcl2, BclXL and BclW and inhibit their function. It has
also been stated that other BH3 mimetics, such as ATF4, ATF3 and NOXA, bind to and inhibit
Mcl-1. Apart from this, some experiments have shown that an improvement in apoptosis could be

accomplished by silencing genes coding for the Bcl-2 family of anti-apoptotic proteins. Silencing
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Bmi-1 in MCF breast cancer, for example, was shown to make the cancer cells more vulnerable to

doxorubicin. Further, the most potent apoptosis inhibitor of all IAPs has been reported to be XIAP.

Antisense methods and short interfering RNA (siRNA) molecules are some of the experimental

therapies targeting XIAP. Using the antisense method, XIAP inhibition is documented to result in

increased in vitro radiotherapy regulation of tumours. XIAP antisense oligonucleotides have been

shown to

show elevated chemotherapeutic function in lung cancer cells if used simultaneously with

anticancer drugs. Lastly, several therapeutic agents have been developed to activate caspases

Table 2.2 The list of drug molecules that target apoptotic pathway.

Drug Alias

ABT263 -
ABT263 -
ABT263 -

ABT263 -

ATI101 Gossypol

AT406 -
AT406 -

ENZ3042 -

GX15070MS Obotoclax

GX15070MS Obotoclax

HGS1029 -
HGS1029 -

LCLI161 -
RO5458640 -

Target

Bcl2 family
Bcl2 family
Bcl2 family

Bcl2 family

Bcl2 family

IAPs
IAPs

TIAPs

Bcl2 family

Bcl2 family

IAPs
IAPs

TIAPs

TWEAK
ligand

Used in
combination with
erlotinib/irinotecan
docetaxel
paclitaxel

Benefactor

Abbott
Abbott
Abbott

Genetetch

Roswell park cancer
institute

Ascenta
Ascenta

Therapeutic advances in
childhood leukaemia
consortium

Children's oncology
group

Arthur G James cancer
hospital and Richard J
Solove research institute
Human Genome
Sciences

Human Genome
Sciences

Novartis

Hoffmann-La Roche

Cancer/condition

Solid cancers

Solid cancers

Chronic lymphocytic
leukaemia

Chronic lymphocytic
leukaemia

Chronic lymphocytic
leukaemia, Chronic B-cell
leukaemia

Solid cancers, Lymphoma

Acute myelogenous
leukaemia

Acute, childhood, T cell
lymphoblastic leukaemia
Leukaemia, Lymphoma

Lymphoma

Solid cancers
Solid cancers

Solid cancers
Solid cancers
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synthetically. For example Apoptin, originally derived from the chicken anaemia virus, is a
caspase-inducing agent. In some trials, caspase-based gene therapy has been attempted in addition
to caspase-based drug therapy. It was observed that the effects of this therapy caused significant
apoptosis and reduced the volume of the tumour. Table 2.2 lists some molecules that are

undergoing/completed clinical trials and target apoptosis.
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Risk Prediction using Protein Expression
Profile

Colorectal Cancer
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3.1 Introduction

Large bowel cancer or Colorectal cancer (colon and rectum) is one of the most lethal cancers with
the second largest death rate amongst all cancers in the west. According to the latest colorectal
cancer statistics provided by the American Cancer Society (Siegel et al., 2020), in US alone,
around 147,950 incidences and 53,200 deaths are estimated for the year 2020 which includes 3,640
deaths in people with age less than 50 years. It is also observed that while incidence and mortality
rates have shown a decline in the age group of more than 50 years, an increase in both these rates
has been seen for individuals with age less than 50 years. Globally, around 10% of all the deaths
due to various cancers have been attributed to colorectal cancer, for the year 2020 (Global Cancer
Observatory). Also, amongst the number of deaths due to colorectal cancers, Asian countries
account for the maximum number of deaths. The number of incidences also follow a similar pattern
(Figure 3.1). The GCO database from WHO provides updated fact-sheets about information
regarding country-wise incidences and mortality rates based on sexes and age groups. The cause
for this geographic disparity has generally been associated with diverse dietary habits across the

world as well as distinct environmental exposures. Other lifestyle related factors (such as physical
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(6.89%)
N.America* Asia LAC** Asia
(9.3%) (52.3%) (7.4%) (54.2%)
Europe Europe
(26.9%) (26.2%)
Population = Number Population  Number
| Asia 1009400 L1 Asia 506 449
1 Europe 519820 —1 Europe 244 824
1 *Northern America 180 575 [ — **| atin America and the Caribbean 69 435
[ ] **| atin America and the Caribbean 134 943  — *Northern America 63 987
[ ] Africa 66 198 — Africa 42 875
Oceania 20 654 Oceania 7603
Total 1931590 Total 935173

Figure 3.1 Global incidence and mortality rates of colo-rectal cancer (Data source: GCO,WHO)
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activity, obesity, alcohol intake and smoking) have also been reported to play an important role in

CRC development and progression.

Once the individuals encounter some specific symptoms such as rectal bleeding, vomiting,
obstruction, pain etc. related to different colon or rectum sites (Figure 3.2); they are advised by
the doctors to undergo certain screening procedures for CRC detection. Detecting CRC at its

earliest stage provides the greatest chance for a cure. The most common screening procedures used
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Figure 3.2 The parts of colon and rectum

(Image from https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm, CC BY-SA 4.0 via
Wikimedia Commons)

currently include faecal occult blood testing, digital rectal examination and sigmoidoscopy.
Screening has been shown to reduce the risk of mortality due to CRC, however, clinicians
generally recommend people with an average risk of CRC begin screening around age
50. Screening is followed by staging for which Duke’s staging method is most widely used and
information regarding other prognostic factors such as degree of penetration of the primary
tumour, lymph node involvement, resection margins, vascular or lymphatic invasion and large-
bowel obstruction is also considered. Once the cancer extent is established, patients undergo
various treatment procedures depending on their situation and health. For early stage CRC patients

surgical resection procedures such as polypectomy, laparoscopy, endoscopic mucosal resection
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and partial colectomy are employed. For advanced stages, surgery is either followed by

chemotherapy or vice-versa.

Chemotherapeutics are the class of drugs which target specific cellular targets and destroy cancer
cells. Mainstay chemotherapeutics for CRC treatment include 5-FU, oxaliplatin and irinotecan.
While, the ongoing advancement in the field of genomics is leading the development of novel
chemotherapeutics, the success rate of these chemotherapeutics is not at par. The failure of a
therapy adds to both health (due to toxic side effects of chemotherapy) and financial burden on the
lives of the patients. As a solution this problem, modern clinicians usually evaluate the therapy’s
success/failure rate based on certain biomarker levels in the patient’s body. Several of these
predictive biomarkers have been previously established (Lee and Chan, 2011; Koncina et al.,
2020) for CRC. Predictive biomarkers measure the likelihood of response or lack of response of a
particular therapy, and allow identification of patients most likely to benefit from a given
treatment, thus sparing other patients from toxicities of ineffective therapies. These biomarkers are
majorly molecules associated with biological conditions or processes that are inconsistent amongst
cancer and non-cancer population. One such condition is dysregulated cell death or apoptosis
process in cancer. The insights achieved from understanding the apoptosis process in cancer has
shed light on the variation in the expression of Bcl2 family proteins, its role in tumorigenesis and
prognosis (Yang et al., 2009; Stoian et al., 2014; Liao et al., 2018; Yiet al., 2016; Li et al., 1998).
A recent mathematical study, involving the proteins of mitochondrial type 2 pathway, has also
proposed a predictive biomarker for therapy response in CRC (Lindner et al., 2013; Andreas U.
Lindner et al., 2017).

In regard to this, the current study utilized a dataset containing Stage III CRC cohort of patients
which have undergone Xelox and Folflox chemotherapy regimens. Both Xelox and Folflox are
oxaliplatin based drugs used for advanced stage patients. Oxaliplatin is known to cause DNA
damage in colon/rectal cancer cells, thereby inducing Bax translocation to mitochondrial
membrane and ultimately resulting in cell demise. However, the crucial balance between the pro-
apoptotic and anti-apoptotic proteins can be a decisive factor for the efficacy of these
chemotherapy regimens. The failure of these regimens can lead to a huge burden on patients in
termns of toxic side effects and a significant loss of resources. The prediction of therapy outcome

can be a huge development in the CRC patient management. Since, the therapies are mainly based
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on protein function, the prediction method needs to be developed on protein expression data. This
method should further encompass the intricate proapoptotic-anitapoptotic balance. In this study,
we gauged the predictive potential of expression of proteins from the Bcl2 family in stratifying
patients into high risk (non-responder) and low risk (responder) groups. By means of various
statistical and machine learning models, we established a protein signature which can be used to
predict the response of Xelox/Folflox chemotherapy and provided a comprehensive comparison
with clinical factors and another popular biomarker. We developed a web-based tool, to provide
service to the community, which can be utilized by clinicians for classifying patients into risk
groups. Further, by utilizing an external web-based tool, we show that the Bcl2 protein expression

data can also stratify stage III colon and rectal patients into high/low risk groups beforehand.
3.2. Materials and methods

3.2.1 Dataset and pre-processing

The 'CRC stage III cohort' dataset used for this analysis was derived from (Andreas U. Lindner et
al., 2017). The dataset was retrieved by permission from the authors on 24™ Sept 2018. It includes
information from primary tumour samples of Formalin-fixed paraffin-embedded (FFPE) from 134
subjects treated with FOLFOX and XELOX therapy regimens. In particular, it comprises of Bcl2
family protein levels in Nano-Molar (nM) retrieved by reverse-phase protein array (RPPA).
Additionally, the dataset also provides full clinical details such as overall survival (OS) time,
censoring information, lympho-vascular invasion, M staging; gathered from patients’ medical
surveillance. The data was normalized prior to further analysis. This dataset (n=134) was further
used to compare the model developed in this study with a previous model DR MOMP as applied

to the same dataset

3.2.2 Model development and conceptualization of ‘Risk Score’

Multiple linear regression (MLR) models using Python's sklearn package (v0.20.3) have been
applied to fit protein expression levels with the OS time. Ordinary least squares, Lasso regression,

Ridge regression, Lasso-Lars regression, Bayesian ridge regression and Elastic-net regression
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models are the approaches used to approximate the regression coefficients. The model training and
test evaluations were executed out by means of a five-fold cross-validation procedure. The
incorporation of all “five” predicted test datasets (predicted OS) was utilized to categorise the
actual survival time (OS) at mean/median cut-offs using Cox survival analysis. Coefficient
optimization and regularisation have been accomplished using built-in approaches such as

RidgeCV, LassoCV, LassoLarsCV, etc.

We also implemented a parameter optimization technique, wherein, the coefficients (w) of the sum

B defined (for a given sample) as

B = wiak[ Bak]+wgax[ Bax ] +wgc2[ B2 [+ waeix . [Bel XL ]+wamcii [Mcll]

Import CRC stage III dataset for 134 patients

[Protein concentrations, survival time,
censoring information]

Training set 1 Training set 2 Training set 3 Training set 4 Training set 5

l Parallel Execution

For wBak= -1 to +1 with increment of 0.1
For wBax= -1 to +1 with increment of 0.1
For wg¢]2= -1 to +1 with increment of 0.1
For wB1X1= -1 to +1 with increment of 0.1

For wppcl1= -1 to +1 with increment of 0.1

( B = wBak Bak+ wgax Bax+ wgc]2 Bel2+ wRelx1, BelXL+ wygel Mell
Do Survival Analysis and fit Cox-ph model to maximize HR at mean
and median cuts of B using survival time and censoring data.

}

l Optimum Parameter Set

.

W1 W2 W3 W4 W5

Figure 3.3 Pseudocode for parameter optimization technique (doi: 10.1371/journal.pone.0217527)

were optimized using five training sets derived from the complete dataset. For each training set i,

a B! with optimized coefficient set w', was obtained which maximized the objective function
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‘Hazard Ratio’ at mean and median cut-offs. The pseudocode for the algorithm is shown in Figure
3.3. Subsequently, B* was constructed where each coefficient is taken to be the mean of five

coefficients obtained from the training sets earlier, For example
WBak™*=( WBak'+ WBak>+ WBak’+ WBak '+ WBak")/3

The standardized version of f* was termed as ‘Risk Score’.

3.2.3 Evaluation metrics

Hazard ratios (HR) and Confidence intervals (CI) were calculated to estimate the probability of
mortality linked with high-risk/low-risk classes stratified with the univariate unadjusted Cox-PH
models on the basis of mean/median values of different variables. In order to better evaluate
various covariates, multivariate Cox-PH models were used to determine the relative death risks
related to various variables. In order to assess the survival curves of high- and low-risk factions,
Kaplan-Meier (KM) plots were employed. Survival tests were conducted using the 'survival'
library in R on these datasets. Using log-rank tests, statistical significance was calculated between
the survival curves. In order to measure the value of the explanatory variables used for HR

estimates, Wald tests were conducted.
3.3 Results

3.3.1 BcIXL protein expression as biomarker

We performed a Cox-PH univariate survival analysis using the numerical variables provided in the
dataset i.e. protein levels and patient age. Based on these multiple single variables at the median
cutoff, we segregated high and low risk patients. According to this analysis, the findings in Table
3.1 indicate the HR, CI and p values. On the basis of each protein’s concentration, we calculated
hazard ratios and ClIs to analyse if either of them would serve as a predictive marker that
distinguishes responsive or low risk patients with non-responsive or high risk patients. HR spanned
from 1.3 (age) to 20.877 (BclXL), as seen in Table 3.1. On the basis of both mean (HR = 7.19, p-
value = 0.0004) and median (HR = 20.81, p = 0.0030) cut-offs, BcIXL was capable of separating
high and low risk CRC patients, thereby reaching optimum distinction.
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Table 3.1 The performance of univariate survival models developed on different variables and
their combination; BeIXL showed the highest performance.

CRC Stage 111 (n=134) Median Cutoff

Variable HR (%95CI) p-value
Age 1.3 (0.54-3.14) 0.55
Bax 1.34 (0.55-3.23) 0.52
Bak 2.79 (1.07-7.3) 0.04
Bcl2 1.25 (0.51-3.02) 0.62
BcelXL 20.81 (2.7-155.5) 0.003
Mcll 1.64 (0.67-4.03) 0.27
Bcl2+BcelXL+Mcll+Bax+Bak 6.37 (1.86-21.73) 0.003
Bcl2+BclXL+Mcll-Bax-Bak 2.49 (0.95-6.47) 0.06

*CI: Confidence Interval, HR:Hazard ratio, samples>median (variable) were taken as high-risk
group

3.3.2 Multiple linear regression models for risk assessment

We measured variations in mean concentrations of all proteins amongst patients who survived the
trial and patients who succumbed to death or those whose cancer relapsed in order to claim BelXL
as an exclusive predictive biomarker. On each of these proteins, a t-test was conducted, and it was
found that Bak (p = 0.0042), Bax (p = 0.0094), BcIXL (p = 3.5e-05) and Mcll (p = 0.02) levels

varied significantly between the two classes.

Table 3.2 The peformance of prognostic models developed using regression based techniques on
multiple variables.

Model Mean Cutoff Median Cutoff

Name HR p-value HR p-value
LR 3.19 0.0132 3.27 0.0219
Ridge 3.34 0.0101 3.27 0.0219
Lasso 1.79 0.196 2.09 0.1170
LassoLars 2.44 0.0472 6.34 0.0032
Elastic-net 1.79 0.1960 2.15 0.1030
Bayesian ridge 2.08 0.1010 2.64 0.0469

*HR: Hazard Ratio, LR: Linear Regression, patients with <mean (predicted OS) or <median
(predicted OS) were taken as high risk group.
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In conjunction with BclXL, this finding demonstrated the importance of other proteins and
dismissed the idea of using BclXL as the exclusive biomarker. As a result, we used the total protein
concentration (sum) and difference between anti-apoptotic protein levels and pro-apoptotic protein
levels to stratify risk groups. The results depicted in Table 3.1 show that total concentration levels
were able to classify the two classes with a maximum HR = 6.37, p-value = 0.0030 at the median
cutoff. This motivated us to use multiple linear regression models with protein levels as
independent variables and OS as target or dependent variable. It was found that the model based
on LassoLars worked better than other models and obtained a maximal HR value of 6.34 with p-
value =0.0032 at the median cutoff using the the predicted OS (Table 3.2). Although this approach
utilized multiple protein data and offered predicted OS as a predictive biomarker that performs

better than many previously developed markers, it still underperformed in contrast to BclXL levels.

Table 3.3 Hazard Ratio (HR) of prognostic models developed using parameter-optimization
technique. Risk Score (RS) was computed using a simple linear function by optimizing weights.

W=(WBak, WBax, WBc2, WBcIXL, WMcll) HR p-value HR p-value
Setl, w=(0, 0.2, -0.1, -0.8, -0.9) 33.23 0.0006 2296 0.0023
Set2, w=(0, 0.1, -0.1, -0.9, -0.3) 18.88 8e-05 2296 0.0023
Set3, w=(0, 0.2, 0, 0.9, 0) 15.94 0.0002 21.54 0.0028
Set4, w=(0, 0.2, -0.2, -0.9, -0.8) 11.26 0.0001 2241 0.0024
Set5, w=(0.1, 0, -0.1, -0.7, -0.7) 11.03 0.0001 1035 0.0017
Overall, w=(0.02, 0.14, -0.1, -0.84, -0.54) 38.13 0.0004 22.27  0.0025

*Samples with <mean or <median cutoff were taken to be as high risk group, w is the set of

coefficients for different proteins
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Figure 3.4 Kaplan Meier risk prediction survival curves for CRC patients, based on mean (RS = 0) and median (RS =
0.266) cutoffs. (a) The risk of patients with “RS < 0” was approximately 38 times higher compared to patients with
“RS > 0” (HR = 38.13, p = 0.0004). (b) In patients with “RS < 0.266”, the risk was nearly 22 times higher than in
patients with “RS > 0.266” (HR =22.27, p = 0.0025). (doi: 10.1371/journal.pone.0217527)

3.3.3 Risk Score (RS) as the most significant biomarker

As outlined earlier, RS was constructed by a parameter optimization technique wherein different
training sets were utilized to optimize weights for protein concentrations. The results for different
subsets are summarized in Table 3.3. Patients with RS < 0 (mean) and RS < 0.266 (median), are
found to be at higher risk with HR = 38.13 (p-value = 0.0004) and 22.27 (p-value = 0.0025)
respectively, than patients with RS > 0 and RS > 0.266. Kaplan Meier plots for this case are shown
in Figure 3.4. The number of samples in high/low risk group after the stratification is performed
are provided at the bottom of respective KM plots with the title ‘Number at risk’. The red line

displays the samples in low risk group and blue is representative of samples in high risk group

The weights in Table 3.3 are reflective of the contribution of each of the apoptotic proteins in the
sum (B). It was observed that the coefficients obtained for the pro-apoptotic proteins (Bak and
Bax) in the linear sum RS were positive, whereas, the coefficients for anti-apoptotic proteins were
negative. Further, it was seen that a decrease in RS (due to increase in anti-apoptotic proteins)

increases the survival risk (HR>>1). Biologically, this implies that the when the concentration of
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anti-apoptotic proteins is higher, the process of apoptosis comes to a halt. This might be a strategy

employed by cancer cells to avoid their elimination. Subsequently, the risk of death is increased.

3.3.4 Risk Score vs. Clinical features

A multivariate analysis using cox proportional hazard models, was performed to see the
association of other clinico-pathological features present in the dataset with the mortality risk of
patients. The findings for mean cutoff are reported in Figure 3.5, clearly showing that RS exceeds
every other predictor in terms of OS based distinction of patients. RS is shown to be associated
with nearly 30 times elevated mortality risk in “high-risk patients” as compared to “low-risk
patients” in CRC cohort (HR = 29.44, p-value = 0.001) in the case of mean cuttoff. RS also

stratified clinical risk groups as shown in Figure 3.6.
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Figure 3.5 RS is revealed as the most significant covariate in the Multivariate survival analysis. (doi:
10.1371/journal.pone.0217527)
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Figure 3.6 KM plots representing the sub-classification of clinical risk groups by RS (mean cutoff) (a) Patients with
age>60 (HR=8.04, p=0.0017) (b) Males (HR = 15.91, p= 0.0091) (c) Positive lymphovascular invasion (HR = 24.92,
p=0.0018) (d) Righ tumor location (HR = 20.16, p=0.0046) (e) N1 stage patients (HR = 21.11, p=0.0046) and (e) T4
stage patients (HR = 13.65, p=0.0124). (doi: 10.1371/journal.pone.0217527)
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3.3.5 Comparison with existing tool

Recently, 134 chemotherapy-treated stage III CRC patients have been graded into risk
(responder/non-responder) categories using the DR MOMP model. The high-risk group identified
by DR MOMP was found to have nearly five times the risk of mortality (HR= 5.2, p-value = 0.02)
relative to the low-risk group. (Andreas U Lindner et al., 2017). The CRC stage III cohort dataset

contains an additional recurrence information stating that 95 patients were alive during the 5-

9% T T

T
[l Risk score RS)
80 - -DR_MOMP (€

Percentage (%)

Accuracy Sensitivity Specificity

(@)

.llisk Score (RS)
-DkiMOMP o)

True Positives False Positives True Negatives False Negatives

Figure 3.7 Comparative assessment of RS with DR MOMP (a) Improvement in sensitivity (73.68%), specificity
(66.66%) and accuracy (71.64%) by using RS, as compared to sensitivity (60%), specificity (58.9%) and accuracy
(59.7%) of DR_MOMP’s zn. (b) Corresponding improvement in prediction of responders (RS>0) and non-
responders (RS<=0) with reduced false positives/negatives. (doi: 10.1371/journal.pone.0217527)
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-years study period and 39 patients with cases of recurrences/deaths. A comparison between -7 of
DR MOMP, and RS was performed on the basis of prediction of recurrence/death vs survival
outcomes when concentrations of apoptotic family proteins are known. RS showed a prediction
accuracy of 71.64% at mean cutoff, as compared to 59.7% of .. Results are summarized in Figure

3.7.

3.3.6 External validation and biological support

To the best of our knowledge, an external dataset with quantified protein expression data as well
as survival data for CRC patients was not available. Therefore, to validate our findings we utilized
an external web-tool TRGAted (Borcherding et al., 2018), which utilizes Level 4 data from the
reverse-phase protein arrays for each cancer type were downloaded from the TCPA Portal (Date
Downloaded: 11/10/17) to predict risk groups corresponding to OS in various cancer types. We
selected the proteins “BCL2, BCLXL, ,BAK and BAX” for Stage IIl COAD and READ patients.
It is to be noted that MCL1 expression was not available. Figure 3.8 shows the survival plots for
risk stratification based on these proteins. Significant HR was observed in both the cohorts
(COAD: 0.291'=3.43 and READ: 4.24) corroborating our findings. The lower HR as compared
to RS on the previous dataset is posiibly due to absence of MCL1 expression. This is evident from
the coefficients in RS, which implies that while Bak, Bcl2 and Bax are somewhat less relevant for
prognostic studies, BcIXL and Mcll on the other hand, are the two dominating proteins to look at
while stratifying CRC patients. These results also correlate with isolated studies on BclXL and
Mcll which showed their relevance as prognostic markers in the past (Krajewska et al., 1996; Cho
et al., 2017). Several other studies in the past have shed light on the key roles of Bcl2 family
proteins in colorectal cancer. In one of these studies, the small molecule drug ABT-737, which
inhibits B¢clXL and Bcel2, was used to culture human CRC tissue ex vivo. The number of apoptotic
tumour cells increased considerably after treatment with ABT-737 compared to controls, whereas
proliferation levels remained unchanged. The study concluded that Bcl-xL is a driver in colorectal
carcinogenesis and cancer development and is a valuable therapeutic target (Scherr et al., 2016).
In another study, it was shown that Apigenin which is a natural flavoid, induced the apoptosis of
colon cancer cells by inhibiting the phosphorylation of STAT3 and consequently downregulating
the anti-apoptotic proteins Bel-xL and Mcll (Maeda et al., 2018). Many other studies such as
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(Jokinen and Koivunen, 2015; Tong et al., 2017) also confirm the dominant anti-apoptotic roles

of BclXL and Mcl1 in colon cancer.
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Figure 3.8 Figure shows the result of stratification of Stage III patients by RPPA data of Bcl2, Bax, Bak and BelXL utilizing
TRGAted web-tool (a) Risk stratification of COAD patients (b) Risk stratification of READ patients. (source: TRGAted)

3.3.7 Combining RS and patient age enhances stratification

In order to see if certain hybrid combinations could further add significance to the existing protein-
based RS, clinical variables were added to RS and allotted optimised weights through an iterative
process as before. Various combinations of single features and multi-features were attempted and
it was noticed that the combination of * with age showed the most impactful modification of all
single and multiple-feature combinations and used the least number of clinical variables. Adding
more attributes to this quantity did not alter the output. This combination was called the Hybrid
Risk Score (RSH). An HR value of 40.11 and a p-value of 0.0003 was obtained for patients with
RSy>median(RShH). Figure 3.9 displays the KM plot referring to the stratification of patients by
RSh. This hybrid combination also enhanced the accuracy of the estimation of
favourable/unfavourable predictions by 1.5% to 73.13% with sensitivity and specificity values of

75.78% and 66.66%, respectively.
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Figure 3.9 Combination of RS with Patient age improves risk stratification. (doi: 10.1371/journal.pone.0217527)

3.4 Web Service and functionality

In order to provide support to the society, we built a web server ‘CRCRpred’, which is freely
accessible at https://webs.iiitd.edu.in/raghava/crcrpred. In order to predict responders (low-risk)
and non-responders (high-risk) Stage III patients, given the expression levels of the necessary Bcl2
family proteins, this web server implements the current analysis. Figure 3.10 displays the basic

features, and the two prediction modules with their brief explanations as follows:
3.4.1 Single-protein prediction

Sometimes, the user would not have the concentration of all the necessary Bcl2 family proteins,
mostly because the quantification of protein levels is a difficulty in itself. Keeping this in mind,
we included this module for the user where, with minimal knowledge of the concentration(s) of

one or more proteins, the risk probability can be estimated. The output here is a protein-wise
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prediction. The input concentration is supplied to a linear regression model and the risk probability
is calculated. This model consists of fitting “bin-wise” mean protein levels with the likelihood of
high-risk patients in the bin. High risk and low risk stratification of patients was conducted on the

basis of median OS in the CRC cohort.

3.4.2 Multiple-proteins prediction

This module measures a patient's risk score (RS) based on the RS calculation of all five proteins
for the patient. Thus the concentration of all five proteins must be known before-hand. The patient
is listed in the high/low risk group on the basis of the cutoff, RS = 0. The gap from the cut-off

point is presented to the user as a percentage of risk along with the risk score.

CRCRpred

Enter protein

conc and submit HOME  -PREDICT  -SUPPLEMENT HELP  DEVELOPERS  CONTACT
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Figure 3.10 Usage of web-service “CRCRpred” for risk estimation in CRC patients by Bcl2 family protein
expression data
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3.5 Conclusion and Summary

Colorectal cancer is a life-threatening illness with worldwide prevalence that needs improved
treatment and patient management techniques. This improvement is only possible if patient-
selective therapy or personalized therapy decisions are made. In the past expression profile of
apoptotic regulators, specifically of Bcl2 family proteins, has been linked with CRC prognosis and
carcinogenesis. Monitoring the protein profile of this pathway is thought to be a good technique
for distinguishing high and low risk patients in a post-diagnosis pre-therapeutic situation to assess
the success rate of a therapy. However, the pattern in this protein concentration profile is not
always consistent, partially due to variance in the expression of functional paralogues and/or
genetic/epigenetic changes. In this study, we found that limiting the detection of high/low risk
CRC cases to a single marker protein (e.g. BclXL alone) could not be a reasonable way to solve
this issue. First, we took a combined pro-and anti-apoptotic protein concentration, both of which
are strongly regulated in the event of cell stress, such as tumours. We then analysed linear
combinations of Bcl2 family proteins and developed a Risk Score (RS) which is a residue of the
altered protein profile. RS is seen to perform the risk stratification task significantly than one of
the previously suggested biomarker. We further found that the combination of patient age with

expression profile enhances the performance by a significant amount.

T Lathwal A*, Arora C*, Raghava GPS. Prediction of risk scores for colorectal cancer patients from the
concentration of proteins involved in mitochondrial apoptotic pathway. PLoS One. 2019 *joint first author
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4.1 Introduction

The prevalence of thyroid cancer has been on a consistent rise, with the largest growth among all
cancers (Mao and Xing, 2016). In 2020, thyroid cancer incidences were close to 586202 with
43646 reported deaths. Figure 4.1 shows the distribution of incidences and deaths of thyroid
cancer globally. As it can be seen, Asia has the highest number of incidences as well as deaths
followed by Europe. Thyroid cancer is around three times more prominent in females and is related

to increased death risk with age.

Africa N.America*
(3.1%) \lortallt\ (5.5%)
N.America* “ LAC** ‘

(10.6%) ‘ (10.1%)

LAC** Africa
(10.8%) Asia (10.2%) Asia
(59.79%) (58.8%%)
Europe Europe
(14.9%) (14.7%)
Population  Number Population  Number
|| Asia 349 897 —1 Asia 25 668
|| Europe 87 162  — Europe 6399
1 **|atin America and the Caribbean 63 368 —_—_ Africa 4 443
1 *Northern America 62 256 | — **| atin America and the Caribbean 4 406
| | Africa 18 457 —1 *Northern America 2420
Oceania 5062 Oceania 310
Total 586 202 Total 43 646

Figure 4.1 Thyroid cancer prevalence across the globe. (source: WHO-GCO)

Thyroid is a ‘butterfly’ shaped gland which is located near the base of the throat. There are two
lobes in the thyroid gland-left and right lobes-which are separated by a thin tissue called as isthmus.
The thyroid gland is responsible for secretion of hormones. Thyroid cancer can be classified into
four major subtypes: i) papillary thyroid carcinoma (PTC), i) follicular thyroid carcinoma (FTC),
ii1) medullary thyroid carcinoma (MTC), and iv) anaplastic thyroid carcinoma (ATC). Out of
these, PTC and FTC are well differentiated tumour whereas ATC is poorly differentiated.
However, PTC is the most prevalent malignant subtype, accounting for around 80-85% of all
occurences of thyroid cancer (LiVolsi, 2011). PTC is generally linked with a good prognosis but
indicates a bad prognosis for 20-30 percent of the patients. The existence of tumour metastases

and relapses are primarily the causes of it. In certain cases it has also been shown that PTC
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progresses/transforms in a more violent state, such as ATC. Due to which, there’s a need for
development of novel prognostic methods such that risk can be evaluated before-hand and life

losses could be minimized.

Anatomy of the Thyroid and Parathyroid Glands

Thyroid gland (front view)

| Right Left
lobe

I~

o

‘I;hyroid gland

Trachea

Figure 4.2 The anatomy of Thyroid gland (Permission to use. For the National Cancer Institute
© 2018 Terese Winslow LLC, U.S. Govt. has certain rights)

It has been found that high expression of FOXE1, a member of the forkhead family, acts as a
tumour suppressor in PTC. Additionally, it is reported as one of the many PTC biomarkers. In the
early phase of PTC, high expression of FOXE1 was observed to negatively control PDFGA
expression and hence affect PTC migration, spread and infiltration. In PTC samples, proteoglycans
genes were also found to be overexpressed (Reyes et al., 2019). Similarly, lower VHL gene
expression has been found to be consistent with aggressive PTC and DFI characteristics

(Todorovic et al., 2018). Bhalla et al (Bhalla ef al., 2020) published about 36 transcripts of RNA
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whose profiles of expression were used to identify patients with early and late-stage PTC . In
addition to the above results, previous studies have recorded a number of eligible genes and
biomarkers (Soares et al., 2014; Bian et al., 2020; Li et al., 2019). The methods to accurately mine

key genes from essential pathways, that can serve as prognostic biomarkers, need to be improved.

The mechanism for programmed cell-death in multicellular organisms is one such crucial process
which is commonly known as “Apoptosis”. Apoptosis is the process for eliminating cells in
multicellular organisms. Dysregulation of apoptosis is responsible for many diseases including
cancer. Numerous studies have identified key biomarkers linked with the cellular apoptosis.
Charles EM et al present the literature related to the apoptotic molecules implicated as biomarkers
in melanoma (Charles and Rehm, 2014). Another review provides extensive information related
to apoptotic biomarkers such as p53, Bcl2, Fas/FasL, TRAIL in colorectal cancer (Zeestraten et
al., 2013). Several other studies have also identified key molecules with prognostic roles in other
cancers like gastric cancer (Bai et al., 2011; Ding et al., 2020), breast cancer (Pandya et al., 2020),
lung cancer (Nakano et al., 2020), bladder urothelial carcinoma (Zeng et al., 2019), glioblastoma
(Liu et al., 2019) and osteosarcoma (Ma et al., 2019). Apoptosis has also been found to have a
crucial role in carcinogenesis of thyroid cancer. Alterations in an increasing number of apoptotic
molecules such as p53, Bcl2, Bel-XL, Bax, p73, Fas/FasL, PPARG, TGFb and NFKb have been
associated with thyroid cancer (Wang and Baker, 2006). Since apoptotic resistance is mostly
accounted for tumour proliferation and aggressiveness, apoptotic pathway has also emerged as a
crucial target to develop anticancer treatments for thyroid tumours. For example, paclitaxel and
manumycin are known to stimulate p2/ expression and induce apoptosis in ATC (Yang et al.,
2003). Lovastin inhibits protein geranylation of the Rho family and thus induces apoptosis in ATC
(Wang et al., 2001). UCN-01 inhibits expression of Bcl-2, leading to apoptosis (Rinner et al.,
2004). Since apoptosis in PTC is a complicated multistep process involving a number of genes, it

remains poorly understood and needs to be further explored at a genetic level.

Many of the current and past studies are primarily focussed on employing gene expression data
for development of prognostic models. This is particularly due to the ease of extraction of
expression data, as compared to protein data. In this study, we exploited the mRNA expression
data obtained from The Cancer Genome Atlas-Thyroid Carcinoma (TCGA-THCA) cohort and

identified key apoptotic genes that are associated with PTC prognosis. We further constructed
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multiple risk stratification models using these genes and evaluated the potential of these models
for prognosis using univariate and multivariate analyses, Kaplan Meier survival curves and other
standard statistical tests. The 9 gene voting based model was found to perform the best and also
stratified high risk clinical groups significantly. Finally, after a comprehensive prognostic
comparison with other clinico-pathological factors, we developed a hybrid model which combines
expression profile of nine genes with ‘Age’ to predict High and Low risk PTC patients with high
precision. Moreover, we further validated the expression patterns of the prognostic genes by
GEPIA and HPA database respectively and also verified their important biological processes. We
also catalogued candidate small molecules that can modulate the expression of these genes and

could be potentially employed in efficient treatment of PTC patients.

4.2 Materials and Methods

4.2.1 Dataset and pre-processing

The intial dataset comprised of RSEM normalized RNAseq values for 573 Thyroid Carcinoma
samples that were retrieved in a processed data-table from ‘The Cancer Genome Atlas’ using
TCGA Assembler-2 (Wei et al., 2018) on 14" Oct 2019. The dataset, however, is open access and
can also be retrieved through the TCGA-GDC portal (https://portal.gdc.cancer.gov) with the

project name ‘TCGA-THCA’ or firebrowse (http://firebrowse.org). The list of genes involved in

the apoptotic pathway were taken from previous study (Sanchez-Vega et al., 2018) . Within which,
data about overall survival (OS) and censoring information was accessible for 505 samples. Thus,
the ultimate dataset was condensed to 505 samples, using in-house python and R-scripts,

constituting RNAseq values for 165 apoptotic genes.

4.2.2 Feature selection and model development

We screened the genes related to the overall survival of the patients in TCGA datasets using
univariate cox regression via ‘Survival’ package in R. Genes that were significantly related to the
OS of the patients were selected for further analysis. Cox regression was implemented by taking

the median cut-off values of the genes under consideration. BPM genes were directly correlated
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with the low survival of the patients, whereas GPM genes were associated with a better outcome
in the patients. Various regression models from ‘sklearn package in Python were implemented to
fit the gene expression values against the OS time. We also utilized different clinical features to
access their contribution in predicting the OS of the PTC patients. We also implemented prognostic

index-based models which were formulated as follows:

PI = B1Z1+ B2Zr+...+ PnZn

Where B is the regression coefficient for any gene Z, calculated via univariate cox regression. PI
was implemented to categorize patients in high and low risk groups based on best cutoff
determined via cutp in ‘survMisc’ package. Further, voting models were also used wherein
corresponding to an individual gene expression, a risk label ‘High Risk’ or ‘Low Risk’ was
assigned to each patient. Thus, for n survival associated genes, every patient was denoted by a
‘risk” vector of n risk labels. In gene voting based method, the patient is ultimately classified into
one of the high/low risk categories based on the dominant ‘label’ (i.e. occurring more than at least

n/2 times) in this vector.

4.2.3 Evaluation Metrics

We determined all the statistical metrics such as hazard ratio (HR), p-values, log-rank,
Concordance, Wald test to evaluate the performance of the models. HR was used to assess the
relative risk related to high and low risk groups. The overall workflow of the study can be found

in the Figure 4.3.
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Figure 4.3 Overall workflow of the study

4.3 Results

4.3.1 Identification of prognostic biomarkers and model development

Five good prognostic marker (GPM) and four bad prognostic marker (BPM) genes were found to
be associated with OS by means of univariate Cox-PH analysis. The reported GPM genes were
ANXAT1, CLU, PSENI1, TNFRSF12A and GPX4 while BPM genes were TGFBR3, TIMP3, LEF1
and BNIP3L. Table 4.1 shows the results for these genes along with the metrics associated with

stratification of high/low risk patients at median cutoff.
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Table 4.1 The results of univariate cox regression with “>median” cutoff. Genes with HR>1" are
bad prognostic markers while “HR<1" are good prognostic markers.

Gene HR p-value C  %95CIL %95CIU logrank-p
1. ANXAI 0.14 2.82x10° 0.72 0.04 0.51 7.35x104
2. TGFBR3 5.68 7.90 x10°  0.62 1.58 20.49 2.82 x1073
3. CLU 0.18 8.15x10° 0.53 0.05 0.64 2.92 x103
4. PSENI1 0.15 1.20x10  0.71 0.03 0.66 2.38x1073
5. TNFRSF12A  0.25 1.57x10 0.51 0.08 0.77 1.30 x102
6. GPX4 0.27 298 x10%  0.62 0.09 0.88 2.09 x1072
7. TIMP3 3.49 3.52x102 0.68 1.09 11.18 2.53x102
8. LEFI 3.36 4.10x10%  0.68 1.05 10.77 3.00 x1072
9. BNIP3L 4.56 478 x102  0.68 1.01 20.46 2.05 x102

*HR: Hazard Ratio, C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper,
Logrank-p: p-value for logrank test

4.3.2 Gene expression profile based risk models

Using the expression profile of nine survival related apoptotic genes, multiple risk stratification
models focused on MLR, prognostic index and gene voting were built. Table 4.2 displays the
results corresponding to the performance of various models. Among these, with HR=41.59 and
p~10* with a C-value of 0.84, the efficiency of the gene voting model was observed to be the
highest. In addition, the survival curves of high/low risk classes were substantially differentiated
by a voting-based model with a logrank-p~10-8. As shown in KM plot (Figure 4.4), the ten-year
survival rate for low risk patients was approximately around 98%, which dropped to 40% for high
risk patients. PI based model performed the second best with HR=17.55 and p~10-3, and
regression-based RF model was the third best (and top amongst MLR models) with HR=3.09 but

p-value was found to be statistically insignificant.

65



Table 4.2 The efficiency of various risk models constructed by leveraging nine gene expression
profile.

Model HR p-value C %95CIL %95CIU logrank-p
1. Voting based  41.59 3.36 x10* 0.84 5.42 319.17 3.80 x108
2. PI 17.55 5.88x10°  0.65 2.29 134.72 6.73 x10°°
3. RF 3.09 8.43 x102 0.68 0.86 11.09 5.91 x102
4. Linear 1.59 3.98x1071  0.54 0.54 4.65 4.04 x10°!
5. KNN 1.09 8.68 x10'  0.56 0.38 3.12 8.68 x10°!
6. Lasso 1.07 9.06 x10!  0.52 0.37 3.08 9.06 x10°!
7. ElasticNet 1.07 9.06 x10!  0.52 0.37 3.08 9.06 x10°!
8. LassolLars 1.06 9.18 x101  0.52 0.37 3.06 9.18 x10!
9. Ridge 0.84 7.43x101 0.50 0.29 242 7.44 x10°!

*HR: Hazard Ratio, C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper, Logrank-p: p-value for
logrank test, PI: Prognostic Index, RF: Random Forest, KNN: K-Nearest Neighbour
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Figure 4.4 Gene voting model based risk stratification. KM plot illustrated here shows that patients
with more than five "high risk" labels are at 41 fold higher risk than other patients (HR=41.59,
p=3.36x10-4, C=0.84, logrank-p=3.8x10-8). High Risk: Blue, Low Risk:Red. (doi:
10.1101/2020.11.25.397547)
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4.3.3 Sub-classification of patients belonging to clinical high-risk groups

In order to investigate the correlation between different clinical features and the survival of PTC

patients, cox univariate regression model was implemented (Table 4.3). We found that none of

the clinical features were of much importance in the case of PTC patients except Age and

Pathologic stage. Figure 4.5 shows the sub-stratification by 9 gene model in the form of KM plots.

A significant separation between the survival curves is seen, as denoted by logrank test’s p-values.

Table 4.3 Univariate regression incorporating clinical features. “Age” is found to be the most

critical factor..

Factor
Age
Pathologic Stage

Tumour Focality

Pathologic T stage
Pathologic N stage
Pathologic M stage
Race

Gender

Laterality

Extrathyroidal
extension

Residual Tumour

Strata
>60 vs <=60
Stage III/TV vs /11
Unifocal vs
Multifocal
T3,T4 vs T1,T2
NI vs NO
M1 vs MO
White vs Others
Male vs Female
Bilateral vs
Unilateral

Yes vs No

R1,R2 vs RO

N
505
503
495

503
455
291
413
505
499

487

443

HR
48.65

9.23

5.92

2.42
1.61
5.67
2.20
2.11
2.09

1.55

3.53

p-value

1.85 x10*
6.61 x10™
8.77 x107

1.36 x10"!
436 x10"!
3.15x107
4.49 x10™!
1.85 x10"!
3.46 x10™

423 x10"

4.49 x107

C
0.86
0.76
0.67

0.66
0.61
0.58
0.56
0.52
0.49

0.64

0.73

%95 C1
6.35 372.82
2.57 33.17
0.77 45.53
0.76 7.75
0.48 5.37
1.17 27.52
0.29 16.81
0.70 6.33
0.45 9.63
0.53 4.51
1.03 12.09

logrank-p
7.32 x10°
1.05 x10*
2.84x10%

1.17 x10™
4.26 x10™!
7.00 x1072
3.96 x10"!
2.04 x10™
3.85x10"

4.20x10"

6.40 x107

*boldface represents statistically significant results (p-val, logrank p<0.05), HR: Hazard Ratio,

C= Concordance Index, CI: Confidence Interval, L: Lower, U: Upper, logrank-p: p-value for

logrank test, N: No. of Samples
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Figure 4.5 Sub-stratification of clinical “high risk” groups by voting model. (a) 113 patients whose age was greater than 60
years were segregated into “high” and “low risk” groups with an HR of 9.49, p=3.08x10% and C=0.72. (b) 167 Stage III/IV
patients were segregated into “high” and “low risk” groups with an HR of 15, p=0.01 and C=0.81. p-values from logrank tests
are shown in the KM plots. (doi: 10.1101/2020.11.25.397547)
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Figure 4.6 Risk stratification using hybrid models. (a) Voting model and Age were found to be independently associated covariates
in a multivariate survival analysis. (b) KM plot for risk stratification by hybrid model with age cutoff of 60 years (HR=54.82,
p=1.18x10"*, C=0.87, %95CI: 7.14-420.90 and logrank-p=2.3x10). (c) KM plot for risk stratification by hybrid model with age
cutoff of 65 years (HR=57.04, p~10™*, C=0.88, %95CI: 7.44-437.41 and logrank-p=1.4x10") (doi: 10.1101/2020.11.25.397547)
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4.3.4 Combination of age and gene voting model works best for risk-stratification

We found that patient age and gene voting model were independent covariates (Figure 4.6a). Next,
by integrating “patient age” with the “nine-gene voting” model for risk stratification task, we
established a hybrid voting model. As a result, the risk vector associated with each patient was
now a 10-bit vector with 1 bit assigned to age. We found that when the age cutoff was set at 65
years (HR=57.04, C=0.88) relative to 60 years (HR=54.82, C=0.87), the model peformed better.
Although there is a better distinction between the risk categories in the previous case, the 5 and

10-year survival in both models is similar.
4.4 Predictive validation

It is essential to establish that the model is not biased in the terms of data used. We therefore
validated the performance of our models by a statistical approach. Using sub-samples of the entire
dataset, we conducted a “predictive” evaluation of our models. For 100 iterations each, sampling
sizes of 50 percent, 70 percent and 90 percent were selected. HR and C indexes corresponding to
the 9-gene voting model and hybrid variants were tested for each iteration. Boxplots corresponding
to the findings are seen in Figure 4.7. The figure reveals that the hybrid variant with an age cut-
off of >65 years performs the highest in terms of HR and C values relative to other models.
Consequently, an AUROC value, which denoted the classification capacity of the model, was
determined. The model was seen to do well at the cut-off of 6 years out of different cut-offs used
(2-10 years). A maximal AUROC value of 0.92 was achieved at this cut-off. Figure 4.8b reflects
the ROC curve. It is important to note that this method has a limitation that same data points can
be selected repetitively, thus making the results inaccurate. To avoid this, it is important to have a
significant number of iterations. A benefit of using this approach, however, is that it is unbiased

and can be applied to small datasets.
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Figure 4.7 Predictive validation of voting based model and hybrid models. (a) Grouped boxplots corresponding to estimated
Hazard Ratio (y-axis) for 100 iterations of data sampling (x-axis). (b) Similarly, estimation of Concordance index (y-axis) for
different models using random sampling (x-axis). (doi: 10.1101/2020.11.25.397547)

Hybrid Model Prediction
Low Risk High Risk z
2
H OS> cutoff True Positive False Positive E
5 (TP) (FP) g
=} -
E OS<= cutoff | False Negative | True Negative
= (FN) (TN)
00 Oj| 02 0‘2 0‘.4 05 06 07 0:8 09 1

(a) (b) False Positive Rate

Figure 4.8 Hybrid models for classification of PTC patients using OS. (a) Terminology used for evaluation
of confusion matrix. Initial risk labelling was done using an OS cutoff with patients having “OS> cutoft”
labelled as positive or low risk and vice-versa for patients with “OS<cutoff”. (b) ROC curve for hybrid
model using age cutoff of 65 years. AUROC of 0.92 was obtained. (doi: 10.1101/2020.11.25.397547)
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Figure 4.9 Boxplots representing the differential gene expression between normal and tumour samples
on a log scale. GEPIA webserver was used to plot these by using TCGA THCA dataset. T: Tumour in
red, N: Normal (TCGA,GTEX) in grey. (doi: 10.1101/2020.11.25.397547)



4.5 Validation of the Prognostic Gene Signature

With the aid of the GEPIA server, we contrasted the expression of these genes in healthy
individuals (TCGA and GTEX normal samples) to patients with cancer (Tang et al., 2017). Based
on the results from GEPIA, it is found that the expression of ANXA1, CLU, PSEN1, TNFRSFI12A
and GPX4 were up-regulated in THCA, while the expression of TGFBR3 and TIMP3 were down-
regulated thus elucidating their role in PTC oncogenesis (Figure 4.9). While, the expression of
LEF1 and BNIP3L found no significant difference. Thus, it indicates that the seven genes can be

considered as differentially expressed genes (DEGs) in THCA compared to normal samples.

In addition, the protein expression patterns of the prognostic genes in THCA were performed using

immunostaining data available at HPA (Figure 4.10). The results showed that ANXA1 and PSEN1
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Figure 4.10 The protein expression patterns of the prognostic genes validated by HPA. (A) ANXA1, (B)
PSENI, (C) CLU, (D) TNFRSF12A, (E) GPX4, (F) TGFBR3. The staining intensity were annotated as
High, Medium, Low and Not detected. The bar plots represents the number of samples with different
staining intensity in HPA. (source: Human Protein Atlas, HPA)
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were highly expressed in THCA. Further medium expression of GPX4 and TNFRSF12A were
observed in THCA. Low expression of CLU was observed in THCA, but their expression was high
at mRNA level. No expression of TGFBR3 was observed in THCA. The expression of LEF1 and
BNIP3L was not detected in THCA tissues. These results validated our findings except CLU.

However, the expression of TIMP3 was not recorded in HPA.

Additionally, out of these genes, ANXA I or annexin A1 expression has been shown to be associated
with differentiation in PTC (Petrella ef al., 2006). Western blotting experiments showed high
levels of ANXA in papillary thyroid carcinoma and follicular cells while undifferentiated thyroid
carcinoma cells had low levels of ANXA! protein. TGFBR3 gene was found to be differentially
expressed between normal and PTC samples and was shown to be related with progression free
interval (M. Wu et al., 2019). The encoded TGFBR3 protein is a membrane proteoglycan and is
known to function as a co-receptor along-with other 7GF-beta receptor superfamily members.
Reduced expression of the TGFBR3 protein has also been observed in various other cancers. CLU
protein is a secreted chaperone which has been previously suggested to be involved in apoptosis
and tumour progression. Altered CLU expression has also been proposed as biomarker for
assessment of indeterminate thyroid nodules (Fuzio ef al., 2015). PSENI mutations have been
shown to be linked with MTC (Chang et al., 2018). TNFRSF124 was linked to aging and thyroid
cancer (Lian ef al., 2020) and also shown to be a PTC prognostic biomarker in yet another study
(Qiu et al., 2018). GPX4 is an essential seleno-protein shown to be associated with aging and
cancer (McCann and Ames, 2011). TIMP3 levels were found to be associated with BRAF
mutations in PTC (Zarkesh et al., 2018). LEFI expression was found to be up-regulated in PTC
(Dong et al., 2017) and BNIP3L-CDH6 interaction has been linked with defunct autophagy and
epithelial to mesenchymal transition (EMT) in PTC (Gugnoni et al., 2017).

4.6 Therapeutic application

We found potential drug molecules using the ‘Cmap2 database’ (Musa et al., 2018; Lamb et al.,
2006). As an input to ‘Cmap2’ a list of probe ids relating to up - regulated and down - regulated

genes was used. The output consisted of a list of small molecules ranked on the basis of enrichment
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scroes and p-values. Lomustine (enrichment =-0.908, p=0.0001) and Deferoxamine (enrichment
= 0.663, p=0.0006) were the top 2 negative and positively enriched molecules. Lomustine is an
alkylating nitrosourea compound that has been associated with the activation of apoptosis in past
studies, and is already used in chemotherapy, particularly in brain tumours. (Shinwari et al., 2008).
Deferoxamine (DFO) is a chelator of iron that decreases the amount of iron in cells. The drug

molecules could modify/change gene expression as a possible therapy in high-risk patients.

¥ Arora C, Kaur D, Raghava GPS. Prognostic Biomarkers for Predicting Papillary Thyroid
Carcinoma Patients at High Risk Using Nine Genes of Apoptotic Pathway. bioRxiv
2020.11.25.397547; doi: https://doi.org/10.1101/2020.11.25.39754 (under review, PloS One)
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5.1 Introduction

Skin cancer is caused by the result of genomic defects in the skin cells. The resultant abnormal
skin cells grow uncontrollably into a mass of tumour cells. Skin cancer often develops on sun-
exposed areas of the skin such as arms, legs, face etc., however, it can also occur in other less
exposed areas of the skin such as palms, beneath the fingernails or toenails. Skin cancer arises in
the outermost layer of the skin i.e. epidermis. It is primarily of three types - basal cell carcinoma,
squamous cell carcinoma and melanoma — related to the three types of skin cells. The topmost
layer of epidermis is made up of cells called as squamous cells which form the skin lining, while
the lowermost layer of epidermis is made up of basal cells which are responsible for production of
new cells (Figure 5.1). A third type of cells known as melanocytes are found in the lower
epidermis. “Melanocytes” are the class of cells which synthesize ‘Melanin’- the pigment which
gives the “skin” its characteristic colour. Out of different types of skin cancers, melanoma or
cutaneous melanoma — which arises in melanocytes - is the most deadliest form of skin cancer

(Ossio et al., 2017).

Hair

Epidermis — Squamous cell layer
Basal cell layer
Melanocytes

Sebaceous gland
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Figure 5.1 The anatomy of the skin (source: biorender.com)
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The mortality rate due to melanoma has drastically increased since the last 30 years. According to
the latest melanoma cancer statistics provided by the American Cancer Society (Siegel et al.,
2020), in US alone, around 100,350 incidences and 6,850 deaths are estimated for the year 2020.
Globally, around 324,635 incidences and 57,043 deaths are estimated for the year 2020 (Global
Cancer Observatory). Also, amongst the number of deaths due to melanoma, European countries
account for the maximum number of deaths. The number of incidences also follow a similar pattern
(Figure 5.2). Presently, the choice of therapy for melanoma patients is based on their segregation
into different risk groups. This prognostication is performed by using AJCC TNM staging system

(Balch et al. 2009) which mainly includes assessment of anatomical features from tissue samples.

Oceania \“ LAC** ‘\
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|| Africa 6963 Oceania 1949
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Figure 5.2 The global incidence and mortality rates of melanoma. (Source: WHO-GCO).

The advent of high throughput sequencing techniques and availability of an explosive amount of
genomic data has led to the elucidation of several underlying mechanisms associated with
carcinogenesis. This insight has helped to reveal certain genes and proteins whose altered
expression and/or mutation profile is utilized as potential biomarkers in some cancers. However,
due to the gigantic amount of genomic data and a plethora of query molecules, identification of
minimal but relevant features for risk assessment is still a challenge. It is also imperative that the
novel features should complement the existing staging system and must be easily extractable for

clinical feasibility. In the specific case of melanoma, a few protein candidates, including lactate
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dehydrogenase (LDH), C-reactive protein and S100B, have been substantially correlated with
prognostication (Gershenwald et al., 2017; Deichmann et al., 2004; Weide et al., 2012). Of all
these, only LDH for metastasis categorization has been used in the AJCC staging system so far. It
is seen, however, to perform well only in patients with Stage IV disease. Another known example
of multiple protein-based biomarkers-NCOA3, SPP1, and RGS1 signature-has been shown to be
a major indicator of sentinel lymph node status status and disease-specific survival relative to other
clinical characteristics. This 3-protein marker, while validated (Kashani-Sabet et al., 2017), was
also not included in the AJCC staging criteria. The most notable examples for single and multiple
gene expression profile (GEP) based biomarkers include TRPM1 expression (Brozyna et al.,
2017), NRAS mutation status (Johnson et al., 2015), BRAF mutation status (Long et al., 2017),
circulating miRNA biomarkers (Mumford et al., 2018), DecisionDx-Melanoma (31 GEP) (Cook
et al., 2018), Melagenix (9 GEP) , ITLP group (Meves et al., 2015) and 53-gene immune GEP
(Sivendran ef al., 2014). The Melagenix (9 GEP) prognostic predictor was able to distinguish high
and low-risk patients based on overall survival, DecisionDx-Melanoma differentiated patients
based on relapse-free survival, distant metastasis-free survival and microsatellite instability. Also,
the 53-gene immune GEP and ITLP are predictive models for metastasis progression and SLN
positivity. However, none of the GEP based methods have been included in the AJCC staging
system. We used gene expression data from over 20,000 genes in 449 melanoma patients to find
GEP-based prognostic indicators in this study. We also considered genes from multiple cancer-
associated pathways and created risk prediction models to examine the comparative prognostic
value of apoptotic pathway genes. We compare the efficacy of GEP-based approaches to clinical
factors and, as previously, attempt to construct combinatorial models. Finally, we offer a model
that relies solely on clinical characteristics and outperforms GEP-based risk prediction approaches.
The dataset utilized in the study comprised of gene-expression data retrieved from TCGA. The
ease of extracting expression from the patients is the motivation behind using the dataset. The
study's overall relevance is that it not only prioritises biological pathways important to overall
survival, but it also provides a risk classification technique based on clinical features already in
use. Superiority of clinical data presented here may not come as a surprise in lieu of traditional
approaches, but certainly offers a topic of debate for the current emphasis on sophisticated omica
based approaches. The proposed method can be used in conjunction with current staging system

and be helpful in efficient management of melanoma patients.
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5.2 Materials and methods

5.2.1 Dataset and pre-processing

Initial dataset including RSEM normalized RNAseq expression values for 458 patients with Skin
melanoma were obtained in the form of a processed data-table from the Cancer Genome Atlas
using TCGA Assembler 2 (Wei et al., 2018) on 22" May 2019. The dataset, however, is open
access and can also be retrieved through the TCGA-GDC portal (https://portal.gdc.cancer.gov)

with the project name ‘TCGA-SKCM’ or firebrowse (http:/firebrowse.org. In this dataset,

information on survival and censoring was available for 449 patients. Consequently, the dataset
was reduced to 449 samples that had RNAseq values for 20530 genes. Following a similar
approach to (Wang et al., 2018), genes without expression data for more than 50% of the samples
were rejected. The final dataset comprises of 449 samples with expression data corresponding to
17,292 genes. Furthermore, the final dataset was normalized using the quantile normalization

method, which has been widely used in the past for similar studies (He et al., 2019).

5.2.2 Identification of prognostic genes and development of risk prediction models

We collected the list of 11 cancer-related pathways and the genes associated with those pathways
from a recent study (Sanchez-Vega et al., 2018). Thereafter, we screened the genes related to the
overall survival of the patients via Survival package in R. Risk groups were segregated on the basis
of mean and median expression values of the genes, using the univariate unadjusted Cox-
Proportional Hazard (Cox-PH) regression models. Genes that were significantly related to the OS
of the patients were selected for further analysis. BPM and GPM genes are defined as in earlier
studies. A similar screening process was implemented for all 20,530 genes. We also utilized
different clinical features which includes age, gender, N staging, T staging, Breslow thickness,
tumor stage etc. to access their contribution in predicting the OS of the CM patients.. Thereafter,
regression models from ‘caret’ package were implemented to fit the gene expression values against
the OS time. The fitting and test evaluations were carried using a five-fold cross-validation
scheme. Hyperparameter optimization and regularization was achieved using the in-built function
‘expand.grid’. The predicted OS from various regressors was used to classify high and low risk

patients. We also used prognostic index (PI) based method to multiplex different gene expression
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profiles together. Here, PI=f1g1+f2g+...¥fngn; Wherein [ represents regression coefficient
obtained for a gene g from a univariate Cox-PH model. PI was then used for risk stratification

purposes.
5.2.3 Evaluation metrics

Hazard ratios were calculated to predict the risks of death associated with the high risk and low
risk groups based on the overall survival time of patients. To assess survival curves of low - and
high-risk groups, Kaplan-Meier (KM) plots were used. Survival tests were conducted using
'survival' and 'survminer' packages in R (V.3.4.4, The R Foundation). Utilizing log-rank tests,
statistical significance was calculated between the survival curves. The assessment of the
importance of the explanatory variables used in the HR measurements was done by Wald tests.
The concordance index (C) showed the power of the model's predictive potential (Dyrskjot et al.,
2017). P-values smaller than 0.05 were deemed to be significant. The overall workflow of the

study is illustrated in Figure 5.3.
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Figure 5.3 Overall workflow of the study

5.3 Results

5.3.1 Models based on genes related to cancer pathways

Amongst the 11 cancer related pathways, many have been associated with melanoma
tumorigenesis. Table 5.1 shows the PMIDs of few example studies which have explored the role
of these pathways in CM progression and/or development. Combined gene count is the sum of
GPM and BPM genes. The GPM, BPM and combined genesets were used for machine-learning
as well as PI model development. Overall, PI models show the best results as shown in Table 5.2.
Out of these, the combination of 29 apoptosis GPM genes with 7 NOTCH combined genes
performed the best with an HR=2.57 and p~108. Figure 5.4 shows the KM plots for PI for
apoptotic genes and PI based on combination of Apoptosis and NOTCH genes.
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Table 5.1 Genes linked to cancer-associated pathways. PMIDs are given for studies linked to the

involvement of the pathways in “Melanoma” and gene count before and after univariate Cox-PH

study.
1 NRF2 27344172, 18353146 481 27 26 53
2 P53 32377702, 31374895 201 17 16 33
3 Apoptosis 32687246, 32645331 161 29 4 33
4 WNT 32659938, 32073511 151 7 9 16
5 CELL-CYCLE - 128 4 17 21
6 PI3K-AKT 32626712, 32558531 105 18 11 29
7 TGF-B 31667872, 31599708 86 3 1 4
8 NOTCH 30569717, 30941830 47 3 4 7
9 MYC 32283126 25 2 2 4
10 RAS 32605090, 32568870 23 2 1 3
11 HIPPO 32407182, 32561850 22 1 2 3

*GPM: Good prognostic marker, BPM: Bad prognostic marker

Table 5.2 Risk segregation based on the prognostic index (PI). The table shows the results for each
pathway and the resulting set of genes used. Patients with PI smaller than the median threshold are

at lower risk than people with PI higher than the cutoff.

1 NRF2 GPM 1.87 1.2x10* 0.58
2 P53 Combined 2.20 1.5x10¢ 0.61
3 Apoptosis GPM 2.52 3.2x10% 0.62
4 WNT GPM 1.97 3.6x10° 0.59
5 CELL-CYCLE GPM 1.48 1.6x1072 0.57
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6 PI3K-AKT GPM 1.82 2.4x10* 0.58
7 TGF-p BPM 1.48 1.6x1072 0.53
8 NOTCH Combined 2.26 9.4x107 0.60
9 MYC BPM 1.67 1.8x1073 0.57
10 RAS BPM 1.79 4.5x10* 0.56
11 HIPPO Combined 1.67 1.9x10°3 0.55
12 ApoptosistNOTCH = GPM+Combined 2.57 1.5x108 0.62

*HR: Hazard Ratio, C: Concordance Index, GPM: Good prognostic marker, BPM: Bad prognostic

marker
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Figure 5.4 Kaplan Meier risk stratification plots of patients with CM. (a) Based on the Apoptotic Genes
Prognostic Index. Patients with “PI > median(PI)” are at higher risk than patients with “PI < median(PI)” with
HR=2.52 and p-val=3x10-8, depending on the GPM genes. (b) Based on the prognostic index of merged genes

of apoptotic GPM and NOTCH. Patients with “PI > median(PI)” with HR=2.57 and p-val=1.5x10-8 are at higher
risk than patients with PI < median(PI). (doi: 10.1016/j.heliyon.2020.04811)

5.3.2 Models based on total genes

We have developed related models for the overall GPM (1343), BPM (1294) and the combined
gene set (2637), in addition to developing models for pathway-specific gene sets. Feature selection
was conducted on each of these three gene sets to extract the most relevant genes using random
survival forests-variable hunting for 100 iterations. 5§ GPM genes, 52 BPM genes and 129
combined genes resulted from rfSRC feature selection. The SVR model illustrates that HR, p-
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value and concordance index have been enhanced (HR 2.77, p~10~, C 0.63). Using the chosen
GPM, BPM and combined genes, prognostic index-based and MLR-based stratification was
subsequently carried out. A contrast with the 52 complete BPM based models of apoptotic gene-
based PI models, NOTCH gene-based regression models, apoptosis and NOTCH genes

combination models.
5.3.3 Clinical-features versus GEP models

Patients have been stratified using clinical features such as AJCC pathological staging, age, TNM
staging, Breslow thickness, gender and ulceration status in order to see if the models built earlier
in this analysis work better than the previously identified prognostic markers. These results can be
found in Table 5.3. While our findings align with previously recorded results, such as patients
over 63 years of age, males, patients with metastasized tumours, patients with stage III/IV, etc.,
are at higher risk and thus display a high HR value, some of them are either marginal or have a

low HR/high p-value except for Breslow thickness.

Table 5.3 Risk assessment using clinical features in CM patients. The column “N” is the number

of observations for which respective information is available.

Factor Strata N HR p-value

Age >63y vs <63y 449 1.83 4x10*

continuous 449 1.02  1.9x10°
AJCC 6" ed. Stage LIV vs LII 138 1.60 0.071
AJCC 7" ed. Stage IILIV vs LII 215 2.26 0.025
N staging N1, N2, N3 vs NO 396 1.82 9x10*
T staging T2, T3, T4 vs Tis, T1 378 1.68 4.8x107?
M staging M1 vs MO 423 1.90 9.9x107
Breslow thickness >3mm vs <3mm 342 2.45 3x10¢

continuous 342 1.03 104
Gender Male vs Female 449 1.20 0.277
Ulceration status Yes vs No 300 2.06 5x104

*HR: Hazard Ratio, N: No. of Samples
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It was observed that patients with a Breslow thickness greater than 3 mm had a 2.45 times higher
mortality chance than patients with a smaller Breslow thickness. In comparison, relative to using
BPM genes alone, an SVR model incorporating the 52 total BPM genes and Breslow thickness
improved the output even further. At the median cutoff, which is the highest for other
combinatorial models as well as previous models, an HR value of 3.19 with a p-value ~ 1071° and
a C value of 0.65 was achieved. This group of 52 genes was analysed for gene enrichment and the
findings revealed that the following terms were enriched in various categories of GO: (i) molecular
function - “catalytic activity”, (ii) biological process - “cellular process” and (iii) protein class —
transferase. The “pathway” enrichment of the related proteins shows that KRT4, KRT13, KRT27
and SPRR3 proteins are involved in the cornification process, which is closely associated with the

risk of skin cancer (Eckhart et al., 2013).

5.3.4 Superiority of Clinico-pathological features-based model

In order to incorporate the prognostic value of significant clinical characteristics, we devised a
new ensemble framework. A risk point (r) was allocated to the entries corresponding to each
clinical feature as r=1, 0 or -1 depending on the risk category (high risk: r=1, low risk: r=-1,
unavailable: r=0), as per Table 5.3. Various linear combinations comprising of two or more
features were evaluated and the best results were achieved with the combination of Breslow
thickness, N staging, M staging and Ulceration status. We termed this combination as Risk Grade
(RG) where RG for a patient is defined as:

RG=r (Breslow thickness) +r (N staging) +r (M staging) + r (Ulceration status)

The hazard ratio for RG was 6.40 with a p-value of 2.49x10715. Patients with RG>1 were at higher
risk than patients that had an RG <1, as represented by the KM plot in Figure 5.5. For high-risk
cases, the 10-year mortality rate is seen to plunge to zero, while patients in the low-risk category
have a 50 percent chance of survival. It should also be noticed that RG was able to stratify high
(RG>1) and low risk (RG < 1) patients with a substantial HR of 4.04 (95 percent CI 2.09-7.79)
with a p-value of 3x107° even if only the patients with information available for all four clinical

features were included (~259 patients) (Wald test p-val=3x10-, logrank test p-val=6x10-%).
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Figure 5.5 Kaplan Meier risk stratification plot based on Risk Grade for CM patients (RG). There is a greater
chance of mortality for patients with “RG >1" than for patients with “RG <= 1" with HR=6.40 and p-
val=2.49x10-15. (doi: 10.1016/j.heliyon.2020.e04811)

5.4 CMcrpred: web-interface and android application for risk prediction
A web server called 'CMcrpred' (http://webs.iiitd.edu.in/raghava/cmcrpred/) and Android
application has been developed and is freely available in the Google Play store. Users can estimate
the survival outcome and risk of a “patient with melanoma” with these facilities. A comprehensive
estimate of the survival chance of a patient belonging to a given RG is given by the web server.
On the other hand, for easy utility by doctors and / or patients, we have made the Android
application less informative and more user-friendly. The web server was developed to configure

browsing devices using a responsive HTML design.The usage for web-server and mobile

application is shown in Figure 5.6.
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5.5 Comparative validation

We performed a comparative assessment of the strength of RG as prognostic marker by employing
a popular melanoma survival prediction model. In order to do this, we used our dataset’s features
as input to the web-server ‘AJCC individualised melanoma patients outcome prediction tool’
(Soong et al., 2010) for prediction of 5 and 10-year survival probabilities of the patient samples in
our dataset. The web-server required a total of seven input features i.e whether patient had

localized melanoma or regional melanoma, tumour-thickness, age, tumor burden, lesion site,

100 - — . RG
[ RG<=1
80 - B RG>1
2
5
T 60
2
[«
T
2 40
2
>
(V)]
20
0- 1

5 years 10 years
Survival Time

Figure 5.7 Boxplot reflecting the independent segregation of risk classes by RG based on the "AJCC
individualised melanoma patients outcome prediction tool" projected 5- and 10-year survival rates. The
method was used to make a total of 162 forecasts, of which 116 were low-risk patients (RG<=1) and
remaining were at high-risk (RG>1). (doi: 10.1016/j.heliyon.2020.04811)

number of nodes and ulceration status. A pre-computed RG score based on the ensemble model
for was used to classify the patients based on 5 and 10-year predicted probabilities. Figure 5.7
shows the web-server predicted survival rates between two risk groups (RG>1 or High Risk vs
RG<=1 or Low Risk) in the form of a boxplot. RG was successfully able to segregate predicted
low and high survival groups. Additionally, RG also requires lesser number of features than

“AJCC individualised melanoma patients outcome prediction tool” for survival prediction.
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5.6 Conclusion and summary

One of the main obstacles in the successful treatment of melanoma is precise risk evaluation of
patients. This task is achieved by American Joint Committee on Cancer (AJCC) tumour staging
system. The AJCC system is based on clinical features such as Breslow thickness, number of
lymph nodes, distant metastasis etc. However, much of the emerging risk prediction approaches
are based on genomic or gene-expression profile (GEP) owing to developments in technology. In
this study, we sought to build novel biomarkers focused on GEP and clinico-pathological features
and measured their prognostic power as opposed to current prognostic technique. Using gene
expression associated with various cancer-related pathway genes, we developed risk prediction
models and obtained a maximal hazard ratio (HR) of 2.52 with a p-value of ~ 10"® for the apoptotic
pathway. Another model improved the HR to 2.57, based on a hybrid of apoptotic and notch
pathway genes. Further, we built models focusing on individual clinical characteristics and
obtained a maximum HR of 2.45 for Breslow thickness with a p-value of ~ 10-%. Models using the
best features of clinical and gene expression data were also established and a cumulative HR of
3.19 with a p-value of ~ 10 was obtained. Finally, using clinical factors only, we established a
new ensemble approach and obtained a maximum HR of 6.40 with p-value 10°!°. A web-based
platform and an android app called 'CMcrpred' are available to promote the science community
centered on this approach at (https://webs.iiitd.edu.in/raghava/cmcrpred/) and Google Play Store,
respectively. This analysis shows that approaches focused on GEP-based profiles as well as
commonly used AJCC staging are superseded our recent ensemble approach based on only clinical
features. It also highlights the need to exploit the full potential of clinical factors for

prognostication in cancer patients.

¥ Arora C, Kaur D, Lathwal A, Raghava GPS. 2020. Risk prediction in cutaneous melanoma
patients from their clinico-pathological features: superiority of clinical data over gene expression
data. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04811
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6.1 Introduction

Cancer is the leading cause of death worldwide and its development has been attributed to various
regulatory factors (Sever and Brugge, 2015). The exploration of these regulatory mechanisms that
lead to cancer has been a hot topic in recent years. Based on the exploration of these processes,
there exists a plethora of biomarkers and risk prediction methods. Majority of these
biomarkers/methods are specific only to a particular cancer and fail when employed for other
cancers. However, with the increase in omics data, a few pan-cancer prognostic biomarkers have
also been developed. Notable examples include a comprehensive analysis wherein the multi-omics
data for 13 cancers was used to identify 7 genes associated with survival in 13 cancers (Zhao et
al., 2020), a maximum risk stratification with HR=3.03, p=0.044 in THCA patients by employing
mRNA expression of Siglec-15 in 8 cancers (Li et al., 2020), another study showed that the mRNA
expression levels of the gene, Long intergenic non-coding RNA 1614 can be used to segregate risk
groups in 11 cancers based on overall survival, with the maximum separation achieved in THCA
patients with HR=4.047 and p=0.010 (Wang et al., 2020). A few other studies have also elucidated
the prognostic potential of genes such as WISP1 whose expression was shown to differ between
cancer and adjacent normal tissues (Liao et al., 2020), FUNDC1 whose expression was linked to
prognosis in 8 cancers with a maximal risk separation in LIHC (Yuan et al., 2019) and HSP90OAA1
whose differential expression was observed in 8 cancers and was found to be a prognostic
biomarker in hepatocellular carcinoma (Chen et al., 2020). Apart from these, Tumor mutational
burden and indel burden have also been recently shown to be linked with prognosis in 14 cancers
with the best performance in CHOL (H.-X. Wu et al., 2019). While these studies are promising,
the challenge for finding more accurate biomarkers which offer prognostic value across a large
number of cancers remains open. Since a multitude of factors cause heterogeneity of cancer, more
efforts are required towards thorough investigation of cardinal molecular processes that have been
associated with cancer progression and development in the past. Apoptosis is also one of the widely
studied processes in the context of development of prognostic biomarkers and therapeutics which
target its key components. In thyroid cancer, alterations in apoptotic molecules such as p53, BCL2,
BCL-XL, BAX, p73, Fas/FasL, PPARG, TGFb and NFKb have also been associated with
carcinogenesis (Wang and Baker, 2006). The downregulation of tumour suppressor gene, p53,

leading to tumour development and progression is perhaps the most popular example (Bauer and
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Helfand, 2006). Other examples include the downregulation of levels of pro-apoptotic BCL2
family proteins such BCL2, BCL-XL, MCL1 and upregulation of anti-apoptotic BCL2 family
proteins such as BAX, BAK in cancers such as colorectal cancer, melanoma, gastric cancer etc
(Frenzel et al., 2009). However, the scope of these studies was limited to specific cancers with a
limited set of genes/proteins. Since apoptosis consists of a large number of regulatory
genes/proteins, gauging the prognostic significance of maximum number of genes/proteins
involved in apoptosis across several cancers can offer a better understanding. It may also reveal

several novel targets and help in development of finer biomarkers for cancer prognosis.

6.2 Materials and methods

6.2.1 Dataset and pre-processing

Normalized gene expression datasets (RSEM) and raw counts for 33 cancer cohorts were obtained
from ‘The Cancer Genome Atlas’ (TCGA) using TCGA Assembler-2 (Wei et al., 2018) in Oct
2019. The dataset, however, is open access and can also be retrieved through the TCGA-GDC

portal (https://portal.gdc.cancer.gov) with the TCGA project names or firebrowse

(http://firebrowse.org). A ‘pan-cancer’ dataset was formed by combining all the samples with raw
expression values of genes across 33 cancers (Github:

https://github.com/raghavagps/Chakit_Thesis). A list of 165 apoptosis genes was obtained from

(Sanchez-Vega et al., 2018), also available at Github. The gene expression data for these 165 genes
were extracted from the downloaded TCGA cancer datasets and pan-cancer dataset. In all the
datasets, only those patient samples were retained for whom overall-survival and censoring
information were available. The number of samples in pan-cancer dataset was 9569 while the
number of samples in each cancer cohort, N, is mentioned in Table 6.1. TCGA abbreviations for

cancers are used.

6.2.2 Survival prediction models

Univariate unadjusted Cox proportional hazards (Cox-PH) regression models were used to screen
survival-associated genes from their expression data. R packages ‘survival’ and ‘survminer’ were
used to implement the Cox-PH models. Using these, Hazard ratios (HR) were computed along-

with confidence intervals (%95 CI) and p-values. HR is the ratio of hazard rates representing the
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death risk associated with one group as compared with another by using an appropriate cutoff of
gene-expression. For comparison of survival curves between two risk groups, we used Kaplan-
Meier (KM) plots and log-rank tests. Survival associated genes were identified with HR greater
than or less than 1 and p<0.05. Concordance (C) was used to evaluate the model’s predictive
performance. As implemented in (Lathwal ef al., 2020; Arora et al., 2020), Prognostic Index (PI)
for n genes, gl, g2, ... gn with cox coefficients 1, B2 ... fn obtained from the univariate Cox-PH
analyses using median cut-offs, was defined as, PI=B.g, where g=[gl g2 g3 .... gn] and B=[ 1
B2 B3 ... Pn]. Thereafter, risk groups were segregated by using univariate Cox-PH regression
model. The cut-off value for PI was evaluated using cutp from ‘survMisc’ package in R. Model’s
performance is estimated using HR, p, %95 CI and C values. Further, for an n-gene voting model,
a n-bit vector is assigned to each patient sample. Thereafter, each bit is labelled as high or low risk
on the basis of corresponding classification by individual genes, using Cox-PH univariate models.
Finally, the sample is allotted an overall risk label decided by majority of the labelled bits (i.e.

greater than n/2 labels). The overall workflow is illustrated in Figure 6.1.

6.3 Results

6.3.1 Identification of prognostic biomarker genes

A univariate Cox-PH survival analysis was performed for 165 genes using each cancer’s dataset.
Genes were classified as good prognostic marker (GPM) or bad prognostic marker (BPM). Table
6.1 shows the number of survival associated genes for each cancer among other details. It is seen
that in most of the cancers BPM genes are more than GPM genes, showing the detrimental role of
the upregulated expression of some apoptotic genes in cancer. Table 6.1 also mentions the top
genes (at most ten) for each cancer on the basis of p-values obtained from univariate survival
analysis. None of the 165 genes were significantly associated with survival in 3 cancers: DLBC,

TCGT and PCPG.
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Cancer
LGG
KIRC
MESO
SKCM
PAAD
ACC
BRCA
LAML
HNSC
UVM
CESC

SARC
BLCA
LIHC
STAD
LUSC
LUAD
ESCA
COAD
ov
THCA
KICH
GBM
UCEC
ucs
CHOL
THYM
PRAD
READ
DLBC
PCPG
TGCT

Table 6.1 The table shows the no. of patient samples (N), no. of BPM and GPM genes and
top ten survival associated genes for 33 cancers.

N
511
532

86
449
178

79
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173
519
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257
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297
305
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Top Genes
WEE1,BTG3,BMP2,PLAT,SMAD7,ANXA1,PEA15,CDK2,HSPB1,SOD2
CASP9,F2,TIMP1,IL6,CDC25B,ADD1,CCNA1,BAK1,SLC20A1,TIMP3
HMGB2,TOP2A,BRCA1,PLAT,SLC20A1,WEE1,PPP2R5SB,MADD,PDCD4,LMNA
TNFSF10,SATB1,DPYD,BIRC3,SOD2,F2R,CYLD,GCH1,CD69,PSEN2
CASP4,TNFSF10,PSEN1,CD44,CASP2,EMP1,TOP2A,DPYD,CCND1,HMGB?2
TOP2A,PEA15,BRCA1,HIFO,HMGB2,MADD,CDK2,SPTAN1,CYLD,SQSTM1
PTK2,NEFH,IGF2R,PLAT,DNM1L,XIAP,ETF1,NEDD9,IRF1,RARA
PDCDA4,ISG20,LMNA,NEDD9,CCND2,PSEN1,HGF,SOD1,ADD1,CD44
CCND1,BMF,CCNA1,BAK1,PSEN1,APP,TIMP1,BCAP31,SLC20A1,TNFRSF12A
ERBB3,ISG20,EREG, TIMP3,LEF1,SATB1,TXNIP,PPP2R5B,ERBB2,PTK2
EREG,CASP2,MGMT,CD2,IL1B,IGF2R,APP,NEFH, TIMP2,GCH1
BCL2L10,TOP2A,PMAIP1,MCL1,LEF1,PPP2R5B,PEA15,DCN,IRF1,HIF0
CTH,RNASEL,GSN,IRF1,SPTAN1,CASP1,BTG2,CFLAR,TNF,CASP2
EMP1,GCHI,HMGB2,GSTM1,CASP7,ANXA1,IFNGR1,ETF1,SLC20A1,AIFM3
MGMT,ETF1,RARA,GPX3,EREG,CD2,DAP3,GPX4,FASLG,CDC25B
CAV1,CD44,PDGFRB,DNAJC3,EREG,TGFB2,CTNNB1,DFFA,BCL2L11,CASP6
CD14,BTG3,EREG,CCND2,PTK2,PAK1,ADD1,HSPB1,TIMP3,SMAD7
EREG,VDAC2,BBC3,SLC20A1,BTG2,TOP2A,RELA,CD2,GPX4,ETF1
ENO2,IL18,TOP2A,DAP,BCL2L1,PMAIP1,ISG20,IL1A,TSPO,SATB1
BCL10,CASP4,FAS,IL6,GSR, TIMP1,BGN,LUM,ERBB2,BTG2
DAP,CASPS,EMP1,BIRC3,CASP2,WEE1,PSEN1,NEDD9,SOD1
ANXA1,TGFBR3,CLU,PSEN1,TNFRSF12A,GPX4,TIMP3,LEF1,BNIP3L
IFNB1,MADD,BIK,GSR,TOP2A,PTK2,DAP3,CLU
HSPB1,FDXR, TXNIP,ANKH,EGR3,F2R,IER3
BCL2L1,MCL1,AVPR1A,SLC20A1,ISG20
MGMT,HGF,BMF,H1F0,PTK2
PSEN1,BNIP3L,EREG,JUN
IER3,SOD2,CD2,LEF1
SATB1,IER3
BRCA1,DNAJC3

* N: No. of samples, BPM: Bad prognostic marker, GPM: Good prognostic marker
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Figure 6.1 The overall workflow of the study

6.3.2 Cancer-specific prognostic models

Top genes mentioned in Table 6.1 were used to construct models for risk stratification in 30
cancers excluding TCGT, PCPG and DLBC. Both gene voting- based models and PI models were
used to segregate patients into risk groups. HR, p-values and C index were then calculated. Voting
models showed the best results and are shown in Table 6.2 (Results for PI models are not shown).
For the case of PRAD and READ (2 genes each), a tie case was considered as High Risk. We also
performed a GO functional enrichment for finding out the top molecular function (least p value)
in the case of these cancers for top genes. Figure 6.2a shows the results for this. Figure 6.2b
shows the distribution of cancers enriched to each function. We find that the molecular function
‘enzyme binding’ was enriched in most of the cancers viz. ACC, CESC, LUSC, SARC, STAD
and UVM. Amongst these CESC and LUSC also have ‘enzyme binding’ as their top specific
enriched function with p~10-. There was a total of 26 genes from apoptotic pathway related to

this common function. The analysis was done to see which are the underlying molecular functions
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where these prognostic genes are involved in. ‘enzyme binding’ was the most common function
amongst cancers.

Table 6.2 The performance of cancer-specific prognostic models.

Cancer HR p-value logrank-p C %95 CI L %95 CIU
THCA 41.59 3.36x10™ 3.81x10%® 0.84 5.42 319.17
UVM 40.50 5.32x10* 5.12x107 0.85 4.99 328.82
KICH 25.61 2.27x1073 3.53x10° 0.83 3.19 205.6
ACC 22.68 7.95x107 1.63x107'° 0.81 6.57 78.31
THYM 12.53 2.42x1072 6.98x107 0.79 1.39 112.93
UCEC 10.42 4.51x10™ 1.13x10* 0.7 2.81 38.6
CHOL 8.72 4.75x10* 2.45x10™ 0.77 2.59 29.4
PRAD 8.42 4.41x107 4.20x10 0.65 1.94 36.5
READ* 7.45 6.50x107 2.56x107 0.72 0.88 62.93
KIRP 5.10 6.64x10” 1.27x107 0.72 2.29 11.37
LGG 4.99 2.88x107"? 1.54x10"3 0.72 3.18 7.83
CESC 4.92 2.14x10°® 2.98x10” 0.71 2.82 8.6
LIHC 458  791x10""  2.24x10™ 0.7 2.89 7.24
PAAD 441 4.23x107 1.72x107 0.69 2.48 7.85
COAD 4.08 5.05x107 2.42x10° 0.67 2.07 8.05
MESO 3.99 1.67x10° 2.00x10°® 0.68 2.26 7.03
KIRC 3.96 5.41x10'° 3.03x10"7 0.68 2.84 5.53
LAML 3.96 3.92x10" 5.07x10"2 0.67 2.68 5.84
ESCA 3.80 2.19x10°® 3.32x10°° 0.65 2.19 6.61
UCsS 3.61 8.77x10* 6.13x10* 0.68 1.69 7.67
BRCA 3.45 2.36x10° 6.76x10"° 0.67 2.3 5.18
BLCA 341 6.35x10"° 3.51x10"° 0.66 2.31 5.02
STAD 3.35 2.78x1077 1.39x107 0.64 2.11 5.31
SARC 2.81 1.32x10° 1.03x10° 0.67 1.77 4.48
LUAD 2.76 6.94x10° 4.82x10°® 0.63 1.91 3.99
HNSC 2.36 9.24x10%® 5.80x10%® 0.62 1.72 3.24
LUSC 2.21 1.26x10°° 1.30x10° 0.61 1.6 3.04
ov 2.19 1.38x10° 1.16x10° 0.61 1.59 3
GBM 2.07 3.73x10™ 3.22x10* 0.61 1.38 3.09
SKCM 1.99 2.18x10° 2.55x10° 0.59 1.45 2.75

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper
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corresponding to top genes. x-axis is the -logio (p-value) and y corresponds to the enriched function corresponding to the
cancer. (b) Heatmap showing enriched GO molecular functions by top genes for each cancer. Number of genes are encoded
by different colours.
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6.3.3 Universal prognostic biomarkers and prognostic models

We found that there are 11 genes that play a prognostic role in more than or equal to 8 cancers (in
at least 25% cancers). Figure 6.3a shows the role of these genes as BPM or GPM in different
cancers. Figure 6.3b shows the 27 cancers associated with these genes. Most of the genes play a
BPM role i.e. their elevated expression prevents cellular apoptosis and thus promotes tumor
progression (High Risk patients). CD2 and SATB1 play a GPM role i.e. their high expression is
linked with Low Risk patients. Whereas, CASP2 plays both kind of roles. Prognostic PI and voting
models were constructed using the multi-cancer genes (11 gene panel) in 27 cancers. Results for
voting models are shown in Table 6.3. This universal model performed best in UVM, THYM,
PRAD, KICH and ACC based on HR and C index, where it can be readily used as a single
prognostic test. Though in other cancers, the risk prediction performance of this 11 gene panel was
moderate (THCA, UCEC and PAAD) to poor and thus for them, cancer specific prognostic

biomarkers should be relied on for a better risk prognosis.
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Figure 6.3 Multi-cancer survival genes. (a) Shows the distribution of role of each of these 11 genes across 27

cancers. y-axis shows the number of cancers in which the corresponding gene plays prognostic role. (b) Red blocks

indicate that the gene is survival associated with the cancer.
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Table 6.3 Universal prognostic model for risk prediction in 27 cancers.

Cancer

UVM

THYM

PRAD
KICH
ACC
THCA
UCEC
PAAD
MESO
CHOL
CESC
KIRP
LIHC
KIRC
LGG
LUAD
BLCA
STAD
UCS
SKCM
ESCA
HNSC
BRCA
SARC
LAML
LUSC
ov

HR

11.74
10.12

8.94
7.41
7.37
4.81
4.49
4.17
3.45
3.22
2.93
2.93
2.92
2.87
2.75
2.47
2.38
2.28
2.19
2.07
2.03
1.95
1.90
1.72
1.68
1.59
1.53

p-value

1.80x1073
4.07x107
4.07x107
1.27x107
3.09x107
4.94x1073
1.04x107
4.21x10¢
1.29x107
4.15x107
1.96x10
2.85x1073
6.27x107¢
1.14x10°
6.37x107¢
9.02x107
2.11x10°
1.06x1073
4.14x107
4.19x10°
9.00x10-3
3.19x10°
2.08x1073
3.16x107
6.55x1073
8.86x1073
1.51x107

logrank-p

1.77x10*
1.48x1072
1.01x1072
4.98x1073
3.77x107
3.93x10°
1.07x1072
7.61x107
1.75x107°
4.89x1072
8.11x107
2.58x1073
2.38x10°°
1.55x10°1°
2.69x10°
1.09x10¢
5.74x107
5.75x10*
3.72x107?
9.45x10°
8.56x107
2.49x10°°
1.57x1073
3.86x10?
7.46x107
1.12x1072
1.83x1072

C

0.71
0.77
0.62
0.72
0.73
0.74
0.64
0.69
0.65
0.65
0.65
0.65
0.61
0.63
0.66
0.63
0.59
0.61
0.58
0.58
0.60
0.60
0.61
0.56
0.58
0.54
0.53

%95 CIL
2.50
1.10
1.10
1.53
2.88
1.61
1.42
2.27
1.98
1.05
1.67
1.45
1.83
2.04
1.77
1.72
1.59
1.39
1.03
1.46
1.19
1.42
1.26
1.05
1.16
1.12
1.09

%95 C1U
55.17
92.91
72.80
35.75
18.86
14.37
14.18

7.65
6.02
9.91
5.17
5.95
4.65
4.03
4.26
3.54
3.54
3.73
4.66
2.93
3.45
2.67
2.86
2.81
2.45
2.25
2.17

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper
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6.3.4 External validation of the universal prognostic model

The evaluation of the performance of the universal model on external cohorts is necessary for its

practical translation. Therefore, we assessed the prognostic strength of the obtained eleven gene

signature on various datasets. We utilized a specialized tool, SurvExpress, developed for the

validation of biomarker on multiple cancer types (Aguirre-Gamboa et al., 2013). SurvExpress

constructed a prognostic index based model of the 11 genes that were provided. Table 6.4

represents the result of the universal model on different cancer cohorts. The cohorts for which the

expression data was unaivalable were rejected for the analysis. As observed from the results the

universal model performed best for prostate cancer (HR=5.88) which is in corroboration with its

performance on TCGA PAAD dataset (HR=4.49). The model is also seen to perform significantly

in a variety of cancer types such as kidney cancer, ovarian cancer, colon cancer, lung cancer etc.

thereby strengthening its employability as a multi-cancer risk prediction model.

Table 6.4 External validation of Universal prognostic model

S.no.
1
2

[ -REEN RN N0 REF N

9

10

Dataset/GEO accession
Zhao Renal Kidney GSE3538
Tothill Bowtell Survival Ovarian
GSE9891
OV-AU - ICGC Ovarian Cancer -
Serous cystadenocarcinoma
Sheffer-Domany-Colon-GSE41258
Gulzar-Prostate-GSE40272
Tomida Lung GSE13213
Hoshida Golub Liver GSE10186
PACA-AU - ICGC - Pancreatic
Cancer - Ductal adenocarcinoma
Peters C.Fitzgerald Esophagus
GSE19417
Lenz Staudt Lymphoma GSE10846

HR
3.03
3.97

24

3.35
5.88
3.97
2.46
2.59

2.8

2.68

p-value
1.84x10°
2.17 x10°1°

6.01 x10*

5.04 x10°®
1.20 x10°®
2.41 x10°
1.70 x107
2.05x10°

1.00 x10*

8.09 x10”

C
0.69
0.76

0.65

0.7
0.84
0.75
0.65
0.67

0.64

0.7

%95CI1
1.92-4.79
2.6-6.09

1.46-3.96

2.17-5.18
2.01-17.24
2.09-7.54
1.17-5.15
1.75-3.84

1.67-4.72

1.91-3.74

logrank-p
4.82 x107
6.15 x10°12

4.20 x10*

6.29 x10”°
1.80 x10*
5.43 x10°
1.40 x1072
8.67 x107

5.59 x10°°

1.91 x10”

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, logrank-p: p-value for logrank

test
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6.3.5 Development of cross-cancer prognostic models

It is interesting to find out which genes are shared across cancers in the context of their association

with patient overall survival. The accomplishment of this task was carried out by calculating

pairwise similarity between cancers cl and c2 using Jaccard similarity index defined as:
J(c1,c2)=(lc1 Nc2|)/(jc1 U c2))

Where cland c2 represent the set of genes that are associated with survival in cancer ¢l and cancer

c2, respectively. Figure 6.4 shows the dendrograms representing hierarchical clustering plots on

the basis of shared GPM genes, shared BPM genes and shared total survival genes (both BPM and

GPM). Based on the Jaccard similarity index Jai=0.34, LGG-KIRC pair was found to be most

similar in the context of survival related genes. An intersection between the set of top 20 genes

(based on p-values) of both the cancers was used to develop risk stratification models.

The conjoined set consisted of 15 genes viz. BTG3, CDK2, SOD2, TOP2A, HMGB2, TIMPI,

ISG20, TNFRSF12A, AFNBI1, ADDI1, CASP8, CDC25B, IFITM3, CD44 and GPX1. PI models

were developed for both the cancers as follows:

1.0
J
1.0

I T | T T

06
1
0.6
1

04
1
0.4

0.2

0.0
L
0.0
L

(@) (b)

(O]

Figure 6.4 Hierarchical clustering of cancers based on (a) shared GPM genes (b) shared BPM genes
and (c) all shared survival related genes.
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Plrgg=1.19 x BTG3 +1.07 x CDK2 +0.99 x SOD2 +1.07 x TOP2A +0.99 x HMGB2 +0.98 X
TIMP1 +0.89 x ISG20+0.91 x TNFRSF12A +0.91 x IFNB1 -0.81 x ADD1 +0.79 x CASP8 +0.77
x CDC25B +0.76 x IFITM3 +0.74 x CD44 +0.74 x GPX1

Plkirc=0.6 x BTG3 +0.7 x CDK2 +0.56 x SOD2 +0.54 x TOP2A +0.6 x HMGB2 +0.9 x TIMP1
+0.55 x ISG20 +0.61 x TNFRSFI2A +0.57 x IFNBI1 -0.79 x ADD1 +0.54 x CASP8 +0.82 x
CDC25B +0.53 x IFITM3 +0.52 x CD44 +0.57 x GPX1

Using these, risk stratification was performed in the respective cancer as well as another cancer.
While Pl g in LGG segregated the risk groups with HR=4.77, p-value=3.51x10", C=0.68, %95CI
2.84-8.01 and logrank-p=3.41x10"!!; it showed a performance of HR=2.95, p-value=1.44x10"!!,
C=0.64, %95CI 2.15-4.04 and logrank-p=1.37x10"'! in KIRC. Similarly, PIkirc in KIRC stratified

PI_LGG in LGG PI_LGG in KIRC
Strata =+ Low Risk =+ High Risk Strata =+ Low Risk =+ High Risk
1.00 1.00 yapa
2
0.75 Z 0.75
@©
=]
[
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®
2
c
0251 1 <0.0001 a  "®p<0.0001
0.00+4 0.00
0 50 100 0 30 60 90 120
Time (Months) Time (Months)
Number at risk Number at risk
o
232 34 12 = 352 193 83 1 0
279 36 6 3 177 87 30 5 0
0 50 100 0 30 60 90 120
Time (Months) Time (Months)
(b)
PI_KIRC in KIRC PI_KIRC in LGG
Strata Low Risk =+ High Risk Strata Low Risk =+ High Risk
1.00 Ty mma
2
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© B
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©
2
025 g 025
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Time (Months) Time (Months)
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o
353 197 83 1 0 ® 256 41 13
k1176 83 30 5 0 P k1255 29 5
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Figure 6.5 Development of cross-cancer prognostic models: LGG-KIRC. (a) KM plots representing
the segregation of risk groups by Pligg in LGG cohort and in (b) KIRC cohort. (c) KM plots

representing the segregation of risk groups by Plkirc in KIRC cohort and in (d) LGG cohort.
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high and low risk patients with HR=3.27, p-value=1.82x10"13, C=0.66, %95CI 2.39-4.49 and
logrank-p=1.31x10""? and in LGG with HR=4.23, p-value=1.88x107, C=0.69, %95CI 2.64-6.77
and logrank-p=1.07x10"1°. KM plots corresponding to these are shown in Figure 6.5. It is also
interesting to observe the same nature of these genes in both the cancers, as evident from the 3

values.

6.4 Screening of drug molecules

We further utilized the Cmap2 database and screened the potential drug molecules which could
help reduce risk of death associated with high risk groups in LGG and KIRC. After querying the
list of 15 genes above, we obtained the ranked therapeutic molecules. Top two enriched candidates
were Genistein (enrichment=0.592, p=0) and Hexestrol (enrichment=0.918, p=0.00004).
Genistein, is an isoflavone found in soy products which has recently drawn attention of the
scientific community due to its potential use in treatment of cancer. Genistein is well known to
induce apoptosis and prevent metastasis and has been shown to benefit colorectal and breast cancer
patients (Spagnuolo et al., 2015; Tuli et al., 2019). Another top enriched molecule, Hexestrol, is a
synthetic estrogen which was previously used for treatment of prostate and breast cancer but has
been discontinued in most of the countries. However, Genistein continues to be a focus of attention

in the scientific community for its anti-cancer effects.
6.5 Conclusion and summary

Numerous cancer-specific prognostic models have been developed in the past, wherein one model
is applicable for only one type of cancer. In this study, an attempt has been made to identify
universal or multi-cancer prognostic biomarkers and develop models for predicting survival risk
across different types of cancer patients. In order to accomplish this, we gauged the prognostic role
of expression of 165 apoptotic pathway genes across 33 cancers in the context of patient overall
survival. Firstly, we identified specific prognostic biomarker genes for 30 cancers. The cancer-
specific prognostic models achieved a minimum HRskem=1.99 and maximum HRtuca=41.59.
Further, a comprehensive analysis was performed to identify universal biomarker genes across
many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20, CD44, LEFI1,
CASP2, PSENI, PTK2, SATB1, SLC20A1, EREG and CD2) and stratified risk groups across 27
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cancers (maximum HRyyv=11.74, minimum HRov=1.53).Further, we clustered different cancers
on the basis of shared survival related apoptosis genes. This clustering approach proved helpful in
development of cross-cancer prognostic models. To show the efficacy of this strategy, a prognostic
model consisting of 15 genes was thereby developed for LGG-KIRC pair (HRkirc=3.27,
HRrcc=4.23). Additionally, we also extracted small molecules which could potentially be utilized
as therapeutic candidates in LGG-KIRC high risk groups. Apart from providing a comprehensive
evaluation of the prognostic potential of apoptotic genes in various cancer types, our study could
be helpful in designing versatile risk management and therapeutic strategies across different cancer

patients.

Kk

" Arora C, Kaur D, Raghava GPS. Universal Prognostic Biomarkers for Predicting Survival Risk
of Cancer Patients from Expression Profile of Apoptotic Pathway Genes. (under review, Wiley
Proteomics)
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7.1 Introduction

Conventional risk evaluation or prognostic methods in cancer care involve anatomical features
derived from patient tissue samples. These features involve assessment of primary tumour
characteristics and the spread to other body parts, as implemented in various staging systems such
as AJCC TNM staging (Amin ef al., 2017). However, several other extrinsic and intrinsic factors
have been widely associated with cancer risk in the past. While some of these have been included
in the staging systems such as Age in thyroid cancer (Kazaure ef al., 2018), others are yet under
scrutiny. Likewise, while ER, PR and HER?2 status are now included in breast cancer staging, the
intrinsic heritable risk factor associated with HBOC i.e. BRCA 1/2 mutations are only used as

monitoring variables and aren’t directly involved in the staging scheme. The contribution of risk

Share of cancer deaths attributed to risk factors, 2016

Risk factors include known risks such as smoking, diet and nutrition, obesity, lack of physical activity, alcohol
consumption, air pollution, and environmental exposures.

The remaining share therefore represents deaths which would be expected to have occurred in the absence of
these known risk factors.

100%

Cervical cancer
Mesothelioma I O1.4%
racheal, bronchus, and lung cancer I 34.1%
Larynx cancer I 7 1.8%
Lip and oral cavity cancer I 69.8%
Esophageal cancer I 69.8%
Nasopharynx cancer I 64 %
Colon and rectum cancer GGG, 53.2%
Liver cancer I 41.5%
Uterine cancer NN 36.5%
Kidney cancer N 32.3%
Bladder cancer NG 32%
Pancreatic cancer NG 27 .5%
Breast cancer NG 26.8%
Stomach cancer I 18.4%
Gallbladder and biliary tract cancer |GG 15%
Leukemia [INNEEGEGEGEGN 14.8%
Ovarian cancer I 12.3%
Thyroid cancer N 9.4%
Multiple myeloma |l 6.8%
Non-Hodgkin lymphoma [l 5.1%
Prostate cancer |l 4.4%
Hodgkin lymphoma 0%
Brain and nervous system cancer 0%
Testicular cancer 0%
Non-melanoma skin cancer 0%
Malignant skin melanoma 0%

0% 20% 40% 60% 80% 100%
Source: IHME, Global Burden of Disease CcCBY

Figure 7.1 External risk factors and cancer mortality (source: ourworldindata.org)

factors versus underlying genetic factors has been a consistent matter of debate in scientific
literature. According to a number of studies (Wild et al., 2015; Song and Giovannucci, 2015;

Ashford et al., 2015), majority of the cancers are associated with extrinsic risk factors in rebuttal
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to the study (Tomasetti and Vogelstein, 2015) which claimed that only one third of the cancers are
caused by extrinsic factors or pre-disposed (heritable) factors. Some of the widely studied extrinsic
factors associated with cancer risk are age, tobacco and alcohol consumption, lack of physical
activity, dietary habits, pollution and environmental exposures. Figure 7.1 shows the number of
cancer deaths which are collectively associated to these factors with cervical cancer being the
topmost. From a death toll of 5.7M in 1990 to a death toll of 8.8M in 2017, the mortality associated
with cancer has shown a significant increase. The two major reasons reported for this increase is
the increase in population and the increase in aged population across the world. Due to the progress
in healthcare, the world has witnessed a large aging population (due to increase in average human
life expectancy) and with that the number of cancer related deaths. With the increment in age, cells
are supposed to lose their efficacy to fight against cancer and as a result cancer is widely termed
as an old age disorder. Figure 7.2a shows the cancer prevalence by age in 2017. It is clear that
people aged above 50 are more prone to cancer and related risk of death. Figure 7.2b shows this
trend in death rate and the significant amount of deaths related to people with age>50. Another
prominent factor attributed to risk of developing cancer is tobacco smoking. About 85% of lung
cancers are caused by smoking, with an additional proportion caused by non-smokers being
exposed to secondhand smoke (Warren and Cummings, 2013). The risk of lung cancer depends on
the dosage, but can be significantly decreased with the cessation of tobacco use, especially if the
person ceases smoking early in life. The spike in the prevalence of lung cancer follows increases
in tobacco smoking in various countries across the globe. Bad clinical effects, including elevated
treatment-related toxicity, increased risk of second primary cancer, reduced quality of life, and
decreased mortality, are correlated with continuing tobacco use following diagnosis of cancer
patients (Samet, 2013). The rate of deaths due to smoking is reported to be higher in richer
countries. The GBD (Global Burden of Disease) Compare tool (https://vizhub.healthdata.org/gbd-

compare/) was used to analyze the death rates due to various external risk factors such as diet and
nutrition, occupational exposures, consumption of intoxicated substances, pollution, physical
activity etc. The results are shown in Figure 7.3. As implied from the results, tobacco smoking
was the biggest cause of cancer deaths followed by alcohol consumption and obesity. Although,
the number of deaths attributed to these factors were less as compared to other biological
alterations, they can be used in conjunction with other relevant factors such as TNM stages for a

better prognostic evaluation. It is also worth mentioning that treatment procedures may also
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contribute to increased death risk such as radiation exposure in radiotherapy may result into

second-hand cancer or other disorders (Toma-Dasu et al., 2017; Mazonakis and Damilakis, 2017),

Share of population with cancer by age, World, 2017

70+ years olds 6.27%

50-69 years old 3.32%
All ages 1.36%
15-49 years olds . 0.64%
Under-5s . 0.47%
5-14 years old I 0.2%
0% 1% 2% 3% 4% 5% 6%
Source: Global Burden of Disease (IHME) OurWorldInData.org/cancer « CC BY
Deaths from cancer, by age, World, 1990 to 2017

Total annual cancer deaths differentiated by age category across both sexes. Data includes all forms of cancer.

8 million
—— 70+ years old
6 million
4 million
50-69 years old
P2 14T o]

5-14 years old

Figure 7.2 Cancer versus age. (a) Figure shows the cancer patients belonging to different age groups.

(b) The increase in cancer death rates by different age groups. (source: ourworldindata.org)
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exposure to toxic chemicals in chemotherapy can lead to other cancers and surgical procedures
such as in old age patients or advanced cancer stage patients can aggravate their health conditions

(Willaert and Ceelen, 2015).

The aim of this study is to utilize various intrinsic, extrinsic and anatomical factors to develop risk
prediction models for multiple cancers. These features are collectively termed as ‘clinical factors’

for the purpose of our study. The patient information and registry variables were retrieved from

Global, Both sexes, All ages, 2019
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Figure 7.3 The death rates corresponding to different risk factors across multiple cancers. (source: The GBD
(Global Burden of Disease) Compare tool (https://vizhub.healthdata.org/gbd-compare/)
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TCGA database corresponding to 33 different cancers. Thereafter machine learning based

techniques and survival analysis were used to construct models which accomplish this task.

7.2 Methods

7.2.1 Dataset

The datasets used in this study (TCGA-biospecimen) were obtained from TCGA using TCGA-
Assembler 2 in Sept-2019. The datasets, however, are open access and can also be retrieved

through the TCGA-GDC portal (https://portal.gdc.cancer.gov) with the TCGA project names or

firebrowse (http://firebrowse.org).The datasets comprised of biospecimen data and clinico-

pathological information about patients belonging to 33 types of cancer. For each cancer clinical
features missing in more than half of the samples were removed. Also, samples lacking overall
survival time information and censoring data were removed. Samples with survival time greater
than median overall survival time were labelled as low risk and vice-versa for high risk. Each
cancer-type had a large number of features, of which several were exclusive to the cancer-type
while some of them were common such as age, gender etc. A table mentioning the features for
each cancer-type has been given in the Appendix A as well as at

https://github.com/raghavagps/Chakit Thesis.

7.2.2 Feature selection and model development

Firstly, chi-square tests (from ‘Scipy’ in Python) were used to reduce the feature set corresponding
to each cancer based on p<0.05. Decision tree classifier was used to fit the feature set and best
parameters were estimated using GridSearchCV from ‘sklearn’ with cv=5. Thereafter, recursive
feature elimination method (RFECV) from ‘sklearn” was implemented to eliminate features with
no additional input in machine learning model’s performance. The final feature set was used for
training and testing using a five-cross validation technique. Predicted labels were then used for

survival analysis and stratification of risk groups. Figure 7.4 explains the process visually.

7.2.3 Construction of risk matrices
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For each cancer, a risk matrix was constructed wherein a risk probability (being at high risk) value

was allocated in place of each clinical feature. This probability value for a clnical feature, f, was

Clinical Data - N
r ~ +  GridSearchCV ‘
l i g (best hyperparameters)
( Chi-Square test ) > * RFECV
L (features significantly E— Decision Tree — (feature selection)
associated with high Classifier *  5-fold CV
risk) (robustness of model)

EiEes "R Risk Matrix Predicted classes
Age Stage T N P
Stage oS
: \ 03 043 05 04
Stage llla o : 06 0.7 09 087 5
l Stage llib LR v i
d Stage Illa LR J . - : : i
Survival Analysis
\ . . i 0.8 001 00 065 o = - - - . .
‘\\ Stage Il HR / - = = =
\\‘ Stage lllb HR ,’l 0.1 06 025 03 1

p(Stage I11)=3/5 Risk Iector q !i ] ’ -

Figure 7.4 Overall design of the study

calculated using the formula : p(f)=nmigh risk/(NHigh Risk T NLow Risk), Where Nhigh Risk 1S the number of
patients with feature f that are at high risk (according to OS) and nrow risk are the number of patients
with feature f'that are at low risk. The missing/unknown features were replaced with a 50% risk
probability. After the risk matrix was obtained a risk vector was created. Each element of risk
vector corresponded to the mean of risk probabilities for different clinical features, for a patient.
Recursive feature elimination was used for feature selection based on HR values. The construction

of risk matrix and implementation for survival prediction is explained in Figure 7.4.
7.2.4 Survival prediction models

As implemented earlier, Univariate Cox proportional hazards (Cox-PH) regression models were

used from R packages ‘survival’ and ‘survminer’. Using these, Hazard ratios (HR) were computed
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along-with confidence intervals (%95 CI), Concordance and p-values. For comparison of survival

curves between two risk groups, we used Kaplan-Meier (KM) plots and log-rank tests.
7.3 Results

7.3.1 Cancer staging based prognosis

The AJCC staging information about each cancer was used to stratify the risk groups on the basis
of two risk classes. High risk class contains patients with Stage 3/4 or associated substages and
low risk class contains Stage 1/2 or associated substages. The pathological staging was used
wherever possible, since it is considered to be more accurate. In the cases where pathological
staging information was not available, clinical staging was used. Table 7.1 shows the risk
stratification using staging and the associated metrics obtained from Cox survival analysis. The
highest HR was observed for THCA (HR=9.22, p=10*) and the lowest for CHOL, possibly due to

a small data size. Cancers for which staging information wasn’t available.

Table 7.1 Staging based risk stratification. cs: only clinical staging data available

Cancer type Samples HR p-value C
THCA 505 9.22 6.64E-04 0.76
ACC 90 7.82 2.32E-06 0.74
KIRP 258 4.86 7.76E-05 0.78
KICH 112 4.69 1.68E-02 0.66
UCEC (cs) 544 4.48 8.98E-07 0.70
KIRC 530 4.35 8.74E-18 0.70
UVM 79 3.33 1.18E-01 0.62
BLCA 406 3.24 4.14E-05 0.59
ESCA 166 3.09 6.24E-04 0.61
DLBC (cs) 41 3.05 3.38E-01 0.62
LUAD 495 2.78 5.75E-08 0.64
READ 161 2.72 2.37E-01 0.44
BRCA 1083 2.47 5.93E-06 0.66
STAD 411 2.39 7.05E-04 0.60
UCS (cs) 57 2.29 3.20E-02 0.62
COAD 447 2.20 6.71E-03 0.58
SKCM 414 1.60 6.29E-03 0.58
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OV (cs) 580 1.60 1.27E-01 0.52

HNSC 451 1.58 3.48E-02 0.55
LIHC 351 1.48 1.17E-01 0.53
LUSC 487 1.48 3.48E-02 0.53
CESC (cs) 300 1.40 2.22E-01 0.54
TGCT 126 1.22 9.99E-01 0.75
PAAD 182 1.19 7.67E-01 0.49
HNSC (cs) 512 1.11 5.60E-01 0.51
MESO 36 1.07 8.17E-01 0.49
CHOL 45 0.71 4.87E-01 0.54

*HR: Hazard ratio, C: Concordance Index

7.3.2 Age and gender versus survival risk

We performed an exploratory analysis, to explore the role of a few common features in cancer
risk. Figure 7.5 shows the distribution of high risk patients i.e. the patients which survived less
than the median overall survival time of the dataset, with respect to Age, Gender, Ethnicity and
Stage. Staging, is already a validated method of risk determination, and has also been analysed in

the context of survival in the previous section is seem to play an expected role with majority of
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low surviving patients belonging to Stage 3/4. Patients whose age at the time of diagnosis is greater
than 50 years is seen to be at a higher survival risk than patients <50 years. This trend is akin to
what has already been observed earlier (Figure 7.2). Except the cancers which are exclusively
related to gender such as gynaecological cancers and breast cancer in the case of females and
prostate or testicular cancer in the case of males, the risk is seen to be gender biased in a few cancer
types. For example females are at higher risk of death due to thyroid cancer (THCA) and males
are at a higher risk of death due to lung cancer (LUSC). These results corroborate the previous
epidemiological findings. The figure also shows a huge proportion of high cancer risk patients
belinging to the Not Hispanic/latino class, however this result is mostly due to low Hispanic patient
data and cannot be relied on. To manage the imbalance between data, chi-square feature selection
was implemented and poor features were removed. For example Table 7.2 shows the selected

features for Breast cancer (BRCA) and their corresponding chi square test p-values.

Table 7.2 Chi-square test results for Breast cancer (BRCA) dataset

Feature name Sub-groups p-value
gender Male, Female <le-5
menopause_status Post, Pre, Peri <le-5
race White, Black, Asian <le-5
ethnicity Hispanic, Not hispanic <le-5
history neoadjuvant treatment No, Yes <le-5
tumor_status Tumor free, With tumor <le-5
method initial path dx Core needle biopsy <le-5

Tumor resection
Fine needle aspiration biopsy
Excisional biopsy
Cytology
Incisional biopsy
surgical procedure first Modified radical mastectomy <le-5
Lumpectomy
Simple mastectomy
margin_status Negative, Positive, Close <le-5
axillary staging method Axillary lymph node dissection alone <le-5
Sentinel node biopsy alone
Sentinel lymph node biopsy plus axillary dissection
No axillary staging
micromet detection by ihc No, Yes <le-5
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lymph nodes_examined
lymph nodes_examined count
ajcc_tumor pathologic pt
ajcc_nodes pathologic pn
ajcc_metastasis_pathologic pm
ajcc_pathologic tumor stage
er_status by ihc
pr_status by ihc

her2 status by ihc
histological subtype

No, Yes

0-3, 3-9, 9-16, 16-44

T1, T2, T3, T4

NO, N1, N2, N3

MO, M1

Stage I, Stage II, Stage III, Stage IV
Positive, Negative

Positive, Negative

Positive, Negative, Equivocal

Infiltrating ductal carcinoma
Infiltrating lobular carcinoma
Mucinous carcinoma
Metaplastic carcinoma
Medullary carcinoma

7.3.2 Decision trees based risk prediction models

The feature set obtained after the Chi-square selection method was used for building decision tree
based classifiers for each cancer. Numerical features were taken as it is where-as categorical
features were encoded. Samples with missing feature values were removed. The labels for binary

classification was ‘High risk’ or ‘Low risk’ based on the overall survival time and the features

Tru
© False

weight_kg_at_diagnosis < 71.1
gini = 0433
samples = 126
value = [86, 40]
class = High Risk

ajcc_nodes_pathologic_pn_NO < 0.5 race_BLACK OR AFRICAN AMERICAN <0.5 [ kra
gini=0.5 gini = 0.494
samples =4 samples = 38
value =2, 2] value =[17, 21]

class = High Risk class = Low Risk

gini = 0.444
samples =3
value =[2, 1]

class = High Risk
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Figure 7.6 Decision tree for risk prediction in Colon Adenocarcinoma (COAD)

were further reduced using a recursive feature elimination technique (RFECV with cv=5). The
features were ranked and only the top 10 ranked features were taken for model development. Each
decision tree based model was evaluated using a five-fold cross validation scheme. The predicted
labels for each cancer were used to stratify risk groups. Table 7.3 shows the results for
corresponding cancer types. As an example Figure 7.6 shows the decision tree constructed for
Colon cancer (COAD). The obtained tree utilized features such as race, weight, ajcc staging and

edition and KRAS mutation status for developing the model.

Table 7.3 Decision trees based risk prediction models using clinical factors

Cancer type Samples HR p-value C
UVM 79 3.47 1.12E-02 0.62
DLBC 47 2.62 4.04E-02 0.59
PRAD 500 2.61 3.70E-02 0.61
KIRP 288 2.32 1.94E-03 0.61
KICH 112 2.09 2.53E-02 0.61
LIHC 299 1.60 3.95E-03 0.56
CHOL 45 1.53 3.55E-02 0.53
ACC 92 1.46 3.13E-02 0.53
PAAD 185 1.41 1.76E-02 0.52
UCEC 445 1.38 3.70E-02 0.55
BRCA 969 1.29 2.27E-02 0.54
CESC 307 1.26 4.04E-02 0.53
MESO 86 1.24 4.35E-02 0.57
LAML 200 1.23 3.39E-02 0.51
ESCA 184 1.22 4.80E-02 0.48
SARC 259 1.20 4.38E-02 0.52
GBM 594 1.18 8.95E-03 0.53
READ 170 1.17 8.36E-02 0.59
LUAD 503 1.16 4.13E-02 0.51
THCA 507 1.13 8.24E-02 0.57
STAD 438 1.12 6.17E-02 0.51
SKCM 345 1.11 5.59E-02 0.52
PCPG 179 1.11 9.13E-02 0.52
ov 584 1.08 5.25E-02 0.50
KIRC 533 1.07 6.72E-02 0.50
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HNSC 526 1.04 8.06E-02 0.50

COAD 250 1.03 9.67E-02 0.53
LUSC 491 1.03 8.60E-02 0.51
THYM 123 1.01 9.89E-02 0.48
UCS 57 1.01 9.86E-02 0.52
BLCA 408 1.00 9.90E-02 0.50

*HR: Hazard ratio, C: Concordance Index

In Table 7.3, the results for models with an HR value>1.5 and p<0.05 are highlighted in red. The
decision tree model for UVM shows the highest risk stratification ability with HR=3.47. The
number of features utilized by this model were 14 including features such as M stage, T stage,
ethnicity, history of prior disease etc. It should be noted that the risk stratification ability of this
model improved in comparison to AJCC Staging in Table 7.2. However most of the models
performed poorly and weren’t able to classify risk groups. Therefore, we implemented another

algorithm for model development which is explained in the following section.

7.3.3 Risk matrices and survival prediction

Each subclass of a clinical factor (such as in Table 7.2) is attributed a risk probability value. This
probability is calculated as explained in materials and methods section. Therefore, the data matrix
corresponding to a cancer is converted to a risk matrix. Further, risk vectors are calculated by
utilizing different feature columns. A recursive elimination technique is employed to choose the
best features. The risk vector corresponding to the best features is the one that significantly
stratifies the survival risk groups. Patients with a mean risk probability <0.5 are termed as ‘Low-
risk” and vice versa. Table 7.4 shows the result corresponding to this. The model corresponding
to Rectal adenocarcinoma (READ) performed the best with an HR of 24.71 and three features

including BRAF mutation status, Tumor status and history of past malignancy.

Table 7.4 Risk matrix based risk prediction models using clinical factors

Cancer Features HR p-value C %95 CIL %95CI U
READ 3 2471  2.48E-02 0.58 1.50 406.67
THCA 3 22.49 1.83E-06 0.86 6.26 80.76
CHOL 5 21.89  8.32E-06 0.77 5.63 85.03
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TGCT 6 13.92  3.55E-02 0.79 1.20 161.92
UCsS 4 13.84  4.12E-04 0.69 3.22 59.50
ACC 3 13.04  7.59E-08 0.77 5.11 33.24
PCPG 6 1291  4.04E-02 0.58 1.12 148.99
THYM 4 9.31 1.10E-02 0.71 1.67 52.01
KIRP 4 897  3.56E-09 0.80 4.33 18.59
BRCA 4 879  3.07E-02 0.54 1.22 63.11
PRAD 5 8.40  5.80E-03 0.75 1.85 38.09
CESC 2 8.01  4.42E-02 0.51 1.06 60.79
KIRC 6 790  1.04E-32 0.75 5.62 11.10
COAD 5 7.62  2.77E-12 0.77 431 13.46
LUAD 2 7.61  4.70E-02 0.51 1.03 56.35
LUSC 2 6.37  9.36E-05 0.52 2.52 16.14
KICH 2 6.27  5.00E-03 0.63 1.74 22.58
UCEC 5 5.64  8.59E-05 0.64 2.38 13.37
BLCA 5 5.64  2.69E-09 0.57 3.19 9.97
HNSC 2 557  1.12E-24 0.71 4.01 7.74
LIHC 6 4.83  8.00E-03 0.52 1.51 15.49
UVM 3 4.83 1.07E-02 0.69 1.44 16.20
LGG 6 3.61  3.05E-09 0.69 2.36 5.52
STAD 3 295  3.76E-03 0.55 1.42 6.12
PAAD 6 291  2.50E-05 0.66 1.77 4.79
SKCM 3 2.88 1.46E-09 0.62 2.05 4.06
LAML 4 2.78  5.25E-03 0.55 1.36 5.70
SARC 2 2.72  8.36E-05 0.60 1.65 4.47
ESCA 5 247  1.14E-03 0.64 1.43 4.27
GBM 2 237  5.27E-05 0.53 1.56 3.60
ov 4 1.66  5.10E-04 0.55 1.25 2.20

*HR: Hazard ratio, C: Concordance Index, CI: Confidence Interval, L: Lower, U: Upper

7.4 Clinical data VS. Molecular data in cancer prognosis

A comparative analysis between the results presented here in Table 7.4 (risk matrix based methods)
and bottom ten cancers of Table 6.3 (expression based cancer-specific models) can be presented
in the form of the following Table 7.5. As observed, the performance is significantly increased in
BRCA, LUAD, BLCA, LUSC and HNSC when clinical data is used. For SKCM, the model

presented in Chapter 5 is still superior in performance. In all other cancers, both type of models
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showed a similar performance. The results, therefore, further emphasize the importance of using

clinical data as opposed to more sophisticated omics based approached.

Table 7.5 The table shows the comparsion between clinical data based models, HR(CL) and
expression data based models from Chapter 6, HR (EXP).

Cancer HR (EXP) p-value C HR (CL) p-value C
SKCM 1.99  2.18x107 0.59 2.88 1.46E-09 0.62
GBM 2.07  3.73x10* 0.61 2.37  5.27E-05 0.53
ov 2.19  1.38x10° 0.61 1.66  5.10E-04 0.55
LUSC 221 1.26x10°¢ 0.61 6.37  9.36E-05 0.52
HNSC 236 9.24x108 0.62 5.57 1.12E-24 0.71
LUAD 276 6.94x10 0.63 7.61  4.70E-02 0.51
SARC 2.81  1.32x107 0.67 2.72  8.36E-05 0.6
STAD 3.35  2.78x107 0.64 295  3.76E-03 0.55
BLCA 341  6.35x10°10 0.66 5,64  2.69E-09 0.57
BRCA 345  2.36x107 0.67 8.79  3.07E-02 0.54

*HR: Hazard Ratio, C: Concordance Index, EXP: Expression based, CL: Clinical data based
7.5 Conclusion and summary

Risk evaluation is a crucial step in cancer management. A careful prognosis is often required for
strategic planning of therapeutic intervention. This has lead to development of several prognostic
methods and identification of biomarkers. However, modern oncology research seems to be biased
towards omics based techniques and consistently ignores the contribution and role of other intrinsic
and extrinsic risk factors. Past studies have revealed important roles of various factors in the
development of cancer such as tobacco smoking in lung cancer, radiation exposure in thyroid
cancer etc. On on hand, some factors can be modified/controlled as prevention tactics for cancer,
on other hand some of these can be exploited for risk evaluation in cancer patients. In the current
study, we examined a plethora of ‘clinical factors’ obtained from monitoring of a large number of
cancer patients. The prognostic strength of these factors was probed by two approaches, first being
the machine learning based classification of patients into risk groups. Since, the majority of the
considered factors were categorical, decision trees which handle both numerical and categorical

features, were used to build ML models. Second, approach involved construction of a ‘risk matrix’
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wherein each entry replaces a clinical “characteristic” with a probability value representing the
likelihood of death risk. A few prognostic models based on decision tree based method was seen
to perform better than the conventional staging, whereas the risk matrix based approach proved to
be superior and provided better stratification models. These models employ minimal number of
features and also have an anhanced prognostic potential as compared to conventional staging.
Overall this study highlights the strength of clinical factors in cancer prognosis, and motivates
further research into the untapping the potential of such factors for advancement in cancer care

and management.
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Cancer is the second leading cause of mortality globally (Siegel et al., 2020). For treatment and
management of cancer patients, a crude pipeline that is generally followed by oncologists
worldwide consists of the following broad steps (a) Screening: Early physical examinations or lab
tests on suspicion of cancer and also various tumour biomarker/marker tests (b) Diagnosis: which
includes imaging tests such as CT scans, PET, MRI, X-rays etc., invasive procedures such as
biopsy and endoscopy and/or blood or genetic tests for cancer biomarkers (¢) Risk evaluation:
primarily includes cancer staging for evaluation of severity and prognosis and (d) Therapeutic
decision making involving surgical resection if cancer is localized and/or therapies such as
chemotherapy , radiotherapy , immunotherapy etc. if cancer has metastasized to other tissues/body
parts. Since, therapeutic intervention in majority of the cases follows the cancer staging system, it
is considered to be the most important step in clinical management of cancer patients. For most of
the cancers, the guidelines for staging is provided by American Joint Committee on Cancer (AJCC)
and the Union for International Cancer Control (UICC). This is commonly known as the TNM
staging system. As discussed in chapter 1, in the TNM system, the overall stage is determined
after the cancer is assigned a letter or number to describe the tumor (T), node (N), and metastasis
(M) categories wherein, T describes the size and location of original (primary) tumor, N tells
whether the cancer has spread to the nearby lymph nodes and M tells whether the cancer has spread
(metastasized) to distant parts of the body. The staging system many a times also includes
information about other features such as levels of some molecular markers (PSA in Prostate
cancer), age of the patient (Thyroid cancer), presence/absence of specific proteins (ER, PR or HER
in Breast cancer), tumor location (esophageal cancer) etc. Although, not all cancers are staged
using the TNM system, for example Staging systems other than the TNM system are often used
for Hodgkin and non-Hodgkin lymphomas, as well as for some other cancers. The International
Federation of Gynecologists and Obstetricians (FIGO) has a staging system for cancers of the
female reproductive organs. However, the TNM stages closely match the FIGO stages, which
makes it fairly easy to convert stages between these 2 systems. Once the values for T, N, and M
(and any other factors that affect stage) have been determined, they are combined to assign an

overall stage. For most cancers, the stage is a Roman numeral from I (1) to IV (4). Stage I cancers
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are less advanced and often have a better prognosis. Higher stage cancers typically have spread
farther, so they might require more intense or different treatment. However, due to complexities
associated with cancer, modern oncologists are always learning more about cancer growth and
progression, and best treatment strategies. Over time, some of these findings are added to the
staging systems for different types of cancer, which helps make them more accurate and valuable
to both doctors and patients. Notable examples include addition of Gleason Score (Chen and Zhou,
2016) in prostate cancer staging; ER, PR, and HER2 in breast cancer staging; and LDH in
melanoma (Gershenwald et al., 2017) staging in the AJCC 8 edition staging (Amin et al., 2017).
The inclusion of HER2 status was a result of a new Neo-Bioscore staging system developed by
researchers at MD Anderson Cancer Center, thereby allowing more precise prognostic

stratification of all breast cancer subtypes (Mittendorf et al., 2016).

A huge challenge in cancer biomarker development is the heterogeneity associated with cancer
since each cancer is composed of varied phenotypes and often responds differently to same
therapeutic intervention. This heterogeneity arises due to the aberrant behavior in the cells of an
individual cancer type. To tackle this, modern oncologists are continuously putting efforts to gain
a detailed knowledge of the cellular mechanisms that drive cancer. It is now believed that
biomarker development utilizing the genomic and proteomic information is a superior way of
carefully addressing the issue of cancer heterogeneity. Thus, identification of novel biomarkers,
now-a-days, largely relies on the “omics” technologies. The earlier notion of a single biomarker
has now been replaced with multi-panel biomarkers or signatures consisting of genes or proteins

thereby revealing the vital fingerprint correlated with a given cancer.

Genomics has been used widely for the detection and recognition of biomarkers. The availability
of genome sequencing technologies and microarray expression methods [29] provide a reliable
and minimally invasive feature extraction system. This helps researchers to go another step
forward, developing and producing a biological drug with a deeper knowledge of
pharmacogenomics, thereby allowing biomarkers to investigate the effects of genetic variation,
creating novel strategies for personally treating patients. In this study, we focused on a prominent
cellular mechanism, apoptosis, which has a strong and proven foundation in cancer growth and
development, as presented in chapter 1 and 2. In chapter 4 of this thesis, we show that certain

genes belonging to the apoptotic pathway are correlated with patient survival in Thyroid cancer
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(papillary thyroid carcinoma). The elevation and suppression of mRNA levels of these genes may
be responsible in an aggressive or a mild phenotype of cancer thereby affecting patient outcome.
The proposed signature in a further analysis was seen to perform better than AJCC staging for risk
stratification purposes. A comprehensive evaluation of other clinical factors motivated the addition
of patient age to this signature, thereby resulting in a genomic-clinical hybrid panel. The identified
genes also show a differential behavior amongst normal and cancerous tissue implying their power
to distinguish between people with cancer and without cancer. To guide this study in the direction
of personalized medicine, candidate drug molecules were identified which could potentially
modulate the expression levels of both adverse and beneficial genes and potentially reduce the

severity of the disease.

Chapter 6 of this thesis also utilized the genomic data of apoptotic pathway genes in order to
identify universal gene signatures which hold prognostic value across different cancer types. This
is in contrast to the typical process of development of cancer-specific biomarkers. The study
centered at identification of prognostic biomarker apoptotic genes across different cancer types
and devised a 11 gene panel that is applicable across 27 cancer types. Though performance of the
panel is seen to vary amongst cancer types, a significant stratification is achieved in all the cases.
In addition to this, the analysis presented in the chapter also offered a novel strategy of cross cancer
biomarker development and sheds light on a novel gene signature which can be used in both brain
cancer and kidney cancer patients. Apart from its prognostic relevance, the underlying nature of
the genes could also motivate development of common therapeutic strategies in cells with different
types of origin (glial cells in nervous system vs. tissue lining cells in kidneys). Further, the study
also put forward cancer-specific risk prediction models based on expression levels of apoptotic

genes.

Gene expression profiling is a very reliable technique for classification of Cancer and
prognostication, though, in the form of signalling networks, the function of these genes depends
on their translation into functional proteins. This understanding is achieved by studying the
proteins through the application of proteomics. Proteomics is based on the analysis of
determination of levels of translated proteins in a given specimen, tissue or organism. Since, the
fundamental protein families regulating the apoptotic pathway along with their functions is largely

understood (Chapter 2), it is expected that an in-depth analysis of the proteomic profiles of
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different tissue sampled collected from cancer patients would improve our knowledge of tumour
pathogenesis, prognosis, and identification of therapeutic targets. To this endeavor, Chapter 3
incorporated a proteomic dataset with expression profile of Bcl2 family proteins in the context of
colo-rectal cancer. The study analyzed different protein expression based models and developed a
novel protein signature for predicting (Folflox and Xelox) therapy responders and non-responders
in Stage III CRC patients. The proposed signature assigns each patient with a ‘risk score’ based
on the expression value of 5 pro- and anti-apoptotic proteins. A greater score is indicative of failure
of therapy and higher mortality risk for the given patient. This study illuminates the synergistic
role of the proteins in conferring therapeutic resistance in CRC and vital role of apoptosis. As a
practical applicability of the proposed model, the in-house web-server ‘CRCRpred’
(https://webs.iiitd.edu.in/raghava/crcrpred) can be further exploited by both clinicians and

patients. This resource can be beneficial in therapy planning and personalized treatment.

The aforesaid “omics” technologies and subsequent data has led to the development of an
extensive variety of cancer biomarkers, for cancer risk assessment purposes. This also includes the
biomarkers/models developed in the current study. However, at the same time, much of these
newer findings often makes the staging systems more complex than they were in the past, which
can make it harder for people to understand them. Therefore, despite their excellent performance
in the cohort studies, majority of the biomarkers haven’t yet been added to the staging systems.
For that reason, our current study also explores the roles of various ‘clinical factors’ which
collectively include pathological features, demographic features, lifestyle related features,
anatomic features, blood protein level status (such as ER) etc. in predicting survival outcome of
cancer patients. Chapter 4 of the thesis thoroughly examines the prognostic strength of genomic
data corresponding to cancer-associated pathways as well as clinical factors in Melanoma patients.
Multiple gene expression-based risk prediction models are developed and evaluated in comparison
with clinical factors. Models were also constructed based on combination of best genomic features
and clinical features. However, the model which had only clinical factors performed superior to
all the other models. This study therefore highlights the importance of clinical factors in risk
assessment. It indicates how a schematic integration of existing clinical features in the staging
process can be more efficient. It also hints that, while, the omics-based biomarkers can be alluring

due to their innate biological association, clinical factors should not be undermined. Based on this
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pretext, the analysis presented in Chapter 7 of the thesis takes on a pan-cancer approach of
developing risk prediction models by employing clinical factors only. The clinical factors herein
are inclusive of a wide range of features spanning from intrinsic or heritable factors, various
extrinsic risk factors, anatomical features and surgical methods or therapy procedures employed.
The goal of the study was to develop risk prediction models which are easy to implement and
comprehend. The models were assessed against the staging schemes in different cancer for their

efficacy in risk evaluation in lieu of current standards.

Overall, the work presented in this thesis proposes several novel prognostic biomarkers and
methods for better risk evaluation in cancer patients. On one hand, the pipeline used in the study
exploited a crucial cellular mechanism by utilizing recent “omics” based data and modelling
techniques. On the other hand, various clinical features were evaluated both individually and as
combination to suggested biomarker genes/proteins in lieu of patient survival. The comprehensive
analysis of apoptosis molecules shed light on the risk prediction ability of the expression data in
various cancers such as protein expression as therapeutic predictive marker in Colon and Rectal
cancer (Chapter 3) and gene expression in Thyroid cancer (Chapter 4). However, some exceptional
cases were also observed such as Melanoma where apoptosis expression based prognostic markers
failed to stratify risk groups efficiently. This is clearly observed in ‘cancer-specific’ models
presented in Chapter 6 where Model for SKCM has the lowest performance. Thus, this specific
case was exclusively addressed in Chapter 5, wherein other pathways and clinical features were
studied. This resulted in a solely clinical features based risk model and trumped various other
expression based models. The enhancement due to clinical feature addition is also obvious in
hybrid approaches implemented in Chapter 3 and 4. Subsequently, a thorough analysis of clinical
features was performed in Chapter 7. Following this, a comparison between expression based and

clinical data based models was established.

This work addresses various aspects of molecular and clinical data in prognosis of cancer patients,
however, it will be naive to say that the approaches taken here are complete/accurate. Ideally, a
more holistic way of model development is required, which has to involve several other factors
such as epigenomics, metabolomics, single-cell studies etc. owing to the heterogenous nature of
the disease. Herein, although, we utilized a reductionist approach, due to several limitations

pertaining to time, resources and computational power, the inclusion of clinical data can be
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considered as a step towards holistic understanding. To conclude, the work presented here, in its
current form albeit after thorough clinical validations, can be beneficial for designing better

treatment strategies and thereby help in progress of cancer research.

Appendix A
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APPENDIX A

Table A1 The list of clinical features corresponding to each cancer-type (Chapter-7), before
feature selection was implemented. The feature annotation follows the TCGA annotation for

clinical data.

Cancer Features

ACC gender, race, ethnicity, history other malignancy,
history neoadjuvant treatment, tumor_status, residual tumor,
history adrenal hormone excess, age at diagnosis,
cytoplasm_presence less than equal 25 percent, clinical M, pathologic T

BLCA gender, height cm_at diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, history neoadjuvant treatment,
noninvasive bladder history, tumor_status, occupation current,
tobacco_smoking history indicator, radiation_treatment adjuvant,
tobacco_smoking pack years smoked, pharmaceutical tx adjuvant,
histologic subtype, age at diagnosis, ajcc_staging edition,
ajcc_tumor pathologic_pt, lymphovascular_invasion,
ajcc_nodes pathologic pn, lymph nodes examined,
lymph nodes_examined count, lymph nodes examined he count,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,
incidental prostate cancer indicator, new tumor event dx indicator,
anatomic_neoplasm_subdivision, histological type,
neoplasm_histologic grade

BRCA gender, menopause_status, race, ethnicity, history neoadjuvant treatment,
tumor_status, age at diagnosis, method initial path dx,
surgical procedure first, margin_status, axillary staging method,
micromet detection_by ihc, lymph nodes examined,
lymph_nodes _examined count, ajcc_tumor pathologic pt,
ajcc_nodes pathologic pn, ajcc_metastasis_pathologic_pm,
ajcc_pathologic tumor stage, er status by ihc, pr_status by ihc,
her2 status by ihc, histological type
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CESC

CHOL

COAD

gender, menopause_status, height cm_at diagnosis, weight kg at diagnosis,
race, history _hormonal contraceptives_use, pregnancies _count total,
pregnancies_count live birth, history neoadjuvant treatment, tumor_status,
pregnant_at diagnosis, ecog_score, age at diagnosis,
history other malignancy, histologic diagnosis,
keratinization_squamous_cell, tumor grade, ajcc_nodes_pathologic pn,
hysterectomy _type, lymph _nodes examined, lymph nodes_examined count,
ajcc_tumor pathologic pt, ajcc_metastasis_pathologic pm,

ajcc_staging edition, radiation_treatment adjuvant.l,

pharmaceutical tx adjuvant.l, clinical stage

gender, height cm_at_diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, history neoadjuvant treatment, tumor_status,
family history cancer indicator, family history cancer relationship,
history hepato_carcinoma risk factors, radiation_treatment adjuvant,
pharmaceutical tx adjuvant, ablation_embolization tx adjuvant,
histologic_diagnosis, definitive surgical procedure, tumor grade,
residual tumor, ajcc_tumor pathologic pt, ajcc_nodes_pathologic pn,
ajcc_metastasis_pathologic_pm, ajcc_pathologic tumor stage,
vascular_invasion, perineural invasion, child pugh classification,
ca_19 9 level, alpha_fetoprotien at procurement,

platelet count preresection, prothrombin time INR at procurement,
serum_albumin_preresection, bilirubin_total, creatinine level preresection,
ishak fibrosis score, ecog_score, new_tumor event dx indicator,

age at diagnosis

histologic diagnosis, gender, race, ethnicity, history other malignancy,
history neoadjuvant treatment, ajcc_staging edition,
ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,

ajcc_metastasis_pathologic pm, ajcc_pathologic tumor_stage, residual tumor,

tumor_status, cea_level pretreatment, vascular invasion_indicator,
lymphovascular_invasion_indicator, kras gene analysis_indicator,

braf gene analysis_indicator, history other malignancy.1,

history colon_polyps, weight kg at diagnosis, height cm_at diagnosis,
family history colorectal cancer, age at diagnosis,
anatomic_neoplasm_subdivision
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DLBC

ESCA

GBM

HNSC

KICH

KIRC

histologic diagnosis, history other malignancy,

history neoadjuvant treatment, gender, race, ethnicity,
weight kg at diagnosis, height cm_at diagnosis, age at_diagnosis,
clinical stage

gender, height cm_at diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, tumor_status,
esophageal tumor location_centered, esophageal tumor location involved,
histologic diagnosis, tumor grade, age at diagnosis, ajcc_staging_edition,
ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,

ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage, residual tumor

gender, race, ethnicity, history neoadjuvant treatment, tumor_status,
karnofsky score, age at diagnosis, histological type

anatomic_organ_subdivision, laterality, gender, race,
history other malignancy, history neoadjuvant treatment,

lymph node neck dissection_indicator, lymph nodes examined,

lymph nodes_examined count, lymph nodes examined he count,
margin_status, tumor_status, ajcc_staging edition, ajcc_tumor_ pathologic pt,
ajcc_nodes_pathologic pn, ajcc_pathologic tumor stage,
extracapsular_spread pathologic, tumor grade, lymphovascular invasion,
perineural invasion, tobacco_smoking_history indicator,

alcohol history documented, age at diagnosis, clinical M, clinical N,
clinical T, clinical stage, tissue source_site

histologic diagnosis, sarcomatoid features, laterality, gender, race, ethnicity,
history other malignancy, history neoadjuvant treatment,

ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_clinical cm, ajcc_pathologic tumor stage, age at diagnosis

histologic diagnosis, tumor grade, laterality, gender, race, ethnicity,
history other malignancy, history neoadjuvant treatment,

ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage, tumor_status,
serum_calcium_level, hemoglobin_level, platelet count, white cell count,
age at diagnosis
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KIRP

LAML

LIHC

histologic diagnosis, tumor _type, laterality, gender, race, ethnicity,
height cm_at diagnosis, weight kg at diagnosis, history other malignancy,
history neoadjuvant treatment, age at diagnosis, lymph nodes examined,
ajcc_staging edition, ajcc_tumor clinical ct, ajcc_nodes_clinical cn,
ajcc_metastasis_clinical cm, ajcc_clinical tumor stage,

ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage, tumor status

gender, race, ethnicity, history other malignancy,
history hematologic disorder, history neoadjuvant treatment,

history neoadjuvant hydroxyurea tx, history exposure leukemogenic agents,

cells used for analysis source, age at diagnosis,
percent_blasts_peripheral blood, fab_category,

cyto_and immuno_test performed, cyto and immuno_test percentage,
percent_cellularity, wbc 24hr of banking, hemoglobin 24hr of banking,
platelet count preresection, blast count, promyelocytes count,

segs 24hr of banking, basophils count, abnormal lymphocyte percent,
promonocytes 24hr of banking, fish abnormality detected,

test performed indicator, fish performed outcome,
molecular_studies_others_performed, molecular abnormality results,
molecular_abnormality percent, atra_exposure, informed consent verified

gender, height cm_at_diagnosis, weight kg at diagnosis, race,

history neoadjuvant treatment, tumor_status,

family history cancer indicator, history hepato carcinoma risk factors,
radiation_treatment adjuvant, pharmaceutical tx adjuvant,
ablation_embolization_tx adjuvant, histologic diagnosis,

definitive surgical procedure, tumor grade, residual tumor,

ajcc_staging edition, ajcc_tumor_pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,
vascular_invasion, child pugh classification,

alpha_fetoprotien_at procurement, alpha fetoprotien norm_range lower,
platelet count preresection, platelet norm range lower,
prothrombin time INR at procurement, serum albumin_preresection,
bilirubin total norm range upper, bilirubin_total norm_range lower,
age at diagnosis
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LUAD

LUSC

MESO

ov

PAAD

histologic diagnosis, gender, submitted tumor _site, race, ethnicity,
history other malignancy, anatomic_organ_subdivision,

histologic diagnosis.1, residual_tumor, ajcc_staging_edition,
ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, pulmonary function_test indicator,
kras_gene analysis indicator, egfr mutation_status,
tobacco_smoking history indicator, history neoadjuvant treatment,
tumor_status, age at diagnosis

histologic diagnosis, gender, race, ethnicity, history other malignancy,
anatomic_organ_subdivision, histologic diagnosis.1, residual tumor,
ajcc_staging edition, ajcc_tumor_pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,

egfr mutation_status, eml4 alk translocation_status,

history neoadjuvant treatment, tumor_status, age at diagnosis

gender, race, ethnicity, history other malignancy,

history neoadjuvant treatment, pleurodesis performed prior, tumor_status,
history asbestos exposure, primary occupation, occupation_primary,
radiation_treatment adjuvant, pharmaceutical tx adjuvant, laterality,
histologic diagnosis, ajcc_tumor pathologic pt, ajcc_nodes_pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor_stage, residual tumor,
creatinine _prior_tx, mesothelioma detection method, age at diagnosis

gender, race, ethnicity, history neoadjuvant treatment, tumor_status,
tumor_grade, residual disease largest nodule, age at diagnosis,
anatomic_neoplasm_subdivision, clinical stage, histological type

invasive adenocarcinoma_indicator, histologic diagnosis,

tumor sample_type, gender, race, ethnicity, history other malignancy,
history neoadjuvant treatment, tumor grade, grade tier system,

tumor resected max_dimension, residual tumor, ajcc_staging edition,
ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage, tumor_status,
diabetes_diagnosis_indicator, history chronic_pancreatitis,

family history cancer indicator, radiation_treatment adjuvant,

age at diagnosis, anatomic_neoplasm_subdivision
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PCPG

PRAD

READ

SARC

SKCM

STAD

gender, race, ethnicity, history other malignancy,
history pheo or para include benign, history neoadjuvant treatment,
tumor_status, laterality, histologic diagnosis, age at diagnosis

histologic diagnosis, zone of origin, gleason pattern_primary,
gleason_pattern secondary, gleason_score, laterality, tumor_level, gender,
history other malignancy, history neoadjuvant treatment,

ct scan_ab pelvis_indicator, mri_at diagnosis, lymph nodes examined,
lymph nodes_examined count, lymph nodes examined he count,
residual tumor, tumor_status, biochemical recurrence indicator,
radiation_treatment adjuvant, new tumor event dx indicator,

age at diagnosis, clinical M, clinical T, pathologic T,

targeted molecular therapy

histologic diagnosis, gender, race, history other malignancy,
history neoadjuvant treatment, ajcc_tumor pathologic pt,
ajcc_nodes pathologic pn, ajcc_metastasis_pathologic_pm,
ajcc_pathologic tumor_stage, residual tumor, tumor_status,
braf gene analysis_indicator, kras_gene analysis_indicator,
history other malignancy.1, family history colorectal cancer,
age at diagnosis, anatomic_neoplasm_subdivision

gender, race, ethnicity, history other malignancy,

history neoadjuvant treatment, tumor_status, histologic diagnosis,

age at diagnosis, margin_status, residual tumor, tumor_total necrosis,
disease_multifocal indicator, locoregional recurrence indicator,
metastatic_disease confirmed, nte lesion radiologic length

gender, weight kg at diagnosis, race, history other malignancy,

history neoadjuvant treatment, tumor_status, breslow_thickness at diagnosis,
clark level at diagnosis, primary melanoma tumor ulceration,

age at diagnosis, ajcc_staging_edition, ajcc_tumor pathologic pt,

ajcc_nodes pathologic pn, ajcc_metastasis_pathologic_pm,
ajcc_pathologic tumor stage

histologic diagnosis, tumor grade, gender, race, ethnicity,
history other malignancy, history neoadjuvant treatment, residual tumor,
ajcc_staging edition, ajcc_tumor_pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,

family history of stomach cancer, age at diagnosis,
anatomic_neoplasm_subdivision
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TGCT race, ethnicity, history other malignancy, history of undescended testis,
history hypospadias, history fertility, family history testicular cancer,
family history other cancer, history neoadjuvant treatment, tumor_status,
laterality, testis_tumor macroextent, histologic diagnosis,
histologic diagnosis_percent, intratubular germ cell neoplasm,
ajcc_staging edition, ajecc_tumor clinical ct, ajcc_nodes_clinical cn,
ajcc_metastasis_clinical cm, ajcc_clinical tumor stage,
ajcc_tumor pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,
serum_markers, pre_orchi_hcg, first treatment success, age at diagnosis,
gender

THCA gender, race, ethnicity, history other malignancy,
history neoadjuvant treatment, tumor_status, history thyroid disease,
history radiation_exposure, histologic diagnosis, laterality, tumor focality,
tumor size width, tumor size width.1, tumor size width.2, age at diagnosis,
lymph nodes_preop imaging, lymph nodes preop imaging type,
lymph nodes_examined, lymph nodes examined count,
lymph nodes _examined he count, extrathyroidal extension, residual tumor,
ajcc_staging edition, ajcc_tumor_pathologic pt, ajcc_nodes pathologic pn,
ajcc_metastasis_pathologic pm, ajcc_pathologic tumor stage,
genotypic_analysis_detected

THYM gender, height cm_at_diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, history neoadjuvant treatment, tumor_status,
radiation_treatment adjuvant, pharmaceutical tx adjuvant,
ablation_embolization_tx adjuvant, method initial path dx, masaoka stage,
history myasthenia_gravis, new _tumor event dx indicator, age at diagnosis

UCEC gender, menopause_status, height cm_at diagnosis, weight kg at diagnosis,
race, ethnicity, history neoadjuvant treatment, tumor_status,
histologic diagnosis, age at diagnosis, method _initial path dx,
surgical _approach at diagnosis, peritoneal washing, tumor invasion percent,
residual tumor, lymph nodes pelvic_examined count,
lymph nodes pelvic pos by he, clinical stage, neoplasm_histologic grade
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UCS gender, menopause_status, history menopausal hormone_therapy,
history tamoxifen_use, hypertension_diagnosis, diabetes diagnosis_indicator,
pregnancies_full term_count, history colorectal cancer,
height cm_at diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, history neoadjuvant treatment, tumor_status,
vital status, treatment outcome first course, radiation treatment adjuvant,
pharmaceutical tx adjuvant, surgical approach at diagnosis,
peritoneal washing, tumor_invasion percent,
lymph_nodes_pelvic_examined count, lymph nodes aortic_examined count,
new_tumor event dx indicator, age at diagnosis,
anatomic_neoplasm_subdivision, clinical stage, residual tumor

UVM gender, height cm_at diagnosis, weight kg at diagnosis, race, ethnicity,
history other malignancy, history neoadjuvant treatment, tumor_status,
histologic diagnosis.1, tumor_thickness, tumor thickness measurement,
ajcc_tumor clinical ct, ajcc_metastasis_clinical cm,
ajcc_clinical tumor_stage, ajcc_tumor pathologic pt,
ajcc_nodes_pathologic pn, ajcc_metastasis_pathologic pm,
ajcc_pathologic tumor stage, age at diagnosis
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