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Abstract 

 

One of the major challenges in designing the cancer vaccine or immunotherapy is to predict 

the cancer-specific peptides or neopeptides that can stimulate the immune system to fight 

against the cancer cells. Human leukocyte antigens (HLA) bind and present neopeptides on the 

cell surface, where these neopeptides are recognized by the T-cells. T-cells activate a wide 

range of cytokines to provide protection/defence against the cancer cells. Thus, it is important 

to investigate the role of cytokines and HLA molecules in order to design the cancer 

immunotherapy. Broadly, this study can be divided in the following four parts; i) Prognostic 

biomarkers, ii) HLA binders, iii) Cytokine inducing peptides, and iv) Inhibition of STAT3. 

Firstly, we have investigated the prognostic role of class-I HLA (HLA-I) alleles, HLA-I binders 

and cytokines with the overall survival of the cancer patients. It was observed that certain HLA-

alleles have high impact on the survival of a patients suffering from a specific type of cancer. 

Based on this observation, a method SKCMhrp has been developed for predicting high-risk 

cutaneous melanoma patients using HLA-alleles. In the past, numerous methods have been 

developed for predicting binders of classical HLA alleles. Thus, second part of this thesis 

describe methods developed for predicting binders of  non-classical HLA alleles (HLA-G and 

HLA-E). Our server HLAncPred allow users to predict promiscuous binders for non-classical 

HLA-alleles (HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, HLA-E*01:01, and HLA-

E*01:03). Thirdly, methods have been developed to predict peptides or epitopes that can induce 

following types of cytokine; IL6 (IL6Pred), TNF-α (TNFepitope), and IFN‐γ (IFNepitope2). It 

has been shown in number of studies that STAT3 is a promising therapeutic target for several 

diseases including cancer. Thus, fourthly, a method has been developed to predict STAT3 

inhibitor that can inhibit the STAT3 signaling pathway. In summary, in this thesis a number of 

in silico tools have been developed, which may play vital role directly or indirectly in 

developing the cancer vaccine/immunotherapy.   
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1.1 Overview of immune system  

The immune system is a complex network of cells and proteins which provide protection from external 

invaders such as bacteria, viruses, and parasites that cause infection, sickness, and diseases (Nicholson, 

2016). Our immune system evolved to protect the host from a universe of dangerous bacteria that are 

continually changing itself (Chaplin, 2010). It also aids in the elimination of harmful or allergenic 

chemicals that enter the body through mucosal surfaces (Belkaid & Hand, 2014; Demberg & Robert-

Guroff, 2009). This complicated network of immune system is made up of organs, white blood cells, 

proteins (antibodies), lymphoid organs, humoral factors, cells, cytokines, and other chemicals 

(Nicholson, 2016). The immune system is essential to our survival. These specialised cells and immune 

system components help to protect the body against diseases and termed as immunity. The overall 

function of the immune system is to prevent or limit infection. When our immune system fails it causes 

severe infections, immunodeficiency, autoimmune diseases, hypersensitivity, and malignancies. It can 

also be described as a puzzling biological system that recognises and embraces what belongs to the 

self while also acknowledges and rejects what does not belong to the self (non-self). Innate, adaptive, 

and passive immunity are the three main categories of immune system (Parkin & Cohen, 2001).  

 

Innate immunity is often referred to as non-specific immune response or intrinsic immunity. It is a 

natural immunity and act as a general defence that is present at birth. One such barrier is the skin, 

which prevents germs from entering the body. The immune system also recognises when to defend 

against outside intruders that could be harmful. It frequently describes a first-line of protection that is 

physical, chemical, and biological. Acute-phase proteins, neutrophils, monocytes, cytokines, and 

macrophages offer the host an immediate line of protection. Their actions are non-specific and non-

inclusive (Jain et al., 2011). When innate immune system fails to eliminate the infectious agents, 

adaptive immunity plays a highly significant role. Adaptive or acquired immunity recognize the 

foreign antigens and activate specific immunologic effector pathways to eliminate the pathogen or 

infected cells (Dunkelberger & Song, 2010). An individual can develop adaptive immunity by being 

exposed to an illness or by receiving a vaccine immunization (Clem, 2011). It also develops the 

memory which aids to generate a specific immune response against the pathogens on their subsequent 

encounters. Lymphocytes, a type of white blood cell, are responsible for adaptive immune responses. 

Such reactions fall into two main categories: antibody reactions and cell-mediated immunological 

reactions. The major components of adaptive immune system or cell mediated immune reactions are 

carried by T cells and B lymphocytes. To connect innate and adaptive immune responses, antigen 

presenting cells (APCs) engage T cells (See Figure 1.1). These APCs directly affect T cell 
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differentiation by presenting bacterial, viral and tumorigenic fragments of peptides/antigens on their 

surface via major histocompatibility complex (MHC) or human leucocyte antigens (HLA) system. 

 

 

Figure 1.1 Major cells involved in innate and adaptive immune system 

 

1.2 HLA system -antigen presentation mechanism 

The HLA system is the highly polymorphic genomic region located on human chromosome 6 (6p21.3) 

and majorly classified into Class-I (HLA-A, B, C, E, F, G) and Class-II (HLA-DP, DQ, DR, DM, DO) 

genes (Choo, 2007). The Class I and Class II HLA genes are the most polymorphic genes among 200 

immune-related genes encoded by the major histocompatibility complex (MHC). These HLA genes 

produce proteins that act as histocompatibility antigens in transplantation and as important mediators 

of self-tolerance development and immune responses to infections. Moreover, class-III HLA region 

composed of 60 immune related genes (such as TNF, C3, C4, C6orf27, CYP21A1P, etc.) which encode 

proteins that play major role in the activation of hormonal synthesis, inflammation, and regulation of 

immunoregulatory molecules. Figure 1.2 shows the genetic location of major HLA genes on 

chromosome 6.   
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Figure 1.2 Genetic map of human leucocyte antigen (HLA) region on chromosome 6 

 

According to IMGT/HLA, more than 34000 variant alleles for Class-I and Class-II HLA molecules 

are reported. The complete distribution of HLA-alleles and IMGT/HLA statistics is provided in Table 

1.1. The major role of HLA-alleles is to bind with the antigenic peptides and present them to the cell 

surface. HLA-alleles have different binding affinities with antigenic peptides. Where, HLA-antigen 

complex interacts with T cell receptors and induces cytokines secretion which plays crucial 

immunoregulatory roles in activating/inhibiting the immune responses. Recent research suggests that 

the development of diseases including cancer and autoimmune disorders is directly linked to the 

mutations or changed expression of HLA molecules (including type 1 diabetes, celiac disease, and 

rheumatoid arteritis).  

 

Table 1.1: Number of classical and non-classical  Class-I/II HLA alleles reported in 

IMGT/HLA (Robinson et al., 2020) 

Class  Gene name Number of HLA alleles 

HLA Class I 

(Classical) 

HLA-A 7644 

HLA-B 9097 

HLA-C 7609 

HLA Class I 

(Non-classical) 

HLA-E 342 

HLA-F 59 

HLA-G 110 

HLA Class II 

(Classical) 

HLA-DR 8559 

HLA-DQ 2896 

HLA-DP 2728 

HLA Class II 

(Non-classical) 

HLA-DM 163 

HLA-DO 152 
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In addition, studies also reveal that the presence/absence of certain HLA molecules may associate with 

the adverse drug hypersensitive reactions and also increases the risk factors in cancer patients 

(Alfirevic A, 2010 Dec 23). With the knowledge of accurate HLA typing, clinicians can design 

personalized vaccines and immunotherapy-based prognostic biomarkers against cancer (Dhall et al., 

2020; Xu et al., 2021). In clinical practices, HLA typing could be used as predictive or diagnostic tests 

for the drug induced hypersensitivity (Rive et al., 2013). Moreover, non-classical HLA-G and HLA-E 

molecules act as essential immune checkpoint molecules which mediates the NK-cell lysis, 

cytotoxicity, cytokine production, tumor proliferations (Cao et al., 2020). Of note, in order to develop 

better immunotherapeutic candidate against cancer and diseases it is essential to understand the role 

of HLA-alleles (Sabbatino et al., 2020). In addition, to design novel immunotherapies or subunit 

vaccine candidates, it is crucial to accurately identify the HLA-peptides or antigen binding regions 

(Zhao et al., 2013). 

 

1.2.1 HLA Class-I presentation  

HLA Class-I molecules are made up of two chains one is polymorphic heavy chain and other is β2-

microglobulin chain. Class-I HLA are assembled in endoplasmic reticulum (ER) and expressed in all 

the nucleated cells and follows endogenous or intercellular mechanism. As shown in the Figure 1.3, 

the antigenic protein degraded into small antigenic peptides, these peptides are then translocated from 

cytoplasm to ER via TAP protein and further bound to HLA class-I molecules. HLAs deliver short 

peptides to the cell surface and interacted with CD8+ (cytotoxic) T cells. These antigenic regions when 

come in contact with the T-cell receptors it activates several immune responses and induces the 

production of several cytokines such as IFN-gamma, TNF-alpha, IL6, IL-12, IL-4 etc. (Y. Zhang et 

al., 2020).  

 

1.2.2  HLA Class-II presentation  

HLA Class-II genes are majorly expressed by antigen presenting cells (including dendritic cells, 

macrophages and B cells). Class-II molecules assembled in ER and made up of α- and β- chains. HLA 

class-II molecules bound to exogenous peptides which were degraded in the endocytic pathway. They 

present the antigenic peptides on the cell surface and interacted with CD4+ (T-helper cells). Which 

further activate B-cells in order to stimulate antibody production against specific antigen. Moreover, 

T-helper cells generate memory B-cells, plasma cells and increases the production of cytokines in 

order to kill the pathogen or cancerous cells (See Figure 1.3).   
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1.3 Immunity against cancer 

Our immune system is able to identify a malignant cell as aberrant and eliminate it before it spreads 

or replicates. In this case the malignant or cancerous cells entirely eradicate and the disease never 

manifests. Tumor associate antigens (TAAs) are tumor specific peptides presented by HLA molecules 

and are recognized by our immune system (Restifo et al., 1994; Z. Zhang et al., 2021). Although all 

cells have antigens on their surfaces, the immune system typically does not respond to a person’s own 

cells. The new antigens or neoantigens that are unfamiliar to the immune system emerge on the surface 

of cancer cells. These neoantigens, also known as tumors antigens, recognized as foreign peptides by 

the immune system (Yarchoan et al., 2017). By using this technique, the body eliminates aberrant cells 

and frequently stops the development of cancerous cells. As shown in the Figure 1.3, mutated peptides 

or tumor specific antigens are recognized by cytotoxic T cells and helper T cells which further secretes 

a number of cytokines and generate specific immune responses, in order to kill the malignant cells. 

These tumor specific antigens can act as tumor markers and can be used to made cancer vaccines. For 

instance; in the case of melanoma, breast cancer, ovarian cancer, liver and prostate cancer tumor 

antigens are identified (Feola et al., 2020). The antigen vaccines stimulate the immune response and 

can be used for the treatment of certain type of cancers (Tagliamonte et al., 2014). Nowadays, due to 

advancements in technology tumor specific antigens (tumor markers) can be detected in blood tests 

(Holdenrieder et al., 2016).  

However, certain type of cancers are more likely to advance and grow on faster rate in persons with 

weakened immune systems, such as patient suffering from AIDS (Prakash et al., 2002). Moreover, 

tumor cells may not present antigens on their cell surface or loss the expression of HLA-I molecules 

or inhibiting T-cells via producing immunosuppressive chemicals. The onset and progression of cancer 

may be influenced by immune system disorders such as immunological deficiency and immune 

suppression (Gonzalez et al., 2018). Patients with immunodeficiency illnesses as well as transplant 

recipients who have received long-term immunosuppressive medications are more likely to develop 

specific types of cancer (Gallagher et al., 2010). For instance, individuals having AIDS (acquired 

immunodeficiency syndrome) are more likely to get tumors like Kaposi sarcoma, which are linked to 

viruses (Angeletti et al., 2008). In older age, when some immune responses deteriorate, the incidence 

of cancer also rises significantly. Age-related genetic changes associated to the cancer also accumulate, 

thus, immune responses may not be the main cause of cancer development in the elderly (Hong et al., 

2019; Laconi et al., 2020). In this situation targeted therapy or immunotherapy given to cancer patients 

to immunize patients against specific type of cancer.  
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Figure 1.3 Illustration of antigen presentation and processing mechanism  

 

1.4  Cancer immunotherapy 

Cancer immunotherapy acts as a novel pillar for cancer care and shows significantly increased patient’s 

survival and quality of life as compared to traditional treatment regimens such as chemotherapy, 

radiation, and surgery (Esfahani et al., 2020). Recently, a number of immunotherapies are available to 

treat cancer patients as shown in Figure 1.4. Adoptive cell therapy are HLA-dependent 

immunotherapies and are mainly focused on CD8+ T cells, like tumor-infiltrating lymphocytes (TILs) 

therapy and TCR-engineered T cells (TCR-Ts) therapy. Immune checkpoint inhibitor therapies such 

as, CTLA-4 inhibitor (Ipilimumab), PD-1 inhibitors (Pembrolizumab and Nivolumab), PD-L1 

inhibitors (Atezolizumab, Avelumab, Durvalumab) are used to treat advance-stage cancers (Wu et al., 

2012). In addition, some of the immune checkpoint modulators (CD70, CD27, CD40, CD47, and 

CD73) and antagonist antibodies are under clinical trials (Wang et al., 2022).  
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Recombinant cytokine products are also used for cancer immunotherapies for instance interferon alpha 

(IFN-alpha), proleukin, and interleukin-2 (IL-2) for the treatment of hairy Cell leukemia, malignant 

melanoma, follicular lymphoma, AIDS-Related Kaposi's Sarcoma, metastatic renal cell carcinoma, 

and metastatic melanoma (Waldmann, 2018). Food and Drug Administration (FDA) has approved 

vaccines to prevent cancer for example: HPV vaccines protect against human papillomavirus (Thomas, 

2016) and can be used to prevent cancers like cervical, vaginal, vulvar, and anal cancer. Sipuleucel-T 

(Provenge) is used to treat the metastatic prostate cancer (Anassi & Ndefo, 2011) and Bacillus 

Calmette-Guérin (BCG) vaccine is used for the treatment of early-stage bladder cancer (Guallar-

Garrido & Julian, 2020). 

 

 

Figure 1.4 Types of immunotherapies used for cancer treatment 

 

Subunit or peptide-based vaccines are also used nowadays for the treatment of cancer. The aim of 

peptide-based anticancer vaccines is to stimulate immune response against the tumor specific antigens. 

Number of pre-clinical and clinical trials have been initiated to check the efficacy of subunit or peptide-

based vaccines (Abd-Aziz & Poh, 2022; Slingluff, 2011). TAA-derived peptides, personalized peptide 

vaccine, HER2, W3, E6/E7, neoantigens, synthetic long peptide (SLPs) (Chen, Yang, et al., 2020) are 
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under clinical investigation and can be used for the treatment of bladder carcinoma, breast carcinoma, 

gastric carcinoma, glioblastoma, and HPV+ tumors (Bezu et al., 2018). 

 

1.5  Proposal’s origin 

Tumors are part of a complex network of tissues, cells, and chemical messengers, including immune 

cells, stroma, blood, lymphatic, and epithelial cells, as well as cytokines and chemokines. Tumor 

antigens or neoantigens are used by immune system to distinguish between tumor cells and normal 

cells. These tumor specific antigens are produced by the extensive genetic changes that are specific to 

tumor. Neoantigens are significant because they trigger the T cell response, a crucial line of defence 

against tumorigenesis, via the Human Leucocyte antigen molecules. In contrast to this, tumor cells 

have created ways to get beyond host immunity in their never-ending struggle for survival and growth. 

In order to fight against cancer, several initiatives and therapies have been made in the past. These 

traditional treatment regimens use surgery, radiations, chemotherapy, medications  to stop the 

progression of tumor. However, these conventional treatment causes adverse effects on the health and 

survival of the cancer patients. On the other side, cancer immunotherapy or biological therapy shows 

promising outcome and improves the survival of the cancer patients. Adaptive immune system 

components including (HLA molecules, neoantigens and cytokines) plays important role in designing 

patient specific immunotherapy. The major step shared by immunotherapies require T-cells to 

recognize specific antigenic peptides presented by HLA molecules on the infected cell surface. HLAs 

are essential components of the immune system that stimulate immune cells to provide protection and 

defence against diseases including cancer. So, it is essential to understand the impact of HLA-alleles, 

HLA-binders and cytokines. HLA-based biomarkers can be utilized by the researchers to design 

personalized therapy and to predict the survival and risk in the cancer patients. Furthermore, the 

peptide based vaccines or subunit vaccines are crucial immunotherapeutic candidate which can elicit 

an appropriate immune response against cancer. Cytokine inducing peptides and cancer growth 

blockers (inhibitors) could be utilized in the designing of immunotherapy or subunit against cancer.  

 

1.6  Objective of thesis 

In the present study, we mainly focus on the components of adaptive immune system. Where, we tried 

to understand the impact of HLA-alleles, HLA-binding peptides, cytokines and chemokines in the 

overall survival of the cancer patients. The study is primarily divided into four major categories (i) 

Prognostic biomarkers for cancer (ii) Non-classical HLA-binder prediction (iii) Designing of cytokine 

inducing peptides (iv) Inhibition of IL6/STAT3 pathway. For this, we have created a computational 
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resource (CancerHLA-I) and risk estimation tool (SKCMhrp) for the analysis and prediction of 

survival rate of cancer patients using the HLA-typing and clinical information. We have also developed 

a computational tool named (HLAncPred) for the prediction of non-classical HLA binding peptides. 

Next, we have created user-friendly tools for the prediction, scanning and designing of IL6 (IL6Pred), 

TNF-α (TNFepitope) and IFN‐γ (IFNepitope2) inducing peptides. In addition, we have generated an 

in-silico method for the prediction of IL6 mediated STAT3 inhibitors using chemical descriptors. All 

the brief information is depicted in the Figure 1.5.  

 

 

           Figure 1.5: Overall organization of thesis in different chapters 

 

1.7 Organization of chapters  

This thesis is divided into ten chapters and information regarding each chapter is given below:  

 

Chapter 1: In this section, the background information of immune system and its various components 

is provided. Moreover, the importance of antigen processing and presenting mechanism via HLAs, 

neoantigens and cytokines in cancer is briefly discussed. Finally, we focused on understanding the 

mechanism of the immune system to fight against cancer. In conclusion, this chapter emphasis on the 

importance of immune system components in the development of immunotherapy or subunit vaccine 

candidates against various type of cancers.  
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Chapter 2: This chapter is focused on the review of literature on the adaptive immune systems, use of 

tumor specific antigens, HLAs and cytokines in the cancer immunotherapy. Moreover, this chapter 

summarize the available tools for HLA-typing, HLA-binder prediction, and cytokine inducing peptides 

identification methods. In a nut shell, this chapter explains why this study was conducted. 

 

Chapter 3: This chapter is focused on the first objective of the thesis, which is development of a 

computational resource named “CancerHLA-I” for the risk estimation analysis. This study provided 

prognostic biomarkers based on HLA-alleles, cancer specific neoantigens and cytokines for 20 types 

of cancers. The patient-specific HLA-typing and survival datasets for 20 types of cancers is obtained 

from the TCIA and TCGA repositories. Moreover, expression profiles of cancer patients are used for 

the identification of cytokines based prognostic biomarkers. In conclusion, the novel HLA-based 

prognostic biomarkers could be used for designing the cancer immunotherapy.  

 

Chapter 4: This chapter is dedicated for the development of risk estimation prediction method using 

the TCGA-SKCM dataset. In this objective, we investigate the role of Class-I and Class-II HLA-alleles 

and clinical characteristics on the overall survival of skin cutaneous melanoma patients. Moreover, 

machine learning based survival prediction method is generated based on HLA-alleles, patient 

demographics, and clinical characteristics.  

 

Chapter 5: This chapter is about the non-classical HLA (HLA-G and HLA-E) binding peptide 

prediction. In the past two decades, a number of HLA-binder prediction methods have been developed. 

However, there was no specific method for the prediction of non-classical HLA alleles. The prediction 

models developed using binders for the non-classical HLA-alleles (HLA-G*01:01, HLA-G*01:03, 

HLA-G*01:04, HLA-E*01:01, and HLA-E*01:03). The experimentally validated datasets obtained 

from IEDB resource. HLAncPred, a bioinformatics tool was developed using the highly accurate 

prediction models.    

 

Chapter 6: This chapter explains the role of pro-inflammatory cytokine interleukin 6 (IL6) in the 

cancer and other diseases. In this objective, we attempted to create a computational tool for the 

prediction, scanning and designing of IL6 inducing peptides. The webserver named “IL6Pred” 

developed for the researcher for predicting IL6 inducing regions while designing the subunit vaccine 

or peptide-based therapeutics. Here, the dataset is obtained from IEDB and prediction models were 
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developed using composition based features. The best models were incorporated in the webserver and 

standalone package.  

 

Chapter 7: This chapter is about the cytokine inducing peptide prediction and designing. Here, we 

have focused on the most important inflammatory cytokine tumor necrosis factor alpha (TNF-α). We 

have developed a host-specific prediction method for the identification of TNF-α inducing peptides 

using primary information. The experimentally validated TNF-α inducing and non-inducing epitopes 

were obtained from the IEDB resource. Moreover, various classifiers were used to train and evaluate 

the models using training and independent dataset. Finally, a webserver named “TNFepitope” was 

developed to serve the scientific community.  

 

Chapter 8: This chapter is also provide a computational tool for the designing and prediction of 

interferon-gamma (IFN-γ)  inducing peptides. IFN-γ is important immunoregulatory cytokine and 

causes anti-allergic, anti-tumorigenic immune responses. In this study, we have created 

“IFNepitope2.0” for the prediction, scanning and designing of IFN-γ inducing epitopes for human and 

mouse hosts. We anticipate this method could be used by experimental biologist in the designing the 

cytokine based immunotherapy or subunit vaccine candidate.  

 

Chapter 9: The aim of this chapter is to develop an pharmacological tool for the prediction of chemical 

molecules and drugs which can inhibit the activation of STAT3 signaling pathway. The STAT3 

inhibitors and non-inhibitor molecules obtained from PubChem repository. PaDEL software was used 

for the generation of chemical molecule descriptors and machine learning algorithms were 

implemented for classification of STAT3 inhibitors and non-inhibitors. Finally, a computer-aided tool 

named “STAT3In” provided to the scientific community for the prediction of STAT3 inhibitors which 

can be used for designing the anti-cancer therapies.  

 

Chapter 10: This chapter gives the overall summary of thesis, and quick overview of all the studies 

conducted in the area of immunotherapy and subunit vaccine designing against cancer development.  
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2.1 Overview of adaptive immune system 

When innate immunity fails to eradicate the infectious pathogens and the infection becomes 

establishes, adaptive immunity emerges. The recognition of particular “non-self” antigens in the 

presence of “self” antigens, the development of pathogen-specific immunologic effector pathways that 

can kill the particular pathogens, and the creation of an immunologic memory that can quickly 

eradicate a particular pathogen are the three main functions of the adaptive immune response (Marshall 

et al., 2018). Moreover, acquired immunity is of two types natural and artificial. In natural acquired 

immunity the antigen enters the body naturally, whereas in artificial acquired immunity the antigens 

are introduced in the vaccines, antibodies and immune serum are generated against them (Clem, 2011). 

Lymphocytes (T-cells and B-cells) specifically recognize the foreign antigens and generate response 

against them. The major attributes of adaptive immunity are specificity, diversity, specialization, 

memory and self/non-self-recognition. Where T lymphocytes are activated by antigen presenting cells 

(APCs), and B cells are among the cells that make up the adaptive immune system. On the surface of 

APCs, antigenic peptides are presented via HLA class-I and II molecules. HLA-peptide complex 

interacts with cytotoxic T-cell or helper T-cells and activate the immune responses (Hewitt, 2003; 

Wieczorek et al., 2017). The major functions of adaptive immune responses are the elimination of 

specific pathogens or pathogen-infected cells and development of immunological memory (i.e., 

memory B cells and memory T cells) also known as immunization (Dunkelberger & Song, 2010).  

2.2 Role of adaptive immunity in cancer  

In cancer cells a wide range of genetic alterations generate mutated peptides also known as tumor 

specific peptides or neoantigens. These tumor antigens enable the immune system to recognize and 

differentiate normal cell and cancerous cell. Tumor specific antigens are essential to trigger the 

immune response, as they are presented on the cell surface via HLA-molecules and recognized by T-

cells. The different types of T cells perform specific functions. Helper T (Th) cells and cytotoxic T 

cells are the two main subtypes of T cells (Zamora et al., 2018). Th cells have an important role as 

activators of other cells, such as cytotoxic T cells and B cells (Waldman et al., 2020). Killer cells 

known as cytotoxic T cells target cancerous or malignant cells. However, natural killer cells able to 

recognize and destroy cancerous cells without looking for HLA receptors (Paul & Lal, 2017). 

Cytotoxic T cells use perforins, granzymes, proteases, or even FAS ligand signaling to start the caspase 

cascade and cause the cancerous cell to undergo apoptosis (Chowdhury & Lieberman, 2008; Prager & 

Watzl, 2019). Of note, tumor specific antigens, HLA molecules and T cell response are significant line 

of defense against cancer.    
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2.3 Role of HLA and neoantigens in cancer  

Human leukocyte antigen (HLA) is the most polymorphic region of human genome and composed of 

several genes which play major roles in immune regulations (Choo, 2007; Crux & Elahi, 2017). Due 

to high polymorphism, HLA genes are encoded by thousands of HLA-alleles reported in IMGT/HLA 

database (Robinson et al., 2020). It is essential to check the type of HLA in order to identify the 

immune response because the tumor specific antigens bind to specific HLA-alleles (Crux & Elahi, 

2017; Mosaad, 2015). T cell receptor recognize HLA-peptide complex which further activate T cells 

and trigger the production of cytokines in order to kill the cancer cells (He et al., 2019). However, 

under some conditions tumor cells may escape the immune attack due to down regulation or mutations 

in HLA molecules, limited tumor specific peptides binding to HLA and over expression of non-

classical HLA genes (Garrido & Aptsiauri, 2019). In order to overcome the HLA downregulation, 

several immunotherapies are available such as chimeric antigen receptor CAR-T cell therapy, NK cell 

therapy and CD4+ T cell based immunotherapy (Liu et al., 2021).  

In the recent studies, some of the neoepitopes or tumor specific peptides are tested in clinical trials and 

can be uses in immunotherapy (Hutchison & Pritchard, 2018). Tumor specific peptides restricted to 

specific HLA-alleles such as HLA-A*02:01, HLA-A*24:02, HLA-A*02, HLA-A*11:01, HLA-

A*02:642 and activate the immune system (Boucherma et al., 2013). These studies reveled the 

importance of HLA-alleles and restricted peptides while designing immunotherapy against specific 

type of cancer. Researcher also rebelled that the HLA-alleles may impact the survival of cancer 

patients, for instance in melanoma patients the presence of HLA-B∗55 and HLA-A∗01 increases the 

survival rate while HLA-B∗50 and HLA-DRB1∗12 significantly reduces the survival rate (Dhall et al., 

2020). In addition, HLA-DRB1∗07 shows negative correlation with the survival of lung cancer, 

cervical cancer, and breast cancer patients. HLA class-II expression improves the survival of leukemia 

and lymphoma cancer patients (Liu et al., 2015).  

 

2.4 Role of cytokines in cancer  

Cytokines are polypeptide or glycoproteins that play pro-inflammatory and anti-inflammatory roles in 

the immune system. Cytokines trigger intra-cellular signaling and can modulate proliferation, 

differentiation by activating or suppressing cell functions. Pro-inflammatory cytokines such as 

interleukin 6 (IL6), tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN‐γ) play significant 

roles in the induction of acute phage responses, inflammation, innate and adaptive immune activation 

(Cavalcanti et al., 2012; Kany et al., 2019). IFN‐γ is primarily secreted by natural killer (NK) and 
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activated T cells, and it can facilitate the activation of macrophages, mediate immunity against bacteria 

and viruses, improve antigen presentation, orchestrate the activation of the innate immune system, and 

regulate lymphocyte-endothelium interaction. The dysregulation in the expression levels or 

overexpression of interleukin 6 (IL6) and tumor necrosis factor alpha (TNF-α) cytokines increases the 

severity of several diseases including sepsis, diabetes, rheumatoid arthritis and cancer (Hirano, 2021; 

Navarro-Gonzalez & Mora-Fernandez, 2008; Stenvinkel et al., 2005).  

Most importantly, the cytokine storm syndrome in COVID-19 patients is significantly associated with 

the elevated levels of IL6 and TNF-α (Kountouri et al., 2021; Remy et al., 2020).  Recent, studies 

showed that, cytokines can control the tumor growth by stimulating anti-proliferative and pro-

apoptotic activities. Till now, IL-2 and IFN-α cytokines which are approved by FDA for clinical usage 

and for the treatment of advanced renal cell carcinoma, metastatic melanoma, hairy cell leukaemia, 

follicular non-Hodgkin lymphoma, melanoma and AIDS-related Kaposi’s sarcoma. However, a 

number of cytokines such as IL-12, IL-15, granulocyte-macrophage colony-stimulating factor (GM-

CSF) and IL-10 are under clinical investigation (Conlon et al., 2019) (see Table 2.1). Recent studies 

revealed that cytokine interleukin 6 (IL6) plays major role in tumor development. Overexpression of 

IL6R and gp130 activate JAK/STAT3 pathway, which further induces pro-tumor activities. Moreover, 

the combination of IL6 and TGF-β induces the proliferation of tumor cells by inducing Th17 cells. 

Elevated levels of IL6 acts as negative prognostic marker for patients survival (Chonov et al., 2019). 

Therefore, anti-IL6 targeted therapy is given to the cancer patients with multiple myeloma or 

metastatic renal cell carcinoma. STAT3 hyperactivation in cancer cells plays a major role as it 

increases the production of immunosuppressive factors, tumor proliferation, angiogenesis and 

metastasis (Johnson et al., 2018). Inhibiting STAT3 in cancer immunotherapy is extensively 

investigated; some of the drugs are under pre-clinical and clinical trials for the inhibition of STAT3. 

BBI608, celecoxib and pyrimethamine are the FDA-approved drugs are under phase-II/III clinical trial 

for the treatment of advanced malignancies, CRC, CLL, small lymphocytic lymphoma cancer (S. Zou 

et al., 2020).  

 

Table 2.1: List of cytokines used for the treatment of different type of cancers 

Cytokine Cancer type (References) 

IFN-α  
Metastatic renal cell Carcinoma (Rini et al., 2010), AIDS-related Kaposi's sarcoma (Rokx et al., 2013), 

Human T cell lymphotropic-1 associated adult T cell leukaemia (Bazarbachi et al., 2010) 

IFN alfa-2b Stage III or IV high-risk melanoma (Tarhini et al., 2012) 

IFN‐γ  Malignant melanoma (Gollob et al., 2000) 



 
17 

GM-CSF Stage III/IV melanoma (Kaufman et al., 2014) 

IL-12  Hodgkin's and non-Hodgkin's lymphoma (Younes et al., 2004) 

IL-2  Metastatic renal cell cancer (Klapper et al., 2008), Metastatic Melanoma (Marabondo & Kaufman, 2017) 

IL-21  Renal cell cancer (Curti, 2006), Metastatic colorectal cancer (Steele et al., 2012) 

IL-15  Metastatic malignant melanoma and metastatic cancer (Chen et al., 2012) 

 

2.5 Immune-related prognostic biomarkers in cancer  

A prognostic biomarker used to identify the likelihood of cancer outcome such as disease recurrence, 

disease progression or death (Kerr & Yang, 2021). The availability of high throughput techniques such 

as microarrays and RNA-seq produces huge amount of gene expression, methylation and mutation 

data (Kukurba & Montgomery, 2015). With the utility of genomic dataset, clinical characteristics and 

survival information of cancer patients one can identify the prognostic markers (Mehta et al., 2010). 

In the past, a number of studies reported the prognostic biomarkers based on expression profiles, 

mutation profile and epigenetic profiles of cancer patients (Herceg & Hainaut, 2007). Guo et al., 

identified six immune-related genes CD8A, KIR2DL1, CD79A, APBB1IP, GAL, and PLD3 that play 

significant impact on the overall survival of osteosarcoma patients (Guo et al., 2021). In addition, high 

expression of GNRH1 and LTB4R immune genes reduces the survival of clear cell renal cell carcinoma 

patients (Wu et al., 2021).  

Researchers also identify that, higher expression levels of CANX, HSPA1B, KLRC2, PSMC6, RFXAP, 

and TAP1 immune genes reduces the survival rate of lower grade glioma patients (M. Zhang et al., 

2020). A recent study reported that the higher expression of HLA-DRA gene is positively correlated 

with the survival of lower grade glioma patients; and HLA-G higher expression act as negative 

prognostic marker in colorectal cancer/colon and rectal cancer (CRC), colon cancer (COAD), rectal 

cancer (RC), stomach cancer/gastric cancer (GC), esophageal cancer (ESCC), pancreatic 

cancer/pancreatic adenocarcinoma (PC), liver cancer/hepatocellular carcinoma (HCC), small bowel 

cancer (SBC), gastrointestinal cancer (GI) patients (Peng et al., 2021). In addition, the high protein 

expression levels of HLA-DQB1 and LIMCH1 genes are significantly associated with the poor 

survival of cervical cancer patients (Halle et al., 2021).  

 

2.6 Available immunological resources 

In the past, a number of repositories have been developed to store the huge amount of immunological 

and experimental data. For example, MHCBN (Bhasin et al., 2003) is one of the oldest repository and 
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contains MHC-binding and non-binding epitopes. Designing immunotherapy candidates for the 

treatment of cancer and other disorders can be done using the immunological data from the IEDB (R 

et al., 2019). IEDB provides experimentally validated peptides/epitopes of T-cells, B-cells, MHC, 

cytokines etc.  The IPD-IMGT/HLA (Robinson et al., 2016) database was created to store 45 HLA 

coding genes of the human genome and more than 25000 experimentally confirmed HLA allele 

sequences. A repository named VDJdb (Shugay et al., 2018) was created to gather antigen-specific 

TCR sequences. Additionally, it visualises antigen-specific TCR sequence patterns and annotates data 

on TCR repertoire.  

The most important targets in the detection and therapy of different carcinomas are tumor-associated 

antigens (TAAs). They are also used in the creation of immunotherapies for the treatment of various 

malignancies. Moreover, few tumour antigen databases were created in the past for the treatment of 

many disorders, including cancer. One of the most effective repositories, the Human Possible Tumor-

Associated Antigen Database (HPtaa) (Wang et al., 2006), contains 3518 potential TAAs that can 

target different types of malignancies. The TANTIGEN knowledge base has also been updated with 

TANTIGEN 2.0 (G. Zhang et al., 2021). It is a comprehensive data repository for neoepitopes and 

tumor-associated T cell antigens. It has around 1500 T cell epitopes, 4296 antigen variations, and 403 

distinct tumour antigens. Immunoglobins or antibodies are still another crucial component in fighting 

cancer. The immune responses to immunotherapy depend heavily on the tumor-epitope-binding 

immunoglobins. CIG-DB, which contains 2081 genes for immunoglobulins related with cancer and T-

cell receptors, is the most important public resource for immunoglobulins. Table 2.2 provide complete 

list of available immunological resources/databases which can be used for designing immunotherapy 

or subunit vaccines. 

 

Table 2.2: List of the immunological databases with their brief description and weblink 

Name & Description Resource Link 

MHCBN: A resource of MHC-binding and non-binding peptides 

(Bhasin et al., 2003) 
https://webs.iiitd.edu.in/raghava/mhcbn/ 

JenPep 2.0: Immunobiology and vaccinology database 

(McSparron et al., 2003) 
http://www.jenner.ac.uk/JenPep 

Bcipep: A repository of B-Cell epitopes 

(Saha & Raghava, 2006) 
https://webs.iiitd.edu.in/raghava/bcipep/ 

Epitome: Resource of proteins with structurally inferred antigenic epitopes 

(Schlessinger et al., 2006) 
https://www.rostlab.org/services/epitome/ 

SuperHapten: Immunogenic compound database 

(Wang et al., 2017) 
https://bioinformatics.charite.de/superhapten/ 

Ctdatabase: A resource of cancer specific testis antigens  

(Almeida et al., 2009) 
http://www.cta.lncc.br 

https://webs.iiitd.edu.in/raghava/mhcbn/
http://www.jenner.ac.uk/JenPep
https://webs.iiitd.edu.in/raghava/bcipep/
https://www.rostlab.org/services/epitome/
https://bioinformatics.charite.de/superhapten/
http://www.cta.lncc.br/
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AntigenDB: Experimentally validated antigens database 

(Ansari et al., 2010) 
https://webs.iiitd.edu.in/raghava/antigendb/ 

Protegen: A database for protective antigens 

(Yang et al., 2011) 
http://www.violinet.org/protegen/ 

AgAbDb: A database of antigen-antibody interactions 

(Kulkarni-Kale et al., 2014) 
http://bioinfo.net.in/AgAbDb.htm 

VDJdb: A repository of T-cell receptor sequences  

(Shugay et al., 2018) 
https://vdjdb.cdr3.net 

IEDB-AR: Immune epitope database—analysis resource in 2019  

(Dhanda et al., 2019) 
http://tools.iedb.org/ 

IPD-IMGT/HLA: A database of human leukocyte antigens sequences 

(Robinson et al., 2020) 
https://www.ebi.ac.uk/ipd/imgt/hla/ 

TANTIGEN 2.0: A database of tumor T cell antigens & epitopes 

(G. Zhang et al., 2021) 
http://projects.met-hilab.org/tadb/ 

 

2.7 Cancer associated repositories  
 

Genome profiles can help in the pre-screening of patients who will respond to the immunotherapies 

with the greatest potential for the benefit and the fewest possible negative effects. According to the 

National Cancer Institute, “Genome profiling is a technique for deciphering genetic information about 

a single person or cell type as well as how their genes interact with one another and with the 

environment”. Existing sequencing technologies including WGS, WES, RNA-seq, and ChIP-seq have 

an inverse relationship between cost and accuracy due to the rapid advancement of technology. These 

methods provide single-cell RNA seq data as well as geographical information. It aids in the 

development of effective immunotherapies by assisting researchers in better comprehending the 

diseases.  

Today's genomic profile data can be a gold mine for finding predictive and diagnostic markers. In the 

past, several databases with genomic profiles have been developed at an exponential rate. For example; 

The Cancer Genome Atlas (TCGA (Zhu et al., 2014)) is the most complete, effective, and commonly 

used tool for cancer genomics. TCGA project generated, examined, and disseminated clinical, 

microsatellite instability, miRNA, mRNA, and protein expression data on more than 20,000 samples 

spanning 33 different cancer types. Genomic Data Commons (GDC (Jensen et al., 2017)) data portal 

is the most important portal or site to obtain the multi-omics data connected to cancer. Data from about 

68 projects, including TCGA, are included in it. Gene Expression Omnibus (GEO), a significant 

database that openly distributes high-throughput gene expression data and functional genomics data to 

public. GEO includes more than 4000 datasets and information for more than 1.5 lakh studies involving 

over 45 lakh samples. Additionally, GEO offers the tools for data analysis and visualisation. We 

provide list of all major cancer associated repositories in Table 2.3.  

 

https://webs.iiitd.edu.in/raghava/antigendb/
http://www.violinet.org/protegen/
http://bioinfo.net.in/AgAbDb.htm
https://vdjdb.cdr3.net/
http://tools.iedb.org/
https://www.ebi.ac.uk/ipd/imgt/hla/
http://projects.met-hilab.org/tadb/
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Table 2.3: List of cancer associated resources with description and weblink 

Name & Description Resource Link 

dbGap: A repository of  genotype and phenotype (Mailman et al., 

2007) 
https://www.ncbi.nlm.nih.gov/gap/  

caBIG: Cancer Biomedical Informatics Grid 

(ca, 2007) 
https://biospecimens.cancer.gov/caBigTools.asp  

SRA: High-throughput sequencing reads database (Leinonen et al., 

2011) 
http://www.ncbi.nlm.nih.gov/Traces/sra  

CCLE: Genomic profiles of human cancer cell lines 

(Barretina et al., 2012) 
https://sites.broadinstitute.org/ccle/  

cBioPortal: Exploration of cancer genomics data 

(Cerami et al., 2012) 
https://www.cbioportal.org/  

Survexpress: Cancer gene expression and survival analysis database 

(Aguirre-Gamboa et al., 2013) 

http://bioinformatica.mty.itesm.mx:8080/Biomatec/Surviva

X.jsp  

GTEx: A database for tissue-specific gene expression 

(Consortium, 2013) 
https://gtexportal.org/home/  

TCGA: A comprehensive resource on cancer  

(Tomczak et al., 2015) 

https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga  

GEO: Gene expression data sets 

(Clough & Barrett, 2016) 
http://www.ncbi.nlm.nih.gov/geo/  

GDC Data portal: Multi-omics and clinical database of cancer 

patients (Jensen et al., 2017) 
https://portal.gdc.cancer.gov/  

TCIA: Immunogenomic analyses repository of cancer patients 

(Feng et al., 2018) 
https://tcia.at  

CancerEnD: Enhancer information for various cancer types 

(Kumar et al., 2020) 
https://webs.iiitd.edu.in/raghava/cancerend/  

NGDC: Genomics data centre (National Genomics Data Center & 

Partners, 2020) 
https://ngdc.cncb.ac.cn  

 

2.8 HLA-typing tools 

Due to the advancement in sequencing technologies a number of in-silico tools and computational 

pipelines have been generated for HLA typing. HLA genotype can be utilised as a biomarker in 

immunotherapy. A clinician can create an appropriate tailored therapy or immunotherapy for cancer 

patients with a better understanding of HLA types. Several computer pipelines and techniques have 

been created in the past for the reliable and exact genotyping of HLA alleles utilising the human 

genome. These tools utilized whole genome, whole exome and RNA-sequencing data of the patients 

and performed in-silico typing of HLA-alleles (Boegel et al., 2012; Hosomichi et al., 2015; Wittig et 

al., 2015). For instance, seq2HLA determine HLA-alleles using the RNA-seq reads (Boegel et al., 

2012), HLAminer perform class-I, II typing using shotgun sequencing data (Warren et al., 2012), 

Optitype (Szolek et al., 2014) and xHLA (Xie et al., 2017) uses NGS data for HLA-typing. List of 

pipelines and computational tools for HLA-typing is provided in Table 2.4.  

 

Table 2.4: List of in-silico HLA-typing pipelines and computational tools 

https://www.ncbi.nlm.nih.gov/gap/
https://biospecimens.cancer.gov/caBigTools.asp
http://www.ncbi.nlm.nih.gov/Traces/sra
https://sites.broadinstitute.org/ccle/
https://www.cbioportal.org/
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
https://gtexportal.org/home/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://tcia.at/
https://webs.iiitd.edu.in/raghava/cancerend/
https://ngdc.cncb.ac.cn/
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Name & Description Year Weblink 

seq2HLA:  HLA-typing using RNA-seq reads 

(Boegel et al., 2012) 
2012 https://github.com/TRON-Bioinformatics/seq2HLA 

HLAminer: Class-I,II HLA-typing using shotgun 

sequencing reads (Warren et al., 2012) 
2012 https://github.com/bcgsc/HLAminer 

ATHLATES: HLA-typing using whole exome 

sequencing (Liu et al., 2013) 
2013 https://www.broadinstitute.org/viral-genomics/athlates 

Optitype: Class-I typing using NGS dataset 

(Szolek et al., 2014) 
2014 https://github.com/FRED-2/OptiType 

HLAreporter: A tool for HLA-typing from NGS data 

(Huang et al., 2015) 
2015 http://paed.hku.hk/genome/  

xHLA: Four digit HLA-tying using NGS dataset 

(Xie et al., 2017) 
2017 https://github.com/humanlongevity/HLA 

Kourami: HLA discovery using whole genome 

sequencing (Lee & Kingsford, 2018) 
2018 https://github.com/Kingsford-Group/kourami 

HLA*LA: HLA-genotyping using whole genome 

sequencing & whole exome sequencing  

(Dilthey et al., 2019) 

2018 https://github.com/DiltheyLab/HLA-LA 

HISAT-genotype: Identification of HLA from whole 

genome sequencing (Kim et al., 2019) 
2019 https://daehwankimlab.github.io/hisat-genotype/ 

 

2.9 HLA Class-I binder 

Short, linear protein fragments known as major histocompatibility complex (MHC) binders or HLA 

binders attach to HLA molecules so that T-cell receptors may examine them (TCRs). Non-self-

antigens are recognised by T lymphocytes as peptide fragments linked to MHC molecules and 

displayed on the cell surface. The outer extracellular domains of MHC molecules, which are membrane 

proteins, create a gap in which a peptide fragment is bound. HLA class I (HLA-I) molecules that bind 

intracellular short peptides are derived from the degradation of ubiquitinated cytosolic proteins in 

proteasomes and interacts with CD8+ T cells. Prediction of binding peptides corresponding to class-I 

alleles is very crucial for designing peptide-based therapeutics (Meydan et al., 2013; Vang & Xie, 

2017). In the last two decades, huge number of computational tools have been generated for the 

accurate prediction of HLA-binding peptides (See Table 2.5). Studies shows that, the binding groove 

of HLA-I alleles is well-defined and closed from both sides (Kosaloglu-Yalcin et al., 2021). Therefore, 

a number of HLA-I binder prediction tools have been purposed by researchers. Table 2.5 enlists major 

HLA-I binder prediction tools. ProPred1 (Singh & Raghava, 2003) is the oldest and highly accurate 

in-silico method for the MHC-I binder prediction. However, NetMHCpan 4.0 (Jurtz et al., 2017) and 

https://github.com/TRON-Bioinformatics/seq2HLA
https://github.com/bcgsc/HLAminer
https://www.broadinstitute.org/viral-genomics/athlates
https://github.com/FRED-2/OptiType
http://paed.hku.hk/genome/
https://github.com/humanlongevity/HLA
https://github.com/Kingsford-Group/kourami
https://github.com/DiltheyLab/HLA-LA
https://daehwankimlab.github.io/hisat-genotype/
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MHCflurry 2.0 (O'Donnell et al., 2020) software are recently developed for the prediction of larger 

number of HLA-I alleles binding peptides.  

 

2.10 HLA Class-II binder 

HLA class II (HLA-II) molecules bind extracellular peptides and present them to the cell surface for 

recognition by T-cells with receptors. During pathogen infection and tumour development, CD4+ 

helper T lymphocytes play crucial roles in the immune response by detecting antigenic peptides 

presented by class II major histocompatibility complexes (MHC-II). It is difficult to predict binders 

corresponding to class-II HLA-alleles as the binding groove of HLA-II alleles is open from both sides 

and not well-defined. Although several computer techniques have been published for predicting 

peptide binding to HLA-II proteins, however, their effectiveness differs substantially. HLA-DR4Pred 

(Bhasin & Raghava, 2004) is the in-silico method used for the prediction of binders corresponding to 

HLA-DRB1*0401 binding peptides. With the advancements of computational algorithms, it is 

possible to predict binders corresponding to number of alleles, MULTIPRED2 (Zhang et al., 2011) 

makes it simple to predict peptide binding to several alleles of HLA class I and class II DR molecules. 

It allows for the prediction of peptide binding to products made by a single HLA allele, a group of 

alleles, or a supertype of HLA. Prediction engines NetMHCIIpan (Reynisson et al., 2020) is employed 

for the prediction of hundreds of MHC-II alleles binder. Table 2.5 shows the description of major 

HLA-II binder prediction methods.  

 

Table 2.5: Computational tools for Class-I & Class-II HLA-binder prediction 

Name & Description Year Weblink 

Class-I HLA-binder prediction tools 

MHCPred: MHC-peptide binding prediction (Guan et 

al., 2003) 
2003 http://www.ddg-pharmfac.net/mhcpred/MHCPred/  

ProPred1: MHC-I binder prediction method 

(Singh & Raghava, 2003) 
2003 http://webs.iiitd.edu.in/raghava/propred1/  

nHLAPred: MHC Class I binders prediction tool (Bhasin 

& Raghava, 2007) 
2004 http://webs.iiitd.edu.in/raghava/nhlapred/  

POPI: Predicting immunogenicity of MHC-I binding 

peptides (Tung & Ho, 2007)  
2007 http://iclab.life.nctu.edu.tw/POPI  

NetCTLpan: MHC class-I epitope prediction  (Stranzl et 

al., 2010) 
2010 http://www.cbs.dtu.dk/services/NetCTLpan/  

NetMHCcons: Consensus method for predicting MHC 

class I binders (Karosiene et al., 2012) 
2012 

 

http://www.cbs.dtu.dk/services/NetMHCcons/  

http://www.ddg-pharmfac.net/mhcpred/MHCPred/
http://webs.iiitd.edu.in/raghava/propred1/
http://webs.iiitd.edu.in/raghava/nhlapred/
http://iclab.life.nctu.edu.tw/POPI
http://www.cbs.dtu.dk/services/NetCTLpan/
http://www.cbs.dtu.dk/services/NetMHCcons/
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NetMHCpan 4.0: HLA-neoepitope prediction tool (Jurtz 

et al., 2017) 
2017 http://www.cbs.dtu.dk/services/NetMHCpan/  

MHCflurry 2.0: MHC-I binding peptide prediction 

(O'Donnell et al., 2020) 
2020 https://github.com/openvax/mhcflurry  

Class-II HLA-binder prediction tools 

ProPred: HLA-DR binding peptide prediction (Singh & 

Raghava, 2001) 
2001 https://webs.iiitd.edu.in/raghava/propred/  

HLA-DR4Pred: Prediction of MHC Class II alleles 

(HLA-DRB1*0401) binding peptides 

(Bhasin & Raghava, 2004) 

2004 

 
http://webs.iiitd.edu.in/raghava/hladr4pred/   

MHCMIR: Prediction of the binding affinity of MHC-II 

peptides (Nielsen et al., 2007) 

2007 

 
http://ailab.ist.psu.edu/mhcmir/predict.html 

EpiTOP: HLA-DRB1 alleles binder prediction (Dimitrov 

et al., 2010) 
2010 http://www.pharmfac.net/EpiTOP    

MULTIPRED2: Class-I and Class-II HLA supertype 

binder prediction (Zhang et al., 2011) 
2010 http://cvc.dfci.harvard.edu/multipred2/  

EpiDOCK: Prediction of MHC-II binders   

(Atanasova et al., 2013) 

 

2013 

http://www.ddg-

pharmfac.net/epidock/EpiDockPage.html 

Consensus: A tool for MHC-II binder prediction 2013 http://tools.iedb.org/mhcii/  

NetMHCII - 2.3: Binders of MHC-II molecules (Jensen 

et al., 2018) 
2018 

https://services.healthtech.dtu.dk/service.php?NetMHCII

-2.3  

DeepHLApan: Neoantigen prediction using deep 

learning (Wu et al., 2019) 
2019 https://github.com/jiujiezz/deephlapan  

MHCnuggets: HLA-neoantigen binding prediction (Shao 

et al., 2020) 
2020 https://github.com/KarchinLab/mhcnuggets  

 

2.11 Cytokine prediction tools 

It is not always desirable to identify the HLA-binding peptides or their immunogenicity. Due to the T 

cells' varying responses to various antigens and cytokine release patterns, identification of cytokine 

release-specific T cell epitopes are crucial because protective immunity against various infectious 

agents varies (Sidney et al., 2020). Numerous scientists have worked to create prediction methods that 

can categories specific cytokine-inducing antigen epitopes. These cytokines inducing peptides may act 

as potential therapeutic target while designing subunit vaccines which can elicit the appropriate 

immune response against cancer and immunological disorders (Kumai et al., 2017). Due to the 

availability of huge amount of experimentally validated epitope data for most of the cytokines in the 

immune epitope database IEDB (R et al., 2019), a number of computational tools have been developed 

for the prediction of cytokine inducing peptides. These machine learning based methods used by 

experimental biologist while designing subunit vaccine or peptide based cancer immunotherapies. In 

http://www.cbs.dtu.dk/services/NetMHCpan/
https://github.com/openvax/mhcflurry
https://webs.iiitd.edu.in/raghava/propred/
http://webs.iiitd.edu.in/raghava/hladr4pred/
http://ailab.ist.psu.edu/mhcmir/predict.html
http://www.pharmfac.net/EpiTOP
http://cvc.dfci.harvard.edu/multipred2/
http://www.ddg-pharmfac.net/epidock/EpiDockPage.html
http://www.ddg-pharmfac.net/epidock/EpiDockPage.html
http://tools.iedb.org/mhcii/
https://services.healthtech.dtu.dk/service.php?NetMHCII-2.3
https://services.healthtech.dtu.dk/service.php?NetMHCII-2.3
https://github.com/jiujiezz/deephlapan
https://github.com/KarchinLab/mhcnuggets
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Table 2.6, we enlist some cytokine specific tools which can be used for the prediction of cytokine 

inducing peptides.  

 

Table 2.6: In-silico methods for the prediction of cytokines inducing peptides 

Name & Description Year Weblink 

IFNepitope: Interferon-gamma inducing peptides prediction 

(Dhanda, Vir, et al., 2013) 
2013 https://webs.iiitd.edu.in/raghava/ifnepitope/   

IL-4Pred: IL-13 inducing peptides prediction 

(Dhanda, Vir, et al., 2013) 
2013 https://webs.iiitd.edu.in/raghava/il4pred/  

ProInflam: Proinflammatory cytokines prediction method 

(Gupta et al., 2016) 
2016 http://metabiosys.iiserb.ac.in/proinflam/  

IL10Pred: IL-10 inducing peptides prediction 

(Nagpal et al., 2017) 
2017 https://webs.iiitd.edu.in/raghava/il10pred/  

IL17eScan: IL-17 inducing peptides prediction 

(Gupta, Mittal, et al., 2017) 
2017 http://metagenomics.iiserb.ac.in/IL17eScan/  

AntiInflam: Anti-inflammatory peptides prediction 

(Gupta, Sharma, et al., 2017) 
2017 http://metagenomics.iiserb.ac.in/antiinflam/  

PIP-EL: Proinflammatory peptide prediction 

(Manavalan et al., 2018) 
2018 http://www.thegleelab.org/PIP-EL/ 

IL2Pred: Identification of IL-2 inducing peptides 

 (Anjali Lathwal, 2021) 
2021 https://webs.iiitd.edu.in/raghava/il2pred/  

IL13Pred: Prediction of IL-13 inducing epitopes 

(Jain et al., 2022) 
2021 https://webs.iiitd.edu.in/raghava/il13pred/  

 

2.12 Conclusion 

Human leukocyte antigens (HLA) molecules are plays significant role in the regulation of immune 

system and provide right defence and protection against the cancer or other diseases. In the 

IMGT/HLA, thousands of class-I and class-II HLA-alleles have been reported, however a specific type 

of alleles are present in an individual. This specific set of HLA-alleles plays an important role and 

impacts on the survival of the cancer patients. A number of past studies reported the prognostic 

biomarkers based on the gene expression and mutation profiles of cancer patients. However, with the 

knowledge of accurate HLA-typing one can design personalized vaccines and immunotherapy based 

prognostic biomarkers against cancer. Moreover, HLA-binding peptides are very crucial for eliciting 

the immune response against cancer cells. In the past, a number of computational tool developed for 

the prediction of classical HLA binding peptides. However, there is no specific method for the non-

classical HLA-binder prediction. Non-classical HLA (HLA-G and HLA-E) are important 

immunoregulatory molecules; therefore, it is the need of the hour to develop computational tool for 

https://webs.iiitd.edu.in/raghava/ifnepitope/
https://webs.iiitd.edu.in/raghava/il4pred/
http://metabiosys.iiserb.ac.in/proinflam/
https://webs.iiitd.edu.in/raghava/il10pred/
http://metagenomics.iiserb.ac.in/IL17eScan/
http://metagenomics.iiserb.ac.in/antiinflam/
http://www.thegleelab.org/PIP-EL/
https://webs.iiitd.edu.in/raghava/il2pred/
https://webs.iiitd.edu.in/raghava/il13pred/
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the prediction of binders corresponding to non-classical HLA alleles. Cytokines inducing peptides or 

epitopes prediction methods are necessary for the prediction of antigenic regions or potential subunit 

vaccine candidates. Moreover, it is very crucial to develop a computational tool for the prediction or 

designing of anti-cancer drugs or molecules that can inhibit the IL6-mediated STAT3 signalling 

pathway in order to reduce the tumor progression and proliferation.  
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3.1 Introduction 

According to the American Cancer Society an estimation of 1,918,030 new cancer cases and 609,360 

cancer deaths had occurred in the United States by the year 2022. Over the past few decades, 

researchers working very hard to find new therapies and solutions for the treatment of cancer (Pucci 

et al., 2019). The most widely utilised treatments include traditional therapies like chemotherapy, 

radiation, and surgery (Arruebo et al., 2011). The patient’s health and survival are adversely affected 

by these radiation-based treatments (Altun & Sonkaya, 2018; Dilalla et al., 2020; Pucci et al., 2019). 

New treatment modalities, such as targeted cancer therapies, adoptive T cell therapy, immune 

checkpoint inhibitor-based therapies, immunomodulators, and oncolytic viruses based therapies have 

been created to overcome the limitations of conventional drugs (Dine et al., 2017; Esfahani et al., 2020; 

Franzin et al., 2020; Hemminki et al., 2020; Padma, 2015). Improvements in immunotherapy have 

produced notable results and improve the survival of many patients with a variety of solid tumours 

(Amin et al., 2020; Ruiz-Patino et al., 2020). Immune checkpoint inhibitors and chimeric antigen 

receptor (CAR) T cells are the two main foundations of immunotherapy. T-lymphocytes (T cells), 

which recognise tumor-associated peptides expressed on the infected cell surface by human leukocyte 

antigens, are completely necessary for these treatments (HLA) (Waldman et al., 2020).  

As seen in Figure 3.1, when cells display antigenic peptides, the immune system is triggered to 

respond. The HLA genes, which are found on chromosome 6, are the most intricate and variable genes 

in the human genome. To start a sequence of immune responses aimed at removing the tumour cells 

from our system, CD8+ T cell receptors (TCR) interact with antigenic peptides presented by HLA 

class I alleles (Buhrman & Slansky, 2013; Chan et al., 2018; Engels et al., 2013; He et al., 2019). 

Recently, research has concentrated on HLA-dependent medicines for the treatment of cancer patients, 

including neoantigen-based therapy, tumor-infiltrating lymphocytes (TILs) therapy, and CD8+ T cell 

therapy (Sun et al., 2021; Yarmarkovich et al., 2021). Determined by HLA-peptide binding, cancer 

immunogenicity. HLA genotyping, neoantigens, and binding affinity, must be found in order to stratify 

patient-specific therapy. With the use of cutting-edge technologies and the accessibility of sequencing 

data, it is now possible to identify patient-specific HLA alleles. The integration of genomic datasets 

from cancer patients has been made possible in recent years by the development of several repositories 

and bioinformatics tools.  

Genetic data such as HLA-alleles, neoantigens, HLA-peptide binding affinity, and immune response 

must be found in order to create patient-specific therapies. In the pilot study, we gathered patient-

specific data from databases like the TCGA and TCIA, analysed patient survival based on HLA-alleles, 
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as well as the relationship between the frequency of neoantigens specific to HLA-alleles and overall 

survival in different cancer types. In addition, correlational analysis helped us comprehend how 

chemokines, cytokines, and their receptors affect the prognosis of cancer patients. User-friendly 

website named “CancerHLA-I” is accessible at https://webs.iiitd.edu.in/raghava/cancerhla1/ , we 

combined the aforementioned information for 20 different types of cancer. In Figure 3.1, the overall 

process of the current investigation is shown. 

Figure 3.1 Overall design of the study: (A) Presentation and processing of neobinders via 

Class-I HLA molecules (B) Pipeline of CancerHLA-I resource 

3.2 Material and methods  

3.2.1 Dataset collection 

We gathered genomic and clinical data for this investigation from The Cancer Genome Atlas (TCGA 

(Tomczak et al., 2015)) and The Cancer Immunome Atlas (TCIA) (Charoentong et al., 2017)) 

repositories. We obtain the control excess dataset from TCIA [with the approval of dbGap (Project 

No. 17674)], which contain class-I HLA-tying data and corresponding neoantigens for 20 type of 

cancer patients. We build patient specific class-I HLA typing and neoantigens data for each cancer 

type. Additionally, normalised RNA-seq data of cytokines, chemokines, and their receptors for each 

cancer type were downloaded using TCGA Assembler 2.0. After that, the expression profiles were 

converted into log2 values. Vital status and overall survival time are included in the survival 

information (OS). All of the research was done on 8346 cancer patients with 20 distinct cancer kinds. 

 

3.2.2 HLA-binder prediction  

https://webs.iiitd.edu.in/raghava/cancerhla1/
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Using the MHCflurry 2.0 tool, we were able to identify the strong binding neoantigens/epitopes 

associated with each HLA-allele for each cancer (O'Donnell et al., 2020). Using the binding affinity 

(BA) percentile of the MHCflurry software, we categorise neoepitopes as strong or weak binders, 

while neoantigens with BA<2  are thought of as strong binders and vice versa. The amount of binders 

matching to each HLA-allele and tumour type was then put into a count matrix.  

 

3.2.3 Mean-overall survival analysis  

We first created a binary matrix based on the presence or absence of HLA-alleles for each form of 

cancer. Each row represents samples/patients, and each column represents HLA-alleles. Based on the 

presence or absence of an HLA-allele, we calculated mean overall survival (MOS) using each person’s 

survival data. The difference in MOS (based on presence/absence) is then calculated. 

 

3.2.4 Univariate survival analysis  

In the current study, Cox-PH regression models were utilised to identify HLA-alleles associated with 

cancer patient survival. For the univariate analysis, the R package “survival” was utilised (V.3.5.1). 

The existence of an HLA allele has an adverse effect on survival (cox regression coefficient > 0), but 

the presence of alleles improves survival (cox regression coefficient < 0). We determined the Hazard 

Ratio (HR) and 95% Confidence Interval (CI) for each HLA-allele. While HR =1 has no effect on 

survival, HR >1 indicates high-risk HLA alleles while HR <1 indicates low-risk alleles. In order to 

assess the significant distribution of low-risk and high-risk patients, the log-rank test and p-value were 

also performed. We utilised the Concordance index (C) to determine how well each model predicted 

outcomes. 

 

3.2.5 Correlation analysis 

3.2.5.1 HLA-neoantigen  

After combining the survival data, we determine the Pearson correlation between the survival and the 

number of strong binders for each individual HLA-allele. The relevance of the quantity of HLA-

binding neoepitopes on cancer patient survival is shown by the correlation coefficient (r) and p-value. 

Based on 20 cancers, we conduct association analyses for each HLA allele. 

 

3.2.5.2 Cytokines & chemokines  



 
30 

The impact of cytokines, chemokines, and their receptor genes on cancer patient survival was 

examined using the Pearson correlation test. Data on survival as well as the expression of 

153 cytokines expression profiles. The association analyses was conducted for each gene based on 

both the integration of expression across all malignancies and individual cancer type. 

 

3.3 Results  

3.3.1 Distribution of dataset 

We first examine the distribution of HLA-alleles associated with each form of cancer. Table 3.1, details 

the descriptions of 20 different cancer kinds along with the total number of samples, HLA-alleles, and 

neoantigens associated with each type of cancer. We noticed that the most HLA-alleles were found in 

cases of uterine corpus endometrial cancer (UCEC) and kidney chromophobe (KICH) respectively, 

while fewer HLA-alleles were found in cases of other cancers.  

Table 3.1: Distribution of samples in twenty type of cancers 

Cancer Type Number of Samples 

Bladder urothelial carcinoma (BLCA) 407 

Beast invasive carcinoma (BRCA) 1093 

Cervical squamous cell carcinoma and Endocervical adenocarcinoma (CESC) 304 

Colorectal Cancer (CRC) 455 

Glioblastoma Multiforme (GBM) 154 

Head and Neck Squamous cell Carcinoma (HNSC) 501 

Kidney chromophobe (KICH) 65 

Kidney renal clear cell carcinoma (KIRC) 533 

Kidney renal papillary cell carcinoma (KIRP) 289 

Liver Hepatocellular Carcinoma (LIHC) 370 

Lung Adenocarcinoma (LUAD) 507 

Lung Squamous cell Carcinoma (LUSC) 495 

Ovarian serous cystadenocarcinoma (OV) 420 

Pancreatic Adenocarcinoma (PAAD) 178 

Prostate Adenocarcinoma (PRAD) 497 

Rectum adenocarcinoma (READ) 165 

Skin Cutaneous Melanoma (SKCM) 454 

Stomach Adenocarcinoma (STAD) 410 

Thyroid Carcinoma (THCA) 505 

Uterine Corpus Endometrial Carcinoma (UCEC) 544 
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For the prediction of strong and weak neoantigen binders corresponding to each HLA-allele, we 

employed the MHCflurry 2.0 software. The total number of strong and weak binders corresponding to 

each cancer type is shown in Figure 3.2. For each cancer type, we have included the total number of 

both strong and weak binders. For the SKCM, UCEC and LUAD cancer types, the greatest number of 

strongly binding neoantigens was obtained. For the cancer types KICH, KIRP, LIHC, and THCA, we 

obtain less number of strong binders. 

 

Figure 3.2 Distributions and ratio of strong and weak Class-I HLA-binders in 20 types of 

cancer 

3.3.2 HLA-based biomarkers  

Based on the presence or absence of HLA alleles, we created binary matrices for each cancer patient. 

We calculated the Hazard ratio (HR), p-value, and concordance index for each allele in 20 cancer types 

using the utility of survival program. Some of the HLA-alleles with HR>1 that negatively affect cancer 

patients’ survival are displayed in Table 3.2. In KICH, THCA, and PRAD cancer patients, we found 

that the presence of HLA-A*02:01, HLA-B*50:01, and HLA-B*52:01, HLA-B*50:01 was 

substantially related with poor survival (with HR>4). Additionally, the survival rate of cancer patients 

is considerably decreased by alleles such HLA-B*53:01, HLA-B*52:01, HLA-C*05:01, HLA-

A*26:15 with an HR>2 and p-value less than or equal to 0.05. Some alleles are prevalent in many 
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cancer types and are linked to a bad prognosis. Additionally, the presence of HLA-alleles increases 

the likelihood that cancer patients will survive. For example, in certain types of cancer, HLA-C*14:02, 

HLA-B*07:02, HLA-C*12:03, HLA-A*23:01, HLA-B*27:05, and HLA-C*02:02 significantly act as 

good prognostic markers and improve the survival rate of cancer patients (See Table 3.2). 

 

Table 3.2: List of cancer types with best HLA-alleles based prognostic biomarkers obtained 

using univariable survival analysis 

Cancer HLA-allele 
Present 

(No. of patients) 

Absent 

(No. of patients) 
Hazard (95%CI) P-value Concordance 

BLCA HLA-C*14:02 15 392 0.14(0.02-1.00) 0.05 0.517 

BRCA HLA-B*53:01 44 1049 2.32(1.25-4.30) 0.007 0.524 

CESC HLA-B*57:01 20 284 1.97(0.89-4.34) 0.009 0.591 

CRC HLA-B*07:02 84 371 0.57(0.32-0.98) 0.045 0.54 

GBM HLA-C*12:03 22 132 0.52(0.29-0.93) 0.029 0.532 

HNSC HLA-B*52:01 18 483 2.11(1.14-3.88) 0.016 0.514 

KICH HLA-A*02:01 26 39 5.46(1.13-26.29) 0.034 0.72 

KIRC HLA-A*23:01 32 501 0.43(0.19-0.97) 0.044 0.519 

KIRP HLA-A*03:01 74 215 1.88(1.01-3.52) 0.044 0.531 

LIHC HLA-B*44:03 46 324 1.66(1.04-2.66) 0.033 0.529 

LUAD HLA-B*08:01 94 413 1.62(1.15-2.28) 0.005 0.544 

LUSC HLA-C*07:01 139 356 1.36(1.02-1.83) 0.037 0.526 

OV HLA-C*02:02 46 374 0.65(0.43-0.90) 0.041 0.517 

PAAD HLA-B*50:01 5 173 3.66(1.33-10.11) 0.002 0.52 

PRAD HLA-B*50:01 10 487 10.09(1.92-53.10) 0.006 0.574 

READ HLA-C*05:01 22 143 2.21(0.80-5.56) 0.009 0.597 

SKCM HLA-B*27:05 45 409 0.52(0.30-0.92) 0.025 0.52 

STAD HLA-C*14:02 20 390 0.32(0.1-0.98) 0.048 0.516 

THCA HLA-B*52:01 25 480 4.05(1.15-14.25) 0.029 0.62 

UCEC HLA-A*26:15 8 536 2.68(0.84-8.49) 0.009 0.514 

 

 

3.3.3 Neoepitope based biomarkers 

To comprehend how HLA-binders affect cancer patients' chances of survival, we employed the 

Pearson correlation test. The association between the number of neoantigens and the overall survival 

of each cancer type has been calculated. As shown in Figure 3.3, we found that the majority of HLA 

that have a detrimental influence on survival also have a negative correlation with survival. A few 
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alleles, such as HLA-A*01:01, HLA-B*15:03, HLA-B*44:03, HLA-C*02:10, etc., are provided in 

Figure 3.3. 

 

Figure 3.3 Heatmap shows correlation between number of neobinders (Class-I HLA) and overall 

survival of cancer patients. Where, light colour depicts negative correlation and dark colour 

shows positive correlation 

3.3.4 Cytokines-based prognostic biomarkers 

We have carried out univariate survival analysis employing the expression of these immune genes in 

order to find survival favourable and unfavourable cytokines and chemokines. We have included the 

cytokines and chemokines in Figure 3.4 whose expression has a significant impact on cancer patient’s 

survival rates. We found that high expression levels of the cytokines IL2, IFNB1, IFNA8, and IL5 had 

a significant impact on the survival of various cancer patients (HR 0.4 and p-value 0.05). However, in 

KICH, READ, and GBM patients, elevated levels of IL5RA, TGFBR3, CCR4, TGFB2, and IL17A 

are strongly linked to a poor survival rate (HR >4 and p-value 0.05). 
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Figure 3.4 Shows Hazard ratio for different cytokines whose expression plays significant role 

(p<0.05) with the survival of cancer patients obtained using univariate survival analysis. A) 

Survival favourable cytokines/chemokines (higher expression increases the survival) B) Survival 

unfavourable cytokines/chemokines (higher expression decreases the survival of cancer patients) 

       Additionally, by taking into account the gene expression of cytokines, chemokines, and their receptors, 

we conducted association analysis. Figure 3.5, heatmap depicts the relationship between overall 

survival and the expression of several genes in 20 different cancer types. While pale yellow colour 

illustrates the negative correlation, and darker blue colour indicates the positive correlation. We found 

that increased expression of the cytokine IL9 is linked to a substantial positive association in cancer 

patients with BLCA, KIRC, and OV, and that cytokine IFNG has a very high and significant 

correlation with the survival rate of HNSC cancer patients. Contrarily, the cytokines IL2, IL5, IL12A, 

TNFA1P8, and TNF are linked to the opposite correlation (p < 0.05). We found a strong positive 

correlation between the expression rates of CCL1 in (colorectal cancer and kidney renal clear cell 

carcinoma), CCL20 (bladder urothelial carcinoma), and CCL27 (prostate adenocarcinoma) 
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chemokines. The correlation of some of the cytokines and chemokines with the survival of 20 types 

of cancer patients in demonstrated in Figure 3.5. 

 

Figure 3.5 Heatmap shows the correlation of expression of cytokines and chemokines with the 

overall survival of cancer patients A) Cytokines B) Chemokines and, where pale yellow depicts 

the negative correlation with survival, darker blue colour shows positive correlation with 

survival of cancer patients 

 

3.4 Web-server Implementation 

The web-interface of CancerHLA-I is developed using HTML, CSS, JavaScript, MySQL and PHP. 

The webserver is responsive and can be browsed/searched on various web browsers such as google 

chrome, Firefox, safari and variety of devises (smartphones, tablets, desktops and laptops). 

CancerHLA-I resource provides a simple search page, where users can search query in the database 

for specific cancer type, HLA-allele, neoantigens, cytokine/chemokine, and its survival association. 

The home page of webserver is provided in Figure 3.6.  
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Figure 3.6: Homepage of CancerHLA-I webserver 

(https://webs.iiitd.edu.in/raghava/cancerhla1/ ) 

3.5 Discussion  

Class-I (HLA-A, HLA-B, and HLA-C) molecules are crucial for cancer immunotherapy and 

immunosurveillance. It is essential to deliver tumor-specific peptides or neoantigens via HLA-alleles 

for our immune system to recognise and destroy tumour cells. However, several cancer types 

demonstrate escape mechanisms due to the loss of class-I HLA molecules’ activities. Numerous 

studies also claim that the overexpression of class-I non-classical HLA molecules is crucial for the 

immunological escape of malignancy. Class-I HLA alleles interact with T cell receptors to activate T 

cells, which then trigger a series of immunological responses to eliminate tumour cells from our 

system. To treat cancer patients, scientists have recently focused on HLA-dependent therapies such as 

CD8+ T cell therapy, tumor-infiltrating lymphocytes (TILs) therapy, and TCR-engineered T cells 

(TCR-Ts). HLA-dependent immunotherapies are more successful and efficient than standard 

chemotherapies. Patients with non-small cell lung carcinoma and colorectal cancer have loss of 

heterozygosity in the HLA genes on chromosome 6 as a result of alterations at the genetic and 

https://webs.iiitd.edu.in/raghava/cancerhla1/
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epigenetic levels. Additionally, changes in the type-I and type-II interferon pathway genes affect the 

prognosis of cancer patients. Interleukins including IL6, IL-11, IL-1, and TGF promote the growth and 

advancement of cancer cells (Esquivel-Velazquez et al., 2015). According to a new study, the presence 

of particular HLA-alleles can predict the drug response or therapy response on cancer patients. They 

found that patients with kidney cancer who carried the HLA-A*03 allele had lower survival rates and 

responded poorly to immune checkpoint inhibitor (ICI) therapy (Naranbhai et al., 2022). According to 

studies, cytokines are crucial in controlling the tumour microenvironment. Therefore, in order to grasp 

the impact and effectiveness of cancer immunotherapy, it is essential to comprehend the prognostic 

significance of HLA-alleles and cytokines.  

In this study we investigate the connections of class-I HLA alleles with cancer patient survival in order 

to aid cancer researchers. Using the HLA data of cancer patients, we do a pan-cancer study. HLA 

typing and clinical information were obtained using the cancer genome atlas (TCGA) and the cancer 

immunome atlas. To ascertain the relationship between the presence or absence of the 352 HLA-alleles 

and the prognosis for cancer, we employed survival analysis. Our findings show that the sample 

distributions for the various cancer types are skewed. For instance, we found only 10 PRAD cancer 

patients are dead, while the remaining 487 patients are either alive or censored. As a result, in this 

instance the hazard index is very large and sample discrimination is relatively straightforward. On the 

other hand, in the example of BLCA cancer, where 228 patients are alive and censored but 178 patients 

are dead, we achieved a very low hazard index. Additionally, in the instance of BLCA cancer patients 

have large number of neoepitopes against HLA-alleles, which leads to positive correlation values with 

the overall survival. Contrarily, cancer patients with PRAD have extremely few neobinders, leading 

to negative correlation values. Additionally, we look into the connection between cancer patients’ 

overall survival and the expression of cytokines and chemokines. We found that the IFNG cytokine 

has a positive correlation coefficient of r = +0.46; this suggests that higher levels of IFNG expression 

increase the survival of cancer patients. Our study is anticipated to produce potential new HLA-

biomarkers for enhanced cancer immunotherapy and treatment.  

 

3.6 Conclusion 
This study reveals that survival of cancer patients depends upon the type of HLA-allele. Correlation 

and univariate survival analysis shows class-I HLA alleles, HLA-I neobinders and cytokines are 

significantly associated with the survival of cancer patients. Moreover, we have provided a user-

friendly web portal for the identification of cancer specific biomarkers. The cancer specific peptides 

also provided in the CancerHLA-I (https://webs.iiitd.edu.in/raghava/cancerhla1/) database, which can 

be further examined by the experimental biologist in order to design cancer specific immunotherapies.   
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4.1 Introduction 

Melanoma cancer accounts for 0.6% of cancer-related fatalities and 1.6% of newly diagnosed cancer 

cases worldwide (Sung et al., 2021). The American Cancer Society estimates that there will be 7,650 

fatalities and 99,780 new cases of melanoma in the United States in 2022. Males are more likely than 

females to get melanoma. Melanoma develops when healthy human epithelial melanocytes, which are 

found in the skin’s basement membrane, undergo malignant transformation (Soura et al., 2016). 

Environmental and genetic variables include excessive UV radiation exposure, indoor tanning beds, 

and interaction with certain chemicals are some of the major causes (Volkovova et al., 2012). Previous 

research examined multi-omics markers for the advancement of malignancy and found that cutaneous 

melanoma is one of the most dangerous and lethal types of skin cancer (Bhalla et al., 2019; Li et al., 

2015; Ossio et al., 2017). Furthermore, it has been demonstrated in the past that melanoma has a 95% 

OS rate if it is discovered at an early stage; but, once it has spread (lesion thickness > 4 mm), it is 

difficult to treat and the survival rate drops to less than 50% (Bristow et al., 2010; Buttner et al., 1995). 

Therefore, tumour staging is essential to give clinicians the basic prognostic information they need 

and information regarding tumour stage grouping and tumor-nodes-metastasis (TNM) classification is 

provided by the American Joint Committee on Cancer (AJCC) and the Melanoma Staging Committee. 

Primary tumours (stages I and II) are divided into T1, T2, T3, and T4 categories, with corresponding 

tumour thicknesses of 1.00 mm, 1.01 – 2.0 mm, 2.01 – 4.0 mm, and >4.0 mm. Regional lymph nodes 

(stage III) are divided into N0, N1, N2, and N3, which stand for the number of metastatic tumour nodes 

(i.e., 0, 1, 2, 3, and 4+) and distant metastasis (stage IV) further divided in four categories—M0, M1a, 

M1b and M1c (Dickson & Gershenwald, 2011; Gershenwald et al., 1998).   

Prior research has shown that melanoma tumour cells are able to bypass immunological checkpoints 

and multiply more quickly than normal tissue cells (Khair et al., 2019). Tumor resistance to apoptosis 

has been linked to HLA class I, II alleles. Immune responses are induced and regulated directly via 

HLA molecules. Recent research indicates that the poor prognosis and metastatic progression may be 

related to the altered expression of HLA molecules. Some of the key escape strategies employed by 

tumour cells to circumvent the immune response include the modification of surface molecules, the 

absence of co-stimulatory molecules, the creation of immunosuppressive cytokines, and changes to 

HLA molecules (Aptsiauri et al., 2007; Johansen et al., 2016; Mendez et al., 2009; Sabapathy & Nam, 

2008). Melanoma is also classified as an immunogenic tumour since its lesions have been reported to 

exhibit markers for a number of immune escape strategies, including the downregulation of HLA 

molecule expression, the release of cytokines like IL-10, and the loss of tumor-specific antigens. The 
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poor prognosis and ineffective treatment in melanoma cases have been significantly linked with the 

downregulation of class I HLA molecules (Cabrera et al., 2007; Nestle et al., 1997). Furthermore, 

current research highlights the significance of HLA alleles in melanoma prognosis. One instance is the 

loss of heterozygosity in the HLA class I allele (HLA-B*15:01), which has been linked to a poor 

prognosis for survival. Additionally, it has been demonstrated that HLA-C alleles and the HLA-B44 

supertype improve overall survival rate (Campillo et al., 2006; Chowell et al., 2018; Gogas et al., 

2010).  

Therefore, understanding how class I and class II antigens affect melanoma patients’ survival is 

crucial. Accurate HLA typing allows for the creation of tailored cancer vaccines and prognostic 

biomarkers for immunotherapy. In the current study, we have used The Cancer Genome Atlas (TCGA-

SKCM) dataset, we have attempted to investigate the function of HLA (class I and II) alleles and 

superalleles in the survival of cutaneous melanoma patients. Here, we first performed class I and class 

II HLA typing on the patients before assigning them to superallele (low-resolution HLA allele) groups. 

We next divided the HLA superalleles into groups that were survival-favourable and unfavourable 

depending on how significantly their presence affected patient survival. Additionally, using various 

machine learning techniques, we have created survival prediction models that incorporate important 

HLA superalleles, patient demographics, and clinical characteristics. As a further service to the 

scientific community, we created the “SKCMhrp” webserver for computing the survival rate of high-

risk skin cutaneous melanoma patients using the clinical and HLA-typing information.  

4.2 Materials and methods 

4.2.1 Pipeline of the study 

The entire study’s workflow, including data collection and compilation, survival analysis, model 

construction, and webserver implementation, is depicted in Figure 4.1.  
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   Figure 4.1 Steps involved in the development of SKCMhrp; including the pre-processing of 

clinical and genomic data, building of prediction models and webserver  

4.2.2 Collection of dataset  

We accessed the Genome Data Commons (GDC) data portal to retrieve the TCGA-SKCM controlled 

access dataset. With the aid of an internal high-performance computing (HPC) facility and scripts, the 

whole-exome sequencing (WXS) BAM files of distinct melanoma patients were specifically 

downloaded [with the consent of dbGap (Project No. 17674)] in accordance with the GDC protocols 

(Grossman et al., 2016). Using TCGA Assembler 2, clinical data for 470 patients was also gathered, 

including age, gender, stage, tumour status, therapy status, Breslow depth, vital status, overall survival 

(OS), etc (J. Liu et al., 2018; Zhu et al., 2014). After deleting irrelevant BAM file errors, we were only 

able to retrieve the HLA type information for 415 of the 470 TCGA-SKCM patients, 14 patients out 

of 415 samples lacked OS data. In summary, we used 401 patients with cutaneous melanoma for whom 

complete survival statistics with exome sequencing data were available. The clinical details of the 

patients, such as the type of melanoma, tumour stage, tumour site, Breslow depth, and treatments, are 

displayed in Table 4.1. 
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Table 4.1: Distribution of TCGA-SKCM samples based on clinical and demographic 

characteristics  

Clinical Parameter Description No. of samples 

Age 
Age <=58 197 

Age > 58 211 

Gender 
Male 256 

Female 159 

Tumor Stage 

Stage 0 7 

Stage I 67 

Stage II 134 

Stage III 151 

Stage IV 21 

Tumor Status 

With Tumor 219 

Without Tumor 184 

Breslow Depth 

<=1.0mm 53 

>1.0-2.0mm 69 

>2.0-4.0mm 65 

>4.0mm 130 

The prediction models were trained using the TCGA-SKCM dataset, and the effectiveness of our 

models was evaluated using a specific collection of variables, including HLA alleles and clinical traits. 

Finally, the performance was assessed using an external validation dataset. We obtained HLA-typing 

and clinical data of 121 cutaneous melanoma patients from several studies (Hugo et al., 2016; Riaz et 

al., 2017; Snyder et al., 2014; Van Allen et al., 2015). These data included 145 distinct class I and II 

HLA alleles with two demographics (age and gender) and one clinical feature (tumor stage). Finally, 

we have used the TCGA-SKCM dataset to train our machine learning model and the external dataset 

with a comparable collection of attributes to evaluate it. 

4.2.3 Typing of HLA-alleles  

Chromosome 6 region was extracted from the BAM files using the SAMtools software after receiving 

the whole exome BAM files of cutaneous patients from TCGA (Li et al., 2009). After that, we identify 

HLA molecules from the region of chromosome 6 using the xHLA software (Xie et al., 2017). Four-

digit HLA typing information was determine with their class I (-A, -B, -C) and class II (-DP, -DQ, -
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DR) HLA alleles for each TCGA-SKCM patient. Each HLA-allele is given a distinct name in 

accordance with the IMGT/HLA nomenclature, which is then followed by an asterisk (*) and separated 

by colons (Marsh, 2003; Robinson et al., 2016). According to Listgarten et al. (2008), the first two 

digits identify an allele group (field1), third and fourth digits identify a particular HLA protein (field2). 

Due to the limited frequency of high-resolution HLA alleles in SKCM patients, we merged field1 HLA 

alleles which correspond to the historical serological antigen group (or allele family) to create low-

resolution HLA alleles. For the first time, low-resolution HLA alleles were referred in this study as 

“superalleles” and a high resolution (i.e., four-digit typing) was given to a low resolution (i.e., two-

digit typing) HLA allele. 

 

4.2.4 HLA-superalleles 

Based on the effect of HLA superalleles on patient survival, i.e., whether the presence of the superallele 

enhances or degrades the survival rate. We divided HLA superalleles into favourable and unfavourable 

groups in this study. First, all patients were split into two groups; those who carried a certain HLA 

allele and those who did not; and the mean survival of patients was calculated for each group. 

Additionally, an allele was designated as a survival-favourable allele if the patients who carried it 

having significantly (p-value 0.05) longer survival than those who did not. Similar to this, an allele is 

designated as an unfavourable allele if patients with that allele have a poor mean survival rate than 

those with another allele. A single allele has only been found in a small subset of patients, so 

classifying patients based on the frequency of alleles will be biased. As a result, we classified patients 

into groups with survival-favourable (SF) and survival-unfavourable (SU) superalleles based on the 

presence or lack of HLA superalleles in the patients. Here, we used a two-sample t-test to determine 

whether these superalleles were statistically significant (p-value <0.05).  

Notably, we only took into account superalleles that could belong to any of these groupings if they 

were present in at least 10 samples. We merged SF and SU superalleles and created a matrix to analyse 

the overall effects of their existence. If an SF or SU superallele was present, we gave it a score of +1 

if a favourable superallele was present in an SKCM patient, and a score of -1 if an unfavourable 

superallele was, otherwise 0. Finally, the sum of all the alleles was calculated to produce a single score 

known as the risk score (RS). Threshold-based techniques have subsequently been created employing 

these superalleles as features. In the end, we classed a patient as high-risk if their score above the RS 

cut-off; otherwise, they were categorised as low-risk. 

4.2.5 Statistical analysis  
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Cox proportional hazard (Cox PH) models were used in the current investigation to perform 

“univariate” and “multivariate” survival analyses, which were then implemented by the “survival” 

package in R. (V.3.5.1). The impact of each variable, including age, tumour stage, tumour status, 

gender, class I, class II HLA alleles, HLA superalleles, and RS, on the prognosis of cutaneous 

melanoma patients was examined using univariate analysis. In addition, a multivariate survival 

analysis was carried out to comprehend the independent clinical impact of these HLA superalleles in 

the presence of additional numerous factors, including age, tumour stage, tumour status, gender, and 

class I, II HLA superalleles (Bradburn et al., 2003). The significant survival distributions between the 

high-risk and low-risk groups were estimated using the log-rank test in terms of the p-value. High-risk 

and low-risk groups were represented graphically using Kaplan-Meier (KM) survival curves (Goel et 

al., 2010). 

 

4.2.6 Machine learning models  

The objective of the current study was to create regression models for OS time prediction in patients 

with cutaneous melanoma using a variety of machine learning techniques. We used a variety of 

features, such as HLA superalleles, as well as clinical and demographic aspects of the patients, such 

as age, gender, stage, tumour status, Breslow depth, and their interactions, to construct prediction 

models. Regression algorithms such as Decision tree (DT),  random forest (RF), ridge, and lasso were 

used for the development of models utilizing the python-based scikit-learn library. DT is supervised 

machine learning model, which predicts the response variable by learning the decision rules from the 

predictor variables, is produced by regression using the decision tree approach. It is a top-down, tree-

based method in which a decision tree is built by employing recursive partitioning. RF is a supervised 

machine learning technique that uses ensemble learning. When a model is being trained, it works by 

creating a number of decision trees, and then predicts the response variable using the average 

prediction of each tree. The shrinkage methodology is used by the linear regression technique known 

as least absolute shrinkage and selection operator, or LASSO. It applies L1 regularisation, creating a 

model with predictor variable coefficients that aid in predicting the response variable. Conversely, the 

L2 regularisation is carried out in ridge regression to determine the coefficients. 

 

4.2.7 Feature selection techniques 

In this study we have used wrapper method for the selection of best-set of HLAs having poor impact 

on the survival of cancer patients. Here, HLA superalleles were individually added to the clinical and 
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demographic characteristics to create a recursive feature selection model. Following the prediction of 

survival time, the hazard ratio (HR) for each combination was calculated. In a nutshell, each time the 

input matrix was changed, a new column containing an HLA superallele was added; this superalleles 

HR was marginally higher than that of the input matrix before it. Until there was no more improvement 

in the HR, we kept repeating this technique. We were eventually left with the matrix that had the 

highest HR. This matrix was then employed to create the ultimate prediction model for the estimation 

of OS time.  

 

4.2.8 Performance evaluation  

We used the five-fold cross-validation method to prevent over-optimization during model training 

(Patiyal et al., 2020). In a nutshell, each instance is separated into five sets at random, four of which 

are utilised for training and one for testing. This procedure run through five times so that each set is 

tested at least once. The performance on all five sets is averaged to determine the final performance. 

Choosing the right parameters to assess the performance of models is the main obstacle in these kinds 

of investigations. In this study, the performance of the models was evaluated using the standard 

parameter HR. The impact of an intervention on a desired outcome over time is measured by HR. By 

using a median cut-off, our regression models divide patients into high-risk and low-risk categories. 

We compute HR from the anticipated OS time for the group of patients to assess our model (high-risk 

or low-risk patients). We measured the confidence interval (CI) along with the HR and computed the 

HR at a 95% CI as well. We also computed the p-value using the log-rank test to assess the significance 

of the prediction. 

4.3 Results  

4.3.1 Frequency of HLA-alleles 

Utilizing the xHLA software (Xie et al., 2017), we were able to extract 4711 HLA alleles from 415 

TCGA-SKCM patients, 367 of which were unique. We identified that 237 HLAs are belonged to HLA 

class I genes i.e., HLA-A, HLA-B, and HLA-C, and 130 were class II genes i.e., HLA-DPB1, HLA-

DQB1, HLA-DRB1. We calculated the patient population’s frequency distribution of various alleles. 

All alleles were not identified in all individuals due to the variability of the HLA genes, therefore the 

frequency of alleles varies from patient to patient. We analysed that only 357 of the 415 individuals 

possessed all six HLA class I gene alleles. However, 264 patients possessed all six alleles of the HLA 

class II gene. We identified the most abundant class-I and class-II HLA alleles (found in more than 
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20% of the population) as shown in Figure 4.2. HLA-A*02:01 is the most abundant class-I HLA-allele 

present in more than 160 samples, whereas in class-II HLA-DPB1*04:01 is the most frequent allele 

present in 250 cutaneous melanoma samples. The distribution of all the class-I and class-II HLA-

alleles is provided in Figure 4.2.   

 

Figure 4.2 Distribution of HLA-alleles in SKCM samples, (A) Number of samples having Class-

I/II HLA-alleles (B) Number of samples having different types of Class-I HLA-alleles (C) 

Number of samples having different types of Class-II HLA-alleles 

 

4.3.2 Mean overall survival analysis  

We estimated the difference in mean overall survival (MOS) of patients to determine if an allele is 

beneficial for the patient's survival or not. If the difference in MOS is positive, the HLA allele is 

categorised as favourable; if not, it is unfavourable. These alleles can be used to estimate the likelihood 

of survival; regrettably, this statistic may be skewed because the majority of the alleles have very few 
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patients that carry them. As a result, we used field1 to convert the high-resolution HLA alleles into the 

HLA superalleles (low-resolution HLA alleles) (F1). Here, 121 superalleles were created out of 367 

alleles. 60 and 61 of the 121 superalleles fall into classes I and II, respectively. Additionally, on the 

basis of statistical test we divide the HLA superalleles into two categories, SF and SU. We observed 

only 24 HLA-superalleles are significantly impact the survival  where 9 were SF and 15 were SU 

(Table 4.2). 

Table 4.2: List of 9 favourable and 15 unfavourable HLA-alleles which play significant role in 

the survival of skin cancer patients  

HLA-alleles 
No. of Samples 

Mean Overall Survival  

(OS) Mean Diff OS  

(P-A) 
P-value 

Present (P) Absent (A) Present (P) Absent (A) 

Survival Favourable HLA alleles 

HLA-B*55 16 385 94.58 58.46 36.12 0.002 

HLA-DPB1*01 34 367 87.51 57.34 30.17 6.82E-07 

HLA-B*08 80 321 81.09 54.62 26.47 6.36E-14 

HLA-DRB1*03 85 316 80.14 54.46 25.69 2.29E-14 

HLA-B*49 11 390 77.87 59.39 18.48 0.037 

HLA-A*01 115 286 72.88 54.68 18.2 1.24E-17 

HLA-C*05 61 340 72.74 57.6 15.15 1.82E-12 

HLA-DPB1*10 16 385 72.87 59.36 13.51 0.0004 

HLA-C*07 217 184 66.01 52.7 13.31 3.65E-31 

Survival Unfavourable HLA alleles 

HLA-B*14 27 374 48.34 60.74 –12.39 2.20E-05 

HLA-A*24 81 320 48.59 62.77 –14.18 5.61E-13 

HLA-DPB1*05 17 384 46.26 60.51 –14.25 0.001 

HLA-A*31 26 375 46.34 60.84 –14.5 1.76E-05 

HLA-DPB1*11 10 391 45.32 60.27 –14.95 0.003 

HLA-DRB1*07 103 298 48.37 63.89 –15.51 4.31E-14 

HLA-DPB1*06 12 389 43.68 60.4 –16.72 0.014 

HLA-C*14 10 391 43.44 60.32 –16.88 0.003 

HLA-B*18 39 362 44.41 61.57 –17.16 1.07E-08 

HLA-C*01 42 359 44.35 61.72 –17.37 9.08E-07 

HLA-B*13 19 382 41.94 60.79 –18.86 0.03 

HLA-A*30 26 375 42.14 61.13 –19 5.22E-06 

HLA-DRB1*16 23 378 29.53 61.75 –32.22 7.00E-06 

HLA-B*50 12 389 25.03 60.98 –35.95 6.33E-05 

HLA-DRB1*12 19 382 23.46 61.71 –38.26 9.43E-05 
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4.3.3 Univariate survival analysis  

We first performed univariate survival analysis using the HLA-alleles, superalleles and clinical 

characteristics. We identified certain alleles/superalleles which had the significant impact on the 

survival of SKCM patients. For instance, presence of HLA-B∗50 alleles associated with the poor 

survival rate with an HR of 2.77 (95% CI 1.284 to 5.941) and p-value 0.009. In addition, HLA-

DRB1∗12 reduces the survival rate with HR 3.13 (95% CI 1.687–5.826) and p-value < 0.001. We also 

identified the combined effect of both HLA-B∗50/DRB1*12 and observed that the patients are at high-

risk with HR 3.15, 95% (CI 1.906–5.194) and significant p-value. In addition age, gender, tumour 

stage, tumour status, and Breslow depth are clinical and demographic characteristics that have 

historically demonstrated a considerable impact on the prevalence of skin cancer and a bias against a 

certain population. We investigated the relationship between these clinical characteristics and patient 

survival. We therefore used these clinical and demographic characteristics in a univariate survival 

analysis. According to this investigation, the tumour status is a key prognostic factor in the estimation 

of melanoma patients’ survival times. Here, we have achieved maximum HR of 8.293 with p-value< 

0.0001. Additional characteristics that have a strong correlation with patient prognosis include age, 

tumour stage, and Breslow depth. However, depending on gender, samples cannot be divided into 

high-risk and low-risk groups (See Figure 4.4). 

Figure 4.3 Survival curves for risk estimation using clinical characteristics - Adopted from 

(Dhall et al., 2020) 
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HLA superalleles that play a substantial influence in the prognosis of melanoma patients have been 

discovered from the aforementioned univariate analysis. The creation of prediction methods was our 

next objective, using them as features. Therefore, using RS, which was created by combining several 

HLA superalleles, we created a threshold-based technique. A survival analysis was run using this RS 

as an input feature to evaluate how well RS based on several superalleles categorised risk-groups of 

cutaneous melanoma patients. As shown in Figure 4.5, the patients are significantly split into high-risk 

and low-risk groups if the threshold value is 2, with HR 2.18 (95% CI 1.441-3.297) and p-value of 

0.000223. Finally, we discovered that RS thresholds can be served as a prognostic indicator as shown 

in Figure 4.4, which was further used to divide melanoma patients into high-risk and low-risk 

categories. Additionally, KM survival plots indicate how melanoma patients are divided into risk 

groups based on various RS threshold values (shown in Figure 4.4). 

 

Figure 4.4 Kaplan Meier survival curves for the risk estimation of melanoma patient cohort based on 

the Risk score (RS) - Adopted from (Dhall et al., 2020) 

 

4.3.4 Performance-based on prediction models 
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The above mentioned results demonstrate that in order to identify high-risk patients, HLA superalleles, 

clinical, and demographic characteristics (such as age, gender, tumour stage, tumour status, and 

Breslow depth) are crucial. The threshold-based approach, however, is straightforward yet ineffective 

when numerous indicators are present. So, in order to further enhance performance, we developed 

prediction models using a variety of machine learning techniques (such as lasso, RF, ridge, and DT). 

To create machine learning models, we have developed various feature sets as shown in Table 4.3.  

 

Table 4.3: The performance of machine learning based models developed using different set of 

features 

Feature Type  

LASSO RIDGE Random Forest Decision Tree 

HR P-value HR P-value HR P-value HR P-value 

All clinical features 3.17 3.50E-11 3.01 1.76E-10 3.09 2.87E-11 2.25 6.93E-07 

Clinical features 

without tumor status 
3.5 3.93E-13 3.49 3.93E-13 3.74 3.01E-14 2.15 2.24E-06 

Clinical features 

without tumor stage 
2.8 9.96E-10 2.43 4.68E-08 2.81 2.05E-10 2.5 1.64E-08 

Clinical features 

without tumor stage 

and tumor status 

2.4 4.41E-08 2.4 4.41E-08 2.99 9.37E-12 2.54 1.06E-08 

 

In order to avoid over-optimization and for practical implementation in daily life, it is crucial to have 

a minimal amount of features. Therefore, wrapper method was applied to iteratively reduce the number 

of characteristics. Finally, using various machine learning technique, prediction models were created 

utilising five clinical and demographic characteristics (age, gender, tumour stage, tumour status, and 

Breslow depth) and various HLA superalleles. The LASSO technique, based on five clinical 

characteristics and 14 HLA alleles (HLA-A*31, HLA-A*24, HLA-DPB1*10, HLA-B*08, HLA-

DRB1* 03, HLA-DRB1*07, HLA-B*18, HLA-B*55, HLA-A*01, HLA-C* 05, HLA-DRB1*16, 

HLA-DRB1*12, HLA-B*49, HLA-DPB1*11, achieved highest performance, with an HR of 4.52 and 

a p-value of 8.01E-15. 

 

4.4 Utility of webserver  

We created the “SKCMhrp” web server to support the scientific community, available at 

https://webs.iiitd.edu.in/raghava/skcmhrp/ . HTML, PHP 5.2.9, and JAVA scripts were used to create 

https://webs.iiitd.edu.in/raghava/skcmhrp/
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the “SKCMhrp” web server. We used an HTML5 web template to make the website mobile and tablet 

friendly. The technologies described above that have been used are open source and cross-platform. 

The goal of SKCMhrp is to estimate risk using clinical, demographic, and HLA superalleles data. The 

two modules are based on clinical characteristics and superalleles, respectively. Based on their clinical 

and demographic parameters, such as age, gender, tumour stage, tumour status, and Breslow depth, 

the first module forecasts the risk status of melanoma patients. By selecting just one clinical parameter, 

a user can forecast the particular sample’s survival time (in months) in this case (See Figure 4.5). A 

regression model receives input values to assess the risk status. The second module uses all 121 

superalleles and 14 superalleles with five clinical and demographic characteristics to determine the 

risk status of melanoma patients (See Figure 4.6).  

 

Figure 4.5 Utility of Module I of SKCMhrp server 
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Figure 4.6 Utility of Module II of SKCMhrp server 

4.5 Discussion  

The growth in melanoma incidence indicates that skin cutaneous melanoma is a fatal cancer. Over the 

past few years, the FDA (Food and Drug Administration) has approved a number of treatments and 

preventative measures for melanoma. However, information regarding the tumour, such as its location, 

stage, etc., is necessary before selecting a treatment among the available possibilities. It might be 

difficult to accurately and precisely identify the tumour stage in many cancers. According to recent 

research, antigenic repertoire diversity plays a critical role in tumour development and 

immunosurveillance. For instance, it has been demonstrated that HLA-class I and II proteins have a 

crucial role in the development of melanoma. It is crucial to comprehend which specific HLA alleles 

from class I and II may have an impact on the patients’ prognosis. In order to better understand how 

class-I/II alleles affect melanoma patients' prognoses, the current study is an organised effort. Studies 

revealed that HLA-DRB1*07 has been demonstrated to be unfavourably correlated with patient 

survival in additional cancers, including lung cancer, cervical cancer, and breast cancer. HLA-A*01, 

HLA-C*05, and HLA-C*07 have been demonstrated in the literature to be favourably linked with the 

survival of melanoma patients. However, HLA-A*31, HLA-B*14, HLA-C*14, HLA-A*24,  and 

HLA-B*13, have a negative correlation with melanoma patients’ survival rates. In this study, we 

understand the impact of HLA-alleles and clinical characteristics on the survival of skin cancer 

patients. Overall, our results demonstrate that HLA-class I and II alleles have both positive and 

negative effects on the OS of TCGA-SKCM patients. The categorization of high-risk and low-risk 

survival groups and the calculation of OS time using survival analysis and recursive machine learning 
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regression models indicated the prognostic significance of 14 HLA-A*31, HLA-A*24, HLA-

DPB1*10, HLA-B*08, HLA-DRB1* 03, HLA-DRB1*07, HLA-B*18, HLA-B*55, HLA-A*01, 

HLA-C*05, HLA-DRB1*16, HLA-DRB1*12, HLA-B*49, HLA-DPB1*11 superalleles, clinical, and 

demographic variables. We have created a website named “SKCMhrp” to help the scientific 

community predict high-risk patients. 

  

4.6 Conclusion 

In this study, we have developed a survival prediction method based on Class-I & Class-II HLA-alleles 

and clinical characteristics. HLA-based markers may be taken into account for creating tailored 

vaccinations for a number of clinical populations. The further investigation regarding the role of these 

superalleles in additional cohorts will help to further confirm this for clinical utility.  
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CHAPTER 5 
NON-CLASSICAL HLA-BINDER PREDICTION 
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5.1 Introduction 

Our immune system depends on human leukocyte antigens (HLAs), which are expressed on cell 

surfaces for antigen presentation and to elicit immunological responses (Chaplin, 2010; Marshall et 

al., 2018). The most polymorphic genomic region of the human genome is the major histocompatibility 

complex, or HLA, which is found at chromosome 6 (6p21.3) in humans (Beck & Trowsdale, 2000; 

Choo, 2007). According to the IMGT/HLA database, 2020 edition (Robinson et al., 2020), more than 

23000 class-I and 8600 class-II HLA alleles have previously been recorded in various ethnic groups 

worldwide. The two main groupings of HLA class-I genes are classical (HLA-A, -B, -C) and non-

classical (HLA-G, -E, -F). The classical genes induce CD8+ T cells to produce an immunological 

response by presenting antigenic peptide ligands on infected cells. Contrarily, non-classical class-I 

alleles control the immune response by activating/inhibiting CD8+ T cells and natural killer cells 

(Uzhachenko & Shanker, 2019). By triggering and controlling immunological responses, HLA alleles 

defend humans against a number of diseases (Blackwell et al., 2009; Crux & Elahi, 2017; Tavasolian 

et al., 2020). At the same time, negative consequences like the onset of autoimmune diseases, the 

growth of cancer, the advancement of metastases, and poor prognosis have been observed in a variety 

of ethnic groups (Aptsiauri et al., 2007; Johansen et al., 2016; Mendez et al., 2009; Sabapathy & Nam, 

2008).  

Recent research indicates that both the innate and adaptive immune systems are modulated by the non-

classical alleles (HLA-G and HLA-E) (Amiot et al., 2014; Crux & Elahi, 2017; Murdaca et al., 2016; 

Rouas-Freiss et al., 1999) (See Figure 5.1). It is noteworthy that HLA-G has four membrane-bound 

isoforms and three soluble isoforms, and that they interact with the natural killer cell receptors 

(NKG2A/CD94), killer cell immunoglobulin-like receptor (KIR2DL4), and immunoglobulin-like 

transcript (ILT2 and ILT4) (Ho et al., 2020; Rizzo et al., 2013; Tronik-Le Roux et al., 2017). Until 

recently, scientists thought that HLA-G alleles could only be detected at the maternal-fetal interface. 

But according to current research, the expression of HLA-G is noticeably higher in a number of illness 

conditions, including cancer, COVID-19 infection, auto-immune, and inflammatory diseases (Amiot 

et al., 2011; Carosella et al., 2011; Kovats et al., 1990; Schmidt & Orr, 1993; Shih Ie, 2007; Zidi, 

2020). HLA-G also prevents the activation of immune cells such as CD8+ T, dendritic, and natural 

killer cells during parasitic and viral infections (including those caused by the influenza A virus, 

herpes, and coronavirus) (Catamo et al., 2014; Dias et al., 2015; Sabbagh et al., 2018). These viral 

infections increase HLA-G expression and create an environment that is tolerant to the immune 

system. On the other hand, HLA-E has little variation and is linked to highly conserved peptides and 
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epitopes. Through interactions with inhibitory receptors (NKG2A/CD94, NKG2B/CD94, and 

activating receptor (NKG2C/CD94), HLA-E controls immune cells (natural killer and cytotoxic T 

cells) (Kraemer et al., 2014). 

 

Figure 5.1 Representation of non-classical HLA with their immunoregulatory functions 

HLA-E alleles, also control cell fate via representing antigens through two recognised processes. 

Peptide fragments derived from the signal sequence of other class Ia HLA-alleles. By interacting with 

the NKG2A/CD94 receptors, this representation inhibits the activity of NK cells. Some research, 

however, has shown that the viral peptides (including those from SARS-CoV-2, Epstein-Barr virus, 

cytomegalovirus, and hepatitis C virus) are presented by HLA-E on the cell surface and recognised by 

virus-specific immune cells, which further activates the immune responses (Crew et al., 2005; Garcia 

et al., 2002; Joosten et al., 2016; Pietra et al., 2003; Romagnani et al., 2004; Romagnani et al., 2002). 

The production of anti-inflammatory cytokines including transforming growth factor (TGF-β), 

interleukin 4 (IL4), and interleukin 10 (IL10), which is in turn responsible for the down-regulation of 

pro-inflammatory cytokine production, is also a result of HLA-E restricted CD8+ T-cells. It also 

preventing the cytokine storm, which is essential for the development of COVID-19. The level of 

tissue damage is also reduced by inhibiting the cytokine storm (Caccamo et al., 2020). As shown in 

Figure 5.1, several investigations have shown that HLA-E impairs NK-mediated lysis, cytotoxicity, 

cytokine production, and tumour growth. According to these findings, immunological checkpoint 
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molecules HLA-G and HLA-E may be crucial for developing innovative immunotherapies or subunit 

vaccines against a variety of disorders. Therefore, techniques for prediction of non-classical HLA 

binders must be developed. Although many computational techniques for predicting HLA binders have 

been developed in the past, they have mostly focused on classical HLAs (Chen et al., 2019; Jurtz et 

al., 2017; Mei et al., 2021; O'Donnell et al., 2020; Singh & Raghava, 2001, 2003; Ye et al., 2021).  

Models for predicting binders for non-classical HLA alleles are only few and developed on limited set 

of dataset. To the best of our knowledge, no computational tool has been created specifically for 

identification of non-classical HLA binders. In this study, which is specifically focused on non-

classical HLA, an organised effort has been made to create models for anticipating non-classical HLA 

binders. From the immune epitope database (IEDB), we gathered and evaluated each experimentally 

verified non-classical HLA binder. We created models for predicting binders for the non-classical 

alleles HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, HLA-E*01:01 based on the experimentally 

validated dataset. To more accurately predict the non-classical HLA binders, we have used a variety 

of machine learning methods. 

5.2 Material and methods 

5.2.1 Dataset generation & pre-processing 
We have gathered the non-classical class-I HLA-binding peptides for the current study from the IEDB, 

obtained on October 26, 2021. 1135 HLA-E and 5151 HLA-G binding peptides in total were obtained. 

Then, in order to create non-redundant datasets, we delete identical peptides from each dataset. 

Additionally, we removed from each dataset any peptides with a length of more than 15 or less than 8 

residues. Finally, for the HLA-E*01:01 and -E*01:03 alleles, respectively, we were able to collect 142 

and 723 distinct peptides. Likewise, for the HLA-G*01:01, -G*01:03, and -G*01:04 alleles, we obtain 

2633, 751, and 812 distinct binding peptides, respectively. The binding peptides linked with HLA-G 

alleles derived from the mass spectrometry experiments. On the other hand, HLA-E alleles linked 

binders were primarily generated using mass spectrometry and fluorescence based (biophysical) 

approaches. In the case of HLA-E*01:03, the majority of the data (i.e., 632 distinct positive binders 

with 8–15 residues range) came from mass spectrometry. In addition, 87 peptides were produced using 

fluorescence-based techniques, and 4 peptides came from X-ray crystallography. We exclusively take 

into account mass spectrometry-derived peptides for HLA-G*01:01, -G*01:03, -G*01:04, and -

E*01:03 in order to retain the homogeneity in the datasets. However, HLA-E*01:01 only has a small 

number of mass spectrometry-derived experimentally validated binders, thus we have taken into 
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account the entire dataset of 142 binding peptides (114 derived from fluorescence based and 28 

peptides derived from mass spectrometry). 

We randomly created the HLA-G and HLA-E non-binding peptides with lengths of 8 to 15 residues 

from the Swiss-Prot [54] database because to the IEDB’s dearth of negative peptides (March 2021 

release). In this case, we have produced two distinct datasets, one of which is balanced and contains 

an equal amount of negative and positive peptides for each allele. The other dataset is the 

unbalanced/realistic dataset, which contains ten times as much negative data as positive data.  

5.2.2 Amino-acid composition  

To comprehend the compositional similarities in various peptide sequences, the amino acid 

composition (AAC) of the positive and negative dataset for each allele is computed. The AAC for 

binder/non-binder peptides for the HLA-G and HLA-E alleles is calculated using the following 

equation.  

𝐴𝐴𝐶𝑖 =
𝐴𝐴𝑅𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
× 100 

 

where AACi and AARi are the percentage composition and number of residues of type i in a peptide, 

respectively.  

 

5.2.3 Sequence logo  

With the aid of the TSL programme, we created sequence logos for each HLA-allele. In our dataset, 

the minimum length of peptide was eight, and hence, we created the fixed-length peptides having 

sixteen residues. In order to create a fixed-length vector, we picked eight residues from N-terminal 

and eight residues from C-terminal; further, we merged the two sequences and got the final sixteen 

residue peptides for each positive and negative dataset. 

 

5.2.4 Binary profile generation   

To represent the amino acid sequence in the numerical vector, we have implemented the binary profile 

module of Pfeature (Pande et al., 2019). Binary profile is the binary representation of the sequences, 

where each amino acid represented by the vector of length 20. In the binary vector each position 

belongs to 20 different amino acids, where each element represents the presence/absence of the 

residues, presence was signified by “1” and absence of residues was signified by “0” at that particular 
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position. For instance, residue “A” was represented by the vector 

“1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0”. In order to generate the vector of fixed length to train the 

models, it is important to fix the sequence length. Since, the length varies from 8 to 15, we have 

generated patterns N8, C8, N8C8, and AA15. In case of N8 patterns, eight residues were selected from 

N-terminal of the sequences, whereas in C8 patterns, eight residues were taken from the C-terminal. 

In case of N8C8, patterns of length 16 were generated by joining the eight residues from N- and C-

terminal. Therefore, pattern N8 and C8 generated the vector size of 160 (8*20) and pattern N8C8 was 

represented by vector of length 320 (16*20). Similarly, patterns with length 15 (i.e. maximum length) 

was generated and called as AA15. In order to make up the length for sequences having length less 

than 15, a dummy variables “X” was padded and then the binary profile was generated. In this case, 

each amino acid is represented by length 21 instead of 20, where 21st element represents the 

presence/absence of dummy variable “X”. Therefore, the generated vector for these patterns have the 

length of 315 (15*21). 

 

5.2.5 Machine learning  

To build the prediction models to classify the peptides into non-classical HLA-binding peptides, we 

have implemented several machine learning classifiers using the scikit-learn library of Python. We 

have used Decision Tree (DT), Random Forest (RF), Support Vector Classifier (SVC), eXtreme 

Gradient Boosting (XGB), Gaussian Naïve Bayes (GNB), Logistic Regression (LR), K-Nearest 

Neighbor (KNN), and randomized Extra Tree (ET) classifier to develop the prediction models. 

 

5.2.6 Cross validation technique 

To prevent bias and overfitting in the derived models, we used a 5-fold cross-validation procedure. 

The evaluation of the prediction model is one of the most important processes. This method divides 

the complete dataset into five segments, of which four are utilised for training, and the final model is 

tested on the left segment. Five repetitions of the precise procedure are duplicated in order to provide 

each component a chance to serve as the testing dataset. The average of the performances of the five 

models that emerged from the five iterations ultimately serves as the representation of the final 

performance. 

 

5.2.7 Performance measures  
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The performance evaluation parameters are broadly categorised into threshold-dependent and 

threshold-independent parameters, can be used to evaluate the prediction models. The threshold-

dependent metrics in this investigation were identified as sensitivity, specificity, accuracy, F1-score, 

and Matthews correlation coefficient (MCC). As a threshold-independent metric, Area Under Receiver 

Operating Characteristics (AUC) curve is determined. Equation 1 quantifies the model's sensitivity, 

while equation 2 calculates its specificity, which is the proportion of correctly predicted non-binders. 

Equation 3 shows the percentage of binders and non-binders that were successfully predicted, equation 

4 shows the balance between precision and recall, and equation 5 shows the relationship between 

predicted and observed values. The capacity of the model to differentiate between the classes is 

captured by the area under the curve (AUC), which is a plot between sensitivity and 1-specificity. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                [1] 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                [2] 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                [3] 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                     [4] 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                                   [5] 

Where, TP, TN, FP and FN stands for true positive, true negative, false positive and false negative, 

respectively. 

 

 

 

5.3 Results 

5.3.1 Overall study design  

Figure 5.2 incorporates the overall workflow of the present study and display the collection of dataset, 

feature generation method, machine learning and web-server implementation.  
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Figure 5.2 Show the flow chart of algorithm used for the building of HLAncPred, where models 

are trained on training dataset and validated on independent dataset  

 

5.3.2 Amino-acid composition  

Figure 5.3 illustrates the average amino-acid composition of HLA-G and HLA-E binding and non-

binding peptides. The compositional difference between the positive and negative datasets is evident 

in the graphs, as illustrated. Figure 5.3 shows that compared to non-binding peptides, HLA-G*01:01, 

-G*01:03, and -G*01:04 binders (i.e., positive peptides) have a higher composition of residues like 

isoleucine (I), lysine (K), leucine (L), and proline (P). In contrast to the negative dataset, HLA-

E*01:01, -E*01:03 binding peptides have a larger average composition of Alanine (A), Leucine (L), 

Methionine (M), Proline (P), and Valine (V) residues.  
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Figure 5.3 Average amino acid composition of different non-classical HLA-alleles (HLA-

G*01:01, HLA-G*01:03, HLA-G*01:04, HLA-E*01:01, and HLA-E*01:03) & general proteome 

 

5.3.3 Position-wise conservation  

Here, we have used two sample logo to depict the sequence logo for each non-classical HLA-allele 

(HLA-G*01:01, HLA-G*01:03, HLA-G*01:04, HLA-E*01:01, and HLA-E*01:03). As depicted in 

Figure 5.4, each logo is used to identify the conserved residues and their precise location in the 

nonameric sequences. In case of HLA-G alleles amino-acid residue ‘P’ is highly conserved at position 

P3 and ‘L’ at position P9 and display very high abundance, whereas ‘K/R’ anchor residues placed at 

initial anchor position (P1). When it comes to HLA-E alleles the amino-acid residues are conserved 

and primarily found at positions (P2 and P9) with hydrophobic residues predominating. The anchor 

residues for HLA-E are M/L at the second anchor position (P2) and sixteenth position (P16). However, 

residue ‘L’ highly conserved at the ninth position (P9) for HLA-E*01:01, and V/L for HLA-E*01:03.  
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Figure 5.4 Two sample logo generated for non-classical HLA-alleles; where, upper portion shows 

non-classical HLA binders and lower part shows non-binders  

5.3.4 Performance of classification models 

To create prediction models for this work, we used a variety of classifiers, including GNB, XGB, RF, 

DT, SVC, ET, KNN, and LR. For positive and negative datasets (i.e., HLA-G*01:01, -G*01:03, -

G*01:04, -E*01:01, and -E*01:03 binding and non-binding peptides), we compute binary profile-

based features. Using the Pfeature standalone package, we first create four feature sets (i.e., the N8, 

C8, N8C8, and AA15 binary profiles). Then, using each feature set for the HLA-G and HLA-E alleles, 

we created a number of machine learning models. 

 

5.3.4.1 HLA-G based models 

We have developed various models using N8 and C8 binary profiles-based features. As shown in Table 

5.1, HLA-G*01:01 and HLA-G*01:04 achieved maximum AUC of 0.98 on validation dataset using 
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C8 binary profiles. HLA-G*01:03 performed quite less and achieved an AUC of 0.95 on validation 

dataset. However, N8 based features perform less and achieved maximum AUC of 0.97, 0.93 and 0.95 

for HLA-G*01:01, HLA-G*01:03 and HLA-G*01:04 alleles.      

Table 5.1: The performance of machine learning based models developed using N8 and C8 

binary profile-based features of HLA-G alleles on validation datasets    

  N8 C8 

Name Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

HLA-G*01:01 

DT 83.11 82.92 83.02 0.90 0.66 89.18 88.62 88.90 0.93 0.78 

RF 89.94 92.03 90.99 0.96 0.82 92.60 92.79 92.69 0.98 0.85 

LR 89.94 92.60 91.27 0.95 0.83 93.55 91.65 92.60 0.97 0.85 

XGB 90.32 92.03 91.18 0.96 0.82 92.98 92.79 92.88 0.98 0.86 

KNN 87.67 91.46 89.56 0.95 0.79 92.79 92.03 92.41 0.97 0.85 

GBM 90.32 80.65 85.48 0.92 0.71 88.05 92.79 90.42 0.94 0.81 

ET 91.08 91.84 91.46 0.97 0.83 93.17 92.98 93.07 0.98 0.86 

SVC 90.13 93.17 91.65 0.96 0.83 94.12 92.98 93.55 0.98 0.87 

HLA-G*01:03 

DT 74.67 74.83 74.75 0.83 0.50 89.33 79.47 84.39 0.93 0.69 

RF 86.00 92.05 89.04 0.93 0.78 88.67 95.36 92.03 0.95 0.84 

LR 86.00 92.05 89.04 0.93 0.78 88.67 92.72 90.70 0.95 0.82 

XGB 81.33 90.73 86.05 0.93 0.72 90.00 91.39 90.70 0.95 0.81 

KNN 85.33 92.72 89.04 0.93 0.78 88.67 93.38 91.03 0.95 0.82 

GBM 88.67 76.82 82.72 0.84 0.66 86.67 84.11 85.38 0.86 0.71 

ET 86.00 93.38 89.70 0.93 0.80 90.00 94.04 92.03 0.95 0.84 

SVC 86.00 94.04 90.03 0.94 0.80 90.67 92.05 91.36 0.95 0.83 

HLA-G*01:04 

DT 75.93 79.76 77.85 0.85 0.56 85.185 84.663 84.923 0.891 0.698 

RF 92.59 88.34 90.46 0.95 0.81 96.296 96.319 96.308 0.98 0.926 

LR 91.98 86.50 89.23 0.95 0.79 95.679 94.479 95.077 0.975 0.902 

XGB 90.12 87.73 88.92 0.94 0.78 96.296 95.092 95.692 0.978 0.914 

KNN 91.36 89.57 90.46 0.95 0.81 96.296 95.706 96 0.976 0.92 

GBM 82.72 87.12 84.92 0.88 0.70 91.975 86.503 89.231 0.902 0.786 

ET 92.59 88.96 90.77 0.95 0.82 96.296 96.933 96.615 0.978 0.932 

SVC 91.36 84.66 88.00 0.95 0.76 96.296 95.092 95.692 0.976 0.914 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, ET, Extra Tree; SVC, Support vector classifier; Sensitivity; Spec, Specificity; Acc, 

Accuracy; AUROC, Area Under Receiver Operating Curve 
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We found that models based on the AA15 binary profile perform better than others with balanced 

sensitivity and specificity. According to Table 5.2, the HLA-G*01:01 dataset had an accuracy of more 

than 95% on both the training and validation datasets, with a maximum AUC of 0.99. On training and 

validation datasets, ET-based models exhibit comparable outcomes, with an AUC of 0.99 and accuracy 

greater than 95%. (Table 4.2). On the HLA-G*01:03 dataset, the XGB classifier performs similarly, 

with a maximum AUC of 0.98 and accuracy of 91.69%. On the HLA-G*01:04 dataset, however, the 

performance of the RF, ET, and SVC classifiers surpasses that of the other models.  

Table 5.2: The performance of machine learning based models developed using N8C8 and AA15 

binary profile-based features of HLA-G alleles on validation datasets    

 N8C8 AA15 

Name Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

HLA-G*01:01 

DT 87.86 82.16 85.01 0.90 0.70 89.37 89.75 89.56 0.94 0.79 

RF 94.31 95.26 94.78 0.98 0.90 93.93 95.83 94.88 0.98 0.9 

LR 94.12 94.50 94.31 0.98 0.89 92.79 95.07 93.93 0.98 0.88 

XGB 94.12 95.45 94.78 0.98 0.90 94.12 92.98 93.55 0.98 0.87 

KNN 93.17 93.93 93.55 0.98 0.87 91.27 94.12 92.69 0.97 0.85 

GBM 92.41 92.79 92.60 0.96 0.85 91.08 86.34 88.71 0.9 0.78 

ET 95.07 95.83 95.45 0.98 0.91 93.93 96.02 94.97 0.99 0.9 

SVC 94.88 95.45 95.16 0.98 0.90 94.5 95.83 95.16 0.99 0.9 

HLA-G*01:03 

DT 78.67 93.38 86.05 0.90 0.73 80.67 82.78 81.73 0.88 0.64 

RF 88.00 96.69 92.36 0.96 0.85 87.33 94.04 90.7 0.97 0.82 

LR 90.00 96.03 93.02 0.96 0.86 88 94.7 91.36 0.97 0.83 

XGB 89.33 95.36 92.36 0.96 0.85 90 93.38 91.69 0.98 0.83 

KNN 88.67 96.69 92.69 0.95 0.86 85.33 95.36 90.37 0.94 0.81 

GBM 88.67 78.81 83.72 0.85 0.68 91.33 65.56 78.41 0.78 0.59 

ET 89.33 96.03 92.69 0.96 0.86 89.33 94.04 91.69 0.97 0.84 

SVC 88.67 96.69 92.69 0.96 0.86 88 95.36 91.69 0.97 0.84 

HLA-G*01:04 

DT 85.19 84.66 84.92 0.89 0.70 86.42 76.69 81.54 0.87 0.63 

RF 96.30 96.32 96.31 0.98 0.93 96.3 93.87 95.08 0.98 0.9 

LR 95.68 94.48 95.08 0.98 0.90 96.3 92.64 94.46 0.98 0.89 

XGB 96.30 95.09 95.69 0.98 0.91 95.06 94.48 94.77 0.98 0.9 

KNN 96.30 95.71 96.00 0.98 0.92 95.06 90.8 92.92 0.97 0.86 

GBM 91.98 86.50 89.23 0.90 0.79 93.21 67.49 80.31 0.8 0.63 
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ET 96.30 96.93 96.62 0.98 0.93 96.3 93.87 95.08 0.98 0.9 

SVC 96.30 95.09 95.69 0.98 0.91 96.91 93.87 95.39 0.98 0.91 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, ET, Extra Tree; SVC, Support vector classifier; Sensitivity; Spec, Specificity; Acc, 

Accuracy; AUROC, Area Under Receiver Operating Curve 

 

5.3.4.2 HLA-E based models 

To achieve this, we created a number of prediction models using both positive and negative datasets 

for the HLA-E*01:01 and -E*01:03 alleles. As shown in Table 5.3, we have achieved maximum AUC 

of 0.90 and 0.89 using RF-based classifier on N8 and C8 binary profile-based features in the case of 

HLA-E*01:01. However, we observer a significant difference in the sensitivity and specificity.    

Table 5.3: The performance of machine learning based models developed using N8 and C8 

binary profile-based features of HLA-E alleles on validation datasets    

 N8 C8 

Name Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

HLA-E*01:01 

DT 89.29 79.31 84.21 0.82 0.69 61.54 92.59 77.36 0.81 0.57 

RF 85.71 68.97 77.19 0.90 0.55 76.92 85.19 81.13 0.89 0.62 

LR 82.14 68.97 75.44 0.86 0.52 84.62 77.78 81.13 0.87 0.63 

XGB 78.57 79.31 78.95 0.86 0.58 80.77 85.19 83.02 0.88 0.66 

KNN 75.00 79.31 77.19 0.87 0.54 73.08 88.89 81.13 0.85 0.63 

GBM 92.86 55.17 73.68 0.74 0.52 80.77 44.44 62.26 0.63 0.27 

ET 82.14 75.86 78.95 0.91 0.58 69.23 85.19 77.36 0.86 0.55 

SVC 
82.14 79.31 80.70 0.90 0.62 0.00 100.00 50.94 0.15 0.00 

HLA-E*01:03 

DT 70.35 70.35 70.35 0.76 0.41 89.29 68.97 78.95 0.77 0.59 

RF 77.93 78.62 78.28 0.86 0.57 82.14 86.21 84.21 0.95 0.68 

LR 76.55 75.17 75.86 0.84 0.52 85.71 96.55 91.23 0.98 0.83 

XGB 73.10 78.62 75.86 0.83 0.52 96.43 86.21 91.23 0.97 0.83 

KNN 73.10 78.62 75.86 0.82 0.52 82.14 82.76 82.46 0.90 0.65 

GBM 82.07 62.76 72.41 0.74 0.46 71.43 82.76 77.19 0.77 0.55 

ET 75.86 78.62 77.24 0.86 0.55 92.86 79.31 85.97 0.95 0.73 

SVC 74.48 77.24 75.86 0.84 0.52 89.29 82.76 85.97 0.96 0.72 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, ET, Extra Tree; SVC, Support vector classifier; Sensitivity; Spec, Specificity; Acc, 

Accuracy; AUROC, Area Under Receiver Operating Curve 
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In order to improve the performance, we have computed performances on N8C8 and AA15 binary 

profile-based features. As shown in the results of the preceding section, binary profile-based features 

outperform other classifiers for this dataset AA15. According to Table 5.4, ET-based models 

outperform other classifiers for the HLA-E*01:01 allele, with accuracy values of 87.67% and 89.47% 

and an AUC of 0.96 on the training and validation datasets, respectively. Additionally, models based 

on RF and XGB function admirably with balanced sensitivity and specificity (Table 5.4). However, 

SVC worked admirably on the HLA-E*01:03 dataset, with AUC of 0.93 and 0.94; accuracy of 84.08% 

and 84.98%, respectively, on the training and validation dataset, as indicated in Table 5.4. 

Table 5.4: The performance of machine learning based models developed using N8C8 and AA15 

binary profile-based features of HLA-E alleles on validation datasets    

 N8C8 AA15 

Name Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

HLA-E*01:01 

DT 68.28 81.38 74.83 0.79 0.50 75 75.86 75.44 0.81 0.51 

RF 80.69 83.45 82.07 0.90 0.64 89.29 86.21 87.72 0.96 0.76 

LR 80.69 80.69 80.69 0.89 0.61 85.71 89.66 87.72 0.97 0.76 

XGB 82.07 81.38 81.72 0.90 0.63 89.29 86.21 87.72 0.96 0.76 

KNN 78.62 80.00 79.31 0.86 0.59 82.14 82.76 82.46 0.93 0.65 

GBM 89.66 58.62 74.14 0.74 0.51 89.29 79.31 84.21 0.84 0.69 

ET 
79.31 83.45 81.38 0.90 0.63 92.86 86.21 89.47 0.96 0.79 

SVC 
82.76 80.00 81.38 0.89 0.63 85.71 86.21 85.97 0.96 0.72 

HLA-E*01:03 

DT 68.28 81.38 74.83 0.79 0.50 71.43 66.93 69.17 0.76 0.38 

RF 80.69 83.45 82.07 0.90 0.64 92.06 77.95 84.98 0.93 0.71 

LR 80.69 80.69 80.69 0.89 0.61 88.89 77.17 83 0.9 0.67 

XGB 82.07 81.38 81.72 0.90 0.63 82.54 77.95 80.24 0.9 0.61 

KNN 78.62 80.00 79.31 0.86 0.59 88.1 72.44 80.24 0.9 0.61 

GBM 89.66 58.62 74.14 0.74 0.51 90.48 46.46 68.38 0.69 0.41 

ET 79.31 83.45 81.38 0.90 0.63 93.65 77.95 85.77 0.93 0.73 

SVC 82.76 80.00 81.38 0.89 0.63 90.48 79.53 84.98 0.94 0.7 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, ET, Extra Tree; SVC, Support vector classifier; Sensitivity; Spec, Specificity; Acc, 

Accuracy; AUROC, Area Under Receiver Operating Curve 
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5.4 Comparison with existing methods 

In order to understand the advantages/dis-advantages of this method, it is crucial to compare and 

validate our method with existing tools. Currently we have compared HLAncPred with MHCflurry 

2.0 and NetMHCpan 4.1 existing methods. Here, we have trained our models on the dataset used 

in MHCflurry 2.0 and NetMHCpan 4.1 tools and validate the performance of all the methods 

including HLAncPred on the updated dataset provided in IEDB database. As shown in the Table 

5.5, HLAncPred outperform all existing methods.  

 

Table 5.5: The comparison of performance of HLAncPred and other methods on the updated 

IEDB dataset - Adopted from (Dhall et al., 2022) 

 

HLA-allele 
HLAncPred MHCflurry 2.0 NetMHCpan 

Sens Spec Acc MCC Sens Spec Acc MCC Sens Spec Acc MCC 

HLA-G∗01:01 92.60 94.30 93.40 0.87 88.70 93.30 91.00 0.82 47.20 98.70 72.90 0.53 

HLA-G∗01:03 72.20 61.10 66.70 0.33 27.80 94.40 61.10 0.29 8.30 97.20 52.80 0.12 

HLA-G∗01:04 73.50 70.60 72.10 0.44 32.40 97.10 64.70 0.39 11.80 100.00 55.90 0.25 

HLA-E∗01:01 92.10 88.10 90.10 0.80 85.70 84.90 85.40 0.71 82.50 92.10 87.30 0.75 

HLA-E∗01:03 71.30 83.80 77.60 0.56 61.20 91.00 76.50 0.55 50.50 95.30 72.90 0.51 

 

 

5.5 Webserver & standalone package  

 

In the current study, we created a web-based tool called “HLAncPred” to provide facility to the 

researchers for the predictions and scanning of non-classical HLA-binder and non-binder peptides 

(https://webs.iiitd.edu.in/raghava/hlancpred/) (See Figure 5.5). In order to more accurately predict 

non-classical HLA-binders, we have used our best models in this web server. We have provided two 

major modules (1) PREDICT and (2) SCAN in our website. The prediction module enables users to 

determine which HLA-G (-G*01:01, -G*01:02, -G*01:03) and HLA-E (-E*01:01, -E*01:03) peptides 

are the most promiscuous binders and non-binders. Users can upload the input files or upload 

numerous peptides in the usual FASTA format and choose whether to predict binding for just one 

allele or several alleles. The results are presented by the server in tabular format, including the input 

sequence, score, and prediction (binder/non-binder). By utilizing their binary profiles, this module 

enables the facility to identify the protein areas that might bind to non-classical alleles such HLA-

G*01:01, -G*01:02, -G*01:03, -E*01:01, and -E*01:03. 

https://webs.iiitd.edu.in/raghava/hlancpred/
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Figure 5.5: Home page of HLAncPred webserver 

(https://webs.iiitd.edu.in/raghava/hlancpred/index.html ) 

Additionally, it enables users to anticipate binders using any length of sequence. Users can also search 

a protein sequence in the opposite direction to discover new peptides that can bind to HLA-G and 

HLA-E alleles. It will produce fragments with the length the users specify and forecast their behavior. 

The user can select the allele(s) for the prediction and provide one or more protein sequences in 

FASTA format. We have created our tool using HTML, PHP, and JAVA scripts and is compatible 

with a variety of gadgets (including the iPhone, iPad, computers, and android mobile phones). The 

utility of ‘PREDICT’ module of the server is provided in Figure 5.6 and 5.7.  

 

https://webs.iiitd.edu.in/raghava/hlancpred/index.html
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Figure 5.6 Steps involved in submitting a sequence for predicting binders for non-classical HLA-

alleles using ‘PREDICT’ module of HLAncPred server 

 

 

Figure 5.7 Output page of ‘PREDICT’ module provides query sequence, score and prediction  



 
71 

 

5.6 Discussion  

During the development of the fetus, the non-classical HLA, such as HLA-G, functions as an 

immunomodulatory molecule and a natural defense. During viral infections, HLA-E activates 

inflammatory cytokines to cause immunological responses. It should be noted that excessive HLA-G 

expression may create an immuno-suppressive milieu, which could aid tumor cells in avoiding our 

innate and adaptive immune systems. Studies have also revealed that immune-mediated diseases 

including multiple sclerosis and systemic lupus erythematosus are caused by the excessive and 

abnormal expression of HLA-G. HLA-E based T cell immunotherapy may be administered to a 

heterogenic population due to the low polymorphism of non-classical HLA, which may have numerous 

advantages over traditional HLA-based therapies. Additionally, by interacting with CD8+ T-cells via 

HLA-E, anti-inflammatory immune response is activated, which inhibits cytokine storm. On the other 

hand, immunotherapies based on HLA-G have been demonstrated to have encouraging outcomes in 

the management of solid cancers. An anti-HLA-G CAR-T cell immunotherapy has been developed by 

researchers to treat acute lymphoblastic leukemia and B-cell malignancies. Therefore, the creation of 

an accurate prediction approach for the detection of non-classical HLA-binder peptides is absolutely 

necessary. Numerous HLA binding peptide prediction algorithms have been created in recent years, 

but only a small number of them have been used for non-classical binder prediction. In the current 

study, we developed a prediction method, which can be utilized by scientific community to develop a 

vaccine against the cancer. Researchers can also use this approach to forecast the peptides that non-

classical HLA-alleles will bind to in order to fight off various viral, autoimmune, and pathogenic 

diseases. We believe that the community engaged in designing vaccines and HLA-based 

immunotherapies will profit from our approach. Identifying the promiscuous binders or antigenic areas 

that can bind to a large variety of HLA alleles is one of the key difficulties in the field of 

immunotherapy. We created a standalone software and web server called HLAncPred to forecast the 

promiscuous binders for non-classical HLA alleles. 

5.7 Conclusion  

 

The scientific community can use these findings to develop a vaccine against the deadly virus and 

cancers in order to predict the peptides that binds to non-classical HLA-alleles. Moreover, this tool 

can be extended by adding more information and new models for other Class-I and Class-II non-

classical HLA-alleles.    
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CHAPTER 6 
PREDICTION OF IL6 INDUCING PEPTIDES  
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6.1 Introduction 

The pleiotropic cytokine interleukin 6 is produced by the interleukin 6 gene (IL6). It is also known by 

some other names, including plasmacytoma growth factor, interferon-beta (IFN- β2) and B cell 

stimulatory factor-2 (Ataie-Kachoie et al., 2014). It is a multifunctional cytokine and play crucial role 

in both innate and adaptive immune responses, rheumatoid arthritis, haematopoiesis, acute phase 

reactions, and organ development (Su et al., 2017), among other inflammatory illnesses. Infections 

and tissue injury are the main triggers for its production (Tanaka et al., 2014; Velazquez-Salinas et al., 

2019). Numerous cell types, including macrophages, dendritic cells, mast cells, fibroblasts, endothelial 

cells, T cells, and B cells are associated with the generation of IL6 (Mauer et al., 2015; Velazquez-

Salinas et al., 2019) (See Figure 6.1). IL6 is essential for controlling numerous physiological processes, 

including those of the immune system, central neurological system, and cardiovascular system. Recent 

research has been shown that IL6 dysregulation contributes to the onset, progression, and metastasis 

of a number of diseases, including different forms of cancer (Hong et al., 2007).  

Numerous studies have shown that elevated levels of IL6 are associated with a higher risk of 

developing cancer as well as other diseases like insulin resistance, asthma, coronary heart disease, and 

cancer. They have also shown that elevated levels of IL6 can serve as a prognostic marker for cancer 

(Ujiie et al., 2012; Zarogoulidis et al., 2013). A cytokine storm or cytokine release syndrome (CRS), 

which is the abnormal release of circulating cytokines, may have contributed to the recent outbreak of 

coronavirus disease (COVID-19), which is caused by the Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2), also known as the 2019 novel coronavirus (2019-nCoV). The health 

of COVID-19 patients has significantly declined as a result of the dramatically increasing levels/high 

levels of IL6 and other pro-inflammatory cytokines, such as IL-1, IL-8, IL-12, IL-18, interferon (IFN), 

and tumour necrosis factor (TNF). The progression of COVID-19 infection from pneumonia to 

respiratory failure (L. Zou et al., 2020) and acute respiratory distress syndrome (ARDS) ultimately 

results in multi-system organ failure and significant mortality. Since the severity of the disease’s 

effects is worsened by the larger cytokine storm caused by the elevated IL6 concentration, IL6 may be 

exploited as a possible therapeutic target or biomarker for severe COVID-19 cases (Chen, Zhao, et al., 

2020). 
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Figure 6.1: Depicts the mode of IL6 secretion by different cells and its main roles in our immune 

system (i.e., T-cell, B-cell proliferation, organ development, etc.) 

  

Through tightly regulated transcriptional and post-transcriptional mechanisms, IL6 is quickly 

produced as an immunological response to infection and tissue damage. However, IL6 expression that 

is dysregulated has a detrimental impact on autoimmune disease and chronic inflammation. In 

numerous disorders, including Alzheimer's disease, atherosclerosis, Behçet's disease, diabetes, 

depression, multiple myeloma, prostate cancer, rheumatoid arthritis, and systemic lupus 

erythematosus, IL6 increases the inflammatory and auto-immune processes. Numerous COVID-19 

verified cases have been identified with elevated serum IL6 levels. Therefore, it must be highlighted 

that certain disorders either require anti-IL6 treatment or require checking for the existence of IL6 

triggering factors. 

In recent years, a number of computational methods for cytokine prediction and classification have 

been established. A cytokine-specific approach called CytoPred (Lata & Raghava, 2008) predicts and 

further categorises the cytokine into its family and sub-family. IFNepitope (Dhanda, Vir, et al., 2013) 

is a technique created to predict and create peptides that induce IFN-gamma (IFN-gamma). In order to 
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predict the peptides that induce IL-4, IL-10, and IL-17, respectively, some techniques, such as IL4Pred 

(Dhanda, Gupta, et al., 2013), IL-10Pred (Nagpal et al., 2017), and IL17eScan (Gupta, Mittal, et al., 

2017), were created. ProInflam (Gupta et al., 2016) and PIP-EL (Manavalan et al., 2018), which predict 

the pro-inflammatory nature of the peptides and proteins, which causes the generation of pro-

inflammatory cytokines, are two methods that have been developed for the prediction of specific 

cytokines. The peptides or proteins that trigger the generation of anti-inflammatory cytokines are 

predicted by AntiInfam (Gupta, Sharma, et al., 2017). Of note, there is no dedicated method or 

computational tool which can predict the IL6 inducing peptides. An effort has been made to create 

computational models for prediction, scanning and designing of peptides that can cause the release of 

the cytokine IL6 in order to benefit the scientific community. We created the positive and negative 

dataset from IEDB and applied various machine learning algorithm for the development of 

classification models. The overall architecture of the study is depicted in Figure 6.2.  

Figure 6.2 Shows the complete workflow of the study, including dataset collection from IEDB, 

feature generation and selection, machine learning algorithms and webserver development 

 

6.2 Material and methods 
 

6.2.1 Compilation of data 
In order to create machine learning models, we have to select a clean, well-annotated dataset. In this 

study, we compiled the dataset from immune epitope database (IEDB), which is available to the public, 
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and extracted experimentally validated linear epitopes (R et al., 2019). In the T-cell assay of human 

and mouse, the positive dataset includes IL6-inducing peptides, while the negative dataset includes 

proinflammatory cytokines that do not induce IL6 (e.g., IL1, IL1, TNF, IL8, IL12, IL17, IL18, and 

IL23). We eliminate identical sequences from peptides that induce IL6 and those that do not. Then, 

peptides with lengths less then 8 residues or more and more than 25 residues were eliminated. Finally, 

we had a major dataset with 365 distinct epitopes that could induce IL6 and 2991 peptides are IL6-non 

inducing that couldn't, known as the positive dataset and the negative dataset, respectively.  

 

6.2.2 Data analysis  

To compute the amino-acid composition of positive and negative dataset we have used Pfeature tool. 

To determine the ideal length for both positive and negative peptides, we first examine the IL6-

inducing and non-inducing sequences. Since the a two-sample logo (TSL) technique requires a 

predetermined length of input sequence vector criterion, we develop sequence logo to comprehend the 

preference of particular amino acids at a given position. We need eight residues from the N-terminal 

and eight residues from the C-terminal to build a fixed-length feature vector because the minimum 

length of the peptide in our dataset is eight residues. This results in a profile with 16 residue positions.  

 

6.2.3 Feature generation 

 
This work uses Pfeature to compute a variety of characteristics from the peptide sequences. 15 different 

types of features were generated using the composition-based feature module. The Pfeature 

composition-based features module produced a vector with 9149 features. Amino acid composition, 

dipeptide composition, tripeptide composition, and atom & bond composition are used to construct 

simple composition-based characteristics. Computing physio-chemical properties, Residue repeat 

information, Property repeat information, and Distance distribution of residue have been used to 

identify residue and distribution information. Conjoint Triad Descriptors, Composition Improved 

Transition and Distribution, Shannon entropy Quasi-Sequence Order, Amphiphilic Pseudo Amino 

Acid Composition, Sequence Order Coupling Number, and Pseudo Amino Acid Composition. 

 

6.2.4 Development of prediction models  

In this study, a classification model for the prediction of IL6 or non-IL6 inducing peptides has been 

developed using a number of machine learning methods. Decision tree (DT), Random Forest (RF), 

Logistic Regression (LR), XGBoost (XGB), k-nearest neighbor (KNN) and Gaussian Naive Bayes 
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(GNB). scikit-Learn, a Python library, was used to build these classification methods. We employed a 

number of protein features produced by the Pfeature package to create prediction models. 

 

6.2.5 Feature selection/ranking techniques 

 
Finding a relevant set of features from the enormous dimension of features is one of the study's biggest 

obstacles. There are various techniques for feature selection; in order to remove unimportant features 

from the training dataset, we employed the SVC with the L1 penalty and the feature selection 

methodology from the Scikit package. The L1 penalty is applied on the non-zero coefficients chosen 

by the SVC-L1 approach before the relevant features are chosen to minimise the dimensions. From 

the 9149 features in the feature set, we choose 186 for SVC-L1. Furthermore, we rank the feature using 

the feature selector tool (https://pypi.org/project/feature-selector/ ) in order to decrease the number of 

protein features from the chosen collection of features. In this procedure, characteristics were ordered 

based on their normalised and cumulative importance, respectively. To comprehend the nature of IL6 

inducing peptides, these major features were investigated. We also used machine learning to analyse 

a set of features, computing the performance on the top 10, 20, 30, …. 186 features, respectively. 

 

6.2.6 Parameters of evaluation 

In order to evaluate and test our prediction models, we used the five-fold cross-validation method. One 

of the most used evaluation methods is five-fold cross-validation. The complete training dataset is first 

split into five equal sets, or folds, each of which has the same number of positive and negative 

examples. The fifth fold was then used for testing after using the first four for training. Each set is 

tested after the operation has been repeated several times. In addition, we employed established 

evaluation metrics to assess the effectiveness of various prediction models. We employed both 

threshold-dependent and independent parameters in this work, and we used the following equations to 

assess threshold-dependent characteristics including sensitivity, specificity, and accuracy. In order to 

evaluate the effectiveness of the models, we additionally employed the typical threshold-independent 

parameter Area under the Receiver Operating Characteristic (AUROC) curve. Plotting sensitivity 

versus (1-specificity) on various thresholds results in the creation of the AUROC curve.  

 

6.3 Results 

In this investigation, we employed 365 peptides as a positive dataset that can stimulate the production 

of the cytokine IL6. The primary dataset has 2991 peptides that do not trigger the IL6 cytokine, called 

https://pypi.org/project/feature-selector/
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as negative dataset. All the calculations and predictions made for IL6-inducing and non-inducing 

peptides. 

 

6.3.1 Conservation and compositional analysis 

To explore the preference of individual amino acids at a particular location in the peptide string. We 

generate a sequence logo for the IL6 inducing peptides using WebLogo software 

(http://weblogo.threeplusone.com), as shown in Figure 6.3. The relative abundance of the sequence is 

represented by the most important amino acid residue. WebLogo shows residue positions on x-axis, 

and bit-score on y-axis. Here, bit-score signifying the conservation of residues.  Each position exhibits 

the stack of amino acids which are conserved at that position, where the height of each residue signifies 

the relative frequency. We observed that the leucine, alanine and isoleucine amino acid residue is 

highly conserved in IL6 inducing peptides.  

 

Figure 6.3 WebLogo represent the conserved amino-acid residues 

 

Moreover, we calculated the amino acid composition (AAC) in this analysis for both positive and 

negative datasets. Figure 6.4 depicts the typical composition of IL6-inducing and non-inducing 

peptides. In contrast to non-IL6 peptides, IL6 inducing peptides have a higher average composition of 

residues like (I, L, and S). Additionally, non-IL6 peptides include more of the residues (A, D, and G) 

than IL6 inducing peptides.  

 

http://weblogo.threeplusone.com/
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Figure 6.4 Illustrate average amino-acid composition of IL6 inducing and non-inducing 

peptides; where, up-arrow represents the average composition of residue is higher in IL6 

inducing peptides and down-arrow represents the average composition of residue is lower in IL6 

inducing peptides  

 

6.3.2 Preformation of prediction models 

Utilizing a variety of classifiers, including RF, DT, GNB, XGB, and LR, we create prediction models. 

First, using the Pfeature compositional based module, we compute the features of the IL6 inducers and 

non-inducers. Pfeature generates a total of 9149 features and we used the SVC-L1 feature selection 

technique to choose the most important features. After selecting 186 features, we rank the features 

using feature-selector algorithm. Then, we have computed performance on top-10, 20, 30, 40, ……… 

186 features, as shown in Table 6.1. We observed that the performance of top-10 and top-186 features 

is highly accurate with balanced sensitivity and specificity. While, the models based on other features 

achieved high accuracy and AUC on training dataset and poor performance on validation dataset. 

Moreover the performance of other features is highly imbalanced.  

 

 

 Table 6.1: Evaluation of machine learning based models on training and validation dataset; 

developed using top-10, 20, 30, …….. 186 features  
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Number of Features Method Dataset Sens Spec Acc AUC 

TOP-10 RF 

Training 77.40 77.39 77.39 0.84 

Validation 75.34 73.24 73.47 0.83 

TOP-20 XGB 

Training 71.58 83.12 81.86 0.84 

Validation 71.23 81.44 80.33 0.86 

TOP-30 XGB 

Training 62.67 87.88 85.14 0.84 

Validation 64.38 87.46 84.95 0.84 

TOP-40 XGB 

Training 60.62 90.47 87.23 0.84 

Validation 61.64 89.30 86.29 0.83 

TOP-50 XGB 

Training 65.41 88.30 85.81 0.86 

Validation 65.75 86.96 84.65 0.85 

TOP-60 XGB 

Training 63.36 85.17 82.79 0.84 

Validation 67.12 85.28 83.31 0.84 

TOP-70 XGB 

Training 68.15 87.05 84.99 0.86 

Validation 63.01 86.62 84.05 0.84 

TOP-80 XGB 

Training 69.86 87.51 85.59 0.87 

Validation 68.49 83.95 82.27 0.84 

TOP-90 XGB 

Training 72.26 85.50 84.06 0.87 

Validation 68.49 83.61 81.97 0.83 

TOP-100 XGB 

Training 69.18 88.97 86.82 0.87 

Validation 60.27 87.12 84.20 0.82 

TOP-110 RF 

Training 81.16 73.46 74.30 0.87 

Validation 78.08 71.24 71.98 0.82 

TOP-120 RF 

Training 83.56 71.38 72.70 0.87 

Validation 79.45 70.07 71.09 0.82 

TOP-130 RF 

Training 83.56 72.13 73.37 0.87 

Validation 76.71 71.07 71.68 0.83 

TOP-140 XGB 

Training 65.41 90.97 88.19 0.86 

Validation 63.01 89.30 86.44 0.85 

TOP-150 XGB 

Training 66.78 87.59 85.33 0.87 

Validation 60.27 87.46 84.50 0.81 

TOP-160 XGB 

Training 66.44 87.13 84.88 0.88 

Validation 67.12 87.79 85.54 0.84 

TOP-170 XGB 

Training 60.27 92.35 88.86 0.88 

Validation 56.16 91.14 87.33 0.86 

TOP-180 RF 

Training 87.67 73.76 75.27 0.89 

Validation 82.19 72.07 73.17 0.86 

TOP-186 RF 

Training 85.96 74.55 75.79 0.89 

Validation 83.56 72.07 73.32 0.86 

#RF, Random Forest; XGB, XGBoost; Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUROC, Area Under 

Receiver Operating Curve 



 
81 

 

6.3.2.1 Top-10 features based model 

Using the feature selector tool, all 186 features were ranked in order of relevance using their 

normalised and cumulative scores. We also assess how well the various feature sets perform. We 

determined the feature set with the smallest amount of characteristics that will accurately and with 

high AUROC distinguish between IL6 inducers and non-inducers. So, using 10, 20, 30,………..,186 

characteristics, respectively, we develop several models and assess their performance using the 

training and validation datasets. We calculated the average values of the top 10 characteristics of IL6 

inducing and non-inducing peptides, as shown in Table 6.2, to better grasp the distinction between the 

positive and negative datasets. In terms of AUROC and accuracy, the top-10 traits chosen have high 

discriminatory power. As shown in Table 6.2 RF-based models achieve maximum performance with 

accuracy (77.39 and 73.47), AUROC (0.84 and 0.83) on training and validation datasets, respectively. 

  

Table 6.2: Evaluation of machine learning based models on training and validation dataset; 

developed using top-10 features  

Classifier Dataset Sens Spec Acc AUC 

DT 
Training 70.55 69.12 69.27 0.74 

Validation 69.86 68.23 68.41 0.72 

GNB 
Training 70.21 66.15 66.59 0.74 

Validation 67.12 64.38 64.68 0.72 

KNN 
Training 58.56 42.29 44.06 0.52 

Validation 64.38 48.16 49.93 0.58 

LR 
Training 61.64 58.63 58.96 0.64 

Validation 64.38 57.19 57.97 0.64 

RF 
Training 77.4 77.39 77.39 0.84 

Validation 75.34 73.24 73.47 0.83 

XGB 
Training 71.23 72.71 72.55 0.8 

Validation 71.23 67.56 67.96 0.8 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUROC, Area Under Receiver 

Operating Curve 

 

6.3.2.2 Top-186 features based model 

Performance of top-186 features provided in Table 6.3. We achieved an AUROC of 0.893 and 0.863; 

accuracy 75.79 and 73.32 on training and validation, and balanced sensitivity and specificity, random 

forest (RF) achieves optimal performance. With AUROC values of 0.87 and 0.82 and accuracy values 
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of 86.29 and 84.65, XGboost also performs well on training and validation datasets; however, there is 

a significant variation in sensitivity and specificity. As shown in Table 6.3, other classifiers like DT, 

LR, KNN, and GNB perform badly on training and validation data. 

 

Table 6.3: Evaluation of machine learning based models on training and validation dataset; 

developed using top-186 features 

Classifier Dataset Sens Spec Accuracy AUC 

DT  Training 40.068 89.887 84.469 0.662 

Validation 39.726 89.632 84.203 0.65 

GNB  Training 57.534 88.884 85.475 0.815 

Validation 53.425 88.294 84.501 0.782 

KNN  Training 47.603 59.967 58.622 0.534 

Validation 52.055 56.187 55.738 0.542 

LR  Training 69.178 78.103 77.132 0.803 

Validation 68.493 76.087 75.261 0.783 

RF  Training 85.959 74.551 75.791 0.893 

Validation 83.562 72.074 73.323 0.863 

XGB  Training 66.096 88.759 86.294 0.870 

Validation 58.904 87.793 84.650 0.823 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; XGB, XGBoost; Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUROC, Area Under Receiver 

Operating Curve 

 

6.4 Computational resource 

We create a user-friendly prediction web server that combines various modules to predict IL6 inducing 

peptides in order to serve the scientific community. The web server incorporates the prediction models 

that were utilised in the study. Using the prediction models' score at various thresholds, users can 

forecast whether the provided query peptide would induce IL6 or not. There are five crucial modules 

on the web server: (1) Prediction, (2) Design, (3) Protein scan, (4) Motif scan, and (5) BLAST scan 

(See Figure 6.5). The “Predict” module gives the user the ability to distinguish between peptides that 

induce IL6 and those that do not. The user can design every potential analogue of the input sequence 

using the “Design” module. The supplied amino-acid sequence was scanned using the “Protein Scan” 

module to look for IL6-inducing areas.  

 

Users of the “Motif Scan” module can map or scan IL6 motifs in the query sequence. We extracted 

motifs from IL6 inducing peptides that have been experimentally verified using the MEME/MAST 
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and MERCI tools. The “Blast Scan” module is based on the Basic Local Alignment Search Tool, a 

similarity search technique (BLAST). The database of recognised IL6 inducing peptides is searched 

against the given query sequence. If a query sequence matches or hits in the database, it is anticipated 

to be an IL6 inducer; otherwise, it is expected to be a non-IL6 inducer peptide. The peptide sequence 

(positive and negative datasets) utilised in this work are both available for download by users. Figure 

6.6 and 6.7 depicts the usage of Predict module of IL6Pred server.  

 

 

 

Figure 6.5 Different modules of IL6pred webserver; where, ‘Predict’ module used for the 

prediction of IL6 inducing peptides, ‘Design’ module used for the designing of IL6-inducing 

peptides, ‘Protein Scan’ module identify IL6 inducing regions in protein sequence, ‘Motif 

Search’ used for the scanning of IL6 specific motifs and ‘BLAST Scan’ utilized for the similarity 

search  
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 Figure 6.6 Shows the sequence submission form of IL6Pred, where user can submit   query 

sequence for prediction of IL6 inducing peptides 

 

 

Figure 6.7 Output of prediction module of IL6pred server, which shows query sequence, score 

and prediction as IL6 inducer or IL6 non-inducer   
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6.5 Discussion  

Several vaccines have been created in the past to safely elicit an immune response against disease. 

Subunit vaccines are being explored as an alternative to traditional attenuation procedures in the 

current vaccination efforts. Subunit vaccines are made up of protein or peptide fragments from the 

pathogen that can trigger an immune response to protect against infectious illnesses. These therapeutic 

peptide subunit vaccines are intriguing prospects for creating vaccines against a variety of illnesses, 

including cancer, hepatitis B, COVID-19, and tuberculosis. Finding antigenic areas that might cause 

the appropriate immune response is the main problem in vaccine creation. It would be ideal to 

experimentally verify the immune response to each conceivable peptide or fragment of the pathogen 

proteome, but this would be exceedingly costly and time-consuming. Designing subunit vaccines and 

immunotherapies requires the identification of antigenic areas that bind to MHC and activate T helper 

cells, which then release cytokines. Several prediction techniques have been created in the past for 

cytokine detection. 

An important pro-inflammatory cytokine known as interleukin 6 (IL6) is essential for both innate and 

adaptive immune responses. Previous research has shown that elevated levels of IL6 in COVID-19 

patients encourage the growth of cancer, autoimmune diseases, and cytokine storm. Through tightly 

regulated transcriptional and post-transcriptional pathways, IL6 is quickly produced as an immune 

response in cases of infection and tissue damage. However, IL6 expression that is dysregulated has a 

detrimental impact on autoimmune disease and chronic inflammation. Multiple disorders, including 

Alzheimer's disease, atherosclerosis, Behçet's disease, diabetes, depression, multiple myeloma, 

prostate cancer, rheumatoid arthritis, and systemic lupus erythematosus, are affected by the auto-

immune and inflammatory processes that are stimulated by IL6. Numerous COVID-19 verified 

individuals have reported having high levels of IL6. Therefore, in order to treat a variety of diseases, 

either anti-IL6 therapy is required, or IL6 stimulating substances must be looked for. Therefore, it is 

crucial to spot and eliminate antigenic areas in therapeutic proteins or vaccine candidates that could 

lead to IL6-related immunotoxicity. We have created the computational tool IL6pred to find IL6 

inducing peptides in a vaccine candidate in order to solve this difficulty.  

In this study, we have built models to recognise the IL6 producing capability of peptides and have 

attempted to understand the nature of IL6 inducing peptides. This is, as far as we are aware, the first 

attempt at creating an IL6 inducing peptide prediction tool. We created the dataset using IEDB since 

the dataset is crucial to machine learning. To investigate the composition and positional preference, 

TSL and compositional analytical experiments were conducted. We found that IL6 inducing peptides 

are concentrated in the amino acid leucine (L). 9149 features have been generated from sequencing 
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data using the programme “Pfeature”. Relevant features were chosen using SVC-L1 from the Scikit 

package, and they were then sorted using feature selection tools. According to our compositional study, 

a particular residues such as L, I, and S are preferred types of residues in IL6 peptides, but A, D, and 

G are not favoured types of residues in IL6 inducing peptides. It’s interesting to notice that 186 features 

chosen by contemporary feature selection methods SVC-L1 also incorporate these residues' 

composition (i.e. L, I, A, D, G). This suggests that straightforward compositional-based approaches 

can recognise crucial traits. In our investigation, we created classification models using these 186 

features. On the training and validation datasets, RF achieves its best performance with AUROC values 

of 0.893 and 0.863, respectively. Additionally, different models were created based on the highest-

ranked features, and the performance was validated using a 5-fold cross-validation technique. We wish 

to have a minimum set of models to avoid over-optimization. We chose the top ten features for the 

final classification models since there is less of a difference in performance between models based on 

10 features and those based on 186 features, as measured by AUROC (0.84 and 0.83) on training and 

validation, respectively.  

 

6.6 Conclusion 

We created IL6Pred, a web server for the scientific community, along with a standalone version that 

included our top models (https://webs.iiitd.edu.in/raghava/il6pred/ ). We have used all state-of-art 

methods for the development of prediction models. We identify certain amino-acid residues are highly 

abundant in IL6 inducing peptides. Our tool can be easily used by scientific community for the 

prediction, scanning or designing of IL6 inducing peptides. Before moving further with clinical trials 

and study, experimental biologists and researchers can use this tool to assess the therapeutic peptide’s 

ability to induce IL6. We believe that the researcher who is involved in vaccine designing and wants 

to include or remove IL6 producing regions will undoubtedly profit from this work.   

https://webs.iiitd.edu.in/raghava/il6pred/
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CHAPTER 7 
TNF-α INDUCING PEPTIDE PREDICTION  
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7.1 Introduction 

Tumor Necrosis Factor alpha (TNF-α) is a pleiotropic pro-inflammatory cytokine that promotes 

cellular signal activation and leukocyte trafficking to inflammatory regions (Sethi & Hotamisligil, 

2021). During acute inflammation, macrophages/monocytes or other cell types (e.g., B cells, T cells, 

mast cells, fibroblasts) produce TNF-α cytokine, which affects haematopoiesis, immunological 

responses, tumour regression, and other infections (Adams et al., 2002; Aggarwal, 2003; Holbrook et 

al., 2019; Idriss & Naismith, 2000; Wang et al., 2014). TNF-α plays an important part in a variety of 

biological processes, including immunomodulation, fever, inflammatory response, tumour formation 

inhibition, and viral replication inhibition (You et al., 2021). TNF-α molecule occurs as a homotrimer 

in its active state, where it interacts to homo-trimeric TNFRs receptors to elicit signalling. The majority 

of TNF-α downstream actions are carried out by binding to two different receptors: TNFR1 and 

TNFR2 (Locksley et al., 2001). The receptors of TNF-α occurs as circulating and membrane bound 

molecule and interaction of TNF-α with its receptor is responsible for the diverse biological function 

(Idriss & Naismith, 2000). Ample of signaling pathways get elicited due to the interaction between 

TNF-α and its receptors such as, transcription factor activation, protein kinase and proteases activation, 

which overall regulate the immune response (Pasparakis & Vandenabeele, 2015).  

TNF-α has been implicated in a variety of physiological consequences, including the generation of 

pro-inflammatory interleukins such as IL-1 and IL6, according to recent research (Grivennikov & 

Karin, 2011; Old, 1988; Saklatvala et al., 1996). In the past it has been shown that TNF-α and IL-1β 

have also been implicated in the aetiology of myocardial dysfunction in ischemia-reperfusion damage, 

sepsis, chronic heart failure, viral myocarditis, and cardiac allograft rejection (Bryant et al., 1998; Cain 

et al., 1999; Muller-Werdan et al., 2006). Moreover, the interaction of TNF-α with other cytokines is 

responsible for regulating signaling transduction in various other disease states (Parameswaran & 

Patial, 2010). In the recent COVID-19 pandemic, it has been shown that its pathogenesis is associated 

with the cytokine storm in which the levels of cytokines such as TNF-α, IL6, IL-2, IL-7, and IL-10 

increased (Guo et al., 2022). Recent studies also established the strong relationship between the levels 

of TNF-α and IL6 with the severity of COVID-19 patients (Del Valle et al., 2020; Halim et al., 2022; 

Santa Cruz et al., 2021). As a result, multiple anti-TNF medications are available on the market that 

can reduce TNF overproduction in various illness states. Anti-TNF medication has been widely used 

in trials to treat rheumatoid arthritis (RA), spondyloarthropathy, psoriasis, and inflammatory bowel 

disease (Dreyer et al., 2009; Menegatti et al., 2019; Peyrin-Biroulet, 2010; Plasencia et al., 2013).  
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Figure 7.1 Roles of TNF-α in various diseases, where overproduction of TNF-α cytokine found 

in acute and chronic inflammatory conditions  

Anti-TNF medication has recently been shown to be advantageous by not only correcting 

dysfunctional TNF-mediated immune systems, but also by deactivating harmful fibroblast-like 

mesenchymal cells (Evangelatos et al., 2022). TNF is a major cytokine implicated in various illnesses 

and their growing severity, according to the research. As a result, it has the potential to be a main target 

cytokine in disease progression. Therefore, it is the need of the hour to develop a computational 

approach to classify the TNF-α inducing peptides using primary structure information. In this study, 

we made a systematic attempt to develop a bioinformatic-ware to predict the TNF-α inducing and non-

inducing epitopes. We have developed the method for human and mouse host using the experimentally 

validated TNF-α inducing and non-inducing peptides. Moreover, we have also used the random 

peptides generated using SwissProt database (Bairoch & Apweiler, 2000) to be treated as another 

negative dataset. We have implemented various classifiers to train and evaluate the models using 

training and independent dataset. 

7.2 Material and Methods 

7.2.1 Overall architecture 

The complete architecture adapted in this study is exhibited in Figure 7.2. 
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Figure 7.2 Step-by-step representation of overall workflow of the study, including datasets 

collection from IEDB, feature generation using Pfeature, model evaluation and TNFepitope tool 

development 

 

7.2.2 Datasets 

We have downloaded 3635 experimentally validated TNF-α inducing epitopes from the immune 

epitope database (IEDB) (R et al., 2019), out of which 3177 belonged to human and mouse hosts. From 

the IEDB we have collected experimentally validated negative assays peptides and from SwissProt we 

have generated random peptides as negative datasets. On investigating the length distribution of these 

peptides, it was found that most of the peptides have length between 8-20 amino acids. Further, we 

removed the duplicate sequences and left with 1215 and 539 TNF-α inducing peptides belong to human 

and mouse host, respectively. One of the major challenge in the classification task is to choose the 

accurate negative instances. To overcome the issue, we have used two different negative dataset for 

both hosts i.e. human and mouse. The first negative dataset was compiled using IEDB dataset with 

2383 experimentally validated TNF-α non-inducing epitopes. After preprocessing the peptides, we 

were left with 1312 peptides for human and 539 peptides for mouse. Thus, the main dataset comprises 
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of 1215 TNF-α inducing and 1312 non-inducing peptides for human host, and 539 TNF-α inducing 

and 539 non-inducing peptides for mouse host. The other negative dataset was created using the 

SwissProt database, by generating equal number of random peptides of length 8-20 as per the positive 

dataset. Therefore, in the alternate dataset for human, we have 1215 TNF-α inducing and 1215 

randomly generated non-inducing peptides, whereas for mouse host, its 539 TNF-α inducing and 539 

randomly generated peptides. Further, each dataset was divided in the 80:20 ratio, where 80% data 

was used for training purpose and remaining 20% data was kept aside for the external validation. 

 

7.2.3 Analysis of peptides  

In order to understand the abundance of amino acids in TNF-α inducing peptides in comparison to the 

non-inducing peptides, we have calculated average amino acid composition for TNF-α inducing and 

non-inducing peptides in main and alternate dataset using Pfeature tool. Equation 1 was implemented 

to calculate the amino acids composition of each peptide in both the dataset. 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 =  
𝑁𝑅𝑖

𝑁𝑇
𝑥 100                                                    [1]  

Where, Compositioni  signifies the amino acid composition of residue of type i, NRi number of 

residue of type i, NT stands for total number of residues in a peptide. 

7.2.4 WebLogo  

In order to explore the preference of amino acid residue at each position of TNF-α inducing peptides, 

we have developed the logo using WebLogo (Crooks et al., 2004) webserver. Generation of sequence 

logo require the peptides of fixed length; therefore, we have taken the eight residues (as eight is the 

minimum length of the peptides) from each terminus and join them to create a peptide of length 16 for 

each peptide in each dataset. Finally, logos were generated with positions on x-axis and bit score on 

y-axis signifying the preference of amino acids at each position. 

 

7.2.5 Peptide features 

To develop the prediction models, the amino acid sequences should be represented by the numerical 

vectors of fixed length. In order to do that, we have implemented the composition module of Pfeature, 

which computed total of 1163 attributes for each sequence in main and alternate dataset. We have 

calculated 12 different types of compositional features such as, amino acid composition, dipeptide 

composition, atomic composition, physico-chemical properties based composition, pseudo- and 
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amphiphilic pseudo amino acid composition, composition enhanced transition and distribution, 

conjoint triad composition, residue repeat information, distance distribution of residues, Shannon-

entropy based on physico-chemical properties, and quasi-sequence order. We have built models using 

each type of features as well as their combination. 

 

7.2.6 Building of model 

Once the features were generated, the next step is to use them to build the prediction model to classify 

the TNF-α inducing peptides. To develop the prediction models, we have implemented the various 

machine learning classifiers, such as, decision tree (DT), random forest (RF), K-nearest neighbor 

(KNN), Gaussian Naïve Bayes (GNB), randomized extra tree (ET), logistic regression (LR), and 

support vector classifier (SVC), using scikit-learn library of Python. In each classifier, the parameters 

were hyper-tuned using grid-search approach on range of parameters. Final model was developed on 

the combination of parameters on which the highest performance was attained. 

 

7.2.7 Similarity Search  

Further, to explore the potential of similarity search to classify the peptides into TNF-α inducing and 

non-inducing peptides, we have implemented BLAST (McGinnis & Madden, 2004). We have used 

the makeblastdb suite of NCBI-BLAST+ version 2.2.29 to create the custom database using training 

dataset of main and alternate dataset for human and mouse hosts. Further, the query sequences in the 

validation dataset hit against the customized dataset using blastp suite and record the top hit to assign 

the class to each query sequence. Such that, if the top-hit of the BLAST is TNF-α inducing then the 

query sequence was assigned as TNF-α inducing, otherwise non-inducing. To determine the ideal e-

value cut-off, we run the BLAST at several e-value cut-offs ranging from 1e-6 to 1e+3. 

 

7.2.8 Hybrid Model  

In order to improve the performance of prediction models, we have combined the two approaches such 

as alignment-based approach i.e. similarity search and alignment-free approach i.e. machine learning. 

In this approach, first we tried to classify the peptides using machine learning based models and 

calculated their probabilities. Then, similarity search based prediction were made using BLAST on 

optimal e-value and scores were assigned based on the hit found. If the top-hit is found out to be 

positive then score of 0.5 is assigned, if the top-hit is negative then score of -0.5 is assigned, other 
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score of 0 is assigned to the query sequence. Further, the scores from alignment-free and alignment-

based method were added to get the new score, based on which the overall prediction were made. 

 

7.2.10 Cross-validation 

To avoid the curse of overfitting and biasness while training the model, we have implemented five-

fold cross validation on the training dataset for each dataset, as done in the previous studies (Dhall et 

al., 2022; Dhall, Patiyal, Sharma, Devi, et al., 2021; Dhall, Patiyal, Sharma, Usmani, et al., 2021). In 

this method, the entire dataset was first divided into five possible equal parts, out of which four were 

used for training purpose and tested on the remaining one. The same procedure was iterated five times 

so that each part gets the chance to be act as testing dataset. Eventually, the final performance was 

calculated by taking the average of performances achieved in the five iterations. 

 

7.2.11 Model evaluation parameters  

To compare the generated prediction models, we have used the standard threshold-dependent and 

threshold-independent parameters. In threshold-dependent parameters, we have calculated sensitivity, 

specificity, accuracy, F1-score, and Matthews correlation coefficient (MCC). Whereas, in case of 

threshold-independent measures, we have computed Area Under Receiver Operating Characteristics 

(AUROC) curve.  

 

7.3 Results 

7.3.1 Analysis of TNF-inducing peptides  

We investigate the preference of residues at certain positions in the TNF-α inducing epitopes for 

human and mouse datasets in this work. In the case of human host, TNF-α inducing epitopes, residues 

‘L’ are highly conserved at the majority of places, although ‘V’ is favoured at the 9th and 16th 

positions; ‘A’ is found on the 7th , 9th , 10th , 11th , 12th , 13th , and 16th  positions (See Figure 7.3A). 

‘L’ are greatly dominated on the 2nd , 3rd , 8th , 9th , 12th , 13th , and 16th  places in TNF-α inducing 

epitopes of mouse host; similarly, residue ‘N’ is largely conserved on the 5th and 13th positions; 

nevertheless, ‘A’ is predominated on the 5th , 8th , 9th , 13th , and 16th  positions, as illustrated in Figure 

7.3B. 
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Figure 7.3 Sequence logo generated by WebLogo tool, shows preference of different type of 

residues at particular positions (A) TNF-α inducing peptides in human dataset (B) TNF-α 

inducing peptides in mouse dataset 

For human and mouse hosts, we estimated amino acid composition from the main and alternative 

datasets. The average compositions of TNF-α inducing and non-inducing peptides were then 

computed. As shown in Figure 7.4A, amino acids such as L, V, Y, and W have a richer composition 

in TNF-α inducing peptides than in non-inducing and random peptides in the human dataset. Similarly, 

the average composition of residues such as A, I, N, and S is more prevalent in mouse TNF-α inducing 

peptides (See Figure 7.4B). In case of negative datasets, the average composition of D, E, G and K is 

higher in case of both human and mouse dataset.  
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Figure 7.4 Depicts average amino-acid composition of TNF-α inducer, non-inducer, and random 

peptides; where, (A) shows composition of human dataset (B) shows composition mouse datasets 

7.3.2 Performance of ML-based model 

We computed performance on 15 distinct descriptors in this case. We discovered that the RF and ET 

classifiers outperformed the other classifiers. As indicated in Table 7.1, we achieved maximum 

performance on the main dataset with an AUROC of 0.79 and MCC of 0.45 on the independent dataset 

utilising DPC-based features in the case of human hosts. APAAC and SER-based features worked well 

on an independent dataset as well, with an AUROC of 0.78 and an AUPRC of 0.75. Using DPC-based 

features, we get a maximum AUROC of 0.71, AUPRC of 0.73, and MCC of 0.31 in the case of the 

alternate dataset. When we combine all of the attributes, we get (0.77 and 0.71) AUROC on the main 

and alternate datasets, respectively. On both the main and alternate datasets, other composition-based 
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features perform poorly. In case of mouse dataset, on the alternate dataset with DPC as input feature, 

RF-based classifier performs well with an AUROC of 0.74, AUPRC of 0.76, and MCC of 0.34, as 

shown in Table 7.2). Similarly, employing AAC-based features on the alternate dataset, we achieved 

comparable results (i.e., AUROC = 0.72, MCC = 0.30, and AUPRC = 0.73). Furthermore, RRI, DDR, 

and APAAC perform well on alternate dataset, with AUROC>0.72. However, the performance of 

machine learning models on the main dataset is fairly poor. 

 

7.3.3 Performance of hybrid model 

In this work, we created a hybrid model to distinguish between TNF-α inducing and non-inducing 

peptides. Initially, we employed the similarity search strategy (BLAST) to predict positive and 

negative peptides. DPC-based features outperformed other feature types in human and mouse 

prediction models, as demonstrated in Tables 7.1. Therefore, to create the final predictions, we blended 

BLAST similarity scores with machine learning scores derived using DPC features. The RF and ET-

based models performed well on the main and alternate human datasets. We utilised models developed 

on DPC feature to compute the performance of hybrid models on separate datasets at different e-value 

cut-offs, as shown in Table 7.1 for human host. Aside from that, the RF-based model outperforms the 

other classifier on both the main and alternate mouse datasets with DPC-based features. Using the 

hybrid approach, on the main and alternate datasets, we achieved the best performance at e-value 

(1.00E-01) with AUROC of (0.70 and 0.77), AUPRC of (0.69 and 0.81), and MCC of (0.28 and 0.34), 

respectively (See Table 7.2). 

Table 7.1: The performance of machine learning based models on independent dataset developed 

using composition-based features for the main and alternate human datasets  

Feature 
Main Dataset Alternate Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

AAC 55.97 58.56 57.31 0.63 0.15 63.37 66.26 64.82 0.7 0.3 

DPC 72.02 72.62 72.33 0.79 0.45 68.72 61.73 65.23 0.71 0.31 

ATC 55.97 58.56 57.31 0.63 0.15 59.67 58.03 58.85 0.61 0.18 

APAAC 68.31 74.91 71.74 0.78 0.43 63.37 67.49 65.43 0.7 0.31 

BTC 69.55 68.82 69.17 0.69 0.38 55.97 50.62 53.29 0.55 0.07 

CETD 66.67 70.34 68.58 0.74 0.37 61.32 61.32 61.32 0.64 0.23 

CTD 61.32 66.92 64.23 0.7 0.28 62.14 61.73 61.93 0.66 0.24 

DDR 72.02 73.76 72.93 0.77 0.46 62.55 64.61 63.58 0.7 0.27 
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PAAC 68.31 74.14 71.34 0.78 0.43 65.02 65.43 65.23 0.7 0.31 

PCP 64.61 67.68 66.21 0.73 0.32 62.96 63.37 63.17 0.67 0.26 

QSO 62.55 71.86 67.39 0.72 0.35 63.79 65.43 64.61 0.69 0.29 

RRI 62.55 68.06 65.42 0.73 0.31 62.96 57.2 60.08 0.66 0.2 

SEP 63.37 60.84 62.06 0.69 0.24 43.62 57.61 50.62 0.51 0.01 

SER 67.08 73.38 70.36 0.78 0.41 64.61 67.9 66.26 0.7 0.33 

SCP 66.67 73.38 70.16 0.74 0.4 65.02 62.14 63.58 0.68 0.27 

ALL_COMP 68.31 74.91 71.73 0.77 0.433 65.43 65.02 65.22 0.71 0.3 

Hybrid model 

(DPC+ BLAST) 

76.54 75.95 76.24 0.83 0.53 68.72 67.9 68.31 0.77 0.37 

#Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUROC, Area Under Receiver Operating Curve; MCC, 

Matthews correlation coefficient 

Table 7.2: The performance of machine learning based models on independent dataset developed 

using composition-based features for the main and alternate mouse datasets 

Feature  
Main Dataset Alternate Dataset 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

AAC 62.18 60.56 61.37 0.67 0.23 64.82 64.82 64.82 0.72 0.3 

DPC 58.47 59.86 59.17 0.63 0.18 66.67 67.59 67.13 0.74 0.34 

ATC 51.97 50.35 51.16 0.54 0.02 55.56 62.04 58.8 0.65 0.18 

APAAC 62.18 60.09 61.14 0.65 0.22 63.89 65.74 64.82 0.72 0.3 

BTC 51.51 52.44 51.97 0.55 0.04 51.85 58.33 55.09 0.56 0.1 

CETD 56.15 58.24 57.19 0.62 0.14 63.89 66.67 65.28 0.7 0.31 

CTD 51.51 53.13 52.32 0.56 0.05 65.74 63.89 64.82 0.68 0.3 

DDR 56.85 59.86 58.35 0.62 0.17 69.44 67.59 68.52 0.74 0.37 

PAAC 60.79 61.02 60.91 0.65 0.22 67.59 65.74 66.67 0.72 0.33 

PCP 57.77 61.49 59.63 0.61 0.19 56.48 69.44 62.96 0.7 0.26 

QSO 58.01 58.47 58.24 0.6 0.17 61.11 70.37 65.74 0.73 0.32 

RRI 59.86 60.79 60.33 0.63 0.21 65.74 66.67 66.2 0.75 0.32 

SEP 55.68 54.06 54.87 0.57 0.1 36.11 51.85 43.98 0.45 -0.12 

SER 60.56 62.41 61.49 0.67 0.23 67.59 69.44 68.52 0.73 0.37 

SCP 57.77 58.47 58.12 0.61 0.16 60.19 69.44 64.82 0.69 0.3 

ALL_COMP 62.96 62.96 62.96 0.67 0.26 64.81 68.51 66.67 0.73 0.33 

Hybrid model 

(DPC+ BLAST) 

62.62 65.42 64.02 0.7 0.28 66.36 67.29 66.82 0.77 0.34 

#Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUROC, Area Under Receiver Operating Curve; MCC, 

Matthews correlation coefficient 

7.4 Service to scientific community 
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We created the ‘TNFepitope’ web service for the scientific community for the prediction of TNF-α 

inducing and non-inducing epitopes based on sequencing information (See Figure 7.5). The website 

now includes the best prediction models for human and mouse hosts. The server has five primary 

modules: (i) Predict; (ii) Design; (iii) Scan; (iv) Blast Search; and (v) Standalone. The ‘Predict’ feature 

assists users in distinguishing TNF-inducing peptides from non-inducing peptides. Figure 7.5, 7.6 and 

7.7 depicts the homepage and usage of “Predict” module of TNFepitope server. The ‘Design’ module 

allows the user to design/create all conceivable mutations of the query sequence and forecast whether 

or not they may cause TNF-α release. The ‘Scan’ module enables the user to map/scan the TNF-α 

secretion section of a protein sequence. The 'BLAST Search' module is solely based on a similarity 

search method, and the input sequence is compared to a specific database of known TNF-α inducing 

and non-inducing peptides. Based on the similarities, the provided amino-acid sequence is anticipated 

to be a TNF-α inducer/non-inducer. The ‘TNFepitope’ server was created with HTML, JAVA, and 

PHP scripts and is compatible with a variety of devices including laptops, iPhones, and phones. The 

webserver (https://webs.iiitd.edu.in/raghava/tnfepitope), standalone package 

(https://webs.iiitd.edu.in/raghava/tnfepitope/package.php), and GitLab 

(https://gitlab.com/raghavalab/tnfepitope) are all available for free use. 

 

https://webs.iiitd.edu.in/raghava/tnfepitope
https://webs.iiitd.edu.in/raghava/tnfepitope/package.php
https://gitlab.com/raghavalab/tnfepitope


 
99 

Figure 7.5: Homepage of TNFepitope Webserver  

 

 

Figure 7.6: Shows data submission page of “Predict” module of TNFepitope server  
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Figure 7.7 Result page of “Predict” module, which provides query sequence, machine learning, 

BLAST and Hybrid model scores with prediction as TNF-inducer/non-inducer 

7.5 Discussion 

The major histocompatibity region of chromosome 6, encode number of HLA molecules which are 

required for peptide binding and presentation and cytokines genes such as TNF, LTA and LTB which 

are important for inflammation (Shiina et al., 2009). Whereas, TNF or tumor necrosis factor is a 

significant inflammatory cytokine that is generated by T cells or macrophages and regulates a number 

of immune cell signaling pathways. The major role of TNF is to cause necrosis or cell death 

(Gershenwald et al., 1998; Shen et al., 2018). A variety of biological responses, including cell 

proliferation, differentiation, and survival, are managed by these pathways. TNF cytokine is used to 

treat cancer and has anti-cancer properties by generating immune response, inflammation, and tumors 

cell apoptosis. However, incorrect or overzealous activation of the TNF signaling pathway can lead to 

the development of pathological conditions like HIV-1, anorexia, cachexia, obesity, and autoimmune 

diseases such rheumatoid arthritis, diabetes, and inflammatory bowel disease (Adegbola et al., 2018; 

Lane et al., 1999; Montfort et al., 2019). Numerous proteins, including, are encoded within the major 

histocompatibility complex area. Several TNF-inhibitors have been created and given the green light 

for clinical usage to treat disorders linked to aberrant or excessive TNF-secretion, including infliximab, 

etanercept, golimumab, certolizumab, and adalimumab. Studies show that COVID-19 patients have 

greater levels of soluble TNF than the healthy control group. Therefore, it is necessary to apply anti-

TNF medication or to look for TNF-inducing epitopes in a variety of disorders.  

In the present work, we have made an effort to comprehend the characteristics of TNF-inducing 

peptides and have developed a prediction model to identify the epitopes that can cause TNF-secretion. 

Datasets are crucial for creating machine learning models, thus we have gathered peptides for both 

human and mouse TNF-inducing and non-inducing reactions that have undergone experimental 

validation. We created random peptides using the Swiss-Prot database for the alternate negative 

dataset. To learn more about compositional analysis, positioning preference, and sequence logo. Our 

analyses were carried out on both human and mouse datasets, we discovered that TNF-inducing 

epitopes are abundant in the amino acid residue (L). Moreover, we observed that 105 (28%) out of 365 

IL6 inducing peptides also induce TNF-. Composition of IL6 and TNF- inducing peptides shows 

reasonably good similarity but not-identical. Number of studies revealed that leucine amino-acid 
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controls the production of inflammatory cytokines including (IL6 and TNF-alpha) (Cruz et al., 2017; 

Kubo et al., 2020; S. Q. Liu et al., 2018).  

Then, using the standalone software, we used “Pfeature” to compute 15 different types of 

compositional features. We have created prediction models using a variety of machine-learning 

classifiers. According to our findings, di-peptide composition-based characteristics outperformed 

other features for the mouse and human models. On the independent human and mouse dataset, we 

have obtained the maximum AUROC of 0.79 and 0.74 using di-peptide composition-based features. 

Notably, on the independent datasets for humans and mice, our hybrid model (BLAST + machine 

learning) beat others with an AUROC of 0.83 and 0.77. However, our models' accuracy is just about 

70%, which is quite low. Creating HLA-specific prediction models in the future could increase the 

accuracy of models. These models could predict TNF-inducing peptides that were specific to HLA 

alleles. 

7.6 Conclusion 

In this study, we have developed a variety of machine learning based models to classify the host 

specific TNF-α inducing peptides using sequence information for human and mouse, in this study. To 

differentiate TNF-α inducing peptides from non-inducing peptides, we developed machine learning-

based models using diverse composition based features. One of the study's main objectives is to aid 

the scientific community. We developed a user-friendly web server 

(https://webs.iiitd.edu.in/raghava/tnfepitope) that allows users to determine whether or not a particular 

peptide sequence has the potential to induce TNF-α release. We have also provided the Python- and 

Perl-based standalone package which can be used to predict the TNF-α inducing regions in the large 

dataset such as entire proteome or in the absence of internet. We hope that our study will benefit 

researchers in the development of computer-aided vaccine design, allowing them to construct subunit 

vaccines that elicit the optimal immune response against a variety of TNF-α associated disorders. We 

develop a standalone software and a web server called TNFepitope for the scientific community using 

the best models available. Furthermore, we have provided a web platform named TNFepitope 

(https://webs.iiitd.edu.in/raghava/tnfepitope ) offers tools for predicting, designing, and scanning the 

TNF-inducing regions.   

https://webs.iiitd.edu.in/raghava/tnfepitope
https://webs.iiitd.edu.in/raghava/tnfepitope
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IDENTIFICATION OF IFN- γ INDUCING PEPTIDE  
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8.1 Introduction 

Cytokines are molecular messengers of innate and adaptive immunity that allow immune cells to 

communicate in paracrine and autocrine (Conlon et al., 2019). When the immune system functions, 

both innate and adaptive components are engaged in identifying the stress and cytokines providing 

effective response (Kursunel & Esendagli, 2016). Interferons (IFNs) are pleiotropic cytokines (Castro 

et al., 2018) that belong to a protein family (Farrar & Schreiber, 1993) and play an essential role in 

innate and acquired immune responses, (Zaidi & Merlino, 2011) with antiviral, anticancer, and 

immunomodulatory activities, and serve as central immune response coordinators (Castro et al., 2018). 

Interferons are agents or substances that inhibit viral replication and protect cells from viral infection 

(Castro et al., 2018; Schroder et al., 2004). IFNs are classified into three types: (Castro et al., 2018) 

Type I IFNs (IFN α and IFN β), type II IFNs (IFN-γ), and the newly found type III IFNs are 

distinguished by their ability to bind certain receptors (Conlon et al., 2019).  

IFN-γ is a tiny protein that occurs as a 34-kDa homodimer that can increase host defence and 

immunopathologic processes (Reljic, 2007). Its receptor can be found on all nucleated cells (Reljic, 

2007). IFN-γ is produced by a diverse range of lymphocytes, primarily T and NK cells such as CD4+ 

and CD8+ T cells, Treg cells, and FoxP3+ cells. Monocytes, macrophages, dendritic cells, and 

neutrophil granulocytes all generate this cytokine (Costela-Ruiz et al., 2020). IFN-γ is involved in 

intracellular communication, tumour cell identification and eradication (Zaidi & Merlino, 2011) as 

well as various immune, adaptive immunological functions and inflammatory processes (Costela-Ruiz 

et al., 2020). IFN-γ and IFN-α/β both boost MHC class I protein expression, but only IFN-γ is an 

efficient inducer of MHC class II expression (Shtrichman & Samuel, 2001). The pro-inflammatory 

and anti-inflammatory properties of IFN-γ is shown in Figure 8.1. IFN-γ primary role is to upregulate 

MHC class I molecules, which aid in antigen priming and presentation in professional antigen-

presenting cells (Zaidi & Merlino, 2011). It was discovered that the serum of COVID-19 patients has 

greater IFN-γ levels than that of healthy individuals, and it was postulated that this and other cytokines 

may be elevated due to Th1 and Th2 cell activation. Increased IFN-γ levels have been linked to 

increased viral load and lung injury (Costela-Ruiz et al., 2020).  
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Figure 8.1 Schematic representation of production of IFN-γ and its functions  

In the tumour microenvironment (TME), IFN-γ consistently orchestrates both pro-tumorigenic and 

antitumorigenic immune responses. Secreted pro-inflammatory cytokines bind to their receptors on 

IFN-producing cells and activate transcription elements such as members of the signal transducer and 

activator of transcription (STAT) family, specifically STAT4, T-box transcription factor (T-bet), 

activator protein 1 (AP-1), or Eomes, which further drive IFN- production (Jorgovanovic et al., 2020). 

Furthermore, IFN may cause apoptosis in tumor-specific T-cells, impairing antitumor immunity. 

Inhibiting IFN is a strategy for disrupting immunosuppressive tumour microenvironments or 

suppressing IFN-induced epigenomic and transcriptome alterations in tumour cells that allow immune 

escape (Mojic et al., 2017). Therefore, it is important to identify IFN-γ inducing peptides or epitopes 

in order to develop subunit vaccines against number of diseases and cancer. In the current, study we 

attempted to develop an updated method of IFNepitope tool. Here, we have used huge sequence 

datasets and generated host-specific tool for human and mouse. The experimentally validated peptides 

selected from IEDB database and machine learning algorithms were used for the development of 

prediction models. 

8.2 Material and methods  
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8.2.1 Creation of dataset  

From the immune epitope database, we have extracted IFN-γ inducing peptides/epitopes. We then 

sorted the dataset by host and discovered that most of the peptides have been experimentally validated 

on human or mouse hosts, with only a few epitopes available for other hosts. As a result, we only chose 

two significant hosts (i.e., human and mouse). Similarly, we have collected experimentally validated 

negative assays datasets for human and mouse species from IEDB database. We examined the length 

distribution of epitopes and discovered that the majority of peptides have 8-20 amino-acid residues. 

We obtained 25492 and 7983 IFN-γ inducing epitopes for human and mouse, respectively, after 

deleting redundancy. We have negative datasets for both humans and mice in this investigation. The 

human negative dataset, encompassing 61681 experimentally confirmed epitopes with a range of (8-

20 amino acids). In the instance of the mouse host, we obtain 27837 distinct IFN-γ non-inducing 

epitopes with a range of (8-20 amino acids). Finally, the main human dataset contains 25492  IFN-γ 

inducing and 61681 IFN-γ  non-inducing peptides. In the case of mouse host, we obtain a total of 7983 

IFN-γ  inducing and  27837 non-inducing peptides. Following the generation of final datasets for 

human and mouse hosts, each dataset was separated into a training and an independent/validation set. 

The entire dataset was divided into an 80:20 ratio, with 80% data used to train the models and 20% 

data used for validation.  

 

8.2.2 Analysis of IFN- γ inducing peptides  

Pfeature was used to compute the amino acid composition (AAC). Using compositional analysis, we 

can see how similar distinct peptide sequences from positive and negative samples are. We built a 

feature vector of length 20 using the following equation 1, which specifies the percent composition of 

20 amino-acid residues.  

𝐴𝐴𝐶𝑖 =
𝐴𝐴𝑅𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
× 100 

 

where AACi and AARi are the percentage composition and number of residues of type i in a peptide, 

respectively.  

 

 

8.2.3 Two sample logo  
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To understand the preference of individual amino acids at a specific position, we develop a two-sample 

logo (TSL). The TSL tool requires a defined length criteria for the input sequence vector. In both 

datasets, the peptide must be at least eight residues long. As a result, we extract eight residues from a 

peptide's N-terminus and eight residues from its C-terminus. These sections were linked to form a 16-

residue sequence that corresponded to each sequence in the negative and positive datasets.  

 

8.2.4 Feature extraction 

In the current study, we estimated a wide range of characteristics utilising peptide sequence 

information. To calculate the composition-based features for our datasets, we used the Pfeature [31] 

standalone software. In all positive and negative datasets, we computed a total of 1163 characteristics 

for each epitope/peptide sequence. We calculated twelve different types of descriptors/features, 

including AAC (Amino acid composition), DPC (Di-peptide composition), APAAC (Amphiphilic 

pseudo amino acid composition), ATC (Atomic composition), CETD (Composition-enhanced 

transition distribution), DDR (Residue distance distribution), PAAC (Pseudo amino acid composition), 

PCP (Physico-chemical properties composition), QSO (Quasi-se We developed prediction in this 

investigation.  

 

8.2.5 Model building techniques  

We employed a variety of machine learning methods to create the prediction models, including 

Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (GNB), Logistic Regression (LR), 

Support Vector Classifier (SVC), K-Nearest Neighbor (KNN), and Extra Tree (ET). The parameters 

were trained on the training dataset, and predictions were performed on the independent dataset. The 

python library scikit-learn was utilised in the study to create multiple classifiers. To avoid the curses 

of bias and overfitting, we used a five-fold cross validation technique. The training dataset was 

partitioned into five equal sets for five-fold cross-validation, with four sets used for training and the 

fifth set used for testing. This procedure is performed several times. 

 

 

 

8.2.6 Evaluation of model 

The sensitivity, specificity, accuracy, Area Under Receiver Operating Characteristics (AUROC) curve, 

Matthews Correlation Coefficient (MCC), and F1-score were used to evaluate the performance of 
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various models. We calculated both threshold-dependent metrics (such as sensitivity, specificity, 

accuracy, and MCC) and independent parameters such as AUROC and AUPRC.  

8.3 Results  

8.3.1 Composition analysis 

We computed amino acid composition using the human and mouse datasets. The average compositions 

of IFN-inducing and non-inducing peptides were computed. After that, the difference in the 

composition of each amino-acid is computed for human and mouse dataset. As illustrated in Figure 

8.2, amino acids such as K, M, N, P, and Q are more abundant in IFN-inducing peptides than in non-

inducing in the human dataset. Similarly, the average composition of residues such as A, E, G, and P 

is higher in mouse IFN-inducing peptides. 

 

Figure 8.2: Difference in average amino-acid composition IFN-γ inducing and Non IFN-

γ inducing epitopes (A) for human dataset and (B) for mouse dataset 

8.3.2 Positional analysis 

In this paper, we look at the preference of residues at specific places in IFN-inducing epitopes for 

human and mouse datasets. In the case of human host IFN-inducing epitopes, residues ‘K’ are highly 

conserved at the majority of positions, though ‘P’ is preferred at the 6th and 7th  positions; ‘A’ is 
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preferred in most of the positions (See Figure 8.3). In IFN-inducing epitopes of mouse host, residues 

‘P’ are greatly dominated on the 4th, 6th, 7th, 14th, and 16th positions; similarly, residue 'Y' is largely 

conserved on the 7th and 15th  positions; as illustrated in Figure 8.3. 

 

Figure 8.3 Representation of two sample logo of IFN-γ inducing and IFN-γ non-inducing 

peptides for human and mouse hosts 

8.3.3 Performance of machine-learning models  
 

8.3.3.1 Model for human  

In this scenario, we calculated performance using AAC and DPC based descriptors. The RF and ET 

classifiers outperformed the other classifiers, as shown in Table 8.1, we were able to maximise 

performance using the independent dataset using AAC-based features for human hosts with an 

AUROC of 0.79 and MCC of 0.43. However, we achieved maximum AUCROC of 0.83 on 

independent dataset using DPC based features.   
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Table 8.1: The performance of machine learning based models developed on various 

composition-based features using human independent dataset 

Feature Type Sensitivity Specificity Accuracy AUROC MCC 

AAC 72.58 73.43 73.18 0.79 0.43 

DPC 74.46 76.06 75.6 0.83 0.47 

CTC 63.42 62 62.41 0.68 0.23 

ATC 55.26 58.91 57.84 0.6 0.13 

RRI 63.32 61.48 62.02 0.68 0.23 

SER 71.95 71.87 71.9 0.78 0.41 

SOC 50.79 49.57 49.92 0.51 0 

APAAC 73.44 71.69 72.2 0.79 0.42 

PAAC 72.6 71.71 71.97 0.79 0.41 

QSO 66.77 65.75 66.05 0.72 0.3 

BTC 57.75 55.93 56.46 0.59 0.13 

DDR 71.38 67.49 68.63 0.76 0.36 

CETD 68.56 71.55 70.67 0.76 0.37 

SPC 70.48 68.71 69.23 0.76 0.36 

PCP 70.69 69.51 69.86 0.76 0.37 

# AUROC, Area Under Receiver Operating Curve; MCC, Matthews correlation coefficient 

 

8.3.3.2 Model for mouse 

In addition, we computed performance using AAC and DPC based descriptors on mouse dataset. As 

shown in previous results, RF and ET classifiers outperformed, results provided in Table 8.2. The 

models build using mouse dataset perform poor on AAC based features and achieved an AUROC 0.71 

independent datasets. Whereas, ET based models achieved 0.756 AUROC on independent datasets 

using DPC based features.   

 

Table 8.2: The performance of machine learning based models developed on various 

composition-based features using mouse independent dataset 

Feature  Sensitivity Specificity Accuracy AUROC MCC 

AAC 66.479 63.697 64.317 0.710 0.254 

DPC 68.860 69.014 68.979 0.756 0.323 

ATC 56.328 55.021 55.312 0.573 0.095 

APAAC 68.734 62.853 64.163 0.717 0.265 

BTC 60.401 52.039 53.902 0.591 0.104 

CETD 63.596 60.895 61.497 0.677 0.205 

CTC 63.596 61.577 62.027 0.673 0.211 

DDR 63.596 61.415 61.901 0.676 0.21 
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PAAC 67.982 63.984 64.875 0.713 0.269 

PCP 63.910 58.990 60.087 0.654 0.191 

QSO 66.855 61.721 62.865 0.693 0.239 

RRI 63.409 59.709 60.533 0.65 0.193 

SER 65.602 64.200 64.512 0.706 0.251 

SOC 52.130 52.955 52.771 0.534 0.042 

SPC 60.840 60.374 60.477 0.642 0.178 

# AUROC, Area Under Receiver Operating Curve; MCC, Matthews correlation coefficient 

 

8.4 Web-implementation 

 
We have developed IFNepitope 2.0 for the identification of peptides that induce and do not induce 

IFN-gamma. The web server's front end was created utilising HTML5, JAVA, CSS3, and PHP scripts. 

It is built using responsive templates that change the screen size to fit the device. It works with 

practically all current gadgets, including smartphones, tablets, iMacs, and desktop computers. Three 

main modules, including Predict, Design, Protein Scan, are included in the web server. The “Predict” 

module allow the user to identify the IFN-gamma inducing and non-inducing peptides. User can 

submit or paste multiple sequences in FASTA format. The “Design” module of our server provide the 

facility to the user to modulate the sequence from IFN-inducer to non-inducer via incorporating 

minimum mutations in the query sequence. The third module is “Scan”, which is used for the screening 

of interferon inducing peptides in the input protein sequences. The results generated by all three 

modules exhibited in the tabular format which is downloadable in the “.csv” format. We anticipate 

these module can be used for the prediction of vaccine candidates in the antigenic sequences or can be 

used for designing subunit vaccine which have the capacity to induce interferon gamma. The 

homepage of our server and the example utility of our server is provided in Figure 8.4, 8.5 and 8.6.   
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Figure 8.4 Home-page of IFNepitope 2.0 website  

 

 

Figure 8.5 Steps involved in the submission of sequence using ‘Predict’ module of IFNepitope 

2.0 website   
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Figure 8.6: Output page of prediction module; provide query sequence, prediction score and 

prediction as IFN-γ inducer and non-inducer   

 

8.5 Discussion  

 
IFN-gamma also known as type II interferon, is an essential cytokine for both innate and adaptive 

immunity against protozoan, bacterial, and viral infections. IFN-gamma is a crucial macrophage 

activator and inducer of the production of class II molecules from the major histocompatibility 

complex (Tau & Rothman, 1999). IFN-gamma is primarily produced by natural killer and natural killer 

T cells during the innate immune response, and CD4 and CD8 cells during the development of antigen-

specific immunity during the adaptive immunological response (Castro et al., 2018; Schoenborn & 

Wilson, 2007). T helper cells, particularly Th1 cells, cytotoxic T cells, macrophages, mucosal 

epithelial cells, and NK cells all release IFN-gamma. IFN-gamma is a crucial paracrine signal in the 

early innate immune response and a crucial autocrine signal for professional APCs in the adaptive 
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immune response. The cytokines IL-12, IL-15, IL-18, and type I IFN all contribute to the induction of 

IFN-gamma expression. The single Type II interferon is IFN-gamma, which differs from Type I 

interferons serologically by being acid-labile as opposed to Type I variations’ acid-stability (Burke & 

Young, 2019; Jorgovanovic et al., 2020). Numerous autoimmune and autoinflammatory disorders have 

abnormal IFN-gamma expression. In addition to its direct capacity to prevent viral replication, IFN is 

significant for the immune system due to its immunostimulatory and immunomodulatory properties.  

The U.S. Food and Drug Administration has given interferon-1b approval to treat osteopetrosis and 

chronic granulomatous disease (CGD). IFN-gamma improves neutrophil activity against catalase-

positive bacteria by regulating patients’ oxidative metabolism, which is how it helps CGD (Ahlin et 

al., 1999). Children’s hospital of Philadelphia has undertaken preliminary research on the use of IFN-

gamma in the treatment of Friedreich's ataxia (FA), and found that patients' gait and stance had 

significantly improved (YetkIn & M, 2020). Interferon has also been demonstrated to be successful in 

treating individuals with moderate to severe atopic dermatitis, while not yet receiving formal approval. 

Recombinant IFN-therapy has particularly showed potential in children and patients with decreased 

IFN-expression, such as those at risk for herpes simplex virus (Brar & Leung, 2016). IFN-gamma 

upregulates MHC I and MHC II expression, which improves immunorecognition and the expulsion of 

harmful cells, while increasing an anti-proliferative state in cancer cells (Zhou, 2009). IFN-gamma 

also inhibits tumour spread by upregulating fibronectin, which has a detrimental effect on tumour 

architecture (Jorgovanovic et al., 2020). Hence, it is very important to identify the epitopes or peptides 

which can secrete the IFN-gamma.  

In this study, we have developed a prediction method for the prediction of IFN-gamma inducing and 

non-inducing peptides for human and mouse hosts. We have computed composition based features for 

both IFN-gamma inducing and non-inducing peptides. We observed certain amino-acid residues (K, 

L, P and Q) and (A, P, G and V) are highly conserved in case of human and mouse IFN-gamma 

inducing peptides, respectively. Moreover, it was observer that dipeptide (QP, PQ, KL, KK, LK) and 

(AA, PA, GP, AV, AG) are the most abundant residue pair motifs in human and mouse IFN-inducing 

peptides in comparison with non-inducing peptides. We computed di-peptide composition based 

features, extra-tree based classifier we achieve maximum AUROC of 0.83 and 0.76 on human and 

mouse models respectively. We have incorporated the best models in the website IFNepitope 2.0 

(https://webs.iiitd.edu.in/raghava/ifnepitope2/). We hope our study aid the scientific community in 

order design novel therapeutic candidate against deadly diseases and cancer.   

 

 

https://webs.iiitd.edu.in/raghava/ifnepitope2/
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8.6 Conclusion 

 
Subunit or peptide-based vaccines are more safely elicit immune response against infections caused 

by different pathogens. Peptide subunit vaccines can act as promising candidates for developing 

immunization against number of diseases including cancer. To serve the scientific community we have 

developed a computational method for the prediction of IFN-gamma inducing peptides or regions in 

human and mouse host. IFNepitope 2.0 is an updated version of IFNepitope witch is developed for the 

prediction of MHC-II binding peptides which can induce the interferon production. We have generated 

the latest method on the largest dataset obtained from immune epitope database. We integrated best 

models in the webserver and can be used for the prediction, scanning and designing of IFN-gamma 

inducing peptides in human and mouse models.  
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INHIBITION OF IL6/STAT3 SIGNALLING  
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9.1 Introduction 

The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signalling system, 

also referred to as the JAK/STAT signalling route, is crucial in directing signals to numerous cytokines, 

hormones, and growth factors. Seven mammalian members of the STAT family, including STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6, are cytoplasmic transcription factors. They 

take part in cellular and biological processes such as differentiation, proliferation, apoptosis, and 

angiogenesis (Calo et al., 2003). The STAT3 gene encodes STAT3, a pleiotropic transcription factor 

belonging to the STATs family. Growth factors include fibroblast growth factor (FGF), epidermal 

growth factor (EGF), and insulin-like growth factor (IGF); they are activated in response to a variety 

of cytokines, including interleukin 6 (IL6) and interleukin 10 (IL-10) (Levy & Lee, 2002). The addition 

of the phosphate group to JAKs causes phosphorylation as a result of these factors' interaction to the 

cell surface receptor. STAT3 was phosphorylated at Serine 727 and Tyrosine 705. Additionally, 

STAT3 monomers combine to create a homodimer that interacts with one another via the SH2 domain. 

In order to control the transcription of genes, the homodimer STAT3 molecule later translocate into 

the nucleus and attaches to the specific target gene promoters with the aid of different coactivators, 

such as p68 (Ma et al., 2020). The STAT3 signalling pathway, however, is altered in a number of 

pathogenic processes that promote the development of cancer and other disorders. Specifically, 

upregulating STAT3 inhibits anticancer immune responses while promoting tumour cell growth, 

proliferation, invasion, migration, angiogenesis, and multidrug resistance (Corvinus et al., 2005; 

Kamran et al., 2013; Lee et al., 2019) (See Figure 9.1). By raising the mRNA levels of various genes 

involved in apoptosis, cell proliferation, and angiogenesis, such as Bcl-xL, Mcl-1, cyclin D1/D2, c-

Myc, and VEGF (Banerjee & Resat, 2016; Furqan et al., 2013; Weerasinghe et al., 2007), aberration 

of STAT3 contributes to oncogenesis. For instance, STAT3 up-regulates the production of the anti-

apoptotic protein Bcl-xL, whereas inhibiting STAT3 causes Bcl-xL expression to be down-regulated. 

According to the research by Sateesh Kunigal et al., STAT3 expression was knocked down by small 

interfering RNA (siRNA), which decreased the expression of Bcl-xL and survivin in MDA-MB-231 

breast cancer cells and increased the expression of Fas, Fas-L, and cleaved Caspase 3, which induced 

apoptosis and tumour suppression. Therefore, using siRNA to target STAT3 will aid in the treatment 

of breast cancer patients (Kunigal et al., 2009). Growing evidence suggests that STAT3 gene mutations 

are linked to a number of inflammatory diseases, including pulmonary fibrosis and acute lung injury 

(Forbes et al., 2016; Pedroza et al., 2016). By hindering the growth of regulatory T (Treg) cells and 

encouraging the multiplication and activation of Th17 [interleukin-17 (IL-17)-producing helper T 
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(TH) cells, also known as TH(IL-17), TH17, or inflammatory TH cells], STAT3 activation produces 

autoimmunity (Yang et al., 2007). When Th17 is activated and dysregulated, it plays a crucial role in 

the emergence of autoimmune diseases including Type 1 diabetes (T1D) (Shao et al., 2012). 

Additionally, STAT3 plays a significant role in coronavirus infection that contributed to the 

pathogenesis of COVID-19, such as promoting SARS-COV-2 replication, amplifying inflammatory 

responses, promoting lung fibrosis and injury, and lymphopenia (Gubernatorova et al., 2020; 

Jafarzadeh, Jafarzadeh, et al., 2021). Additionally, the STAT3-mediated signalling pathway stimulates 

the formation of M2-like macrophages, production of an inflammatory response, and 

immunopathological reactions (Chen, Tang, et al., 2020; Deenick et al., 2018; Jafarzadeh et al., 2020).  

Figure 9.1 Representation of IL6-mediated STAT3 signalling pathway, where IL6/IL6R/gp130 

activate the phosphorylation of JAK and STAT3. In addition, several growth factors and 

cytokines activates the STAT3 phosphorylation and STAT3 hyperactivation leads to 

development of several diseases   

Furthermore, STAT-3 hyperactivation boosted cytokine storm production, which is important in the 

pathophysiology of COVID-19. As a result, targeting STAT-3 may have superior therapeutic 

potentials in COVID-19 (Jafarzadeh, Nemati, et al., 2021). STAT3 inhibitor development has arisen 

as an important subject of study because they have not yet been licenced for cancer treatment and a 

number of STAT3 inhibitors are in clinical testing. Researchers have sought to target STAT3 for the 
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development and application of new medications to date. STAT3 inhibitors work by suppressing 

STAT3 phosphorylation to impede the IL6/JAK/STAT3 signalling cascade. For example, JSI-124 

(cucurbitacin I), a selective inhibitor, blocks STAT3 phosphorylation at serine 727, leading to death 

and cell-cycle arrest in B cell leukaemia. One of the pyrrolidinesulhonylaryl compounds (6a) 

selectively inhibits STAT3 phosphorylation and has promising anti-IL6/STAT3 signalling activity in 

IL6 driven MDA-MB-231 breast cancer and HeLa cell lines. Celecoxib* (FDA approved), BBI608* 

(FDA approved), Pyrimethamine* (FDA approved), and other STAT3 direct inhibitors are being tested 

in clinical studies for cancer immunotherapy (S. Zou et al., 2020). Despite the fact that the number of 

STAT3 inhibitor molecules is continually increasing, discovering novel STAT3 inhibitors remains a 

significant scientific issue.  

There is currently no computational approach that can distinguish STAT3 inhibiting drugs from non-

inhibitors. Based on these concepts, we aimed to create a prediction tool that can predict STAT3 

inhibitors and non-inhibitors using various machine learning methods. Furthermore, by screening out 

inactive compounds in silico, fewer compounds will need to be produced or evaluated in vitro/in vivo. 

Machine learning has the potential to significantly accelerate the process and reduce the costs of 

developing novel treatments from previously tested and authorised chemical substances. The current 

study aimed to create machine learning-based models for predicting STAT3 inhibitor and non-inhibitor 

chemicals. To assist the scientific community, we present STAT3In 

(https://webs.iiitd.edu.in/raghava/stat3in/ ) a computational tool for the prediction and design of novel 

STAT3 inhibitor drugs. 

9.2 Material and methods  

9.2.1 Curation of dataset  

In this investigation, the data for active and inactive STAT3 inhibitors were collected from the 

PubChem bioassay record (AID 862) [Primary cell-based high throughput screening assay to evaluate 

STAT3 inhibition]. A total of 194,698 chemicals were evaluated in this bioassay to see if they might 

inhibit or diminish IL6-mediated STAT3 transcription. This bioassay yielded a total of 194,698 

chemical compounds with STAT3 inhibition and non-inhibition activity, including 1724 active and 

192974 inactive chemical inhibitors. We choose 1724 molecules at random from a pool of 192974 

inactive chemical inhibitors. 1724 chemical compounds with the IL6-mediated STAT3 inhibition 

property were regarded positive and named active inhibitors, while 1724 chemical compounds with 

the IL6-mediated STAT3 inhibition property were judged negative and called inactive inhibitors. 

https://webs.iiitd.edu.in/raghava/stat3in/
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Then, using PubChem substance IDs and compound IDs, the 2D and 3D structural files for 1724 active 

(positive) and inactive (negative) chemical compounds were downloaded. However, only 1565 active 

and 1671 inactive compound structures were accessible out of 1724 compounds. As a result, the final 

dataset contains 1565 active chemical compounds and 1671 inactive chemical compounds. To assess 

the model’s performance, we divided the entire dataset in an 80:20 ratio. 80% of the data was used as 

a training set, which included 1323 inactive and 1265 active chemical compounds, while the remaining 

20% was used as a validation set, which included 300 active and 348 inactive chemical compounds. 

 

Figure 9.2: Complete workflow of STAT3In, including data collection, model 

development and webserver implementation 

 

9.2.2 Chemical descriptors  

Chemical descriptors are the characteristics of chemical molecules that contribute to their activity. In 

this investigation, we calculated the descriptors of the molecules using the PaDEL software (Yap, 

2011). For a single chemical substance, this software may compute a number of molecular descriptors. 

It generates a variety of 1D/2D/3D and binary fingerprints (FP) (e.g., Fingerprinter, Extended, 
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SubStructure, Substructure count, PubChem FP, MACCS keys, KlekotaRoth, KlekotaRoth count, 

Estate). We calculated 1444 2D descriptors, 136 3D descriptors, and 14532 binary fingerprint-based 

(FP) descriptors for 1564 active and 1671 inactive inhibitor drugs in this work. Various machine 

learning models were created using these 2D, 3D, and FP descriptors. 

 

9.2.3 Pre-processing of data  

The generated descriptors were in a varied range, therefore to pre-process the dataset, we normalised 

each descriptor file using scikit learn’s standard scaler module, sklearn.preprocessing. StandardScaler 

is a method for normalising data that uses the z-score algorithm. After normalising the data, we 

eliminated the null values from each descriptor file, if any existed. The 2D and FP descriptor files 

contain no null values, but the 3D descriptor file has a few null values. After we removed the null 

values, we had 1444 2D, 116 3D, and 14532 FP descriptors/features for the entire dataset. Previous 

research has revealed that most of the descriptors derived with PaDEL are meaningless (Dhanda, 

Singla, et al., 2013; Singh et al., 2015; Svetnik et al., 2003). As a result, selecting the most important 

descriptors is a critical step in developing any prediction model (Garg et al., 2010; Singla et al., 2011).  

 

9.2.4 Feature selection techniques 

We employed three feature selection strategies in this study: first is the VarianceThreshold-based 

method, second is the correlation-based method, and third is the SVC-L1-based method. To remove 

low-variance features from all descriptors, we utilised scikit’s VarianceThreshold package 

(sklearn.feature selection). After deleting low variance features, we were left with 622 2D, 66 3D, and 

2251 FP descriptors instead of 1444 2D, 116 3D, and 14532 FP descriptors. Following that, a 

correlation-based feature selection method was utilised to choose those features that correlate with 

each other by less than 0.6 with each other. As a result, we excluded the features with a correlation 

more than or equal to 0.6 (>=0.6). After that, we were left with 73 2D, 9 3D, and 1622 FP descriptors 

out of a total of 622 2D, 66 3D, and 2251 FP descriptors. Finally, the SVC-L1 feature selection 

technique was utilised to obtain the most significant feature set. This is a typical strategy for reducing 

the size of the feature vector. Using the SVC-L1 technique, we were left with the most important 

feature set of 162 features, which includes 41 2D, 5 3D, and 116 FP descriptors. Using the feature-

selector algorithm, these 162 traits were prioritised according to their importance in distinguishing 

active and inactive inhibitors. Gradient Boosting Decision Tree (GBDT) is used in this software. 

LightGBM, a prominent machine learning technique, was used to rank the characteristics. It calculates 

how many times a feature is used to split the data across all trees to estimate its rank. The features 



 
121 

picked and rated by this method were utilised to create several machine learning models, and the 

models’ performance was computed on the top 10, 20, 30,...., 116 features, respectively. 

 

9.2.5 Machine learning-based classifiers  

We used different machine learning techniques to construct prediction models for the classification of 

STAT3 inhibitors and non-inhibitors chemical substances in this study. In order to create models, we 

used random forest (RF), Support Vector Classifier (SVC), decision tree (DT), K-nearest neighbour 

(KNN), Logistic Regression (LR), Gaussian Naive Bayes (GNB), and XGBoost (XGB). Scikit's 

sklearn package was used to implement all of these machine learning algorithms (Pedregosa et al., 

2011).  

 

9.2.6 Performance evaluation  

The model's performance was assessed using the leave one out cross-validation (LOOCV) technique. 

To analyse our prediction model in this work, we employed the usual 5-fold cross-validation technique. 

The entire dataset was divided in an 80:20 ratio, resulting in an 80% training dataset and a 20% external 

validation dataset. The training dataset was subjected to five-fold cross-validation. The 80% training 

dataset was divided into five equal-sized sets, each with an equal number of positive and negative 

chemicals. Four of these five sets will be utilised for training, while the last fifth set will be used for 

testing. The same procedure is repeated five times to ensure that each of the five sets is used at least 

once for model testing. The prediction models were built using these five training and testing sets. The 

model's overall performance was then assessed using the 20% external validation dataset.  

We used conventional evaluation metrics to assess the performance of various prediction models. We 

employed both threshold-dependent and independent factors in this analysis. The model's performance 

was assessed using sensitivity (Sens), specificity (Spec), accuracy (Acc), and the Matthews correlation 

coefficient (MCC), all of which are threshold-dependent characteristics. The threshold-independent 

parameter, i.e., the area under the receiver operating characteristic curve (AUROC), was used to 

evaluate the model's performance.  

 

9.3 Results  

9.3.1 Analysis of functional groups 
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We used the chemmineR package to compute the frequency of distinct functional groups of IL6-

mediated STAT3 inhibitors (positive dataset) and non-inhibitors (negative dataset). We can see from 

the average frequency values that the abundance of rings and aromatic groups is much larger in the 

positive sample than in the non-inhibitors. Inactive substances, i.e., STAT3 non-inhibitors, have a 

higher frequency of secondary amines (R2NH), tertiary amines (R3N), and ester (ROR) groups, as 

seen in Figure 9.3. 

 

 

Figure 9.3 Average frequency distribution of different functional groups of STAT3 inhibitors 

and non-inhibitors chemical compounds  

 

We also discovered the presence of rings and aromatic groups in the STAT3 inhibitors Napabucasin 

(BBI608), an FDA-approved medicine used to treat advanced malignancies (Ref), and STAT3 

Inhibitor VII (STAT3-IN-8) drug, which is utilised for STAT3 inhibition and the treatment of head 

and neck cancer. Some FDA-approved indirect STAT3 inhibitors, such as AZD-1480 and Ruxolitinib, 

have comparable tendencies. These findings imply that the researcher can use this study to develop 

innovative medications that can be employed as active inhibitors of STAT3. 

 

9.3.2 Classification model performance  

One important problem in this type of investigation is classifying STAT3 inhibitors and non-inhibitors 

using 2D, 3D, and FP descriptors. We employed different feature selection strategies to obtain the 
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optimal collection of features that may be used for categorization. Following that, we created many 

prediction models using classifiers such as RF, DT, LR, XGB, SVM, and GBM. 

 

9.3.2.1 2D-based models  

For the positive and negative datasets, we compute 1444 2D descriptors. We get 74 features after 

deleting low variance and highly correlated characteristics. We created classification models using this 

feature set. On the training and validation (AUC = 0.84) datasets, RF achieves maximum performance 

with balanced sensitivity and specificity. Using the SVC-L1 method, we were able to obtain 41 2D-

descriptors. The AUC 0.83 and 0.84; accuracy 76.35% and 75.46% on training and validation datasets 

with the RF classifier vary somewhat after feature reduction. SVM also works well on training and 

testing datasets, with accuracy values of 74.27 and 72.99, respectively, as shown in Table 9.1. 

 

Table 9.1: Performance measures of 2D-based descriptors developed on training dataset and 

testing dataset 

Method Dataset Sensitivity Specificity Accuracy AUC 

DT 
Training 64.2 64.3 64.2 0.69 

Testing 72.2 59.7 66.2 0.73 

RF 
Training 76.1 76.6 76.4 0.83 

Testing 74.6 76.4 75.5 0.84 

LR 
Training 69.7 69 69.3 0.75 

Testing 71.6 69 70.4 0.77 

XGB 
Training 71.6 71.8 71.7 0.78 

Testing 72.5 70.9 71.8 0.8 

KNN 
Training 70.3 70.4 70.4 0.77 

Testing 70.8 70.9 70.8 0.79 

GNB 
Training 65.2 66.1 65.7 0.7 

Testing 69.6 68.1 68.8 0.73 

SVM 
Training 74.8 73.8 74.3 81 

Testing 71.3 74.8 73 81 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; SVM, Support Vector Machine; XGB, XGBoost; AUROC, Area Under Receiver Operating Curve 

 

9.3.2.2 3D-based models  

With SVC-L1, we selected top-5 features of 3D descriptors and computed the performance. In this 

situation, RF surpasses all other classifiers on training and testing data, with the greatest AUC (0.741 
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and 0.729). XGB and SVM, on the other hand, perform pretty well, with AUC 0.73 on training data 

and AUC 0.71 on validation data, as shown in Table 9.2.  

 

Table 9.2: Performance measures of 3D-based descriptors developed on training dataset and 

testing dataset 

Method Dataset Sensitivity Specificity Accuracy AUC 

DT 
Training 64.80 62.00 63.33 0.68 

Testing 67.16 51.76 59.72 0.66 

RF 
Training 67.15 66.35 66.73 0.74 

Testing 66.27 65.18 65.74 0.73 

LR 
Training 65.77 65.54 65.65 0.71 

Testing 65.67 64.54 65.12 0.70 

XGB 
Training 65.29 66.94 66.15 0.73 

Testing 65.67 66.13 65.90 0.72 

KNN 
Training 68.21 67.01 67.58 0.74 

Testing 69.85 62.62 66.36 0.73 

GNB 
Training 65.85 65.69 65.77 0.71 

Testing 67.46 61.98 64.82 0.70 

SVM 
Training 66.91 66.50 66.69 0.73 

Testing 66.87 65.18 66.05 0.71 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; SVM, Support Vector Machine; XGB, XGBoost; AUROC, Area Under Receiver Operating Curve 

 

9.3.2.3 FP-based models  

Models based on FP outperform models based on 2D and 3D characteristics. On both the training and 

validation datasets, the RF algorithm achieves maximum performance, i.e., AUC (0.86) with balanced 

sensitivity and specificity. SVM achieves comparable performance in this scenario, i.e., AUC (training 

data = 0.84 and testing data = 0.85), and results of XGB, GBM, LR, DT, and KNN are reported in 

Table 9.3. 

 

Table 9.3: Performance measures of FP-based descriptors developed on training dataset and 

testing dataset 

Method Dataset Sensitivity Specificity Accuracy AUC 

DT 
Training 64.96 65.24 65.11 0.71 

Testing 67.46 61.66 64.66 0.70 

RF Training 78.46 77.61 78.01 0.86 
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Testing 79.40 77.96 78.7 0.86 

LR 
Training 75.85 76.66 76.28 0.83 

Testing 72.84 76.68 74.69 0.81 

XGB 
Training 77.32 77.54 77.43 0.84 

Testing 77.91 80.83 79.32 0.86 

KNN 
Training 76.18 75.04 75.58 0.83 

Testing 77.02 73.80 75.46 0.83 

GNB 
Training 73.98 74.08 74.03 0.81 

Testing 69.55 73.8 71.61 0.79 

SVM 
Training 78.62 78.35 78.48 0.86 

Testing 77.31 80.19 78.70 0.86 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; SVM, Support Vector Machine; XGB, XGBoost; AUROC, Area Under Receiver Operating Curve 

 

9.3.2.4 Hybrid models 
Then, to increase performance, we combined 2D (41 features), 3D (5 features), and FP (116 features) 

descriptors and built models with 162 descriptors. The accuracy (79.48 and 81.02) and AUC (0.87 and 

0.88) of RF models employing integrated features are quite high on training and validation datasets. 

We discovered that integrating 2D+3D+FP characteristics had no discernible effect on the 

performance of ML-based models. As a result, we use the feature selector algorithm to perform feature 

ranking on the combined 162 features. Finally, we achieved a minimal set of features that perform 

almost as well as the hybrid model (2D+3D+FP) features. By ranking the features and then examine 

the performance of the top-10, 20, 30,.....162 features. Finally, we choose the best 50 descriptors (14 

2D, 1 3D, and 35 FP) from a set of 162 features. The top-50 features perform remarkably identically 

to the 162 features. On both the training and validation datasets, RF achieved a maximum AUC of 

0.87 and accuracy greater than 78.5 with the smallest sensitivity and specificity difference (See Table 

9.4). 

Table 9.4: The performance of machine learning models using hybrid (2D+3D+FP) descriptors 

on training dataset and testing dataset 

Method Dataset Sensitivity Specificity Accuracy AUC 

DT 
Training 68.22 68.03 68.12 0.74 

Testing 66.67 72.70 69.91 0.74 

RF 
Training 78.42 78.61 78.52 0.87 

Testing 79.00 78.16 78.55 0.87 

LR 
Training 77.00 76.34 76.66 0.84 

Testing 75.67 77.87 76.85 0.83 
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XGB 
Training 77.31 77.10 77.20 0.85 

Testing 80.00 75.29 77.47 0.85 

KNN 
Training 74.94 75.89 75.43 0.83 

Testing 78.00 75.58 76.70 0.83 

GNB 
Training 74.23 74.00 74.11 0.81 

Testing 75.33 72.99 74.07 0.80 

SVM 
Training 77.71 77.55 77.63 0.86 

Testing 78.33 76.72 77.47 0.85 

#DT, Decision tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbor; LR, Logistic Regression; RF, Random 

Forest; SVM, Support Vector Machine; XGB, XGBoost; AUROC, Area Under Receiver Operating Curve 

 

9.4 Web-based platform 

In order to help the scientific community, we created “STAT3In” 

(https://webs.iiitd.edu.in/raghava/stat3in/) a webserver that can classify STAT3 inhibitors. We built 

the web server's front and back ends with HTML5, JAVA, CSS3, and PHP scripts. The STAT3In web 

server is compatible with a variety of platforms, including mobile, iPad, tablet, and desktop computers, 

as well as multiple browsers. In the server’s backend, we applied the random forest model developed 

with hybrid chemical descriptors as input features. The web server is divided into three key modules: 

“Predict”, “Draw” and “Analog design”. The “Predict” module aids the user in determining if a 

chemical substance is a STAT3 inhibitor or not. The module accepts chemical compounds from users 

in a variety of forms, including SDF, SMILES, and MOL, and also lets users choose the desired 

threshold. The users can upload a file with numerous chemical compounds or insert a single molecule 

or multiple molecules. The result page includes the machine learning score and the class(es) of the 

provided compound(s) as either a STAT3 inhibitor or non-inhibitor. To search or sort the output table, 

the result is supplied in comma-separated value (CSV) format. The “Draw” module allow the user to 

create or modify the chemical molecule structure and this module then import the structure into the 

prediction model to determine whether the molecule is a STAT3 inhibitor or not. In the third, module 

users can create the analogues in the “Analogue design” module by combining submitted scaffolds, 

building blocks, and linkers. The homepage of website and utility of prediction module in Figure 9.4.  
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Figure 9.4 Input and output page of ‘Prediction’ module of STAT3In webserver, provides 

molecule ID, machine learning score and prediction  

 

 9.5 Case Study: Repurposing of FDA-approved drugs 

In order to find out the applicability of STAT3In server, we have performed a case study. In this we 

have find the possible therapeutic candidates for inhibiting the STAT3 pathway, we have used 1102 

FDA-approved pharmacological compounds from the Drug Bank database. At first, we determined the 

PubChem CID from the FDA-approved drugs. A total of 842 drugs, out of the 1102 drugs, compose 
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the 2-D structures. We have used the Predict module of our STAT3In server with default settings, i.e., 

Random Forest Threshold = 0.48. Out of 842 FDA-approved drugs we find out 8 possible 

pharmacological candidates for STAT3 inhibition using our prediction model. The drugs predicted by 

our server previously used by number of studies for the treatment of cancer, inhibition of tumor 

progression, angiogenesis, and COVID-19 progression. The complete description and functions of 

predicted FDA-approved drugs is given in Table 9.5.  

 

Table 9.5: Predicted FDA-approved drug candidates for STAT3 inhibition (Adopted from- 

Dhall et. al., 2021) 

Drug Bank ID 
FDA-Approved  

(Drugs) 

STAT3In 

(Prediction) 
Functions 

DB00682 Warfarin Inhibitor Inhibition of IL6/STAT3-dependent fibrin production in severe 

listeriosis.  

DB09357 Dexpanthenol Inhibitor Inhibition of LPS-induced neutrophils influx, protein leakage, and 
release of TNF-α and IL6 in bronchoalveolar lavage fluid in acute 

lung injury. 

DB00790 Perindopril Inhibitor It regulates the inflammatory mediators, NF-κB/TNF-α/IL6, and 

apoptosis in renal diseases and inhibit the activation of STAT3.  

ACE inhibitor perindopril-inhibited tumor growth was associated 
with the suppression of angiogenesis. 

DB00675 Tamoxifen Inhibitor Treatment of ER‐positive breast cancer with tamoxifen by 

inhibiting the IL6/STAT3 signal pathway, inhibition of tumor 
growth and angiogenesis. Anticancer drugs that have shown 

potential activity in both MERS and SARS-CoV. 

DB00183 Pentagastrin Inhibitor Anti-malarial, anti-fungal, anti-bacterial, and anti-inflammatory. 

DB00476 Duloxetine Inhibitor Inhibit overexpression of IL6 mRNA in anxiety- and major 

depressive disorder, anti-inflammatory action against IL6. 

DB09027 Ledipasvir Inhibitor Anti-viral activity against COVID-19, (sofosbuvir, and ledipasvir) 
inhibited STAT3 protein levels to cure HCV infections. 

DB00768 Olopatadine Inhibitor Inhibit CHMCs activation and release of IL6, tryptase, and 

histamine and use as anti-allergy drug.  

 

9.6 Discussion  

One of the most important transcription factors and an oncogene, STAT3 play major role in the 

development and spread of tumours. It may therefore provide a great therapeutic target for a variety of 

cancer treatments because of its flexible regulatory pathways and significant biological functions in 

cancer. Additionally, it has been documented in the literature that coronavirus-infected patients, whose 

numbers are rising rapidly all over the world, have highly higher levels of IL6. The JAK/STAT3 

pathway is how the cytokine IL6 mediates its effects, hence it is imperative to create computational 

algorithms that can anticipate how effective a chemical molecule will be as a STAT3 inhibitor. 

Numerous techniques have been developed in the past that take use of the link between the structure 

and activity of chemical compounds to use machine learning techniques to predict whether a chemical 

molecule has the potential to be an inhibitor. For example, EGFRPred predicts whether a molecule has 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib43
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib55
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378993/#bib55
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the potential to be an EGFR inhibitor, and DrugMint determines whether a molecule has the potential 

to be a potential drug candidate. 

In this study, we tried to create a computational approach that could distinguish between STAT3 

inhibitors and non-inhibitors. In STAT3 inhibitor compounds, we noted a high frequency of rings and 

a low frequency of R2NH, R3N, and ROR groups. The high prevalence of these functional groups in 

STAT3 medications such AZD-1480, Ruxolitinib, Napabucasin, and STAT3-In-8 is further supported 

by literature (Furqan et al., 2013). For the purpose of creating the prediction models, we take into 

account STAT3 inhibitors and non-inhibitors as the positive and negative datasets. On the validation 

dataset using hybrid descriptors, random forest-based models perform best (AUC=0.87 and 

accuracy=78.55). To further identify possible therapeutic candidates against STAT3 activation, we 

took 842 FDA-approved medications. We have predicted eight drugs “Warfarin, dexpanthenol, 

perindopril, tamoxifen, pentagastrin, duloxetine, ledipasvir, and olopatadine” as potential medications 

that we have found to be effective in treating severe diseases like tumour progression, angiogenesis, 

COVID-19 progression, and the ability to inhibit the IL6/STAT3 pathway. IL6/STAT3 activation and 

may be employed as a therapeutic candidate to combat the COVID-19-related cytokine storm. A 

website called STAT3In is created to anticipate and design probable STAT3 inhibitors using machine 

learning techniques and basic information derived from chemical compounds. The user-friendly web-

server is freely available at https://webs.iiitd.edu.in/raghava/stat3in/ . This method will aid researchers 

working in the field of cancer therapy and infectious diseases.  

 

9.7 Conclusion 

In the current study, we developed a prediction method to distinguish between chemical compounds 

that are STAT3 inhibitors and non-inhibitors. We have provided a webserver for the prediction of 

STAT3 inhibiting chemical compounds, which can utilized by experimental biologist for the 

identification of STAT3 inhibiting molecules. However, our work is limited by the fact that the models 

were created using the chemical that were only tested on the “human U3A fibrosarcoma” cell line. In 

order to build a rigorous methodology, the investigation should be carried out on animal models or on 

a variety of cell lines.  

 

 

 

 

 

 

 

https://webs.iiitd.edu.in/raghava/stat3in/
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SUMMARY  
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Cancer is one of the leading cause of death globally, according to GLOBOCAN approx. 10.3 million 

deaths and 19.3 million new cases of cancer occurred in the United States. Over the past few decades, 

researchers have work tirelessly for finding new therapies and solutions for the devastating disease. 

The most widely utilised treatments include traditional therapies like chemotherapy, radiation, and 

surgery. The patient’s health and survival are adversely affected by these radiation-based treatments. 

New treatment modalities, such as targeted cancer therapies, adoptive T cell therapy, immune 

checkpoint inhibitor-based therapies, immunomodulators, and oncolytic viruses based therapy, have 

been created to overcome the limitations of conventional treatments. Immunotherapy is a type of 

cancer treatment, which uses the body’s own immune cells to boost the immune system and assist the 

body in locating and eliminating cancer cells. Numerous forms of cancer can be treated using 

immunotherapy. It may be used alone or in conjunction with other cancer treatments such as 

chemotherapy. Improvements in immunotherapy have showed notable results and improves the lives 

of many patients with a variety of solid tumours. Our immune system recognize the mutated peptides 

(tumour specific peptides or neoantigens), which are produced by a variety of genetic changes in 

cancer cells. The immune system can distinguish between malignant and normal cells with the help of 

tumour specific antigens. Since tumor-specific antigens are displayed on cell surfaces via Human 

leukocyte antigen (HLA) molecules and are identified by T cells. Adaptive immunity is mediated by 

CD8+ T cells, a crucial subset of HLA class I-restricted T cells. They consist of CD8+ suppressor T 

cells, which control certain immune responses, and cytotoxic T cells, which are crucial for eliminating 

malignant or virally infected cells. Cytotoxic T cells initiate the production of cytokines majorly TNF-

α and IFN-γ, which causes anti-tumor and anti-viral responses.  

Antigen-presenting cells have class II HLA molecules which present mutated or tumorigenic peptides 

which are recognized by CD4+ T lymphocytes. They all significantly contribute to initiating and 

directing adaptive immune responses. CD4+ T lymphocytes activate T-helper cells and secrete number 

of cytokines (IL-12, IFN-γ, IL-4, IL-5, IL6, TNF-α and IL-13) in order kill or eradicate the pathogen 

or cancer cells. Moreover, the overproduction of cytokines (IL6) leads to the activation of STAT3 

signaling pathway which further proliferates the production of oncogenes, tumor metastasis, 

angiogenesis and development of tumor. So, it is crucial to inhibit the IL6/STAT3 signalling pathway 

in order to suppress the tumor growth. Human leukocyte antigens (HLA), HLA-binding peptides 

(neobinders) and cytokines are the most crucial components of our immune system. These molecules 

play a vital role directly or indirectly in developing cancer vaccine or immunotherapy. In this study, 

we investigated the role of cytokines and HLA molecules, in order to design better therapeutics against 

cancer. We majorly divided our study in four sections: (i) Prognostic biomarkers for cancer, (ii) Non-
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classical HLA-binder prediction, (iii) Designing of cytokine inducing peptides, (iv) Inhibition of 

IL6/STAT3 pathway.  

In the first part of the study we tried to investigate the role of HLA-alleles, neobinders and cytokines 

on the survival of cancer patients. This section is further subdivided into two categories: (i) Pan-cancer 

risk estimation analysis (ii) Personalized HLA-based prognostic biomarkers for skin cancer. These 

sub-sections are explained in details in Chapter 3 and Chapter 4. In the first section we investigated 

the importance of class-I HLA, neobinders and cytokines expressions with the survival of cancer 

patients. Here, we used HLA-typing information, tumor specific neoantigens and expression profiles 

of twenty types of cancer patients in order to perform univariate survival analysis and correlation 

analysis. We have incorporated all the analysis in a user friendly web-resource “CancerHLA-I” 

(https://webs.iiitd.edu.in/raghava/cancerhla1/ ). We anticipate this web-based platform could be 

utilized for the analysis and identification of cancer-specific biomarkers. This study may provide 

promising HLA-biomarkers for designing cancer immunotherapy. In the second part of the study we 

have developed a risk estimation tool “SKCMhrp” for skin cutaneous melanoma patients. Here, we 

performed patient-specific HLA-typing for class-I and class-II alleles and use the clinical information 

to derive the prognostic biomarker. We have used machine learning algorithms to develop survival 

prediction models and web-tool SKCMhrp which is freely accessible at 

(https://webs.iiitd.edu.in/raghava/skcmhrp/ ).  

In the second part of the study, we have developed a computational tool for the prediction of HLA-

binding peptides. We have explained the details of this section in Chapter 5. In the past number of 

HLA-binder prediction methods have been developed, however there is not a single platform for non-

classical HLA i.e., HLA-G and HLA-E. Hence, we have developed an in-silico tool for the 

identification of binding peptides corresponding to HLA-G*01:01, HLA-G*01:02, HLA-G*03:01, 

HLA-E*01:01, and HLA-E*01:03. We have also developed a highly accurate and easy to use web 

platform “HLAncPred” which is available at (https://webs.iiitd.edu.in/raghava/hlancpred/ ). Moreover, 

we developed a standalone version of HLAncPred 

(https://webs.iiitd.edu.in/raghava/hlancpred/stand.html ).   

In the third part of the study, we have developed three prediction tools for the major cytokines (IL6, 

TNF-α and IFN-γ). We have divided this section into three sub-sections: (i) Prediction of IL6 inducing 

peptides (ii) TNF-α inducing epitopes prediction and (iii) Identification of IFN-γ inducing peptides. 

The complete description of all these studies is given in Chapter 6, Chapter 7 and Chapter 8. In the 

first part, we have developed a tool for the prediction, scanning and designing of IL6 inducing peptides. 

https://webs.iiitd.edu.in/raghava/cancerhla1/
https://webs.iiitd.edu.in/raghava/skcmhrp/
https://webs.iiitd.edu.in/raghava/hlancpred/
https://webs.iiitd.edu.in/raghava/hlancpred/stand.html
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We have used the experimentally validated datasets from IEDB resource and developed classification 

models using several machine learning techniques. Finally, the best models incorporated in the website 

IL6Pred (https://webs.iiitd.edu.in/raghava/il6pred/) and standalone package 

(https://webs.iiitd.edu.in/raghava/il6pred/stand.html). In the next part, we have generated a host-

specific prediction method for the identification of TNF-α inducing epitopes or peptides. The models 

were trained and tested on experimentally validated  TNF-α inducing and non-inducing peptides. 

Finally, the best prediction models integrated in the user-friendly web tool named “TNFepitope” 

(https://webs.iiitd.edu.in/raghava/tnfepitope/). In the third sub-section, we have developed an updated 

method for the prediction of interferon-gamma inducing and non-inducing peptides. This method can 

be utilized in the identification IFN inducing regions in the subunit or peptide based vaccines. The 

method is easy to use and available at the (https://webs.iiitd.edu.in/raghava/ifnepitope2/).  

In the fourth part, we have conducted a study for the identification of inhibitors against IL6 mediated 

STAT3 signalling pathway. The complete details of the study is provided in Chapter 9. We tried to 

develop an computational tool for the prediction of molecules which can inhibit the activation of 

STAT3. As shown in literature, the production of IL6 activate the JAK/STAT3 signalling pathway. 

The overactivation of STAT3 leads to the proliferation of tumor cells. To assist the scientific 

community, we purpose a computational tool for the prediction and design of novel STAT3 inhibitor 

drugs. We have used the dataset from PubChem repository and generate chemical descriptors using 

PaDEL software. These numerical features are provided to machine learning algorithms for training 

and validated on the external datasets. Finally the best prediction models integrated in the web-based 

platform named “STAT3In” (https://webs.iiitd.edu.in/raghava/stat3in/). Overall, the study done in this 

thesis addresses various aspects of the immunology and use of genomic profiles to identify the 

prognostic biomarkers for cancer patients. Moreover, we anticipate that experimental biologist and 

clinicians will use these findings of our investigations to develop novel subunit vaccines and 

immunotherapies to treat cancer patients.  
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