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Abstract 

 

Text classification is a construction problem of models which can classify new documents into 

predefined classes. It is important before text mining that we know what is the most important 

data that we require for our research. Text mining has become an essential tool for biomedical 

research. Our project aims to identify the gene-disease relationship using natural language 

processing techniques and word embeddings. Assignment of high-dimensional vectors 

(embeddings) to words in a text corpus in a way that preserves their syntactic and semantic 

relationships is one of the most fundamental techniques in natural language processing (NLP). 

We present a completely generic model based on statistical word embeddings, which shows 

the gene similarity and proves the gene-disease relationship using word analogies. 
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Chapter 1 

 

1 Introduction 
 

Classification of pubmed abstracts was done for getting relevant abstracts related to gene-

disease relationships. Manual and automatic text classification was used to classify abstracts. 

In manual classification, the content of the text was interpreted and categorized accordingly to 

get the training data. In automatic text classification machine learning based systems were used. 

By using pre-labeled examples as training data, machine learning algorithm was applied that 

learned the different associations between pieces of text and that a particular output (i.e. tags) 

was expected for a particular input (i.e. text). The first step towards training a classifier with 

machine learning is feature extraction: a method was used to transform each text into a 

numerical representation in the form of a vector. Then, the machine learning algorithm was fed 

with training data that consists of pairs of feature sets (vectors for each text example, abstracts 

annotated manually) and tags (e.g. relevant, irrelevant) to produce a classification model. 

 

 

 

Figure 1.1  Building the text classification model 

 

After training with enough training samples, the machine learning model began to make 

accurate predictions. The same feature extractor was used to transform unseen text to feature 

sets which were fed into the classification model to get predictions on tags. 

 

 

 

Figure 1.2  Predicting tags from the model 

 

Pubmed abstracts were annotated manually on the basis of gene-disease relationships to get the 

training data. For the annotated set various classifiers were experimented like, svc, logistic 

regression, and decision tree. Svc was finally used to filter out papers from the entire set (about 



2 
 

1mn out of 3mn papers were found to be relevant) as it showed better accuracy. All the data 

was cleaned, preprocessed, and converted into vectors. After classifying the relevant and 

irrelevant abstracts word embeddings were produced by applying word2vec. Some useful 

biological results were obtained after the application of word embeddings. 
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Chapter 2 

 

2 Background and Related Work 
 

Text classification is a construction problem of models which can classify new documents into 

predefined classes [1]. Currently, it is a sophisticated process involving not only the training 

of models, but also numerous additional procedures, e.g. data pre-processing, transformation, 

and dimensionality reduction. Text classification remains a prominent research topic, utilizing 

various techniques and their combinations in complex systems. Furthermore, researchers are 

either developing new classification systems or improving the existing ones, including their 

elements to yield better results, i.e. a higher computational efficiency [1]. 

A massive amount of hidden information is present in the biological abstracts which need to 

be retrieved to gather new insights into the era. Most of the knowledge is buried in the form of 

unstructured textual information only available as written articles. A large volume of data is 

available as abstracts that require to be analyzed collectively. For achieving this, we encoded 

the biologically published literature as information-dense word embeddings. These 

embeddings capture gene-disease relationship concepts without any explicit insertion of 

biological knowledge such as the genes associated with a particular disease, symptoms 

associated with a disease, etc. Our findings showed the possibility of extracting relationships 

among genes and diseases from the massive body of scientific abstracts in a collective manner. 

In recent years, several word embedding models and pre-trained word embeddings [2], [3], [4] 

have been made publicly available and successfully applied to many biomedical NLP 

(BioNLP) tasks. But this technique is not applied for finding out gene-disease relationships yet. 

Moreover, context-specific interaction networks from vector representation of words have been 

identified for prostate cancer, it has not been applied to a wider area [5]. Either the amount of 

data taken is very less [6] or the context of the application is very limited. BioWordVec: an 

open set of biomedical word vectors/embeddings that combines subword information from 

unlabeled biomedical text with a widely-used biomedical controlled vocabulary called Medical 

Subject Headings (MeSH) used 27,599,238 pubmed articles to create the word embeddings 

and applying deep learning and classification models on it [7]. 

Unsupervised word embeddings captured latent knowledge from materials science literature. 

This paper showed how applying word embedding techniques led to the discovery of a novel 

property of a metal that was not considered as thermoelectric earlier but possesses high cosine 

similarity with the word thermoelectric [8]. They removed abstracts that were not relevant to 

their area by training a binary classifier that could label abstracts as ‘relevant’ or ‘not relevant’. 

We tried to follow a somewhat similar procedure to classify the data. 
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Chapter 3 

3 Methodology 
 

3.1 Data Collection 

We collected approximately 3 million abstracts primarily focussed on molecular biology 

literature and genetics. A list of keywords (approximately 500) that were relevant to our area 

of research was provided to them. All the articles were from NCBI (The National Center for 

Biotechnology Information) pubmed. Abstracts were taken from the site [9]. We first tried to 

get the data through web-scraping using beautifulsoup python library but could scrape only 

around 100,000 articles. All the data that we got was in the form of  ‘.json’  files.  

 

3.1.1 Reading json files:  

All of the json data is converted into a readable format by using python package json. 

Introduction of JSON in Python : 

The full-form of JSON is JavaScript Object Notation. It means that a script (executable) file 

which is made of text in a programming language, is used to store and transfer the data. Python 

supports JSON through a built-in package called json. To use this feature, we import the json 

package in Python script. The text in JSON is done through quoted-string which contains the 

value in key-value mapping within { }. It is similar to the dictionary in Python. JSON shows 

an API similar to users of Standard Library marshal and pickle modules and Python natively 

supports JSON features. JSON supports primitive types, like strings and numbers, as well as 

nested lists, tuples and objects. 

Serializing JSON : 

The process of encoding JSON is usually called serialization. This term refers to the 

transformation of data into a series of bytes (hence serial) to be stored or transmitted across a 

network. To handle the data flow in a file, the JSON library in Python uses dump() function to 

convert the Python objects into their respective JSON object, so it makes easy to write data to 

files. See the following table given below. 

 

Table 3.1 Python object’s corresponding json object 
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3.1.1.1 Deserializing JSON : 

Deserialization is the opposite of Serialization, i.e. conversion of JSON object into their 

respective Python objects. The load() method is used for it. If we have used Json data from 

another program or obtained as a string format of Json, then it can easily be deserialized with 

load(), which is usually used to load from the string, otherwise, the root object is in list or dict. 

 

Different functions for json: 

 

json.load(fp, *, cls=None, object_hook=None, parse_float=None, parse_int=None, 

parse_constant=None, object_pairs_hook=None, **kw) 

 

Deserialize fp (a .read()-supporting text file or binary file containing a JSON document) to a 

Python object using this conversion table. 

 

object_hook is an optional function that will be called with the result of any object literal 

decoded (a dict). The return value of object_hook will be used instead of the dict. This feature 

can be used to implement custom decoders (e.g. JSON-RPC class hinting). 

 

object_pairs_hook is an optional function that will be called with the result of any object 

literal decoded with an ordered list of pairs. The return value of object_pairs_hook will be used 

instead of the dict. This feature can be used to implement custom decoders. If object_hook is 

also defined, the object_pairs_hook takes priority. 

 

parse_float, if specified, will be called with the string of every JSON float to be decoded. By 

default, this is equivalent to float(num_str). This can be used to use another datatype or parser 

for JSON floats (e.g. decimal.Decimal). 

 

parse_int, if specified, will be called with the string of every JSON int to be decoded. By 

default, this is equivalent to int(num_str). This can be used to use another datatype or parser 

for JSON integers (e.g. float). 

 

parse_constant, if specified, will be called with one of the following strings: '-Infinity', 

'Infinity', 'NaN'. This can be used to raise an exception if invalid JSON numbers are 

encountered. 

 

Changed in version 3.1: parse_constant doesn’t get called on ‘null’, ‘true’, ‘false’ anymore. 

 

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise, 

JSONDecoder is used. Additional keyword arguments will be passed to the constructor of the 

class. 

 

If the data being deserialized is not a valid JSON document, a JSONDecodeError will be raised. 

 

Changed in version 3.6: All optional parameters are now keyword-only. 

 

Changed in version 3.6: fp can now be a binary file. The input encoding should be UTF-8, 

UTF-16 or UTF-32. 
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3.2 Extracting relevant columns from the data 

Our data was extracted from NCBI (The National Center for Biotechnology Information) 

pubmed. It contained various columns such as Sr.No., pubmed id (PMID), abstract, title, doi 

id, etc. PubMed comprises over 30 million citations for biomedical literature from MEDLINE, 

life science journals, and online books. PubMed citations and abstracts include the fields of 

biomedicine and health, covering portions of the life sciences, behavioral sciences, chemical 

sciences, and bioengineering. PubMed also provides access to additional relevant web sites and 

links to the other NCBI molecular biology resources. PubMed is a free resource that is 

developed and maintained by the National Center for Biotechnology Information (NCBI), at 

the U.S. National Library of Medicine (NLM), located at the National Institutes of Health 

(NIH). Various fields included in the pubmed json data are as follows: 

Abstract (AB), Copyright Information (CI), Affiliation (AD), Article Identifier 

(AID), Author (AU), Create Date (CRDT), Date Completed (DCOM), Date Created (DA), 

Date Last Revised (LR), Date of Publication (DP), Edition (EN), Entrez Date (EDAT), Journal 

Title (JT), MeSH Terms (MH), NLM Unique ID (JID), PubMed Central Identifier (PMC), 

PubMed Unique Identifier (PMID), Title (TI).  

Although we were interested in only a few of the above-mentioned fields. These fields are 

PubMed Unique Identifier (PMID), Title (TI) and abstract (AB). So, only these columns were 

extracted from the json data. 

 

3.3 Annotating the data 

The data were annotated manually. The pubmed abstract’s content was read manually and 

interpreted. The interpretation was based on our area of research, i.e., molecular biology and 

genetics. The abstracts were classified as positive and negative keeping in mind the problems 

related to gene-disease relationships. The positive abstracts contained the information about 

the genes and the corresponding diseases, all other abstracts were taken as negative. For 

positive data the articles were taken from GWAS (genome-wide association study), COSMIC 

(Catalogue Of Somatic Mutations In Cancer) and OMIM (Online Mendelian Inheritance in 

Man) databases. 

3.3.1 GWAS 

In genetics, a genome-wide association study (GWA study, or GWAS), also known as whole-

genome association study (WGA study, or WGAS), is an observational study of a genome-

wide set of genetic variants in different individuals to see if any variant is associated with a 

trait. GWASs typically focus on associations between single-nucleotide polymorphisms 

(SNPs) and traits like major human diseases, but can equally be applied to any other genetic 

variants and any other organisms. 

3.3.2 COSMIC 

COSMIC is an online database of somatically acquired mutations found in human cancer. 

Somatic mutations are those that occur in non-germline cells that are not inherited by children. 

COSMIC, an acronym of Catalogue Of Somatic Mutations In Cancer, curates data from papers 

in the scientific literature and large scale experimental screens from the Cancer Genome Project 

at the Sanger Institute. The database is freely available to academic researchers and 

commercially licensed to others. 

3.3.3 OMIM 

Online Mendelian Inheritance in Man (OMIM) is a continuously updated catalog of human 

genes and genetic disorders and traits, with a particular focus on the gene-phenotype 
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relationship. As of 28 June 2019, approximately 9,000 of them over 25,000 entries in OMIM 

represented phenotypes; the rest represented genes, many of which were related to known 

phenotypes. 

 

For annotating the abstracts a google sheet was prepared to contain the columns as, PMID 

(pubmed id), Year of publication, Disease/Problem defined, Database to which the article 

belongs. PMID was used to extract the abstracts from the data. The year of publication was 

taken to check that the positive data is not biased with respect to the publication years. A total 

of 3000 abstracts were annotated out of which 1500 are positive and 1500 are negative. Positive 

abstracts are the abstracts that were relevant to our area of research and all other abstracts are 

negative abstracts. 

 

3.3.4 Checking the bias 

For checking the bias total number of count of publications in a particular year was compared 

with the total number of positive publications and the total number of negative publications 

respectively in that year. The years were starting from 1900 till the present. A correlation 

between the total count and positive data was obtained that was 0.84 and the correlation 

between the count and the negative data was 0.92. This showed that our data was not biased.  

 

 

Figure 3.1  Total number of publications in respective years. 
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Figure 3.2  Number of positive abstracts and negative abstracts in respective years. 

 

 

3.4 Cleaning and preprocessing the data 

Only abstracts were taken as the data, all other fields such as title, PMID, Keywords, etc. were 

removed. To preprocess our text simply means to bring our text into a form that is predictable 

and analyzable for our task. A task here is a combination of approach and domain. 

Steps involved in preprocessing 

 

 

                     

Figure 3.3  The text data preprocessing framework 
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3.4.1 Noise Removal. 

Noise removal is about removing characters digits and pieces of text that can interfere with our 

text analysis. Noise removal is one of the most essential text preprocessing steps. It is also 

highly domain-dependent. For example, in Tweets, noise could be all special characters except 

hashtags as it signifies concepts that can characterize a Tweet. The problem with noise is that 

it can produce results that are inconsistent in our downstream tasks.  

3.4.1.1 Removing HTML tags. 

Often, the unstructured text contains a lot of noise, especially if you use techniques like web 

or screen scraping. HTML tags are typically one of these components which don’t add much 

value towards understanding and analyzing text. 

3.4.1.2 Replacing contractions. 

While not mandatory to do at this stage prior to tokenization, replacing contractions with their 

expansions can be beneficial at this point since our word tokenizer will split words like "didn't" 

into "did" and "n't." It's not impossible to remedy this tokenization at a later stage, but doing 

so prior makes it easier and more straightforward. 

 

3.4.2 Tokenization. 

Tokenization is a step that splits longer strings of text into smaller pieces or tokens. Larger 

chunks of text can be tokenized into sentences, sentences can be tokenized into words, etc. 

Further processing is generally performed after a piece of text has been appropriately 

tokenized. Tokenization is also referred to as text segmentation or lexical analysis. Sometimes 

segmentation is used to refer to the breakdown of a large chunk of text into pieces larger than 

words (e.g. paragraphs or sentences), while tokenization is reserved for the breakdown process 

which results exclusively in words. 

 

3.4.3 Normalization. 

Text normalization is the process of transforming a text into a canonical (standard) form. For 

example, the word “gooood” and “gud” can be transformed into “good”, its canonical form. 

Another example is mapping of near-identical words such as “stopwords”, “stop-words” and 

“stop words” to just “stopwords”. 

3.4.3.1 Removing non-ASCII characters. 

Non-ASCII characters are replaced with space. 

3.4.3.2 Converting text corpus into lowercase.   

All of the text is converted into lowercase so that every word could be read equally.   

3.4.3.3 Removing punctuations. 

All the punctuations were removed so that only words remain in the corpus. 

3.4.3.4 Replacing numbers with words. 

All the numbers were replaced with the corresponding English alphabet and converted them 

into words. 
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3.4.3.5 Removing STOP words. 

Stopwords are the most common words in any natural language. For the purpose of analyzing 

text data and building NLP models, these stopwords might not add much value to the meaning 

of the document. Consider this text string – “There is a pen on the table”. Now, the words “is”, 

“a”, “on”, and  “the” add no meaning to the statement while parsing it. Whereas words like 

“there”, “book”, and “table” are the keywords and tell us what the statement is all about. 

 

3.4.4 Lemmatization. 

Lemmatization reduces the inflected words properly ensuring that the root word belongs to the 

language. In Lemmatization root word is called Lemma. A lemma (plural lemmas or lemmata) 

is the canonical form, dictionary form, or citation form of a set of words. For example, runs, 

running, ran are all forms of the word run, therefore run is the lemma of all these words. 

Python NLTK library was used for the preprocessing. NLTK is a leading platform for building 

Python programs to work with human language data. It provides easy-to-use interfaces to over 

50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries 

for classification, tokenization, stemming, tagging, parsing, and semantic reasoning and 

wrappers for industrial-strength NLP libraries. 

 

 

Figure 3.4  Text preprocessing steps 

 

 

3.5 Converting the data into vectors 

All the abstracts were converted to vectors using “BioSentVec_Pubmed_MIMICIII-

bigram_d700.bin” file. It is freely available on NCBI PubMed. It contains the vectors of 

biomedical data. These are the pre-trained sentence embeddings for biomedical texts. These 

sentence embeddings are trained with over 30 million documents from both scholarly articles 

in PubMed and clinical notes in the MIMIC-III Clinical Database [10]. All the vectors for all 

the words were present in these embeddings.  
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Figure 3.5  Text data is converted to vectors using BiosentVec 

 

3.6 Supervised Classification: Applying different classifiers on the 

annotated data 

Different classifiers were applied to the data to classify the abstracts as relevant and non-

relevant. Relevant abstracts were the abstracts that were related to our area of research, that is, 

molecular biology and genetics. We aim to find out the relationship between genes and diseases 

through our model. All the abstracts other than the relevant abstracts were the non-relevant 

abstracts. Different classifiers that were applied are SVM (Support Vector Machines), Logistic 

Regression and Decision trees. Out of all of the above SVM classifiers best classified our 

abstracts. SVM showed the best accuracy out of all the three classifiers.  

 

3.6.1 Support Vector Machines 

Generally, Support Vector Machines is considered to be a classification approach but can be 

employed in both types of classification and regression problems. It can easily handle multiple 

continuous and categorical variables. SVM constructs a hyperplane in multidimensional space 

to separate different classes. SVM generates optimal hyperplane in an iterative manner, which 

is used to minimize an error. The core idea of SVM is to find a maximum marginal 

hyperplane(MMH) that best divides the dataset into classes. 
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Figure 3.6  Finding a maximum marginal hyperplane 

 

 

3.6.1.1 Support Vectors 

Support vectors are the data points, which are closest to the hyperplane. These points will 

define the separating line better by calculating margins. These points are more relevant to the 

construction of the classifier. 

3.6.1.2 Hyperplane 

A hyperplane is a decision plane that separates between a set of objects having different class 

memberships. 

3.6.1.3 Margin 

A margin is a gap between the two lines on the closest class points. This is calculated as the 

perpendicular distance from the line to support vectors or closest points. If the margin is larger 

in between classes, then it is considered a good margin, a smaller margin is a bad margin. 

3.6.1.4 How does SVM work? 

The main objective is to segregate the given dataset in the best possible way. The distance 

between the nearest points is known as the margin. The objective is to select a hyperplane with 

the maximum possible margin between support vectors in the given dataset. SVM searches for 

the maximum marginal hyperplane in the following steps: 

1. Generate hyperplanes that segregate the classes in the best way. Left-hand side figure 

showing three hyperplanes black, blue and orange. Here, the blue and orange have 

higher classification errors, but the black is separating the two classes correctly. 

2. Select the right hyperplane with the maximum segregation from either nearest data 

points as shown in the right-hand side figure. 
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Figure 3.7  Drawing hyperplanes to segregate the classes 

 

3.6.1.5 Dealing with non-linear and inseparable planes 

Some problems can’t be solved using linear hyperplane, as shown in the figure below (left-

hand side). 

In such a situation, SVM uses a kernel trick to transform the input space to a higher dimensional 

space as shown on the right. The data points are plotted on the x-axis and z-axis (Z is the 

squared sum of both x and y: z=x^2=y^2). Now you can easily segregate these points using 

linear separation. 

 

 

Figure 3.8  Non-linear and inseparable planes 

 

3.6.1.6 SVM Kernels 

The SVM algorithm is implemented in practice using a kernel. A kernel transforms an input 

data space into the required form. SVM uses a technique called the kernel trick. Here, the kernel 

takes a low-dimensional input space and transforms it into a higher-dimensional space. In other 

words, you can say that it converts nonseparable problems to separable problems by adding 
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more dimension to it. It is most useful in a non-linear separation problem. Kernel trick helps 

you to build a more accurate classifier. 

 

3.6.1.6.1 Linear Kernel 

A linear kernel can be used as a normal dot product any two given observations. The product 

between two vectors is the sum of the multiplication of each pair of input values. 

K(x, xi) = sum(x * xi) 

 

3.6.1.6.2 Polynomial Kernel 

A polynomial kernel is a more generalized form of the linear kernel. The polynomial kernel 

can distinguish curved or nonlinear input space. 

K(x,xi) = 1 + sum(x * xi)^d 

Where d is the degree of the polynomial. d=1 is similar to the linear transformation. The degree 

needs to be manually specified in the learning algorithm. 

 

3.6.1.6.3 Radial Basis Function Kernel  

The Radial basis function kernel is a popular kernel function commonly used in support vector 

machine classification. RBF can map an input space in infinite-dimensional space. 

K(x,xi) = exp(-gamma * sum((x – xi^2)) 

Here gamma is a parameter, which ranges from 0 to 1. A higher value of gamma will perfectly 

fit the training dataset, which causes over-fitting. Gamma=0.1 is considered to be a good 

default value. The value of gamma needs to be manually specified in the learning algorithm. 

3.6.1.7 Mathematical formulation 

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite-

dimensional space, which can be used for classification, regression or other tasks. Intuitively, 

a good separation is achieved by the hyper-plane that has the largest distance to the nearest 

training data points of any class (so-called functional margin), since in general the larger the 

margin the lower the generalization error of the classifier. 

 

 

Figure 3.9  Mathematical formulation of hyperplanes 
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SVC 

Given training vectors  in two classes, and a vector  SVC 

solves the following primal problem: 

 
Its dual is 

 
 

Where e is the vector of all ones, C>0 is the upper bound, Q is an n by n positive semidefinite 

matrix,   where  

 is the kernel. Here training vectors are implicitly mapped into a higher (maybe infinite) 

dimensional space by the function . 

The decision function is: 

 
 

 

 

3.6.1.8 Advantages 

SVM Classifiers offer good accuracy and perform faster prediction compared to the Naïve 

Bayes algorithm. They also use less memory because they use a subset of training points in the 

decision phase. SVM works well with a clear margin of separation and with high dimensional 

space. 

 

3.6.1.9 Disadvantages 

SVM is not suitable for large datasets because of its high training time and it also takes more 

time in training compared to Naïve Bayes. It works poorly with overlapping classes and is also 

sensitive to the type of kernel used.  

 

3.6.1.10 Implementation 

Python sklearn package was used. 

We divided our data in the ratio 75:25 (training: testing). 
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The kernel used was ‘rbf’. 

SVC(kernel = 'rbf', random_state = 0, gamma = "auto", probability = True) 

These parameters were used while applying the classifier. 

 

3.6.2 Logistic Regression 

Logistic regression is a statistical model that in its basic form uses a logistic function to model 

a binary dependent variable, although many more complex extensions exist. In regression 

analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model 

(a form of binary regression). Mathematically, a binary logistic model has a dependent variable 

with two possible values, such as pass/fail which is represented by an indicator variable, where 

the two values are labeled "0" and "1". In the logistic model, the log-odds (the logarithm of the 

odds) for the value labeled "1" is a linear combination of one or more independent variables 

("predictors"); the independent variables can each be a binary variable (two classes, coded by 

an indicator variable) or a continuous variable (any real value). The corresponding probability 

of the value labeled "1" can vary between 0 (certainly the value "0") and 1 (certainly the value 

"1"), hence the labeling; the function that converts log-odds to probability is the logistic 

function, hence the name. The unit of measurement for the log-odds scale is called a logit, from 

the logistic unit, hence the alternative names. Analogous models with a different sigmoid 

function instead of the logistic function can also be used, such as the probit model; the defining 

characteristic of the logistic model is that increasing one of the independent variables 

multiplicatively scales the odds of the given outcome at a constant rate, with each independent 

variable having its own parameter; for a binary dependent variable, this generalizes the odds 

ratio. 

 

The binary logistic regression model has two levels of the dependent variable: categorical 

outputs with more than two values are modeled by multinomial logistic regression, and if 

multiple categories are ordered, by ordinal logistic regression, for example, the proportional 

odds ordinal logistic model. The model itself simply models probability of output in terms of 

input, and does not perform statistical classification (it is not a classifier), though it can be used 

to make a classifier, for instance by choosing a cutoff value and classifying inputs with 

probability greater than the cutoff as one class, below the cutoff as the other; this is a common 

way to make a binary classifier.  

 

3.6.2.1 Definition of the logistic function: 

An explanation of logistic regression can begin with an explanation of the standard logistic 

function. The logistic function is a sigmoid function, which takes any real input ‘t’, and outputs 

a value between zero and one; for the logit, this is interpreted as taking input log-odds and 

having output probability. 

The standard logistic function is defined as follows: 

 
Let us assume that ‘t’ is a linear function of a single explanatory variable ‘x’. We can then 

express ‘t’ as follows: 

 
And the general logistic function can now be written as: 
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In the logistic model, p(x)  is interpreted as the probability of the dependent variable Y equaling 

a success/case rather than a failure/non-case 

 

.  

Figure 3.10  Representation of logistic regression model 

 

3.6.2.2 Implementation: 

Python sklearn, LogisticRegression library was used as the classifier. 

 

3.6.3 Decision Trees 

The decision tree is the most powerful and popular tool for classification and prediction. A 

Decision tree is a flowchart like a tree structure, where each internal node denotes a test on an 

attribute, each branch represents an outcome of the test, and each leaf node (terminal node) 

holds a class label. 

3.6.3.1 Construction of Decision Tree : 

A tree can be “learned” by splitting the source set into subsets based on an attribute value test. 

This process is repeated on each derived subset in a recursive manner called recursive 

partitioning. The recursion is completed when the subset at a node all has the same value of the 

target variable, or when splitting no longer adds value to the predictions. The construction of 

decision tree classifiers does not require any domain knowledge or parameter setting, and 

therefore is appropriate for exploratory knowledge discovery. Decision trees can handle high 

dimensional data. In general decision tree classifier has good accuracy. Decision tree induction 

is a typical inductive approach to learn knowledge on classification. 
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Figure 3.11  Decision tree for playing tennis 

 

3.6.3.2 Decision Tree Representation : 

Decision trees classify instances by sorting them down the tree from the root to some leaf node, 

which provides the classification of the instance. An instance is classified by starting at the root 

node of the tree, testing the attribute specified by this node, then moving down the tree branch 

corresponding to the value of the attribute as shown in the above figure. This process is then 

repeated for the subtree rooted at the new node. 

The decision tree in the above figure classifies a particular morning according to whether it is 

suitable for playing tennis and returning the classification associated with the particular leaf. 

(in this case Yes or No). 

For example, the instance 

 

(Outlook = Rain, Temperature = Hot, Humidity = High, Wind = Strong ) 

 

would be sorted down the leftmost branch of this decision tree and would, therefore, be 

classified as a negative instance. 

 

In other words, we can say that the decision tree represents a disjunction of conjunctions of 

constraints on the attribute values of instances. 

 

(Outlook = Sunny ^ Humidity = Normal) v (Outllok = Overcast) v (Outlook = Rain ^ Wind = 

Weak) 

 

3.6.3.3 Strengths and Weakness of the Decision Tree approach 

The strengths of decision tree methods are: 

 Decision trees are able to generate understandable rules. 

 Decision trees perform classification without requiring much computation. 
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 Decision trees are able to handle both continuous and categorical variables. 

 Decision trees provide a clear indication of which fields are most important for 

prediction or classification. 

 

The weaknesses of decision tree methods : 

 

 Decision trees are less appropriate for estimation tasks where the goal is to predict the 

value of a continuous attribute. 

 Decision trees are prone to errors in classification problems with many classes and a 

relatively small number of training examples. 

 The decision tree can be computationally expensive to train. The process of growing a 

decision tree is computationally expensive. At each node, each candidate splitting field 

must be sorted before its best split can be found. In some algorithms, combinations of 

fields are used and a search must be made for optimal combining weights. Pruning 

algorithms can also be expensive since many candidate sub-trees must be formed and 

compared. 

 

3.6.3.4 Implementation 

Python sklearn, DecisionTreeClassifier library was used as the classifier. 

 

Kappa scores and accuracy were analyzed for all the three models to check which classifier 

was working best. Cohen's kappa coefficient (κ) is a statistic that is used to measure inter-rater 

reliability (and also Intra-rater reliability) for qualitative (categorical) items. It is generally 

thought to be a more robust measure than simple percent agreement calculation, as κ takes into 

account the possibility of the agreement occurring by chance. 

 

3.7 Input abstracts to the classifier 

SVM turned out to be the best classifier after analyzing the kappa scores and accuracy. Kappa 

scores and accuracy were analyzed for all the three models to check which classifier was 

working best. Cohen's kappa coefficient (κ) is a statistic that is used to measure inter-rater 

reliability (and also Intra-rater reliability) for qualitative (categorical) items. It is generally 

thought to be a more robust measure than simple percent agreement calculation, as κ takes into 

account the possibility of the agreement occurring by chance. 

3 million abstracts were provided as input to the SVM classifier. Out of 3 mn abstracts, 1 mn 

abstracts were found to be relevant after classification. Further processing was done on these 1 

mn abstracts. 

 

 

3.8 Producing word embeddings 

As a final stage, word embeddings were produced for the 1mn relevant abstracts by applying 

word2vec. A word embedding is a form of representing words and documents using a dense 

vector representation. The position of a word within the vector space is learned from the text 

and is based on the words that surround the word when it is used. 
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Figure 3.12  Representation of word2vec 
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Chapter 4 

4 Results and Findings 

 

4.1 Results for supervised classification 

 

Classifier Kappa score Accuracy 

1. Support Vector Machines 0.90 0.95 

2. Logistic Regression 0.87 0.93 

3. Decision Trees 0.70 0.85 

Table 4.1 Kappa scores and accuracy for different classifiers 

 

 

 

 

 

Figure 4.1  AUC-ROC curve for SVM classifier 
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Figure 4.2  AUC-ROC curve for Logistic Regression classifier 

 

According to the kappa scores and the accuracy, support vector machines (SVM) classifier was 

considered the best classifier for classifying the abstracts. 

 

4.2 Results after applying word2vec 

Word embeddings were produced for the 1 mn abstracts. We can analyze various gene-disease 

relationships on these embeddings and can produce some findings. 

First, we carried out some basic experiments such as finding out similarities and analogies 

between the genes and the diseases to prove that our word2vec model worked well. 

Then we tried to get some findings out of our model. Some of them were as follows: 

 

 

4.2.1 Word Similarity 

1. Most similar words to diabetes. 

 

Result:  
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Similar words Cosine similarity 

Diabetic 0.7325131893157959 

Diabete 0.7250828742980957 

t2d 0.6969379782676697 

t2dm 0.6920477151870728 

t1dm  0.6192148923873901 

Table 4.2 Most similar words to diabetes according to our word2vec model. 

 

2. Most similar genes to diabetic gene TCF7L2 

 

Results: 

 

Similar genes Cosine similarity 

LEP 0.7408995628356934 

IL12B 0.7376514673233032 

FTO 0.7363024950027466 

UGT1A1 0.7346640825271606 

VDR 0.7346566915512085 

Table 4.3 Most similar genes to the diabetic gene TCF7L2 according to our word2vec model. 
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4.2.2 Word Analogies  

We also tried to find out answers to some questions using word analogies after applying our 

word2vec model. Some of these analogies are: 

 

diabetes is to pancreas as asthma is to ? 

 

To this, we got the most cosine similarity with the answer trachea. This is the best answer to 

our knowledge of the question asked. 

 

 

Organ Cosine similarity 

trachea 0.55 

bronchi 0.53 

airways 0.50 

bronchus 0.47 

lungs 0.41 

Table 4.4 Word Analogy for finding out similar organs 

 

We could also determine the symptoms of a disease with the help of word analogy to our 

word2vec model. For example: 

We asked the question 

 

diabetes is to diuresis as asthma is to ? 

 

To this, we got the best answer as ‘bronchoconstriction’ which is best to our knowledge. 

 

 

Symptom Cosine similarity 

bronchoconstriction 0.48 

asthmatic 0.47 

cough 0.46 

methacholine 0.45 

asthm 0.44 

Table 4.5 Word analogy to find out symptoms 
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4.2.3 Findings 

We also tried to answer some questions that are new to our area of research. Some of these 

findings are: 

 

4.2.3.1 Is MSH2 involved in breast cancer? 

According to our model MSH2 has a cosine similarity of 0.46 to BRCA1 and should 

be treated as a breast cancer gene. But there is a dilemma in its role in breast cancer. In 

recent year’s research papers it is said that MSH2 is not involved in breast cancer but 

in earlier papers, it was said that it is involved in breast cancer. So, this finding is crucial 

and needs to be verified. 

 

4.2.3.2 MBL2 as a therapeutic strategy for lung cancer? 

We found the most similar genes to immune checkpoint inhibitor gene CTLA4. 

According to our model, MBL2 showed the highest cosine similarity with CTLA4. 

MBL2, Mannose-binding lectin (MBL) is a recognition molecule that mediates 

phagocytosis and activates complement [11].  According to [12], the complement 

pathway can act as a therapeutic strategy for lung cancer. Recently, studies have 

demonstrated that intracellular activation of complement in cancer cells can act as an 

immunosuppressive pathway to regulate the expression of PD-L1. So there can be a 

future possibility that MBL2 can act as a therapeutic agent for cancer. 
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Chapter 5 

5 Conclusion 

We found out some useful gene-disease relationships by applying supervised classification and 

word embedding techniques. These techniques can also be used to carry out further findings in 

the area of research of biology. The key conclusions that we can draw out of our work are 

related to the functions of the MSH2 and MBL2 genes in breast cancer and therapeutics 

respectively. There is a dilemma in the role of MSH2 in breast cancer. In recent year’s research 

papers it is said that MSH2 is not involved in breast cancer [13]. In earlier papers, it was said 

that it is involved in breast cancer [14], [15], [16]. So, this finding is crucial and needs to be 

verified. Complement pathway can act as a therapeutic strategy for lung cancer. Recently, 

studies have demonstrated that intracellular activation of complement in cancer cells can act as 

an immunosuppressive pathway to regulate expression of PD-L1 [12]. So there can be a future 

possibility that MBL2 can act as a therapeutic agent for cancer.  

In conclusion, this work provides a stepping stone for numerous other dimensions of study in 

which different other gene-disease relationships can be examined, new theories can be 

formulated, and new mysteries can be solved. 
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