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Abstract 
 

Innate immune system response is the initial/first line of defense against invading pathogens. It is 

non-specific and involves various cells like macrophages, neutrophils, natural killer cells, dendritic 

cells. The response is quicker than adaptive immunity. Unlikely there is no antibodies generation 

and memory after exposure with any type of infection. Innate immunity consist of physical and 

chemical barriers such as epithelia and antimicrobial chemicals produced at epithelial surfaces. 

The system is intricate and consists of blood proteins including member of the complement system 

and other mediators of inflammation. Phagocytic cells like neutrophils and macrophages, dendritic 

cells, natural killer cells and other lymphoid cells are essential part of the system. The recruitment 

and activation of neutrophils at the site of infection to eliminate pathogens is a key aspect of the 

innate response. The innate immune system also expresses a wide range of  Pattern Recognition 

Receptors (PRRs) which are specialised in the recognition of evolutionary conserved structures 

known as Pathogen Associated Molecular patterns (PAMPs). Toll like Receptors (TLRs), C-lectin 

Type Receptors (CLRs), Mannose Binding Receptors (MBRs) and Nucleotide-binding 

Oligomerization Domain (NOD)-Like Receptor (NLRs) are some of the major PRRs. TLRs are 

being the most extensively studied PRRs. PAMPs are distinguished by being invariant across 

whole classes of pathogens, required for pathogen survival, and separate from "self." However, 

PRRs perceive host factors as "danger" signals in some situations, such as when they are present 

in atypical locations or abnormal molecular complexes as a result of infection, inflammation, or 

other forms of cellular stress. These are known as  Damage Associated Molecular patterns 

(DAMPs). PRRs are specialised to recognise these DAMPs as well. PRRs present on the cell 

surface or intracellularly, signal the presence of infection to the host and initiate proinflammatory 

and antimicrobial responses by activating hundreds of new intracellular signalling pathways that 

include adaptor molecules, kinases, and transcription factors in response to PAMP recognition. 

PRR-induced signal transduction pathways eventually result in the activation of gene expression 

and the synthesis of a diverse range of molecules, including cytokines, chemokines, cell adhesion 

molecules, and immunoreceptors, which together facilitate the early host response to infection 

while also serves as a vital link to the adaptive immune response. 

Innate immunity is rapidly evolving, with novel cell types and molecular pathways being 

discovered and paradigms changing continuously. Over the last decade, our understanding of the 



processes by which pathogens are identified has improved significantly. This field has previously 

been thoroughly investigated. Still, the appropriate annotation of data, as well as the development 

of more efficient computing resources and diverse methodologies, remains a significant problem. 

To handle this, we have created a comprehensive knowledge base on PRRs and their corresponding 

ligands  Pattern Recognition Receptor Database 2.0 (PRRDB2.0), which is an updated version of 

PRRDB. The database consists of  more than 2700 entries data from 2008-2018.  It provides a 

user-friendly all-device compatible webserver known as PRRDB2.0. This webserver includes 

detailed information on numerous classes of PRRs as well as their respective ligands/agonists. The 

database contains information such as the name, source, origin, role, sequence, length, and assay 

utilised for both elements. Proper annotation and adequate computational resources can help to 

understand and design the immune cells, the inflammasome, and DNA sensing. All of these are  

crucial for the activation and orchestration of innate immunity, which might lead to new treatment 

options for autoimmune, autoinflammatory, and infectious diseases. We developed “PRRpred” 

and “DefPred” tools that will help in the annotation of the innate immune system molecules. 

‘PRRpred’ is an in-silico prediction of PRRs. It can predict whether the given protein sequence is 

PRR or not.  It consists of two modules for prediction the first one based on composition of the 

protein sequence and the other one is based on evolutionary information. The best performing 

model is a hybrid model of both with Basic Local Alignment Search Tool (BLAST). User can 

download the prediction result in csv format with the result whether the provided input is 

PRR/Non-PRR. It is also accompanied by a user friendly, all device compatible web server. 

Whereas “DefPred” is an in-silico tool for scanning, predicting, and designing defensins. 

Defensins are host  specific defense molecules, and are one of the class of Anti-microbial Peptides 

(AMPs). In this study, we described a reliable method developed for predicting defensins with 

high precision. We systematically collected defensins, AMPs and non-defensins from various 

resources to create the largest possible datasets. Developing new defensins can be a very effective 

alternative to drug resistance, and they are less toxic since they are host specific and produced in 

the host body. 

Each year, cancer alone claims the lives of millions of people all over the world. Despite 

advancements in cancer treatments, patient survival rates are still below average. The study of the 

innate immune system has led to the identification of key regulators and the development of 

chemo-therapeutics that can target them and reverse the state of a cancer patient. We tried to find 



out the relation between the gene expression of PRRs and the survival of patients with cancer.  

Firstly, we identified the prognostic gene signature from the expression profile of PRRs genes in 

case of endometrial cancer. Later on, we identified the most effective drugs from existing drugs 

using prognostic gene signature and did repurposing of FDA approved drugs. 

 Our next goal was to design a universal biomarker corresponding to all types of cancer-based on 

PRR gene expressions. We tried and developed a 12 gene biomarkers. Although, the biomarker 

signatures’s efficiency is seen to differ among different cancer types, a substantial stratification is 

achieved in all cases. Lastly to check our hypothesis when there is a change in biological insight,  

is their any change in the performance of the prognostic biomarker across multiple cancer. For this 

we have compared two major pathways apoptotic and PRR biomarker genes in case of THCA, 

MESO and SKCM. We found both the pathways are highly interlinked and there is dependency 

of their genes in case of cancer. 

Altogether, the work discussed  here in this thesis recommends some novel  approach for the proper 

annotation of innate system molecules.  Also, these molecules related signaling genes were utilized 

to create prognostic biomarker in various cancer. We anticipate that clinicians and researchers will 

use the findings of our investigations to develop advanced cancer treatment approaches. 
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    1.1 Immune System  
The immune system is a complex network of cells and proteins protecting the body from 

infection.  It is an intricated network of organs, white blood cells, proteins (antibodies), 

lymphoid organs, humoral factors, cells, cytokines, and other biomolecules. This system 

works collectively to defend you from external invaders  like bacteria, fungi, viruses, and 

other parasites that cause infection, sickness, and disease. The immune system is critical to 

our existence. Our body would be vulnerable if we did not have an immune system.  Our 

immune system is pledged to keep us healthy while moving through a sea of germs.  The 

immune system's overall job is to prevent or restrict infection. When your immune system 

performs correctly, it can distinguish which cells belong to you and are foreign to your body. 

It stimulates, mobilizes, fights, and eliminates foreign invader germs that might damage 

you. The role of the immune system is best understood when it fails. Its misfunctioning 

results in severe infections, immunodeficiency, autoimmune disorders, hyper allergy, and 

tumors (Parkin and Cohen 2001).  These specialized cells and immune system components 

defend the body against disease. This protection is called immunity. It can also be described 

as a perplexing biological system that recognizes and accepts what belongs to the self while 

also acknowledging and rejecting what is foreign (non-self). A detailed representation of 

the human immune system is demonstrated in Figure 1.1. 
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Figure 1.1 Representation of the organs playing significant role in human immune 

system 

 

1.2 Types of Immunity 
There are mainly three types of immunity; innate, adaptive, and passive immunity. Innate 

immunity is also known as inherent immunity, aka non-specific immune response. People 

are born with natural immunity or innate immunity, which serves as a general defense.  For 

example, the skin works as a barrier to keep pathogens out of the body. Additionally, the 

immune system knows when to act against foreign and potentially dangerous invaders. It 

often refers to a physical, chemical, and biological barrier that provides the first line of 

defense. Innate immune components like neutrophils, monocytes, cytokines, macrophages, 

complement receptors, and acute-phase proteins provide an immediate defense to the host. 

It is non-inclusive or generic and non-specific in action. Adaptive immunity takes over 

when any pathogen surpasses the innate one. Adaptive immunity develops during the 
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lifespan. When any person is exposed to the illness or is immunized against them using the 

vaccine, he/she acquire the adaptive immunity.  The immune system of higher animals is 

distinguished by adaptive immunity. This response is made up of antigen-specific responses 

mediated by T cells and B lymphocytes. Although the innate response is quick, it can be 

harmful to the tissue as it is non-specific. At the same time, the adaptive one is precise and 

nonharmful but is relatively slower. Because the adaptive response remembers, further 

exposure results in a more powerful and quicker reaction, although this is not immediate. 

Because our immune system remembers former enemies, this is also referred to as 

immunological memory.  Passive immunity is known to be the one that is borrowed from a 

different source and is temporary only. Likewise, antibodies present in a mother's milk 

provide a newborn baby interim protection against the illness to which the mother has been 

exposed. A more detailed representation of categories of immunity is shown in Figure 1.2. 

 

 

 
 

Figure1.2 Types of immunity 
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    1.3 Components of the Immune System 

The immune system is composed of cells, tissue, organs, and numerous chemicals that 

combat infections or illnesses. The fundamental elements of this system have white blood 

cells, the lymphatic system, the antibodies, the spleen, the thymus, and the bone marrow. 

These are the immune system components that actively combat infection. The entire 

immune cells arise from a precursor in the bone marrow and the mature cells through 

sequential modification from different body parts. The representation of components of both 

the immunity is shown in Figure 1.3. 

 

Skin: Usually, the skin provides initial protection against microbes. The immune cells can 

be found in different layers of skin and these cells expel the antimicrobial substances.  

 

Bone marrow: It involves the stem cells, which further grow into various cell types. The 

common myeloid progenitor cells present in the bone marrow are the originator or precursor 

of the innate cells like neutrophils, macrophages, monocytes, mast cells, dendritic cells, 

basophils, and others that are important for the response. The adaptive cells like B and T 

cells arise from common lymphoid progenitor cells. These cells help in the immunological 

memory against the pathogens that acted in the past. Natural killer (NK) cells have the same 

precursor and possess features of both the arms of the immunity.  They provide instant 

responses like innate defense and the memory cells preserve the immunological memory. 

 

Bloodstream: The immune cells invigilate the bloodstream regularly for any abnormalities.  

A blueprint of the immune system is taken when a blood test reports the white blood cells. 

The rare or abundance of these cells in the bloodstream indicates a problem. 

 

Thymus: The thymus, a tiny organ in the upper chest, is where T lymphocytes develop.  

The lymphatic system is a network of veins and tissues made up of lymph, an extracellular 

fluid, and lymphoid organs like lymph nodes. The lymphatic system serves as a route for 

communication and transit between tissues and the circulation. Immune cells travel via the 

lymphatic system and congregate in lymph nodes located throughout the body. 

 



 
 
 
 
 

6 

Lymph nodes serve as a communication gateway for immune cells to sample information 

from the body. For example, if adaptive immune cells in the lymph node detect fragments 

of a bacterium brought in from afar, they will activate, reproduce, and leave the lymph node 

to circulate and treat the pathogen. As a result, physicians may examine patients for enlarged 

lymph nodes, which may signal an active immune response. 

 

Spleen: The spleen is a digestive organ found behind the stomach. Although it is not directly 

related to the lymphatic system, it is essential for processing information from the 

circulation. Immune cells are abundant in certain parts of the spleen, and when blood-borne 

infections are recognized, they activate and respond appropriately.  

 

Tissue of the mucosa: Pathogens like to enter through mucosal surfaces, and specific 

immunological hubs are strategically situated in mucosal tissues such as the respiratory tract 

and the gut. 

 
Figure 1.3 The diagrammatic representation of the components of innate and adaptive      

immune system. 
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    1.4 How Innate Immune System Works 
The innate immune system is a host defense mechanism that has evolved over time, with 

significant aspects shared by plants, invertebrates, and mammals (Buchmann 2014; Bryant 

and Monie 2012). The word 'Innate' comes from the Latin word 'Innatus,' which means 

'inborn. It consists of cells and mechanisms that act as a nonspecific first line of defense 

against invading pathogens. Innate immune responses rely on the body's ability to recognize 

pathogens that have conserved features not found in the uninfected host. In animals, innate 

immune defenses cover almost all tissues, especially barrier surfaces like the skin and 

mucosal surfaces of the respiratory and gastrointestinal tracts. Non-hematopoietic cells, as 

well as specialized myeloid and lymphoid sensor and effector cells, can start and exert 

innate defense mechanisms and become activated in response to tissue injury, infection, or 

genotoxic stress. (Galli, Borregaard, and Wynn 2011). Through germline-encoded 

receptors, the innate immune system may "detect" such situations.  

Pattern Recognition Receptors (PRRs) such as toll-like receptors (TLRs) are proteins 

capable of recognizing molecules frequently found in pathogens (so-called Pathogen-

Associated Molecular Patterns—PAMPs), or molecules released by damaged cells ( 

Damage-Associated Molecular Patterns—DAMPs). They emerged phylogenetically prior 

to the appearance of the adaptive immunity and, therefore, are considered part of the innate 

immune system. Antimicrobial peptides (AMPs) (Hilchie, Wuerth, and Hancock 2013; Lees 

et al. 2019), complement factors (Degn and Thiel 2013; de Cordoba et al. 2012), alarmins 

(Chan et al. 2012; D. Yang et al. 2009), cytokines/chemokines (Paterson et al. 2021), 

chitinases/chitinase-like proteins(Lee et al. 2008), acute-phase proteins, proteases, and other 

less-categorised molecules are examples of innate immune responses mediated by cell-

dependent mechanisms (e.g. phagocytosis and cytotoxicity).  

Different PRR families have been studied in the past, with transmembrane proteins like 

Toll-like receptors (TLRs) and C-type lectins receptors (CLRs) being the most studied, as 

well as cytoplasmic proteins like nucleotide-binding oligomerization domain (NOD)-like 

receptors (NLRs) and retinoic acid-inducible gene-I-like receptors (RLRs). TLRs are type-

1 transmembrane proteins that detect PAMPs associated with invading pathogens both 

outside and within the cell, as well as in intracellular endosomes and lysosomes (Tartey and 

Takeuchi 2017; Kawai and Akira 2010; Hoving, Wilson, and Brown 2014b; Franchi et al. 

2009; Loo and Gale 2011). CLRs are signaling transmembrane receptors that are important 
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in antifungal immunity. The fundamental role of all PRRs is to detect PAMPs or DAMPs, 

which are important microbial components. The interaction of PRRs with PAMPs causes a 

variety of effects, including immune cell maturation, migration, and activation, as well as 

cytokine and chemokine production (Taghavi et al. 2017). The transcription of genes 

controlling proteins implicated in the inflammatory response, such as type I interferons 

(IFNs), proinflammatory cytokines, chemokines, antimicrobial proteins, and so on, is 

upregulated by most PRRs.   

The innate immune system efficiently distinguishes pathogen types based on PRR, and 

hence recruits the most efficient adaptive immune response to eliminate infections and their 

toxic molecules (Jain and Pasare 2017; Palm and Medzhitov 2009). The engagement of 

PRRs in response to PAMPs causes the activation of various cell death mechanisms in order 

to enhance tissue homeostasis and host-defense against pathogens. Importantly, DAMPs, or 

cell death products, establish a feedback loop that stimulates PRRs, causing 

inflammatory/immune response (Chaplin et al. 2018) as shown in Figure 1.4.  This field has 

been thoroughly researched in the past. However, the  proper annotation and development 

of more efficient computational resources and versatile methods continues to be a challenge.  
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Figure 1.4 Mechanism and response of PRRs towards PAMPs and DAMPs and role in 

cancer. 

 

1.5 Innate Immune System in Cancer 
Besides having inflammatory roles and being involved in diseases like rheumatic disease 

(Mullen, Chamberlain, and Sacre 2015), autoimmune disorders atherosclerosis, sepsis, 

asthma (Lin, Verma, and Hodgkinson 2012), heart failure (Farrugia and Baron 2017), 

kidney diseases (Komada and Muruve 2019),  bacterial meningitis, Parkinson’s disease, 

stroke, Alzheimer’s disease, viral encephalitis (V. Kumar 2019), immunodeficiency 

disorders like ‘chronic granulomatous disease (CGD)’, and ‘X-linked agammaglobulinemia 

(XLA)’(Mortaz et al. 2017).  Innate immune system does play a very vital role in cancer 

immunotherapy. The innate immune receptors like PRRs involved in cell death molecular 

mechanism that includes apoptosis, necroptosis and pyro-ptosis (Morimoto et al. 2021).  

PRRs, shows antitumoral activities in several cancers through activation in tumor cells. This 
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activation could trigger both pro- or antitumoral effects depending on the context (Shirota, 

Tross, and Klinman 2015) as shown in Figure 1.2. New therapies that promote anti-tumor 

immunity have been recently developed. Most of these immunomodulatory approaches 

have focused on enhancing T-cell responses, either by targeting inhibitory pathways with 

immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen 

receptor T cells or bispecific antibodies (Demaria et al. 2019). Many PRRs related  genes 

have previously been associated with cancer development or progression. As a result, 

several drugs and biomarkers have been developed. However, the problem for identifying 

novel biomarkers and the creation of new prognostic methods remains open. In addition to 

the requirement of improved accuracy, novel methods are expected to overperform clinical 

features or compliment them.  Given the crucial role of innate immune responses in 

immunity, harnessing these responses opens up new possibilities for long-lasting, multi 

layered tumor control. 

 

1.6 Proposal’s Origin 

Several initiatives have been undertaken in the last decade to research adaptive immunity. 

Tremendous exposure like annotation, creating in-silico tool, making usage of biological 

insight to understand the mechanistic point has been explored well in this arm of immunity. 

Whereas, adaptive immunity get activated through first line of defense innate immunity and 

if any malignancy get resolved at first step there would not be any need to go further on 

another step. But, there is not as much work has been done in innate immunity. Although it 

has important role in fighting against infection and providing host defense, also it plays a 

vital role as pro and anti-tumoral molecules. The innate immune molecules requires a proper 

annotation so thus researcher use them for translational benefits in research and therapies. 

Several essential regulators have been identified, as well as their involvement in this 

complex system. In summary, it has been shown that some components and portions of the 

innate immune system are weakened in cancer cells, causing these injured cells to refuse to 

die and disseminate the harm to future generations. Because of our current understanding 

of the pathways, drugs that target these critical components and restore the survival/death 

balance have been developed. Furthermore, changes in the concentrations or status of innate 

immune molecule regulators are utilized to predict cancer prognosis and risk. The 

development of novel prognostic biomarkers/methods for cancer risk assessment, on the 
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other hand, remains a challenge. Likewise, given the importance of numerous clinical 

aspects in cancer genesis and progression, these prospective techniques should incorporate 

important elements in order to supplement or replace existing risk prediction systems. The 

innovative prognostic approaches can be used to provide more precise risk prediction and, 

as a result, more effective therapy planning. 

 

1.7 Objective of the Thesis 

To overcome these short-comings we have put effort to explore innate immune system in 

depth. Our present work mainly focuses on the innate immune system as the adaptive 

immune system is highly explored. The study is primarily divided into two broad categories 

(i) in-silico annotation of innate immune system (ii) identification of cancer biomarker and 

peptide therapeutics. For this, we have employed in-silico annotation first using the innate 

immune receptors (PRRs)  and created a user-friendly webserver ‘PRRpred’, which can be 

used to predict whether a given protein is PRR or not. We have also created ‘DefPred’ for 

the classification of defensins and non-defensins. Besides this, we found the role of these 

receptors in cancer biomarker discovery in case of Endometrial cancer and related immune 

therapies.  We have also created a universal prognostic biomarker for pan-cancer dataset.  

To check the interconnection and dependency of pathways in case of prognosis and their 

performance we have made the comparison between prognostic biomarker’s performance 

and their biological insights using apoptotic pathway and PRR signaling pathway genes. 

Figure 1.5 outlines our overall work done in brief. 

 
 

Figure 1.5 Outline of thesis 
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1.8 Organization of the Chapters 
This thesis is divided into nine chapters, each of which contains the following information: 

Chapter 1- In this part, the immune system is introduced and the underlying biological concept 

of the innate system. This is accompanied by a brief discussion of the various immune systems 

and innate system cells. Finally, the importance of innate immune cells, particularly PRR 

signaling genes, in cancer development and therapy is explored. The conclusion of this chapter 

emphasizes the importance of studying and annotating the innate immune system and its 

biomolecules,  as well as the defense mechanism and use of PRR signaling genes for the 

identification of various new prognostic biomarkers and the construction of effective risk 

prediction models in the case of various cancers. 

 
Chapter 2- This chapter provides a review of the literature on the innate immune system, its 

annotation work to date, and the use of immunotherapy for cancer. It also emphasizes the 

significance of various PRR-based combination treatments with conventional therapy in 

various cancers. In a nutshell, this chapter explains why the study was conducted. 

 

Chapter 3- This chapter focuses on the thesis's first goal, which is the creation of a 

computational resource on Pattern Recognition Receptors (PRR). It is a ten-year update known 

as PRRDB2.0. The chapter goes into great detail about PRRs and their ligands/agonists. Details 

such as the name, source, function, and sequences of receptors and their agonists. It also 

contains derived information such as a Swiss-prot id, sequences in FASTA format, and a pub-

chem assay. PRRDB2.0 contains information on more than 2700 PRRs and their ligands and 

is the largest informative collection known to date. The chapter also discusses the utility of the 

developed resource for improving and designing adjuvants that can aid in vaccination 

efficiency. 

 

Chapter 4- This chapter is about the annotation of PRRs. We created an in-silico tool for the 

prediction of PRRs from a given protein sequence. It has also user friendly webserver utility 

named ‘PRRpred’ where a user can provide the input in FASTA format and it will predict 

whether the given protein is PRR or not. It has two prediction module the one sequence 

composition based and the other one is based on evolutionary information. 
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Chapter 5- This is a follow-up to a previous work on the annotation of innate immune system 

molecules. This research is primarily concerned with the prediction, design, and scanning of 

Defensins, which are host defence innate immune molecules. It also offers a user-friendly, all-

devices compatible webserver called 'DefPred.' It features two in-silico models for determining 

if a protein sequence is defensin or not. Model-I can distinguish between any class of AMPs 

(Anti-Microbial Peptides) and defensins. The user can provide any AMPs sequence, and this 

model -I will predict whether or not the given input sequence is defensin. Model-II 

differentiates between defensin and any random protein sequence. 

 

Chapter 6-  - As it has been demonstrated that the PRR signalling pathway genes malfunction 

can occur at any of the multiple regulatory stages in various cancers, the genomic data 

corresponding to the entire PRR signalling pathway is used in this chapter. The prognostic 

significance of each of these genes in the context of endometrial cancer is furthermore 

investigated. Through their published functions in endometrial cancer, key genes are 

discovered and validated.  Clinical features were also examined and taken into consideration 

and finally a hybrid prognostic biomarker has been made using 9 genes and clinical staging in 

case of endometrial cancer. Therapeutic possibilities have been proposed based on important 

biomarker genes and the downstream pathways they affect. In this situation, drug repurposing 

was also done, and a few FDA-approved drugs were also proposed in this chapter. 

 

Chapter 7- The fundamental purpose of this chapter is to apply the concept of Chapter 6 to 

various tumors and utilize the data to build universal prognostic models. A universal prognostic 

biomarker applicable to a broad spectrum of cancers might have far-reaching consequences in 

the future. 

 

Chapter 8- This chapter follows the previous study and demonstrates the interconnection and 

dependency of two key cancer pathways. According to the findings of Chapter 7, we examined 

apoptotic pathway and PRR signaling pathway biomarker genes in three cancer cases: THCA, 

MESO, and SKCM. A hypothesis was used to determine if changing the biological route may 

affect the performance of prognostic biomarkers in cancer, as well as whether these pathways 

are interconnected or act independently. 
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Chapter 9-  In this chapter the thesis work finishes by providing a quick overview of the study 

and its contribution to the area of innate immune system research and its role and usage in 

therapy in cancer research. 
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2.1 Overview of Innate Immune System 
Organisms that are inhaled, ingested, or inhabit our skin and mucous membranes are constantly 

present. The pathogenicity of the organism (the virulence factors at its disposal) and the 

integrity of host defence mechanisms determine whether these organisms penetrate and cause 

illness. The immune system is a network of lymphoid organs, cells, humoral factors, and 

cytokines that interact with one another. The immune system's critical role in host defence is 

best seen when it fails; underactivity results in severe infections and tumours of 

immunodeficiency, overactivity in allergy and autoimmune illness (B. P. Kaur and Secord 

2019). The detection systems (receptors and structures found on pathogens), the cells involved, 

and the nature of the processes differentiate innate (natural) immunity from acquired immunity. 

During an infection, innate immune responses emerge before acquired immune responses. 

Natural immunity includes cytokine, chemokine, and interleukin production; innate, cytokine-

dependent nonspecific immunity of leukocytes; HLA-independent pathogen-killing cells; and 

phagocytosis (Sochocka and Blach-Olszewska 2005). While innate immunity is important for 

host defence against viral threats, it is also emerging as a key regulator of human inflammatory 

illness. Indeed, innate immune responses have been linked to the development of asthma and 

atopy, as well as a wide range of autoimmune diseases such as Type 1 diabetes, inflammatory 

bowel disease, and systemic lupus erythematosus. The new molecular explanation of how the 

innate immune system detects infection in order to activate protective immune responses has 

sparked a revival in the area of innate immunity. Innate immunity has abandoned its previous, 

derogatory label of 'non-specific immunity,' and is now a proud companion with the adaptive 

immune system in defending human hosts against pathogenic infections (Turvey and Broide 

2010). 

 

2.2 Innate Immune Molecules 
Unlike the adaptive immune system, which is dependent on T and B lymphocytes, innate 

immune protection is accomplished by cells of both hematopoietic and non-hematopoietic 

origin. Macrophages, dendritic cells, mast cells, neutrophils, eosinophils, natural killer (NK) 

cells, and natural killer T cells are hematopoietic cells that participate in innate immune 

responses. In addition to hematopoietic cells, the skin and epithelial cells lining the respiratory, 

gastrointestinal, and genitourinary tracts have innate immune reactivity. Innate immune system 
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comprises and relies on Pattern Recognition Receptors (PRRs) proteins that recognise 

components that are often linked with infections (also known as Pathogen-Associated 

Molecular Patterns—PAMPs) (Chaplin et al. 2018). As shown in Figure 2.1 PRRs are 

specialised protein receptors aka innate immune receptors and can recognised PAMPs as well 

as Danger Associated Molecular Patterns (DAMPs).  Different PRR families have been studied 

in the past, with transmembrane proteins like Toll-like receptors (TLRs) and C-type lectins 

receptors (CLRs) being the most studied, as well as cytoplasmic proteins like nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs) and retinoic acid-inducible 

gene-I-like receptors (RLRs). TLRs are type-1 transmembrane proteins that detect PAMPs 

associated with invading pathogens both outside and within the cell, as well as in intracellular 

endosomes and lysosomes (Tartey and Takeuchi 2017; Kawai and Akira 2010; Hoving, 

Wilson, and Brown 2014b; Franchi et al. 2009; Loo and Gale 2011). CLRs are signaling 

transmembrane receptors that are important in antifungal immunity. The fundamental role of 

all PRRs is to detect PAMPs or DAMPs, which are important microbial components. The 

interaction of PRRs with PAMPs causes a variety of effects, including immune cell maturation, 

migration, and activation, as well as cytokine and chemokine production (Taghavi et al. 2017). 

The transcription of genes controlling proteins implicated in the inflammatory response, such 

as type I interferons (IFNs), proinflammatory cytokines, chemokines, antimicrobial proteins, 

and so on, is upregulated by most PRRs. PRRs are categorised into mainly three subtypes on 

the basis of their presence and activity (i) Intracellular PRRs (ii) Soluble PRRs (iii) Cell surface 

PRRs. As name suggest intracellular are those PRRs that resides  and found inside the cells 

like TLR3, TLR7, TLR8 and TLR9. Soluble PRRs are soluble in nature like Mannose Binding 

Lectin (MBL) and Ficolin. The PRRs which present on the cell surface are known as cell 

surface PRRs and they include TLR2, TLR4 and TLR5.  
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Figure 2.1 Representation of overview of PRRs 

2.3 Role of PRR and its Ligand 

Whenever there is an entry of antigen into the body, the immune system attempts to eliminate 

it. The adaptive immune system takes its time and develops long-term immunological 

responses, whereas the innate immune system is the body's first line of defense (Chaplin et al. 

2018). Innate immune cells do have Pattern recognition receptors (PRRs) that assists in the 

detection of pathogens. They recognize pathogen associated molecular patterns (PAMPs) 

which are molecular patterns present in microbes (Haghparast, Zakeri, and Ramezani 2016). 

Microbes cause cytosolic buildup of inactive IL-1 precursor and caspase-1 activation during 

infection, the latter of which catalyzes the cleavage of the IL-1 precursor pro-IL-1 (Martinon, 

Burns, and Tschopp 2002; Mariathasan et al. 2006). Martinon et al. found a protein complex 

called the inflammasome that is responsible for this catalytic activity (231). The adaptor ASC 

(apoptosis-associated speck-like protein containing a CARD), pro-caspase-1, and a member of 

the NLR family, such as Ipaf (Ice protease-activating factor), NALP (NAcht LRR protein) 1, 

or NALP3/Cryopyrin, make up this inflammasome (Mariathasan et al. 2006; Martinon, Burns, 

and Tschopp 2002). There are various families of PRRs majority including TLRs, RLRs, NLRs 

and  CLRs. Antigen presenting cells (APCs) recognizes PAMPs with the help of PRRs. After 

recognition antigens/ foreign particles are processed in APC and then get loaded onto  major 

histocompatibility complex (MHC) molecules as shown in Figure 2.2. Adjuvants, in general, 

activate PRRs in immune cells to boost the innate immune system. The majority of immune 
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stimulatory adjuvants serve as PRR ligands, enhancing an activation pathway and inducing 

cytokine release (Coffman, Sher, and Seder 2010). Components of injured or dying host cells 

also contribute to adjuvant activity as a result of inflammasomes (Coffman, Sher, and Seder 

2010). Aptamers are oligonucleotide molecules that have been chosen from a huge library to 

bind to a specific target. Aptamers can be employed in a range of medicinal, diagnostic, and 

target-binding applications as alternative  to  antibodies. It has been seen when delivered with 

vaccine, the CD28 aptamer dimer had a costimulatory effect, evoking a stronger cellular 

response. Affimer molecules are tiny proteins that bind to their targets with nanomolar affinity. 

These non-antibody binding proteins have been created to imitate the molecular recognition 

features of monoclonal antibodies in a variety of applications, including diagnostic tools and 

biotherapeutics. Nanomaterials have been shown to work as adjuvants by improving antigen 

transport to the immune system or potentiating innate and adaptive immune responses. Vaccine 

Adjuvants with Aluminium For almost eighty years, aluminium-based vaccine adjuvants have 

been used safely in human vaccination against illnesses such as DTaP (Diphtheria, Tetanus, 

acellular Pertussis), Human Papillomavirus, Pneumococcal, Hepatitis A, and Hepatitis B 

(Baylor, Egan, and Richman 2002) 

TLR ligands are powerful immunomodulators that can affect a variety of immune responses. 

Once TLR recognises its ligands it stimulates the cells downstream and different patterns of 

gene expression are induced. The difference in TLR signalling is due to adopter molecules like 

MyD88 (myeloid differentiation primary response gene 88) and TRIF (toll/interleukin-1 

receptor domain containing adaptor protein inducing interferon-b). MyD88 helps in the 

production of inflammatory cytokines by stimulating nuclear factor-kB (NF-kB), whereas 

TRIF assists in the production of  type-I interferons (IFN)  (Akira 2011). Adjuvants with 

structures similar to the different ligands of PRRs can activate innate immunity by stimulating 

their respective receptors. Cytokines released by innate immune system, can trigger adaptive 

immunological responses by boosting T cell responses, activating humoral immunity, or a 

combination of the two. Cell-mediated immunity is involved in the Th1 response, whereas 

humoral responses are used to eliminate external antigens by Th2 cells. The development of 

new adjuvants capable of eliciting protective CD8+ T cell responses is fraught with difficulties. 

Combination of a promising adjuvant with an antigen is required to promote functional CD8+ 

T cell development (Coffman, Sher, and Seder 2010). 
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Figure 2.2 Representation of the mechanism of PRRs 

2.3 Available Databases for Vaccine Adjuvants 
Various databases have been created throughout the world to assist the scientific community 

during the last few decades. These databases provide a variety of information about the human 

immune system as well as biological molecules that can trigger immunological responses and 

also act as adjuvants (Table 3). PRRDB (Lata and Raghava 2008a)  which was first developed 

in 2008, has detailed about the experimentally verified pattern recognition receptors and their 

agonist/ligands. It got updated recently as PRRDB2.0 (D. Kaur et al. 2019) possess about 5 

times more information than the previous one. The information is very beneficial in designing 

vaccine adjuvants. Vaxjo (Sayers et al. 2012) is a web based vaccine adjuvant database 

developed in 2012. It is an analytic system for storing, curating, and analyzing vaccine 

adjuvants and their applications in vaccine development. Vaxjo currently has 103 vaccine 
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adjuvants in its database. 98 of these adjuvants have been utilized in 384 VIOLIN vaccines 

against 81 infections, malignancies, and allergies.  

The most extensive web-based vaccination database and analysis system is the Vaccine 

Investigation and Online Information Network (VIOLIN) (Xiang et al. 2008). The vaccination 

information has been yielded in this database from approx. 1,600 peer-reviewed articles. 

VIOLIN has over 3,000 vaccinations or vaccine candidates for over 190 diseases. Over 3,000 

vaccinations or vaccine candidates for over 190 diseases are presently available in VIOLIN.  

Manual curation of approximately 1,600 peer-reviewed articles yielded the vaccination 

information in the database.  VIOLIN, unlike most other vaccine databases, concentrates on 

vaccination research data. Unlike most other vaccine databases, it concentrates on vaccination 

research data. AntigenDB (Ansari, Flower, and Raghava 2010) is a database that contains 

exhaustive information about experimentally verified antigens, including structural and 

functional annotation. PolysacDB (Aithal et al. 2012) is a maintained database of antigenic 

polysaccharides. It has extensive information regarding antigenic polysaccharides of microbial 

origin from literature and digital sites.  It has around 1,554 total entries in which there 

is  information  on 149 different antigenic polysaccharides  from 347 various bacteria. Each 

item regarding antigenic polysaccharide  has details like  its origin, role, respective antibodies, 

utilities, conjugation method, potential epitopes implicated. These database can be beneficial 

in the development of vaccines based on proteins or antigens. 

 

 

 

 

Table 2.1. List of databases or repositories developed for maintaining adjuvants resources 

 
Name Description Weblink Year Working 

Status 

PRRDB 
 

pattern recognition receptor 

database 

https://webs.iiitd.edu.in/raghava/prrdb/ 2008 Yes 

• PRRDB 2.0 

 

updated pattern recognition 

receptor database 

https://webs.iiitd.edu.in/raghava/prrdb2/ 2020 Yes 

• Vaxjo 

 

 vaccine adjuvant database 

and its application for 

http://www.violinet.org/vaxjo/ 2012 Yes 
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analysis of vaccine 

adjuvants and their uses in 

vaccine development 

• VIOLIN 

 

a comprehensive vaccine 

database and analysis system 

http://www.violinet.org 2014 Yes 

Antigen db 
 

a database of pathogenic 

antigens 

https://webs.iiitd.edu.in/raghava/antigendb/index.

html 

2010 Yes 

Innate db 
 

comprehensive information 

on innate immunity  
 

http://www.innatedb.com 2013 Yes 

• Polysac DB 

 

Repository  of microbial 

polysaccharide antigens and 

their antibodies 

https://webs.iiitd.edu.in/raghava/polysacdb/ 2012 Yes 

 

 

2.4 Tools for Designing Vaccine Adjuvants 
Efforts have been made in the last decade to create data-driven techniques for 

predicting  biomolecules that  has immunomodulatory response and can act as adjuvants. Few 

of them are listed in Table 2.2.  The foreign RNA sequence of a disease is detected by our 

innate immunity system, which then activates the immune system to clear the body of the 

infection. RNA-based immunotherapy and vaccination adjuvants can take use of RNA's 

immunomodulatory properties. The immunomodulatory impact of an RNA sequence is 

undesirable in siRNA-based treatment because it may cause immunotoxicity. ‘imRNA’ 

(Chaudhary, Nagpal, et al. 2016) is a method that provides the facility to create RNA-based 

medicines,  vaccine adjuvants by constructing a single-stranded RNA (ssRNA) sequence with 

desirable immunomodulatory properties. The ‘VaxinPAD’, (Nagpal et al. 2018)  predicts 

immunomodulatory peptides, paves the way for the development of rational peptide-based 

vaccination adjuvant design. The research is the first attempt to create models for predicting 

immunomodulatory peptides for vaccine adjuvant development. ‘VaccineDA’ (Nagpal et al. 

2015) is the first of its kind to attempt to create an in silico platform for designing 

oligodeoxynucleotide (ODN) based vaccination adjuvants. The majority of these ODNs 

contain CpG sequences that can activate the innate immune system. The current work is the 

first of its kind to attempt to create an in silico platform for designing ODN-based vaccination 

adjuvants. VaccineDA offers a number of in silico modules that give users with the tools they 
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need to create ODN-based vaccine adjuvants. Various cytokines also act as immunomodulators 

and play a very significant role in innate immunity. Tools like IL6pred, IL2pred, IL4pred and 

IL10pred (Dhall et al. 2021; Anjali Lathwal et al. 2021; Dhanda et al. 2013; Nagpal et al. 2017) 

have been provided in the past for the prediction and designing of their respective interleukin 

inducing peptides. IFN epitope  (Dhanda, Vir, and Raghava 2013) is  a web tool for the 

prediction of  IFN-g inducing peptides. It also provides facility of virtual screening of peptide 

libraries  and the identification of IFN-g inducing regions in antigen. 

  

Table 2.2. In-silico tools for prediction of adjuvants for vaccine. 

 

2.5 PRRs in Cancer 
Several PRR molecules have been found in/on cancer cells from many organs, including the 

lung, head and neck, colon, breast, stomach, ovary, and others (Damasdi et al. 2017; Fukata et 



 
 
 
 
 

24 

al. 2007; Gowing et al. 2017; Ikehata et al. 2018; N. Jiang et al. 2017; Park, Chung, and Kim 

2017; Royse et al. 2017; Yue et al. 2017). The interactions between tumour cells and TLRs are 

intricate. They include not only the detection of PAMPs of microbial origin, but also 

interactions with tumor-infiltrating cells (TIC) such as NK cells, dendritic cells (DCs), CD8+ 

T cells, innate lymphoid cells, and others (Matsumoto et al. 2017). TLRs expressed on TIC are 

activated by DAMPs (tumour debris), resulting in antigen presentation to CD8+ T cells and an 

anti-tumor impact. In general, however, TLR expression appears to be tumor-promoting in the 

majority of cancers. TLR2, TLR4, and TLR9 are expressed in pancreatic cancer cells, although 

their prevalence of risk factors differ. TLR4 activation enhances angiogenesis (Sun et al. 2016), 

but TLR9 cytoplasmic expression has been linked to improved patient survival (Leppanen et 

al. 2017). TLR signalling increases autoregulatory tumour cell proliferation and anti-apoptotic 

Bcl-xL expression (Grimmig et al. 2016; Won et al. 2017). TLR4 expression has been widely 

acknowledged in the development of hepatocellular carcinoma by multiple pathways, 

including an increase in Treg cells, liver resident follicular helper-like T cells, and enhanced 

synthesis of pro-inflammatory and malignancy-related chemicals (I. J. Song et al. 2018). Apart 

from TLR4, additional TLRs such as TLR2, TLR3, and TLR9 have already been identified in 

cancer and hepatic cirrhosis (Yin et al. 2016). TLR4 expression was designated as a probable 

carcinogenic agent in hepatocellular carcinoma due to its ability to enhance the amount of many 

pro-inflammatory and malignancy-related molecules such as NANOG, Caspase-1, and others 

(Sepehri et al. 2017). TLR5 and TLR7 expression was associated with tumour recurrence in 

HPV-positive oropharyngeal carcinoma. TLR5 and TLR7 expression were both associated 

with poor disease-specific survival (Jouhi et al. 2017). 

 

Table 2.3 Effect of various TLRs on different cancer. 

 
Types of TLR Types of Cancer Effect of TLR on Tumor 

TLR2 Oral Squamous Cell Carcinoma Progression  

TLR4 Head and Neck Progression 

TLR5, TLR7 Squamous Cell Carcinoma Recurrence 

TLR2, TLR4, TLR9 Pancreatic Progression 

TLR1/TLR2, TLR6 Chondrosarcoma Suppression 
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Endosomal TLR7 and TLR8 agonists that recognise ssRNA are the most well-known TLR 

agonists. Imidazoquinoline, subsequently known as imiquimod, a TLR7 agonist, was shown to 

have antiviral action, first in animal models and then in people (Y. C. Chang et al. 2005; 

Mauldin et al. 2016).  852A, another TLR7 agonist, was discovered to induce plasmacytoid 

DCs to create IFN type I and to activate both CD8+ T cells and NK cells, resulting in an anti-

tumor response  (Inglefield et al. 2008; Weigel et al. 2012) TLR9 agonists detect unmetylated 

CpG dinucleotides (CpG ODN). The latter, when artificially created, induces a variety of 

desired immunological responses, including improved innate immunity and adaptive Th1 

response (Krieg 2007). Polyinosinic–polycytydylic acid (poly:C), a double-stranded RNA that 

can function as a TLR3 ligand, has been found to decrease the development of radioresistant 

Lewis lung cancer in mice when used in conjunction with radiation (Yoshida et al. 2018). 

 

Table 2.4 Types of TLR and its ligand in cancer immunotherapy 

 
Type of TLR Type of Cancer Ligand/Agonist used 

TLR7 Hematologic tumors 852A 

TLR9 Myeloma C792 

TLR3 Advanced solid tumors Poly(I:C) 

TLR9 Myeloma C792 

TLR7/TLR8 Basal cell, other skin cancers Imiquimod 

TLR7 Melanoma 852A 

 

2.6 PRRs as Targeted Therapy in Cancer 
Early research on PRR-related drugs mostly focused on monotherapy with TLR-related 

treatments, however most monotherapies failed to provide positive outcomes (Y. H. Kim et al. 

2010). Furthermore, patients had a higher prevalence of mild to severe systemic influenza-like 

symptoms. The realisation that cell death generated by cell suppressive treatment may be the 

consequence of immunogenic death has prompted researchers to focus their efforts on DAMP 

synthesis in tumour cells using radiation and chemotherapy as a means of activating the 

immune system. PRR agonists have the potential to be employed as vaccine adjuvants as well 

as to enhance systemic therapies such as chemotherapy, targeted therapy, and immunotherapy 
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(Table 2.5). Indeed, some have demonstrated effectiveness against immunotherapy resistance 

(Shekarian et al. 2017). Due to the fact that tumour development leads PRR agonists to have a 

negative regulatory impact on cancer immunity, PRR agonists paired with immune checkpoint 

inhibitors may be more appealing therapy choices. Furthermore, when used in combination 

with immune checkpoint inhibitors, PRRs can remodel the immune milieu and change a "cold" 

tumour into a "hot" one, improving therapeutic effectiveness even further. 

 
Table 2.5 Different type of combinatorial therapies in case of various cancer. 

Therapy Cancer Type Targeted PRR Ligand/Agonist 

PRR+ chemotherapy Squamous cell 

NSCLC 

TLR2 CADI-05 

PRR+ chemotherapy melanoma, NSCLC TLR9 CpG 7909 

PRR+ chemotherapy breast cancer 

cutaneous metastases 

TLR7/8 imiquimod 

PRR+ radiotherapy B-cell and T-cell 

lymphomas 

TLR9 CpG 7909 

PRR+ radiotherapy Hepatocellular 

Carcinoma 

TLR3 poly-ICLC 

PRR+ radiotherapy+ 

chemotherapy 

Glioblastoma TLR3 poly-ICLC 

 

2.7 Conclusion   
Pattern recognition receptors have long been thought to be a minor biological phenomena. It 

began to change as their role in the infection became obvious, as did the relationship between 

innate and acquired immunity. Multiple past studies have revealed the detailed mechanism of 

PRRs that are requisite part of innate immune system. Yet specific proper annotation is lacking 

for the ligands/ agonist corresponding to PRRs. In-silico web resources and updated 

knowledgebase for PRRs  for better understanding and designing vaccine adjuvants is required. 

Also, due to its dual role in cancer PRR can be use as targeted therapy but, utilization of these 

PRR and their agonist in prognosis of cancers is not explored yet. Furthermore, computational 

tools and databases that provide updated information and insight of PRR mechanism and use 

as biomarkers in cancer are not available. 
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3.1 Introduction 
Innate immunity which is also known as first line of defense is found in almost all kind of 

plants and animals. It is originated from the latin word ‘Innatus’ which mean ‘Inborn’. It is non 

specific in nature ad comprises of cells and mechanism for providing defense. Pathogen 

recognition being the initial and significant part of the defense mechanism . Besides recognition 

of pathogens and contribution in acute inflammation it also activates the adaptive immunity. 

Innate immune cells comprises of germline specialized receptor known as Pattern Recognition 

Receptors (PRRs). They recognize pathogen- and damage-associated molecular patterns 

(PAMPs and DAMPs) on invading microorganisms. (Akira, Uematsu, and Takeuchi 2006; 

Takeuchi and Akira 2010). Different PRR families have been studied in the past, with 

transmembrane proteins like Toll-like receptors (TLRs) and C-type lectins receptors (CLRs) 

being the most studied, as well as cytoplasmic proteins like nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRs) and retinoic acid-inducible gene-I-like receptors 

(RLRs). TLRs are type-1 transmembrane proteins that detect PAMPs associated with invading 

pathogens both outside and within the cell, as well as in intracellular endosomes and lysosomes. 

Innate immune cells' pathogen identification and Toll-like receptor-targeted therapies (Tartey 

and Takeuchi 2017; Kawai and Akira 2010; Hoving, Wilson, and Brown 2014a; Franchi et al. 

2009; Zhu et al. 2018).  CLRs are transmembrane signalling receptors that play an important 

role in antifungal immunity. They are lectin-like receptors that recognize both exogenous and 

endogenous ligands and have at least one C-type lectin-like domain. (Hoving, Wilson, and 

Brown 2014a; Franchi et al. 2009; Zhu et al. 2018; J. Tang et al. 2018).  NLRs and RLRs are 

intracellular cytosolic sensors. NLRs, generally associated with bacterial recognition, are 

composed of a central nucleotide binding domain and C-terminal leucine-rich repeats, whereas 

RLRs are the helicases that sense PAMPs with viral RNA (Y. K. Kim, Shin, and Nahm 2016; 

Kawai and Akira 2009).  

Additionally many other receptors like scavenger, mannose and β-glucan receptors are 

involved in phagocytosis. Complement receptors, collectins, ficolins and pentraxins are some 

of the secreted PRRs (Paveley et al. 2011).  Identification of PAMPs/ DAMPs which are 

important microbial component is an elemental role of PRRs. The interaction between PRRs 

and their corresponding ligands downstream various effects like maturation, migration and 

activation of immune cells. It also includes production of cytokines and chemokines (Taghavi 

et al. 2017).  
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Usually PRRs upregulates the transcription of genes controlling proteins implicated in the 

inflammatory response, such as type I interferons (IFNs), proinflammatory cytokines, 

chemokines, antimicrobial proteins, and so on. They also intensify the transcription and  

translation of proteins involved in PRR signalling regulation, which might lead to an adaptive 

immune response (Akira, Uematsu, and Takeuchi 2006; Mogensen 2009; Fearon and Locksley 

1996) (Figure 2.1). The adaptive immune system, also known as the "specific immune system," 

is made up of particular cells and comprises humoral and cell-mediated immunity. It assists in 

the elimination of pathogens in the late stages of infection. The innate immune system can 

readily distinguish between different types of infections thanks to PRR, and consequently 

generates the most efficient adaptive immune response to eliminate the pathogens and their 

toxic molecules. (Iwasaki and Medzhitov 2015; Jain and Pasare 2017; Palm and Medzhitov 

2009).  This field has been extensively explored in the past, and researchers have established a 

lot of computational tools such as MHCBN, IEDB, and Bcipep etc (Bhasin, Singh, and 

Raghava 2003; Vita et al. 2019; Saha, Bhasin, and Raghava 2005). BepiPred 2.0, Bcepred, 

Lbtope, IgPred, PEASE, etc. aid in predicting epitopes in humoral-mediated immunity 

(Jespersen et al. 2017; Saha and Raghava 2004; Lian et al. 2015; Gupta et al. 2013; Sela-

Culang, Ofran, and Peters 2015). ProPred 1 and NetMHCstabpan help in predicting MHC-I 

binder, whereas ProPred, MHC2Pred and EpiDOCK predict MHC-II binders (Harpreet Singh 

and Raghava 2003; Rasmussen et al. 2016; Bhasin and Raghava 2007; H Singh and Raghava 

2001; Atanasova et al. 2013). We've  released review papers that go into great depth regarding 

immunology resources and in-silico tools (Dhanda et al. 2017; Usmani, Kumar, Bhalla, et al. 

2018). We suggest that computational resources in the PRRs–PAMPs field need to be revived. 

How specific PRRs sense invading pathogens, mechanisms involved in immune response 

against PAMPs, downstream signalling cascades involved in eliciting immune response, and 

other questions/challenges must be clearly inferred to retain better therapeutic strategies against 

a variety of infectious diseases caused by invading pathogens, are some of the 

questions/challenges that must be clearly inferred to retain better therapeutic strategies against 

a variety of infectious diseases caused by invading pathogens. In 2008, the first version of 

PRRDB, a database of PRRs and their ligands, was released (Lata and Raghava 2008b). 

PRRDB was helpful in the development of additional resources such as AntigenDB (Ansari, 

Flower, and Raghava 2010) and PolysacDB (Aithal et al. 2012), as well as the prediction of 

pattern receptor recognition families (Gao et al. 2012b). Innate immunity has been better 
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understood since 2008, and numerous more pathogen-associated molecules have been 

investigated and identified. As a result, there is a strong need to improve and update as much 

information as possible regarding PRRs and their ligands. PRRDB 2.0 is an updated and 

comprehensive database of PRRs and their ligands. The updated version includes detailed 

information on receptors, such as their domain and localization, as well as elaborative functions 

such as the role, occurrence, and sequence of their ligands. Furthermore, PubChem assays and 

experimental procedures that elucidate PRRs and their ligands as well as their available 

structures have been included to the updated version, which were previously missing. 

 

 
Figure 3.1 Graphical representation of immune mechanism through PRRs and PAMPs 

association after the microbial invasion ( source ~ Kaur et al. 2019). 

 

3.2 Material and Methods 
3.2.1 Data Collection 
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PubMed was examined using keywords like ‘Pattern recognition receptors’ and ‘Pathogen-

associated molecular patterns’, specifically published for 10 years from 2008 to 2018. The 

cumulative hits obtained were ~30 000. We screened all the abstracts manually and selected ~ 

3000 abstracts for further investigation. 

 

3.2.2 Data Curation 

PRRDB2.0 has extensive information in the form of primary as well as secondary. Primary 

data comprises of sole information. Extracted from the research articles published and are 

linked under ‘PMID’. While secondary information are the derived one. Information have been 

provided in the form of tabular format for both receptors and their ligands (PAMPs/DAMPs). 

The primary information fields regarding ligands are (i) Ligand name: represents the name of 

particular ligand  (PAMPs/DAMPs) (ii) Ligand source: describes the actual source or origin of 

that ligand; (iii) Ligand type: represents the category of ligands such as lipid, peptidoglycan, 

lipopolysaccharide, protein etc.; (iv) Occurrence of ligand: represents either natural or 

synthetic occurrence of ligands; (v) Role of ligands: provides extensive information about 

corresponding ligands’ role in activating the immune system. 

Apart from this, PRRs have been organized under headings such as (vi) Receptor's name: 

represents the name of PRRs used in the literature; (vii) Receptor source: describes the 

receptor's true source or origin. (viii) Receptor type: refers to the many types of PRRs, such as 

TLRs, CLRs, RLRs, NLRs, and so on; (ix) Receptor localization: transmits the receptor's 

location or the cell type from where it was discovered; (x) Domain: A domain inside a PRR, 

such as the Leucine-rich domain in TLR9 or the lectin domain in CLRs, represents a specific 

domain within that PRR and (xi) Function: when linked with their unique ligands, indicates the 

role or function of PRRs in triggering the innate immune system via signal cascades. Under 

the heading 'Assay utilized,' the experimental technique or particular assays used in the 

associated literature are also curated. In addition to the aforementioned information, a 

hyperlink has been provided to all of the PubChem assays known to date for that particular 

PRR (S. Kim et al. 2019). PubChem and Swiss-Prot were used to compile various key pieces 

of information that were not included in the original study paper, such as PRR sequences and 

ligands (Prasad et al. 2020). The Protein Data Bank (PDB) was also used to get experimentally 

known PRR structures (Burley et al. 2019). We attempted to give predicted PRR structures 
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using structure prediction algorithms, namely PHYRE2, in circumstances where the structures 

had not been experimentally characterized (Kelley et al. 2015). 

 

 
Figure 3.2 Digramatic representation of database architecture its organization and its facilities.  

 

3.2.3 Database architecture and Web Interface 

All the information obtained from the literature studies on PRRs was stored in SQL table 

and provided as a user-friendly interface in PRRDB2.0 

(webs.iiitd.edu.in/raghava/prrdb2) which is based on Linux based Apache Server 

(LAMP). The Front-end web interface was made using bootstrap, a responsive 

development framework that includes HTML, CSS, and java script. MySQL client 

program was used to create the back-end database, and all the data handling/manipulation 

was done using the structured query language (SQL). The overall architecture of the 

PRRDB2.0 is in Figure 3.2. The information obtained from the research articles and the 

patents is summarized in tabular form under 25 fields in the database. We carefully 

searched the papers for every experimental detail, and relevant information was then 

included in the database. 
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3.3 Results 

3.3.1 Data Statistics 

PRRDB 2.0, the latest version of the PRR database, has 2740 entries derived from 597 research 

publications. A comprehensive update on PRR and its ligands has been published. In addition 

to the 353 receptors from the first edition of PRRDB, we have included 2374 more receptors, 

bringing the total number of PRRs to 2727. Similarly, PRRDB 2.0 includes 2197 total ligands 

researched in the last ten years, as well as 353 ligands from the previous database, for a total 

of 2550 ligands. In all, 2740 entries in PRRDB 2.0 include information on 2727 total, 467 

distinct PRRs and 2550 total, 827 unique ligands.  

The primary types of receptors accessible in PRRDB 2.0 are shown in Figure 3.3A. Because 

TLRs are the most well-known and researched of the PRRs, they are mentioned in 62% of 

entries. NLRs—241, CLRs—135, Scavenger—88, Syk-coupled CLRs—63, RLRs—40, 

Mannose receptor—33, PGRPs—25, and RAGE—22 are among the other entries. TLRs and 

CLRs are well known membrane-bound pathogen receptors. They cover, around 72% of 

the PRRs that are curated in PRRDB 2.0. Whereas, cytoplasmic PRRs covered in PRRDB2.0 

are 10% only. Figure 3.3B depicts the graphical distribution of entries for various ligand types, 

including 496 entries for nucleic acids, 353 entries for protein-type 

ligands, lipopolysaccharides—207, peptidoglycan—111, carbohydrates—88, lipoproteins—

85, glycoprotein—41, lipopeptide—37, glucan—31, lipid—25, polysaccharide—16, 

amphiphile—53 and a few others. The majority of the ligands in PRRDB 2.0 (79%) have 

natural sources. The majority of PRRs 48 % come from humans 315 from and mice. These 

PRRs bind to ligands that are predominantly found in bacteria (52%) and viruses (15%), as 

well as fungi (6%). These are represented in Figure 3.4. 
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Figure 3.3 Representation of  percentage distribution of different type of (A) Ligands (B) 

PRRs available in PRRDB2.0 

* TLR: Toll like receptors, * NLRs: Nucleotide- binding oligomerization domain (NOD) like 

receptors, * PGRs : Peptidoglycan recognition proteins,* RLRs: Retinoic acid inducible 

gene-I like receptors, * CLRs: C-type lectin receptors, * RAGE: Receptors for advanced 

glycation end products. 

 

 
 

Figure 3.4 Representation of percentage distribution of sources of (A) PRRs (B) Ligands. 

 

3.3.2 PRRDB and PRRDB2.0 Comparison 

PRRDB was created in 2008 and consists of two tables; one of the PRRs, which contains 491 

entries, contains information such as the receptor's name, source organism, sequence and 

(A) (B)
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length, family, and type. Another table contains 266 items for ligands, including information 

such as name, source, ligand class, origin, and receptor (Lata and Raghava 2008a). We have 

added more information about each PRR and ligand in the updated version, resulting in a total 

of 2740 entries. We have provided more information about each PRR and ligand in the updated 

version, resulting in a total of 2740 entries. In addition to its name, source, type, and origin, we 

attempted to describe the role of ligand in immune system activation. Similarly, the new 

version includes detailed information about each PRR, including its name, source, type, 

sequence and length, localization and domain, and function. Table 3.1 shows a comparison of 

statistics. It just displays the most recent database change.  In the new version, the experimental 

protocol or assay is also curated. Furthermore, for maximum information, data has been 

connected with Swiss-Prot, PubChem, and PDB. 

 

Table 3.1 Represents the overall comparison between data statistics of PRRDB and PRRDB2.0  

Field/Information PRRDB PRRDB 2.0 

Total no. receptors  353  2727  

Total no. ligands  354  2550  

Total no. of sequence of 

receptors  
221  1784  

Total no. of Sequence of 

ligands  
241  1583  

 

Total no. of receptors has been increased to 2727 from 353 and total no. of ligands has been 

increased to 2550 from 354. Their no. of sequences has also been updated from 221 to 1784 

and 241 to 1584 for receptors and ligands respectively. Majority of the PRRs available in 

PRRDB2.0 are TLR, CLR, NLR and Mannose based on their numbers as shown in Table 3.2. 

Information about TLR has been improved to 1737 from 185, for CLR its 135 from 27. NLR 

and mannose has been updated from 15 to 241 and 26 to 33 respectively. 
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Table 3.2 Represents the comparison of major types of PRRs available in PRRDB and 

PRRDB2.0 

Receptors PRRDB PRRDB 2.0 

TLR*           185                   1737  

CLR*            27                   135  

NLR*           15                   241  

Mannose           26                   33  

 

 

Table 3.3 Represents the comparison of entries for major types of ligands and entries for major 

sources of receptors available in PRRDB and PRRDB2.0 

  

Entries for major types of ligands 

 

Entries for major sources of receptors 

Field/Information PRRDB PRRDB 2.0 Field/Information PRRDB PRRDB 2.0 

Peptide 15 62 Human 146 1092 

Nucleic acid 68 496 Mice 102 717 

PAMP 54             376  Chicken              0                   17  

DAMP 0             247  Hamster             15                   16  

Protein  60             353  Rat              3                   27  

LPS 16             207  Zebrafish              0                   13  

Peptidoglycan  8             111  Arabidopsis               1                   17  

Carbohydrates  37              88        

 

3.4 Implementation of web-resource 

On a single platform, PRRDB 2.0 may be used to obtain comprehensive information on any 

PRR. For example, if a user wants to learn more about TLR 3, which identifies 

lipopolysaccharides associated with gram-negative bacteria, they should put TLR3 into the 

search box on the basic search page and look up the receptor's name, as shown in Figure 3.5 
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A. As illustrated in Figure 3.5 B, a single click on the search button will lead to a list of 400 

items saved in PRRDB 2.0, each of which is distinguished by a unique ID. Each ID will take 

you to a thorough display page with all of the information you need, as well as connections to 

PubChem, PubMed, and Swiss-Prot. In addition, as shown in Figure 3.5 C, the TLR3 sequence 

is also accessible in FASTA format. In addition, PRRDB 2.0 allows users to explore all 27 

experimentally verified structures for TLR3 and its complexes that are kept in the PDB. 
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Figure 3.5 Representation of the screenshots of PRRDB2.0 demonstrating the (A) submission 

of query in basic search page (B) result page after submission of the query in result page (C) 

detailed information of the result page. 

Type 
TLR3

Select 
name of
Receptor

Select fields 
and submit

Link for 
sequence

Link for
detailed

information

Link for 
swiss-prot id

(A)

(B)

(C)
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3.5 Conclusion and Summary 
In the early stages of infection, the innate immune system is responsible for pathogen 

identification and elicitation of proinflammatory responses against invading pathogens, 

whereas the adaptive immune system kills the pathogen and builds immunological memory in 

the late stages. As stated in the introduction, PRRs have a large repertoire that detects a variety 

of pathogens. The fact that host PRRs recognize a wide spectrum of microorganisms in 

different life cycles and with varied metabolic compositions is remarkable. Another astonishing 

fact is that all classes of pathogens are sensed by more than one type of PRRs through various 

ligands and lead to a rapid proinflammatory response through various intracellular signal 

cascades (Mogensen 2009). Despite huge advances in innate immune-related research over the 

previous few decades, there is still a lot of ambiguity. TLRs are the most well-studied PRRs, 

although cytoplasmic PRRs also play an important role in the accumulation of diverse 

immunological responses, which requires further research. Other PRRs, such as mannose 

receptors, scavenger receptors, and a few secreted PRRs, also require additional investigation. 

A greater understanding of cross-talk between various PRRs is required. PRRDB 2.0, we hope, 

will help in the retrieval of all previously found data and queries. PRRDB 2.0, with over 2700 

entries, provides improved coverage of all PRRs and their ligands ever investigated. We 

expanded the data set by adding new areas and emphasizing the importance and specificity of 

PRRs and ligands in activating the immune response. The hyperlinking of Swiss-Prot, PDB, 

and PubChem will deliver the most information in one location. The new edition, we feel, will 

be extremely beneficial to the scientific community. 
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4.1 Background 
“Pattern recognition receptors” (PRRs) are the proteins that are germline encoded and bind to 

pathogen associated  molecular patterns (PAMPs) and damage associated molecular patterns 

(DAMPs) to detect invading infections. PRRs recognize DAMPs that are chemical produced 

by injured cells only. The recognition triggers a cascade of signaling events which leads to 

microbicidal and pro- inflammatory response downstream. This act as a important link between 

innate and adaptive immune response (Mogensen 2009).  The major families of PRRs include 

Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-Leucine Rich 

Repeats (LRR)-containing receptors (NLR), retinoic acid-inducible gene 1 (RIG-1)-like 

receptors (RLR), and C-type lectin receptors (CLRs). TLRs and CLRs are transmembrane 

proteins whereas, NLRs and RLRs are cytoplasmic protein receptors. The PRRs are essential 

for the identification of virus, bacteria and fungus (Kawai and Akira 2009). Phagocytosis is 

triggered by some of the specialized PRRs like scavenger receptors, mannose receptors, and 

glucan receptors.  The other category is secreted PRRs that consist of  colectins, ficolins serum 

amyloid, lipid transferases, pentraxins and peptidoglycan recognition proteins (PGRs) (Dilraj 

Kaur et al. 2019a). 

Multiple previous studies show the importance of PRRs in various diseases like heart failure 

(Farrugia and Baron 2017) cancer (O’ Donovan, Mao, and Mele 2019; do Prado et al. 2019; S. 

Qin et al. 2019; Haider et al. 2019), autoimmune disorders (Farrugia and Baron 2017; V. Kumar 

2019), kidney disease (Komada and Muruve 2019), asthma, atherosclerosis, sepsis (Lin, 

Verma, and Hodgkinson 2012), Parkinson’s disease , immunodeficiency disorders like chronic 

granulomatous disease (CGD), and “X-linked agammaglobulinemia (XLA)” (Mortaz et al. 

2017). Thus, PRRs have seems to have a vital role in the therapeutic research mainly in 

adjuvant designing (Olive 2012; Shirota, Tross, and Klinman 2015; Dowling and Mansell 

2016; Garlapati et al. 2009). Therefore, it is indispensable to have a profound understanding of 

biological machinery and functional role of PRRs in our immune system. Usually, PAMPs and 

DAMPs recognised by their PRRs and this begins the recruitment of leukocyte (Mogensen 

2009). Innate immune cells like macrophages, dendritic cells, monocytes and mast cells, 

whereas epithelial cells and fibroblasts are non-immune cells that express PRR (D. Tang et al. 

2012). A cascade of downstream signalling is triggered by pattern recognition receptor-ligand 

interaction and their combined conformational modifications. As a result of this cascade, 

transcriptional and post-translational alterations occur (Mogensen 2009). The conventional 
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approaches to identify PRRs consists of various experimental techniques like Quantitative real-

time PCR (Kaiser et al. 2013), immunofluorescence (D’Souza et al. 2013), Cell viability assay, 

Immunoblot and Immuno-precipitation (Kennedy et al. 2004), PAMP binding assay (S. Jiang 

et al. 2017; C. Yang et al. 2017) , ELISA (P. Yang et al. 2010; Miao et al. 2010; Pohlmann et 

al. 2003), Growth-inhibition assay (Krol et al. 2010) and Microbial Binding and Agglutination 

Assay (S. Jiang et al. 2017).  

These experimental approaches are extremely precise, but they are also expensive and time-

consuming. Recent technological advancements have resulted in the creation of several in-

silico methodologies for predicting a protein's function. These approaches are not only speedier 

and less costly, but they are also repeatable. Data for such prediction systems may be found in 

a variety of web-based sites, databases, and repositories such as IEDB (Dhanda et al. 2019), 

VAXJO (Sayers et al. 2012), IIDB (Korb et al. 2008), InnateDB (Breuer et al. 2013) and 

VIOLIN (Xiang et al. 2008). PRR prediction is necessary to facilitate research and efficient 

therapeutic design because of its key role in innate immunity. Only one prediction technique 

(Gao et al. 2012c) for PRR sub-family classification has been established previously, based on 

data acquired from the PRRDB (Lata and Raghava 2008a). Due to a lack of data, this approach 

adopted a more liberal dataset preparation requirement (CD hit at 90% threshold). Following 

that, this dataset was utilised to train and evaluate machine learning models. The model 

prediction results might be biased since their  final dataset comprises  sequences which are 

homologous. 

We devised a technique employing the biggest available dataset, obtained from the PRRDB 

2.0 (Dilraj Kaur et al. 2019a) database, with standard procedures, to complement and overcome 

the constraints of the existing approach. Without lowering the number of sequences in the 

dataset, we employed techniques that divided the data into five data sets in such a manner that 

no two proteins in two separate subsets had more than 40% sequence similarity (Bendtsen et 

al. 2004; Garg and Raghava 2008a). We examine the performance of BLAST on our dataset to 

better perceive the strengths and limitations of the typical similarity-based approach. We 

constructed conventional machine-learning-based classification models for predicting PRRs 

utilising a variety of descriptors such as residue composition and dipeptide composition in the 

second step (M. Kumar, Gromiha, and Raghava 2007). It has already been demonstrated that 

evolutionary data delivers more information than a single sequence (H. Kaur and Raghava 

2004; Garg and Raghava 2008b). Thus, we created models based on evolutionary data such as 
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the composition of the position-specific scoring matrix (PSSM) profile (M. Kumar, Gromiha, 

and Raghava 2007). Finally, we created hybrid models that incorporate the strengths of the 

various methods employed in this research (Garg and Raghava 2008b; Bhasin and Raghava 

2004). We demonstrate that the hybrid model, which combines BLAST-based similarity search 

with a PSSM profile-based Random Forest (RF) classifier, is the most effective in-silico PRR 

prediction approach. To support and encourage further study on PRRs, this model is freely 

accessible for public usage in the form of the web-server "PRRpred" 

(http://webs.iiitd.edu.in/raghava/prrpred/). 

 

4.2 Methodology 
4.2.1 Data Extraction and Pre-processing 

The sequences of PRRs (positive data) were retrieved from the PRRDB2.0 database (Lata and 

Raghava 2008a). The total number of PRRs captured was 2,727 at first, but after removing 

identical sequences, the number of unique PRRs was decreased to 179. The negative dataset 

was produced by gathering random sequences that were not PRRs from Swiss-Prot 

(The UniProt Consortium 2017). There were 274 Non-PRR sequences in the negative sample. 

We utilised a technique previously published by (Bendtsen et al. 2004) and (Garg and Raghava 

2008a) to produce subsets that are non-redundant without lowering the amount of sequences.  

We have employed a threshold of 40 % sequence similarity using “CD-HIT” on both positive 

(PRRs) and negative (Non-PRRs) datasets to obtain clusters. Based on the cut-off, each cluster 

is a group of identical sequences. There were 106 clusters from positive data and 210 clusters 

from negative datasets found in total. Figure 4.1 depicts the distribution of sequences in the 

clusters. There were 100 clusters from the positive or PRRs dataset having less than three 

protein sequences, whereas there were 200 clusters from the negative/ Non-PRRs dataset 

having less than three protein sequences. Likewise, there were 5 clusters from both positive 

and negative datasets having no. of protein sequences from 4-6. Five subsets were constructed 

from the CD-HIT clusters for the positive dataset. The first cluster's sequences were assigned 

to the first subset, the second cluster's sequences to the second subset, and so on. This method 

was repeated until all sequences (included in CD-HIT produced clusters) were dispersed evenly 

among the five subsets as shown in Figure 4.2. A similar procedure was used to produce five 

negative subsets from the negative dataset. This technique ensures that the subsets are distinct 

to one another (no more than 40% similarity between sequences in two subsets), which is 
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advantageous for unbiased machine learning model training and testing, as well as the selection 

of a superior classification model. The goal of this procedure is to construct a non-redundant 

dataset while retaining the same number of proteins (Bendtsen et al. 2004; Garg and Raghava 

2008a). 

 
Figure 4.1 Sequence distribution in ‘CD-HIT’ clusters generated from positive/PRRs and 

negative/Non-PRRs dataset. The x-axis shows the number of sequences, while the y-axis 

reflects the number of clusters that include those sequences. 
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Figure 4.2 The flowchart explains the process of fractioning positive clusters obtained from 
CD-HIT into five subsets. The numbers in the parentheses, following the cluster names, 
represent the number of sequences in that cluster. As a result, Subset 1 contains sequences of 
clusters 1, 6, 11, …, 106; Subset 2 contains sequences of cluster 2, 7, 12, …, 102; Subset 3 
contains sequences of cluster 3, 8, 13, …, 103; Subset 4 contains sequences of cluster 4, 9, 14, 
…, 104; and Subset 5 contains sequences of cluster 5, 10, 15, …, 105. 
 

4.2.2 Similarity Search (BLAST) 

Based on “pBLAST (BLAST+ 2.7.1)”, a similarity search module was created (Camacho et al. 

2009). Five-fold cross-validation was used to test this module's performance. For this, a train 

set was used to make a local database against which the query sequences (sequences in the test 

set) were searched at an e-value of 0.001. The approach is done five times (once for each 

training and test set), with the evaluation metrics recorded each time (Results). Finally, the 

whole positive (179 PRRs) and negative dataset (274 Non-PRRs) have been integrated in the 

web-server implementation to provide a repository/database of 453 proteins against which the 

user's unseen query protein may be searched. 
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4.2.3 Features Extraction 

4.2.3.1 Composition Based 

“Pfeature” was used to extract amino acid composition (AAC) and di-peptide composition 

(DPC), which were employed as features to offer residue information for a protein. AAC is a 

20-length vector for a protein sequence, with each element representing the proportion of a 

given kind of residue in the sequence. DPC, on the other hand, is a 400-length vector that 

specifies the amino-acid composition of pairings of amino acids in the protein sequence (e.g., 

‘L-M’, ‘G-L’, and so on). “Pfeature” can provide you with further details (Pande et al. 2019). 

 

4.2.3.2 Evolutionary Information Based 

Using PSI-BLAST, we were able to collect evolutionary information for a protein in this study. 

Similar to previous research, we included evolutionary information in the form of a ‘PSSM-

400’ composition profile as a feature (M. Kumar, Gromiha, and Raghava 2007; Kaundal and 

Raghava 2009; Zhang, Liu, and Tramontano 2017; Verma, Varshney, and Raghava 2010; M. 

Kumar, Gromiha, and Raghava 2011). PSSM-400 is a 20 x 20 dimensional vector that 

represents the composition of occurrences of each of the 20 amino acids that correspond to 

each amino acid type in the protein sequence. “Pfeature's” (Pande et al. 2019) "Evolutionary 

Info" module was used to construct a PSSM matrix for each protein sequence, which was then 

normalised and transformed to a 20 × 20 ‘PSSM’ composition vector. 

 

4.2.4 Machine Learning Based Models 

To create prediction models, we utilised the sklearn package from Sci-Kit, which has a variety 

of classifiers. Each of these strategies necessitates the use of feature vectors with a 

predetermined length. The most important information regarding variable-length proteins was 

transformed into constant vectors of similar dimensions (‘AAC, DPC, PSSM-400’), which 

were then employed as input characteristics. To acquire the greatest performance on the 

training set, we utilised Sci-GridSearch Kit's module to tune hyper-parameters. Eventually, the 

best model was used for the test dataset. Five-fold cross-validation was used to accomplish this 

process, and the average performance of five-folds was evaluated. The prediction models were 

then developed using a variety of Machine Learning-based classifiers. To handle linear data, 

the most basic classifier, Logistic Regression (LR), was employed, while for non-linear data, 

sophisticated classifiers like Random Forest (RF), Support Vector Machine (SVM), Extra 
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Trees (ET), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) were utilised. 

Many bioinformatics research have effectively used all of these machine learning approaches 

(Nagpal et al. 2017; Chauhan, Mishra, and Raghava 2010; Chaudhary, Kumar, et al. 2016; 

Piyush Agrawal et al. 2019; Laurie and Goss 2013). 

 
4.2.5   Cross Validation Techniques 

Using the five-fold cross-validation approach, the performance of the modules built in this 

study was assessed. Positive and negative subsets were used to create training and test sets. 

The training set was created by combining four positive and four negative subgroups. The test 

set was created by combining the remaining one positive and one negative subsets. This method 

is done five times, with the result that the combination of a positive subset and its matching 

negative subset is only utilised as a test set once. As stated in the following sections, we used 

these five training and test sets to perform five-fold cross-validation to pick the best machine 

learning models and to construct a BLAST similarity search-based module. Five-fold cross-

validation is a typical procedure that has previously been used effectively in a number of 

machine learning studies (Nagpal et al. 2017; Chauhan, Mishra, and Raghava 2010; Harinder 

Singh et al. 2016, 2015; Chaudhary, Kumar, et al. 2016; Piyush Agrawal et al. 2019). 

 

4.2.6   Evaluation Parameters and Hybrid Models 

Threshold independent and dependent score factors were utilised to assess each model 

employed in the study. Sensitivity (Sens), Specificity (Spec), Accuracy (Acc), and Matthew's 

correlation coefficient are the threshold dependent parameters employed here (MCC). “Sens” 

is defined as true positive rate (TPR) i.e., correctly predicted positives with respect to actual 

total positives, whereas true negative rate (TNR) is defined by “Spec.” “Acc” is the ability of 

the model to differentiate between true positives and true negatives, while MCC is the 

correlation coefficient between predicted and actual classes. Following relations were used to 

calculate these: 

 

𝑆𝑒𝑛𝑠 = 	
𝑇𝑃
𝑃 𝑋100 

𝑆𝑝𝑒𝑐 =
𝑇𝑁
𝑁 𝑋100 
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𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁
𝑃 +𝑁 𝑋100 

𝑀𝐶𝐶 =
𝑑𝑇𝑃𝑋𝑇𝑁 − 𝐹𝑃𝑋𝐹𝑁

6(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
Where TP stands for correctly predicted positives and TN stands for correctly predicted 

negatives. The total sequences in the positive set are denoted by P, whereas the total sequences 

in the negative set are denoted by N. FP stands for real negative sequences that were incorrectly 

predicted as positive, whereas FN stands for incorrectly predicted positive sequences. These 

score parameters are well-known and have been used in several research to assess model 

performance. The value of the “Area Under Receiver Operating Characteristic Curve” 

(AUROC) is a threshold independent parameter derived by plotting the True Positive Rate 

(TPR or Sens) against the False Positive Rate (FPR) (FPR or 1-Spec) (Vinod Kumar et al. 

2018). Hybrid models were created that integrated the BLAST prediction score with the ML-

based scores, as done in Algpred (Saha and Raghava 2006), to increase the accuracy of the 

machine learning-based models even further. Positive prediction (PRRs) received a score of 

"+0.5," negative prediction (Non-PRRs) received a score of "0.5," and no hits received a score 

of "0." (NH). This score was added to the machine learning model’s score (i.e., prediction 

probability of positive class). In a  method called five-fold cross-validation method, this is done 

for each of the sequences in the test set. The scoring metrics for each ML model were then 

assessed at various probability cut-offs based on this combined score. Figure 4.3 depicts the 

workflow of the study. 
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Figure 4.3 The pipeline of the study 

 

4.3 Results 
4.3.1 Similarity Search Based Prediction 

BLAST is a popular software application that is frequently used for similarity searches. As a 

result, we employed BLAST to distinguish between PRRs and Non-PRRs. We utilized five-

fold cross-validation to avoid bias, which involved searching proteins in the test set against the 

training set using BLAST at varying e-value cut-offs (Table 4.1). To cover all of the proteins 

in our training sets, this method is performed five times. There are 179 PRRs in the positive 

dataset and 274 Non-PRRs in the negative dataset. Table 4.1 shows that the number of correctly 

predicted PRRs jumped from 74.30 to 82.12 percent when the “e-value” was reduced from 10-
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9 to 10-0 or 1. While sensitivity increases with an increase in e- value, the rate of error i,e  

percentage of Non-PRRs also grew up. Specificity improved from 32.48 to 49.68 percent in 

Non-PRRs, while the error rate went from 1.67 to 10.05 percent, with an e-value of 10-9 to 10-

0. Due to a huge number of no-hits, the overall accuracy of BLAST was only approximately 

51% at e-value 10-3. This low result demonstrates that BLAST is ineffective in distinguishing 

PRRs from non-PRRs with high accuracy. 

 

Table 4.1 shows performance of BLAST on both datasets using five-fold cross validation on 

different e-values. 

Blast 

(e-value) 

Positive hits 

(PRRs) 

 Negative hits 

(Non-PRRs) 

 

 PRRs (Sens) Non-PRRs 

(Error) 

 

Non-PRRs 

(Sens) 

PRRs (Error) 

10-9 133 (74.30)                  4 (1.45)  89 (32.48)  3 (1.67)  
10-8 134 (74.86)                  4 (1.45)  90 (32.84)  4 (2.23)  
10-7 134 (74.86)                  5 (1.82)  90 (32.84)        4 (2.23)  
10-6  135 (75.41)                 5 (1.82)        93 (33.94)   4 (2.23)  
10-5  136 (75.97)                 7 (2.55)               98 (35.76) 5 (2.79) 
10-4  136 (75.97)                 7 (2.55) 99 (36.13) 6 (3.35) 
10-3  138 (77.09)                 8 (2.92) 101 (36.86) 6 (3.35) 
10-2  139 (77.65)              10 (3.64) 102 (37.22) 6 (3.35) 
10-1  140 (78.21)               20 (7.29) 107 (39.05) 7 (3.91) 

1  147 (82.12)              65 (23.72) 135 (49.27) 18 (10.05) 

 
4.3.2 Models developed using Machine learning Techniques 

4.3.2.1 Sequence’s Composition Based 

We employed two important sequence composition-based criteria, namely (i) amino acid 

composition and (ii) dipeptide composition, to build a technique for classifying PRRs and Non-

PRRs. Prediction models were developed using a variety of machine learning approaches (e.g., 

“SVM, KNN, and RF”). In both the positive and negative datasets, we investigated at the 
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frequency of the 20 amino acids. A study of the amino acid content of PRRs and Non-PRRs 

revealed that PRRs had more residues “L, N, S, and Q”, whereas Non-PRRs have more residues 

“A, D, E, K, and V”. (Figure 4.2). As seen in Figure 4.4, the composition of PRRs differs from 

the composition of Non-PRRs. As a result, models for distinguishing two classes may be 

developed using the amino acid composition (AAC) feature. To create binary classification 

models, the following machine learning approaches were used: Extra-trees (ET), Random 

forest (RF), Support vector machine (SVM), K nearest neighbour (KNN), Logistic regression 

(LR), and Multi-layer perceptron (MLP). On the training dataset, ET-based models had a 

maximum AUROC of 0.90 and an MCC value of 0.63, as shown in Table 4.2. On the test 

dataset, we got an AUROC of 0.88 and an MCC of 0.63. Models were also built utilising 

dipeptide composition and a variety of machine learning approaches. On the test set, LR had 

the best performance, with an average accuracy of 80.25 percent, MCC of 0.59, and AUROC 

of 0.87, while on the training dataset, it had an average accuracy of 82.57 percent, MCC of 

0.64, and AUROC of 0.88. In the case of LR, overall test accuracy was 83 percent, with MCC 

of 0.64 and AUROC of 0.88. 

 

 
 

Figure 4.4 The figure represents the amino acid composition in percentage of PRRs and 

Non-PRRs 
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Table 4.2 The performance of models based on different machine learning techniques for 

positive dataset (PRRs)  created  using Amino acid composition of protein sequences. 
 

Method Train Dataset (Average) Test Dataset (Average) 

Model Hyper-

parameters 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

ET ne=90 80.71 82.56 81.73 0.90 0.63 77.06 84.08 82.46 0.88 0.63 

SVM C=5, 

g=0.01, 

k=rbf 

78.07 83.83 81.62 0.87 0.62 77.95 82.31 81.06 0.88 0.60 

RF ne=100 77.82 81.46 80.08 0.88 0.59 77.42 80.85 79.97 0.87 0.58 

LR C=1 77.98 82.50 80.77 0.86 0.60 76.12 81.57 79.57 0.86 0.58 

MLP a=tanh, 

HL=(19,), 

m=200, 

s=adam 

77.02 82.77 80.50 0.86 0.59 78.88 77.94 78.90 0.87 0.57 

KNN al=ball_tree, 

nn=20, 

w=distance 

76.17 79.06 77.91 0.85 0.55 77.74 75.00 76.97 0.86 0.53 

 

*g=gamma, ne=n_estimators, k=kernel, a=activation, HL=hidden layer size, s=solver, al=algorithm, w=weight, 

m=max_iter and nn=n_neighbours. 

 
4.3.2.2 Evolutionary Information Based 

The sequence profile has already been proven to give more information than a single sequence. 

As a result, in our work, we first use PSI-BLAST software to construct a sequence profile 

matching to a protein. We compute the composition of a sequence profile or PSSM profile in 

order to create a fixed number of features (see section Materials and Methods). PSSM-400, a 

fixed-length vector of 400 components, is used to express the PSSM profile's composition. 

‘PSSM-400’, which contains a fixed-length vector of 400 elements, is used to represent the 

PSSM profile composition. For our dataset, we generated PSSM-400 composition profiles and 

utilised them as feature vectors to develop classification models. Similarly to the AAC and 
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DPC-based approaches, we employ numerous classifiers for training and testing, such as 

‘SVM, RF, ET, MLP’, and others. On the training dataset, models based on evolutionary 

information had an AUROC of 0.87 and an MCC of 0.64, as shown in Table 4.3. Similarly, the 

maximum AUROC on the test dataset was 0.89, with  MCC of 0.66. In terms of MCC, the 

‘PSSM’-based prediction model outperformed the composition-based prediction models. In 

terms of AUROC, both composition and PSSM-based techniques performed almost identical. 
 
Table 4.3 The performance of models based on different machine learning techniques for 

positive dataset (PRRs) developed using evolutionary information (“PSSM-400”) of protein 

sequences. 
 

Method 

 

Train Dataset (average) Test Dataset (average) 

Model Hyper-

parameters 

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

SVM C=10, g=0.5, 

k=rbf 

 

77.80 85.89 82.78 0.87 0.64 79.74 85.46 83.64 0.89 0.66 

LR C=1000 77.31 86.37 82.84 0.87 0.64 80.80 81.07 81.13 0.89 0.61 

KNN al=ball_tree, 

nn =6, 

w=distance 

72.80 83.48 79.36 0.86 0.57 78.40 82.50 81.07 0.87 0.60 

RF ne=80 75.95 85.01 81.55 0.87 0.61 79.07 81.41 80.74 0.86 0.60 

MLP a=logistic, 

HL=(14,), 

m=200, 

s=adam 

75.26 85.09 81.28 0.86 0.61 79.07 81.03 80.26 0.88 0.59 

ET ne=70 80.33 78.79 79.36 0.88 0.58 83.73 74.97 79.15 0.87 0.59 

 
*g=gamma, ne=n_estimators, k=kernel, a=activation, HL=hidden layer size, s=solver, al=algorithm, w=weight, 

m=max_iter and nn=n_neighbours. 
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4.3.2.3 Combination of Composition and evolutionary information 

The PSSM-400 and amino acid compositions were combined to create a 420-length feature 

vector. Several classifiers were trained and tested using five-fold cross-validation. Using LR 

on training sets, we obtained an AUROC value of 0.89 and an MCC value of 0.66, as shown 

in Table 4.4. Similarly, MLP gave the highest AUROC with an AUROC of 0.90 on the training 

dataset and 0.67 on the test dataset. As a result, as compared to employing evolutionary 

information-based features (PSSM) or composition-based features (AAC or DPC) alone, 

performance has improved. In Table 4.4 comparison with (Gao et al. 2012c) has been also 

done. The  model accuracy in (Gao et al. 2012c) was claimed to be 97–98%; nevertheless, such 

a relaxed redundancy reduction  technique utilises sequences that can be highly similar to a 

high degree. Figure 4.5 depicts the ROC curves for various classifiers such as AAC, PSSM, 

and the combination of AAC and PSSM. 

 
Table 4.4 On the PRR dataset, the performance of multiple machine learning techniques-based models 

constructed by integrating composition (AAC) and evolutionary information (PSSM-400) based features 

for protein sequences. Comparison with Gao, et.al is shown in the last row. 
 

Method 

 
Train Dataset (Average) Test Dataset (Average) 

Model Hyper-

parameters 
Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC 

MLP a=tanh, 

HL,=(70,), 

m=200, 

s=adam 

77.70 86.54 83.20 0.88 0.65 81.23 85.50 84.19 0.90 0.67 

LR C=1000 82.97 83.49 83.34 0.89 0.66 83.59 81.49 82.67 0.90 0.64 

RF ne =60 80.32 83.24 82.16 0.88 0.63 80.43 82.44 82.16 0.87 0.63 

ET ne =100 77.72 85.25 82.35 0.89 0.63 78.96 83.75 82.13 0.88 0.63 

SVC C=5, g=0.01, 

k=rbf  
81.65 83.35 82.73 0.89 0.65 80.62 81.56 81.72 0.88 0.62 
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KNN al=ball_tree, 

nn =20, 

w=distance  

80.20 76.60 78.12 0.87 0.56 80.41 72.88 76.35 0.86 0.52 

SVC (Gao et al. 

2012c) 

- - - - - - - 97.9 - - 

 

 
*g=gamma, ne=n_estimators, k=kernel, a=activation, HL=hidden layer size, s=solver, al=algorithm, w=weight, 

m=max_iter and nn=n_neighbours. 

 

 

 

 
Figure 4.5 Receiver operating characteristic curves for five-fold cross-validation utilising 

AAC, PSSM, and AAC+PSSM employing Support vector machine (SVM), Logistic 

Regression (LR), and Multi-layer Perceptron (MLP), respectively. 
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4.3.2.4 Hybrid Models 

The preceding results show that both the similarity-based approach and the machine learning-

based approaches have pros and cons. As a result, we attempted to devise a strategy that 

combines the advantages of both approaches. Based on the hits against PRRs, the e-value of 

10-3 was chosen for the BLAST-based similarity search approach. Since the probability of right 

prediction was found to be quite high (77.09 %) for this e-value, and the rate of error was very 

low (2.92 % ). Despite the fact that the number of no-hits was too large at this cutoff (80%), it 

was offset by a good prediction accuracy. Proteins were initially categorised using machine 

learning models in order to merge the two approaches. In the second stage, the proteins were 

categorised again using BLAST, with the query proteins that showed similarity to PRRs at an 

e-value of 10-3 being designated as PRRs. Because of the high probability of successful 

prediction of the BLAST-based similarity search approach, we chose it over machine learning-

based models in predicting PRRs. Simply stated, we employed machine learning techniques to 

categorise proteins as PRRs or Non-PRRs when there was no BLAST result for the query 

protein at a BLAST e-value of 10-3.  This hybrid method increased coverage that was previously 

lacking when using BLAST alone. As seen in Table 4.5, when BLAST was included, the 

performance of machine learning algorithms increased dramatically. Our best hybrid model 

‘RF’ based on PSSM attained an accuracy of 91.39 percent, an AUROC of 0.95, and an MCC 

of 0.82. In general, the performance of all hybrid models was shown to be superior to that of 

BLAST-based similarity searches and machine learning models. 

 

Table 4.5  Shows the performance of several machine learning techniques-based models on 

the test data when paired with BLAST hits at “e-value” 10-3 

 
Feature Model Hyper-

parameters 

Sens Spec Acc AUROC MCC 

PSSM RF C=80 83.24 96.72 91.39 0.95 0.82 

AAC RF C=100 82.12 94.53 89.62 0.92 0.78 

AAC+PSSM ET ne =100 87.15 89.78 88.74 0.95 0.77 

DPC SVC C=2, g=0.01, k= 

rbf 

79.89 92.34 87.42 0.93 0.73 
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4.4 Implementation of Web Resource 

One of the key purposes of this research is to serve the scientific community. We created a 

simple web server “(http://webs.iiitd.edu.in/raghava/prrpred/)” that allows users to predict 

whether or not a particular protein is a pattern recognition receptor. Under prediction, the 

server's web interface contains two sub-modules: (i) Composition Based and (ii) Evolutionary 

Information Based. The "Composition Based" module enables a user to find a protein sequence 

based on amino acid composition. This module also gives the user the choice of using the non-

hybrid technique, which is solely AAC-based, or the hybrid method, which is AAC+BLAST-

based. The "Evolutionary Information Based" module assists the user in predicting PRRs based 

on evolutionary information from a protein sequence. The PSSM-400 composition profile for 

the input protein sequence is generated and used as a feature vector for prediction in this step. 

This module, like the composition-based module, supports non-hybrid and hybrid models. The 

web server was built using a responsive HTML template to adjust to the browsing device. As 

a result, our web server is compatible with a broad range of devices, such as desktop computers, 

tablets, and smartphones. 

 

4.5 Discussion and Conclusion 
Understanding innate immunity has advanced rapidly in recent years, particularly in terms of 

the processes by which pathogens are detected and how signalling molecules respond to them. 

Because of its involvement in combating pathogens during the early phases of infection, innate 

immunity is earning more attention than adaptive immunity, whereas adaptive immunity enters 

the picture later. Adaptive immunity is made up of receptors that are extremely specific to 

antigens (Zhu et al. 2018). In contrast, innate immunity is made up of specialised receptors 

known as PRRs that sense infectious microorganisms and generate inflammatory responses to 

eliminate them (Pahari et al. 2017). In the past, some crucial implications of PRRs have been 

documented in the context of adjuvant design, therapeutic targets, immunomodulator design, 

cancer immunotherapy, and so on (Zhu et al. 2018; Vasou et al. 2017; Mullen, Chamberlain, 

and Sacre 2015). To understand innate immunity, a comprehensive database of pathogen-

recognizing receptors, such as ‘PRRDB’ (Lata and Raghava 2008b) is required. These kind of 

knowledge-based tools can help researchers working on innate immunity and medication 

development. In addition to resources, methods for annotating freshly sequenced PRRs are 

required. Recently, SVM was used to construct a technique for predicting PRRs and 
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subfamilies (Gao et al. 2012a). This approach develops models based on amino acid and 

pseudo-amino acid composition (‘PseAAC’) utilising PRRDB datasets (Lata and Raghava 

2008b). The prediction was based on 332 PRR sequences (from various families) retrieved 

from 473 sequences (with numerous similar ‘UniProt-IDs’) that were previously included in 

the database using “CD-HIT” at a 90% threshold. The model accuracy was claimed to be 97–

98%; nevertheless, such a relaxed redundancy reduction technique utilises sequences that can 

be highly similar to a high degree. In this work, we developed classification models using a 

dataset collected from the newly upgraded version PRRDB2.0 (Dilraj Kaur et al. 2019b). In 

our case, the positive dataset comprises of PRR sequences with unique UniProt IDs, decreasing 

the duplicate data (1,784 sequences) to 179 sequences. Second, a CD hit threshold of 40% was 

used to separate both the negative (274 random Non-PRR sequences from swiss-prot) and 

positive datasets into five subsets each. This aided in lowering homology bias between the train 

and test datasets, resulting in more precise model training during five-fold cross-validation. 

In this study, we investigated many methods for predicting PRRs. To identify PRRs from Non-

PRRs, we employed several protein features such as composition-based features (AAC and 

DPC) and evolutionary information-based features (“PSSM”) to create machine learning-based 

models. For the same purpose, we applied a combination of composition-based features and 

evolutionary information-based features. These techniques were adopted for the first time in 

the investigation of PRR prediction. To do this, we used a range of classifiers from Scikit-

sklearn, including “SVM, RF, ET, and MLP”. We started with BLAST alone categorization 

because it is simple and widely used. BLAST had a very high accuracy (e-value of 10-3) if a 

hit was detected, but it was unable to predict about 80% of sequences (No-Hits) during five-

fold cross-validation. As a result, we used a hybrid strategy for the problem at hand, combining 

ML-based approaches with BLAST. The main benefit of this technique is that proteins that 

could not be predicted using BLAST alone can now be predicted using ML. We used a wide 

range of classifiers to try this method with each of the protein-features and their combinations. 

The best results were obtained in the hybrid case of PSSM and BLAST. The best results were 

obtained in the hybrid case of PSSM and BLAST. This hybrid model's formulation was 

implemented in a free web-server. Using the web-server, this model will first predict the 

positive (“PRR”) or negative (“Non-PRR”) class for an unknown protein sequence, based on a 

BLAST search against the whole database (179 PRRs+274 Non-PRRs). If the outcome is a 

"No-Hit," the RF model trained on the entire set will make the prediction. The web-server is 
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open to the public and simple to use. We hope that the work done here will be useful for the 

annotation of PRRs and will help to further ongoing research in the field of innate immunity. 
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Classification of 
Defensins  

and Non-defensins 
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5.1 Introduction 
Defensins are a class of antimicrobial peptides (“AMPs”) that play an important role in the 

innate immune system. They are critical effector components in a host's defence against 

infections due to their broad-spectrum antibacterial activity (Raj and Dentino 2002; 

Mookherjee et al. 2020; Ting et al. 2020) Defensins are classified into two types based on their 

configuration: “a-defensins (a-helices)” and  “b-defensins (b-sheets)”. Defensins are small, 

cationic peptides that help phagocytes, skin, and mucosa combat germs. They are also 

antimicrobially active against viruses, mycoplasma, tumours, and fungus. They have an 

amphipathic property and use it to act on the membrane or envelope the wall (P. K. Singh et 

al. 1998; Semple and Dorin 2012; Prasad et al. 2019). Neutrophils and epithelial cells are 

important cellular secretors of these peptides, although defensins are also produced by 

monocytes, macrophages, dendritic cells, and lymphocytes (Solanki et al. 2021). Defensins are 

widely distributed throughout distinct body compartments in virtually all living species, 

according to earlier research; nevertheless, they appear to be enhanced in particular pathogenic 

body cells (Robert I Lehrer, Bevins, and Ganz 2005). Through the cells that create them, these 

host defence peptides contribute in the battle against bacterial, viral, and fungal infections 

(Robert I Lehrer, Bevins, and Ganz 2005). 

Defensin peptides primarily disrupt the structure of bacterial cell membranes as part of their 

action mechanism, resulting in membrane permeabilization and the release of nutrients from 

the bacterial cell (D. Yang et al. 2009). They accomplish this by adhering to the membrane and 

developing damaging holes in it. Defensins are activated by a variety of stimuli (Sudheendra 

et al. 2015). Dendritic cells, monocytes, neutrophils, eosinophils, and epithelial cells produce 

and release the majority of them. Figure 5.1 shows that, in addition to antibacterial action, 

defensins are actively involved in a variety of immune-modulatory processes such as 

mitogenesis, cytokine production, and histamine release. Many developing strains of pathogens 

(i.e., bacteria, fungus, parasites) are resistant to current medications, notably antibiotics, in the 

era of drug resistance (Maryam, Usmani, and Raghava 2021; Seung, Keshavjee, and Rich 

2015).  This includes multidrug-resistant strains that are resistant to most of the existing drugs 

(Blasco, Leroy, and Fidock 2017; Bhardwaj et al. 2011; Boyanova, Markovska, and Mitov 

2019). To control the treatment of drug-resistant disease strains, experts are looking for 

alternatives to antibiotics (Golkar, Bagasra, and Pace 2014; Othieno, Njagi, and Azegele 2020). 

Protein/peptide-based therapies are one of the promising antibiotic alternatives. The number of 
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peptide-based therapies authorised by the FDA has increased significantly during the previous 

two decades (Usmani, Kumar, Bhalla, et al. 2018; Usmani et al. 2017; D’Aloisio et al. 2021). 

Poly(2-oxazoline)s, which are synthetic analogues of host defence peptides (M. Zhou et al. 

2021), as well as daptomycin, gramicidin, and colistin, are among the FDA-approved AMPs 

(M. Zhou et al. 2020). 

AMPs are one of the most frequent groups of therapeutic peptides used to eliminate microbial 

infections, including drug-resistant strains (da Silva et al. 2020; Nuti et al. 2017). In the past, 

numerous computational resources and methods have been developed for predicting AMPs 

including chemically modified AMPs (Piyush Agrawal and Raghava 2018; Meher et al. 2017). 

In addition to AMPs, a variety of approaches for predicting peptides for killing a specific kind 

of bacterium have been developed, including the prediction of antibacterial, antituberculosis, 

antiviral, antifungal, and anti parasite peptides (Qureshi, Tandon, and Kumar 2015; Thakur, 

Qureshi, and Kumar 2012; Mehta et al. 2014; Lata, Sharma, and Raghava 2007; Lata, Mishra, 

and Raghava 2010; Usmani, Kumar, Kumar, et al. 2018; Piyush Agrawal et al. 2018). Despite 

the fact that these antimicrobial peptides represent a viable alternative to small-molecule-based 

medicines, their toxicity, half-life, and allergenicity pose significant hurdles (Sharma et al. 

2020; Gupta et al. 2015; Mathur et al. 2018). As a result, there is a need to investigate a new 

class of AMPs, which are employed by hosts to fight themselves against infections. Because 

they are damage-associated molecular patterns (DAMPs) and are released in the host, these 

defensins offer various benefits over AMPs. As a result, they are less toxic and well tolerated 

by the body. Pattern recognition systems (PRRs) identify them when they occur naturally  

(Pouwels et al. 2014; Dilraj Kaur et al. 2019b). Several approaches for predicting defensins 

and their classes have been established in the past (Kumari et al. 2012; Y. Zuo et al. 2015; Y.-

C. Zuo and Li 2009; Y. Zuo et al. 2019). In the section Comparison With Existing Tools, we 

explored the various tools. 

In this study, we offer a dependable approach for predicting defensins with high accuracy. To 

build the biggest datasets feasible, we methodically gathered defensins, AMPs, and non-

defensins from multiple sources. We attempted to investigate the differences and similarities 

between defensins and AMPs in this work. Defensins and AMPs showed substantial variations. 

As a result, we created models for distinguishing antimicrobial peptides and defensins. In 

addition, we created models for distinguishing between defensins and non-defensins. We 

created a standalone programme as well as a web server to assist the scientific community. 
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Figure 5.1 Visual representation of  secretory cells and immunomodulatory function of 

defensins. 

 

5.2 Methodology 
5.2.1 Generation of Datasets 

Defensins were collected from a variety of sources, including earlier research (Y. Zuo et al. 

2015; Y.-C. Zuo and Li 2009; Y. Zuo et al. 2019), DRAMP2.0 (Kang et al. 2019), and 

CAMPR3 (Waghu et al. 2016). We only gathered antimicrobially active defensin sequences 

that have been experimentally validated. Defensins have a wide variety of lengths “(5–120 

residues)”, however the majority of them (77.59 percent of all sequences) contain “10–60” 

residues. As a result, in our study, we eliminated all defensins with less than 10 or more than 
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60 residues. We also filtered out sequences that had non-natural or non-standard amino acids 

(“B, J, O, U, X, and Z”). Finally, 1,036 distinct defensins were identified. These defensin 

sequences were used to generate two datasets, which are detailed further below. 

(a) Main Dataset: Defensins are positive sequences in our primary dataset, while AMPs are 

negative sequences. As previously stated, we obtained 1,036 defensins from various sources. 

The ‘CAMPR3’ made accessible us with 2,297 experimentally validated AMPs. Basically, we 

took all peptides except those from the defensin family. The sequence lengths were limited to 

10 to 60 residues, like with defensins. We also eliminated sequences that included amino acids 

that were not naturally occurring. In all, we have 1,036 experimentally confirmed defensins 

and 1,035 AMPs in our main dataset. 

 

(b) Alternate Dataset: In our other dataset, we have both defensins and non-defensins. To find 

non-defensins, we used the following searches in “Swiss-Prot” (The UniProt Consortium 

2017) "Non-AMPs" and "Non-Defensin" and "Not antibacterial" and "Not antifungal" and 

"Not antiviral" and "Not antiparasitic" and "Not antimicrobial" proteins. Initially, we acquired 

42,357 protein sequences, from which we randomly picked 1,055 unique sequences with 

residue counts ranging from 10 to 60. As shown in Figure 5.2, our alternative dataset comprises 

1,036 defensins and 1,054 non-defensin sequences. 
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Figure 5.2 The workflow of the study 

 

5.2.2 Feature’s Generation, Selection and Ranking 

In this study, the standalone version of “Pfeature” (Pande et al. 2019) was used to generate a 

variety of features from protein sequences. “Pfeature” can compute thousands of 

features/descriptors of protein or peptide sequences. We used “Pfeature's” composition-based 

function module to generate a vector of 8,968 features. Aside from this, we evaluated other 

composition features from “Pfeature” on both datasets independently. One of the study's 

primary issues is identifying an important group of features from the huge dimension of 

features. The ‘SVC-L1-based’ feature selection technique was applied, which combines the 
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support vector classifier (SVC) with a linear kernel and is penalised with L1 regularisation. 

“SVC-L1” was chosen because it employs several approaches to choose the appropriate 

features from a large number of feature vectors and is extremely fast in contrast to other 

methods (Aggarwal 2014). Its primary purpose is to minimise the objective function, which 

includes the loss function and regularisation. To reduce dimensions, the “SVC-L1” algorithm 

selects non-zero coefficients and then applies the L1 penalty to choose relevant features. The 

L1 regularisation builds sparse models throughout the optimization phase by eliminating a few 

features from the model and setting the coefficients to zero. The sparsity is controlled by the 

"C" parameter, which is proportional to the number of features chosen; the lower the "C" value, 

the fewer features are chosen. We utilised the default value of 0.01 for parameter "C” 

(Tandelilin 2010). Following that, the relevance of these features in protein classification was 

assessed using the software "feature selector." Using a “DT-based” technique called the Light 

Gradient Boosting Machine, the software "feature selector" ranks the features based on the 

number of time a feature is used to partition data across all trees. 

 

5.2.3 Machine Learning Techniques 

Several machine learning methods were employed in this work to create classification models 

using Python's “scikit-learn” module (“Scikit,” n.d.). It contains of extra tree (ET), random 

forest (RF), logistic regression (LR), support vector machine (SVM), k-nearest neighbours 

(KNNs), and multilayer perceptron (MLP). Using "GridSearch," several hyperparameters 

corresponding to these classifiers were tweaked, and only the best results were used. 

 

5.2.4 Validation Techniques 

To offer internal and external validation, we divide our datasets into training and validation 

sets in proportions of 80% and 20%, respectively. In the case of internal validation, we 

employed a five-fold cross-validation approach, in which training set sequences are arbitrarily 

split into five equivalent folds (Nagpal et al. 2018; Dilraj Kaur, Arora, and Raghava 2020). 

Thereafter, four of these folds are used for training and the remaining fold is used for testing. 

The procedure is replicated five times until each of the five folds has been used for testing at 

least once. Finally, the model's performance is computed by averaging the performance on the 

five folds. Internal validation is the process of optimising parameters on an 80 percent training 



 
 
 
 
 

67 

dataset to attain the optimal performance. To validate the performance of our models, we use 

a 20 percent validation dataset, which is referred to as external validation. 

 
5.2.5 Evaluation Parameters 

To test the performance of several machine learning classification models, we employed well-

established assessment criteria. In this research, we employed both threshold-dependent and 

independent parameters such as sensitivity (Sens), specificity (Spec), and accuracy (Acc). A 

receiver operating characteristic (ROC) curve was produced between sensitivity and 1-

specificity to evaluate the models' findings. Following that, we assessed using the standard 

threshold-independent parameter AUROC (area under the ROC curve) values. These 

properties were quantified using the following equations: 

 

𝑆𝑒𝑛𝑠 =
𝑇𝑃
𝑃 𝑋100 

𝑆𝑝𝑒𝑐 =
𝑇𝑁
𝑁 𝑋100 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁
𝑃 + 𝑁 𝑋100 

𝑀𝐶𝐶 =
𝑇𝑃𝑋𝑇𝑁 − 𝐹𝑃𝑋𝐹𝑁

6(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

where TP denotes true positive, FP denotes false positive, TN is true negative, and FN denotes 

false negative. 

 

5.3 Results 
We performed some preliminary analyses on the main and alternate dataset sequences to learn 

more about the preferences of various kinds of residues. Following that, the models were built 

using the "main" and "alternate" datasets. The sections that follow have to get into great detail 

on these studies as well as the performance of the models. 
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5.3.1 Compositional Preference Analysis 

For defensins, AMPs, and non-defensin peptides, the amino acid composition (AAC) was 

computed. The usual amino acid composition of defensin, antimicrobial, and non-defensin 

peptides is depicted in Figure 5.3. In comparison to AMPs, defensins have a greater amino acid 

composition for particular types of residues (i.e., “C, D, E, N, R, T, Y”), as seen in Figure 5.3. 

Defensins have a greater amino acid composition for the following types of residues than non-

defensins: “C, G, R, and Y”. Similarly, in comparison to non-defensins, AMPs have a higher 

composition for particular types of residues (e.g., “C, I, K, L”). These findings suggest that, 

despite the fact that both defensin and AMPs have antimicrobial activity, they have distinct 

residue preferences. These findings suggest that antimicrobial peptide prediction is not 

appropriate for predicting defensins because they prefer distinct types of residues. In addition, 

we used the "Mann–Whitney test" to establish the statistical significance of these three groups. 

We discovered that 54 of 60 pairs were statistically significant. A and W were non-significant 

amino acid residue pairings in AMPs and non-defensins. M residue is a non-significant pair in 

AMPs and defensins. At the same time, non-defensins with defensins have non-significant 

pairings of F, H, and T. 

 
Figure 5.3 Visual representation of analysis of the average amino acid composition of 

defensins, AMPs, and non-defensins. 
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5.3.2 Positional Preference Analysis 

The preference of a given amino acid at a specific position in the protein sequence was 

investigated in this study. Figure 5.4 depicts a two-sample logo (TSL) for the main and 

alternative datasets. The relative abundance of the sequence is represented by the most 

important amino acid residue. It is vital to remember that the first 10 positions represent peptide 

N-terminal residues, while the final 10 positions represent peptide C-terminus. The amino acid 

"C" was shown to be abundant at positions 1, 2, 3, 5, 6, 7, 8, and 9 of the C-terminus, as well 

as positions 3, 4, 5, 6, 8, and 9 of the N-terminus. Furthermore, the amino acid "N" was 

abundant at position 10 of the C-terminus, whereas "S" was enriched at position 7 of the N-

terminus. Non-defensins, on the other hand, have an abundance of "K," "L," and "A" at various 

positions in both the C- and N-termini. 

 

 
 

Figure 5.4 Two sample logos produced from the (a) C-terminus (last 10 residues) of the main 

dataset, C is enriched at position 1, 2,5,6,7,8 and 9, N at position 10 (b) the N-terminus (first 

10 residues) of the main dataset, C is enriched at 3,4,5,6,8,9, S  at position7 and R  at position 

10  (c) the C-terminus (last 10 residues) of the alternate dataset, C is enriched at position from 
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1-10  (d) and the N-terminus (first 10 residues) of the alternate dataset G is enriched at position 

1, T at position 2, C is 3,4,5,6 8,9,10 and S at position at 7. 

 

5.3.3 Models Development for Prediction 

5.3.3.1 Selection of Features 

First, we used the Pfeature software to compute a wide range of features. We  have eliminated 

all the irrelevant features. Based on the SVC-L1 feature selection approach described in the 

Materials and Methods section, 93 significant features for the main dataset and 68 significant 

features for the alternate dataset were identified. For each of these datasets, all features were 

ranked based on their normalised an cumulative scores using the "feature selector" tool. 

 

5.3.3.2 Models Based on Machine Learning on Selected Features 

As previously stated, the SVC-L1-based selection technique reduced a total of 8,948 features 

retrieved from Pfeature's composition-based module to 93 (main dataset) and 68 (alternative 

dataset) features. On both datasets, a variety of machine learning classifiers such as SVM, LR, 

KNN, RF, MLP, and ET were used. Table 5.1 depicts the performance of various models. SVM 

clearly outperforms other methods for the main dataset, with AUROC and Matthews 

correlation coefficient (MCC) values of 0.98 and 0.88, respectively, at the training dataset. The 

corresponding validation dataset has an AUROC of 0.97 and an MCC of 0.87. With 0.97 

AUROC and 0.84 MCC on the training dataset and 0.97 AUROC and 0.85 MCC on the 

validation dataset, LR was the second best model. Similarly, SVM was the best model for the 

alternate dataset, with 0.99 AUROC and 0.94 MCC on the training dataset and 0.99 AUROC 

and 0.96 MCC on the validation dataset. 

 

Table 5.1 Machine learning model performance on SVC-L1 selected features for  Main Dataset  

and Alternate Dataset. 

MAIN DATASET 

                                                                  Training Dataset Validation Dataset 

Model Hyperparameters Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC 

SVM C=2, g=1, k=rbf 93.24 94.81 94.03 0.98 0.88 93.72 93.24 93.48 0.97 0.87 
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* g: gamma, ne: n_estimators, k: kernel, a: activation, HL: hidden layer size, s: solver, al : algorithm, w:weight, 

m : max_iter, nn: n_neighbour 

5.3.3.3 Machine Learning-Based Models on Selected Top-Ranked Features 

We evaluated the importance of various feature sets in addition to developing prediction 

models over entire selected features. The aim was to find a feature set with the fewest features 

that can consistently distinguish between defensins with AMPs and non-defensins with high 

LR C=1 92.4 91.67 92.03 0.97 0.84 92.75 91.79 92.27 0.97 0.85 

ET ne=30 93.73 94.08 93.9 0.98 0.88 93.24 93.72 93.48 0.97 0.87 

RF ne=90 91.07 95.41 93.24 0.98 0.87 91.3 95.17 93.24 0.98 0.87 

KNN al=ball-tree, nn=10, 

w=distance 

92.52 94.32 93.42 0.97 0.87 92.27 90.82 91.55 0.96 0.83 

MLP a=identity, HL=3, 

m=100, s=adam 

92.4 89.73 91.07 0.95 0.82 93.72 87.92 90.82 0.96 0.82 

ALTERNATE DATASET 

                                                                  Training Dataset Validation Dataset 

Model Hyperparameters Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC 

SVM C=2, g=0.5, k=rbf 95.05 98.46 96.77 0.99 0.94 97.1 99.05 98.09 0.99 0.96 

LR C=10 94.93 97.86 96.41 0.99 0.93 94.69 98.58 96.65 0.99 0.93 

ET ne=50 94.09 98.93 96.53 0.99 0.93 94.69 99.53 97.13 0.99 0.94 

KNN al=brute, nn=10, 

w=distance 

92.88 98.22 95.57 0.99 0.91 94.69 98.58 96.65 0.98 0.93 

RF ne=70 95.66 97.27 96.47 0.99 0.93 96.14 97.16 96.65 0.99 0.93 

MLP a=tanh, HL=10, 

m=100, s=adam 

92.4 97.86 95.16 0.98 0.9 93.72 98.1 95.93 0.98 0.92 
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AUROC and accuracy. As a consequence, we developed multiple models based on the top (10, 

20, 30,..., 93) features in the main dataset and the top (10, 20, 30,..., 68) features in the alternate 

dataset, and assessed them on the training and validation datasets. The best features, as seen in 

the results, were determined, namely the top 60 for the main dataset and the top 50 for the 

alternate dataset. For the main dataset, SVM (training: 0.98 AUROC, 0.88 MCC, and 

validation: 0.98 AUROC, 0.88 MCC) is the best model, followed by LR (training: 0.96 

AUROC, 0.82 MCC and validation: 0.97 AUROC, 0.83 MCC). As demonstrated in Table 5.2 

and Figure 5.5, the best model for the alternate dataset is SVM (training: 0.99 AUROC, 0.93 

MCC and validation: 0.99 AUROC, 0.96 MCC), followed by LR (training: 0.99 AUROC, 0.91 

MCC and validation: 0.98 AUROC, 0.90 MCC). 

 

Table 5.2 Machine learning models' performance on the top 60 features of the main dataset 

and the top 50 features of the alternate dataset. 

 
Main top 60 Training dataset Validation dataset 

Model Hyperparameters Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC 

 SVM C=2, g=1, k=rbf 89.26 96.74 93 0.98 0.86 90.82 97.1 93.96 0.98 0.88 

LR C=0.1 86.85 93.24 90.04 0.96 0.8 88.89 93.72 91.3 0.97 0.83 

ET ne=50 92.4 95.41 93.9 0.98 0.88 92.4 95.41 93.9 0.98 0.88 

RF ne=60 91.68 95.29 93.48 0.98 0.87 91.3 94.69 93 0.98 0.86 

MLP a=tanh, 

HL=17,m=100, 

s=adam 

74.79 70.77 72.78 0.85 0.46 91.79 91.3 91.55 0.96 0.83 

KNN al=ball-tree, 

nn=10, 

w=distance 

91.8 93 92.4 0.97 0.85 91.79 90.34 91.06 0.96 0.82 

 
Alternate top 50 Training dataset Validation dataset 

Model Hyperparameters Sens Spec ACC AUROC MCC Sens Spec ACC AUROC MCC 

SVM C=2, g=1, k=rbf 95.17 97.98 96.59 0.99 0.93 97.1 99.05 98.09 0.99 0.96 
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LR C=1 95.54 95.02 95.28 0.99 0.91 95.65 95.73 95.69 0.98 0.91 

ET ne=40 95.17 98.22 96.71 0.99 0.93 95.65 98.58 97.13 0.99 0.94 

KNN al=ball-tree, 

nn=9, w=distance 

94.33 97.86 96.11 0.99 0.92 95.65 98.1 96.89 0.98 0.94 

RF ne=50 95.3 98.22 96.77 0.99 0.94 96.65 97.63 96.65 0.99 0.93 

MLP a=tanh, HL=15, 

m=100, s=adam 

92.64 97.75 95.22 0.98 0.91 92.27 97.63 94.98 0.98 0.9 
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Figure 5.5  AUROC plots (a) main (top 60 selected features from the training datasets), (b) 

main (top 60 selected features from the validation datasets), (c) alternate (top 50 selected 

features from the training datasets), and (d) alternate (top 50 selected features from the 

validation datasets)  

 

5.3.4 Existing Methods : Comparison 

We also compared our models produced in this study to previous methods developed. As 

demonstrated in Table 5.3, these approaches have been refined over time on a variety of 

datasets of varying size and nature. As a result, direct comparisons of these approaches with 

other methods are not feasible. Previous research collected defensin peptides from the 

Defensins Knowledgebase, which was created in 2006 (Seebah et al. 2007), or from Swiss-

Prot (The UniProt Consortium 2017). The size of the dataset is one of the constraints of prior 

studies. In this work, we used the largest dataset available to create trustworthy models using 

data from several sources. In addition, to distinguish defensin from antimicrobial peptides and 

non-defensins, we constructed two datasets termed the main and alternate datasets. Our web 

service not only predicts defensin but also scans for defensin peptides in proteins and designs 

highly effective defensins. In contrast, the majority of previous web services are no longer in 

use. This warrants the creation of a new approach to supplement current ones. 

 

Table 5.3 Describing main components of existing techniques and DefPred, such as dataset 

source, data size, significant characteristics, type, performance, and so on. 

Study 
Source of 

Dataset 

Size of 

data 

Major 

Features 

Classifier 

used 
Type Accuracy 

Webserver 

availability, 

status 

PMID 

Zuo, YC et 

al. 2009 

Defensin 

Knowledgebase 

286P ID_RAAA Jack-

knife Test   

Prediction 91.36% No 19591890 

Shreyas, K 

et al. 2009 

Pubmed, iHop, 

Uniport, 

HubMed 

238P, 238 

N 

RQA 

Descriptors 

RF classification 78.12%  No NA 

Kumari, 

SR et al. 

2012 

NCBI, 

UNIPROT 

383P, 383 

N 

AAC, DPC, 

PSAAC 

SVM classification 99% Yes, 

Inactive 

22670676 

Zuo, YC et 

al. 2015 

Defensin 

Knowledge base 

333P iDEF-

PseRAAAC 

SVM Prediction 85.59%  Yes,  

Inactive 

26713618 
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Zuo, YC et 

al. 2019 

Defensin 

Knowledge base 

328P iDEF-

PseRAAC 

SVM Prediction 91.16% Yes, Active 31391777 

DefPred CAMPR3, 

DRAMP2.0,   

Defensin 

Knowledgebase,  

Swiss PROT 

1036P, 

1035N, 

(main), 

 1036 P ,  

1054N 

(alternate) 

Selected 

features 

SVM Prediction 93.96%(main) 

98.09% 

(alternate) 

Yes, Active NA 

 

5.3.5  Implementation of the Web Resource 

To assist the scientific community, we created a user-friendly prediction web server that 

integrates multiple modules to predict defensin proteins. The study's prediction models are used 

in the web server. Users will predict if a query peptide is defensin or non-defensin based on 

the score of the prediction models at different thresholds. The five major modules of the web 

server are Predict, Protein-scan, Design, Downloads, and Algorithm. Using the "Predict" 

module, the user may distinguish between defensin and non-defensin peptides. Both the 

positive and negative datasets used in this study are available in FASTA format for download. 

The web server "DefPred" was built using HTML, Java, and PHP scripts. Below is a thorough 

explanation of these modules: 

The Predict module predicts whether or not the provided protein sequence is defensin. Users 

can enter several peptides in FASTA format into the box or upload a file that contains the same. 

This module allows the user to predict defensins from AMPs using model-1 established on the 

main dataset. Model-2 was created to predict both defensins and non-defensins. The Design 

module enables the user to produce all potential analogues for a sequence and then rank these 

peptide sequences according to their ratings. This helps the user to find the best defensin 

analogue. The Scan module was created to discover protein areas with defensin-like properties. 

In order to better serve the community, we created a stand-alone Python application. In 

addition, we have given a stand-alone facility in the form of Docker technology. This 

standalone programme is incorporated into our "GPSRdocker" package, which may be 

obtained from the website https://webs.iiitd.edu.in/gpsrdocker/ (P. Agrawal et al. 2019). 
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5.4 Discussion and Conclusion 
Antibiotic resistance is spreading among microorganisms all across the world, and 

conventional therapies for drug-resistant pathogens are inadequate. With increased pathogen 

drug resistance, the concern of a post-antibiotic era needs the development of alternatives to 

standard antibiotics or small molecule-based medicines. Because of their various therapeutic 

effects, AMPs represent a class of prospective therapeutics with curative promise. Several 

organisms' innate immune systems rely significantly on these evolutionarily conserved 

molecules. Defensins are a subclass of AMPs with several roles and modes of action, making 

them less likely to be drug resistant (Robert I Lehrer, Bevins, and Ganz 2005; R I Lehrer, 

Lichtenstein, and Ganz 1993). Furthermore, defensins' peculiarities in the mechanism of 

microbicidal activity from other antibiotics make them useful in combating infections when 

taken in conjunction with traditional antibiotic therapies (Tai et al. 2015). Natural defensins 

are efficient, non-toxic microbicides that may be useful in treating infections caused by 

antibiotic-resistant pathogens. According to recent research, they do this by disrupting bacterial 

cell membranes but not mammalian cell membranes. With this knowledge, producing next-

generation defensins with improved biological activity profiles is a realistic goal that will allow 

defensins to be used to boost human health in the near future. New antimicrobials with 

defensin-based bactericidal and immunomodulatory properties may be effective against drug-

resistant bacteria while also boosting survival from common illnesses when used in 

combination with standard antibiotic therapy (Tai et al. 2015). Furthermore, prior research has 

shown that defensin and antibiotic combinations may be used synergistically to combat 

infections, including biofilms, allowing for lower doses of both medications while still boosting 

treatment efficacy (Koo et al. 2017; Dostert, Belanger, and Hancock 2019; Y. Jiang, Geng, and 

Bai 2020). The growth of in-silico research, notably in the field of bioinformatics, has resulted 

in the identification and definition of defensin features that allow them to carry out their varied 

spectrum of biological functions. However, because defensins and AMPs are so similar in 

nature, distinguishing defensins is difficult, making it difficult to develop entirely defensin-

based treatments. 

Our research tackles this issue by offering cutting-edge machine learning models that can be 

used to distinguish and predict defensins from other AMPs and defensins from other proteins 

(non-defensins). Furthermore, because the dataset is critical in machine learning as well as for 

a strong in-silico prediction model, we used updated repositories to construct a very thorough 
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and up-to-date dataset. TSL and compositional analysis studies were carried out to better 

understand the structure and positional preference of defensins. Previous research suggests that 

defensins are abundant in cysteine (C) amino acid (Solanki et al. 2021), which is consistent 

with our findings. The features of experimentally validated defensins found in the literature 

were used to create a variety of prediction models. From sequence data, the tool "Pfeature" was 

used to generate 8,968 features. The scikit package's SVC-L1 was used to choose features, 

which were subsequently ranked using feature selector algorithms. The compositional study 

revealed that some types of residues, such as C, R, N, L, and Y, are favoured in defensins 

whereas others, such as M, are not. . This was also supported by one of the highest-ranking 

selected features, AAC_C, which represents the amino acid composition of cysteine in a 

protein sequence. AAC_C came in first place in the main dataset and second place in the 

alternate dataset. CeTD_ SA1 is a composition-enhanced transition and distribution of group 

1 (A, L, F, C, G, I, V, W) for solvent accessibility attribute, and PAAC1_E is the pseudo-amino 

acid composition of glutamic acid in the main dataset. In the case of the alternate dataset, 

CeTD_SS1, which is a composition of group 1 (A, L, F, C, G, I, V, W) residue for the secondary 

structure attribute, and BTC_T, which is the total bond composition present in the sequence, 

were two of the top-ranked features. The amino acid composition of cysteine is similar in both 

the main and alternate datasets, demonstrating that defensins stand out due to their higher "C" 

concentration (Figure 5.3). It's worth mentioning that the new feature selection procedures 

chose 93 features for the main dataset and 68 features for the alternate dataset, which contain 

the aforementioned features. We utilised these 93 and 68 features to develop the two 

classification models in our study. Furthermore, the performance of several models based on 

the top-ranked features was validated using a five-fold cross-validation approach. . To avoid 

over-optimization of the models, we desired a basic collection of features with the least amount 

of performance loss. For the final classification models, we picked the top 60 and top 50 

features from the main and alternate datasets, respectively. Model-1, which used the main 

dataset, is an SVM classifier that achieved a maximum performance of 0.98 AUROC and 0.88 

MCC in the training dataset and 0.98 AUROC and 0.88 MCC in the validation dataset for 

distinguishing defensins from AMPs, whereas model-2, which used the alternate dataset, 

distinguished defensins from non-defensins. Model-2 is another SVM classifier that 

outperformed the others on the training and validation datasets, with AUROC of 0.99 and MCC 

of 0.93 and AUROC of 0.99 and MCC of 0.96, respectively. 
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Despite several advancements, this study has a few drawbacks. The current work intended to 

create a method for predicting defensins/AMPs and defensins/non-defensins. Due to the small 

number of experimentally validated defensins, we used sequence data from all available 

species, including mammals, plants, and insects, to achieve this; however, the ideal process for 

developing a host-specific method for predicting defensins should only include data from the 

concerned host. Furthermore, structural features like as secondary structure data, surface 

accessibility rating, and disulfide bond information are not taken into consideration in our 

models. Furthermore, when it comes to prediction, our models exclude information about post-

translational modifications (e.g., terminus modification, incorporation of chemical moieties, 

glycosylation, and phosphorylation). Although a systematic attempt was made in this study to 

develop the best models feasible given the existing conditions, it is anticipated that future 

research will be able to overcome these concerns in order to enhance prediction. 

Finally, in order to better serve the scientific community, we created a web server called 

"DefPred," as well as a standalone version that included our top models. The standalone version 

is Python-based and provides the user with a plethora of choices. The accompanying server, 

on the other hand, is user-friendly and compatible with a variety of displays, including laptops, 

Android mobile phones, iPhones, and iPads. In addition, we have given a stand-alone facility 

in the form of Docker technology. This standalone programme is incorporated into our 

"GPSRdocker" package, which may be obtained from the website 
https://webs.iiitd.edu.in/gpsrdocker/. We expect that this work will aid vaccine designers as 

well as provide a better knowledge of immune defence response. 
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6.1 Introduction 
Endometrial cancer (EC) or uterine corpus endometrial carcinoma (UCEC) is the sixth most 

prevalent cancer in women. In 2020, 12,590 fatalities were expected from the 65,620 recorded 

cases (Siegel, Miller, and Jemal 2020). In contrast to the lowering trends for many prevalent 

malignancies, death rates for EC have stayed essentially constant (Cronin et al. 2018). Because 

of advancements in high-throughput technologies, it is becoming increasingly common to 

diagnose and prognostic EC at an early stage. Nevertheless, a significant number of individuals 

who develop metastasis or recurrent tumour have a poor prognosis. UCEC is divided into two 

primary subtypes: type I tumours, which account for about 75–80 percent of the pathologic 

subtypes and are endometrioid adenocarcinomas (Gottwald et al. 2010; Setiawan et al. 2013) 

and type II tumours, which are serous carcinomas and have a poorer diagnosis (Setiawan et al. 

2013; Black et al. 2016). In individuals with UCEC, poor diagnosis and prognostic factors 

result in significant mortality and recurrence. To identify UCEC from other benign disorders, 

a multistep diagnostic method involving gynaecological examination, transvaginal 

ultrasonography, and endometrial biopsy is currently required.  Figure 6.1 shows the anatomy 

of female reproductive system. Likewise, clinical features such as tumour grade, cervical 

involvement, lymph node status, histological subtype, depth of myometrial invasion, and 

lympho vascular space invasion (LVSI) are considered as prognostic factors for UCEC patients 

(Coll-de la Rubia et al. 2020). Biopsies provide information on tumour grade, histological 

subtype, and other clinical features. Although platinum-based chemotherapy and hormone 

therapy are first-line therapies for UCEC, primary hysterectomy and bilateral salpingo-

oophorectomy are conventional treatments (Morice et al. 2016). However, the existence of 

distant metastases means that patients respond poorly to conventional treatment and have a 

relatively low 5-year survival rate of 17% (P. Chen et al. 2020). As a result, effective risk 

stratification strategies are necessary in UCEC for prognostic assessment and treatment 

decision making. 
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Figure 6.1 Anatomy of the female reproductive system, showing endometrial cancer.  

 

Many biomarkers for UCEC diagnosis, classification, and prognosis have been found with the 

introduction of high-throughput sequencing technologies and public databases. In contrast to 

clinicopathological factors, these biomarkers are linked to underlying molecular pathways and 

provide compelling explanations for the pathogenesis of EC. Previous research has shown that 

a group of five genes (BUB1B, CCNB1, CDC20, DLGAPS, and NCAPG) can effectively 

predict the prognosis of endometrial I carcinoma. These genes' expression was higher, which 

helped predict a relatively large tumour grade and a poorer overall survival (OS) (Bian et al. 

2020). Nine glycolysis-related genes (CLDN9, AK4, PC, GPC1, and SRD5A3) were linked to 

poorer survival, whereas B4GALT1, GMPPB, B4GALT4, and CHST6 were linked to better 

survival. GMPPB had the greatest hazard ratio (HR; 1.544) and a p value of 0.0134 among 

these genes (Z.-H. Wang et al. 2019). In UCEC samples, higher KLHL14 expression was linked 

with lower overall survival (p = 0.0370) and progression-free survival (p = 0.081) (Han, Yang, 

and Lin 2019). Six possible predictive tumour microenvironment (TME)-related genes 

(CACNA2D2, CTSW, NOL4, SIGLEC1, TMEM150B, and TRPM5) correlated with OS in 

UCEC patients (P. Chen et al. 2020).  

Pattern recognition receptors (PRRs) have long been thought to have a role in recognizing 

microbial ligands and activating the immune system. Recent advances in bioinformatics have 

resulted in the creation of a database dedicated to PRRs (Lata and Raghava 2008a). The 

recently revised PRRDB2.0 (Dilraj Kaur et al. 2019a) contains the most recent information 

regarding receptors and their related ligands and suggests that ligands for toll-like receptors 
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(TLRs), a well-known family of PRRs, have anti-tumoral actions in numerous malignancies 

via activation in tumour cells. Depending on the circumstances, this activation might have both 

pro- and anti-tumoral effects (Goutagny et al. 2012). Some of the activities demonstrating that 

TLRs work as tumour promoters include increased angiogenesis and survival, acceleration of 

tumour invasion, and resistance to apoptosis (Ikebe et al. 2009). TLR pathways are important 

regulators of chemo-resistance, potentially via upregulating production of the anti-apoptotic 

protein B-cell lymphoma-2 (Bcl-2) via activated nuclear factor (NF)-B (Alvero et al. 2009). 

TLR1 overexpression was associated with better survival in pancreatic cancer (HR 0.68; 95 

percent confidence interval [CI] 0.47–0.99; p = 0.044) (Lanki et al. 2019). TLR9 is enhanced 

in glioma development (C. Wang et al. 2010), and its lower expression is useful in predicting 

disease-free survival in triple negative breast cancer (Tuomela et al. 2012). TLR4 is also 

involved in the chemo resistance of ovarian cancer cells (Kelly et al. 2006). TLR3 and TLR4 

expression were studied during the menstrual cycle, endometriosis, postmenopausal 

endometrium, and endometrial hyperplasia, and low TLR3 and 4 expression was related with 

a poor prognosis in UCEC (Allhorn et al. 2008). The association if various TLRs with cancer 

can be found in Table 6.1 

 

Table 6.1 Shows the association of various TLRs with different cancer. 

TLRs Association Reference 

TLR3-4, 7 and 9  poor differentiation, high 

proliferation, and advanced 

stage in oesophageal cancer 

(Sheyhidin et al. 2011) 

TLR5 good prognosis in lung 

cancer 

(Brackett et al. 2016) 

TLR7 poor diagnosis in lung cancer (Grimmig et al. 2015) 

TLR1 better survival in pancreatic 

cancer 

(Lanki et al. 2019) 

TLR9 poorer survival in renal cell 

carcinoma 

(Ronkainen et al. 2011) 

 

The purpose of this study was to look at the changed expression profile of PRR genes in the 

context of survival prediction in patients with UCEC. The discovery of key biomarker genes 
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having a strong connection with survival can aid in risk group stratification and prognosis. As 

a result, the discovered biomarker genes can serve as a strong foundation for the investigation 

of novel therapeutic techniques in the treatment of UCEC. Our study used a variety of 

bioinformatics methodologies, including network-based approaches, Cox-proportional hazard 

(PH) survival studies, and clustering-based approaches, to identify important genes and 

construct highly accurate risk-prediction models. We also assessed the prognostic significance 

of different clinicopathological features and investigated the molecular mechanisms linked to 

the discovered genes in order to uncover relevant therapeutic molecules that could improve the 

survival of patients with UCEC. 

 

6.2 Methods and Materials 
6.2.1 Dataset Preparation 

The dataset was first extracted from 'The Cancer Genome Atlas' (TCGA) using TCGA 

Assembler 2, and it comprised of quantile normalised RNA seq expression levels for 581 

individuals with UCEC. Only 541 patients in the study have information regarding their OS 

and censoring. Gene Set Enrichment Analysis and the HUGO Gene Nomenclature Committee 

were used to generate the list of 331 PRR signalling pathway genes. Only 308 PRR genes have 

gene expression data available. Using custom Python and R programmes, the final dataset was 

reduced to 541 samples including RNA seq values for 308 PRR-related genes. Overall 

workflow is shown in Figure 6.2. 

 

6.2.2 Survival Analysis 

Based on the length of OS, HRs and 95% CI were calculated to predict the risks of mortality 

associated with high-risk and low-risk categories. Using the univariate unadjusted Cox-PH 

regression models, these were stratified based on appropriate cut-offs for various factors. The 

survival curves of high-risk and low-risk groups were compared using Kaplan–Meier (KM) 

plots. These datasets' survival analyses were carried out in R using the'survival' and'survminer' 

packages (V.2.42-6) (V.3.4.4, The R Foundation). Log-rank tests were used to determine the 

statistical significance of the survival curves. Wald tests were employed to assess the 

significance of the explanatory factors utilised in HR estimations. The model's prediction 

ability was measured using the Concordance Index (van der Net et al. 2009). p values of less 
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than 0.05 were considered significant. To assess the association between various factors, 

multivariate survival analysis based on Cox regression was used. 

 

6.2.3 Network of gene co-expression 

To find relationships between the genes, a co-expression network of PRR genes was built. We 

employed Pearson's correlation coefficient (PCC) for each PRR gene pair utilising gene 

expression value to determine statistically significant important genes and therefore design 

highly accurate risk-prediction models to create the gene co-expression network used here. We 

also assessed the predictive relevance of different clinicopathological features and investigated 

the molecular mechanisms linked to the discovered genes in order to uncover relevant 

therapeutic molecules that could improve the survival of patients with UCEC. 

 

6.2.4 Clustering using kMeans and kMedoids 

Unsupervised clustering using k-Means was utilised to find a predetermined number (k) of 

representatives/centroids. After forming k clusters, a representative gene from each cluster was 

selected. This decision was based on the lowest p value obtained from univariate survival 

analysis. Medoids from each cluster were chosen as representatives in the same way. This is 

due to the fact that, unlike centroids, medoids are always confined to cluster genes. We then 

utilised the obtained representative genes to construct a model. 
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Figure 6.2  Overall workflow of the study 

 

 

6.2.5 Models Based on Multiple Genes 

6.2.5.1 Regression Models Based on Machine Learning 

Regression models from the Python 'sklearn' module were used to fit gene expression data 

(independent variables) against OS time (target variable). Linear, Random forest, K-nearest 

neighbours, Ridge, Lasso, Lasso Lars, and Elastic Net were among the regressors utilised. A 

fivefold cross-validation approach, as used in earlier works (D. Kaur, Arora, and Raghava 

2019), was used for fitting and test evaluations. To estimate HRs, CIs, and p values, a 

combination of all five analysed test datasets (predicted OS) was utilised to categorise the 
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actual patient OS at the median cut-off. Patients with a predicted OS greater than the median 

were labelled 'low risk,' while those with a predicted OS less than the median were labelled 

'high risk.' The in-built function 'Grid search CV' was used to optimise and regularise the 

hyperparameters. The standard parameters, root mean squared error and mean absolute error, 

are used to describe model performance. 

 

6.2.5.2 Prognostic Index 

The prognostic index (PI) for a set of k genes was calculated as indicated in Eq. (1), as 

implemented by Li et al. (P. Li et al. 2018) and Wang et al. (Y. Wang et al. 2018). 

 

𝑷𝑰 = 𝑺kbkgk                                                          (1) 

 

Where b indicates the regression coefficient derived from a univariate Cox regression for a 

gene g, the PI for a separate set of genes was utilised for stratifying risk groups, and standard 

metrics such as HR, p value, and so on were evaluated. Patients with a PI more than the PI's 

median were classed as high risk, while patients with a PI less than the PI's median were 

classified as low risk. 

 

6.2.5.3 Model Based on Gene Voting 

Each patient was assigned a risk label of 'high risk' or 'low risk' based on their unique gene 

expression (median cut-off). As a result, for n survival-associated genes, each patient was 

represented by a vector of n risk labels. The patient was finally categorised into one of the high-

/low-risk groups using the gene voting approach based on the dominant 'label' (i.e. occuring 

more than n/2 times) in this vector. This is seen in Figure 6.3 for n = 7. Following that, 

conventional metrics were evaluated. 
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Figure 6.3 Using a seven-gene voting model (“G1, G2,... G7”), patients are classified as high- 

or low-risk. Based on dominant risk labels, the expression levels of these genes (“ge1, ge2,... 

ge7”) are utilised to determine the risk vector. 

 

6.3 Results 
6.3.1 Pattern Recognition Receptor Genes Associated With Survival 

All 308 PRR genes were subjected to a univariate Cox-PH analysis with median expression 

cut-offs. Patients having an expression value greater or lower than the gene's median expression 

value were classed as high or low risk, accordingly. Only 15 of the 308 genes were significant 

(p< 0.05).  The survival study identified nine good prognosis markers (GPM; that is, genes that 

are positively correlated with patient OS time) and six bad prognostic markers (BPM; that is, 

genes that are negatively correlated with patient OS time). The findings for these genes are 

shown in Table 6.2, together with the metrics linked with the stratification of high-/low-risk 

patients. 
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Table 6.2 Shows the results of a univariate Cox regression with a cut-off of greater than the 

median. 

 

Gene HR 1/HR p Value C-index 95% CI Log-rank 

(p) 

q Value 

CLEC1B 6.48 0.15 2.11E−06 0.58 2.99–14.04 1.01E−04 4.78E−08 

CLEC3A 2.71 0.37 3.47E−03 0.58 1.39–5.28 7.16E−03 2.34E−03 

MRC1 2.17 0.46 1.60E−02 0.6 1.16–4.09 1.23E−02 1.35E−02 

IRF7 0.47 2.14 1.77E−02 0.59 0.25–0.88 1.43E−02 2.56E−02 

CTSB 0.5 2 2.65E−02 0.61 0.27–0.92 2.31E−02 3.64E−02 

FCN1 2 0.5 2.85E−02 0.56 1.08–3.72 2.47E−02 3.53E−02 

RIPK2 0.5 2 2.86E−02 0.57 0.27–0.93 2.42E−02 4.62E−02 

CLEC3B 0.51 1.94 3.35E−02 0.59 0.28–0.95 2.96E−02 4.05E−02 

CLEC12B 1.86 0.54 3.82E−02 0.57 1.03–3.35 4.11E−02 4.02E−02 

TLR4 0.53 1.89 3.88E−02 0.55 0.29–0.97 3.55E−02 3.82E−02 

NLRP10 1.94 0.52 3.99E−02 0.57 1.03–3.65 5.00E−02 3.57E−02 

NLRP9 0.53 1.89 4.15E−02 0.56 0.29–0.98 3.70E−02 3.04E−02 

MAPKAPK2 0.53 1.88 4.35E−02 0.55 0.29–0.98 3.89E−02 2.36E−02 

TNIP1 0.54 1.86 4.38E−02 0.56 0.29–0.98 4.02E−02 2.56E−02 

SARM1 0.54 1.85 4.95E−02 0.55 0.29–1.00 4.54E−02 1.53E−02 

 

Genes with HR more than one are considered bad BPM, while those with HR less than one are 

considered GPM. BPM is a bad prognostic marker, CI is a confidence interval, C-index is a 

concordance index, GPM is a good prognostic marker, HR hazard ratio, and q value is a false 

discovery rate-corrected p value. 
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6.3.2  Using Network Based Features for Risk Prediction 

In this part, we attempted to pick features from the PRR gene network. The network was used 

to identify features/representatives in order to better understand connections in PRR genes. For 

feature selection, we employed the following methods: (1) network hub genes, (2) cluster 

medoids, and (3) cluster representatives. These chosen features or PRR genes were utilised to 

construct models to predict the survival of cancer patients. 

 

6.3.2.1 Network’s Hub Genes 

A correlation matrix was generated from 308 PRR genes, with correlation calculated between 

all possible pairings of genes based on the expression data. The correlation matrix used to 

generate network edges using 'Igraph' for strongly correlated pairs of genes (|PCC| > 0.5), as 

explained in Sect. 6.2. To visualise and analyse the gene network, we utilised the 'Cytoscape' 

software. When the effective correlation was set at larger than 0.5, there were 116 nodes and 

804 edges. Based on their degree, we chose the top 15 hub genes (BTK, ITGB2, HAVCR2, 

FCRL3, CD163, CD300LF, CD68, CTSS, CLEC10A, CLEC12A, NR1H3, CLEC4E, CD209, 

ITGAM, and TLR8). These hub genes were utilised to construct a prognostic model for 

predicting the survival risk of UCEC patients. Our voting-based model, which used these 15 

hub genes, produced an HR of 1.37 with a p-value of 0.294. Figure 6.4 depicts the network. 

 

6.3.2.2 Cluster Medoids 

We used k-medoids to cluster genes based on pairwise dissimilarity. The medoids were chosen 

for clusters with k = 5, 10, 15, 20, and 25. The gene voting model produced the best results at 

k = 5 (HR 1.85; p = 0.045). 

 

6.3.2.3 Clusters Representatives 

The representative gene was chosen based on the lowest p value obtained from each cluster's 

univariate survival study. Representative genes from each cluster were obtained and utilised to 

create a risk classification model. This procedure was carried out for k = 5, 10, 15, 20, and 25. 

As indicated in Table 6.3, the best result was obtained for k = 10 (HR 4.11; p = 3.7 10 5). We 

next filtered the representative genes within each cluster using a p< 0.05 cut-off. Table 6.3 

shows that gene voting models produced the best results. Gene voting models produced the 

best outcomes, as seen in Table 6.4. We discovered that when k = 15, optimum risk segregation 
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was obtained, resulting in seven representative genes. The gene voting model created for the 

genes CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, TNIP1, and SARM1 obtained HR 9.14 and 

p = 1.49X10-12. The network was built with 'Cytoscape 3.7.1' and depicts seven separate 

clusters with their corresponding genes in Figure 6.5. 

 

 
 

 

Figure 6.4 Pattern recognition receptor gene co-expression network analysis Interconnection 

of 15 hub genes; darker colour indicates a higher degree score, and darker edge indicates a 

greater clustering coefficient value. 

 

6.3.3 Multiple Gene-Based Models for Risk Estimation 

Using the expression profile of survival-associated PRR genes, several risk classification 

models based on machine-learning-based regression (MLR), PI, and gene voting were 

developed (based on p value). We examined 15 major genes in various combinations and 

discovered that a combination of nine genes performed best: CLEC1B, CLEC3A, IRF7, CTSB, 
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FCN1, RIPK2, NLRP10, NLRP9, and SARM1. Table 6.5 displays the findings of the various 

risk prediction models for these nine genes. The gene voting-based model outperformed the 

others: HR = 10.70 and p = 10-12. This model also had the highest concordance index value of 

0.76, and the high-/low-risk group survival curves were significantly separated with a log-rank 

p=10-14. Figure 6.6 depicts the KM plot displaying the survival curves for the two risk 

categories. While the 5-year survival rate for low-risk individuals was nearing 85%, it dropped 

as low as 15% for high-risk patients. The PI-based model came in second, with an HR of 3.41 

and p~10-3, while the regression-based linear model came in third (and first among the MLR 

models), with an HR of 1.66 but a p value that was not statistically significant. 

 

Table 6.3 Gene voting model results for selected representative genes from each cluster. The 

set of representative genes for the best model is shown by bold formatting. 

 
S.no Genes Clusters 

(n) 

HR p Value C-

index 

95% CI log-rank 

(p) 

1 CLEC1B, CTSB, NLRP10, UBC, LTF 5 3.53 3.74E−05 0.64 1.94–6.43 6.84E−05 

2 CLEC1B, CTSB, NLRP10, CLEC3A, UBC, ESR1, LTF, UBB, 

LGALS3BP, MAPKAPK2 

10 4.11 4.38E−06 0.64 2.25–7.51 1.57E−05 

3 CLEC1B, UBC, LTF, CTSB, NLRP10, UBB, LGALS3BP, 

S100A9, CLEC3A, RPS27A, APPL1, HSPA1A, SARM1, NLRP9, 

TNIP1, S100A9 

15 2.93 8.00E−04 0.62 1.56–5.49 5.41E−04 

4 CLEC1B, UBC, LTF, CTSB, NLRP10, DMBT1, LGALS3BP, 

S100A9, CLEC3A, RPS27A, APPL1, HSPA1A, SARM1, NLRP9, 

TNIP1, HSPD1, UBB, CYBA, FLOT1, HMGB1 

20 3.64 2.06E−05 0.66 2.01–6.59 2.06E−05 

5 CLEC1B, UBC, LTF, CTSB, NLRP10, HSPA1A, LGALS3BP, 

S100A9, CLEC3A, RPS27A, BIRC3, MRC2, CNPY3, NLRP9, 

TNIP1, HSPD1, UBB, CYBA, MRC1, HMGB1, VCAN, CFI, 

S100A8, FCN1, SARM1 

25 3.58 4.87E−05 0.64 1.93–6.61 2.86E−05 
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Table 6.4 Results of gene voting model for chosen significant representative genes only from 

each cluster 

 
S.no Representative genes Clusters 

(n) 

HR p Value C-index 95% CI Log-

rank (p) 

1 CLEC1B, CTSB, NLRP10 5 3.62 1.12E−04 0.6 1.88–6.96 4.87E−04 

2 CLEC1B, CTSB, NLRP10, CLEC3A 10 4.25 1.63E−06 0.53 1.30–13.84 4.70E−02 

3 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, 

TNIP1, SARM1 

15 9.14 1.49E−12 0.73 4.95–16.87 6.64E−12 

4 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, 

TNIP1, SARM1 

20 9.14 1.49E−12 0.73 4.95–16.87 6.64E−12 

5 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, 

TNIP1, SARM1, MRC1, FCN1 

25 5.46 3.05E−08 0.67 2.99–9.95 9.00E−08 

 

 

 



 
 
 
 
 

93 

 
 

Figure 6.5 Clustered network: seven distinct clusters are depicted in various colours. Large 

squares emphasise and represent representative pattern recognition receptor genes. 

 

Table 6.5 Different models’ performance for using multiple gene expression profiles 

Model HR p Value C-Index 95% CI Log-rank (p) 

Voting 10.7 1.13E−12 0.76 5.57–20.55 8.15E−14 

PI 3.41 9.70E−03 0.6 1.35–8.66 2.59E−03 

Linear 1.66 1.00E−01 0.56 0.91–3.03 9.81E−02 
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Ridge 0.99 9.86E−01 0.52 0.55–1.79 9.86E−01 

KNN 0.83 5.24E−01 0.52 0.46–1.49 5.24E−01 

Elastic net 0.79 4.45E−01 0.55 0.44–1.43 4.47E−01 

Random 0.77 3.85E−01 0.55 0.43–1.39 3.86E−01 

Lasso 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01 

SVR 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01 

Lasso Lars 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01 

 

The use of bold font indicates statistically significant results (p value, log-rank p<0.05).  CI 

confidence interval, C-index concordance index, HR hazard ratio, KNN K-nearest neighbours, 

PI prognostic index, and SVR support vector regression. 

 

6.3.4 Sub-stratification of patients in clinico-pathological high-risk 

Previous research has suggested that clinicopathological factors such as histologic diagnosis, 

ethnicity, clinical stage (Coll-de la Rubia et al. 2020), menopausal status, peritoneal washing, 

and so on] have a role in UCEC prognosis (H. Zhou et al. 2020). As a result, we conducted a 

univariate analysis to examine the relationship between these factors and OS in our dataset.  

The findings of the univariate analysis are shown in Table 6.6. Clinical factors influencing 

UCEC prognosis were clinical stage, residual tumour, peritoneal washing, grade, histologic 

grade, and menopausal status. As demonstrated in Figure 6.7, the gene voting model was able 

to stratify high-risk UCEC patients based on clinicopathological factors such as histologic 

diagnosis, peritoneal washing, menopausal status, neoplasmic grade, residual tumour, and 

clinical stage. The KM plots, together with low log-rank p values, show a substantial difference 

between high- and low-risk patients. 
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Figure 6.6 shows a Kaplan–Meier plot based on gene voting to highlight the risk stratification 

of patients with uterine corpus endometrial cancer. Patients with more than four 'high-risk' 

labels in the ten-bit risk vector are classified as high risk (hazard ratio 10.70, p = 1.13X10-12, 

C = 0.76, log-rank-p = 8.15X10-14), whilst others are classified as low risk (red). 

 

Table 6.6 Univariate analysis using clinico-pathological features. Clinical stage, residual 

tumor, peritoneal washing, grade, histologic washing, menopause status are seen to be the 

significant factor. 

 
Clinical Factors Strata n HR p-value C-INDEX 95%CI(L) 95%CI(U) Log-rank 

(p) 

Clinical stage III, IV vs I,II 541.00 4.44 1.31E-06 0.71 2.43 8.11 8.81E-07 

Residual tumor R0 vs R1,R2 411.00 0.29 8.06E-04 0.59 0.14 0.60 2.27E-03 

Peritoneal washing negative vs positive 407.00 0.31 2.42E-03 0.58 0.15 0.66 5.38E-03 

Grade G3, High grade vs 

G1,G2 

541.00 3.27 2.46E-03 0.61 1.52 7.03 7.24E-04 

Histologic_diagnosis MSE, SEA VS EEC 541.00 2.29 6.61E-03 0.56 1.26 4.16 8.65E-03 

Menopause status Pre vs post 512.00 2.54 3.51E-02 0.53 1.07 6.02 5.92E-02 

Age >64 vs <=64 541.00 1.30 3.79E-01 0.54 0.72 2.33 3.79E-01 
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Race White vs others 511.00 1.15 6.83E-01 0.50 0.58 2.29 6.79E-01 

Ethnicity Hispanic or latino vs 

Not hispanic not 

latino 

388.00 1.44 7.23E-01 0.50 0.19 10.61 7.37E-01 

History other 

malignancy 

No vs Yes 541.00 1.18 7.84E-01 0.49 0.36 3.81 7.79E-01 

Surgical approach open vs minimally 

invasive 

519.00 1.06 8.71E-01 0.51 0.54 2.07 8.71E-01 
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Figure 6.7 Sub-stratification of high risk groups using gene voting model (a) clinical stage (b) 

neoplasmic grade (c) histologic diagnosis (d) menopause status (e) peritoneal washing (f) 

residual tumour 
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6.3.5 Multivariate Analysis 

We conducted a multivariate Cox regression survival analysis with seven major prognostic 

variables, including multiple gene voting model, clinical staging, residual tumour, peritoneal 

washing, histological subtype, menopausal status, and grade. The p-value for the gene voting 

model (HR 8.17; p<0.001) and the clinical stage (HR 3.11; p = 0.03) was significant, but not 

for the others, as shown by the forest plot in Figure 6.8. As a result, a hybrid model may be 

created utilising the gene voting model and the clinical stage to increase risk stratification even 

more. 

 
Figure 6.8 Multivariate analysis identifies gene voting model (hazard ratio 8.17; p 0.001) and 

clinical stage (hazard ratio 3.11; p = 0.03) as independent factors. 

 

6.3.6 Hybrid Voting Model 

Based on a multivariate Cox regression survival analysis, we built a hybrid voting model after 

obtaining the independent variables, i.e. multiple gene voting model and clinical stage. For risk 

stratification, this model integrated clinical stage with the nine gene voting models. As a result, 



 
 
 
 
 

99 

the risk vector for each patient was a 10-bit vector, with 1 bit given to the risk label according 

to the clinical stage. The model outperformed the nine-gene voting model (HR 15.23; p = 

2.21X10-7, concordance index = 0.78, log-rank-p = 2.76X10-17). Figure 6.8 depicts the KM plot 

for the hybrid model. 

 

 

 
 

Figure 6.9 Using a nine-gene voting model and clinical stage, a hybrid model for risk 

stratification was developed (hazard ratio 15.23; p = 2.21 10 7, C = 0.78, log-rank-p = 2.76 10-

17). 

 

6.3.7 Predictive Validation 

We used subset of the samples of the complete dataset to undertake a predictive assessment of 

our gene voting model, as applied in Zhao et al. (Zhao et al. 2020) With 100 iterations, sampling 

sizes of 50%, 70%, and 90% were chosen. For each iteration of the gene voting model and the 

hybrid model, the HR and concordance index were calculated. Figure 6.10 depicts the boxplots 

that correlate to these results. Despite the small sample size, the median HR (15.34, 15.32, 

15.02) and concordance index were higher. This strategy ensured that the risk stratification 

models were resilient and functioned well with randomly generated datasets of varying sizes. 
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Figure 6.10 Validation of a voting-based model using predictive analytics. (a) For 100 rounds 

of data sampling, grouped boxplots matching to the estimated Concordance index (y-axis) (x-

axis). (b) Similarly, using random sampling, the hazard ratio (y-axis) for several models is 

estimated (x-axis) 

 

6.3.8 Hybrid Voting Model for Classification 

The area under the receiver operating characteristic curve (AUROC) value was used to assess 

the hybrid model's performance. The true-positive and false-positive rates were calculated 

using the 'survivalROC' package as shown in Table 6.7. In this case, a prediction was termed a 

true positive if the OS was larger than the cut-off time and the patient was in the model's low 

risk category; the opposite was true for a true negative prediction, as illustrated in Figure 11a. 

The average OS time was 1.1 years. We discovered that, among various OS cut-offs, the model 

performed best at the 4.3-year cut-off. This cut-off is an excellent predictor of high- and low-

risk patients. The classification based on the hybrid voting model produced an AUROC score 

of 0.86 using this cut-off. The ROC curve for this is depicted in Figure 11b. 

 

Table 6.7 True positive and False positive at different threshold. 

 

Threshold TP (True Positive)/ Precision FPR (False Positive)/ Recall 
0 1.000 1.000 

0.1 0.997 0.996 
0.2 0.982 0.935 
0.3 0.962 0.719 
0.4 0.959 0.395 
0.5 0.683 0.150 
0.6 0.470 0.033 
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0.7 0.122 0.012 
0.8 0.071 0.000 
0.9 0.000 0.000 

 

 

 
Figure 6. 11 (a) Terminology for assessing the confusion matrix. The first risk labelling was 

done using an overall survival (OS) cut-off, with patients with OS > cut-off labelled as positive 

or low risk, and patients with OS cut-off labelled as negative or high risk. (b) A receiver 

operating characteristic (ROC) curve area under the ROC curve (AUROC) of 0.86 was 

achieved for the gene voting model. 

 

6.3.9 Therapeutic Agent Screening 

Following the identification of genes that play a significant role, the selection of therapy is a 

critical step. Using the “Cmap2” database (Musa et al. 2018), we retrieved drug molecules that 

might re-modulate the overexpressed and under expressed genes, as Shen et al. (Shen et al. 

2020) did. We used Cmap2 to query a list of probe identifiers matching to upregulated genes 

(CLEC1B, CLEC3A, FCN1, NLRP10) and downregulated genes (RIPK2, SARM1, IRF7, CTSB, 

NLRP9). Hexamethonium bromide (enrichment 0.834; p = 2.6X10-4) and isoflupredone 

(enrichment 0.955; p = 2.2X10-4) were the top positive and negative enriched compounds, 

respectively. It is known to be poorly absorbed from the GI tract and to not penetrate the blood–

brain barrier. Isoflupredone is a synthetic glucocorticoid corticosteroid also known as delta-

fludrocortisone and 9-fluoroprednisolone. 
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6.3.9.1  Drug Repurposing 

We also looked at how approved drugs may aid prolong UCEC survival. We were able to 

extract five GPM and four BPM genes. The molecular processes of GPM genes (RIPK2, 

SARM1, IRF7, CTSB, NLRP9) that have a favorable prognosis in UCEC can be explored to 

identify positive regulators/inducers that might be employed as possible therapies. Inducing 

IRF7 can result in the generation of interferon (IFN)- and IFN-like proteins  These play an 

important role in anti-tumor immunity and homeostasis and have been approved for use in the 

treatment of cancer by the US Food and Drug Administration (Abdolvahab et al. 2020). IFN is 

known to cause apoptosis in tumor cells in response to diverse stimuli and to stimulate dendritic 

cell differentiation (Gogas et al. 2006). IFN, on the other hand, activates immune cells such as 

macrophages and natural killer (NK) cells, which may enhance the anti-tumor impact (X. Q. 

Qin et al. 1998). Hairy cell leukaemia (Gogas et al. 2006), follicular lymphoma (Rohatiner et 

al. 2005), and renal cell carcinoma (Locatelli et al. 1999) have all been treated with it.  

Paclitaxel and imiquimod are TLR4 and TLR7 positive regulators, respectively (Solinhac 1985; 

Novak et al. 2008), and can be employed as therapeutic medicines for the indirect stimulation 

of IRF7 and hence IFNs. Agonists such as lipopolysaccharide and imidazoquinoline anti-viral 

chemical single strand RNA may also aid in the activation of the signalling pathway and the 

generation of IFN. CTSB, which is important in the NLRP signalling pathway, can be favorably 

regulated by a variety of agonists, including pathogen-associated molecular patterns/damage-

associated molecular patterns. Different interleukin (IL) therapies may potentially be a viable 

option in UCEC instances. RIPK2/RIP2 is involved in the nucleosome-binding oligomerization 

domain-signalling pathway and induces the production of various pro-inflammatory cytokines 

(IL-1, IL-6, tumour necrosis factor-, IL-18), chemokines (monocyte chemoattractant protein-

1, chemokine [C-X-C motif] ligand), and antimicrobial peptides (cathelicidin, defensins).  

MESO-DAP1 and mifamurtide (licenced by the FDA) positively control NOD1 and NOD2, 

and so potentially act as indirect regulators of RIPK2 (Hasuo and Akasu 2001). Bacterial 

peptidoglycan can potentially be used as an agonist to stimulate the pathway. The BPM genes 

(CLEC1B, CLEC3A, FCN1, and NLRP10) that exhibited poor prognosis in our analysis must 

be suppressed. Protein kinase B (AKT) abnormal overexpression has been seen in ovarian, 

lung, and pancreatic malignancies and is related with enhanced cancer cell proliferation and 

survival. As a result, targeting AKT might be a critical technique for cancer prevention and 

treatment. In osteosarcoma, the inhibition of CLEC-3A decreases cell proliferation and 
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promotes chemo sensitivity via the AKT/mTOR/hypoxia-inducible factor (HIF)-1 pathway 

(Ren et al. 2020). MK-2206 (NCT 01333475) is a synthetic AKT inhibitor in clinical phase II, 

whereas resveratrol is in clinical phase I (M. Song et al. 2019). If the studies are successful, 

they might be utilised as AKT inhibitors. These findings supported the biological feasibility of 

repositioning cancer medicines for EC treatment. 

 

6.4 Discussion 

Although UCEC has a fair prognosis if detected early, individuals with late stages have a 

dismal prognosis and a significant mortality rate. As a result, effective risk assessment 

methodologies are necessary for clinical decision making and therapeutic intervention. Clinical 

features such as tumour grade, cervical involvement, lymph node status, histological subtype, 

depth of myometrial invasion, and LVSI are important in UCEC risk categorization but 

inefficient due to their limitations. Various molecular prognostic indicators have therefore been 

proposed, assisted by the advent of high-throughput sequencing tools and the availability of a 

large quantity of experimental data. Previous research revealed many molecular pathways that 

lead to sophisticated molecular processes that are critical for cancer growth and development, 

such as the explanation of diverse signalling processes regulated by PRRs. This elucidation of 

PRRs' regulatory role has aided treatment decision-making in a variety of malignancies. PRR 

agonists are now employed as vaccine adjuvants in possible systemic therapies such as 

chemotherapy, targeted therapy, and immunotherapy (Bai et al. 2020) , such as AS15, which 

is a TLR4/9 agonist and is used as an adjuvant to vaccines dHER2 (truncated version of HER2) 

and lapatinib in breast cancer (Milani et al. 2013). Monophosphoryl lipid A, which is related 

with TLR4, has been found to be a strong vaccination adjuvant and to stimulate a type 1 T 

helper (Th1)-based immune response in human papillomavirus-induced cervical cancer (Gregg 

et al. 2017). Imiquimod in combination with TLR7 has been shown to promote apoptosis and 

trigger a cell-mediated immune response in basal cell carcinoma (Bubna 2015). When 

combined with cyclophosphamide, OM-174, a synthetic derivative of lipid A, is said to inhibit 

tumour development and prolong life in melanoma (D’Agostini et al. 2005). AS04, a TLR4 

agonist, is licenced by the FDA for cervical cancer; imiquimod, a TLR7/8 agonist, is approved 

for different skin malignancies; and mifamurtide, a NOD2 agonist, is approved for 

osteosarcoma. The combination of PRR-based agonist treatment with immune checkpoint-

targeted antibodies (such as anti-cytotoxic T-lymphocyteassociated protein-4 or anti-
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programmed cell death ligand 1) may represent the future of cancer therapy (Bai et al. 2020). 

However, the significance of PRR signalling genes and their efficacy in UCEC treatment 

remains unknown. We employed messenger RNA (mRNA) expression data from the TCGA-

UCEC cohort in this investigation. First, we used survival analysis to quantify each PRR gene's 

predictive performance. To identify essential PRR genes, we employed gene co-expression 

network-based feature selection and a clustering-based technique. The genes collected from 

this technique were then used to develop risk classification models. To improve the model's 

performance, we discovered 15 PRR-related biomarker genes linked with UCEC prognosis 

using Cox-regression survival analysis: CLEC1B, CLEC3A, MRC1, IRF7, CTSB, FCN1, 

RIPK2, CLEC3B, CLEC12B, TLR4, NLRP10, NLRP9, TNIP1, SARM1, and MAPKAPK2. A 

nine-gene (CLEC1B, CLEC3A, IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, and SARM1) 

voting-based model performed best and strongly classified high-risk clinical groups. Finally, 

following a thorough predictive comparison with other clinicopathological markers, we 

established a hybrid model that combines the expression patterns of nine genes with 'clinical 

stage' to accurately identify high- and low-risk individuals with UCEC. We also predicted 

candidate biomolecules that may alter gene expression and potentially act as medications in 

the therapy of UCEC.  

The nine key biomarker genes identified (CLEC1B, CLEC3A, IRF7, CTSB, FCN1, RIPK2, 

NLRP10, NLRP9, and SARM1) have been found to have important regulatory roles in a variety 

of illnesses, including cancer. RIPK2, SARM1, IRF7, CTSB, and NLRP9 were associated with 

a favourable prognosis, whereas CLEC1B, CLEC3A, FCN1, and NLRP10 were associated with 

a bad prognosis. CLEC1B, also known as C-type lectin domain family 1 member B, has been 

proven to be effective in the treatment of atherosclerosis. CLEC1B plasma concentrations were 

shown to be directly related to an increased risk of carotid plaque development. The odds ratios 

(ORs) for platelet-derived growth factor receptor- were 0.79 (95 percent CI 0.66–0.94; p = 

0.008) for 1-standard deviation increase (Mosley et al. 2018). The -chain C-terminus of 

aggretin is a possible target for the therapy of tumour metastasis via CLEC-2 inhibition (C.-H. 

Chang et al. 2014). CLEC2 appears to reduce AKT signalling and gastric cancer cell invasion 

by inhibiting the production of phosphoinositide 3-kinase (PI3K) subunits (L. Wang et al. 

2016). CLEC3A overexpression enhances tumour development and a poor prognosis in 

invasive ductal breast cancer. CLEC3A knockdown using RNA interference effectively 

decreased the proliferation, migration, and invasion of breast cancer cells, which may be 
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mediated by the PI3K/AKT signalling pathway. As a result, it has an anti-cancer impact and 

has the potential to be a crucial therapy for breast cancer (Ni et al. 2018). FCN1 can be used as 

an additional biomarker in individuals with acute myeloid leukaemia (p = 0.004; OR 2.95; 95 

percent CI=1.41–6.16). Polymorphisms in the FCN1 gene are linked to increased expression 

of specific mRNA in monocytes and granulocytes, as well as greater FCN1 serum levels. 

NLRP10 binds to an apoptosis-associated speck-like protein, inhibiting NF-B activation and 

apoptosis as well as caspase-1-mediated IL-1 maturation, and so aids in the control of apoptosis 

and inflammation (Zambetti et al. 2012). Through Bcl-2 family members, SARM mediates 

intrinsic apoptosis. It inhibits Bcl extra-large (Bcl-xL) and decreases phosphorylation of 

extracellular signal-regulated kinase (Panneerselvam et al. 2013). SARM1 can function as an 

epigenetic biomarker in colorectal cancer, aiding in the detection of cancer through 

underexpression and/or CpG methylation (Quyun et al. 2010). In cancer, IRF7 promotes the 

formation of granulocytic myeloid-derived suppressor cells via S100A9 trans-repression (Q. 

Yang et al. 2017). The functional polymorphism rs12898 in cathepsin B (CTSB) may contribute 

to the susceptibility to primary hepatic cancer, and the variation A allele may enhance the risk 

of the cancer (Cui et al. 2019). NLRP9 functions as an inflammasome-related molecule, making 

it a reliable non-invasive method for diagnosing breast cancer (Mearini et al. 2017). The 

measurement of NLRP4 and NLRP9 expression may be useful in predicting Bacillus Calmette-

Guerin failure as well as in making decisions about early radical surgery (Poli et al. 2017).  One 

research (Manjang et al. 2021) discovered that by removing biomarker genes (and all genes 

involved in the same biological process), other signatures with the same prognostic prediction 

capabilities but opposing biological meaning could always be discovered. We conducted a 

similar analysis on our first list of 15 major biomarker genes to see whether the alternate 

collection of biomarker genes was similarly successful in our study. We picked the remaining 

set of six alternate biomarker genes for model development instead of the nine major biomarker 

genes (included in our final risk-prediction model). The highest performing model of the 

possible combinations of these six genes, with HR 4.65 and p value 1.09X10-5, consisted of 

five genes. These findings revealed that our final model, which included nine major biomarker 

genes, outperformed the competition. To answer our next question about the (co-expression-

based or biological) correlation between main biomarker genes and alternate biomarker genes, 

we discovered that the majority of the alternate biomarker genes correlated with one of the nine 

main biomarker genes, with MRC1 having a 0.45 correlation with FCN1. This explains why 



 
 
 
 
 

106 

the alternate collection of biomarker genes, rather not only the primary set of biomarker genes, 

linked with survival. We also attempted to discover the biological links between these nine and 

five biomarker genes. We observed that most of these genes have overlapping biological 

pathways. Thus, we concluded that the alternate genes are correlated with the main biomarker 

genes both in expression and in shared biological mechanisms. Therefore, the model with the 

main biomarker genes is the optimal choice in our case. In an additional analysis, we clustered 

the samples into three groups (high risk, mid risk, and low risk) according to their OS time. 

Thereafter, the expression-based correlation (PCC) amongst gene pairs were evaluated for 

these three groups. We then took the top ten highly correlated gene pairs from the low-risk 

group and examined whether the high correlation in these gene pairs was maintained in the 

mid- and high-risk groups. We observed that PCC values in all gene pairs decreased in the mid-

risk group. It further decreased in the high-risk group. These findings suggest assumption there 

is a strong link between strongly correlated gene pairs agitated in high-risk patients. In other 

words, it's either low or none. PCC in these gene pairs may be linked to worse health. Patients 

with UCEC have a higher chance of survival. These observations indicate that the correlation 

between highly correlated gene pairs is disturbed in high-risk patients. In other words, low or 

no PCC in these gene pairs is potentially associated with poorer survival of patients with 

UCEC. These nine biomarker genes have the potential to be used as therapeutic targets for 

therapy. This can be accomplished by modifying the expression of these genes to produce the 

desired low-risk profile. In addition to in silico prediction of small compounds that achieve this 

aim, we investigated the molecular involvement of many of these candidate genes and therefore 

proposed novel agonists for medicinal repurposing. This study is acceptable, provides a 

realistic foundation for future research, and may be used as a reference for additional 

experimental attempts. To avoid the risk of data bias and establish the robustness of our model, 

we used a predictive validation approach in which the model's performance was evaluated by 

repeated sampling of the dataset across different sample sizes. However, in order to define their 

functions and offer a foundation for possible therapeutic use, the biomarkers identified in this 

study must be verified in external cohorts and may be combined with other known biomarkers. 

Furthermore, because to a lack of data on metastasis and recurrence in the TCGA database, we 

were only able to utilise OS to analyse patient prognosis, which is another limitation of our 

analysis. 
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6.5 Conclusion 
A risk classification model based on nine PRR-related genes was devised to evaluate survival 

outcomes and provide personalised anticancer treatment in patients with UCEC.  Our findings 

also imply that combining the suggested gene signature with clinical staging gives better 

prognosis than staging information alone.  As a result, the findings of our study may serve as 

a potential change to UCEC's existing risk evaluation method.  Overall, this work contributes 

to a better understanding of the oncogenic function of pattern recognition receptors in UCEC. 
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7.1 Introduction 

“Cancer” is the main cause of mortality globally, and its progression has been linked to a 

variety of regulatory variables (Sever and Brugge 2015). In recent years, there has been a lot 

of interest in researching the regulatory systems that contribute to cancer.  A variety of 

biomarkers and risk prediction methods have emerged as a result of the exploration of these 

processes. The biomarkers/ methods developed in the past are apt for single specific cancer but 

they fail when utilized for another cancers. Nevertheless, some pan-cancer prognostic 

biomarkers have appeared as omics data has expanded. Some examples list an extensive 

analysis of multi-omics from 13 cancers and 7 genes were found to be associated with them 

(Zhao et al. 2020). In case of  8 cancers using mRNA expression of “Siglec-15” a risk 

stratification (HR=3.03, p=0.044) was achieved in THCA patients (B. Li et al. 2020) and 

further study that found that the mRNA expression levels of the gene, “Long intergenic non-

coding” (D. Wang et al. 2020). Studies from the past also elaborated that the prognostic 

significance of genes such as "WISP1"  which shows different expressions in cancer and the 

adjacent normal tissue (Liao et al. 2020),  “FUNDC1”,  which was proved to be associated 

significantly in 8 cancers with maximum prognosis in  LIHC (Yuan et al. 2019), and 

“HSP90AA1”, which act as prognostic biomarker in 8 cancers (W. Chen et al. 2020).  Besides 

this, recently, research has been added that tumor mutational load and indel burden is linked 

with the prognosis in 14 cancers with maximum performance in CHOL (Wu et al. 2019).   

Although these researches are intriguing, developing a more reliable and accurate biomarker 

across various types of cancer remains an unsolved problem.  

Pattern recognition receptors (PRRs) have long been known for their involvement in 

identifying microbial ligands and activating the immune system, as well as their pro and anti-

tumor roles in cancer. TLR pathways are important regulators of chemo-resistance, potentially 

through activating NF-kB and increasing the production of the antiapoptotic protein Bcl-2 

(Alvero et al. 2009).  TLR receptors such as TLR3, 4, 7, and 9 expression corresponds with 

poor differentiation, high proliferation, and advanced stage cancer in oesophageal cancer 

(Sheyhidin et al. 2011). TLR5 expression is associated with a good prognosis in lung cancer, 

but TLR7 expression is associated with a bad diagnosis. TLR9 expression is related with poorer 

survival in renal cell carcinoma (Ronkainen et al. 2011) and is enhanced in the progression of 

glioma (C. Wang et al. 2010).  
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However, the horizon of these investigations was confined to specific tumors and a limited 

range of genes/proteins. Because PRR genes contain many regulatory genes/proteins, 

determining the prognostic importance of the most significant number of genes/proteins 

participating in immunomodulatory signaling across several cancers might provide a better 

understanding.  It may potentially uncover new targets and aid in creating more effective 

biomarkers for cancer prognosis. 

7.2 Methodology 

7.2.1 Dataset Preparation 

TCGA-Assembler-2 was used to extract 'The Cancer Genome Atlas' (TCGA) normalized gene 

expression datasets and the raw counts for pan cancer i,e 33 types of cancers (Wei et al. 2018).  

A “pan-cancer” dataset was created by integrating all of the samples with raw gene expression 

levels from 33 different cancers. The list of 331 pattern recognition receptor signaling pathway 

genes was taken from Gene Set Enrichment Analysis (GSEA) and HUGO Gene Nomenclature 

Committee (HGNC). The gene expression data for these 331 genes were taken  from the  TCGA 

datasets that were downloaded and from the pan-cancer datasets. We have taken only those 

patients' datasets for whom the overall survival and censoring information were provided. The 

accumulative total samples number in the dataset was  9569, and the total number of samples, 

which is denoted by N, is shown in Table 7.1. 

7.2.2 Models for predicting survival 

To test for survival-associated genes based on expression data, unadjusted “Cox proportional 

hazards” (Cox-PH) regression models were applied. The Cox-PH models were implemented 

using the R packages “survival” and “survminer”. “Hazard ratios” (HR) were calculated using 

this, as well as “confidence intervals” (% 95 CI) and “p-values”. HR is a hazard rate ratio that 

represents the death risk associated with one group compared to another by employing an 

appropriate gene-expression cutoff. We employed “Kaplan-Meier” (KM) plots and “log-rank 

tests” to compare survival curves between two risk categories.  With HR more than or less than 

1 and p<0.05, survival related genes were identified.  The model's prediction performance was 

assessed using the Concordance (C) measure. According to (A Lathwal, Arora, and Raghava 

2019), the “Prognostic Index” (PI) for n genes, “g1, g2,... gn”, with cox coefficients “b1, β2, 
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β3 … βn” derived from univariate Cox-PH analyses using median cut-offs was defined as 

PI=B.g, where “g=[g1 g2 g3.... gn]” and “B==[ β1  β2  β3 … βn]”. Following that, risk groups 

were separated using a univariate Cox-PH regression model. The cut-off value for PI was 

calculated in R using “cutp” from the “survMisc”  package. HR, p, % 95 CI, and C values are 

used to estimate the model's performance. In addition, for an n-gene voting model, each patient 

sample is allocated an n-bit vector.  Further, each bit is labeled as high or low risk using Cox-

PH univariate models. This labeling is based on appropriate categorization by each gene. At 

last, the sample is assigned an overall risk label which is totally based on most of the labeled 

bits (i,e larger than n/2) 

7.3 Results 

7.3.1 Prognostic Biomarker Gene’s Identification 

Using each cancer's dataset, a “univariate Cox-PH” survival analysis was done on 331 genes. 

Genes were classified as either good (“GPM”) or bad prognostic markers (“BPM”). Table 7.1 

displays the number of survival-associated genes for each tumour, as well as additional 

information. It is shown that BPM genes outnumber GPM genes in the majority of cancers, 

demonstrating the negative significance of elevated expression of certain PRR genes in cancer. 

Table 7.1 also lists the top 10 genes (at most) for each tumour based on “p-values” from 

univariate survival analysis.  None of the 331 genes were shown to be substantially related to 

survival in three  types of cancers namely  DLBC, TCGT, and PCPG. 

Table 7.1 The table displays the total number of patient samples (“N”), the number of “BPM” 

and “GPM” genes, and the top 10 survival linked genes for 33 cancers. 

Cancer N GPM BPM Total Top Genes 

ACC 79 27 15 42 LGALS3BP,PKD1L2,NLRP4,ACAN,MAPKAPK3,PJA2,TNFAIP3,RNF125,CYLD,NLRP1 

BLCA 404 15 8 23 IRF3,IKBKB,AGER,HHIPL1,CLEC2D,ATRNL1,ALPK1,UBQLN1,CLEC12A,UNC93B1 

BRCA 1091 38 14 52 NFKBIA,TNIP1,TNIP2,CLEC2D,NLRP6,REG4,ZCCHC3,XIAP,ANKRD17,USP17L2 

CESC 304 26 12 38 LOXL2,CD6,NR1H4,NLRC5,LILRA4,CD5,NLRC3,HHIPL1,SELL,CLEC10A 

CHOL 36 4 3 7 C1QBP,TAB3,CD300LF,SSC4D,DGCR2,OLR1,TMPRSS4, 
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COAD 297 5 8 13 MBL1P,COLEC11,TMPRSS15,DGCR2,BCL10,SCARB2,MAP3K7,TAB1,IRF7,CLEC2A 

DLBC 47 0 0 0  - 

ESCA 183 8 4 12 UNC93B1,DHX58,PRSS12,LGR4,FGA,TAB3,ATRN,SFTPA2,HMGB1,CD248 

GBM 160 4 18 22 CLEC4C,PIK3C3,SCARA3,RTN4,HSP90B1,CTSB,CTSL,NLRP12,CD248,NOD1 

HNSC 519 32 16 48 PKD1,PRSS12,KLRB1,CD5,AGER,CACTIN,NLRC3,MAPKAPK2,FCRL3,NLRP1 

KICH 65 3 7 10 TIFA,PGLYRP2,REG3A,LBP,SFTPD,NR1D1,APPL2,APPL1,IKBKB,SELE 

KIRC 532 52 89 141 NPLOC4,TLR9,TRAF6,APPL1,LGALS3BP,CNPY3,IKBKG,PRKCE,PJA2,PKD1L2 

KIRP 287 8 26 34 SFTPD,LBP,RIPK2,CLEC2L,TANK,LYN,UBE2D1,NLRP5,IRF1,STAB2 

LAML 173 18 27 45 MAP3K1,CLEC11A,RFTN1,CD300A,TLR9,ESR1,IRAK1,CLEC18A,CLEC5A,MRC1 

LGG 511 31 112 143 MYD88,DGCR2,CD302,MAP3K1,CLEC18B,CLEC18A,CIITA,IRGM,TAB1,CD69 

LIHC 369 13 15 28 NLRC3,NLRP8,CD5,CLEC3B,TREML4,KLRK1,CLEC2L,FCRL3,NLRP9,ITCH 

LUAD 497 20 18 38 NLRP10 ,TRIM15,UBE2N,LOXL2,NLRP2,AGER,FADD,NLRC3,CD302,CTSL 

LUSC 488 6 21 27 CD14,RPS27A,FGA,CLEC18C,NLRP12,LOXL2,ESR1,DAB2IP,MAP2K6,S100A1 

MESO 86 18 25 43 LOXL2,LAYN,OTULIN,RTN4,UBE2N,INAVA,CACTIN,KLRB1,PKD1L3,TRIL 

OV 305 22 0 22 CASP8,HMGB1,NLRP4,CD300A,BIRC3,STAB1,HSPD1,LGR4,NLRP12,CACTIN 

PAAD 178 26 27 53 ITCH,WDFY1,IRAK4,FADD,PTPRS,SARM1,BIRC2,ERBIN,IRAK2,TMPRSS4 

PCPG 179 0 0 0  - 

PRAD 497 3 0 3 RIOK3,PGLYRP1,TREML4 

READ 96 1 2 3 IRAK1,PGBD1,ASGR2 

SARC 257 37 10 47 RNF125,SELE,TICAM1,CLEC10A,SELP,IRF1,HPN,NLRP11,DHX58,LILRA4 

SKCM 449 78 11 89 TLR4,KLRD1,CLEC6A,RSAD2,IFIH1,BIRC3,KLRC1,TLR8,KLRC2,TNIP3 

STAD 413 5 18 23 NLRP14,CAV1,PJA2,NOD2,VCAN,TICAM1,TREML4,S100A9,SELE,REG1A 

TGCT 133 0 0 0  - 

THCA 505 10 9 19 CLEC4C,PKD1L3,TREML4,KLRB1,LAYN,FADD,CHODL,NOD1,CLEC4D,APPL1 

THYM 119 1 3 4 PGLYRP1,KLRC1,CLEC4C,CD6 

UCEC 541 3 10 13 CD68,NPLOC4,FLOT1,TYRO3,KLRG2,ESR1,KLRC3,CD163L1,HMGB1,PKD1L3 

UCS 57 5 5 10 NLRP2,KLRF1,TICAM1,MAPKAPK2,NLRP14,LGALS3BP,HSP90B1,TREML4,MAP3K1, 

SMPDL3B 

UVM 80 0 43 43 REG3G ,LBP,IRAK1,COLEC11,CD5L,RNF125,SCARB1,CLEC11A,IKBKG,CLEC12A 
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7.3.2 Models for Predicting Specific Cancer 

The best genes listed in Table 7.1 were used to build risk stratification models in 30 different 

cancers, except the cancers with no substantial genes in prognosis like TCGT, PCPG, and 

DLBC. To categorize patients into risk categories, both “gene voting-based” models and PI 

models were employed. The “HR, p-values, and C index” were then estimated. The voting 

models delivered the best outcomes, as shown in Table 7.2. We haven’t shown the models for 

UVM, UCEC, PRAD and READ as the p-value wasn’t significant. As it is clear from the table 

that THCA has the best prognostic model with HR=53.57, p=1.41E-04, whereas SKCM has 

the least performing prognostic model with HR=1.99, p= 2.33E-05. 

 

Table 7.2 The table shows the performance of  prognostic models for each specific cancer type. 
Cancer HR p-value logrank-p C %95 CI 

lower 

%95 CI 

upper 

THCA 53.57 1.41E-04 5.46E-09 0.84 6.89 416.23 

KICH 37.79 6.34E-04 3.02E-06 0.86 4.70 303.63 

ACC 15.11 1.58E-06 7.39E-09 0.78 4.99 45.80 

THYM 12.73 2.27E-02 6.15E-03 0.80 1.43 113.60 

CHOL 11.79 1.35E-03 6.08E-05 0.77 2.61 53.31 

KIRP 7.56 8.65E-07 6.25E-08 0.75 3.38 16.94 

LGG 4.83 1.04E-11 6.28E-13 0.74 3.07 7.61 

COAD 4.76 1.81E-06 3.10E-06 0.71 2.51 9.02 

UCS 4.39 3.12E-04 2.68E-04 0.65 1.96 9.82 

MESO 4.24 9.53E-07 4.90E-07 0.68 2.38 7.54 

BRCA 3.97 1.81E-10 1.83E-11 0.64 2.60 6.07 

PAAD 3.88 1.82E-06 7.87E-07 0.68 2.22 6.78 

KIRC 3.59 3.15E-13 9.69E-15 0.66 2.55 5.06 

ESCA 3.55 1.34E-05 2.10E-05 0.65 2.01 6.29 

BLCA 3.22 1.34E-08 3.63E-09 0.64 2.15 4.81 
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LUAD 3.15 1.14E-09 1.39E-09 0.66 2.18 4.55 

LIHC 3.07 3.37E-07 8.17E-07 0.66 2.00 4.73 

STAD 3.04 1.48E-06 8.76E-07 0.64 1.93 4.79 

SARC 2.92 7.16E-06 4.97E-06 0.66 1.83 4.65 

LAML 2.89 9.94E-08 6.35E-08 0.61 1.95 4.26 

CESC 2.76 1.50E-04 1.12E-04 0.67 1.63 4.68 

LUSC 2.49 2.61E-08 2.75E-08 0.61 1.81 3.44 

GBM 2.48 8.38E-06 1.42E-05 0.62 1.66 3.70 

HNSC 2.48 9.10E-08 2.48E-08 0.61 1.78 3.45 

OV 2.13 2.31E-06 2.98E-06 0.60 1.56 2.92 

SKCM 1.99 2.33E-05 2.39E-05 0.59 1.45 2.74 

 

7.3.3 Universal Prognostic Biomarkers and Models 

We obtained that among 30 types of cancers, 12 genes play a prognostic role in almost 6 

cancers, at least 25 % of the total cancer data. The 12 genes biomarker signature composed of 

genes named UNC93B1, ALPK1, APPL1, CASP8, CD5, CLEC2D, HMGB1, HSP90B1, 

IKBKG, IRF1, KLRB1, NCAN. The role of these 12 genes as GPM or BPM in different types 

of cancer is shown through Figure 7.1. There is almost equal distribution of GPM and BPM 

roles of these genes among the cancers. CD5 and KLRB1 are GPM genes which means that 

their high expression is associated with Low-risk patients. At the same time, HSP90B1 is a 

BPM gene which indicates that its high expression is directly linked to High-risk patients. 

Different models like the PI and the gene voting models were created using these 12 genes as 

biomarker panels in all cancers. The result for the gene voting model is displayed in Table 7.3. 

The model performed best in the case of THYM, KICH, and UVM. In the cancers like KIRP, 

STAD, and CHOL, the model's performance is moderate to poor. Thus, for these cancers, the 

prognostic biomarker, which is cancer-specific, should be relied on for better performance and 

risk stratification. 

Table 7.3  The performance of the universal prognostic model for risk prediction in  all 

cancers. 
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Cancer N HR p-val C %95 CI L %95 CI U Logrank(p) 

THYM 119 14.03 1.74E-02 0.68 1.59 123.79 4.07E-03 

KICH 65 8.00 9.65E-03 0.73 1.66 38.59 3.50E-03 

UVM 80 7.94 7.14E-03 0.74 1.75 35.96 1.18E-03 

KIRP 287 4.06 1.43E-04 0.68 1.97 8.37 1.06E-04 

STAD 47 3.62 2.01E-01 0.63 0.50 25.93 2.15E-01 

CHOL 36 3.38 2.73E-02 0.68 1.15 9.97 2.18E-02 

PAAD 178 2.91 7.68E-05 0.65 1.72 4.95 6.10E-05 

OV 305 2.91 7.68E-05 0.65 1.72 4.95 6.10E-05 

KIRC 532 2.91 7.68E-05 0.65 1.72 4.95 6.10E-05 

PRAD 497 2.79 1.62E-01 0.71 0.66 11.79 1.53E-01 

TGCT 497 2.79 1.62E-01 0.71 0.66 11.79 1.53E-01 

PCPG 179 2.54 3.07E-01 0.54 0.42 15.25 3.00E-01 

LGG 511 2.37 4.76E-05 0.64 1.56 3.59 4.86E-05 

THCA 505 2.30 1.23E-01 0.47 0.80 6.65 1.20E-01 

CESC 304 2.26 1.75E-03 0.63 1.36 3.76 1.91E-03 

MESO 86 2.10 9.73E-03 0.55 1.20 3.70 9.81E-03 

DLBC 47 2.04 4.75E-01 0.58 0.29 14.55 4.80E-01 

SKCM 96 1.99 4.25E-01 0.59 0.37 10.87 4.08E-01 

READ 96 1.99 4.25E-01 0.59 0.37 10.87 4.08E-01 

ESCA 183 1.98 1.19E-02 0.60 1.16 3.38 1.23E-02 

HNSC 519 1.94 3.23E-05 0.58 1.42 2.65 4.09E-05 

BLCA 404 1.89 9.23E-04 0.60 1.30 2.76 9.95E-04 

ACC 79 1.85 1.24E-01 0.59 0.84 4.06 1.26E-01 

SARC 257 1.79 1.25E-02 0.59 1.13 2.82 1.23E-02 

BRCA 1091 1.71 6.59E-03 0.59 1.16 2.52 6.45E-03 

GBM 160 1.71 6.59E-03 0.59 1.16 2.52 6.45E-03 

UCS 57 1.58 2.08E-01 0.54 0.77 3.24 2.13E-01 

LUAD 497 1.48 3.00E-02 0.56 1.04 2.12 3.07E-02 

COAD 297 1.48 3.00E-02 0.56 1.04 2.12 3.07E-02 

LUSC 488 1.40 4.34E-02 0.54 1.01 1.95 4.64E-02 

LAML 173 1.37 1.01E-01 0.55 0.94 2.00 1.05E-01 
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LIHC 257 1.02 9.27E-01 0.50 0.63 1.65 9.27E-01 

UCEC 541 0.88 6.85E-01 0.51 0.48 1.62 6.84E-01 

 

 

 

 
Figure 7.1 Multiple cancer survival linked genes.  The distribution of genes from 12 genes 

panel across the cancers is shown.  Y-axis denote the no. of cancers in which these gene play 

role as prognostic biomarker. 

 

7.4 Discussion & Conclusion 
In the past, various attempts have been made, and several cancer-specific prognostic models 

have been established, which are only relevant to single cancer. This study aimed to find 

"universal or multi-cancer" prognostic biomarkers and build models for predicting survival risk 

in different types of cancer patients. To do this, we assessed the prognostic significance of 331 

PRR gene expression in 33 cancers in terms of patient overall survival. We discovered 

prognostic biomarker genes for only 30 different types of cancers initially. HRSKCM=1.99 and 

HRTHCA=53.57 were attained by the cancer-specific prognostic models. Furthermore, a 

comprehensive study was carried out in order to uncover universal biomarker genes across a 

wide range of cancers. Our best prognostic model included 12 genes (UNC93B1, ALPK1, 

APPL1, CASP8, CD5, CLEC2D, HMGB1, HSP90B1, IKBKG, IRF1, KLRB1, NCAN) and 

classified risk groups across 6 cancers (HRTHYM=14.03, HRUCEC=0.88). Besides offering a 
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complete assessment of the prognostic potential of PRR signaling genes in diverse cancer 

types, our research might aid in the development of adaptable risk management and treatment 

options for cancer patients. 
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8.1 Introduction 
Cancer is a complicated and multidimensional illness defined by the unrestricted growth of 

aberrant cells capable of attacking or spreading throughout the body (“Pan-Cancer Analysis of 

Whole Genomes.” 2020). This illness develops as a result of a breakdown of balance  in 

homeostasis between cell survival and cell death (Y. Chen et al. 2016). Multiple signalling 

pathways implicated in cancer development emphasize the need for more investigation (Fakhri 

et al. 2021; Ochwang’i et al. 2014).  Despite advancements in cancer research, revealing more 

involved pathways and molecular targets is crucial. Alteration in the expression of tumour 

suppressor genes, oncogenes, and apoptotic genes is important in the pathophysiology of 

cancer (Slattery et al. 2017; Debatin 2004). Furthermore, many inflammatory, oxidative stress, 

autophagy, and apoptotic dysregulated pathways are implicated in cancer start and progression 

(Monkkonen and Debnath 2018; Postovit et al. 2018; Mileo and Miccadei 2016).  Among them 

pattern recognition receptor signalling pathway and apoptotic pathway are the two major 

pathway to be involved in cancer. A wide range of intracellular chemicals have been discovered 

as causing cancer cells to proliferate uncontrollably.  Chronic inflammation is thought to be a 

critical driver of tumorigenesis's initiation and progression (Marelli et al. 2017). The innate 

immune system plays an important role in the inflammatory response to pathophysiological 

stimuli. The key sensors and pattern recognition receptors (PRRs) of the innate immune system 

that trigger stimuli (signal)-specific pro-inflammatory responses are toll-like receptors (TLRs) 

and inflammasomes. Chronic activation of PRRs has been linked to the aggressiveness of 

several malignancies as well as a bad prognosis. PRR involvement in carcinogenesis was 

previously thought to be restricted to infection- and injury-driven carcinogenesis, where they 

are activated by pathogenic ligands. With the identification of damage-associated molecular 

patterns (DAMPs) as PRR ligands, the function of PRRs in carcinogenesis has been expanded 

to include various non-pathogen-driven neoplasms. Dying (apoptotic or necrotic) cells release 

plenty of DAMPs, resulting in prolonged activation of PRRs and chronic inflammation and 

carcinogenesis. By regulating pro-inflammatory cytokines, metalloproteinases, and integrins, 

prolonged TLR activation increases tumour cell proliferation and accelerates tumour cell 

invasion and metastasis. Because PRRs play such an important part in carcinogenesis, targeting 

PRRs looks to be an effective anticancer technique. As a result, addressing the major aberrant 

proteins and pathways is a promising strategy to cancer treatment.  
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Cell death, particularly apoptosis, is perhaps one of the most extensively researched topics 

among cell biologists. Understanding apoptosis in disease circumstances is critical since it not 

only provides insights into disease pathogenesis but may also provide hints as to how the 

disease might be treated. There is an imbalance between cell division and cell death in cancer, 

and cells that should have perished did not get the instructions to do so. The issue might develop 

at any point during the apoptotic process. Downregulation of p53, a tumour suppressor gene, 

resulting in decreased apoptosis and increased tumour growth and progression (Bauer and 

Helfand 2006), and p53 inactivation, regardless of the method, as been related to numerous 

human malignancies (Morton et al. 2010; Bauer et al. 2002). As a result, apoptosis is vital in 

both carcinogenesis and cancer therapy. 

The discovery of prognostic biomarkers for predicting cancer development is a critical issue 

for two reasons. For instance, such biomarkers can be used to treat patients in a medical context. 

Second, it is expected that investigating the biomarkers themselves will yield unique insights 

into disease mechanisms and the underlying biological processes that produce aberrant 

behaviour. Tons of signature have been developed for pan-cancer using gene expression which 

are associated with overall survival of the patients. As a result, such signatures have been 

proposed as biological explanations for breast cancer and therapeutic actions. In this study, we 

will compare two major dysregulated pathway in case of cancer (PRR signalling and apoptosis) 

and will find out whether the prognostic biomarkers developed using these two pathway genes 

perform same or different provided sensible biological interpretation. We will have look on 

specific cancer prognostic biomarker using these two pathway and see whether they are 

correlated or independent of each other. 

 

8.2 Methodology 
8.2.1 Dataset Generation and Pre-processing 

TCGA-Assembler-2 was used to extract 'The Cancer Genome Atlas' (TCGA) normalized gene 

expression datasets and the raw counts for pan cancer i,e 33 types of cancers (Wei et al. 2018).  

A “pan-cancer” dataset was created by integrating all of the samples with raw gene expression 

levels from 33 different cancers. The list of 331 pattern recognition receptor signaling pathway 

genes was taken from Gene Set Enrichment Analysis (GSEA) and HUGO Gene Nomenclature 

Committee (HGNC). The gene expression data for these 331 genes were taken  from the  TCGA 

datasets that were downloaded and from the pan-cancer datasets in case of PRR genes only. In 
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case of apoptotic genes a list of 165 apoptotic genes was constructed (Sanchez-Vega et al., 

2018). These 165 gene expression data were retrieved from the downloaded "TCGA" cancer 

datasets and pan-cancer datasets. Only those patient samples were retained for all the datasets 

for whom overall survival and censoring information were available. The total number of 

samples in the pan-cancer dataset was 9569 in both the case, and the total number of samples 

in each cancer cohort, "N", is shown in Table 8.1 for PRR and Table 8.2 for apoptotic genes. 

 

8.2.2 Models for Predicting Survival 

To test for survival-associated genes based on expression data, unadjusted “Cox proportional 

hazards” (Cox-PH) regression models were applied. The Cox-PH models were implemented 

using the R packages “survival” and “survminer”. “Hazard ratios” (HR) were calculated using 

this, as well as “confidence intervals” (% 95 CI) and “p-values”. HR is a hazard rate ratio that 

represents the death risk associated with one group compared to another by employing an 

appropriate gene-expression cutoff. We employed “Kaplan-Meier” (KM) plots and “log-rank 

tests” to compare survival curves between two risk categories.  With HR more than or less than 

1 and p<0.05, survival related genes were identified. . The Concordance (C) measure was used 

to evaluate the model's prediction performance. Further the gene voting model was created as 

mentioned in section 7.2. 

8.2.3 Correlation Between Apoptotic and PRR Biomarker genes 

To find out the relation between the pathways, we calculated the pearson correlation coefficient 

(PCC) among PRR and apoptotic biomarker genes using their expression values across 

different cancers. We chose THCA the top one,  MESO the mid one and SKCM the last one. 

The main objective here to compare the performance of the prognostic models generated using 

genes from these different pathways across the cancer.  

 

8.2.4 Network Construction Using Apoptotic & PRR Biomarkers 

A co-expression network of PRR genes was constructed in order to discover interactions 

between the genes. To develop the gene co-expression network used here, we used Pearson's 

correlation coefficient (PCC) for each PRR gene pair and gene expression value to establish 

statistically significant key genes and therefore design highly accurate risk-prediction models. 

A correlation matrix was generated for these three cancer THCA, MESO and SKCM with 
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correlation calculated between all possible pairings of genes based on the expression data. The 

correlation matrix used to generate network edges using 'Igraph' for strongly correlated pairs 

of genes (|PCC| > 0.5). To visualize and analyze the gene network, we utilized the 'Cytoscape' 

software. 

 

8.3 Results 
8.3.1 Cancer Specific Prognostic Models:  

We also cross checked and match the performance of cancer specific prognostic models. As 

done in (Arora, Kaur, and Raghava 2021) Table 8.1 depicts the prognostic models across all 

33 cancers using 165 apoptotic genes. It is clear from Table 8.3 that THCA has the best 

performing model using top ten significant apoptotic genes (HR=41.59, P=3.36x10-4 

).Whereas, SKCM has the least performing model (HR=1.99, p=2.18x10-5). When compared 

to cancer specific prognostic models  created using top ten significant PRR genes as shown in 

Table 8.4, we obtained that THCA has the best performing model with HR=53.57, p=1.41E-

04) whereas, SKCM has got the lowest performing model with HR=1.99, p=2.33E-05. MESO 

has the best performing model with HR=3.99, p=1.67x10-6 using apoptotic genes and 

HR=4.24, p=9.53E-07 using PRR genes. It is quite clear from both the tables that irrespective 

of the pathway PRRs or apoptosis the trend is same. To investigate further we have evaluated 

below  mentioned steps. 

 

Table 8.1 The table displays the total number of patient samples (“N”), the number of 

“BPM” and “GPM” genes, and the top 10 survival linked genes for 33 cancers for “PRR” 

genes. 
 

Cancer N GPM BPM Total Top Genes 

ACC 79 27 15 42 LGALS3BP ,PKD1L2,NLRP4,ACAN,MAPKAPK3,PJA2,TNFAIP3,RNF125,CYLD,NLRP1 

BLCA 404 15 8 23 IRF3 ,IKBKB,AGER,HHIPL1,CLEC2D,ATRNL1,ALPK1,UBQLN1,CLEC12A,UNC93B1 

BRCA 1091 38 14 52 NFKBIA ,TNIP1,TNIP2,CLEC2D,NLRP6,REG4,ZCCHC3,XIAP,ANKRD17,USP17L2 

CESC 304 26 12 38 LOXL2 ,CD6,NR1H4,NLRC5,LILRA4,CD5,NLRC3,HHIPL1,SELL,CLEC10A 

CHOL 36 4 3 7 C1QBP ,TAB3,CD300LF,SSC4D,DGCR2,OLR1,TMPRSS4,,, 

COAD 297 5 8 13 MBL1P ,COLEC11,TMPRSS15,DGCR2,BCL10,SCARB2,MAP3K7,TAB1,IRF7,CLEC2A 

DLBC 47 0 0 0  - 

ESCA 183 8 4 12 UNC93B1 ,DHX58,PRSS12,LGR4,FGA,TAB3,ATRN,SFTPA2,HMGB1,CD248 
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GBM 160 4 18 22 CLEC4C ,PIK3C3,SCARA3,RTN4,HSP90B1,CTSB,CTSL,NLRP12,CD248,NOD1 

HNSC 519 32 16 48 PKD1 ,PRSS12,KLRB1,CD5,AGER,CACTIN,NLRC3,MAPKAPK2,FCRL3,NLRP1 

KICH 65 3 7 10 TIFA ,PGLYRP2,REG3A,LBP,SFTPD,NR1D1,APPL2,APPL1,IKBKB,SELE 

KIRC 532 52 89 141 NPLOC4 ,TLR9,TRAF6,APPL1,LGALS3BP,CNPY3,IKBKG,PRKCE,PJA2,PKD1L2 

KIRP 287 8 26 34 SFTPD ,LBP,RIPK2,CLEC2L,TANK,LYN,UBE2D1,NLRP5,IRF1,STAB2 

LAML 173 18 27 45 MAP3K1 ,CLEC11A,RFTN1,CD300A,TLR9,ESR1,IRAK1,CLEC18A,CLEC5A,MRC1 

LGG 511 31 112 143 MYD88 ,DGCR2,CD302,MAP3K1,CLEC18B,CLEC18A,CIITA,IRGM,TAB1,CD69 

LIHC 369 13 15 28 NLRC3 ,NLRP8,CD5,CLEC3B,TREML4,KLRK1,CLEC2L,FCRL3,NLRP9,ITCH 

LUAD 497 20 18 38 NLRP10 ,TRIM15,UBE2N,LOXL2,NLRP2,AGER,FADD,NLRC3,CD302,CTSL 

LUSC 488 6 21 27 CD14 ,RPS27A,FGA,CLEC18C,NLRP12,LOXL2,ESR1,DAB2IP,MAP2K6,S100A1 

MESO 86 18 25 43 LOXL2 ,LAYN,OTULIN,RTN4,UBE2N,INAVA,CACTIN,KLRB1,PKD1L3,TRIL 

OV 305 22 0 22 CASP8 ,HMGB1,NLRP4,CD300A,BIRC3,STAB1,HSPD1,LGR4,NLRP12,CACTIN 

PAAD 178 26 27 53 ITCH ,WDFY1,IRAK4,FADD,PTPRS,SARM1,BIRC2,ERBIN,IRAK2,TMPRSS4 

PCPG 179 0 0 0  - 

PRAD 497 3 0 3 RIOK3 ,PGLYRP1,TREML4 

READ 96 1 2 3 IRAK1 ,PGBD1,ASGR2 

SARC 257 37 10 47 RNF125 ,SELE,TICAM1,CLEC10A,SELP,IRF1,HPN,NLRP11,DHX58,LILRA4 

SKCM 449 78 11 89 TLR4 ,KLRD1,CLEC6A,RSAD2,IFIH1,BIRC3,KLRC1,TLR8,KLRC2,TNIP3 

STAD 413 5 18 23 NLRP14 ,CAV1,PJA2,NOD2,VCAN,TICAM1,TREML4,S100A9,SELE,REG1A 

TGCT 133 0 0 0  - 

THCA 505 10 9 19 CLEC4C ,PKD1L3,TREML4,KLRB1,LAYN,FADD,CHODL,NOD1,CLEC4D,APPL1 

THYM 119 1 3 4 PGLYRP1 ,KLRC1,CLEC4C,CD6 

UCEC 541 3 10 13 CD68 ,NPLOC4,FLOT1,TYRO3,KLRG2,ESR1,KLRC3,CD163L1,HMGB1,PKD1L3 

UCS 57 5 5 10 NLRP2,KLRF1,TICAM1,MAPKAPK2,NLRP14,LGALS3BP,HSP90B1,TREML4,MAP3K1, 

SMPDL3B 

UVM 80 0 43 43 REG3G ,LBP,IRAK1,COLEC11,CD5L,RNF125,SCARB1,CLEC11A,IKBKG,CLEC12A 
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Table 8.2 The table displays the total number of patient samples (“N”), the number of “BPM” 

and “GPM” genes, and the top 10 survival linked genes for 33 cancers for “Apoptotic” genes. 

Source ~ (Arora, Kaur, and Raghava 2021). 

 

Cancer N BPM GPM Total Top Genes 

LGG 511 77 17 94 WEE1,BTG3,BMP2,PLAT,SMAD7,ANXA1,PEA15,CDK2,HSPB1,SOD2 

 

 

KIRC 532 50 32 82 CASP9,F2,TIMP1,IL6,CDC25B,ADD1,CCNA1,BAK1,SLC20A1,TIMP3 

 MESO 86 33 15 48 HMGB2,TOP2A,BRCA1,PLAT,SLC20A1,WEE1,PPP2R5B,MADD,PDCD4,LMNA 

 SKCM 449 10 33 43 TNFSF10,SATB1,DPYD,BIRC3,SOD2,F2R,CYLD,GCH1,CD69,PSEN2 

 PAAD 178 34 7 41 CASP4,TNFSF10,PSEN1,CD44,CASP2,EMP1,TOP2A,DPYD,CCND1,HMGB2 

 ACC 79 22 14 36 TOP2A,PEA15,BRCA1,H1F0,HMGB2,MADD,CDK2,SPTAN1,CYLD,SQSTM1 

 BRCA 1091 10 25 35 PTK2,NEFH,IGF2R,PLAT,DNM1L,XIAP,ETF1,NEDD9,IRF1,RARA 

 LAML 173 14 16 30 PDCD4,ISG20,LMNA,NEDD9,CCND2,PSEN1,HGF,SOD1,ADD1,CD44 

 HNSC 519 19 10 29 CCND1,BMF,CCNA1,BAK1,PSEN1,APP,TIMP1,BCAP31,SLC20A1,TNFRSF12A 

 UVM 80 17 12 29 ERBB3,ISG20,EREG,TIMP3,LEF1,SATB1,TXNIP,PPP2R5B,ERBB2,PTK2 

 CESC 304 16 10 26 EREG,CASP2,MGMT,CD2,IL1B,IGF2R,APP,NEFH,TIMP2,GCH1 

 KIRP 287 21 3 24 BCL2L10,TOP2A,PMAIP1,MCL1,LEF1,PPP2R5B,PEA15,DCN,IRF1,H1F0 

 SARC 257 7 16 23 CTH,RNASEL,GSN,IRF1,SPTAN1,CASP1,BTG2,CFLAR,TNF,CASP2 

 BLCA 404 7 15 22 EMP1,GCH1,HMGB2,GSTM1,CASP7,ANXA1,IFNGR1,ETF1,SLC20A1,AIFM3 

 LIHC 369 12 4 16 MGMT,ETF1,RARA,GPX3,EREG,CD2,DAP3,GPX4,FASLG,CDC25B 

 STAD 413 13 3 16 CAV1,CD44,PDGFRB,DNAJC3,EREG,TGFB2,CTNNB1,DFFA,BCL2L11,CASP6 

 LUSC 488 12 3 15 CD14,BTG3,EREG,CCND2,PTK2,PAK1,ADD1,HSPB1,TIMP3,SMAD7 

 LUAD 497 9 5 14 EREG,VDAC2,BBC3,SLC20A1,BTG2,TOP2A,RELA,CD2,GPX4,ETF1 

 ESCA 183 6 7 13 ENO2,IL18,TOP2A,DAP,BCL2L1,PMAIP1,ISG20,IL1A,TSPO,SATB1 

 COAD 297 5 5 10 BCL10,CASP4,FAS,IL6,GSR,TIMP1,BGN,LUM,ERBB2,BTG2 

 OV 305 4 5 9 DAP,CASP8,EMP1,BIRC3,CASP2,WEE1,PSEN1,NEDD9,SOD1 

 THCA 505 4 5 9 ANXA1,TGFBR3,CLU,PSEN1,TNFRSF12A,GPX4,TIMP3,LEF1,BNIP3L 

 KICH 65 6 2 8 IFNB1,MADD,BIK,GSR,TOP2A,PTK2,DAP3,CLU 

 GBM 160 6 1 7 HSPB1,FDXR,TXNIP,ANKH,EGR3,F2R,IER3 

 UCEC 541 5 0 5 BCL2L1,MCL1,AVPR1A,SLC20A1,ISG20 

 UCS 57 2 3 5 MGMT,HGF,BMF,H1F0,PTK2 

 CHOL 36 3 1 4 PSEN1,BNIP3L,EREG,JUN 

 THYM 119 2 2 4 IER3,SOD2,CD2,LEF1 

 PRAD 497 1 1 2 SATB1,IER3 

 READ 96 1 1 2 BRCA1,DNAJC3 

 DLBC 47 0 0 0 - 

PCPG 179 0 0 0 - 

TGCT 133 0 0 0 - 
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Table 8.3 The performance of cancer-specific prognostic models using apoptotic genes. Source ~ 

(Arora, Kaur, and Raghava 2021) 

  

Cancer HR p-value logrank-p C %95 CI L           %95 CI U 

THCA 41.59 3.36x10-4 3.81x10-8 0.84 5.42 319.17 

UVM 40.50 5.32x10-4 5.12x10-7 0.85 4.99 328.82 

KICH 25.61 2.27x10-3 3.53x10-5 0.83 3.19 205.6 

ACC 22.68 7.95x10-7 1.63x10-10 0.81 6.57 78.31 

THYM 12.53 2.42x10-2 6.98x10-3 0.79 1.39 112.93 

UCEC 10.42 4.51x10-4 1.13x10-4 0.7 2.81 38.6 

CHOL 8.72 4.75x10-4 2.45x10-4 0.77 2.59 29.4 

PRAD 8.42 4.41x10-3 4.20x10-3 0.65 1.94 36.5 

READ 7.45 6.50x10-2 2.56x10-2 0.72 0.88 62.93 

KIRP 5.10 6.64x10-5 1.27x10-5 0.72 2.29 11.37 

LGG 4.99 2.88x10-12 1.54x10-13 0.72 3.18 7.83 

CESC 4.92 2.14x10-8 2.98x10-9 0.71 2.82 8.6 

LIHC 4.58 7.91x10-11 2.24x10-11 0.7 2.89 7.24 

PAAD 4.41 4.23x10-7 1.72x10-7 0.69 2.48 7.85 

COAD 4.08 5.05x10-5 2.42x10-5 0.67 2.07 8.05 

MESO 3.99 1.67x10-6 2.00x10-6 0.68 2.26 7.03 

KIRC 3.96 5.41x10-16 3.03x10-17 0.68 2.84 5.53 

LAML 3.96 3.92x10-12 5.07x10-12 0.67 2.68 5.84 

ESCA 3.80 2.19x10-6 3.32x10-6 0.65 2.19 6.61 

UCS 3.61 8.77x10-4 6.13x10-4 0.68 1.69 7.67 

BRCA 3.45 2.36x10-9 6.76x10-10 0.67 2.3 5.18 

BLCA 3.41 6.35x10-10 3.51x10-10 0.66 2.31 5.02 

STAD 3.35 2.78x10-7 1.39x10-7 0.64 2.11 5.31 

SARC 2.81 1.32x10-5 1.03x10-5 0.67 1.77 4.48 

LUAD 2.76 6.94x10-8 4.82x10-8 0.63 1.91 3.99 

HNSC 2.36 9.24x10-8 5.80x10-8 0.62 1.72 3.24 

LUSC 2.21 1.26x10-6 1.30x10-6 0.61 1.6 3.04 

OV 2.19 1.38x10-6 1.16x10-6 0.61 1.59 3 

GBM 2.07 3.73x10-4 3.22x10-4 0.61 1.38 3.09 

SKCM 1.99 2.18x10-5 2.55x10-5 0.59 1.45 2.75 
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Table 8.4 The performance of  prognostic models  which are cancer specific created using PRR 

genes. 

 

Cancer HR p-value logrank-p C %95 CI 

lower 

%95 CI upper 

THCA 53.57 1.41E-04 5.46E-09 0.84 6.89 416.23 

KICH 37.79 6.34E-04 3.02E-06 0.86 4.70 303.63 

ACC 15.11 1.58E-06 7.39E-09 0.78 4.99 45.80 

THYM 12.73 2.27E-02 6.15E-03 0.80 1.43 113.60 

CHOL 11.79 1.35E-03 6.08E-05 0.77 2.61 53.31 

KIRP 7.56 8.65E-07 6.25E-08 0.75 3.38 16.94 

LGG 4.83 1.04E-11 6.28E-13 0.74 3.07 7.61 

COAD 4.76 1.81E-06 3.10E-06 0.71 2.51 9.02 

UCS 4.39 3.12E-04 2.68E-04 0.65 1.96 9.82 

MESO 4.24 9.53E-07 4.90E-07 0.68 2.38 7.54 

BRCA 3.97 1.81E-10 1.83E-11 0.64 2.60 6.07 

PAAD 3.88 1.82E-06 7.87E-07 0.68 2.22 6.78 

KIRC 3.59 3.15E-13 9.69E-15 0.66 2.55 5.06 

ESCA 3.55 1.34E-05 2.10E-05 0.65 2.01 6.29 

BLCA 3.22 1.34E-08 3.63E-09 0.64 2.15 4.81 

LUAD 3.15 1.14E-09 1.39E-09 0.66 2.18 4.55 

LIHC 3.07 3.37E-07 8.17E-07 0.66 2.00 4.73 

STAD 3.04 1.48E-06 8.76E-07 0.64 1.93 4.79 

SARC 2.92 7.16E-06 4.97E-06 0.66 1.83 4.65 

LAML 2.89 9.94E-08 6.35E-08 0.61 1.95 4.26 

CESC 2.76 1.50E-04 1.12E-04 0.67 1.63 4.68 

LUSC 2.49 2.61E-08 2.75E-08 0.61 1.81 3.44 

GBM 2.48 8.38E-06 1.42E-05 0.62 1.66 3.70 

HNSC 2.48 9.10E-08 2.48E-08 0.61 1.78 3.45 
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OV 2.13 2.31E-06 2.98E-06 0.60 1.56 2.92 

SKCM 1.99 2.33E-05 2.39E-05 0.59 1.45 2.74 

 

8.3.2 Correlation between Apoptotic and PRR genes 

The main objective here to compare the performance of the prognostic models generated using 

genes from these different pathways across the cancer. The study follows by : 

 

 (i) THCA: In this cancer we obtained top prognostic model using apoptotic and PRR genes b

oth. The model obtained was constructed using ten PRR genes namely CLEC4C , PKD1L3, T

REML4, KLRB1, LAYN, FADD, CHODL, NOD1, CLEC4D, APPL1 in case of cancer specific 

prognostic model using PRR genes only. While using nine apoptotic genes named ANXA1, T

GFBR3 ,CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1, BNIP3L the prognostic model for 

THCA was developed (Arora, Kaur, and Raghava 2021). We evaluated the correlation betwee

n the top ten and top nine PRR and apoptotic genes. We also computed the self-correlation be

tween the ten PRR genes and the nine apoptotic genes. Table 8.5 shows the correlation betwe

en the biomarker using ten PRR genes and biomarker developed using nine apoptotic genes. F

igure 8.1 is the visual representation for same. Figure 8.2 represents the self- correlation plots. 

 
Table 8.5 Pearson Correlation between ten PRR biomarker genes and nine apoptotic genes in case of 

THCA. Genes on x-axis are apoptotic biomarker genes whereas genes on y-axis are PRR genes. 

 
 

ANXA1 TGFBR3 CLU PSEN1 TNFRSF

12A 

GPX4 TIMP3 LEF1 BNIP3L 

APPL1 -0.25 0.25 -0.31 0.42 -0.48 -0.59 0.08 -0.02 0.44 

TREML4 -0.07 0.01 -0.01 0.01 -0.08 -0.07 0.03 0.22 0.15 

LAYN -0.33 0.20 -0.14 -0.18 -0.26 -0.13 0.20 0.09 0.12 

CLEC4C -0.03 0.12 -0.01 0.02 -0.06 -0.09 -0.05 0.22 0.12 

CLEC4D 0.06 0.00 0.02 0.02 0.03 -0.01 -0.18 0.16 0.11 

PKD1L3 -0.05 0.16 0.08 -0.07 -0.10 -0.04 0.00 0.17 0.00 

KLRB1 0.03 -0.02 0.13 -0.11 -0.01 0.10 -0.17 0.30 -0.01 

CHODL 0.11 0.00 0.15 -0.07 0.10 0.03 -0.01 0.11 -0.15 

FADD 0.38 -0.33 0.38 -0.12 0.39 0.43 -0.29 -0.07 -0.15 

NOD1 0.60 -0.18 0.54 0.11 0.47 0.26 -0.15 0.01 -0.18 
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Figure 8.1 Correlation plot between PRR and apoptotic biomarker for THCA 

 

 
Figure 8.2  Represents the self-correlation plot of (a) apoptotic biomarker genes (b) PRR 

biomarker genes for THCA. 
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(ii) MESO: In this cancer, we found the best prognostic model by employing both apoptotic 

and PRR biomarker genes.  The model obtained was constructed using LOXL2 ,LAYN, 

OTULIN, RTN4, UBE2N, INAVA, CACTIN, KLRB1, PKD1L3, TRIL in case of cancer specific 

prognostic model using PRR genes only. While using ten apoptotic genes named HMGB2, 

TOP2A, BRCA1, PLAT, SLC20A1,WEE1, PPP2R5B, MADD, PDCD4, LMNA a prognostic 

model for MESO has been created. We investigated  the relationship between the top 10 PRR 

and apoptotic genes. The self-correlation between the ten PRR genes and the ten apoptotic 

genes was also calculated. Table 8.6 shows the correlation between the biomarker using ten 

PRR genes and biomarker developed using ten apoptotic genes. Figure 8.3 is the visual 

representation for same. Figure 8.4 represents the self- correlation plots. 

 

Table 8.6 Pearson Correlation between ten PRR biomarker genes and nine apoptotic genes in case of 

MESO. Genes on x-axis are apoptotic biomarker genes whereas genes on y-axis are PRR genes. 

 
 

HMGB2 TOP2A BRCA1 PLAT SLC20A1 WEE1 PPP2R5B MADD PDCD4 LMNA 

LOXL2 0.23 0.53 0.48 0.22 0.26 0.22 0.42 -0.34 -0.35 0.09 

LAYN 0.18 0.19 0.23 0.14 0.04 0.15 0.52 -0.26 -0.31 -0.04 

OTULIN 0.36 0.37 0.40 0.05 0.06 0.20 0.31 -0.06 -0.30 0.07 

RTN4 0.15 0.42 0.39 0.47 0.40 0.22 0.36 -0.53 -0.29 0.26 

UBE2N 0.28 0.32 0.23 0.30 0.30 0.17 0.27 -0.28 -0.12 0.39 

INAVA 0.07 0.17 0.10 -0.01 -0.11 0.01 0.22 -0.15 -0.04 0.00 

CACTIN 0.26 0.16 0.26 -0.01 -0.04 0.02 0.22 0.00 -0.14 0.04 

KLRB1 0.05 -0.31 -0.24 -0.02 -0.06 -0.04 0.00 -0.16 -0.05 0.06 

PKD1L3 -0.23 -0.14 -0.14 -0.13 -0.14 -0.23 -0.26 0.10 0.07 -0.18 

TRIL -0.02 -0.17 -0.23 0.03 -0.09 -0.09 -0.05 0.27 0.09 -0.15 
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Figure 8.3 Correlation plot between PRR and apoptotic biomarker for MESO 

 

 
 

Figure 8.4 Represents the self-correlation plot of (a) apoptotic biomarker genes (b) PRR 

biomarker genes for MESO. 
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(iii) SKCM : In this cancer we obtained top prognostic model using apoptotic and PRR genes 

both. The model obtained was constructed using ten PRR genes namely TLR4, KLRD1, 

CLEC6A, RSAD2, IFIH1, BIRC3, KLRC1, TLR8, KLRC2, TNIP3 in case of cancer specific 

prognostic model using PRR genes only. While using nine apoptotic genes named TNFSF10, 

SATB1, DPYD,  BIRC3,  SOD2,  F2R, CYLD, GCH1, CD69,  PSEN2. The prognostic model 

for THCA was developed (Arora, Kaur, and Raghava 2021). We evaluated the correlation 

between the top ten and top ten PRR and apoptotic genes. We also computed the self-

correlation between the ten PRR genes and the ten apoptotic genes. Table 8.7 shows the 

correlation between the biomarker using ten PRR genes and biomarker developed using ten 

apoptotic genes. Figure 8.5 is the visual representation for same. Figure 8.6 represents the self- 

correlation plots. 

 

Table 8.7 Pearson Correlation between ten PRR biomarker genes and ten apoptotic genes in case of S

KCM. Genes on x-axis are apoptotic biomarker genes whereas genes on y-axis are PRR genes. 

 
 

TNFSF10 SATB1 DPYD BIRC3 SOD2 F2R CYLD GCH1 CD69 PSEN2 

TLR4 0.52 0.24 0.41 0.33 0.34 0.05 0.53 0.49 0.32 -0.29 

KLRD1 0.62 0.04 0.28 0.33 0.49 0.01 0.52 0.82 0.36 -0.12 

CLEC6A 0.39 0.07 0.25 0.49 0.38 0.03 0.38 0.51 0.33 -0.18 

RSAD2 0.48 0.03 0.24 0.21 0.27 0.01 0.34 0.32 0.17 -0.12 

IFIH1 0.53 0.11 0.38 0.35 0.34 0.12 0.49 0.48 0.26 -0.19 

BIRC3 0.47 0.18 0.34 1.00 0.37 0.00 0.67 0.43 0.67 -0.20 

KLRC1 0.49 0.05 0.22 0.25 0.30 -0.03 0.34 0.54 0.23 -0.11 

TLR8 0.71 0.12 0.43 0.37 0.52 0.03 0.59 0.77 0.40 -0.19 

KLRC2 0.25 0.24 0.22 0.09 0.13 0.07 0.18 0.28 0.12 -0.12 

TNIP3 0.59 0.02 0.32 0.33 0.38 0.02 0.45 0.65 0.33 -0.17 
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Figure 8.5 Correlation plot between PRR and apoptotic biomarker for SKCM 

 

 

 
Figure 8.6 Represents the self-correlation plot of (a) apoptotic biomarker genes (b) PRR 

biomarker genes for SKCM 
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8.3.2.2 Network Analysis Using Apoptotic & PRR Biomarkers 

To find relationships between the genes of both the pathway, a co-expression network of PRR  

and apoptotic biomarker genes was built. We employed Pearson's correlation coefficient (PCC) 

for each gene pair utilising gene expression value to determine statistically significant 

important genes and therefore design highly accurate risk-prediction models to create the gene 

co-expression network used here.  We have constructed the  networks for the following cancer. 

 

(i) THCA: A correlation matrix was generated from 19X19 PRR and apoptotic genes, with 

correlation calculated between all possible pairings of genes based on the expression data. The 

correlation matrix used to generate network edges using 'Igraph' for strongly correlated pairs 

of genes (|PCC| > 0.5). To visualize and analyze the gene network, we utilized the 'Cytoscape' 

software. When the effective correlation was set at larger than 0.5, there were 6 nodes and 9 

edges only. Figure 8.7 display the co-expression network. ANXA1 being the hub node has the 

highest degree and interlinked with NOD1, CLU, TNFRS12A. APPL1 is connected with GPX4 

whereas, CLEC4D is connected with KLRB1. Among these three genes are PRR genes (NOD1, 

CLEC4D and APPL1). While rest belongs to apoptosis pathway. It is quite transparent that 

ANXA1 being the hub apoptotic gene is highly correlated with NOD1 and other apoptotic genes.  
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Figure 8.7 Co-expression network between 19 X19 PRR and apoptotic biomarker genes in 

case of THCA. Bigger node size depicts the higher degree. 

 

(ii) MESO : A correlation matrix of 20X20 PRR and apoptotic genes was created, with 

correlation computed between all feasible gene pairs based on expression data. When effective 

correlation cut off  |PCC<0.5| was taken we obtained 8 nodes  and 7 edges effectively. The co-

expression network is shown in Figure 8.8. Among these apoptotic genes like TOP2A is the 

hub gene connected strongly with other apoptotic genes like BRCA1, HMGB2, MADD and 

PRR genes like LOXL2, RTN4. While LAYN which is a PRR gene is connected to  an apoptotic 

gene PPP2R5B. The network depicts the highly interlinked and correlated apoptotic and PRR 

genes on the basis of degree. 
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Figure 8.8  Co-expression network between 20 x20 PRR and apoptotic biomarker genes in 

case of MESO. Bigger node size depicts the higher degree. 

 

(iii) SKCM: A correlation matrix of 20X20 PRR and apoptotic genes was created, with 

correlation computed between all feasible gene pairs based on expression data. Among both 

the pathways BIRC3 gene was common. When effective correlation cut off  |PCC<0.5| was 

taken we obtained 16 nodes  and 34 edges effectively. The co-expression network is shown in 

Figure 8.9. Among these apoptotic genes like CYLD, TNFS10A, GCH1 and PRR gene TLR8   

shown higher degree then rest of the genes.  The network depicts the highly interlinked and 

correlated apoptotic and PRR genes on the basis of degree. 

 



 
 
 
 
 

136 

 
 

Figure 8.9 Co-expression network between 20x20 PRR and apoptotic biomarker genes in 

case of SKCM. Bigger node size depicts the higher degree. Edges representing the correlation 

coefficient. 

 

7.3.4 Hybrid Prognostic Model 

After finding out the interconnection between apoptotic and PRR biomarker across cancers, 

we decided to merge both. We integrated both the biomarker sets for THCA, MESO and SKCM 

in order to improve the performance of the prognostic models. We ran different combination 

for each case and used RFE (Recursive Feature Elimination) to select the best set of genes for 

improved performance. Table 8.8 represents the performance for these mentioned cancer using 

PRR biomarker, apoptotic biomarker and hybrid (PRR + apoptotic ) biomarker genes. 

 

Table 8.8 Performance of prognostic models developed using PRR genes only, apoptotic genes 

only and hybrid (PRR + Apoptotic) genes in terms of HR for THCA, MESO and SKCM. 

 

Cancer PRR genes only 

(HR) 

Apoptotic genes only 

(HR) 

Hybrid (PRR+ 

Apoptotic) (HR) 

THCA 53.57 41.59 56.7 

MESO 4.24 3.99 4.30 
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SKCM 1.99 1.99 2.08 

 

8.4 Discussion and Conclusion 
Diagnosis at initial stage is very crucial in case of any malignancy especially cancer. A detailed 

prognosis is frequently necessary for strategic therapeutic intervention planning. The modern 

oncology research provided lot of omics data that can be helpful for the development of 

effective prognostic biomarkers and corresponding therapy. Previous research has highlighted 

critical roles of various genes belong to important pathway like apoptosis and PRR signalling 

pathway. In the current study, we compared the prognostic biomarkers  and their performance 

for these two pathways in case of THCA, MESO and SKCM. We chose these three on the basis 

of the result from our prior study. To do so first correlation among the PRR biomarker genes 

and apoptotic biomarker genes have been taken. Self-correlation was also taken into 

consideration. Using peasron correlation coefficient with the effective cut-off an edgelist was 

developed to create network in case of these three cancers. Network analysis and visualization 

is also done and shown in the study. We developed a hybrid model to improve the prognostic 

performance of the biomarkers by combining apoptotic and PRR signalling genes and found 

that the performance increased in the case of THCA, MESO and SKCM. The high correlation 

among genes from these two different pathways clarifies that these are not independent and 

have dependency on each other. Overall all this study highlights the high interconnection 

between cross pathways in case of cancer. It also encourages more study into the possibilities 

of such a hybrid model combining several pathways for development in cancer therapy and 

management. 
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Several initiatives have been undertaken in the last decade to research adaptive immunity. 

Tremendous exposure like annotation, creating in-silico tool, making usage of biological 

insight to understand the mechanistic point has been explored well in this arm of immunity. 

Whereas, adaptive immunity get activated through first line of defense innate immunity and 

if any malignancy get resolved at first step there would not be any need to go further on 

another step. But, there is not as much work has been done in innate immunity. Although it 

has important role in fighting against infection and providing host defense, also it plays a 

vital role as pro and anti-tumoral molecules. The innate immune molecules requires a proper 

annotation so thus researcher use them for translational benefits in research and therapies. 

Several essential regulators have been identified, as well as their involvement in this 

complex system. In summary, it has been shown that some components and portions of the 

innate immune system are weakened in cancer cells, causing these injured cells to refuse to 

die and disseminate the harm to future generations. Because of our current understanding 

of the pathways, drugs that target these critical components and restore the survival/death 

balance have been developed. Furthermore, changes in the concentrations or status of innate 

immune molecule regulators are utilized to predict cancer prognosis and risk. The 

development of novel prognostic biomarkers/methods for cancer risk assessment, on the 

other hand, remains a challenge. Likewise, given the importance of numerous clinical 

aspects in cancer genesis and progression, these prospective techniques should incorporate 

important elements in order to supplement or replace existing risk prediction systems. The 

innovative prognostic approaches can be used to provide more precise risk prediction and, 

as a result, more effective therapy planning. 

Chapter2 focuses on the fact that pattern recognition receptors have long been thought to be 

a minor biological  phenomena. It began to change as their role in the infection became 

obvious, as did the relationship between innate and acquired immunity. Multiple past 

studies have revealed the detailed mechanism of PRRs that are essential part of innate 

immune system. Yet specific proper annotation is lacking for the ligands/ agonist 

corresponding to PRRs.  In-silico web resources and updated knowledgebase for PRRs  for 

better understanding and designing vaccine adjuvants is required. Also, due to its dual role 

in cancer PRR can be use as targeted therapy but, utilization of these PRR and their agonist 

in prognosis of cancers is not explored yet. Furthermore, computational tools and databases 

that provide updated information and insight of PRR mechanism and use as biomarkers in 
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cancer are not available.  

Chapter 3 mainly describe the update PRRDB 2.0 which is database of pattern recognition 

receptor. PRRDB 2.0, comprising more than 2700 entries, provides better coverage of all 

the PRRs and their ligands studied till now. The information obtained from the research 

articles and the patents is summarized in tabular form under 25 fields in the database. Fields 

like name, source , origin, role, sequence of receptors and their ligands are provided. TLRs 

are the most well-studied PRRs, although cytoplasmic PRRs also play an important role in 

the accumulation of diverse immunological responses, which requires further research. 

Other PRRs, such as mannose receptors, scavenger receptors, and a few secreted PRRs, also 

require additional investigation. We have improved the data coverage by incorporating 

additional fields and also highlighting the role and specificity of PRRs and ligands in 

eliciting the immune response. The hyper linkage with Swiss-Prot, PDB and PubChem will 

provide maximum information at a single place. We believe that the updated version will 

be very helpful to the scientific community. PRRDB 2.0 is freely available at 

“ https://webs.iiitd.edu.in/raghava/prrdb2/” as a user-friendly, display compatible 

interface. The previous version can be accessed at 

“ http://crdd.osdd.net/raghava/prrdb/”. 

Multiple previous studies show the importance of PRRs in various diseases like heart 

failure, cancer, autoimmune disorders, kidney disease, asthma, atherosclerosis, sepsis, 

Parkinson’s disease, immunodeficiency disorders like chronic granulomatous disease 

(CGD), and X-linked agammaglobulinemia. Thus, PRRs have seems to have a vital role in 

the therapeutic research mainly in adjuvant designing. Therefore, it is indispensable to have 

a profound understanding of biological machinery and functional role of PRRs in our 

immune system. For that proper annotation of PRRs is much required.  Thus in Chapter 4 

to aid up to this step we have  created a simple web server 

(http://webs.iiitd.edu.in/raghava/prrpred/) that allows users to predict whether or not a 

particular protein is a pattern recognition receptor. Under prediction, the server's web 

interface contains two sub-modules: (i) Composition Based and (ii) Evolutionary 

Information Based. The "Composition Based" module enables a user to find a protein 

sequence based on amino acid composition. This module also gives the user the choice of 

using the non-hybrid technique, which is solely AAC-based, or the hybrid method, which 
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is AAC+BLAST-based. The "Evolutionary Information Based" module assists the user in 

predicting PRRs based on evolutionary information from a protein sequence. The PSSM-

400 composition profile for the input protein sequence is generated and used as a feature 

vector for prediction in this step. This module, like the composition-based module, supports 

non-hybrid and hybrid models. The web server was built using a responsive HTML template 

to adjust to the browsing device. As a result, our web server is compatible with a broad 

range of devices, such as desktop computers, tablets, and smartphones. 

Antibiotic resistance is spreading among microorganisms all across the world, and 

conventional therapies for drug-resistant pathogens are inadequate. With increased 

pathogen drug resistance, the concern of a post-antibiotic era needs the development of 

alternatives to standard antibiotics or small molecule-based medicines. Because of their 

various therapeutic effects, AMPs represent a class of prospective therapeutics with curative 

promise. Several organisms' innate immune systems rely significantly on these 

evolutionarily conserved molecules. Defensins are a subclass of AMPs with several roles 

and modes of action, making them less likely to be drug resistant. Thus, in Chapter 5 for the 

annotation of defensins and  in order to better serve the scientific community, we created a 

web server called "DefPred," as well as a standalone version that included our top models. 

The standalone version is Python-based and provides the user with a plethora of choices. 

The accompanying server, on the other hand, is user-friendly and compatible with a variety 

of displays, including laptops, Android mobile phones, iPhones, and iPads. In addition, we 

have given a stand-alone facility in the form of Docker technology. This standalone 

programme is incorporated into our "GPSRdocker" package, which may be obtained from 

the website https://webs.iiitd.edu.in/gpsrdocker/. We expect that this work will aid 

vaccine designers as well as provide a better knowledge of immune defense response. 

Immunotherapy is the fourth and most advanced pillar of cancer treatment. Over the last 

decade, there has been a rise in interest in cancer immunotherapy research because to the 

significant improvement in patient survival, especially in resistant disease types. The use of 

PRR genes in cancer prognosis is one of the advanced immune-therapeutics techniques that 

has been extensively studied in the literature.  The purpose of  chapter 6 was to look at the 

changed expression profile of PRR genes in the context of survival prediction in patients 

with UCEC. The discovery of key biomarker genes having a strong connection with survival 
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can aid in risk group stratification and prognosis. As a result, the discovered biomarker 

genes can serve as a strong foundation for the investigation of novel therapeutic techniques 

in the treatment of UCEC. Our study used a variety of bioinformatics methodologies, 

including network-based approaches, Cox-proportional hazard (PH) survival studies, and 

clustering-based approaches, to identify important genes and construct highly accurate risk-

prediction models. We also assessed the prognostic significance of different 

clinicopathological features and investigated the molecular mechanisms linked to the 

discovered genes in order to uncover relevant therapeutic molecules that could improve the 

survival of patients with UCEC. Finally a risk classification model based on nine PRR-

related genes was devised to evaluate survival outcomes and provide personalised 

anticancer treatment in patients with UCEC.  Our findings also imply that combining the 

suggested gene signature with clinical staging gives better prognosis than staging 

information alone.  As a result, the findings of our study may serve as a potential change to 

UCEC's existing risk evaluation method.  Overall, this work contributes to a better 

understanding of the oncogenic function of innate immune receptors in UCEC. 

In the past, various attempts have been made, and several cancer-specific prognostic models 

have been established, which are only relevant to single cancer. This study aimed to find 

"universal or multi-cancer" prognostic biomarkers and build models for predicting survival 

risk in different types of cancer patients. To do this, we assessed the prognostic significance 

of 331 PRR gene expression in 33 cancers in terms of patient overall survival. We 

discovered prognostic biomarker genes for only 30 different types of cancers initially. 

HRSKCM=1.99 and HRTHCA=53.57 were attained by the cancer-specific prognostic models. 

Furthermore, a comprehensive study was carried out in order to uncover universal 

biomarker genes across a wide range of cancers. Our best prognostic model included 12 

genes (UNC93B1, ALPK1, APPL1, CASP8, CD5, CLEC2D, HMGB1, HSP90B1, IKBKG, 

IRF1, KLRB1, NCAN) and classified risk groups across 6 cancers (HRTHYM=14.03, 

HRUCEC=0.88). Besides offering a complete assessment of the prognostic potential of PRR 

signaling genes in diverse cancer types, our research might aid in the development of 

adaptable risk management and treatment options for cancer patients. 

Diagnosis at initial stage is very crucial in case of any malignancy especially cancer. A 

detailed prognosis is frequently necessary for strategic therapeutic intervention planning. 
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The modern oncology research provided lot of omics data that can be helpful for the 

development of effective prognostic biomarkers and corresponding therapy. Previous 

research has highlighted critical roles of various genes belong to important pathway like 

apoptosis and PRR signalling pathway. In the current study, we compared the prognostic 

biomarkers  and their performance for these two pathways in case of THCA, MESO and 

SKCM. We chose these three on the basis of the result from our prior study. To do so first 

correlation among the PRR biomarker genes and apoptotic biomarker genes have been 

taken. Self-correlation was also taken into consideration. Using peasron correlation 

coefficient with the effective cut-off an edgelist was developed to create network in case of 

these three cancers. Network analysis and visualization is also done and shown in the study. 

We developed a hybrid model to improve the prognostic performance of the biomarkers by 

combining apoptotic and PRR signalling genes and found that the performance increased in 

the case of THCA, MESO and SKCM. The high correlation among genes from these two 

different pathways clarifies that these are not independent and have dependency on each 

other. Overall all this study highlights the high interconnection between cross pathways in 

case of cancer. It also encourages more study into the possibilities of such a hybrid model 

combining several pathways for development in cancer therapy and management. 

Altogether, the research presented in this thesis provides several unique approaches for the 

proper annotation of innate system molecules.  Also, these molecules related signaling 

genes were utilized to create prognostic biomarker in various cancer. We anticipate that 

clinicians and researchers will use the findings of our investigations to develop advanced 

cancer treatment approaches. 
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