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ABSTRACT

Single-cell transcriptomics is a powerful technique that has revolutionized our approach

to dissect cellular phenotypes and diversity in complex tissues at an unprecedented res-

olution. The emergence of this groundbreaking technology has dramatically enhanced

our understanding of cellular heterogeneity, interactions, and cell fate decisions during

the development and progression of cancer. These new technologies have shown to be

promising in the field of cancer genomics. Despite all the goodness, many computa-

tional challenges remain.

Human cells express about 20,000 genes, which dynamically carry out a multitude

of biophysical activities. Statistical and machine learning-based methods treat genes

as independent variables in the process of characterizing intra-tumoral heterogeneity

and developing insights into cancer progression, pathogenesis, and clinical outcomes.

This approach is quite limiting since constantly accumulating somatic genomic alter-

ations are often manifested through the dysregulation of molecular pathways or cancer-

relevant gene signatures. Thus, exploiting gene set and pathway scores to decipher

heterogeneity in the single-cell will aid in many applications in cancer genomics.

We propose a statistically robust method called UniPath to represent single cells

in terms of pathway or gene set enrichment scores. UniPath projects gene expression

readouts and single-cell ATAC-seq profiles into pathway scores while accounting for

dropouts and sequencing depth. Further, it allows pseudotemporal ordering of single

cells in pathway space. Visualization of gradients and distribution of pathways on a

pseudotemporally ordered tree helps understand the lineage potency of cells. Another

application of UniPath is that it helps enumerate differences in two cell populations

through the exploitation of pathway co-occurrences. In a connected work, we introduce,

Precily, deep learning framework that leverages pathway scores of gene expression pro-

files and drug descriptors for anti-cancer drug response predictions. We thoroughly val-

idated our proposed approach using bulk and single-cell gene expression profiles. We

also assessed the performance of our approach on several in-house generated prostate

cancer datasets. Finally, we interrogated the transcriptomic profile of triple-negative
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breast cancer tumor and Natural killer cell doublets and their physical distance cap-

tured at single-cell resolution. We discovered that physical distances are governed by

activities of regulatory modules, pinpointing the presence of transcriptional memory.

In addition, our investigation into ligand-protein pairs interactions that are responsible

for conveying messages into cells by activating signaling pathways revealed inflated

activities of some of the specific pairs in NK-immune cell doublets. We concluded

that intercellular communications in tumors play an essential role in deciphering the

underlying mechanism operating in cancer. Our approach of capturing and profiling

single-cell doublets will aid in the understanding of complex tumor microenvironment

and cellular interactions.
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CHAPTER 1

INTRODUCTION

Every year cancer causes several million deaths worldwide. The number of new inci-

dences is increasing at staggering rates due to a lack of early detection methods and

ineffective treatments for patients with advanced and metastatic cancer [128]. Cancer

is a highly complex dynamic and heterogeneous disease evincing phenotypic and ge-

netic diversity [57]. This cellular heterogeneity steered by anomalies at the genomics,

transcriptomics, and proteomics level is characterized by mutations, aberrant gene ex-

pression, and transcriptional stochasticity. Cellular heterogeneity poses significant chal-

lenges to effective cancer treatments and is an essential factor contributing to therapeutic

resistance and disease recurrence, eventually governing clinical outcomes. Cancer not

only comprises discrete unambiguous pathologies but there is considerable heterogene-

ity among different cells within each tumor [167].

1.0.1 Hallmarks of Cancer

The enormous array of cancer genotypes is the embodiment of six key physiological

changes in cell that collectively governs malignant growth and metastatic dissemination

(Figure 1.1) [79][80].

Self sufficiency in growth signals

Plausibly the most fundamental characteristic of cancer cells is their capability to sus-

tain persistent proliferation. The synthesis and release of growth-promoting signals are

tightly regulated in normal tissues. This ensures proper balance of cell number and thus

proper maintenance of normal tissue structure and function. On the other hand cancer

cells gain control over their own fate by disrupting these growth signals [80].



Evading growth suppressors

In addition to hallmark capability of sustaining proliferative signaling, cancer cells can

evade growth suppression. Dozens of tumor suppressor genes function in diverse ways

to limit cell proliferation and growth. Internal or external stimuli trigger the activation

of these tumor suppressor genes, resulting in apoptosis, process of programmed cell

death or cell cycle arrest. Therefore, cancer cells must circumvent the activation or

expression of tumor suppressor genes [75][80].

Resisting cell death

Over the last two decades, functional studies have established the role of apoptosis as a

natural obstruction to the development of cancer. Apoptosis is an autonomous process

in which many genes are activated, expressed, and regulated, resulting in programmed

cell death to clear abnormal cells for keeping a stable internal environment. Internal

or external stimuli can trigger apoptosis. However, tumor cells can evade or attenuate

apoptosis and become resistant to therapy [37][75] [80].

Limitless replicative potential

The three acquired hallmark characteristics of cancer cells—self-sufficiency in growth

signals, insensitivity to antigrowth signals, and evading apoptosis—all lead to dysregu-

lated cell proliferation programs [75] [80]. The resulting dysregulated cell proliferation

is sufficient to impart cancer cells with limitless replicative potential that leads to the

generation of macroscopic tumors. This property is in sharp contrast to the behavior of

normal cells that undergoes a limited number of rounds of cell growth and cell divisions

[80][75].

Inducing Angiogenesis

Angiogenesis is a process that involves new blood vessels formation from the existing

ones and is responsible for supplying oxygen and nutrients to body tissues. This process

is critical for tumor growth and metastasis. Tumor expansion and sustenance are depen-

dent on nutrients and oxygen provided by new blood vessels formed by tumors. Under

2



normal physiological conditions, angiogenesis is tightly regulated and regulated by bal-

ancing various endogenous pro and anti-angiogenic factors. However, tumors activate

an event known as the angiogenic switch to progress by disrupting the balance between

pro and anti-angiogenic factors more toward pro-angiogenic outcome and ultimately

resulting in the malignant phenotype of the dormant lesion [89][6].

Tissue invasion and metastasis

The sequence of events resulting in the malignant transformation of cells is quite com-

plex. Malignant cells possess a number of key distinguishing hallmarks, namely poten-

tial for uncontrollable cell growth and capabilities to spread into, invade nearby tissues

and metastasize [103]. About 90% of human cancer fatalities are caused by the set-

tlements of tumor cells in distant organs or tissues. The propensity of cancer cells to

invade, migrate, and metastasize allows them to abscond from primary tumor and col-

onize new territories in the body having sufficient nutrients and space initially. The

invasion and metastasis is a multi step process involving a sequence of distinct steps,

often referred to as the invasion-metastasis cascade. The cascade envisages a series

of cell-biologic alterations, starting with local invasion, then tumor cell intravasation,

movement of cancer cells via the lymphatic system, followed by extravasation, mi-

crometastases, and finally colonization [80].

Self su�ciency in growth signals

Evading growth suppressors

Resisting cell death

Limitless replicative potential

Inducing Angiogenesis

Tissue invasion and metastasis

Figure 1.1: Hallmarks of cancer
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1.0.2 Complex tumor ecosystem

A single cell is a basic unit of life activity, holding a blueprint for biological func-

tions. Approximately 37.2 trillion cells reside in the human body, exhibiting intricate

interplay between genetic mechanisms and the cellular environment, thus directing the

genesis and functionalities of complex tissues and organs [145] [164]. In cancer, a sin-

gle cell can collapse an entire organism. Aberrant genetic alterations in a single cell can

drive the formation of a malignant tumor mass with distinct lineage and sub popula-

tions accompanied by intratumor heterogeneity. Genetic diversity in single tumors has

been apparent for a long time, but with the advancement in high throughput sequencing

methods, the full magnitude of intratumor heterogeneity is becoming noticeable [140].

Clonal diversity exhibited by cancer cells offers them selective advantages. Cancer be-

ing complex and dynamic in nature can be viewed as equivalent to a tumor ecosystem

in which tumor cells and host cells cooperate and communicate with each other in the

tumor microenvironment and can even adapt and evolve in diverse conditions, result-

ing in the invasion, metastasis, host system hijacking, and therapy resistance. In-depth

discernment of cellular composition, cross talks and interactions, and dynamic behav-

ior within the tumor ecosystem’s tumor microenvironment is necessary to comprehend

cancer biology and evolution [164].

1.0.3 Clonal evolution and diversity

Cancer evolution is a dynamic process that governs the emanation of cancer cell sub

populations by Darwinian selection, giving rise to clonal diversity. The clonal evolu-

tion model is depicted in Figure 1.2. As a tumor grows, their evolutionary history is

reflected by the catalog of somatic mutations accumulated over time, which confers

survival advantages, thereby determining the clonal population’s overall fittest [142]

[180]. The tissue ecosystem serves as a habitat for the evolution of tumor clones. Their

complex networks and framework evolved over a billion years is to augment and assim-

ilate multicellular functions while confining renegade clonal expansion. Tissues within

the tumor microenvironment serve as a context for the development and evolution of

cancer. Limited resources and other microenvironmental constrictions result in the nat-

ural selection of tumors. The interplay of driver lesions, passenger lesions, deleterious

lesions and tumor microenvironment drives the clonal evolution. Thus, understanding
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clonal expansion, diversification and selection is critical in understanding the progres-

sion of cancer and therapeutic interventions [72].

Cancer cell Clonal evolution Genetic alterations Selection pressure

Figure 1.2: Clonal evolution model

1.0.4 Intra-tumor heterogeneity

In today’s era, understanding and clinical evaluation of tumor heterogeneity are of ut-

most importance for improving clinical oncology [183]. In particular, intratumor het-

erogeneity (ITH) is regarded to be one of the most important predictors of therapeutic

resistance and treatment failure. ITH is linked with cancer progression, recurrences,

and poor survival outcomes in cancer patients with metastatic disease [218]. ITH is

attributed to the coexistence of subclonal populations of tumor cells exhibiting remark-

able variability in their genetic, phenotypic, or behavioral traits within the primary tu-

mors [138]. ITH is a dynamic process that is detected at multiple levels and often fol-

lows the Darwinian type approach. The tumor progression is driven by unpredictable

and frequently chaotic cellular processes triggered by oncogenic changes and environ-

mental factors and these processes hold the key to understanding tumor development.

Given the intricate and ever-changing nature of the tumor architecture, it is critical to

comprehend that molecular alterations themselves evolve within the tumor during dis-

ease progression and metastasis. Both genetic and non-genetic subclonal alterations are

responsible for enduing cancer with adequate phenotypic plasticity to adapt to microen-

vironmental forces and overcome the hurdles offered by anti-tumoral therapy. Thus,

ITH poses significant challenges to personalized medicine since it can restrict treatment

efficacy and contribute to drug resistance [95] [218] .
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1.0.5 Tumor microenvironment and its role in tumorigenesis

The tumor microenvironment within a solid tumor is represented by malignant and non-

cancerous cells. These noncancerous cells include endothelial cells, fibroblasts, stromal

and immune cells. The extracellular matrix is also a vital component of the tumor mi-

croenvironment. Apart from manifested heterogeneity in tumor subclones, heterogene-

ity among noncancerous cells in the microenvironment further adds a layer of complex-

ity and is important in tumor growth, dissemination, and therapeutic responses [164]

(Figure 1.3). This unique tumor microenvironment emerges as the tumor progresses

due to its intercommunication with the host. It is created and influenced by the tumor,

which governs key molecular events occurring in neighboring tissues. Furthermore,

the tumor microenvironment directs anomalous tissue function and plays a vital role

in developing aggressive and metastatic cancer. The tumor microenvironment presents

a hurdle in the functioning of immune cells by inhibiting their anti-tumor activities.

Other cells such as Cancer-associated fibroblast (CAFs), inflammatory cells, adipose

cells, and neuroendocrine cells in the tumor microenvironment also impact immune

cells. CAFs influence cancer progression through extracellular matrix modification,

and induction of angiogenesis. They also directly impact cell proliferation via the se-

cretion of growth factors. While the presence of immune-inflammatory cells in chronic

inflammation sites is connected with varied tissue pathologies that include abnormal

angiogenesis and neoplasia. Neuroendocrine and adipose cells are the accomplices of

tumor formation. Tumors adopt different tactics and mechanisms to escape immune

surveillance and drug therapies, which vary in various cancer types. Each tumor ex-

hibits a unique signature that defines its microenvironment. Thus, understanding tumor

microenvironment at the molecular and cellular level is paramount [202][203][207].

NK cell

Macrophage

Tumor cell

Adipoctyes Blood vessel

ECM

Cancer-associated
        �broblast

Neuron

Endothelial cell

Figure 1.3: Complex tumor microenvironment comprising heterogenous population of
tumor cells and variety of other non-malignant cells
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1.0.6 Natural killer cells and cancer

The tumor microenvironment exhibits a high degree of complexity, and immune escape

is now recognized as an essential cancer hallmark. Immune escape plays a signifi-

cant role tumor development and metastatic dissemination. Natural killer (NK) cells

are the principal effector cells in innate immunity and exhibit diverse states in the mi-

croenvironment. Most current tumor microenvironment therapeutic strategies rely on

T cell immunity, either by stimulating activatory signals or repressing inhibitory sig-

nals. However, the limited success of immunotherapies involving T cells pinpoints the

significance of developing novel immunotherapies, for instance, utilizing previously

overlooked NK cells. NK cells are an essential aspect of tumor immunosurveillance, as

indicated by greater cancer susceptibility and metastasis in mouse models and clinical

studies with attenuated NK cell activity [133][212]. NK cells possess potent cytotoxic

activity coordinated by a complex network of multiple inhibitory and activating signals

[141] (Figure 1.4). NK cells inhibit tumor growth either by direct interactions with

cancer cells or modulating the functionalities of other immune cells in the tumor mi-

croenvironment. They have the ability to distinguish aberrant populations of cells from

normal ones, resulting in more targeted anti-tumor cytotoxic effects and fewer off-target

complications. Given their critical role in cancer biology, NK cells have emerged as a

probable target for cancer management [212].

NK cell

NKG2D

NKp46

NKp44

NKp30

CD16

Activating receptors

KIRs

NKG2A/CD94

Inhibitory receptors

Figure 1.4: Figure depicts major activatory and regulatory receptors on the NK cell
surface

1.0.7 Signaling pathways

Cancer is caused by a series of genetic and epigenetic changes that allow cells to bypass

homeostatic control mechanisms that generally subdue inappropriate cell proliferation
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and impede the survivability of aberrantly proliferating cells outside their usual niches.

Recent advances in next-generation sequencing have paved the way for multi-omics

analysis that has significantly refined our understanding of how an intricate network of

signaling pathways within cells can be exploited to develop more targeted therapies.

The progression of cancer is linked to dynamic and complex interactions of tumor cells

with neighboring non-neoplastic cells and the extracellular matrix. The acquired hall-

mark capabilities of tumor cells are primarily attributed to the dysregulation of signal

transduction pathways [178]. A wide variety of molecular hubs and signaling pathway

nodes have been linked with cancer development, and many of these, such as receptor

tyrosine kinase and downstream signaling pathways, are targets of drugs approved by

various regulatory bodies [223]. PI3K signaling is one of the major signaling path-

ways downstream of receptor tyrosine kinase, which is often mutated or amplified in

most solid cancers. Many of the PI3K inhibitors are currently under clinical trials [225].

Oncogenic mutations can result in the production of mutated proteins with dysregulated

activities. Examples of such proteins involved in a multitude of signaling pathways are

small GTPases (Ras), cytoplasmic tyrosine kinases (Src and Abl), nuclear receptors (es-

trogen receptor). Components of other signaling pathways for example Wnt, Hedgehog,

and Notch can also be impacted. Further, hyperactivation of oncogenic pathways like

PI3K-Akt and Ras-ERK can result in uncontrolled cell proliferation in cancer. These

pathways are also involved in regulating cell death in multiple ways. Also, cancer cell

metabolism is regulated by components of intracellular signaling pathways that are dis-

rupted by mutations in tumor suppressor genes and oncogenes. Cancer cell metabolism

is characterized by increased uptake of glucose and glycolysis, resulting in advancing

cancer progression [94][178]. The PI3K-Akt pathway is incorporated in targeting a

myriad of substrates to promote metabolic changes in tumors. Another signaling path-

way Wnt is an important regulator of development and stemness, which has also been

linked to cancer. Wnt signaling promotes epithelial to mesenchymal transition. The

intricate network of signaling pathways in cancer poses significant challenges in the

development of therapeutics [226].

8



1.0.8 Cancer management

Cancer remains one of the deadliest malignant diseases that jeopardizes human life as

it is the most difficult disease to treat [91]. Cancer is a unique disease, and it can not be

considered as one disease by physicians since each patient exhibits a specific disease.

First, physicians identify the existence of cancerous tissue in patients. Then the next

question is how cancer can be treated under such circumstances with optimal and safest

drugs. The duration of treatment is also crucial, and patient progress must be tracked

by clinicians to plan future therapeutic strategies. The initial stage of treatment involves

categorizing the tumor as indolent or not, whether it is aggressive or has the potential to

metastasize or not, and identifying tumor grade. The therapy must be planned while ac-

counting for factors such as tumor location, metastatic region, tumor stage, or cell types

present in heterogeneous tissue samples. The treatment success must strive for control

of disease, prevention of the reoccurrence of metastasis, and improving overall survival

and life quality of patients [222]. Some of the possible cancer treatment options are ra-

diotherapy, surgery, immunotherapy, chemotherapy, targeted therapy, and Personalized

therapy as shown in Figure 1.5. Currently, the most effective cancer treatment is surgery

which involves the removal of tissues with cancer cells. Chemotherapy makes use of

standard anti-cancer drugs to kill cancer cells. Meanwhile, radiotherapy involves using

high-dose X-rays and gamma rays to treat a tumor at a post-surgery tumor location.

These rays are extremely effective in killing tumor cells that may linger after surgery

or recur where the tumor was excised. In recent years, immunotherapy has gained a lot

of attention and is primarily defined as the use of components of the immune system

in cancer treatment. Although chemotherapy has remained a mainstay for cancer man-

agement in many tumor types but suffers from limitations of limited response rate and

side effects. Translational research has transformed the way we develop new cancer

treatments. One of the most significant advancements in modern oncology is the shift

from an organ-centric strategy to a patient-tailored approach guided by deep molecular

analysis [5][51][87][159][179].
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Cancer treatment
          options

Chemotherapy

Immunotherapy

Radiotherapy

Surgery

Personalized 
     Therapy

Figure 1.5: Different cancer treatment options

1.1 Overview of RNA Sequencing

Massively parallel next-generation sequencing development has revolutionized tran-

scriptomics by allowing RNA analysis via complementary DNA (cDNA) sequencing.

This method is known as RNA sequencing (RNA-seq). Over the past few decades,

RNA sequencing has become an invaluable tool in refining our understanding of com-

plicated and dynamic attributes of the transcriptome and genomic functions [112] [184].

Transcript identification and gene expression quantification have been indispensable

components of molecular biology since the revelation of RNA’s function as a pivotal in-

termedial between the proteome and genome [43]. The standard workflow begins with

RNA extraction, mRNA enrichment, cDNA synthesis, and adaptor-ligated sequencing

library preparation. The prepared library is sequenced using a high-throughput sequenc-

ing platform. Then ultimately, through computational approaches, sequencing reads

are aligned or assembled to the transcriptome, and reads are quantified. Bulk RNA-

seq experiments typically estimate the total gene expression level from a heterogeneous

population of cells. The transformation and evolution of RNA-seq have been propelled

forward by technological developments in wet-lab and computational domains. It has

provided a clearer and unbiased view of RNA biology and transcriptomes, and bulk

RNA-seq is extensively used to refine our understanding of cancer biology. Though

bulk RNA-seq holds great potential in developing novel and efficient clinical applica-
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tions, true signals driving biological processes can be blurred by mean gene expression

from bulk RNA-seq profiles. This biological problem impelled the birth of new scRNA-

seq technology [127][184].

1.2 Overview of Single-cell sequencing

Traditional methods like flow cytometry and fluorescence in situ hybridization (FISH)

for measuring single cells were developed years ago and are conventionally used in lab-

oratories. However, these approaches have limited applicability as the number of genes

and proteins profiled is significantly less, restricting the amount of information drawn

from single-cell samples. The emergence of groundbreaking technologies in single-cell

isolation and genomics, transcriptomics, and proteomics profiling has imparted scal-

ability to single-cell analysis in recent years. One of the critical obstructions in the

single-cell investigation is amplifying a limited quantity of input nucleic acid material

to capture the desired threshold level. As of late, considerable technical breakthroughs

in whole-genome amplification (WGA) or whole-transcriptome amplification (WTA)

have been accomplished to attain an ample amount of input material for preparing next-

generation sequencing (NGS) libraries.

Single-cell sequencing technologies for profiling RNA transcriptomes face chal-

lenges in quantifying various RNA species. Several methods have emanated to amplify

small quantities of mRNA in a single cell. The first method used in the first single-

cell microarray and mRNA-seq study utilized the Poly-A tailing method. This method

involves adding anchoring sequences to the 3’ end of synthesized cDNA by terminal

transferase. However, this method suffers from a strong 3’ bias due to cDNA synthe-

sis’s inefficiency by reverse transcriptase. Another one-step protocol utilizing multi-

plexed RT-PCR for target amplification is that Sequence-specific amplification (SSA)

is restricted to investigating a limited number of genes. The template switching-based

protocol method called Smart-seq is a commonly used technology for sequencing full-

length mRNA in single cells by using Moloney Murine Leukemia Virus (MMLV) re-

verse transcriptase. Although Smart-seq has improved the coverage of reads across

transcripts, its ability to profile lowly expressed mRNAs is limited. CEL-seq is another

robust and efficient method that involves the addition of T7 promoters to cDNA and uses

in vitro transcription for mRNA amplification. However, a common shortcoming of
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these methods is inadequate throughput due to the independent handling of single-cell

samples and accidental human fallacy. High throughput molecular barcoding of single

cells in microdroplets has been exploited to overcome the limitations of the methods

mentioned above. The recent introduction of droplet-based single-cell transcriptomics

techniques has facilitated the parallel screening of thousands of single cells. Such strate-

gies have dramatically improved the throughput of single-cell transcriptomics. The de-

velopment of microfluidic devices has also complemented single-cell transcriptomics.

Microfluidic devices help increase the sensitivity and throughput of single-cell analysis

by automating the processing and examination of biological materials [145] [167].

Although single-cell RNA sequencing (scRNA-seq) methods are rapidly evolving,

single-cell epigenome profiling remains the most technically challenging task. Bisul-

fite sequencing is the gold standard method for detecting DNA methylation of cytosine

(5mc) residues genome-wide at single-base resolution. However, interrogation of DNA

methylation at single-cell resolution was not feasible until recently due to the degrada-

tion of a significant amount of DNA caused by bisulfite treatment. The first single-cell

method, reduced representation bisulfite sequencing (scRBBS), was developed to quan-

tify cytosine methylation modifications at CpG islands across the genome. This is a

powerful technique as it allows the analysis of many promoters at a low cost. However,

it has limited coverage.

Chromatin immunoprecipitation sequencing (Chip-seq) is another powerful tool to

identify genome-wide histone marks, which play a crucial role in influencing transcrip-

tional states. Due to background noise, performing Chip-seq at a single cell resolution

is quite perplexing. Recently, a droplet-based approach has been used to overcome

this limitation. In this technique, a pool of single cells that had already been subjected

to micrococcal nuclease digestion and barcoding is used for immunoprecipitation on

chromatin. Hi-C-based techniques have recently been proposed to capture chromosome

interactions and conformations, but they are limited in their resolution [41].

Assay for transposase-accessible chromatin using sequencing (ATAC-seq) is used to

map open chromatin in single cells. It uses the Tn5 transpose enzyme to simultaneously

fragment DNA and tag open chromatin regions with adapter sequences. This process is

referred to as tagmentation. The DNA fragments are PCR amplified and sequenced. At

single-cell resolution, combinatorial indexing and microfluidics-based approaches have
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been used to assess chromatin in thousands of single cells. Several single-cell platforms

such as C1 and Chromium systems allow scATAC-seq [41] [104]. These technologies

are cutting-edge tools in refining our overall understanding of cancer biology.

1.3 A brief overview of computational methods for an-

alyzing scRNA-seq data

With the technological revolution in single-cell technology, unprecedented amounts

of high throughput single cell data are getting generated. Computational tools have

emerged to handle such large datasets and have become a fundamental part of single

cell analysis. The first step in single cell analysis is preprocessing, which ensures qual-

ity control and normalization while controlling for confounders.

High-dimensional single cell data often poses challenges in visualization. However,

several dimensional reduction based visualization approaches is available like PCA, t-

SNE, UMAP and diffusion maps. These methods help draw biological insights and

investigate relationships among different cell types in low-dimensional space [167].

Unsupervised clustering in scRNA-seq is vital to identify previously unknown cell sub-

populations. Apart from classical clustering methods, other clustering approaches have

emerged to handle large datasets, such as local sensitivity hashing (LSH) based drop-

Clust [181], the graph-based clustering strategy used by Seurat [173]. Differential gene

expression analysis (DE) can be used to discriminate between different cell populations.

In recent years several tools to perform DE analysis have been developed for analyz-

ing scRNA-seq data. For instance, MAST, which uses the hurdle model and another

tool SCDE (single-cell differential expression), uses a Bayesian approach to account

for dropouts in single cell data while modeling gene expression [167],[61],[106]. Al-

though clustering techniques can divulge the intrinsic group structure within data, they

are insufficient to reveal cellular heterogeneity. Trajectory inference methods emerged

to study dynamical biological processes including differentiation, cell cycle and cell

state transitions.
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1.4 Applications of single cell analysis in cancer genomics

Recent technical advances in single-cell technologies have transformed our overall un-

derstanding of biology and opened up new research avenues. This powerful technology

has dramatically enriched our knowledge of cancer progression in terms of invasion,

metastasis and therapeutic responses. One can envision numerous novel unexplored

applications of this technology in the field of cancer management. Some of the appli-

cations discussed are in Figure 1.1.

1.4.1 Pseudotemporal analysis and RNA velocity

scRNA-seq can capture a high-resolution view of gene expression patterns in a het-

erogeneous cell population. Thus, scRNA-seq provides a more accurate way of scru-

tinizing dynamic and complex processes like cell cycle, cellular differentiation, and

activation. One instrumental approach to exploiting scRNA-seq data to gain valuable

biological insights is to order cells along a hypothetical time trajectory computationally.

A computational approach called trajectory inference or pseudotemporal ordering anal-

ysis models such dynamic processes, which order cells based on their passage through

the process or reflect the gradual transition of their transcriptomes. Over the last few

years, a plethora of pseudotemporal ordering methods have been developed, and even

new ones are emerging every month [99][168]. A monocle is an unsupervised approach

for ordering single cells in pseudotime. To resolve complex biological problems, Mon-

ocle uses a machine learning approach such as Reversed Graph Embedding to learn

the principal graph from single-cell datasets [195]. Another method, TSCAN that em-

ploys a cluster-based minimum spanning tree (MST) procedure to order single cells

for studying dynamic changes in single gene expression profiles along the pseudotime

[99]. SCUBA is another approach that utilizes bifurcation analysis to uncover lineage

relationships from single-cell transcriptomes. Another approach RNA velocity incor-

porates mRNA dynamics to predict the future cell states on a timescale of hours to aid

in the analysis of developmental processes and cellular dynamics [136]. Such methods

could help study cancer development and cancer mechanisms, such as identifying cel-

lular state transitions in cancer. RNA velocity and trajectory inference methods hold

considerable potential in detecting underlying mechanisms of altered cell development
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processes in cancer pathogenesis [58].

1.4.2 Characterization of Intratumor heterogeneity (ITH)

Cancer is a highly heterogeneous disease displaying a high degree of phenotypic diver-

sity impelled by molecular anomalies at various levels such as genetic, epigenetic, and

transcriptomic in cells that communicates within lucid spatially assembled microen-

vironments. Solid tumors are composed of neoplastic cells and mesenchymal cells.

Furthermore, in a single lesion, multiple subclones are present within the tumor cells,

complicating tumor samples’ analysis. Such heterogeneity poses significant challenges

to the current standard of care by promoting metastasis and resistance to therapy, thus

ultimately influencing clinical outcomes. Therefore precise delineation of heterogene-

ity is critical for characterizing underlying mechanisms of carcinogenesis, developing

novel and effective treatment strategies, and drug development. Single-cell technol-

ogy offers a powerful tool to differentiate intratumor heterogeneity (ITH) and provide a

precise measure of genomic diversity in solid tumors. Interrogation of complex clonal

genotypes is possible due to single-cell sequencing. It has enabled the detection of ge-

netic diversity among different cancer types. In patient-derived xenograft models of

lung adenocarcinoma, scRNA-seq identified drug-resistant tumor subclones. Further,

scRNA-seq accentuated previously unappreciated intratumor heterogeneity in primary

glioblastoma and deciphered that this heterogeneity is linked with potential prognostic

implications [58][128][154]. A novel approach called Reference component analysis

was developed, which helped in the unraveling of cellular heterogeneity in colorectal

tumors through characterizing abnormal cell states within a tumor [125].

1.4.3 Distinguishing malignant cells from non-malignant cells

Various computational strategies and methodologies have been developed to discrim-

inate malignant cells from non-malignant cells. Malignant cells often display altered

pathways and unique activated oncogenic programs illustrative of cancer. Their genetic

makeup and transcriptional programs are quite pronounced from normal cells that they

can be identified using clustering techniques. Different methods have been developed

to identify cell clusters, but it is challenging to annotate them as malignant or non-
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malignant. In some cancers, detecting specific marker genes or investigating gene-set

enrichment can differentiate malignant and non-malignant cells. However, sparsity and

prevalence of dropouts in scRNA-seq data may subject marker-based classification to

false negatives. Aberrant upregulation of cancer-associated pathways and oncogenic

signatures might help annotate neoplastic cell clusters. For instance, the scRNA-seq

analysis of glioblastoma revealed the presence of neoplastic subpopulations displaying

upregulated transcriptional programs associated with oncogenic signaling and prolifera-

tion. Another method to differentiate cancerous cells from non-cancerous cells involves

the detection of large-scale copy number variations (CNVs) by exploring gene expres-

sion profiles of malignant cells compared to reference normal tissue [57].

1.4.4 Inferring cell-cell communication with the tumor microenvi-

ronment

Cell-to-cell communication mediated by ligand-receptors plays a vital role in the devel-

opment and cancer progression. It allows cancer to reprogram the tumor microenviron-

ment and cells at distant sites. The crosstalk between malignant cells and non-malignant

cells in the intricate tumor microenvironment is crucial for the progression of tumor

and dissemination, therapeutic resistance, immune infiltration, and inflammation [39]

[113]. Given the relevance of receptor-ligand interactions on patient outcomes, thera-

peutic choices that target these interactions have become indispensable in the clinical

management of cancer. For instance, ipilimumab (immune checkpoint inhibitor) blocks

CD28 and CTLA4 interaction. These therapeutic agents have promising results in some

tumor types. However, response rates are limited primarily due to the intricate network

of cellular interactions operating in the tumor microenvironment, our comprehension

of such networks is still limited. To uncover the interactions that could be targeted, it

is necessary to comprehend the vast expanse of cellular interactions operating in tumor

microenvironments and by what means such interactions influence patient outcomes

[113]. scRNA-seq approaches allow characterizing many cell types within the tumor

microenvironment. scRNA-seq methods to infer cell-cell communications generally

rely on comparing gene expression levels of receptors in one cell type and their cor-

responding ligands in other cell types using existing catalogs of receptor-ligand pairs.

CellPhoneDB is a novel repository of ligand-receptor interactions that computes the
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mean expression of receptor and ligand genes in their respective cell types [53]. The

statistical significance of the mean is assessed by comparing it to the null distribution.

To assess statistical significance, a graph-based strategy for producing null distribution

has been used as well [182]. The putative intercellular communications can also be

assessed by estimating the correlation between the expression of receptor gene and lig-

and gene across single-cell datasets [57]. A computational method called NicheNet was

developed that incorporates gene expression data with prior information on cell-cell sig-

naling and gene regulatory networks to predict ligand-target links for interacting cells

[25].

1.4.5 Therapy resistance and response

Since the past decade, technological advances in high-throughput biology are result-

ing in the generation of an increasing volume of biological data. Given the abundance

of data, it is obvious to benefit from data-oriented recommendations in precision on-

cology. Precision oncology strives to provide tailored treatments based on the distinct

characteristics of a patient’s tumor. This aim is based on the notion that as the volume

of data increases, better computational models are increasingly being utilized to predict

drug response precisely by integrating data from multiple sources. This is important to

aid clinicians in selecting the most effective treatment options available [215][76]. This

has been fueled chiefly in part by a paradigm shift in cancer classification from purely

relying on histopathological characteristics of tumors to the interrogation of molecular

features that indicate treatment responses [12]. Various machine learning algorithms

have been created for improving drug sensitivity analysis.

Some of these include kernelized bayesian matrix factorization (KBMF) approach

for predicting drug response through leveraging known pathway-response associations

[7], matrix factorization for predicting drug response using cell line and drug struc-

tural similarity [201]. Another method CDRscan, a deep learning framework for drug

response prediction that uses cancer genomic signatures, was proposed by Chang and

colleagues [34]. Sakellaropoulos, Theodore, et al. reported that deep neural network-

based drug response predictions perform better in comparison to ElasticNet and Ran-

dom Forest. Liu, Chuanying, et al. suggested an ensemble learning approach that

simultaneously incorporates a low-rank matrix completion and a ridge regression ma-
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chine learning model for drug response prediction in cancer cell lines [131]. Initially

bulk profiles have been used for training these models, but single-cell data-based tech-

niques are beginning to show potential [1]. Though many cancers show preliminary

responses to chemotherapy or targeted drugs, most tumors eventually develop therapy

resistance. The evolution of therapy resistance in human cancers is often poorly under-

stood. Key questions remain whether a drug-resistant subpopulation is already present

in the tumor mass, i.e., adaptive resistance, or whether resistant phenotype evolves after

therapy administration, i.e., acquired resistance.

Furthermore, epithelial to mesenchymal transition and cellular plasticity might con-

fer drug resistance. The emergence of single-cell technologies has made it feasible to

develop patient-tailored therapies. It has been used to predict drug sensitivity in multiple

myeloma and optimize treatment strategies in renal cell carcinoma. Also, scRNA-seq

identified several signaling pathways in lung adenocarcinoma cell lines associated with

drug resistance [128] [145]. Integrating single-cell profiling with strategies that can

quickly discover the effective and promising combinations of drugs will likely play a

vital role in improving cancer care [1].

Apart from the applications discussed above, single-cell technologies also help in-

terrogate and characterize circulating tumor cells (CTCs). The analysis of CTCs is a

valuable tool to comprehend the biology of cancer metastasis, tracking disease pro-

gression, and clinical management of the condition. scRNA-seq of CTCs provides

considerable details on their tumors of origin and is a powerful method allowing fair

identification of CTCs. Recently, unCTC was developed to enable unbiased detection

and characterization from single-cell gene expression profiles. unCTC provides many

features, including standard and unique computational approaches and statistical mod-

ules for various analyses [158].
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Figure 1.6: Applications of single cell sequencing in cancer

1.5 Scope of thesis

scRNA-seq technology has been widely employed to uncover intracellular heterogene-

ity at highly unprecedented resolution. scRNA-seq transcriptomic analysis has enabled

researchers to unveil new and startling biological discoveries compared to typical bulk

methods. Many computational tools were developed for cell clustering, lineage in-

ference or pseudotemporal ordering, marker gene identification, cell type annotation,

and visualization of the single-cell datasets. However, achieving greater biological and

functional interpretability is often challenging.

Pathways are biological networks in which genes work in coordination but not inde-

pendently to achieve specific cellular functions in discrete cell types. This is crucial in

characterizing transcriptional diversity, disease subtype classification and drug discov-
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ery and development. At the single cell level, pathway activation analysis, a powerful

approach involves transforming gene expression data into meaningful gene sets to cap-

ture biologically relevant information and uncover the potential mechanism of cellular

heterogeneity and irregularities in diseases [230] [231].

Inspired by the biological significance of pathways, we aim to develop a statistical

and computational based algorithms to represent genes in meaningful gene sets and

pathways at a single cell level and exploit pathway space for clinical applications. We

have addressed three key issues in this context, outlined below.

1.5.1 Representation of single cells in terms of pathways

Single-cell transcriptome and open chromatin data often suffer from high technical

noise, dropouts, and sequencing depth issues. To decipher cellular heterogeneity from

single-cell transcriptomes, we addressed the issue of depicting single cells in mean-

ingful gene sets and pathways by utilizing their gene expression and open chromatin

profiles while accounting for dropouts and sequencing depth. There are rarely any stud-

ies that have used single-cell open chromatin profiles for pathway analysis. Further,

existing methods such as GSEA do not fully solve the objective of interrogating hetero-

geneity of pathway activity at the single-cell level. Then, other classes of methods such

as SVA, RUV, scLVM, and f-scLVM do not provide gene set or pathway enrichment

scores in every single cell. Although PAGODA provides pathway scores in every cell,

however, it is computationally not fast and is not able to deal with single-cell profiles

having a relatively less heterogeneous population of cells. On the other hand, AUCell is

mainly used for cell-type identification but is not for clustering and pseudotemporal or-

dering of scRNA-seq data. The number of downstream analyses, including clustering,

pseudotemporal ordering, and exploitation of pathway co-occurrences to differentiate

two groups of cells using pathways estimated using our approach, have revealed novel

biological insights that are difficult to achieve via gene expression profiles.

1.5.2 Drug response prediction using pathway activity scores

Predicting tumor sensitivity to specific targeted therapies has been a challenge of ut-

most importance for personalized medicine. The majority of the current models to
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predict drug responses use gene expression profiles, but genes’ biological interpretabil-

ity is limited. However, pathway-based strategies to predict drug response in cancer

offer more useful biological insights as therapies work through the concerted action

of genes within pathways. We demonstrated the utility of molecular drug descriptors

and pathway activity scores for predictive drug response modeling. We assessed the

efficiency of our model on single-cell and bulk RNA-seq profiles. A limited number

of studies have leveraged subclones profiled at single-cell resolution for drug response

prediction. We evaluated our model using several in-house generated prostate cancer

(PCa) data including cell lines and xenografts exposed to different treatments. We fur-

ther tested our approach on pan-cancer RNA-seq profiles from The Cancer Genome

Atlas (TCGA) compendium. Our results revealed that pathway activity scores are in-

dicative of drug resistance and sensitivity. Thus, integration of pathway activity scores

with drug structure information to predict drug response will aid in developing patient-

tailored therapies and clinical decision support systems.

1.5.3 Analysis of tumor-immune cell doublets at single cell level

Studying intercellular communication and physical interactions between cells is es-

sential in order to comprehend cancer initiation, progression, and immune responses.

Although there have been significant refinements in high-throughput microscopy and

single-cell technology, methods to quantify live cellular interactions are inadequate.

Here, we interrogated the triple-negative breast cancer, and Natural killer cell doublets

transcriptomes and physical distances captured utilizing a novel microfluidic integrated

fluidic circuit (IFC) platform that revealed novel biological insights. This enabled the

characterization of distinct molecular signatures operative in NK cells having the po-

tential to kill tumor cells. Further, our results revealed that cell-cell interactions and

physical distance between cells are governed by complex regulatory activities, pinpoint-

ing the existence of transcriptional memory as an essential governing strategy of cells.

Additionally, we delineated increased correlation in some specific ligand-protein pairs

in cancer-immune doublets. Cell-cell communications are manifested through specific

ligand-protein pairs interactions that activate signaling pathways that might be involved

in regulating cancer. Thus, this platform can help researchers investigate cell-cell inter-

actions at single-cell doublet resolution to gain an understanding of tumor progression
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and design and administer NK cell-based immunotherapies.
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CHAPTER 2

Transformation of single cell transcriptomics and

epigenomics data in pathway scores using UniPath and

its evaluation

2.1 Introduction

Single-cell sequencing technologies in transcriptomics and epigenomics have emanated

as a powerful tool to delineate complex and dynamical biological systems and unveil

cellular heterogeneity at an unprecedented level. They have paved the way for nu-

merous new opportunities and challenges. Despite the goodness, technical issues, i.e.,

dropouts and sequencing depth, are critical challenges in analyzing single-cell datasets.

Therefore meaningful transformation of read counts is necessary for the comprehensive

characterization of cellular heterogeneity. Studying single cells in terms of biological

pathways has emerged as a powerful approach to uncover potential underlying cellular

heterogeneity mechanisms and dissect complex diseases such as cancer.

Cellular heterogeneity and diversity among single cells are often used for defining a

cellular composition of heterogeneous tissues, rare cell type detection, and interrogating

the regulation of genes and transcription factors [100] [29]. However, novel questions

and applications such as discovering co-occurrence among pathways, developmental

potency, and lineage of cells and uncovering more specific targeted pathways for cancer

therapy can be addressed and explored by representing single cells in meaningful and

functional gene sets or pathway scores. There are tools for gene set enrichment analysis

such as GSEA [186]. Still, their applicability is limited in deciphering heterogeneity of

pathways at single-cell resolution since they utilize a differential gene expression-based

approach between the group of cells.

There is another category of tools used for capturing cellular heterogeneity such as

SVA [120], RUV [64], scLVM [29] and f-scLVM [30] furnishes relevance score for a

group of single cells. While on the other hand, PAGODA [56] and AUCell [3] methods



provide relevance and enrichment scores in every single cell. PAGODA accounts for

variability and high dropout rate in scRNA-seq data while computing scores for gene

sets, but it is quite slow and is designed for handling a relatively more homogeneous

population of cells. While AUCell is mainly used for identifying cells with one or two

active gene signatures at a time. However, it isn’t generally utilized for other scRNA-seq

downstream analyses like clustering and pseudotemporal ordering. The main obstacle

in modeling every single-cell gene expression profile into multiple pathways’ enrich-

ment scores is the default reliance on gene read count data. The vast proportion of zero

in scRNA-seq data due to dropouts or true low gene expression and sequencing depth

issues among single cells makes statistical modeling of single-cell open chromatin pro-

files and single-cell transcriptomics data challenging. Additionally, there has seldom

been any attempt to utilize single-cell open chromatin profiles for transformation into

pathways scores for clustering and pseudotemporal ordering. Therefore, there has been

a requirement for a uniform approach to transforming single-cell RNA-seq and single-

cell open chromatin profiles from homogeneous and heterogeneous cells or samples

into pathway or gene set enrichment scores.

To this end, we developed UniPath to tackle the challenge of representing single-

cell transcriptomes and open chromatin profiles in respect of pathways and gene set

activity scores despite sequencing depth and variability in technical noise among cells.

Instead of scaling or normalizing read counts using parametric distributions like nega-

tive binomial or Poisson distribution to avoid inadvertent artifacts, we use the common

null model for adjusting pathways scores computing using scRNA-seq. The division

of read counts by global accessibility scores highlighting the enhancers is utilized in

single-cell open chromatin profiles (Figures 2.1). Comprehensive benchmarking of our

methodology for estimating gene set enrichment scores and null models was performed

using publicly available single-cell datasets. Further, we developed a method for pseu-

dotemporal ordering of single cells in pathway space to avoid biases observed in the

temporal order by using gene expression profiles directly. We have applied UniPath on

several single-cell datasets to attain biologically relevant results that gene expression

cannot achieve.
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Figure 2.1: Overall schematics of UniPath workflow. For scRNA-seq, UniPath first
transforms single-cell profiles into P-values that are combined utilizing
Brown’s method for individual gene sets. Then, the null model is used to
adjust the combined p-values. This yields the final adjusted pathway score
matrix. For scATAC-seq profiles, UniPath converts scATAC-seq profiles to
pathway or gene set enrichment scores by highlighting enhancers and using
the Hypergeometric or Binomial test. For highlighting enhancers, global
accessibility scores are used to normalize read count at a peak.

2.2 Methodology

2.2.1 Computing gene sets enrichment scores for single-cell open

chromatin profiles

The majority of cell types harbor high open chromatin accessibility in their regulatory

elements or sites such as insulators and active promoters. However, studying the sites

having activities specific to particular cell type such as enhancers could help decipher

differences in cells by leveraging single cell open chromatin profiles. Besides, enhancer

profiles can give a clear view of pathways active in a cell. Thus, UniPath first highlights

each cell’s enhancers by normalizing the scATAC-seq read count data by accessibility
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scores. The accessibility scores are computed for the combined DNA-seq and ATAC-

seq peak list sourced from ENCODE and IHEC consortiums [31]. The accessibility

score is determined for a site as the fraction of cell types in which it is identified as an

open chromatin peak. The tag count normalization is done as

ti,j =
pij

ai + ϵ

Here pij represents the tag count for peak i in a single cell j, ai denotes the global

accessibility score for peak i and ϵ is a pseudo count. Using this approach of global ac-

cessibility scores for highlighting enhancers doesn’t require any tag count normalization

between cells. Further, it enables the consistent conversion of the scATAC-seq profiles

from multiple research groups without recomputing counts from the aligned DNA reads

on a common peak list. Then, for each cell, peaks with high normalized read counts

constitute a foreground set, and the background set consists of all the peaks. Generally,

we have set a default cut off of 1.25 above global accessibility for selecting foreground

peaks. However, the threshold can vary as per more stringent requirements. The set

of foreground peaks is likely to represent regulatory sites and enhancers exhibiting cell

type-specific activity. Then peaks having proximal genes within 1Mbp distance are re-

tained. UniPath provides two statistical methods, Hypergeometric and Binomial tests,

for computing gene set enrichment scores. For the Binomial test, we have used the

formula:

n∑
i=km

n!

i!(n− i)!
pim(1− pm)

n−i

The test computes P-value or statistical significance for the gene set m. Here km

denotes the number of occasions proximal genes out of n peaks of foreground set are

from m gene set. pm is the probability that genes belonging to gene set m appear to

be proximal to peaks in the background set. In the case of the Hypergeometric test,

statistical significance or P-value of gene set enrichment is calculated using the below

equation:

min(n,Km)∑
i=km

(
Km

i

)(
N−Km

n−i

)(
N
n

)
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HereKm denotes the same as described above for the binomial test,m represents the

number of times genes in the gene set m happens proximal to peaks in the background

list and N represents the total number of peaks present in the background list.

2.2.2 Computing gene set enrichment scores for single-cell gene ex-

pression profiles without normalization

To estimate the importance of pathway enrichment in scRNA-seq profiles, we utilized

logarithmic gene expression that could include FPKM, TPM, RPKM, and UMI counts

values and treated each cell independently from the other. Instead of scaling and nor-

malization across different cells, which might generate artifacts due to noise and gene

dropouts, we use the generally recognized fact that non-zero gene expression values in

a cell or sample follow an approximately log-normal distribution. UMI count data was

treated as expression data as they are generally free of any biases due to gene length

[156]. We modeled the gene expression (log) values as bimodal distribution. One mode

represents genes having zero expression, and the other mode is the normal distribution

of expressed genes. For expression value (log) x in a cell, the probability distribution

function (pdf) can be defined as

f(x) = p0I(x = 0) + (1− p0)N(x;µ, σ)

N (x; µ, σ) signifies Gaussian pdf for genes having non-zero expression, indicator func-

tion is represented by I(x = 0), and p0 depicts a fraction of genes having no expression

covering both those which are lowly expressed and those suffering from dropouts. The

µ and σ denote the mean and standard deviation of log values for non-zero expression

only in a single cell. For each cell, it’s on µ and σ are used to transform log non-zero

expression values into P-values making an assumption of Gaussian distribution. The ad-

vantage of converting gene expression values into P-values is that they can be combined

using Brown’s method. Thus, P-values of genes belonging to the gene set having depen-

dence on each other are combined using Brown’s method [157]. Hence, we combined

P-values using Brown’s method for a gene set having k genes with non-zero expression

values is given by

Pcombined = 1.0− ϕ2f (ψ/c)
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Here ψ = −2
k∑

i=1

logPi and Pi represents the P-value of gene expression (log) of gene

i in a cell or sample. ϕ2f represents the cumulative distribution function for chi-square

distribution X2
2f . f stands for the scaled degree distribution and is computed using the

equation

f = E[ψ]2/var[ψ]

The value of c in the Pcombined equation is estimated as

C = var[ψ]/2E[ψ]

where

E[ψ] = 2k

and

var[ψ] = 4k + 2
∑
i<j

cov(−2logPi − 2logPj)

This approach results in the computation of the combined P-value for every gene set

in each cell independently. The covariance among log P-values of genes is computed

by utilizing their values in all the cells from the same datasets. To have a robust esti-

mate that is not influenced by one or two genes, a minimum cut off of 5 genes having

some expression values is used to compute the combined P-value for a gene set. We

use Brown’s method for combining P-values and these P-values are corrected with the

permutation-based approach that uses a null model as combined P-values might have

been influenced by housekeeping genes, multiple hypothesis testing, and insignificant

enriched gene-sets.

We downloaded multiple scRNA-seq datasets from the recount2 database [42] to

create a null model. We randomly selected cells from these single cell studies to have

a uniform representation of multiple cell types. We selected highly variable 500 genes

using the coefficient of variation approach and conducted hierarchical clustering of the

cells. Using the dynamic cut tree approach, we obtained clusters of cells. We selected

1000 pairs of cells so that every pair consists of cells belonging to different clusters to

ensure that the null model has sufficient heterogeneity. For each pair, the mean expres-
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sion value of all the genes was computed. Therefore, the null model comprised 1000

false cells or expression vectors, each corresponding to the mean of gene expression

vectors of pair of cells. For the null model, combined P-values of teach gene sets were

computed for every false cell using the aforementioned method. Thus for every gene set

or pathway, we acquired 1000 P-values equivalent to the number of false cells present

the null model. We consider the proportion of false cells in a null model to adjust or

correct the P-value for a pathway in a specific cell with a lower combined P-value than

the target cell.

2.2.3 Pseudotemporal ordering of single cells using UniPath com-

puted pathway scores

Almost all approaches of pseudotemporal ordering that leverage single cells directly ex-

ploit gene expression profiles. However, pathway or gene-set scores can elude covariate

effects and impart weightage to biologically relevant pathway activity. Consequently,

we devised a novel pseudotemporal ordering approach that can perform reliably on

pathway enrichment scores of single cells. First, prior to detecting the order between

the cell clusters, our approach conducts hierarchical clustering of cells. Then weighting

of distance and finally learning the minimum spanning tree is performed. This strategy

is based on Zhicheng and colleagues’ findings that detect minimum spanning tree by

considering direct distances between cells. For instance, Monocle 1 [195] can result in

the incorrect links among cells owing to technical noise or other biases [99]. However,

we do follow the approach of Zhicheng and colleagues entirely as it does not provide re-

liable order of cells at the single-cell level. Therefore, we developed a method in which

pathway scores based initial clustering of cells were followed by shrinking distances

between every cell pair while accounting for their belongingness to the same class and

based on the neighborhood index among their classes. We first compute every cell’s top

k nearest neighbor to compute the neighborhood index between classes. Then we count

how many times each class’s cells have top k neighbors in other classes. For instance,

if cells belonging to class A have total of M neighbors in different classes with mb

cells belonging to class B, then A’s neighborhood index with B (A -<B) is computed

as mb/M . Distance between the cells in class A and B is shrunk by mb/M . Then this

shrunk distance matrix is used for finding the minimum spanning tree, which is plotted
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using the netbiov R library [196]. This approach of finding a minimum spanning tree

has lower chances of being impacted by noise as the shrinking distance between cells

is based on consensus information.

2.2.4 Differential pathways co-occurrence analysis

To determine the relevance of the different patterns of pathway co-occurrence in two

kinds of cells permutation test was used. The difference in values of Spearman corre-

lation of pathway scores, i.e., for adjusted p-value in two kinds of cells, was computed

for every pathway pair. This difference is referred to as true difference. Firstly, group

labels of the cells were subjected to random shuffling. This was followed by the com-

putation of differences in the Spearman correlation values of adjusted p-values for the

two shuffled groups. This resulted in the compilation of vectors of false differences in

correlation for a pair of pathways utilizing shuffled groups. The P-value is determined

as a fraction of false differences bigger than the true difference in terms of absolute

value. Here, we have computed the difference in Spearman correlation for adjusted p-

value, which increases the robustness of this approach as it turns into rank-based scores

that assist in subduing effects because of only one or two genes. Thus, the correlation

between two pathway pairs manifested through adjusted P-values is less likely to be

influenced by one or two genes or outliers.

2.2.5 Experimental methodology

Wang et al. [206] reported the source and culture conditions for Tumour sphere (TS) and

Adherent (Adh) cells. TS cell line obtained from lung cancer patient was maintained

in the medium supplemented with DMEM/F12 (US Biomedical), Sigma Bovine Serum

Albumin (4mg/ml), Non-essential amino acids, sodium pyruvate (Life Technologies),

and Epidermal Growth Factor (20 ng/ml), bovine Fibroblast Growth Factor (4 ng/ml)

and Insulin – Transferrin Selenium (Sigma). While for Adh, cells were cultured in

similar conditions as described above but without the addition of bFGF, EGF, ITS, and

BSA. Media was also supplemented with fetal bovine serum (10%).
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RNA extraction, library preparation, and single-cell sequencing for NSCLC cells

Non-small-cell lung carcinoma (NSCLC) single-cells in suspension were dissociated

using trypsin followed by loading into C1 96 well-integrated microfluidic chip (IFC) as

per the manufacturer’s instruction. The Fluidigm-C1 system captured single cells on C1

96 (large size). Then, to identify viable single cells and discard doublets from the sin-

gle cells captured, single cells were imaged utilizing an auto imaging fluorescent micro-

scope. The SMART-seq2 protocol was utilized to prepare reagents for reverse transcrip-

tion and cDNA pre-amplification to be loaded into the IFC. Then, reverse transcription

and cDNA amplification were automatically performed through the SMART-seq2 script

in the C1-Fluidigm machine. cDNA was harvested from the C1 chip, and picoGreen as-

say was used to quantify the samples and normalized to the range of 0.2–0.3 ng/µl. The

cDNA product quality was assessed using an Agilent bio-analyzer machine. Utilizing

the Illumina Nextera XT Library Prep Kit, the single-cell cDNA was barcoded on a 96-

well plate. Single-cell libraries with unique barcodes were pooled and sequenced using

an Illumina HiSeq-Hi-output-2500 sequencer. In total, we obtained 87 trasncriptomes

of TS cells and 75 trasncriptomes of Adh cells.

2.2.6 Data availability

The raw and processed single-cell RNA-seq lung cancer data is available from GEO id:

GSE156138

2.2.7 Code availability

https://reggenlab.github.io/UniPathWeb and https://github.com/

reggenlab/UniPath

2.3 Results

To transform scRNA-seq gene expression profiles into pathway or gen set scores, we

treat each cell independently. The gene expression quantified in terms of RPKM (read

per Kilobase per million) and FPKM (fragment per kilo per million) generally has a
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bimodal distribution. Here, one mode represents genes having zero expression val-

ues, and the other mode corresponds to the genes having non-zero expression values.

We have converted the non-zero gene expression values from different gene expression

quantification strategies, including FPKM, RPKM, TPM, and UMI-counts, to P-values

utilizing log-normal distribution based on the theoretically accepted assumption that

non-zero expression values within the sample or cells follow a log-normal distribution

[143]. In the case of UMI counts, we use log-transformed UMI counts to compute

p-values. UMI counts don’t require to be normalized by gene length to get gene ex-

pression [156]. The study by Furusawa et al. [63] also supported the assumption that

non-zero expression values follow a log-normal distribution. Furthermore, skewed dis-

tributions frequently fit log-normal [130]. We use Brown’s method which tends to lower

the effect of co variation between genes to combine P-values of the genes in the gene

set. The P values combined using Brown’s method are adjusted through employing a

null model created through the Monte Carlo technique (methods). The null model is

used to pinpoint cell-type-specific pathway activity. The adjusted p-value of a gene set

or pathway is referred to as its score in a single cell.

2.3.1 Assessment of UniPath’s approach

In the absence of standard gold standards, the evaluation of gene set enrichment meth-

ods for heterogeneous bulk samples is not trivial. However, to test methods like Uni-

Path, single cells from well established cell lines, cell-type-specific marker gene sets can

be directly used. We used cell type-specific marker gene sets to compare our method

UniPath with the existing single-cell methods like PAGODA [56] and AUCell [3]. We

also compared our approach with GSVA [81] which was designed for bulk RNA-seq.

UniPath outperformed PAGODA, GSVA, and AUCell in computing gene-set enrich-

ment for the right cell type as one of the top 5 enriched terms in a systematic assessment

using scRNA-seq gene expression profiles from ten publicly available datasets (Figure

2.2A). We performed comprehensive evaluation of UniPath using 10 single cell studies

(see Appendix A, Figure A.1). The aim of using the marker gene-set specific to mul-

tiple cell-types was to test the correctness of gene-set enrichment for the downstream

analysis involving clustering and pseudotemporal ordering. To elaborate further, we

created a set of non-immune-associated pathway terms, and as a spike in, we included
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two known pathway terms related to B cells. Two T cells associated gene sets were also

added to the same set. We looked at how many cells had these suitable terms in the top

5 enriched terms (Figure 2.2B).

UniPath was significantly more accurate than the other 3 methods namely, PAGODA,

AUCell, and GSVA in identifying the correct respective pathways in the top 5 enriched

pathway terms (Figure 2.2B) in this control experiment for B cell and T cell [96]. To

further ensure unbiased results, we used GSEA [186] to build a reference list of sub-

stantially enriched gene sets considering FDR of 0.2 in T cells compared to others in

the mouse cell atlas (MCA) dataset [78]. We evaluated UniPath and compared it to the

other three methods regarding the appearance of gene sets from the reference list in the

top ten terms in each single T cell. We have considered gene sets in the reference list as

positives for T cells. On comparing to PAGODA, AUCell, and GSVA, we noted Uni-

Path had a significantly higher level of existence of reference gene-sets, i.e., positives

among the top ten term enriched terms (Figure 2.2B). We found similar findings when

we repeated the experiments with B cells, demonstrating that UniPath better estimates

gene set enrichment for specific cell types in single cells.

We also looked at the consistency of UniPath’s pathway enrichment compared to

the other three approaches—PAGODA, GSVA and AUCell. We investigated scRNA-

seq gene expression profiles of B (GM12878) [124] cells while combining them with

different cell types each time. The pathway or gene set scores were not consistent for

PAGODA and GSVA, and for each cell, scores were relying on the cell type composition

of the dataset. On the other hand, UniPath and AUCell computed gene set enrichment

scores for a cell remain consistent and are unaffected by adjacent cells (Figure 2.2C).

Thus, UniPath also solves the problem of consistently pinpointing correct gene sets and

related pathways for every single cell, regardless of the degree of cellular heterogeneity

in the scRNA-seq data.
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Figure 2.2: Assessment of UniPath utilizing scRNA-seq gene expression profiles. (A)
Estimation of accuracy of correct detection of cell-type-specific gene sets
among top enriched terms. (B) Estimation of accuracy of pathway enrich-
ment for scRNA-seq gene expression profiles of B and T cells using UniPath
and other three methods. The bar plots are created using a gene set list con-
sisting of non-immune gene sets along with 2 relevant gene sets for B and T
cells (positives). The boxplots are created using all gene sets but pathways
or gene sets in the positive set were selected based on applying GSEA to B
and T cells from the MCA data. The boxplots depict counts of positives in
the top ten enriched pathway terms. (C) Scatter plot showing consistency
in pathway scores of UniPath when T or epithelial cells are combined with
B cells on comparing to PAGODA. When the similar cell is combined with
other cells, PAGODA’s pathway enrichment scores vary. UniPath’s output,
on the other hand, is consistent.

2.3.2 UniPath’s pathway or gene set enrichment scores as an alter-

native dimension-reduction approach for scATAC-seq profiles

To transform scATAC-seq profiles into pathway or gene set enrichment scores, Uni-

Path underscores the enhancers first by using global accessibility scores to normalize

read-count on peaks (see methods). It accomplishes this by intersecting a pre-collated

list of genomic regions with pre-computed global accessibility scores with the peak list

of an input scATAC-seq profile. The global accessibility score for a genomic site is
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proportional to the number of times it was detected as a peak in bulk open chromatin

profiles. The purpose of normalizing each peak’s read count utilizing its global acces-

sibility score is to maintain consistency while circumventing the fixing of sequencing

depth variability and dropouts. For each cell, a foreground set exhibits genomic loca-

tions with a high normalized read count. UniPath then uses genes proximal to peaks in

the foreground list to calculate the P-value or statistical significance of enrichment of

gene-sets using the Hypergeometric or Binomial test for each cell. The P-value of the

pathway or gene set enrichment is referred to as its score. We carried out a thorough

evaluation of the bulk ATAC-seq of immune cells [45] and various single-cell ATAC-seq

profiles using a cell-type-specific marker gene set [28] [27].
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Figure 2.3: Evaluation of UniPath on scATAC-seq data. (A) Accuracy of UniPath in
identifying precise gene-sets among top enriched terms for single-cell open
chromatin profiles of B cell (GM12878) and Monocytes using global ac-
cessibility scores for highlighting enhancers. (B) The pathway scores of
Hematopoietic progenitor cells combined with scores of B cells are more
consistent when enhancers are highlighted using global accessibility scores
in comparison to mean based normalization (local accessibility scores)

In bulk profiles and single-cell ATAC-seq profiles, UniPath highlights the right cell

type among the top 5 enriched gene-set most of the time (Figure 2.3A). The availability

of bulk open-chromatin profiles allows for creating a global peak list with accessibility

scores. If there aren’t sufficient publicly available open-chromatin profiles for a given

species, then one can utilize local accessibility scores (mean/median) for normalization

in UniPath for computing pathway scores. Local accessibility scores, on the other hand,

are dependent on the cell type composition in the single-cell dataset, which may result in
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inconsistency in computing gene-set or pathway enrichment scores (Figure 2.3B). Thus,

the UniPath reports consistent and mostly accurate pathway or gene set enrichment

scores for every cell independently using scATAC-seq profiles.

2.3.3 Dropout and batch effect handling and evaluation through

visualization and clustering

There is heterogeneity in the dropout rate among cells in single-cell scRNA-seq pro-

files, and dropouts in genes could either be systematic or random. Systematic dropouts

are generally caused by variations in sequencing depth or degradation levels of RNA

between different batches of samples. We tested the ability of UniPath to withstand

variability in systematic dropout among cells by simulating systematic dropouts us-

ing publicly available scRNA-seq datasets. We noticed that using PCA on raw gene

expression data resulted in the formation of the artifactual cluster due to systematic

dropout. However, a similar type of cells stayed in the same cluster when using UniPath

pathway scores, regardless of the dropout rate pattern (Figure 2.4A). UniPath pathway

scores yielded robust results as the same types of cells grouped together when scRNA-

seq profiles with 10 percent systematic simulated dropout. In contrast, other methods,

PAGODA, AUCell, and GSVA, formed artifactual clusters for cells with 10 percent

systematic dropout on the same dataset. We also used the publicly available dataset of

microglia cells having systematic bias or dropout. This dataset comprised single cell

profiles of fresh microglial cells and profiles of nuclei isolated from frozen tissues [68].

When gene expression profiles were subjected to t-SNE based visualization, frozen

cells’ expression profiles showed distinct clusters. Frozen cells formed their separate

cluster in the t-SNE plot even when highly variant genes were used. However, fresh

and frozen microglial cells were grouped together in a t-SNE scatter plot created us-

ing UniPath’s pathway scores. In addition to being robust to the systematic dropouts,

UniPath also facilitates correcting batch effect before computing adjusted P-values for

pathway enrichment using existing tools. UniPath’s framework avoids normalization

artifacts caused by the sequencing depth issues and variable dropout rate, allowing it to

be used for systematic clustering of single cells. UniPath-based pathway scores yielded

equivalent clustering-purity to raw gene expression-based results during hierarchical

clustering. Thus, UniPath and gene expression-based clustering and visualization re-
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sults could be comparable but for scRNA-seq harboring systematic dropouts, UniPath

based pathway scores are more valuable than raw gene expression to avoid artifactual

clusters.
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Figure 2.4: UniPath’s pathway score based reduction of artefacts and clustering. (A)
Visualization of scRNA-seq profiles of human ESC and myoblasts in terms
of PCA. PCA was performed using gene expression data from scRNA-seq.
In PCA-based visualization of raw gene expression profiles, simulation of
10 percent systematic dropout in genes in some hESCs results in forming a
distinct group of hESCs. Regardless of systematic dropout, PCA on Uni-
Path’s pathway scores resulted in the clustering of ESCs in the same cluster.
(B) scRNA-seq gene expression data of kidney cells from mouse cell atlas
data were transformed to pathway scores. Pathways scores were subjected
to t-SNE based visualization, and clustering efficiency was assessed using
clustering purity, ARI, and NMI using different eps parameters of the db-
scan method. Visualization and clustering results of scRNA-seq profiles
transformed into pathway scores were compared for four different methods.

We also evaluated visualization and grouping for four different methods of scRNA-

seq gene expression profiles transformed into pathway scores. We used t-SNE for vi-
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sualization and dbscan with different eps values [194] to perform clustering of t-SNE

coordinates. UniPath pathway scores provide better clustering purity for different val-

ues of the dbscan eps parameter. The adjusted rand Index (ARI) and normalized mutual

information (NMI) values for UniPath-based clustering were also higher than the other

three methods: PAGODA, AUCell, and GSVA (Figure 2.4B). Better visualization and

clustering with UniPath enabled us to find biologically meaningful and relevant groups

of stromal cells in the Uterus tissue in MCA dataset. Using pathway scores of imputed

scATAC-seq profiles for hierarchical clustering resulted in reasonably good clustering

purity (Figure 2.5).

Figure 2.5: Evaluation of clustering purity in scATAC-seq profiles. t-SNE based vi-
sualization of scATAC-seq profiles transformed into pathway enrichment
scores.

We further compared UniPath’s clustering and visualization of scATAC-seq profiles

with the output of the other two methods, ChromVar [174] and SCALE [216]. How-

ever, these methods handle scATAC-seq count data and are not for computing gene

sets or pathway enrichment scores. On comparing to output of ChromVar and SCALE,

UniPath pathways scores of imputed scATAC-seq profiles were better or comparable in

terms of visualization and clustering results. The high clustering purity achieved using

gene set or pathway enrichment scores demonstrates that UniPath could be an efficient

method for characterizing single-cell open chromatin and transcriptomics datasets in

terms of pathway activities.

2.4 Discussion

UniPath bridges the gap between the need for consistent and uniform gene set enrich-

ment methods for various applications and the availability of a wealth of single-cell
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transcriptomics and open chromatin data. UniPath is scalable and provides consistent

gene set enrichment scores due to its novel strategy of treating every cell independently

and the usage of global null models. Further, utilizing the normalization-free approach

for converting single-cell gene expression profiles into pathway scores helps handle

noise in cell-to-cell variability, sequencing depth, and gene dropouts. UniPath can with-

stand systematic dropouts and can handle strong technical batch effects in scRNA-seq

profiles.

UniPath pathway scores resulted in reasonably better visualization and cluster-

ing purity than other comparable methods. The pathway scores computed using Uni-

Path improved visualization and clustering accuracy scRNA-seq gene expression pro-

files including UMIs and non-UMI datasets, compared to other comparable methods

(PAGODA, AUCell, and GSVA). Downstream analysis of scRNA-seq and scATAC-seq

profiles is similar after transformation into pathway scores. Therefore, UniPath pro-

vides a uniform and stable platform for investigating single-cell transcriptomics and

open chromatin data in terms of pathways. It is recommended to perform imputation

using other techniques to improve UniPath’s performance on scATAC-seq profiles [70].

Using UniPath’s approach, multiple scATAC-seq profiles can be transformed to the

same feature set regardless of differences in peak list. Further, we demonstrated that

scRNA-seq fresh and frozen samples were mixed as visualized through t-SNE instead

of gene expression profiles in pathway space. Overall, UniPath is a robust tool for

the conversion of scRNA-seq and scATAC-seq profiles into pathway scores. Further,

UniPath can be used for other sequencing technologies, including single-cell spatial

transcriptomics [214], cDNASE-seq [44], or SNARE-seq [38].
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CHAPTER 3

Applications of UniPath

A wealth of high throughput sequencing data have become available that uncovers cell

states in different diseases and normal conditions, thus facilitating understanding of

the complex biological system. However, the challenge is in procuring reliable and

predictive molecular biomarkers for the identification of a disease or biological state,

defining personalized treatment regimens, and unveiling critical biological processes

and underlying mechanisms [176]. Biological pathways are of particular interest as they

drive many biological processes that are crucial for classifying complex diseases such

as Cancer, functional characterization of cellular heterogeneity, and diversity. Thus, the

use of pathway activity scores in the single-cell domain has emanated as a powerful tool

to exploit cellular heterogeneity for extracting novel and relevant biological information

for numerous applications. In this chapter, we will discuss the applications of UniPath

in the pathway space.

3.1 Pseudotemporal ordering, visualization of the lin-

eage potency and pathway co-occurrence continuum

Representation of single cells in terms of pathway scores provides a new dimension

in the context of the cell-to-cell similarity measure. It further helps in suppressing

the effect of known covariates such as cell cycle-related pathways or terms and tissue

microenvironment and culture conditions. Current methods [169] for pseudotemporal

ordering of single cells are primarily intended to handle gene expression or read-count

data. Therefore, we enhanced the utility of our method UniPath with a novel pseudo

temporal ordering method for single cells that rely on pathway scores. For pseudo tem-

poral ordering, before learning a minimum spanning tree (MST), two levels of distance

shrinking among single cells are applied based on their prior clustering results and con-

tinuum among their classes. After initial clustering, we use a KNN-based approach

to determine accurate temporal order between cell clusters in order to detect a contin-



uum between different classes. The MST did not reveal the true order of cells in some

cases when two levels of distance shrinkage among cells were not applied. Overall,

we discovered that UniPath could capture the approximate true order of single cells

from single-cell RNA-seq gene expression and ATAC-seq profiles. We applied UniPath

to scRNA-seq gene expression profiles of human embryonic stem cells and their dif-

ferentiated states collected at different time points 0, 12, 36, 72, and 96 hours during

differentiation to definitive endoderm (DE) to capture pseudo temporal order [40].
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Figure 3.1: Comparison of different pseudotemporal ordering methods. Pseudotempo-
ral ordering of single cell profiles of human embryonic stem cells harvested
at multiple time points 0, 12, 24, 36, 72 and 96 hours during course of
differentiation towards definitive endoderm revealed incorrect ordering of
Monocle, CellTree and DiffusionMaps using gene expression matrix.

Other approaches including Monocle [195], TSCAN [99], DiffusionMap [77] and

CellTree [52] for pseudotemporal ordering with gene expression matrix (Figure 3.1)

predicted incorrect cell order for the same dataset [40]. But in the case of UniPath,

when we removed the gene set or terms linked with the cell cycle, we attained the

correct order of single cells (Figure 3.2A). We found that at 0 and 12 h, the gene set

scores for the cell cycle S phase are higher, probably due to the high rate of proliferation

(Figure 3.2B).
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Figure 3.2: Pseudotemporal ordering of single cells using pathway scores and visualiza-
tion of lineage potency and pathway co-occurrences on temporal tree using
UniPath. (A) UniPath’s pathway score based temporal ordering was correct
as per the true time points. (B) Distribution of pathway scores of S-phase
at different time points. (C) Gradient of endoderm lineage and pathway co
occurrence is shown on pseudo temporally ordered tree. Endodermal scores
increase as cells proceed towards differentiation. Pattern of co-occurrence
of Wnt/beta-catenin and BMP pathway scores on temporal tree revealed that
BMP pathway is more enriched at 24 and 36 hours.

As the cells differentiated into endoderm, the gene-set score of the S phase de-

creased. At 36 h, we found two groups of cells. One group of cells exhibits a signif-

icantly lower cell cycle S phase gene set score than another group. The presence of

such batches of cells suggests that the cell cycle effects act as a potential covariate in

predicting the temporal ordering of cells. UniPath can be utilized for visualization of

lineage potency continuity and co-occurrence of two gene sets or pathways on pseu-

dotemporally ordered tree, in addition to treating known covariates (Figure 3.2C). Uni-

Path allows finding clusters of pathways and interpretation of pathway co-occurrence

patterns, which assist in uncovering context-specific regulations. UniPath is useful in

predicting the correct temporal order of single cells represented in terms of pathways

and analyzing patterns of co-occurrence of pathways at various stages during the course

of the differentiation of cells.
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3.2 Analysis of large scale mouse cell atlas scRNA-seq

dataset

UniPath’s use of global null models ensures consistency in calculating pathway enrich-

ment scores for single-cell, allowing for horizontal scalability. We were able to trans-

form UMI counts or gene expression profiles of over 61000 single-cells from the mouse

cell atlas (MCA) [78] dataset by splitting it into small chunks of cells using UniPath’s

horizontal scalability, speed, and consistency. We chose 49507 cells with >800 genes

(expressed genes). The transformed pathway scores from the scRNA-seq MCA dataset

were subjected to t-SNE [197] based visualization and subsequently to dbscan [194]

based clustering of t-SNE coordinates (Figure 3.3). This result showed that most cells

were correctly grouped according to their tissue type. Some cells did not cluster with

the cluster of their origin of tissue, as expected, but instead formed their own class. For

example, immune cells from various organs were clustered together in cluster numbers

13, 14 and 15 (Figure 3.3). Unexpectedly, some non-immune cells belonging to dif-

ferent tissues clustered together, pointing towards convergence. This has only been re-

ported infrequently by investigation of single-cell but is reinforced by scientific reports

and literature. Pathway scores-based clustering resulted in biologically significant co-

clustering of cell types belonging to different organs or tissues. For instance, cluster 40

harbored Afp+ fetal liver hepatocytes,a few Fabp1+ hepatocytes and Afp+ placental en-

dodermal cells. Afp+ placental endodermal cells and Afp+ fetal liver hepatocytes were

part of different groups in the original MCA study. It has previously been demonstrated

that placenta-derived multipotent cells (PDMCs) having Afp (Figure 3.4A) expression

have endodermal characteristics and can easily differentiate into hepatocyte-like cells

[90]. Differential pathway analysis revealed that among the top 50 enriched pathways,

22 pathways were common for Afp+ placental endodermal cells and hepatocytes cells

of cluster number 40. These pathways were linked to lipid metabolism. However, in

t-SNE-based visualization, there was a clear distinction between hepatocytes and Afp+

placental endodermal cells of Cluster 40 (See Figure 3.4A). We also noticed conver-

gence in cluster 3, which contained virgin mammary gland luminal-epithelial cells,

alveoli cells, and uterus glandular epithelial cells. Another example of convergence

was observed in cluster number 52 that harbored Col10a1+ and Cmnd+ bone marrow

mesenchyme stromal, chondrocytes cells, and pre-osteoblast. Past studies have revealed
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that bone marrow mesenchyme stromal or mesenchymal stem cells possess the ability

to transform into pre-osteoblast and chondrocytes cell states[55][11]. Cxcl1+ MSC, on

the other hand, clustered with trophoblast stem cells in cluster number 21. It can be seen

that when cell types from various organs converged in a major cluster, they didn’t en-

tirely overlap but instead formed their own sub-cluster within their main (Figure 3.4A).

Nevertheless, convergence to major class indicates a lowering of covariates in pathway

or gene set scores, which results in the grouping of cells with similar states together.

Thus, UniPath added a new aspect to the clustering of single cells and revealed that

although there are specific cells required for the functioning of the organ but it also

harbors cells having regulatory states similar to other cell types in the body.

t-S
NE

 2

t-SNE 1

Figure 3.3: Clustering of large scale scRNA-seq mouse cell atlas data. t-SNE based
visualization of mouse cell atlas data in terms of pathway score.
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3.3 Utilization of pathway scores for revealing minor

classes and annotating unlabelled cells

Technical noise, the effect of a few covariates, sparsity and dropouts can be reduced

with feature extraction in terms of pathway scores. As a result, it can assist in high-

lighting clusters of cells that would otherwise go undetected when using raw gene ex-

pression. For instance, interrogation of pathway scores of brain tissue revealed a new

cluster of oligodendrocyte precursor cells. Notably, genes Tuba1a, Sirt2, Cd9, Plp1,

and Bcas1 [4][134][59][98] exhibited higher expression in oligodendrocyte precursor

cells from the new identified cluster (Figure 3.4B). These genes play a role in oligo-

dendrocyte precursor differentiation into mature oligodendrocytes. We discovered two

new sub clusters of unlabelled bladder cells in the MCA dataset (Figure 3.4C). Cells in

one of the newly discovered bladder clusters were dendritic cells (Cd74 high). Thus,

UniPath based analysis enabled us to pinpoint a few new groups of cells not detected

in the original study that employed read counts. We also attempted to annotate a few

unlabelled cells.
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Figure 3.4: Analysis of large scale scRNA-seq mouse cell atlas data using pathway
scores. (A) 2D-scatter plot of cluster 40 showing distinct clusters of Afp+
hepatocytes and AFP high placenta endodermal cells. (B) Visualization
of brain cells revealing two distinct clusters of oligodendrocyte precursor
cells as obtained using pathway scores. (C) Pathway scores of bladder cells
subjected to t-SNE based visualization revealed two separate clusters of un-
known cells. One of the unknown cluster was identified to be cd74 high
dendritic cells.
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3.4 Inference of context-specific regulation in cancer cells

We further scrutinized the utility of UniPath in interrogating context-specific regulations

in cancer which are frequently needed in precision oncology and precision medicine.

Wang et al [206] recently showed that two types of non-small cell lung cancer (NSCLC)

cell lines, non-adherent tumorspheres (TS) and adherent (Adh) cells, have different

metabolic profiles. Using mouse xenograft models, they showed that non-adherent TS

cells have a higher tumorigenic potential than adherent TS cells. We did single-cell

expression profiling on 162 NSCLC cells, about half of which were TS cells, and the

rest were Adh cells. The pseudotemporal ordering of these cells is shown in Figure

3.5A.
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Figure 3.5: Pseudotemporal ordering and differential enrichment analysis of pathways
in NSCLC dataset. This dataset consists of FPKM values for TS Adh cells
which were transformed into pathway scores using UniPath based approach.
(A) Pseudotemporal ordering of single cell RNA-seq of lung cancer trans-
formed into pathway scores. (B) Volcano plot showing differential enrich-
ment of pathways in TS and Adh cells.

After converting scRNA-seq gene expression profiles into pathway scores, we used

Wilcoxon rank-sum test to perform differential pathway enrichment analysis. The re-

sults showed higher enrichment of the IL23 pathway, GPCR ligand binding, cytochrome

P450 drug, and phenylalanine metabolism pathways in TS cells (Figure 3.5B). NSCLC
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plasticity and proliferation are known to be linked to GPCR and IL23 signalling [116]

[105] [14]. Cytochrome P450 is also implicated in the growth of tumors [152].
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Figure 3.6: Alluvial plot depicting alterations in co-enrichment patterns of of pathways
in Adh and TS cells.

We used a technique that is seldom used for scRNA-seq. For pathway and gene-set

pairs, we used co-occurrence and differential co-occurrence analysis. The Wnt path-

way exhibited the highest correlation with the stemness associated gene set in the TS

cells, but it was not in the top correlated pathways with stemness in Adh cells (Figure

3.8A). In contrast to Adh cells, the Wnt/beta-catenin pathway in TS had a markedly

higher correlation with the TGF beta signaling pathway (P-value < 0.05, Jaccard index

= 0) (Figure 3.8A). However, there was no significant difference in TGF-beta pathway

enrichment between TS and Adh cells.
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Figure 3.7: Heatmaps show alterations in enrichment patterns of pathways in TS and
Adh cells.

In cancer cells, the Wnt/beta-catenin and TGF-beta pathways have been demon-

strated to facilitate the epithelial to mesenchymal transition (EMT), which is linked with

increased tumorigenic potential [85]. Furthermore, synchronous over-activation of the
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Wnt/beta-catenin and TGF-beta pathways has been shown to promote tumorigenesis

and therapy resistance in NSCLC cells [32]. In TS cells, pathways including TGF-beta,

Wnt/beta-catenin, and PDGFRB grouped together, based on hierarchical clustering of

31 selected pathways. However, in Adh cells, the WNT/beta-catenin pathway was clus-

tered with ERBB1 and PI3K1 signaling. The distinction in the co-occurrence pattern

of Wnt/beta-catenin in the two lung cancer cell types, i.e., TS and Adh cells, and fore-

knowledge about the impact of its co-stimulation with TGF-beta in NSCLC point to

a probable reason of higher tumorigenicity in TS cells (Figure 3.6, 3.7). Glycolytic

intermediates were found to be more abundant in Adh cells, as reported by Wang et al.
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Figure 3.8: Analysis of differences and patterns in enrichment and co-occurrence of
pathways in two kinds of cells of NSCLC. (A) Barplot is showing corre-
lation between Wnt pathway with stemness gene set in TS and Adh cell.
Other barplot is showing concurrence of WNT/beta catenin and TGF-beta
pathway in two different lung cancer cells TS and Adh. (B) Barplot show
correlation between Gycolysis Gluconegenesis pathway and sonic hedge-
hog pathway (SHH) pathway in the two lung cancer cells TS and Adh cells.

According to our analysis, among non-metabolite gene sets, the sonic hedgehog

(SHH) pathway had higher differential co-occurrence with the glycolysis gene set. The

correlation values between SHH and glycolysis pathway in TS and Adh cells were

0.63 and -0.138, respectively (Figure 3.8B). The SHH pathway is known to promote

glycolysis in a variety of cancers [66]. The SHH pathway appears to cluster with cell-

cycle associated gene-sets as revealed through hierarchical clustering (Figure 3.6,3.7),

implying that it is implicated in controlling proliferation in Adh cells. Our findings

show that its function is context-dependent and may play a more dominant role in Adh-

like NSCLC cells than in TS cells. Thus, UniPath will aid researchers in conducting

studies in a context-dependent manner in cancer.
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3.5 Discussion

Usage of pathways and gene-set enrichment to exploit single-cell heterogeneity can lead

to a slew of new applications. Covariates such as cell cycle or tissue microenvironment

can influence gene expression slightly, which could hamper the downstream analysis

using raw gene expression profiles directly. However, with the utilization of pathway

scores, covariance tend to have more weightage due to the grouping of genes that tend

to ward off such covariate effects. Thus, UniPath based approach helps subside such

covariate effects in clustering and pseudotemporal ordering. The pathway score-based

clustering of the MCA dataset unveiled some clusters where one of the member cell

types could be differentiated into another. For instance, one of the clusters harbored

Afp+ placental endodermal cells and fetal liver hepatocytes. Our findings suggest that

UniPath could assist biologists in finding convergence and applicability of conversion

between different cell types.

We have demonstrated some results achieved by employing UniPath pathway scores

that cannot be attained using gene expression profiles directly. 1) correct pseudotempo-

ral ordering of differentiating hESC cells towards endoderm. 2) grouping of cells from

different tissues. Further, pathway scores can help in deciphering underlying cellular

heterogeneity. For instance, in the Chu et al. dataset, we observed a bimodal distribu-

tion of some pathway scores at a time point of 36 h. Notably, such bimodal distribution

in the case of pathway scores could furnish valuable insights into regulatory and func-

tional states implicated in bifurcation and cell fate decisions. Using UniPath for path-

way score calculation opens up new windows for novel ways of analysis, which cannot

be achieved through the usage of gene expression profiles directly. These analyses

include computing pathway co-occurrences, detecting co-regulated pathways clusters,

and estimating differential co-occurrence for pathway pairs to differentiate between two

groups of cells. The co-occurrence pattern of the Nodal pathway with other pathways,

including SMAD2, Wnt/beta-catenin, was revealed using UniPath based interrogation

of dataset involving hESC differentiation towards DE. These findings align with pre-

vious findings. Our approach of using the null model to calculate the significance of

the co-occurrence in pathway pair enables us to predict alterations in the co-enrichment

pattern across different groups of cells. This kind of analysis could be beneficial in

linking dysregulation of pathways to disease-associated genesets in target cells. Uni-
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Path provides new dimensions to exploit cellular heterogeneity for several downstream

applications.
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CHAPTER 4

Inference of drug response sensitivity in cancer by

leveraging gene expression data in pathway space

4.1 Introduction

Cancer is a multifaceted disease driven by a high degree of genetic and phenotypic

heterogeneity. Even though cancer management through chemotherapy, immunother-

apy, and targeted therapies has considerably enhanced the clinical efficacy over the past

few years, some individuals show partial or no response. The inherent heterogeneity

translating into differential drug responses of patients and complex tumor microenvi-

ronment are significant roadblocks in precise modeling and predicting drug response in

individual patients [67][60]. A one-size-fits-all approach for cancer treatment is obso-

lete since every patient responds differently to drug therapy. Unfortunately, problems

become profound for the cancer types lacking appropriate genetic targets of anticancer

drugs, for instance, EGFR and KRAS mutations or BCR-ABL fusions. However, drug

targets or status of mutation alone are typically abysmal therapeutic indicators for tar-

geted therapies [1][135]. Further, using a targeted therapy without taking into account

drug resistance may deteriorate the patient’s condition. Consequently, early conjectur-

ing of drug response, determined from pretreatment of cancer’s molecular profiles, has

become a prerequisite to guide personalized treatment regimens [60][187].

In the last few years, the availability of large-scale pharmacogenomics databases

aided in strengthening the precision oncology domain and our knowledge of drug re-

sponse [60]. Cancer Cell Line Encyclopedia (CCLE) [18], Genomics of Drug Sensi-

tivity in Cancer (GDSC) [221] and Cancer Therapeutics Response Portal v2 (CTRPv2)

[177] are notable databases among these. These projects manifest a vast corpus of in-

formation that includes high throughput screening experiments encompassing hundreds

of anticancer drugs screened on more than 1000 cell lines. The Cancer Genome Atlas

(TCGA) [33] archives consist of RNA-seq data of mostly primary tumors across multi-

ple cancer types furnishing another source of information to study pharmacogenomics



and unmask patient-drug response. This burgeoning amount of data has enabled the

development of numerous machine learning predictive models for drug response pre-

diction in cancer. Some of these methods include a deep variational autoencoder that is

involved in the imputation of drug response by compressing multiple genes into latent

vectors and these latent vectors in low dimensional latent space are used for training

prediction models [102]. The kernelized bayesian matrix factorization approach for

modeling drug response through conjecturing known pathway-drug associations was

proposed by Ammad-Ud-Din, Muhammad, et al. [7]. Another method involved using

matrix factorization with similarity regulation that incorporated drug and cell line sim-

ilarity space for improving the prediction of anticancer in cell lines [201]. CDRscan

is a deep learning neural net framework that utilizes cancer signatures for predicting

drug response in cancer, was proposed by Chang and colleagues [35]. Sakellaropoulos,

Theodore, et al. reported a deep neural network that leverages gene expression profiles

for predicting drug response and outperforms state-of-the-art methods—ElasticNet and

Random Forest [170].

Two significant scopes of improvement were identified by carefully inspecting the

aforementioned methods. First, most past studies do not take into account the structural

properties of drugs as features or explanatory variables for modeling drug response.

Consequently, the machine learning models learn inefficiently and are incapable of

making predictions on new drugs that aren’t included in the training dataset. Second,

gene expression values are assumed to be separate entities, overlooking the combinato-

rial effects of pathways. Past works have illustrated the usage of pathway activity scores

for many analyses instead of gene expression profiles [81] [36]. Notably, our previous

works demonstrated how pathway activity scores enable a reasonably better illustration

of biological processes [36][125][21]. As an additional advantage, integrating data us-

ing pathway activity scores abates batch effects. While single-cell single-cell RNA-seq

(scRNA-seq) facilitates unbiased delineation of cellular heterogeneity, there are min-

imal efforts to utilize this precise molecular information for drug response prediction

at the sub-clonal level. This is mainly because most of the training datasets available

are bulk gene expression profiles. Testing scRNA-seq profiles on models trained on

bulk RNA-seq profiles is expected to result in inaccurate predictions. Pathway transfor-

mations of scRNA-seq and bulk RNA-seq gene expression profiles reasonably mitigate

this issue. The only notable work in this context is by Suphavilai, Chayaporn, et al.,
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[188] which has primarily focused on scRNA-seq profiles of head and neck cancer for

drug response prediction, ignoring the benefits of descriptors of molecular compounds

to generalize the prediction models.

In this study, we developed a deep neural network based approach called Precily to

model drug response in both in vitro and in vivo setups. We used open-source phar-

macogenomics databases: CCLE, GDSC and CTRPv2 entailing multiple drug-cancer

cell line combinations, and patient profiles from the TCGA database. We evaluated our

CCLE cell line trained models model on various bulk and scRNA-seq profiles.

After being convinced by the plausibility and the cell line model’s overall perfor-

mance, we investigated the outcome of drug response predictions on our internally

generated prostate cancer (PCa) cell lines and xenograft models exposed to different

treatments. Even though PCa is the most frequently diagnosed malignancy in men,

treatment options are limited for advanced-stage malignancy. Androgen deprivation

therapy (ADT) is frequently used as an effective treatment strategy in clinical settings.

It takes advantage of the reliance of PCa on androgen receptor (AR) signaling for tu-

mor growth and progression. ADT is beneficial in the majority of patients. However,

the effect is transient, and ultimately cancer cells exhibit resistant phenotypes with the

appearance of metastatic castration-resistant prostate cancer (CRPC). Only a few anti-

cancer therapies are efficient and clinically approved for the CRPC treatment, but their

vested survival advantage is limited. Therefore, selecting appropriate drugs and com-

binations is critical in the dynamically developing landscape of cancer to gain maximal

survival for the patients [191][108][190]. We used our in-house bulk RNA-seq gene

expression profiles of baseline PCa cell lines exposed to various treatment conditions

to further validate our cell line model. To verify the cross-sample applicability of the

model, we interrogated our LNCaP cell line-derived xenograft data portraying in vitro

treatments. We used LNCaP xenografts derived from a PCa tumor progression study

in which tumors were collected at multiple phases, including precastration (PRE-CX),

post castration (POST-CX), castration-resistant prostate cancer (CRPC), and while on

treatment with an androgen inhibitor enzalutamide (ENZ) during the progression of the

tumor. Our findings unveiled biologically and clinically meaningful relationships of

drugs and pathways in the context of resistance and sensitivity. We also assessed the

ability of Precily to predict responses to the drugs that the training models had never

seen. To this end, we considered two drugs, metformin and orlistat, used for treating
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type 2 diabetes [144] and obesity [16]. But these two drugs have also been discov-

ered to hold therapeutic potential in PCa. Finally, we evaluated the model’s efficiency,

trained on patient RNA-seq profiles from TCGA compendium on RNA-seq melanoma

cancer patient profiles of before treatment and post relapse matched samples. Our study

links systematized prediction of drug response with multiple in vivo and in vitro eval-

uations encompassing cell lines, xenografts, and patients, which is vital for the clinical

translation and implementation of such approaches.

4.2 Methodology

4.2.1 PCa cell lines and culture

The human PCa cell lines LNCaP, VCaP, DuCaP, DU145, and PC3 were maintained in

Phenol-red free RPMI medium and fetal bovine serum (5%) supplement in a humidified

atmosphere with the temperature of 37°C and 5% CO2. During the exponential growth

phase, the cells were harvested for RNA extraction.

4.2.2 In vitro experiments

The PCa cell line LNCaP (#CRL-1740™ clone FGC) was bought from the American

Type Culture Collection (ATCC). The LNCaP cells were seeded into a growth media

containing RPMI media without Phenol-red augmented with fetal bovine serum (5%)

and cultured in a humidified atmosphere with a temperature of 37C and 5% CO2 for 72

hr. Thereafter cells were incubated in an androgen-depleted environment in medium +

charcoal-stripped serum (5%) for 48 hours. Then in the presence or absence of dihy-

drotestosterone (DHT, dissolved in vehicle(EtOH)) (10 nM), LNCaP cells were treated

with androgen inhibitors: enzalutamide (10uM), apalutamide (10uM), and bicalutamide

(10uM) for 48 hrs.

4.2.3 In vivo studies

In the in vivo study, LNCaP xenografts were developed by injecting 1e6 LNCaP cells

subcutaneously into the flank area of NOD-SCID male mice. When the tumor size
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reached 200 square mm, mice underwent mock surgery (mice are anaesthetised, and

incision is made and skin is stapled together again but without removing testes) or

were surgically castrated for the PRE-CX group. When tumor became 1000 square

mm, tumors were harvested from the PRE-CX group. One week post castration, when

serum PSA (Prostate-Specific Antigen) reached its nadir, tumors were harvested from

the POST-CX (post castration) group. Tumors were harvested from the CRPC group

when the size of the tumor became 1000 square mm after castration. Daily treatment

with ENZ (10 mg/kg) began as serum PSA rose post castration for the ENZ groups.

Tumors were collected either when PSA had reached the nadir i.e., Enzalutamide sen-

sitivity while on treatment with enzalutamide or when the tumor had grown to 1000

square mm even with treatment with enzalutamide.

4.2.4 RNA isolation and library preparation and bulk RNA sequenc-

ing

The Norgen RNA Purification PLUS kit #48400 from Norgen Biotek Corp., Thorold,

Canada was used to extract total cellular RNA for mRNAseq according to the instruc-

tions of the manufacturer, including DNAse treatment. An Agilent 2100 Bioanalyzer

and a Qubit®. 2.0 Fluorometer was used to ascertain the quality and quantity of RNA

(Thermo Fisher Scientific Inc, Waltham, USA). RNA-seq library construction and se-

quencing were performed utilizing the Illumina TruSeq Stranded mRNA Sample Prep

Kit (strand-specific, polyA enriched, Illumina, San Diego, USA) using an input of 500

ng - 1 ug total RNA and RIN>8. Then paired-end sequencing was performed with a

100-150 bp read length, and per sample, around 30-60 M read pairs were produced.

The raw RNA-seq data were processed using an in-house pipeline. The quality

of raw reads was evaluated using FastQC tool [9] and trimmed through TrimGalore

[109]. Then aligning of reads to GRCh38 / hg38 reference human genome and En-

sembl.v.99 (Gencode version 33, Jan-2020) transcriptome was performed using STAR

aligner [50]. Reads were quantified using RSEM software. In the case of xenograft

samples, mouse: GRCm38 / mm10, Gencode.v.M24 / Ensembl version 99, Jan-2020

chimeric human+mouse reference was used for STAR alignment. Quantification of

reads was performed using RSEM. RSEM generated TPM values were used for GSVA

scoring.
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4.2.5 Cancer cell lines RNA-seq data

To predict and interrogate drug response measured as LN IC50 i.e. half-maximal in-

hibitory concentration, we utilized RSEM (RNA-Seq by Expectation-

Maximization) software quantified bulk RNA-seq TPM (transcript per million) normal-

ized data of cell lines (n=1019) from public project Cancer Cell Line Encyclopedia

(CCLE). The related drug response data for the cell lines were acquired from another

database Genomics of Drug Sensitivity in Cancer (GDSC). We have used the GDSC2

dataset from this database [220]. The GDSC2 dataset consisted of some cell line drug

combinations with multiple LN IC50 values. In such scenarios, to avoid ambiguity, we

took the mean of LN IC50 values. For training models, we used bulk RNA-seq dataset

of CCLE cell lines (n=550) intersecting with the GDSC2 dataset cell lines. This ma-

trix constituted 57820 Ensembl Gene IDs and these IDs were transformed into their

official gene symbols using gencode.v19.genes.v7_model.patched_contigs GTF anno-

tation file. As a result, multiple Ensembl gene IDs corresponded to the same gene ids.

In such cases, we have averaged out the gene expression values. At this point, our

gene expression matrix contained 54301 genes and 550 cell lines. This matrix was log2

transformed after the addition of a pseudo count of 1.

4.2.6 Gene expression profiles of patients

Like cell lines, we used TCGA tumor mRNA sequencing data to model drug response

as responder and non-responder. We downloaded TCGA RNA-seq data encompassing

33 tumor types from the Broad GDAC firehose database [24]. For our study, we have

employed gene-level Illumina HiSeq RNA-seq v2 data obtained using RSEM software

[122]. The NCI Genomic Data Commons portal [73] was used to source patient clini-

cal drug response information. Drug names and corresponding patient response infor-

mation were fetched from clinical metadata files and manually corrected to eliminate

typing, misprint, and spelling mistakes to make drug names uniform across clinical

metadata files. Patients who had a complete or partial response were defined as respon-

ders, whereas those who had clinically progressing or stable disease were classified as

non-responders. We retained gene expression profiles for those cancer types which had

drug response information for at least two patients. We were left with RNA-seq profiles

of 29 cancer types at this stage. Next, for each cancer type, scaled estimate values from
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RSEM files were converted into TPM by scaling with one million. Then TPM files were

then converted into log2 scale and 1 was added as pseudo count. Some patients have

similar barcodes in the TCGA datasets. We have averaged out gene expression in such

cases for further analysis.

4.2.7 Molecular drug descriptor data

We sourced information on the drug response of 192 compounds corresponding to 550

CCLE cell lines from the GDSC2 dataset. Additionally, we also obtained clinical drug

response data for 215 drugs corresponding to 1517 patient samples in TCGA. The struc-

tural information of these drugs was obtained as a simplified molecular-input line-entry

system (SMILES) using the Python PubChemPy package [189]. But SMILES notations

were not known for all the compounds. Consequently, we were left with SMILES of 173

drugs for 550 cell lines, and for 1443 unique TCGA patients, we had 139 compounds.

Then, the SMILESVec package was utilized to transform SMILES into numerical vec-

tor embeddings by leveraging embeddings data trained on Pubchem and embeddings of

length 100 [153].

4.2.8 Gene expression to pathway activity scores

We used pathway enrichment scores to train models. We utilized the open-source Gene

Set Variation Analysis (GSVA) [82] R package to estimate pathway activity scores.

We supplied two inputs to GSVA: log2 transformed TPM normalized matrix of gene

expression and gene set file. We employed Cp.v.6.1 collection of canonical pathways

entailing 1329 pathways from the Molecular Signatures Database (MSigDB) [129] and

set the minimum gene set size (min.sz) as 5 for running GSVA. Then we combined the

pathway activity score matrix with the numerical drug embeddings. The final processed

CCLE cell line training data comprised 80056 drug-cell line pairs in rows and columns

containing a total of 1429 variables involving 1329 pathway vectors and drug features

in the form of vector embeddings. The vector embeddings for each drug corresponds

to size 100. These pathway and drug features represent the explanatory variable and

the response variable is LN IC50. In the case of TCGA data, bulk RNA-seq gene ex-

pression profiles of 29 cancer types were converted into pathway scores independent of
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each other. Then we merged the GSVA scores of those samples for every cancer type

having drug response data based on the common pathways. Our final TCGA training

dataset contained 3108 drug-patient pairs with 1427 features entailing pathway features,

numerical drug descriptors, and response variables as responder and non-responder la-

beled as 1 and 0, respectively.

4.2.9 Model training using CCLE RNA-seq cell line dataset

We employed commonly used machine learning approaches for drug response predic-

tion at the genes and pathways level. We devised drug response prediction as a regres-

sion task. We split the CCLE modeling data into 90% training and 10% test sets, ensur-

ing no cell lines overlap. For hyperparameter tuning, we used k-fold cross-validation

and partitioned the training dataset into five non-overlapping folds. The Random forest

was trained using the ranger R package [210]. We conducted a grid search on each

fold of the training set. For every fold, we used different values of mtry parameter

(1,2,3,4,5,6,7,8,9,10), and for the number of trees, values varied from 100 to 1000 with

a step size of 100. We chose the five best models with the lowest Mean Squared Er-

ror (MSE) for each training data subset. Finally, using parsnip R package [111] we

trained 5 models on the complete training data based on pre-trained hyper-tuned mod-

els. ElasticNet was run using caret and glmnet R packages [83][110]. The caret runs

bootstrapping 25 times for every training fold by default to identify the best model based

on the minimum value of Root-Mean-Square Error (RMSE). The five optimal models

obtained are used for training the entire training dataset.

We used the python-based Keras platform to develop a deep neural network (DNN).

We modeled DNN using the RELU activation function and one input layer of the size

of a number of features (pathway scores and drug embeddings) present in the training

dataset. This input layer was followed by one hidden layer of size 512. The first two

layers were kept fixed. The Keras Tuner library [149] was employed to find the best

set of hyperparameters for the deep neural network. The Hypberband [126] approach

with five-fold cross-validation on the training dataset was used to find optimal training

parameters based on the validation loss. The different tuning hyperparameters used are

as follows: the number of layers was kept between 2 and 6, and the number of neurons

in the layers was defined as 128 (minimum) and 256 (maximum), with a step size of
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4. The 30 epochs were used. We used drop-out layers between the layers whose values

varied from 0.1 to 0.5 with a step size of 0.1. The ADAM optimizer with different

learning rates: 1e-3, 1e-4 and 1e-5 and Mean Squared Error (MSE) as the loss function

was used. Then, we trained five models on the complete training dataset based on the

pre-trained hyper-tuned fold-specific models using a batch size of 128 and 50 epochs.

We used these models to assess the performance of multiple independent test datasets.

For models considering genes as features, we employed the same DNN architecture

as employed for the pathway-based model, except for the size of the input layer. In gene

based model size of the input layer was kept at 600 entailing 500 top highly variable

genes and drug embeddings of size 100. The same strategies were used in the case of

ranger and ElasticNet as for pathway based modeling.

4.2.10 Benchmarking Precily

Precily was benchmarked against two previously published methods namely CaDRReS-

Sc [188] and another method by Sakellaropoulos, Theodore, et al. [170]. We applied

CaDRReS-Sc with default parameter settings to CCLE bulk RNA-seq profiles for which

drug response information was sourced from the GDSC database. In the case of Sakel-

laropoulos, Theodore, et al method, we trained drugs specific models using default

parameters except for the varcut parameter which was set to 10.

4.2.11 CTRPv2 data Processing

CTRPv2 database features a collection of small molecule probes, drugs and cancer ther-

apeutics screened against well-known cancer cell lines. We retrieved SMILES for 377

compounds in CTRPv2, and cell line-specific IC50 values for these drugs were sourced

from the PharmacoGx R package. We eliminated IC50 outliers using the interquartile

range (IQR) rule. At this point, our matrix contained 153899 drug-cell line combina-

tions and 1429 features (pathway scores and drug embeddings). Precily, performance

was evaluated in a similar manner as done for CCLE analysis.
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4.2.12 Model using TCGA RNA-seq patient data

We used the R H2O AutoML [118] framework to train models on the TCGA dataset for

predicting drug response as responder and non-responder, thus formulating a classifica-

tion task. We split TCGA data into 90% train set and 10% test set. The 90% training

dataset was used as an input to the h2o.automl() function. We have used five-fold cross-

validation such that there is no overlap of patients among folds and max_models option

as 20. As a result, various machine learning models (n=34), such as Deep learning,

DRF, XGboost, GBM, GLM, XRT, and stacked ensemble models, were trained auto-

matically. The reason for the training of more models was to reach convergence. Due

to scarcity of data, deep learning model performance was sub optimal. Also, we used

Precily architecture with appropriate changes to make it suitable for classification. The

sigmoid activation function was used in the last layer. We used binary cross-entropy as

a loss function. We used the same strategy for data splitting as used for AutoML.

4.2.13 Survival analysis

After pre-processing, the TCGA dataset contained 3108 drug-patient pairs. We per-

formed survival analysis on a TCGA test dataset (20%) comprising 293 drug/patient

combinations. We used the median value of the predicted response probability to strat-

ify the patients and compute survival.

4.2.14 Performance measures

In the regression task, we have used the coefficient of determination (R2) computed

using the caret R package and Pearson correlation (ρ) to measure the performance of

our model. While in the case of TCGA dataset, several metrics were used: 1. AUC 2.

AUC-PR 3. F1 score

4.2.15 Imputation

Missing pathway features in the test input dataset are imputed using impute package

from R by employing the nearest neighbor-based averaging approach.
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4.2.16 Validation of model trained on cancer cell lines using scRNA-

seq profiles of cancer cell lines

The scRNA-seq raw UMI count dataset of well-established cancer cell lines consist-

ing of genes (n=30314) in rows and cells (n=56982) in columns spanning multiple

cell lines (n=207) was acquired from a previously published study by Kinker, G. S.,

and colleagues [107]. The UMI count matrix was subjected to quality check using

data_processing.R R script, from the Kinker, G. S. et al. study. At this point, our count

matrix consisted of 53299 cells encompassing 198 cell lines. This matrix was converted

into TPM by multiplying with 1e6 and dividing the UMI count of the gene by the sum

of the UMI count of the cell. The UMI counts are not affected by gene length bias

[156]. Then the TPM matrix was subjected to log2 transformation and 1 as a pseudo

count. The gene expression levels of the same cell line were averaged, and this matrix

was transformed into pathways using GSVA. For running GSVA, we have used default

parameters. Our final validation dataset comprised drug-cell line pairs (n=17279) in

rows involving 116 cell lines intersecting with the GDSC2 dataset cell lines and corre-

sponding to 173 drugs.

4.2.17 Predicting paclitaxel response in single MDA-MB-231 cells

using model trained on cell lines

To obtain Lee et al. dataset, sequencing short reads data from study id SRP040309 were

downloaded using prefetch from SRA Toolkit. SRA files were converted to FASTQ files

using fasterq-dump. Then we utilized STAR aligner [50] to align the FASTQ files with

GRCh37/h19 reference genome and Ensembl GRCh37 GTF file, release 75 [88]. To

quantify the gene expression, we employed HTSeq-count [8]. The counts obtained from

HTSeq were converted into TPM by dividing the counts by gene length, then scaling

with one million and dividing by sum total of the counts in the cell. We retained only

those genes for which length was available from the R package EDASeq [166]. Then

using the human GRCh37 (v75) GTF annotation file, we converted Ensembl gene IDs to

their official gene symbols. We included those genes having a TPM value ≥ 1 in ≥ 10%

of samples. Then, this matrix was log2 transformed with 1 as pseudo count. The gene

expression values of five samples each of untreated cells, stressed cells, and paclitaxel
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sensitive cell population was averaged out and transformed into pathway scores using

GSVA. Then we paclitaxel drug response was predicted for treatment-naive cells and a

population of cells that became more sensitive to paclitaxel.

4.2.18 Evaluation of model trained on TCGA patient tumor data

using bulk RNA-seq profiles of melanoma patients

We used previously published bulk gene expression profiles of melanoma patients hav-

ing BRAF mutation for the drug response prediction task. The dataset comprised of

Reads Per Kilobase of transcript per million mapped reads (RPKM) RNA-seq gene

expression for six patients. The profiling is performed prior to treatment and post-

treatment with dabrafenib or dabrafenib and trametenib during the progression of the

disease [199]. This dataset involves clinical response information as well. We have con-

verted RPKM RNA-seq data into TPM data by dividing each RPKM value by the sum

of all RPKM values for all genes in the sample or cell and multiplying with a factor of

1e6. The transformed TPM normalized matrix was subjected to log2 transformed with

a pseudo count of 1 and transformed into pathway scores utilizing GSVA. We predicted

response for the first line of drug for melanoma i.e., dabrafenib and trametinib in 3 pa-

tients. The details on mechanisms to acquired resistance to dabrafenib and trametinib

is available from the original study for these 3 patients.

4.2.19 Data and code availability

https://github.com/SmritiChawla/Precily

4.3 Results

4.3.1 Overview of workflow

In this work, we introduce Precily, a deep neural network based approach that leverages

gene expression data to model drug response in both in vitro and in vivo setups. We

employed bulk RNA-seq gene expression profiles of cancer cell lines from the Cancer

Cell Line Encyclopedia (CCLE) database. First, we transformed bulk RNA-seq data of

64

https://github.com/SmritiChawla/Precily


cancer cell lines from the CCLE database into pathway activity scores using R package

GSVA [82]. Second, we combined numerical descriptors of the drugs, i.e., simplified

molecular-input line-entry system (SMILES) vector embeddings with pathway scores

of CCLE cell lines. The Genomics of Drug Sensitivity in Cancer (GDSC) database was

used to acquire drug response data for CCLE cell lines. Notably, 550 cell lines were

overlapping in the CCLE and GDSC databases that were tested for 173 unique drugs

for which SMILES chemical annotations were available. SMILES for 173 drugs were

retrieved from the PubChemPy [189] python tool and transformed into embeddings

using the SMILESVec python tool [153]. The final training data comprised 80056 cell

line-drug pairs in rows and 1429 features containing 1329 pathways and molecular

descriptors of size 100 for each drug in columns for a regression task. These 1429

features constituted the explanatory variable set for predicting drug response as acquired

from the drug screening experimental datasets (Figure 4.1A). We utilized the Keras

platform for constructing a suitable DNN architecture (Figure 4.1B).

We used cross-validation best practices to build models and reported results on an

independent test dataset. We recognize that random splitting of data (cell line/drug

combinations) into train, validation and test set causes data leak problems and do not

correspond to practical applications. In such scenarios, training data becomes aware of

gene expression profiles of cell lines along with the sensitivity to some drugs, thus mak-

ing it relatively simple to predict sensitivity to a new drug. Therefore, we perform a cell

line-wise split of the dataset such that there is no overlap of cell lines in train, validation

and test datasets. We compared Precily with two other methods: Cancer Drug Response

prediction using a Recommender System for single-cell RNA-seq (CaDRReS-Sc )[188]

and another approach by Sakellaropoulos, Theodore, et al [170]. Both of these meth-

ods predict drug response by leveraging gene expression profiles. We compared the

performance of Precily with state-of-the-art machine learning methods- ElasticNet and

random forest (RF). Past studies have utilized these methods to predict drug response

[165][93][49]. Further, as a baseline, we also assess the performance of the three ML

models (Precily, RF and ElasticNet) using gene expression profiles instead of pathway

scores. We used highly variable 500 genes selected using the squared coefficient of

variation (CV2) approach for training models. We noted the highest correlation be-

tween Precily predictions and observed LN IC50 values on the independent test dataset.

CaDRReS-Sc closely followed the Precily results. The distribution of Pearson’s cor-
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relation coefficients obtained for predicted and observed LN IC50 values across drugs

for considered methods is shown in Figure 4.2A. One of the methods we have used for

comparing Precily uses the H2O framework to train drug-specific models. This is the

reason we reported correlations at the level of drugs. However, this approach is not

optimal as it does not consider the structural features of drugs for predictions. To get

a more comprehensive picture, we pooled predictions for cell line-drug pairs and ob-

tained a coefficient of determination (R2) of 0.77 and Pearson’s correlation coefficient

of 0.88 with a statistical significance of p < 2.2e-16 (Figure 4.2B)
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Figure 4.1: Overview of the Precily approach (A) Schematics of the processing of train-
ing data. The initial step involves the training dataset processing. The
RSEM quantified bulk TPM normalized genes expression data of CCLE
cancer cell lines were converted into pathway scores using GSVA. The path-
way score matrix was combined with numerical drug descriptors of each
molecular compound. This constituted our training data. Parts of the figure
were drawn by using pictures from Servier Medical Art. Servier Medi-
cal Art by Servier is licensed under a Creative Commons Attribution 3.0
Unported License (https://creativecommons.org/licenses/by/3.0/). (B) Ar-
chitecture of DNN model. The second step involved training of machine
learning model on this dataset which contained pathway scores and drug
features. The pathway score vector and drug features forms explanatory
variable and LN IC50 obtained from the GDSC databse is a response vari-
able. A deep neural network (DNN) from the Keras platform performed a
regression task to predict drug response.

GDSC database primarily features anti-cancer drugs, on the other hand, the Can-

cer Therapeutics Response Portal v2 (CTRPv2) presents a collection of small molecule

probes, drugs and cancer therapeutics. We performed a similar analysis on CCLE/CTRPv2

data as CCLE/GDSC and obtained a coefficient of determination (R2) of 0.70 and Pear-
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son’s correlation coefficient of 0.84 with a statistical significance of p < 2.2e-16 (Figure

4.2C). Our analyses point to reasonably accurate and reproducible susceptibilities to

anti-cancer drugs in cancer cell lines.
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Figure 4.2: Evaluation of Precily (A) Comparison of different methods for drug re-
sponse prediction. Barplots illustrating distribution of Pearson’s correla-
tion for observed vs predicted LN IC50 across individual drugs. (B) Scat-
ter plot showing the efficiency of the Precily model on CCLE/GDSC held
out dataset measured in terms of Pearson correlation between observed and
predicted LN IC50. (C) Scatter plot showing the efficiency of the Precily
model on CCLE/CTRPv2 held out dataset measured in terms of Pearson
correlation between observed and predicted LN IC50.

4.3.2 Prediction of drug response using single-cell expression pro-

files

Single-cell RNA sequencing (scRNA-seq) technologies have greatly improved our un-

derstanding of intra and inter-tumoral heterogeneity. While many clinical studies have

adopted single-cell technologies as a method of choice, we have not utilized the full

potential of this technology for predicting drug response at subclonal resolution while

accounting for intra-tumor heterogeneity. Therefore, we evaluated the ability of Precily

for drug response prediction in single-cell studies. We utilized two single-cell studies.

First, we used the Kinker, G. S. et al [107] scRNA-seq profiles of 207 cell lines, of

which 116 were common with CCLE data. We removed Kinker, G. S. et al. cell lines

and retrained CCLE/GDSC model and used this model on Kinker, G. S. et al. dataset.

We obtained a coefficient of determination (R2) of 0.73 and Pearson’s correlation coeffi-

cient of 0.85 with a P-value of p < 2.2e-16 (Figure 4.3A). Furthermore, we also assessed

the model’s performance on another publicly available single-cell transcriptome by Lee
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et al. [119]. This dataset comprised the treatment-naive population of MDA-MB-231

cells and the cells that had developed a vulnerability to paclitaxel drug. In this study,

metastatic breast cancer cells MDA-MB-231 were treated with paclitaxel drug. After

five days of treatment, the majority of cells died. On the other hand, some residual cells

cultured in a medium without a drug begin to proliferate and establish clones. Surpris-

ingly, when re-exposed to paclitaxel drug, these residual cells became more susceptible

to paclitaxel. To substantiate that these cells have more susceptibility to paclitaxel, we

used the Precily on this dataset. We observed that these cells were predicted to be more

sensitive to paclitaxel drug than the treatment-naive population, affirming the actual

findings (Figure 4.3B).
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Figure 4.3: Evaluation of Precily on scRNA-seq profiles. (A) Scatter plot showing the
efficiency of the Precily on scRNA-seq cancer cell lines Kinker, G. S. et al.
dataset for observed and predicted LN IC50 estimated using Pearson cor-
relation. (C) Barplots showing predicted paclitaxel drug response in single
MDA-MB-231 untreated cells and cells susceptible to paclitaxel.

4.3.3 Verification of Precily in Prostate cancer cell lines

Despite significant therapeutic advancements in prostate cancer (PCa), current thera-

peutic choices are finite, and the development of resistance to treatment presents sub-

stantial hurdles to treatment selections [139] [146]. Consequently, it is crucial to make

optimal drug choices to treat PCa. We independently verified our CCLE/GDSC model

using our internal PCa datasets. The Precily model was applied to bulk RNA-seq gene

expression profiles of five baseline PCa cell lines (LNCaP, DUCAP, VCAP, PC3 and

DU145) having two biological replicates of each cell line. In each of these ten sam-

ples, we predicted drug response for 155 drugs. These 155 drugs are specific to PCa

cell lines in the GDSC and target various cell signaling pathways. Overall, two DU145
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and PC3 PCa cell lines, known to be Androgen Receptor (AR) negative, were predicted

to be more invulnerable to these anticancer drugs by our model. On the other hand,

AR-positive cells, namely LNCaP, DUCAP, and VCAP, were predicted to be sensitive

(Figure 4.4A). Notably, the AR-positive LNCaP cells were predicted to be more sus-

ceptible to these drugs among these five cell lines (Figure 4.4B). In particular, LNCaP

cells exhibited more sensitivity towards PI3K/mTOR pathway inhibitors such as AKT

inhibitors, namely, ipatasertib, afuresertib, uprosertib and in particular AZD2014. Fur-

ther, LNCaP cells displayed higher enrichment of GSVA scores for mTOR-associated

signaling terms, pinpointing that this may play a role in the predicted sensitivity towards

AKT inhibitors. We then compared the predicted LN IC50 in the two biological repeats

of LNCaP cells with the observed GDSC LN IC50. For the two biological repeats of

LNCaP cell lines, we discovered a high correlation of 0.86 (p < 2.2e16) (Figure 4.4C).
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Figure 4.4: Analysis of prediction of drug response in PCa cell lines (A) Heatmap de-
picting the predicted LN IC50 (Z-score) across five untreated PCa cell lines
for 155 drugs screened against PCa cell lines in the GDSC database pin-
pointing drugs targeting PI3K/mTOR signaling. A lower LN IC50 indicates
the sample is predicted to be more sensitive for a particular drug. Color
bars depict types of cell lines. (B) Ridgeplot depicting overall patterns of
predicted LN IC50 (Z-score) across five untreated PCa cell lines. (C) Scat-
terplot displaying Pearson correlation (ρ) for actual vs. predicted LN IC50
for the two biological repeats of the LNCaP cell line. The line color indi-
cates two biological repeats of the LNCaP cell line. (D) Heatmap showing
predicted LN IC50 (Z-score) across 155 drugs in LNCaP cells exposed to
various treatment conditions, i.e., in the absence and presence of DHT and
AR inhibitors— ENZ, BIC, and APA. (E) Boxplots showing enrichment
of proliferation-associated pathways with and without the DHT (P-value is
computing using Wilcoxon rank-sum). (F) Boxplots depicting predicted
LN IC50 (Z-score) for DNA replication inhibitors specifically highlighting
cisplatin drug across different treatment conditions (P-values estimated us-
ing Wilcoxon rank-sum test).

It is known that androgens play a role in the proliferation of prostate cancer cells

[84][161]. We were further inquisitive in interrogating how predictions of drug re-
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sponse change when LNCaP cells are exposed to androgen receptor (AR) agonist di-

hydrotestosterone (DHT) in comparison to vehicle control (VEH) in androgen depleted

settings. Additionally, we wanted to investigate how exposure with Food and Drug

Administration (FDA) approved AR antagonists, namely bicalutamide (BIC), enzalu-

tamide (ENZ), and apalutamide (APA), under these settings influence drug response

prediction patterns. This data comprised two biological repeats for each sample, and

subsequently, we have utilized the mean of GSVA scores for biological repeats for fur-

ther analysis. The overall trend indicates that cells cultured in the DHT settings ap-

peared to be more susceptible to anticancer drugs as predicted by our model, on the

other hand, cells exhibited resistance to these drugs in the absence of DHT (Figure

4.4D). In addition, we found that cells grown with DHT exhibited high GSVA scores

for proliferation-related pathways. This substantiates the idea that actively proliferating

cells are more vulnerable to particular anticancer drugs.

On the other hand, cells in a quiescent state appeared to be more resistant (Figure

4.4E). Notably, in the presence of DHT, treatment with androgen-targeted therapies or

AR antagonists did not entirely invert the drug sensitivity observed with DHT treatment.

However, Precily predicted cells to be sensitive to cisplatin even in the presence of

AR antagonists, ENZ (Figure 4.4F). These results suggest using Precily in zeroing on

new combinatorial therapies. Next, we demonstrated the ability of Precily to predict

responses for the drugs that training data had never seen. For this, we looked into two

drugs, metformin, used for treating type 2 diabetes and orlistat used for treating obesity.

Lately, many studies have suggested that these two drugs might be effective in treating

some cancer types. Notably, Precily based predictions and experimental IC50 values

showed concordance at a relative scale (Figure 4.5A; Table 1).
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Figure 4.5: Evaluation of Precily on unseen drugs. (A) Boxplot demonstrating distribu-
tion of predicted drug response for two drugs namely metformin and orlistat
across five pre trained models. As expected we Precily based predictions
were concordant with the experimental IC50 values at a relative scale. P-
value was estimated using t-test. Table 1 shows structure of these two drug
along with experimentally determined IC50 values.

4.3.4 Analysis of Precily based predictions in xenografts

Xenografts have emanated as powerful models in the clinical diagnostics domain for

predicting anticancer drug response and assessing its clinical relevance. As such, we

evaluated our potential to predict drug response in LNCaP derived xenografts. We used

our internally generated LNCaP xenografts datasets. The LNCaP xenografts were es-

tablished from a well-annotated large PCa progression study interrogating responsive-

ness and the eventual emergence of resistance to AR targeting therapies (see Methods).

In male mice (PRE-CX), the establishment and initial growth of LNCaP xenograft tu-

mors rely on androgens. Castration results in suppression of the activity of AR and

tumor growth (POST-CX), but this susceptibility to castration is invariably followed by

castration resistance (CRPC). Furthermore, EZN treatment of CRPC did confer initial

therapeutic response, i.e., ENZ Sensitive (ENZS). However, resistance arises with due

course of time, i.e., ENZ Resistance (ENZR) (Figure 4.6).
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Figure 4.6: The experimental design for the LNCaP xenograft derived from large
prostate cancer progression study illustrating treatments, drug responsive-
ness, and resistance stages. Tumor growth and treatment resistance are rep-
resented by solid lines, whereas treatment responsiveness is represented via
dotted lines.

We predicted drug response for every 54 samples using Precily across this range of

sequential therapeutics responsive and resistant states. Uniform Manifold Approxima-

tion and Projection (UMAP) based visualization of predicted response for the 155 drugs

in LNCaP xenograft tumors revealed three distinct clusters (Figure 4.7A). We observed

that Cluster 1 harbored the most resistant tumors, linked with their lower proliferation

index. Cluster 1 samples were almost exclusively Enzalutamide-treated tumors, most of

them belonging to the Enzalutamide sensitive/responsive (ENZS) group. It consisted of

one CRPC sample, 10 ENZR out of 15, and 12 ENZS samples. On the other hand, sam-

ples in cluster 3 exhibited the highest overall predicted sensitivity towards 155 drugs,

which might be connected to their high proliferation index, as pinpointed by the high

GSVA scores for cell proliferation-related pathways (Figure 4.7B, C).
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Figure 4.7: Analysis of prediction of drug response in LNCaP xenografts across three
clusters (A) UMAP based visualization of predicted drug response as LN
IC50 revealed three distinct clusters. We used principal component analysis
(PCA) on predictions then used first 10 principle components for as an input
for UMAP. (B) Box plots showing the changes in distribution of predicted
LN IC50 (Z-score) in 3 clusters (P-values were estimated using Wilcoxon
rank-sum test). (C) Boxplots showing the patterns of enrichment of GSVA
scores of proliferation-associated pathways in each of 3 clusters (P-values
were estimated by Wilcoxon rank-sum test).

ENZR tumors were present in all three clusters, implying that multiple underlying

mechanisms mediate resistance and that more in-depth analysis may reveal differential

vulnerability to specific drugs in ENZR. The multimodal distribution of drug response

predictions in ENZR tumors, instead of the uniform distribution in ENZS tumors, bol-

stered the hypothesis of various ENZ resistance mechanisms (Figure 4.8A).
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Figure 4.8: Analysis of prediction of drug response in LNCaP derived xenografts un-
der treatment conditions (A) Ridgeplot depicting the overall pattern of pre-
dicted LN IC50 (Z-score) of 155 drugs across different types of tumor.
(B) Boxplots depicting the distribution of GSVA scores of proliferation-
associated pathways across different types of tumor (P-values were esti-
mated using Wilcoxon rank-sum test). (C) Box plot displaying predicted
LN IC50 (Z-score) of EGFR pathway inhibitors (P-values were estimated
using Wilcoxon rank-sum test).

74



ENZR samples, in comparison to ENZS, were predicted to acquire some degree of

susceptibility to a few drugs (Figure 4.7A). The scores of proliferation-related path-

ways as obtained through GSVA were higher in ENZR samples than in ENZS sam-

ples, however, statistical significance was not achieved (Figure 4.7B). Additionally, we

noted ENZR tumors appear to be more responsive to EGFR inhibitors in comparison

to other tumor types in this study (Figure 4.7C), with Sapitinib showing the greatest

effect. While we attained encouraging results for the drugs constituting our training

dataset, we could also predict informative and biologically meaningful responses for

the drugs that were not part of our training dataset— APA, BIC, and ENZ.
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Figure 4.9: Heatmap depicting predicted LN IC50 for BIC, APA, and ENZ, These drugs
are not present in the GDSC2 dataset. Color bars represent different types
of tumors and clusters obtained through UMAP based 2D projections of
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We noted that PRE-CX, POST-CX, and CRPC groups tend to be sensitive to AR an-

tagonists. Notably, additional AR antagonists were predicted to not confer an additional

advantage to ENZS tumors treated with ENZ (Figure 4.9).

4.3.5 Verification of models trained on TCGA patient tumor pro-

files

The Cancer Genome Atlas (TCGA) is an extensive collection of datasets that span dif-

ferent cancer types and include bulk RNA-seq profiles of patient tumors as well as

clinical drug response data. The clinical drug response furnishes patient demographics

and response information for the administered drug. We intend to perform classifi-

cation by grouping patients into responders (Patients showing complete or partial re-

sponse) and non-responders (patients showing clinically progressing or stable disease).

To make most of this information entailing gene expression profiles of the patient and
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patient drug response information, we build a classifier using open-source AutoML

from H2O.ai [118] in R. Analogous to bulk RNA-seq gene expression profiles of the

CCLE cell lines dataset, we combined embeddings of drugs (n=139) obtained from clin-

ical drug response metadata files with processed TCGA GSVA score matrix (methods).

This matrix contained 3108 patient/drug pairs in rows and 1427 feature set involving

1327 pathway vectors and embeddings of length 100 for each molecular compound.

These vectors formed explanatory variables for predicting drug response as sourced

from TCGA clinical metadata files. Due to the staggering diversity of cancer genomes,

these numbers are not sufficient, therefore we conducted a pooled analysis of data, ir-

respective of cancer stage or type. Due to scarcity of data, we use AutoML, R library

by H2O.ai (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html) [118] to build a

classifier for drug response prediction by leveraging bulk patient profiles from TCGA.

AutoML framework allows users to train and optimize various models automatically by

defining the maximum number of models that need to be trained. This results in the

automation of machine learning workflows. We split final processed dataset of dimen-

sion 3108 × 1427 into 90% training and 10% test set. 90% training set was subjected

five-fold cross-validation and hyper parameter tuning. We ensured there was no over-

lapping patients in train-validation-test sets. AutoML resulted in 34 models spanning

across different classes of models, namely, GBM, XGBoost, DRF, DeepLearning, XRT

models, and two stacked ensemble models. Two automatically trained stacked ensem-

ble models corresponded to one based on all the previously trained models, while the

second one is based on each family’s best model [118]. Extremely Randomized Trees

(XRT) was yielded as the best model. We assessed the performance of trained models

using independent test dataset. We noted that the XRT outperformed all other models

having an AUC-PR of 0.85 (Figure 4.10A).
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We also investigated whether including cancer stage information improves drug re-

sponse prediction. Surprisingly, the model’s performance declined with the inclusion of

the stage, and we obtained an AUC-PR of 0.79. Furthermore, we also used Precily (clas-

sifier variant) on the TCGA dataset which yielded an AUC-PR of 0.77. This is expected

due to paucity. Moreover, TCGA data furnishes survival data for patients. Utilizing

this information, we performed survival analysis on the TCGA test dataset containing

293 patients by grouping patients using the median value of the classifier’s estimated

probability of response. The median value was 0.63. Notably, patients in group 1 had a

predicted probability of response higher than the median value. As expected, this group

had better survival (P < 0.0001) (Figure 4.10B). Further, the 5-year survival probability

for group 1 and group 2 was 0.72 and 0.28, respectively. Worth mentioning that due to

the limited availability of patient data at the level of disease, cancer stage and treatment,

it is challenging to assess therapeutic application of our patient model.

Next, we tested the efficiency of our model using an external dataset having bulk

RNA-seq profiles of patients before and after treatment along with clinical response

information. We predicted response for two drugs: dabrafenib, an RAF inhibitor, and

trametinib, a MEK inhibitor in three matched prior treatment and post-relapse BRAF

mutant melanoma patients. The journey of patient 1, who was detected with melanoma

(Stage IIIC), is shown in (Figure 4.10C). Then after one year of primary treatment,

this patient exhibited indications of recurrent disease. The patient was subjected to

pre-treatment biopsy and radiotherapy which involved the usage of intensity-modulated

radiation therapy (IMRT). This patient had BRAF V600E as well as V600K mutations

as revealed through clinical mutational analysis of tumor and was enrolled in a phase I/II

study of dabrafenib and trametinib drugs. However, the patient was withdrawn from the

clinical study after three months of enrollment due to the emergence of resistance. Then

for four months, this patient was given an anti-PDL1 antibody until the progression of

the disease and thereafter with four rounds of ipilimumab. Unfortunately, the patient

died about nine months after discontinuation of RAF and MEK inhibitors. The poten-

tial cause of therapy resistance was the MEK2Q60P mutation, as demonstrated through

whole-exome sequencing (WES) and RNA-seq analysis. Patient 2 was also detected

with melanoma (stage IB) who developed widely metastatic melanoma after five years

of initial diagnosis. The existence of metastatic melanoma was confirmed through pleu-

ral biopsy i.e. pre-treatment biopsy and this patient exhibited BRAF V600E mutation.
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The patient received dabrafenib and trametinib as the first line of treatment. However,

only a partial response was observed, and after 3 months regular scans showed con-

siderable progression of the disease. A plausible reason for therapy resistance was the

existence of a BRAF splicing variant discovered through using RNA-seq and WES in

post-treatment samples but splice variant was not detected in pre-treatment tumors. Un-

fortunately, the patient died approximately six months after the initial presentation of

a metastatic condition. On the other hand, patient 3 was diagnosed with melanoma of

the left thigh (stage IIIC). This patient also exhibited BRAF V600E mutation. After six

months of surgery, this patient was recruited in a clinical study of dabrafenib and tram-

etenib. However, patient 3 developed a progressive disease nearly after one year on a

trial. The potential reason for therapeutic resistance is the existence of amplification of

BRAF in the post-treatment sample as revealed by WES. The patient was treated with

ipilimumab for a brief period but unfortunately died after four rounds and three months

after stopping BRAF and MEK inhibitor. The presence of alterations such as BRAF am-

plification, MEK2Q60P mutation, and BRAF Splice Isoform in post-treatment tumors

appears to be a probable reason for vesting antagonism to RAF and MEK inhibitors

in these three patients [199]. Notably, our prediction results showed similar patterns,

where the response probability for the two drugs trametinib and dabrafenib was higher

in pre-treatment profiles of patient one and patient two than in matched post-treatment

(Figure 4.10D, E). Additionally, we accurately predicted these two patients as respon-

ders which is in concordance with the actual annotations provided in the study where

they are categorized in the partial response category based on Response Evaluation

Criteria In Solid Tumors (RECIST) [54]. We predicted patient three to be resistant to

dabrafenib in pre and post-treatment settings (Figure 4.9F). This also aligns with the

actual study where this patient falls in a category of stable disease based on RECIST

criteria.

4.4 Discussion

Prediction of the best treatment and drug response in cancer is of utmost priority for

personalized cancer treatment. In this work, we developed Precily, a deep neural net-

work (DNN) model for drug response prediction based on pathway scores of bulk gene

expression profiles of cancer cell lines, and numerical embeddings of associated drugs.
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Owing to the usage of pathway activity scores, our model pinpoints underlying biolog-

ical mechanisms involved in inducing drug resistance. Further, the usage of pathway

scores for modeling drug response enabled us to reliably conjecture the fate of cells

upon treatment from single-cell gene expression profiles. This could pave the way for

the prediction of drug response at the sub-clonal level using scRNA-seq tumor profiles.

We assessed Precily by demonstrating a suitable correlation between observed LN

IC50 and Precily predictions for real-life LNCaP baseline transcriptome samples. Fur-

ther, we observed that PTEN null LNCaP cell line was predicted to be susceptible to

drugs targeting PI3K/mTOR signaling pathways. Moreover, past studies have proposed

that enhanced PI3K/AKT/mTOR signaling is linked with susceptibility of PI3K tar-

geting drugs in LNCaP cells and other PTEN negative cancer cell lines. Additionally,

PTEN null tumors might show sensitivity to mTOR inhibitors [224]. We were able

to spot the susceptibility of LNCaP cells to PI3K/mTOR inhibitors with our predic-

tive model. These findings are concordant with earlier studies in the LNCaP cell line.

With the belief attained from cell line-based verification, we investigated how drug re-

sponse prediction alters with drug treatments, drug-resistant and responsive states in

LNCaP cell line and xenografts. We endeavor to interrogate how our findings asso-

ciate with existing biology encompassing these states and treatments. LNCaP cells

were predicted to be more susceptible to drugs targeting highly proliferative cells in the

presence of androgens. This is an anticipated outcome since androgens induce prolif-

eration in androgen-positive PCa cell lines and xenografts [84][161]. AR inhibitors are

standard treatment options for metastatic PCa. AR antagonists suppress AR signaling

pathways at the molecular level. With AR antagonists involving ENZ, APA, and BIC

treatments, LNCaP cells predicted patterns demonstrated to have prominent similarities

and differences, reflecting the intricate biology and mechanism underlying the thera-

peutic responses. The substantial reversal of DHT endowed sensitivity was noted for

PI3K/mTOR inhibitors, with ENZ showing the most significant effect. On the other

hand, treatment with ENZ appeared to augment the DHT endowed sensitivity to some

drugs such as cisplatin, paclitaxel and docetaxel. While BIC and APA may not for cis-

platin. These differential effects must be taken into consideration for selecting optimal

combinatorial therapy while accounting for therapeutic resistance.

To further test the applicability of Precily, we utilized our internally generated data

of xenografts from a large biologically well-elucidated study. This study progressed
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from the early androgen-responsiveness state to the advanced CRPC stage and then

the aggressive ENZ treatment-resistant stage. The drug response predictions illustrate

altering susceptibilities of the tumors as they progress through different stages and treat-

ments. In particular, we noted that ENZR tumors were predicted to develop new vulner-

abilities to novel therapies, opening up new opportunities for novel therapeutic options.

For instance, in the case of treatment with ENZ, we could predict sensitivity to a small

group of drugs specifically those involved in targeting of EGFR pathway. However,

in the absence of androgens, prostate tumors were predicted to be highly insusceptible

to EGFR signaling inhibitors. This pinpoints the emergence of distinct vulnerability

during passage to ENZR. As EGFR signaling targeting drugs have been approved for

multiple cancer, this may help in the clinical evaluation of combinatorial therapy in

PCa patients who have received ENZ treatment or have developed resistance to ENZ.

Past studies have revealed that using a combination of EGFR inhibitor and ENZ might

be a viable treatment option to overcome ENZ resistance. Further laboratory experi-

ments and preclinical studies are required to investigate molecular mechanisms associ-

ated with predicted drug response patterns to corroborate our prediction patterns.

Assessment of the TCGA model using an external patient melanoma dataset re-

sulted in clinically applicable predictions. As envisaged, the probability of response

as predicted by the model for patients belonging to the partial response category was

more than the post-treatment samples due to the emergence of resistance to standard

treatments. This recommends that top drugs predicted by our model, such as cisplatin

and cyclophosphamide, could be used as an alternative therapy to overcome acquired

resistance in combination with other drugs. This requires further studies.

There are several advantages of our work. First, due to the usage of numerical drug

embeddings, Precily models can be used to conjecture drug response for any sample-

drug pair. Second, this approach enables model performance improvement by allowing

the pooling of cell line-drug combinations across cancer types. Third, Precily can be

used to predict responses for drugs that are not part of training data. Finally, Precily

monotherapy predictions can be used to infer potential combinatorial therapies. Thus,

Precily can assist in clinical decision making.

There are certain limitations of Precily. We could not obtain a good correlation be-

tween predicted and observed IC50 values. The relative sensitivities are, nevertheless,
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quite accurately reflected between drugs. Although we achieved promising results on

TCGA data, due to data scarcity of patient data and corresponding drug response in-

formation, we believe this model can be further improved by adding data from various

clinical studies.

Overall, this is the first study linking computational drug response predictions to

clinically explicable findings in both in vitro and in vivo setups. Furthermore, to the best

of our knowledge, this is the first work interrogating the prospect of bulk tumor RNA-

seq data profiles for drug response prediction in prostate cancer. Thus, this work will

open up new avenues and help researchers and clinicians in clinical decision-making

and assessing drug resistance and sensitivity in cell lines, xenografts, and patient tu-

mors.
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CHAPTER 5

Effect of physical proximity on gene expression, cell-cell

interactions and signaling at single cell resolution

5.1 Introduction

The discovery of important molecular pathways has refined our understanding of tu-

mor microenvironment, tumor progression and dissemination, and oncogenesis. The

complexities of cell-cell communication and the possibilities for modulation open up

new avenues for cancer treatment. Cell-cell interaction or cell-cell communication is

crucial in orchestrating the development of multicellular organisms. It is a complex

phenomenon where a single cell interacts with other cells through physical contact,

ligand-receptor interactions, and paracrine signaling [148]. Thus, it is a critical process

for morphogenesis, differentiation, and maintaining biological functions and microen-

vironmental homeostasis [10] [26]. Cancer is a complex global health issue. One of

the significant hurdles to understanding this disease is cell communication in the tumor

microenvironment. Tumor tissue comprises non-cancerous cells and non-cellular com-

ponents, and essentially 50 percent of its make-up can come from non-neoplastic cells.

Cancer cells alter host cells and impart tumor-supportive traits to them. The altered host

cells further aid in tumor progression and modifications of other normal cells within the

microenvironment [148]. However, complex cellular interaction networks between can-

cer and the host cell are poorly understood [10] [148]. With the development of Single-

cell RNA sequencing (scRNA-seq), our understanding of functional heterogeneity of

tissues and the functional cell states within the tumor microenvironment have been dra-

matically refined. It is critical to comprehend the underlying mechanisms of different

cellular components interactions to uncover tumor growth emergent behavior. How-

ever, there is still a dearth of comprehension of how these relationships quantitatively

connect to particular phenotypic effects of interest due to the finite number of methods

to quantify live cell-cell interactions [114]. Recently, combinations of spatial-omics

approaches have been utilized to characterize live cell-cell interactions [13][22]. We



devised a microfluidic workflow that captures and co-incubates live single immune,

single cancer cells, or doublets. This framework utilizes a single-cell dosing mRNA-

seq integrated fluidic circuit (IFC) system (Fluidigm®) [171], allowing transcriptional

and spatial cell-cell interactions. To illustrate the performance of our approach in quan-

tifying cell-cell interactions, we applied novel microfluidic workflow to cancer-immune

doublets (CIDs) of natural killer and triple-negative breast cancer cells.

TNBC was selected as a model system because it is an aggressive subtype of breast

cancer and more challenging to treat in comparison to hormone-positive breast cancer

and is associated with higher metastatic potential and poor prognostic outcomes [160]

[234]. The standard treatment for TNBC is neoadjuvant chemotherapy [150]. How-

ever, chemotherapy responses are generally momentary. Cancer immunotherapies are

transforming the cancer cell therapy landscape. It is conjectured that the immune re-

sponses elicited by immunotherapies are expected to target and eliminate tumor cells

while sparing normal cells. Blocking immune checkpoints with neutralizing and block-

ing antibodies, cytotoxic T lymphocytes (CTLs) induction, and remodeling of the tumor

microenvironment to increase CTL activity are among the immunotherapy approaches

that have already been developed and tried [101]. Clinically promising findings take ad-

vantage of specific traits of cross-talk between immune-tumor cells entailing immuno-

suppression and anti-tumor responses. Among immune cells, Natural killer (NK) cells

are the central effector cells of innate immunity and exhibit a high level of heterogene-

ity in the microenvironment. They are named for their capabilities to destroy target

cells autonomously. The majority of existing treatment options employing tumor mi-

croenvironment rely on the immunity of T cells. However, little success is achieved

with T cell immunotherapy. This highlights the need to develop new immunotherapies

such as previously overlooked NK cells [213]. NK cells are major constituents of the

innate immune system that play a crucial role in cancer control. NK cells’ critical role

in cancer immunity stems from their ability to identify malignant cells using a variety

of receptors on their surface, allowing them to detect and destroy tumor cells rapidly

through targeted cytotoxicity. It is hypothesized that heterogeneity in NK cells results

in dynamic interaction between NK and tumor cells with divergent regulation of their

cytotoxic effects, eliciting tumor death depending on the balance between activating

and inhibitory receptor levels. It is conjectured that genetically manipulated NK cells

can influence cancer immune surveillance and tumor progression. Further, they play an

84



essential role in orchestrating cancer immunity locally through communications with

other cells in the tumor microenvironment via secretions of multiple chemokines and

cytokines [15]. Therefore, it is critical to identify the molecular level signals stemming

from single NK cells when they come in contact with tumor cells. Consequently, a

single-cell framework to quantify interactions between NK and cancer cells is essential

to study the role of NK cells in cancer immunotherapy.

To gain a better understanding of NK and tumor cells interactions, we propose a

microfluidic approach that involves capturing and co-incubating single NK and can-

cer cells doublets (CIDs) by employing the PolarisTM Single-Cell Dosing mRNA Seq

IFC. Time-lapse imaging was used to track physical distances between CIDs captured

in the microfluidic chamber. Single-cell RNA sequencing (scRNA-seq) is performed

on the cells after a 13-hours of incubation with growth media exchanged at a set in-

terval of time, i.e. 5 hours. This yielded 290 transcriptomes comprising single NK,

single cancer cells, and NK-cancer cell doublets (CIDs). Unsupervised clustering of

single-cell transcriptomes indicated heterogeneity in TNBC cell lines. Furthermore, we

could characterize gene signatures associated with the anti-tumor activity of NK cells.

Only a few killing events were observed among the incubated CIDs where NK cells

were involved in the lysis of cancer cells. We correlated hourly computed physical

distances between NK cells and tumor cells with the terminally computed single-cell

gene expression profiles of doublets. The results pointed towards the presence of tran-

scriptomic memory, which is driven by explicit regulatory modules that are active in a

time-dependent manner. Additionally, we interrogated ligand-protein interactions and

found that few ligand-protein pairs, including CD24-SIGLEC10 and ANXA1-EGFR,

had augmented activity in doublets and substantiated earlier reported interaction be-

tween CD24 and SIGLEC10 as a potential target for cancer immunotherapy in ovarian

and TNBC [17].

5.2 Methods

5.2.1 NK cell activation

The NK cells activation was confirmed, in general, by carefully assessing the NK cell

line NK-92MI and breast cancer cell line MDA-MB-231. After 24 and 48 hours of
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incubation, activation was estimated in the proportion of 3 NK cells for each breast

cancer MDA-MB-231 cell by assessing the known markers using flow cytometry (Sony

SH800S). These markers include CD25, CD69 and CD314 which are expressed when

one cell comes in contact with other.

5.2.2 Cell lines and culture

TNBC MDA-MB-231 (ATCC® HTB-26™), was cultured in DMEM/high modified

culture medium with inactivated fetal bovine serum (10%) and antibiotics penicillin/

streptomycin (1%). The culture was replicated every three days, maintaining a con-

fluence of 40% at the time of passage and maintained at a temperature of 37°C in a

humidified atmosphere with 5% CO2. The adherent cells were detached with Gibco

TrypLE reagent and then resuspended in the complete culture medium.

NK-92MI (ATCC® CRL-2408), genetically modified human NK cell cells to pro-

duce interleukin two were cultured in the medium supplemented with Alpha Minimum

Essential medium (AMEM), inositol (0.2 mM), mercaptoethanol ( 0.1 mM), folic acid

(0.02 mM), fetal bovine serum (12.5%), and horse serum (12.5%). The homogenization

of NK cells was performed to get separate clusters before replication in a new vessel i.e.

25 cm² flask with previously cultured cells (1mL) + new culture medium (9mL). Cultur-

ing of the NK and MDA-MB-231 cells was performed individually for the subsequent

cell-cell interactions experiments employing the Fludigm Polaris system.

5.2.3 Fluidgm Polaris protocols for selection and incubation of cells

The initial step involves priming of IFC with beads which aid in the cell adhesion that

are to be incubated in the chambers. To differentiate cell types, cells and reagents

were already labeled using specific markers after treatment. NK cells labeled with

celltracker fluorescent dye far red, cancer cells with celltracker orange, and calcein AM

for viability were pipetted into IFC. The Polaris system was set up to select NK and

cancer cells that were positive for celltracker far red fluorescent dye and calcein AM.

In some IFC wells, only a single cell was maintained for comparing single-cell

gene expression profiles with the gene expression profiles acquired from incubation of
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cells as doublets (NK cell+ breast cancer cell). Following selection, Polaris equipment

was configured to incubate cells for 16 hours, replacing the culture medium containing

DMEM (20%) + AMEM (20%) every 5 hours and time-lapse imaging was performed

every hour before and after culture image change. Then, after incubation of single can-

cer cells (n=71), single NK cells (n=77), and cancer-immune doublets (CIDs) (n=132),

cells were subjected to lysis, reverse transcription, amplification of cDNA, and finally

single-cell RNA sequencing using NextSeq Illumina 500.

5.2.4 Distance estimation between cells

In this study, the distance reported for the CIDs group is the shortest distance between

the membrane of NK and MDA-MB-231 cells on IFC. The distance was quantified for

13-time points. We utilized the National Institutes of Health’s ImageJ software which

is open-source Java-based software for image processing to scrutinize videos of cells

frame by frame to generate distance data [175].

5.2.5 Preprocessing of dataset

In total, we acquired single-cell gene expression data for 340 cells. The cells can be

categorized into the following categories: 77 single NK cells, 71 single tumor cells, 132

CIDs throughout all time points, 10 CIDs that remained solely NK cells at the 13th time

point. Out of a total of 340 cells, we discarded 50 cells, including— two bulk biological

replicates each of MDA-MB231 and NK cell lines, four unoccupied chambers where

none of the cells could be detected from beginning to end, eight unoccupied chambers

which started with tumor cells, ten unoccupied chambers that started with NK cells, two

CIDs that initially began as single NK cells and 22 tumor cells that began as CIDs. After

discarding these cells, a total of 290 cells remained. Further, we screened the dataset for

low-quality cells and retained those cells having >2000 expressed genes, i.e., non-zero

TPM RNA-seq quantified by RSEM software [122]. Next, we kept genes having TPM

expression value >5 in ≥ 10 cells. Notably, at this stage, our gene expression matrix

contained 290 cells and 8907 protein-coding genes. This matrix was subjected to the

Seurat pipeline and used for various other analyses.
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5.2.6 Seurat workflow

After basic preprocessing steps, the filtered gene expression matrix was subjected to

the single-cell Seurat pipeline from R and other downstream analyses [185]. The stan-

dard preprocessing steps of Seurat include gene filtering (second pass). We utilized

genes present in at least five cells, followed by log-normalization and variance stabi-

lizing transformation to detect highly variable genes using functions NormalizeData()

and FindVariableFeatures() using default parameters. We have used Seurat’s data inte-

gration workflow to integrate data originating from two independent runs. To ward off

the batch effect and integrate data, we used the FinIntegrationAnchors() function with

k.filter option as 100 to identify anchor cells that depict matching pairs of cells with

similar biological states across two datasets to transform transcriptomes into shared

space. Then, anchors were integrated using the integrateData() function, which involves

Canonical Correlation Analysis (CCA). This results in the batch adjusted matrix. The

2D map of cells was plotted and visualized using the RunUMAP() function.

5.2.7 Differential genes

The R package Limma with Limma-voom [117] functionality to obtain differentially

expressed genes in the cell groups. We used an adjusted p-value < 0.05 and log 2 fold

change cutoff of 1 to select differential genes.

5.2.8 Survival analysis using genes upregulated in NK cells exhibit-

ing cytotoxic activity

We used PROGgeneV2 [71] combined gene signature analysis functionality to perform

overall survival analysis using gene signature or gene list upregulated in NK cells dis-

playing anti-tumor activity on the TCGA-BRCA dataset comprising survival data of

594 patients. Of 187 elevated genes in the NK cells exhibiting tumor-killing activity,

164 genes were mapped to the TCGA-BRCA dataset. Kaplan-Meir plot was generated

based on the categorization of patients into a high and low-risk group based on the

median value of combined expression of gene signature as a cut-off.
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5.2.9 Regulation of intercellular distances and transcriptional mem-

ory

We used two matrices to access the connection between cell-cell distances captured at

13 time points and gene expression profiles that were profiled at the 13th time point. The

first matrix is the gene expression matrix of dimension |G|*|C| where |G| corresponds to

genes and |C| corresponds to the CIDs. The second matrix is of cell-cell distances of

dimensions |C|*|T| where |C| represents the same cells as in the gene expression matrix

and |T| is the time points at which cell-cell distances were captured. These two matrices

were used to estimate the Pearson correlation matrix of dimension |G|*|T| where |G| =

2000 and |T| =13. This matrix contained Pearson’s correlation coefficients ρg,t for each

gene-time point pairs (g, t)|t ∈ T, g ∈ G. We retained 90 genes that had a correlation

greater than 0.25 in at least one of the time points. The correlation matrix with these 90

genes was used for hierarchical clustering, and we obtained four gene modules using

cutree(). All four modules were subjected to motif enrichment and TF activity analysis

using RcisTarget [3] and ShinyGO [65], respectively. Utilizing the hg19-tss-centered-

10kb-7species.mc9nr.feather database including genome-wide ranking for the motifs,

RcisTarget identified enriched TF binding motifs and provided list of TFs for every

module. Using igraph [46] R package regulatory networks were built.

5.2.10 CIDs and cell-cell signaling

We utilized the iTALK R package [205] containing 2,648 unique ligand-receptor in-

teractions specific to cancer. Using our gene expression matrix that comprises 8907

protein-coding genes and 290 cells as an input to rawParse() function using mean as

method of a stats, the top 50% of highly expressed genes were selected. This resulted

in the identification of 230 ligand-receptor pairs from the FindLR() function. Then,

Pearson’s correlation coefficient was calculated between the gene expression vectors

linked with chosen ligand-protein pairs in CIDs—TU-NK/TU-NK and TU-NK/NK.

Those pairs showed Pearson’s correlation of more than 0.4 qualified for downstream

analysis. We also computed Pearson’s correlation coefficient for NK/NK and TU/TU

cases to preclude the possibility that observed co-expression is exclusively due to NK

or tumor cells alone. Using these criteria, we chose twenty ligand-protein pairs, and
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three of them were found to be directly implicated in signaling in breast cancer.

5.2.11 Data availability

All raw and processed sequencing data used in this study have been submitted to the

NCBI Gene Expression Omnibus under accession number GSE181591.

5.2.12 Code availability

https://github.com/SmritiChawla/NKCell

5.2.13 Results

To investigate NK-TNBC cells interactions, single NK-92MI cells, single MDA-MB-

231 cells, and cancer-immune doublets (CIDs) entailing one NK-92MI cell and one

MDA-MB-231 were captured and incubated for 13 hours using the Fluidigm Polaris

system [171][211][162][208] (Figure 5.1A). We used time-lapse imaging to capture

snapshots of CIDs every hour to quantify the physical distance between them. Incu-

bation was followed by processing single cells and cancer-immune doublets for single-

cell RNA-sequencing. The integrated fluidic circuit (IFC) allows multiple assays to

be performed parallelly involving capturing of cells, co-incubation, lysis of cell, re-

verse transcription, and cDNA amplification [162]. To discriminate between differ-

ent cell types, i.e., single-cell and CIDs, we scrutinized the expression of known cell

type-specific marker genes. Based on differential gene expression analysis between

single NK and cancer cells, we identified known markers of these cells. Notably, we

noted high expression of NK cell marker genes, namely KLRD1, CCR6, LAIR1 [229]

and TNFRSF9 [198] in NK cells, and single cancer cells showed expression of TNBC

marker genes HMGA1, ANKRD11 [172] and TACSTD2 [204] (Figure 5.1B) when

visualized through SCANPY python package for single-cell analysis [209].

90

https://github.com/SmritiChawla/NKCell


Figure 5.1: (A) Schematics of cell interaction studies. The method comprises propaga-
tion of NK and cancer cells in culture, staining them off-chip, and capturing
them as live single cells and cancer-immune doublets. Cells are incubated
and co-incubated and there images are captured over time. A microscopic
view of a chamber on the microfluidic Integrated Fluidic Circuit (IFC) with
an MDA-MB-231 (Blue) and NK cell (Red) doublet is shown by the inset.
Subsequently, the cells are subjected to lysis followed by reverse transcrip-
tion, and the cDNA is amplified in-situ within the chambers. Then prepara-
tion of library, barcoding of sample, and sequencing are done utilizing the
Illumina NextSeq system off-chip. (B) Heatmap showing mean expression
of canonical markers for single NK and cancer cells, substantiating their
lineage identities. (C) UMAP based visualization shows two distinct clus-
ters of cells highlighting heterogeneity in cancer cell lines and PCA-based
visualization reveals spatial separation of NK cells. (D) Boxplots depicting
differentially expressed genes in the cells belonging to the NK killing cell
vs. non-killing group.

Furthermore, to ensure the identities of cell types, we exploit the Polaris system’s

imaging capability. The NK cells were labeled with CellTracker™ Deep Red fluores-

cent dye, and cancer cells were labeled with CellTracker™ Orange CMRA fluorescent

dye before selecting cells on the microfluidic IFC. The 2D visualization of z-score nor-

malized intensities of NK and cancer cell channels using scatterD3 R package revealed

the clustering of cells according to their annotations based on cell labeling. Further,

we subjected the expression profiles to Seurat v3 based unsupervised analysis of tran-

scriptional heterogeneity within the single cells and the doublets (i.e., CIDs). Uniform
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Manifold Approximation and Projection (UMAP) based 2D projections of gene expres-

sion profiles unveiled two distinct clusters [185], which were predominantly dominated

by cancer cell line clonal heterogeneity (Figure 5.1C). The single NK cells were found

to be part of cluster 1 that harbored cancer cells as well. We noticed spatial segregation

of NK cells when transcriptomes of cluster 1 were subjected to principal component

analysis (PCA) (Figure 5.1C). To further characterize the heterogeneity exhibited by

the TNBC cancer cell line, we exclusively conducted unsupervised clustering of tran-

scriptomes of single cancer cells. As expected, this also resulted in two separate clusters

featuring exclusive arrays of differentially upregulated genes.

5.2.14 Tracking of distance in cancer-immune cells over time re-

veals the existence of transcriptional memory

Over 13 hours of incubation in the same microfluidic compartment, we monitored the

CIDs for deciphering dynamic alterations in the physical proximity between the cancer

cells and corresponding NK cells (Figure 5.1A). After 13 hours, the CIDs (n = 102)

were subjected to RNA sequencing. Consequently, we could decipher the relationship

between terminally-estimated gene expressions with distances of cancer-immune cells

quantified across multiple time points.
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Figure 5.2: (A) Overall workflow of estimating correlation between gene expression
profiles and cell-cell distances captured at 13 time points. (B) Heatmap
showing a correlation between gene expression profiles and cell-cell dis-
tances along with the regulatory gene modules governing these associations.
Genes influencing cellular distances between NK and cancer cells are clus-
tered into four modules: M1 to M4. The red arrow indicates the time point
at which of first culture medium exchange was performed. (C) Regulatory
network for the genes belonging to module 1 (M1) which are potentially
regulated by the putative Transcription Factors (TFs) THAP1 and YY1 as
identified through RcisTarget based TF binding motif Enrichment Analysis.

The transcriptomes entailing transcripts whose profiling was performed at the cul-

mination of the 13th hour correlated significantly with distances among CIDs across

all the time points (Figure 5.2A, B). Our results revealed time-bound activities of at

least three distinct gene regulatory modules governing cellular distances. We found

changes in gene regulatory modules over time that correlated to the physical distances

between CIDs (Figure 5.2B). At time point 6, i.e., after five-hour incubation and culture

medium change, we observed a dramatic shift in distance modulation activities, with a

new bunch of genes in module 2 (M2) taking over the control. Notably, a similar change

in gene expression was not observed in later time points of culture medium change. We

used ShinyGO [65] and RcisTarget [3] R packages to interrogate these gene modules

and performed transcription factor analysis for each module. This resulted in inferring
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the regulatory role of three putative transcription factors, including BRCA1, YY1, and

THAP1. Among these, ShinyGO predicted BRCA1, while YY1 and THAP1 with their

putative target genes were predicted by RcisTarget (Figure 5.2C).

5.2.15 Analysis of killing events in cancer-Immune cells

Our unique experiment design allowed us to track the killing events of cancer cells by

NK cells and the associated gene signatures. Only ten cancer cell lysis events were

spotted across 132 CIDs, signifying the rarity of the event. In order to identify gene

signatures associated with cancer cell elimination, differential gene expression analysis

was performed between two CIDs subgroups — the CIDs featuring cancer cell lysis

(NK killing) and the remaining CIDS (non-killing). CASP8, SH3BP2, IGF-1, CNPY1,

and LMO1 are noteworthy among the 187 genes found to be upregulated in the minor

CID subgroup (NK-killing group) (Figure 5.1D).
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Figure 5.3: Kaplan-Meir survival curve created using PROGgeneV2 for TCGA-BRCA
dataset using gene signature upregulated in NK killing group. Patients were
grouped into high and low expression groups of the gene signature based on
a median value (Log-rank test P-value of 0.045).

Furthermore, we analyzed the prognostic impact of combined expression of 164

genes upregulated in the NK killing event having antitumor activity on overall survival

of The Cancer Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA) patients using

PROGgene V2, a webserver to study the prognostic implication of genes of interest

in different cancer types [71]. We found a survival benefit in the patients having a

higher mean expression of the combined gene signature associated with NK cells= anti-
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tumor activities with a Hazard ratio (HR) of 0.11 and a statistical significance of p<0.05

(Figure 5.3).

5.2.16 Analysis of cell-cell signaling in CIDs

Intercellular signaling is a vital element of interactions between cancer and immune

cell. We employed gene expression profiles as a substitute for ligand-protein activ-

ity. We primarily concentrated on cancer-specific ligand-protein pairs presented in

the iTALK database [205]. To discern the level of ligand-protein interaction, we esti-

mated Pearson’s correlation coefficient for ligand-protein pairs in CIDs and single cells

(Figure 5.4). In CIDs, we noted a correlation between ANXA1 and EGFR. ANXA1

is associated with the endocytosis of the EGFR receptor ANXA1-S100A11 complex

[92][23][48] and also plays a critical role in cellular communication via exosomal

EGFR [163]. In the CIDs, we also noted a high correlation between CD24 and SIGLEC10.

Further, an elevated correlation was also observed between EGFR and HSP90AA1.
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Figure 5.4: Barplots showing increased overall coordination or correlation for the
three ligand-protein pairs namely ANXA1-EGFR, HSP90AA1-EGFR, and
CD24-SIGLEC10.
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5.3 Discussion

TNBC is one of the highly aggressive subtypes of breast cancer with very few ther-

apeutic options. However, immunotherapy has lately emerged as a potential strategy

for the clinical management of cancer. In addition to existing immunotherapy based

on T cells that are routinely employed, now the investigation is also concentrated on

exploiting NK cells that play significant roles in innate immune responses in cancer.

Consequently, exhaustive delineation of cancer and NK cell interactions profiled at a

single-cell level might untangle applicable biomarkers and pathways implicated in the

development and progression of tumors.

In this study, we interrogated the gene expression profiles of cancer-NK cell dou-

blets rendered by computing the interaction distance between CIDs over time. Compu-

tational and bioinformatics approaches to the data enabled us to discern gene expression

signatures connected with NK cell killing events. We further verified that these gene

signatures are associated with patient survival using TCGA gene expression profiles.

Our single-cell analysis revealed that heterogeneity in two cancer subclones interfered

dimensionality reduction approach by obscuring the identification of NK cells. Further,

we observed the activation of gene regulatory modules in a timely manner directing

cellular distances during the course of the interaction of NK-cancer cells under co-

incubation. We also observed a link between cell-cell distances for CIDs and their gene

expression profiles that were profiled at the last time point of co-incubation i.e., 13

hours in live cells. Gide, Tuba N., et. demonstrated prospective associations between

the physical proximity of cancer-immune cells with anti-PD-1 therapeutic response in

metastatic melanoma patients [69]. This highlights the significance of intercellular

distance as a valuable measure for understanding cancer immunosurveillance and re-

sponse. Intuitively, there’s a possibility that the exposure of cancer and immune cells

to each instigates an adaptive configuration of transcriptional memory. Recent work by

Battich and colleagues has pinpointed that regulated mRNA transcripts synthesis and

degradation is a critical regulatory approach impacting the fate of cells [19].

Transcriptional memory is the ability of cells to possess reversible memory to retal-

iate to previously encountered stimuli more robustly in the future [20]. At time point

six, we observed a new group of genes in action. The cells might form a lytic immune

synapse as reported by past studies during the initial hours of co-incubation; after that,
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interactions might deviate [151][115]. In this study, we noted the regulatory role of

three putative transcription factors in transcriptional memory. These TFs are BRCA1,

YY1, and THAP1. BRCA1 is the best-studied tumor suppressor gene and is known

to be involved in breast and ovarian cancer. YY1 is involved in promoting oncogenic

programs and activities in breast cancer [200], whereas THAP1 plays a vital role in

the repair of DNA and has also exhibited elevated levels in breast cancers. Overex-

pression of one of the genes TRAP1 belonging to module 1 promotes tumor growth

in breast cancer. On the other side, TRAP1 also reduces metastasis by controlling the

mitochondrial dynamics (process of mitochondrial fission and fusion) [227]. Another

gene MELK from the same module 1 is involved in the proliferation of TNBC. MELK

inhibition can result in the arrest of the cell cycle through reduction of cyclin B1 and

increase of p27 and p-JNK [123]. Another gene, EYA2, is also implicated in breast

cancer promotion. Elevated expression of this gene can increase proliferation markers

such as cyclin E, PCNA, and EGFR [217].

Further, we investigated CIDs for cell killing events and noted transcriptomic sig-

natures—CASP8, SH3BP2, IGF-1, and LMO1. Activation of CASP8 by FASLG leads

to activation of the extrinsic apoptotic pathway in the target cells [235]. SH3BP2 [97]

and IGF-1 [147], on the other hand, have been found to play a critical role in NK cell

cytotoxicity and development. Notably, we observed that strong differential expres-

sion cues stemmed from certain genes that are mainly not documented for their role in

NK cell cytotoxicity. These include upregulation of the LMO1 gene, which is overex-

pressed in T lymphocytes in lymphoblastic leukemia [132]. Other genes upregulated

in the NK killing group are CNPY1 and ACSBG2. CNPY1 gene is known to regulate

FGF signaling in zebrafish [86]. On the other hand, ACSBG2 is known to play role

in fatty acid metabolism [155]. However, the role of these genes concerning NK cell-

mediated cytotoxicity has not been documented in the literature. Thus, this warrants

further investigation.

Additionally, since cell-cell signaling is an important element of cancer-immune

interactions, we investigated coordination among specific ligand-protein pairs in CIDs.

Notably, CD24 (receptor) - SIGLEC10 (ligand) transcripts exhibited a specifically higher

correlation in doublets in comparison to single NK and cancer cells. The association

among this pair in CIDs highlights the significance of the CD24-SIGLEC10 in NK and

TNBC cells. A previous study reported the role of SIGLEC10 in hindering NK cell
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functionality and is also linked with poor survival of patients with hepatocellular car-

cinoma (HCC) [228]. Another study looked into the possibility of CD24-SIGLEC10

interactions in TNBC in the presence of tumor-associated macrophages (TAMs). CD24

and SIGLEC10 are upregulated in several tumor types and TAMs [17], respectively.

Targeting this interaction can be important from a therapeutic point of view. Then,

in another ligand-protein pair, EGFR-HSP90AA1, HSP90AA1 is involved in keeping

the stability and functionality of its receptor EGFR. This stability results in promoting

pathogenesis in breast, head and neck cancers [2][62]. This is accomplished through ep-

ithelial to mesenchymal transition and activating signaling pathways linked with tumor

migration pathways in MDA-MB-231 cells [193].

Currently, significant challenges are involved with the co-incubation of single cells

in regulated condition that concurrently enables the analysis of cell-cell interactions be-

tween live cells and their impact on gene expression[10]. Here, we report a study on

cell-cell interactions by employing automated conditions that accurately regulate media

exchange, temperature, the composition of gas, and humidity to scrutinize and quan-

tify cellular distances constantly. By processing doublets within the same microfluidic

chamber on IFC using microfluidic multi-step chemistry that involves lysis of cells, re-

verse transcription, and amplification of cDNA, physical proximity quantification can

be directly associated with downstream transcriptomic changes.

The proposed microfluidic workflow enabled us to pinpoint unique molecular sig-

natures specific to NK cells exhibiting cytotoxic activities. We identified highly coor-

dinated activities of gene expression profiles driving and influencing the distances of

interacting cancer and NK cells, substantiating transcriptional memory as a primary

governing strategy of cells. We could also delineate elevated coordination in specific

ligand-protein pairs, as demonstrated through gene expression profiles. In the future,

this microfluidic approach might open up new windows to studying cellular interactions

in an immuno-oncology context and further aid in development and administration of

NK cell-based cancer immunotherapies.
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CHAPTER 6

Conclusion

This thesis focuses on various statistical modeling and computational biology approaches

for analyzing single-cell data. Our work incorporated essential features of integrative

analysis of transcriptomics and genomics data. Further, we have demonstrated the ap-

plications of statistical modeling, and machine learning approaches in context-specific

regulations and drug response prediction in cancer.

6.0.1 Summary of contribution

In this section, we give a brief summary of the chapters giving a comprehensive view

of the thesis.

6.0.2 Transformation of single-cell transcriptomics and epigenomics

data in pathway scores using UniPath and its evaluation

Recent breakthroughs in single-cell RNA-sequencing and ATAC-sequencing have opened

up new doors of challenges and opportunities for investigating new applications with

a relevant conversion of read counts that generally possess high technical noise and

dropouts. We developed a novel method UniPath to represent single cells in path-

way space. Our method transforms single-cell gene expression and open chromatin

profiles into pathway or gene enrichment scores. The robust statistical framework of

UniPath involving the use of the global null model results in high consistency, accu-

racy, and scalability in computing gene set or pathway enrichment scores in each cell.

UniPath approach is such that it can handle easily systematic dropouts and batch ef-

fects in scRNA-seq gene expression profiles. Further, pathway scores obtained from

UniPath provide improved accuracy of visualization and clustering for scRNA-seq pro-

files than other similar methods, including PAGODA, AUCell, and GSVA. UniPath

also outperforms these methods in computing cell type-specific enrichment of genesets

in single cells. UniPath framework also facilitates dimensions reduction of single-cell



open-chromatin profiles. After transformation into pathway scores, similar downstream

analyses could be performed on scRNA-seq and scATAC-seq profiles. Therefore, the

proposed method provides a uniform platform for interrogating single-cell gene expres-

sion and open-chromatin profiles at pathways resolution.

6.0.3 Applications of UniPath

The utilization of pathway enrichment scores in the single-cell discipline has emanated

as an effective tool to decipher cellular heterogeneity to procure novel and biologi-

cally relevant information for a multitude of applications. This chapter introduces the

applications of UniPath transformed pathway scores. UniPath pathway scores can be

used for pseudotemporal ordering of single cells while enabling for suppressing of co-

variate effects such as cell cycle, tissue microenvironment. We were able to capture

the true order of cells differentiating into endoderm. However, other methods, namely

Monocle, TSCAN, DiffusionMap, and CellTree that leverages gene expression profiles

instead of pathway scores, resulted in the wrong order prediction. UniPath also enables

visualization of the continuum of lineage potency and co-occurrence of pathways on

pseudotemporally ordered tree. This might help visualize cancer cell fates. Further,

our pathway-based clustering of large-scale mouse cell atlas data showed biologically

relevant grouping of cell types from various distant organs and also revealed a new sub-

cluster of cells. Such an approach can be extended to cluster tumor biopsies to reveal

new cancer cell states and discover new and rare cell types. UniPath proved beneficial

in discerning context-specific regulations in cancer that are often needed in precision

oncology. Further, our approach could highlight patterns of pathway co-occurrence for

distinguishing two groups of cells in NSCLC.

6.0.4 Inference of drug response sensitivity in cancer by leveraging

gene expression data in pathway space

Tumor heterogeneity is a significant hurdle in the cancer treatment. Recently, a con-

siderable amount of drug screening datasets haves become publicly available. These

large-scale datasets provided an opportunity to apply machine learning that holds po-

tential in predicting appropriate patient-tailored therapies. Numerous machine learning
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methods have been developed for predicting drug response. However, after carefully

scrutinizing these methods, we found two crucial areas for improvement. First, most

previous studies do not account for molecular structure information, and secondly, most

of the studies utilize gene expression profiles to predict drug response. It is increasingly

becoming apparent that coordinated activities of multiple genes in a pathway could in-

fluence the drug response instead of a single gene. In this study, we developed Precily,

deep neural network based framework to model drug response in in vivo and in vitro

contexts by utilizing pathway enrichment scores and numerical drug descriptors. Our

pathway-based approach enabled our model to highlight biological mechanisms associ-

ated with drug resistance and sensitivity. Further, using pathway scores to model drug

response enabled us to reliably allude fate of cells under treatment from scRNA-seq

gene expression data. This can open up avenues for drug response prediction at the

subclonal level using cancer scRNA-seq data. Drug response predictions on in-house

generated prostate cancer datasets, including cell lines, cell lines under differential treat-

ment conditions and xenografts, revealed biologically significant results. We evaluated

our approach on pan-cancer TCGA data and external melanoma dataset, resulting in

clinically relevant predictions. This is the first study linking systematic drug response

prediction to clinically relevant findings in in vivo and textitin vitro settings. Overall,

our results suggest that patterns of pathway scores in cancer cells have the potential to

highlight drug sensitivity in cancer cells and thus can be used for personalized treatment

decisions.

6.0.5 Effect of physical proximity on gene expression, cell-cell in-

teractions and signaling at single cell resolution

Our study is the first to monitor time-dependent interactions between NK and triple-

negative breast cancer cell doublets at single-cell resolution, which allowed us to iden-

tify gene signatures specific to NK cells that can potentially kill the cancer cells. We

identified highly coordinated regulatory activities of gene expression profiles influenc-

ing active changes in the physical distance in doublets, supporting the transcriptional

memory narrative as an essential regulatory programme of cells. We could also de-

lineate inflated coordination among some specific selected ligand-receptor pairs using

gene expression profiles. The proposed microfluidic workflow and our initial obser-
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vations might provide new insights into studying cellular interactions and signaling in

immuno-oncology contexts, which holds considerable potential in helping in designing

NK-based immunotherapies.

6.1 Future work

Some of the probable future extensions of the presented works are outlined below.

1. Owing to the advent of Single-cell RNA-seq technologies, our understanding of

intratumor heterogeneity has been dramatically refined. Although single-cell transcrip-

tomics provides unprecedented advantages in the clinical domain, they are yet fully

explored for designing patient-specific therapies accounting for intratumor heterogene-

ity. We have limitedly exploited single-cell RNA-seq data for drug response prediction

in our work. We want to exploit scRNA-seq profiles of the tumor microenvironment

further to discern subclonal drug response and resistance.

2. Spatial transcriptomics is a powerful technique that has considerably improved

our understanding of cellular interactions and the functional organization of tissues.

This cutting-edge technology allows positional mapping of gene activity which is cru-

cial in understanding tumor pathogenesis. However, currently, it is achieved by investi-

gating the expression of one gene at a time. But this approach is quite limiting as cancer

is a complex disease and the majority of well-known cancer phenotypes are manifested

through the coordination of multiple genes. The spatial distribution of such transcrip-

tomics gene signatures is not well understood. Therefore, linking clinically relevant

gene signatures with spatial coordinates will help in a better understanding of diseases

such as cancer as it is greatly influenced by the tumor microenvironment.
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APPENDIX A

Supplementary Information

We evaluated UniPath using cell type markers and compared it with three other method

namely, PAGODA, AUCell and GSVA. We used 10 scRNA-seq studies including het-

erogeneous and homogeneous datasets to systematically assess UniPath in revealing

correct terms among top enriched enriched terms. The terms here refer to cell types.

We estimated the percentage of cells with correct cell types among top enriched terms.

In most of the cases UniPath performed better compared to PAGODA, AUCell and

GSVA (Figure A.1)
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Figure A.1: Comprehensive assessment of UniPath on scRNA-seq profiles. (A) The
bars depict the percentage of Embryonic stem cell (ESC) detection among
the top enriched terms for the homogeneous dataset (GSE64016) [121].
Count1 represents the percentage of correct cell type as first enriched term
and Count5 shows the percent of correct cell type in the top 5 enriched
terms. (B) Estimating accuracy of correct detection of ESC from the ho-
mogeneous dataset (GSE71858) [192] among top enriched terms. (C) Ac-
curacy of correct cell type detection in homogeneous dataset of GM12878
cells (GSE44618) [137]. (D) Accuracy of correct cell type detection in ho-
mogeneous dataset of T cells (GSE98638) [232]. (E) Accuracy of correct
cell type detection in a heterogeneous dataset of ESC (GSE36552) [219].
(F) Accuracy of correct cell type detection in a homogeneous dataset of
B cells [233]. (G) Accuracy of correct cell type detection in a heteroge-
neous dataset of Primordial germ cell (GSE63818) [74]. (H) Accuracy of
correct cell type detection for B cells (heterogeneous), Macrophages (het-
erogeneous) and epithelial cells (both homogeneous and heterogeneous)
(GSE81861) [125]. (I) Accuracy of correct cell type detection for Mi-
croglial cells (heterogeneous), Endothelial cells (heterogeneous) and As-
trocytes (both homogeneous and heterogeneous) (GSE67835) [47].
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