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ABSTRACT

KEYWORDS: scRNA-seq ; Clustering ; Transfer Learning ; Meta Learning

Single cell RNA-seq data is an important source for profiling cellular heterogeneity.

Clustering is an important step in any single cell pipeline because it allows us to dis-

cover unknown cell types.Furthermore,it is possible for data generated in cell studies

to be contaminated with cells from other tissues or organs, a fact commonly known

as tissue heterogeneity.Failures in detection of tissue heterogeneity affect data inter-

pretability and reproducibility. Efficient clustering approaches aid the study of tissue

heterogeneity. Recently, transfer learning approaches like Xu et al. (2021) and Sun

et al. (2015) have shown superior performance in clustering single cell data. These ap-

proaches leverage information learned from a source dataset to cluster cells in a target

dataset.In this work, we introduce an alternative approach for clustering single cell data

based on meta learning. In a nutshell, given data from n tasks T1, T2, ..., Tn meta learn-

ing aims to solve a new task Ttest quickly. Several meta learning methods were applied

to single cell data and their performance was compared against two transfer learning

based methods namely SCANVI(Xu et al. (2021)) and CORAL(Sun et al. (2015)). We

also tested performance in a more challenging cross species setting where the source

data and target data come from different organisms. We also introduce TranSCend, a

webserver and online repository dedicated to transfer learning.
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CHAPTER 1

INTRODUCTION

Single cell RNA-seq data is an important source for profiling cellular heterogeneity.

Clustering is an important step in any single cell pipeline because it allows us to dis-

cover unknown cell types. More often than not, data generated in cell studies to be

contaminated with cells from other tissues or organs, a fact commonly known as tissue

heterogeneity. Tissue heterogeneity, if not properly addressed, has adverse outcomes

for data interpretability and reproducibility. This is where clustering can play a vital

role. Efficient clustering approaches are instrumental in the study of tissue heterogene-

ity. This has resulted in a plethora of methods aimed at solving the clustering problem.

In the following section, we discuss some of these approaches.

1.1 RELATED WORK

Park and Zhao (2018) introduce a spectral clustering approach for clustering single cell

data. Spectral clustering(SC) relies on eigenvectors of the data matrix for clustering.

It is especially easy to implement using modern linear algebra libraries. The authors

modify the SC framework by imposing a sparse structure on the target matrix. They

also utilize multiple doubly stochastic affinity matrices to construct a robust similarity

matrix.

Li et al. (2020) highlight the computational challenges imposed by batch effects

and the ever increasing size of scRNA-seq data. The authors claim that the latter is

especially pressing because many existing clustering methods cannot be scaled to large

datasets while the former if not dealt with properly leads to complications in down-

stream analysis and false interpretation of results. Their approach iteratively optimizes

the clustering objective function. It is able to remove batch effects provided the dif-

ferences between batches are not significant compared to the true biological variations.

Their approach DESC uses a neural network based autoencoder architecture to map the



original data to a low dimensional latent space. As discussed above, this is done by iter-

atively optimising the objective function. The procedure works by moving each cell to

the nearest cluster centroid. The authors test the scalability of their approach by testing

it on the 1.3 Million Mouse dataset generated by 10x Genomics. Compared to other

approaches such as Seurat 3.0(But (2018)) whose run times increase exponentially with

the number of cells, the run time of DESC increases linearly with the number of cells.

In their work, Wang et al. (2021) motivate the development of a novel model ar-

chitecture by stating that scRNA-seq analysis suffers from major challenges like se-

quencing sparsity and complex differential patterns in gene expression. They report

on the shortcomings of traditional clustering algorithms like SEURAT(But (2018)),

MAGIC(van Dijk et al. (2018)) and Phenograph(Levine et al. (2015)). In a nutshell,

these approaches use a K nearest neighbour graph to model cell-cell relationships. This

constitutes an oversimplification of the complex cell and gene interactions. They pro-

pose an alternative approach based on Graph Neural Networks which have deconvo-

luted node relationships in a graph through neighbor information propagation in a deep

learning architecture.

Xu et al. (2021) introduce a semi supervised version of the scVI Lopez et al. (2018)

called scANVI that leverages existing cell annotations. scVI is able to model the under-

lying data distribution from gene expression values using stochastic optimization and

deep neural networks. The scVI model is applicable to a variety of tasks like batch

correction, clustering and visualization. scANVI works by transferring annotations be-

tween a source dataset for which annotations are available and a target dataset for which

annotations need to be predicted. It scales to large datasets. It provides a completely

probablistic interpretation of scRNA-seq data which helps control for technical factors

of variation such as over-dispersion, library size discrepancies and zero inflation. On the

basis of extensive experimentation, the authors claim that the scVI and scANVI com-

pare favourably to existing state of the art methods for data integration and cell state

annotation in terms of accuracy, scalability, and adaptability to challenging settings.

Gan et al. (2022) draw extensively on previous work and combine many impor-

tant ideas into a single architecture namely scDSC.The proposed model consists of a

Zero-Inflated Negative Binomial (ZINB) model-based autoencoder, a graph neural net-

work (GNN) module and a mutual-supervised module. The authors highlight the main

2



challenges faced while clustering scRNA-seq data namely noise impacts, high dimen-

sionality and pervasive dropout events. They present a thorough analysis of the perfor-

mance of their proposed model on six real world datasets and demostrate that scDSC

outperforms the baselines considered in the paper. The performance is compared using

clustering accuracy , ARI and NMI.
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CHAPTER 2

META LEARNING

The field of meta-learning takes a less conventional approach to solve common machine

learning problems like clustering. It is synonymous with learning to learn. The field

of meta-learning has gained popularity in the recent years (Hospedales et al. (2020)).

In stark contrast with conventional Artificial Intelligence methods, meta-learning tries

to augment the learning algorithm by assimilating experience from multiple episodes

(Hospedales et al. (2020)). Of special interest to this work and possibly others that

follow are the applications of meta-learning towards solving conventional challenges in

deep learning such as generalization. A simple way of thinking about meta-learning is

the following : The aim of meta-learning is to come up with a general purpose learning

algorithm that generalizes across several tasks. Ideally such an algorithm should also be

able to solve each new task better than the previous task. The problem of catastrophic

forgetting i.e. poor performance over previous tasks as data from newer tasks is encoun-

tered also poses a challenge to meta-learning algorithms indeed any machine learning

algorithms. It is not our goal here to give an exhaustive account of meta-learning, there-

fore we shall restrict ourselves to three algorithms that are the focus of this work. In

what follows, we will give a brief account of these algorithms.

2.1 Model Agnostic Meta Learning

The MAML algorithm (Finn et al. (2017)) is arguably one of the most landmark al-

gorithms in the field of meta-learning. We begin our account of it by examining the

meaning of "Model Agnostic". MAML is model agnostic in the sense that any model

that is trainable with gradient descent is compatible with MAML. This allows for a

wide variety of models to be used with it. Also, it is applicable to a wide range of

learning problems, viz. classification, regression and reinforcement learning. As the

reader might recall, the goal of meta-learning is to train a model on several tasks, such

that any future tasks can be solved with a minimum number of examples. MAML is



designed with this goal in mind. According to the authors, MAML achieves state of

the art accuracy on two few shot image datasets. Finally, MAML is compatible with

a variety of loss functions, from differentiable supervised losses to non-differentiable

reinforcement learning objectives.

The general MAML algorithm is described below :

Algorithm 1 Model Agnostic Meta Learning

Require: p(T ) : distribution over tasks

Require: α, β : learning rate hyperparameters

randomly initialize θ
while not done do

sample batch of tasks Ti from p(T )

for all tasks Ti do
Evaluate ∇θLTi (fθ) for K examples

Adapt model parameters using gradient descent θ′i = θ − α∇θLTi (fθ)
end for
Update θ ← θ − β∇θ

∑

Ti∼p(T ) LTi (fθ)
end while

The aim is to find model parameters that are sensitive to changes in a particular

task such that small perturbations in these parameters can bring large gains in the per-

formance over any task sampled from p(T ) , when the parameters are altered in the

direction of the gradient of the loss on that task. This is illustrated in the figure below

Figure 2.1: Model Agnostic meta Learning optimizes representation θ that quickly

adapts to new tasks

To conclude this section, we describe the formulation of the loss function used for

the experiments. This is the well known cross entropy loss :
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LTi (fφ) =
∑

x(i),y(i)∼Ti

y(j)logfφ(x
(j)) + (1− y(j))log(1− fφ(x

(j)))

2.2 Matching Network

Matching networks (Vinyals et al. (2016)) are an example of a metric based meta learn-

ing approach. These models employ attention any memory to enable fast learning.

The network is typically trained by showing it small number of examples per task and

switching the task for every minibatch. This is done to mimic the conditions the model

will face at test time where the requirement will be rapid generalization from a few

examples. The authors lay special emphasis on one shot learning. One shot learning

refers to the number of examples per class used to train the model at any given time;

namely one.

The setup is as follows : We are given a support set S consisting of data. The

model then generates a function cS for each S. This is a mapping S -> cS(.). The

special feature of matching networks is that such a network when fully trained is able

to produce accurate labels for unobserved datapoints with necessitating a change in the

network in any way.

To make the previous discussion more concrete, let us look closely at the problem

that Matching Networks solve. Given a support set S, containing k examples where

each example is a tuple (xi, yi) Where xi and yi are data and labels respectively, the

objective is to map from S to classifier cS(x̂) . This classifier when given an unknown

data sample x̂ will produce a probability distribution over the set of possible output

classes ŷ. The support set changes every minibatch which allows the model to learn

to generalize to new data quickly and with the aid of a small number of samples. The

mathematical form of the model is given below :

ŷ =
k

∑

i=1

a(x̂, xi)yi

Here xi and yi are labels from the support set. x̂ is an unknown input and ŷ is the

predicted class. The symbol a refers to an attention mechanism that is discussed below.

6



a(x̂, xi) =
ec(f(x̂),g(xi))

∑k

j=1 e
c(f(x̂),g(xj))

The above equation gives a precise formulation of the attention mechanism. In a

nutshell, to calculate attention, the unknown input is passed through an embedding neu-

ral network f typically a MLP and the support set is passed through another similar

embedding neural network g. The resulting embeddings are passed through a cosine

distance function to calculate similarity followed by a softmax function over the out-

puts.

The training objective for Matching Nets is as follows:

argmax
θ

EL∼T



ES∼L,B∼L





∑

(x,y)∈B

logPθ(y|x, S)









Here L is the label set sampled from a task T. B represents a batch. S is the support

set.

2.3 Neural Complexity Measures

Neural Complexity Measures(NC) (Lee et al. (2020)) takes a slightly different approach

than the techniques we have already discussed. Neural Complexity Measure is a tech-

nique for estimating the generalization gap between train and test time performance on

any task. It involves training a model to learn to predict the generalization gap given

training and test observations. The trained NC model can then be added to the standard

training loss to regularize any task learner in a standard supervised learning scenario.

In their paper the authors demonstrate that a trained NC model consistently prevents

overfitting and accelerates training. Also they claim that the knowledge gained by the

model is more stable across longer learning trajectories. The architecture of the NC

model is described below.

Given a task with data x ∈ RD. The symbols Xtr ∈ Rm×D, Xte ∈ Rm′×D, Ytr ∈

Rm′×1 denote the train data, test data and train labels respectively. The learner produces

outputs h(Xtr), h(Xte).

7



The train and test data are first embedded using a Fully Connected network fenc.

fenc(Xtr) = etr ∈ Rm×d, fenc(Xte) = ete ∈ Rm×d

The embeddings are fed into a muti-head attention layer(Vaswani et al. (2017)).The

queries,keys and values are Q = ete, K = etr, V = W (etr, [Ytr, 1,L(Xtr)]) ∈ Rm′×d(W ∈

Rd×d×c) . Here c denotes the number of classes. The output of the attention layer is

fattn(Q,K, V ) = eatt ∈ Rm′×d

This is passed through a decoder MLP network and averaged.

NC(Xtr, Xte, Ytr, h(Xtr), h(Xte)) =
1

m′

m′

∑

i=1

fdec(eatt) ∈ R

The Neural Complexity approach consists of two algorithms namely task learning

and meta learning. Also the paper prescribes two different models for task learning and

meta learning namely the learner and the NC model respectively. In what follows we

shall give a brief informal description of the training and inference procedure.

Algorithm 2 Task Learning

Require: NC model, train and test datasets

Randomly initialize parameters θ of learner h

while inner iterations not complete do
sample minibatch Xtr, Xte, Ytr

Lreg ← L̂T,S(h) + λ ·NC(Xtr, Xte, Ytr, h(Xtr), h(Xte)) ⊲ NC-regularized task

loss

θ ← θ −∇θLreg ⊲ Gradient Step

end while
GT,S(h)← LT (h)− L̂T,S(h) ⊲ Compute Gap

return Snapshot H = (Xtr, Xte, Ytr, h(Xtr), h(Xte), GT,S)

Algorithm 3 Meta Learning

Require: Memory Bank

Initialize parameters φ of NC model

while not converged do
Sample Xtr, Xte, Ytr, h(Xtr), h(Xte), GT,S(h) from memory bank

∆← GT,S(h)−NC(Xtr, Xte, Ytr, h(Xtr), h(Xte))
φ← φ−∇φLNC(∆) ⊲ NC’s Loss Function

end while

During training, the task learning and meta learning algorithms are run alternatively.

8



During the task learning algorithm, the parameters of the learner are updated. During

meta learning the parameters of the NC model are updated. When the task learning

algorithm runs, snapshots of the learner’s training trajectory are stored in a memory

bank. Random samples from the memory bank are used to train the NC model during

meta learning.

The NC model is trained using Huber Loss. This is defined below:

LNC(∆) =











1
2
∆2 for ∆ ≤ 1

|∆| − 1
2

otherwise

where ∆ = GT,S(h)−NC(h)

During inference the NC model is used as a regularizer when the learner is finetuned

on the meta test train dataset. The final performance of the learner without the NC

model can then be evaluated on the meta test test dataset.

9



CHAPTER 3

METHODOLOGY

3.1 Datasets

This section provides information about the datasets used for meta-learning experi-

ments.

3.1.1 Pancreas

The pancreas data used is made up of five publicly available pancreatic islet datasets,

namely Baron (Baron et al. (2016)), Muraro (Muraro et al. (2016)), Segerstolpe (Segerstolpe

et al. (2016)), Lawlor (Lawlor et al. (2016)) and Grun (Grün et al. (2016)). Collectively

these datasets contain a total of 15,681 cells. The scARches transfer learning toolkit

allows the user to download the annotated version of the above dataset. According to

the authors, the five datasets mentioned above were obtained from the Scanorama (Hie

et al. (2019)) dataset which has already assigned its cell types using batch corrected

gene expression using Scanorama (Hie et al. (2019)) . The dataset obtained is normal-

ized and log transformed using the scanpy (Wolf et al. (2018)) preprocessing library.

One thousand highly variable genes were selected for experiments.

3.1.2 Lung

The lung data used in experiments is publicly available and published as part of a

(Madissoon et al. (2019)) . It contains a total of 57,020 cells. The cell types detected

include ciliated, alveolar type 1 and 2 cells, fibroblast, muscle and endothelial cells.

The last three were from blood and lymph vessels. From the immune compartment

NK,T,B,macrophages,monocytes and dendritic cells were detected.Lung club marker

genes were also detected in a small number of cells. The dataset was preprocessed us-

ing the scanpy (Wolf et al. (2018)) library. Two thousand highly variable genes were

selected for experiments.



3.1.3 Mouse and Human

The Mouse brain data was obtained from Campbell et al. (2017). The primary accession

codes associated with this study are (GSE90806 and GSE93374). It contains a total of

21086 cells.The cells belong to the arcuate-median eminence complex (Arc-ME) of the

hypothalamus from adult mice. The profiling protocol was Drop-seq. The data was

originally clustered using Seurat (Satija et al. (2015)).

The human brain data was obtained from Lake et al. (2018). The primary accession

code associated with this study is (GSE97942). It contains a total of 3042 cells. The

cells are sourced from the human adult visual cortex, frontal cortex, and cerebellum.

The authors performed experiments to analyze the transcriptonal heterogeneity which

yielded thirty five distinct cellular clusters including exitatory , inhibitory , cerebral

granule , Purkinje neurons as well as non neuronal cells like endothelial cells , smooth

muscle cells, astrocytes, oligodendrocytes and their precursors and microglia.

Both datasets discussed in this section were preprocessed using the scanpy (Wolf

et al. (2018)) library. One thousand highly variable genes were selected from both

datasets for experiments.

3.2 Preprocessing

The figure below summarizes the preprocessing pipeline. The well known single cell

analysis toolkit SCANPY (Wolf et al. (2018)) was used to do preprocessing. This

versatile toolkit automates the entire single cell preprocessing workflow by providing

inbuilt functions for filtering,normalization,quality control,visualization,clustering and

more.

The first step is acquiring the raw data. Next, we filter outliers based on counts and

number of genes expressed using the filter_cells function. The next step is to

filter out genes based on number of cells or counts using filter_genes. For both

preceeding steps the functions were run with default parameters. The processed data is

then used for calculation of quality control metrics using calculate_qc_metrics.

At this stage are primarily interested in filtering mitochondrial content. Once this

11



Figure 3.1: Flowchart of preprocessing pipeline common to all experiments

is done, the next step involves normalization,logarithmization and separation of highly

variable genes. The corresponding scanpy functions are normalize_total,log1p

and highly_variable_genes. This concludes the preprocessing pipeline.

3.3 Experiments

Once the input data has been preprocessed, it can then be used for training and in-

ference. Custom Dataset and Dataloader classes have been written(by author) for this

purpose. In contrast with traditional deep learning setup with a train and test dataset,

meta learning approaches require that the train and test datasets each be divided into

their own train an and test partitions. The train partition of the meta test dataset is really

small and contains about 100 data points.

The details of training and inference are different for each meta learning approach.

3.3.1 MAML

During training MAML uses the meta train set and adapts the learner to its train parti-

tion which is followed by normal gradient descent based optimization of the learner’s

parameters on the test partition. During inference the model is first adapted to the train

partition of the meta test set followed by standard inference on the test partition.

12



Figure 3.2: Flowchart of Training and Inference for MAML

3.3.2 Matching Network

Figure 3.3: Flowchart of Training and Inference for Matching Networks

During training, the support set is drawn from the train partition of the meta train

set. The test partition is used as the query set. The model parameters are optimized

normally. During inference, the train partition of the meta test set acts as the support set

and inference is made on the test partition.

3.3.3 Neural Complexity

Figure 3.4: Flowchart of Training and Inference for Neural Complexity Measures

13



During training, the NC model is trained using snapshots of the learner’s trajec-

tory.During inference, the train partition of the meta test set is used to finetune the

learner. During finetuning, the NC model acts as a regularizer. During inference, the

learner is used on its own to make predictions.

3.4 Baselines

In this section, we describe the baselines used to benchmark the performance of the

meta learning algorithms.

3.4.1 scANVI

SCANVI (Xu et al. (2021)) is a semi supervised variation of SCVI (Lopez et al. (2018)).

It is designed to leverage existing cell annotations. The authors of SCANVI, on the basis

of experiments, state that it compares favourably to state of the art approaches in terms

of accuracy and stability.

3.4.2 CORAL

CORAL Sun et al. (2015) is a simple and effective method designed to mitigate the

effects of domain adaptation. It minimizes domain shift by alignment of second order

statistics of the source and target distributions. It is also one of the benchmarks for the

SCANVI algorithm.

3.5 Metrics

This section describes the metrics used to assess the performance of all models and

baselines used in this work.
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3.5.1 Accuracy

Accuracy measures the fraction of correctly classified examples.Accuracy lies in the

range of 0 and 1. It is defined by the formula given belowGan et al. (2022).

Accuracy =

∑N

i=1 δ(truei, predictedi)

N

Here N is the size of the set of true labels. δ is an indicator function which is defined

belowGan et al. (2022).

δ(x, y) =











1 x = y

0 otherwise

3.5.2 ARI

The Adjusted Rand Index (Rand (1971)) is an adjusted for chance version of the Rand

Index. ARI provides a similarity measure between predicted cluster labels and real

cluster labels which lies in the range [-1,1].The similarity between the group of true

labels L and the group of predicted labels U is captured in a contingency table R. Items

in R represent the number of objects shared between L and UGan et al. (2022). ARI is

defined below.

ARI =

∑

i,j

(

ni,j

2

)

− [
∑
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(
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2

)
∑
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)

]/
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∑
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2

)
∑
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2
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]/2− [
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(
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2

)
∑
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(
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2

)

]/
(

n

2

)

Where (.) denotes binomial coefficient, nij denotes data in contingency table R, ai

is sum of the ith line of R and bj is the sum of the jth line of R Gan et al. (2022).

3.5.3 NMI

Normalized Mutual Information (Strehl and Ghosh (2002)) measures the amount of

information obtained about one partition through observing the other partition in a per-

mutation invariant way. The formulation of NMI is provided below Gan et al. (2022).
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NMI =
MI(L,U)

F (H(L), H(U))

Here L and U are the true and predicted cluster labels.In the formula above, MI

calulates the mututal information between L and U.

MI =
N
∑

i=1

C
∑

j=1

pi,jlog(
pi,j
pipj

)

H represents the entropy which is defined below.

H = −
N
∑

i=1

pilog(pi)

F can be the min,max or mean function.

3.5.4 Confusion Matrix

Confusion Matrices are always square. The (i,j) entry of the matrix indicates that the

number of samples with true label being i-th class and predicted label being j-th class.
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CHAPTER 4

RESULTS

In this section we discuss results. We will examine how our meta learning models fare

against the benchmark methods. The results have been organised by dataset.

4.1 Performance on Pancreas Dataset

Figure 4.1: Performance in terms of ARI,NMI, and accuracy for various models on the

Pancreas dataset.

The results indicate that SCANVI Xu et al. (2021) is superior to all other approaches

in terms of ARI,NMI and accuracy. All meta learning approaches are able to outperform

the second benchmark method i.e. CORAL Sun et al. (2015). Among the meta learning



methods, it is surprising to find that the simplest method , the neural net with MAML,

is able to perform the best. It outperforms the other meta learning approaches namely

Matching Networks (Vinyals et al. (2016)) and Neural Complexity Measures (Lee et al.

(2020)).

4.2 Performance on Lung Dataset

Figure 4.2: Performance in terms of ARI,NMI, and accuracy for various models on the

Lung dataset.

The results indicate that for the lung dataset both baselines namely SCANVI (Xu

et al. (2021)) and CORAL (Sun et al. (2015)) outperform all meta learning methods

tested. Among the meta learning models the neural net MAML combination provides

the best performance. Additionally, it also outperforms other meta learning methods. It

can be argued that although it does not outperform either of the benchmarks, it is still

very competitive with an accuracy of close to 77 percent compared to 83 percent for

CORAL and SCANVI respectively. An unprecedented result of the experiment was that
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CORAL which is a simple linear algebra based approach achieved similar performance

compared to SCANVI in terms of accuracy although it is inferior to SCANVI in terms

of ARI and NMI.

4.3 Mouse and Human

Figure 4.3: Performance in terms of ARI,NMI, and accuracy for various models on the

Mouse and Human dataset.

The results in the figure above may be interpreted as a demonstration of the ability

of the meta learning methods to adapt to domain shift rather than in terms of their

performance relative to other methods. It should be noted that SCANVI Xu et al. (2021)

is not intended for use in such settings and the results are presented here for the sake of

completeness. CORAL Sun et al. (2015) is designed to be able to handle domain shift

and the results suggest that there is a limit to its generalization ability. Overall, meta

learning approaches can generalize quite well even in settings where there is severe

domain shift.
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CHAPTER 5

TRANSCEND

The importance of single cell analysis for revealing population heterogeneity and bio-

logical diversity is well known. Thus tools and techniques that address the challenges

of single cell analysis are constantly being developed. Deep learning approaches e.g.

SCANVI (Xu et al. (2021)) have yielded state of the art results for various single cell

analysis tasks like clustering, batch effect removal , visualization etc. But training deep

learning methods requires large amounts of data and compute. Thus a need is felt for

a resource that provides both pre-trained models with associated metadata as well as

examples demonstrating complete end to end use of these models.

In this chapter, we explore TranSCend, a web server dedicated to transfer learning

approaches accessible through a user-friendly interface that can be used to explore pre-

trained models from different transfer learning pipelines to carry out single cell analysis.

5.1 Tools

We begin by detailing the tools that TranSCend allows us to explore.

5.1.1 Single Cell Variational Inference

scVI (Lopez et al. (2018)) is a scalable framework which allows the user to generate a

probablistic representation of gene expression data. It uses autoencoders and stochastic

optimization to approximate the underlying distribution the the input belongs to. It can

be used for a wide array of tasks like clustering, batch correction, visualization and

differential expression analysis.



5.1.2 Transformer Variational Autoencoder

The trVAE architecture (Lotfollahi et al. (2019)) was developed in part as a response to

the shortcomings of Conditional Variational Autoencoders (CVAE). The design of these

models does not incentivize learning a compact joint distribution across conditions. The

trVAE design overcomes this by matching distributions using maximum mean discrep-

ancy (MMD) in the decoder layer. The result is increased robustness and accuracy as

well as improved generalization.

5.1.3 Single Cell Annotation Using Variational Inference

The SCANVI model (Xu et al. (2021)) extends the SCVI model discussed above. It

is a semi supervised algorithm that is capable of leveraging existing cell annotations.

SCANVI is highly flexible and can even work for datasets that are partially annotated.

5.1.4 Total Variational Inference

This model (Gayoso et al. (2021)) is a framework for end to end analysis of CITE-

seq data. It is useful for analysis tasks such as dimensionality reduction, integration

of datasets with different measured proteins, correlation estimation between molecules

and testing differential expression .

5.1.5 Single Cell Embedded Topic Model

Compared to bulk RNA-seq, scRNA-seq data is susceptible to batch effects which im-

pact clustering by masking true biological cell signals. Another challenge faced by

clustering methods is that partitioning of cell population alone does not have sufficient

biological interpretability. The authors introduce scETM(Zhao et al. (2021)), a genera-

tive topic model which consists of a neural network based encoder and a linear decoder

that uses matrix trifactorization. The model simultaneously learns the encoder network

parameters and a set of highly interpretable gene embeddings, topic embeddings, and

batch-effect linear intercepts from scRNA-seq data. When compared to other methods,

scETM enables zero shot knowledge transfer of characteristics learned from a reference
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dataset in annotating a target dataset without any further training. It outperforms state

of the art methods in cross-tissue cross-species and cross-technology applications

5.1.6 scRNA

The main objective of this work(Mieth et al. (2019)) is to demonstrate how information

from a large well annotated source dataset can be used to perform clustering on a small

sc-RNA dataset. The approach modifies the target dataset while incorporating key infor-

mation contained in the source/reference dataset of interest, using Non-negative Matrix

Factorization (NMF). The modified target dataset is then provided to a clustering algo-

rithm. Thus a transfer of knowledge between reference and target datasets is achieved.

However there must be a significant overlap in the cell types of the reference and target

datasets.

Owing to the fact that the current work incorporates information from true source

labels and uses it to cluster the target dataset, it outperforms baseline methods for all

sample sizes of the target dataset when there is a complete overlap in the clustering

structures of both datasets. In settings where there is a partial overlap, the method still

outperforms baseline methods albeit by a smaller margin. Finally, for setting with no

overlap the method when compared to one of the other baselines does not significantly

reduce clustering performance compared to de novo clustering of the target data alone.

5.1.7 Learning With Autoencoder

One of the primary shortcomings of commonly used scRNA-seq technologies (e.g.

droplet based technologies) is that data generated using these techniques have many

zero values. Often, more than 80 percent of measurements across all genes and all cells

have a read count of zero which is problematic because of the difficulties it poses for

downstream analysis for instance the blurring of differences between subpopulations

of cells. Although it is true that some zeros represent no expression, the vast majority

are due to the inability to capture the transcript and do not indicate the true expression

values. The current work(Badsha et al. (2020)) details a set of deep learning algorithms

to recover the true gene expression values. The authors claim that their approach out-

performs existing imputation methods for sc-RNA data achieving lower Mean Squared
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Error in most cases while also being scalable and efficient.

5.2 Datasets

This section provides information about the datasets used to train the models.

5.2.1 Pancreas

The details for this dataset are identical to the one discussed in section 3.1.1.

5.2.2 Lung, Oesophagus and Spleen

The three datasets were introduced by Madissoon et al. (2019).

The lung data contains a total of 57,020 cells. The cell types detected include cili-

ated, alveolar type 1 and 2 cells, fibroblast, muscle and endothelial cells. The last three

were from blood and lymph vessels. From the immune compartment NK,T,B,macrophages,monocytes

and dendritic cells were detected.Lung club marker genes were also detected in a small

number of cells.

The oesophagus data contains 87,947 cells. Over 90 percent of the cells belong to

four epithelial cell types upper, stratified, suprabasal, and dividing cells of the suprabasal

layer. Additionaly, immune cells like T cells, B cells, monocytes, macrophages, DCs,

and mast cells are also present.

The spleen data contained 94,257 cells. All the cells were annotated as immune

cells. Annotations include B cells, plasmoblasts, T cells , Natural Killer (NK) cells etc.

An interesting aspect of the data, that the authors point out is that the analysis did not

detect any stromal cells. This is attributed to the fact that no enzymatic digestion is

employed to release them.
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5.2.3 Peripheral Blood Mononuclear Cells

This is the well known pbmc68k dataset and was downloaded from 10x genomics(Zheng

et al. (2017)). The authors use the GemCode single cell technology to perform sequenc-

ing. Fresh PBMCs were obtained from a healthy donor. Between 8-9k cells were sam-

pled from each of the 8 channels for a total of 68k cells. The data from multiple runs

was merged using the CellRanger pipeline. Clustering analysis was performed using

PCA on the top 1000 highly variable genes followed by k-means clustering

5.2.4 Prostate

Dataset was introduced in Henry et al. (2018). It contains 98,000 cells from 5 healthy

human prostates. The single cell transcriptomes were clustered using a modified version

of the Seurat (Satija et al. (2015)) pipeline. The study was able to isolate two unknown

types of epithelial cells and derive previously unknown markers for these cell types.

5.2.5 Kidney

Dataset was introduced in Stewart et al. (2019). It contains 27,203 annotated cells

obtained by rigorous quality control. The amjor cell types identified were immune,

endothelial, developing nephron epithelium and stromal cell clusters based on canonical

marker expression and transcriptional analyses of fetal kidney.

5.3 Contribution

This section describes the author’s contributions towards TranSCend. The main contri-

bution was the training of 10 transfer learning models. The details of these models can

be found in section 5.1 of this work. Additionally, the author has provided the jupyter

notebooks that go with each pretrained model. These notebooks walk the user through

the process of setting up and using these models. Finally, the author has provided the

model cards for each model. A model card provides dataset specific and model specific

information for each model.
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CHAPTER 6

Conclusion

In this work we explored the applications of meta learning to single cell clustering. We

examined these methods both qualitatively through theory and quantitatively through

experiments. Their performance was evaluated against strong baselines and in settings

where domain shift was prominent. Finally, we introduced a webserver for transfer

learning for single cell data TranSCend and discussed it in some detail.
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