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ABSTRACT

KEYWORDS: Graphs, Graph Signal Processing, Genomics, Transcriptomics,

Epigenomics, Proteomics, Cancer, Diseases

Omic signatures of disease are important for personalized treatment because of the

heterogeneity of diseases. Despite the advancement of computational tools, there are

limited methods that can capture the latent inter-relationships between the individual

components (amino acids, genes) of proteins, transcriptomic profiles. This gap may be

addressed by the graph-based learning approach in a both supervised and unsupervised

way which enables the creation of scientifically driven learning problems on graphs. We

used graph signal processing which implements a range of tools for processing graph

signal that are functions defined over the nodes in a graph. These functions represent the

individual components of a biological unit. Further, these data points at the nodes are

transformed into different spaces in order to bring out the latent features of the biologi-

cal unit for downstream analysis. These tools elaborate on traditional signal processing

and provide access to several functionalities, including filtering and frequency analysis.

In the first contribution, we devised an approach to address the noise in gene-

expression profiles based on graph-wavelet driven gene-expression filtering to enhance

gene-network inference. By using this approach, we were able to demonstrate how

gene regulatory networks of young and elderly lung cells are different. Additionally,

we contrasted differences in gene expression in lungs infected with COVID-19 with the

pattern of changes in the effect of genes brought on by ageing.

In the second contribution, we have proposed a smart graph-based embedding sys-

tem in our search engine (ScEpiSearch) which is capable of embedding and provid-

ing an integrative visualization of single-cell ATAC-seq profiles from various sources

regardless of the species from which they originated and batch effect. Our method

(scEpiSearch) calculates distance between query cells on the basis of the similarity

with reference expression and epigenome cells. Here, reference cells are selected from

large pool of cells based on their statistical significance of match. We demonstrated the
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utility of our method in studying the lineage of cancer cells (mixed phenotype acute

leukaemia) and understanding their multipotent behaviour, emphasize unique regula-

tory patterns in subpopulation of stem cells.

In our third contribution, we have developed a novel graph signal processing based

methodology to predict biophysical properties of proteins. The model utilizes graph-

wavelet of physicochemical signals of amino-acid in protein residue networks to model

its biophysical properties. We demonstrate how our approach using graph wavelets can

help in estimating the possible effect of disease-associated mutations on proteins using

examples of prediction of globularity and folding rate.
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3.1 An illustration of the proposed method in scEpiSearch for improved
regulatory state inference and annotation of query scATACseq utilis-
ing a large pool of single-cell epigenome data sets. It consists of the
following steps: Expression Reference Data Preparation, Query Pro-
cessing, Mapping and Projection Based Cross-Species and Cross-batch
Query embedding. The cross-species and cross-batch query embedding
provides co-embedding of various open-chromatin profiles utilising ex-
isting reference single-cell profiles, regardless of variation in peak-list
in read-count matrix, batch effect, and species. (Mishra et. al. (248)) 75

3.2 A) Evaluation of scEpisearch in comparison to 3 other methods based
on the retrieved gene scores correlation for matching query scATAC-
seq to a collection of reference single-cell scRNAseq. 10,000 MCA
(mouse cell atlas) cells were selected as the scRNAseq reference dataset
(MCA). Here, accuracy displays the proportion of query cells with the
correct cell-type among the first 5 matches.B) Accuracy using the scEpiSearch for
queries on the scATACseq read-count matrices is shown as follows,
from left to right: i) query human scATACseq to reference human single-
cell expression ii) search the mouse reference scRNAseq using the
mouse scATACseq. iii) cross-species search – reference mouse scR-
NAseq using human scATACseq. The proportion of query cells for
which the right annotation was one of the top 5 results is shown on
the Y-axis.For the scEpiSearch modules for both faster and accurate,
accuracy is shown as bar-plots. (Mishra et. al. (248)) . . . . . . . . 76

3.3 (A) A comparison of scEpiSearch with integrative approaches, using
scRNA-seq profiles of 10,000 cells from the mouse cell atlas. Here,
the search was restricted to the scATACseq profiles of three mouse cell
types: B cells, macrophages, and endothelial cells. T he silhuotte in-
dex of the query cells for vicinity to the correct reference cell-types
is shown. (B) Analysis of cross-species integrative approaches and
scEpiSearch employing reference scRNAseq from MCA and human
PBMC scATACseq profiles as the query. Also, human PBMC silhou-
ette coefficients are shown. For the purposes of calculating the silhou-
ette coefficients, immune cells and query cells were assumed to belong
to single class in the references, whereas other cell types were regarded
to be in other class. (Mishra et. al. (248)) . . . . . . . . . . . . . . 77

3.4 Utilizing reference expression and the query scATACseq from mouse
cells, scEpiSearch is compared to integrative approaches. A) Mouse en-
dothelial scATACseq profile was the query (Cusanovich et al.). For each
of the 4 approaches, the query cells’ silhouette coefficients are shown.
B) Mouse macrophage epigenome profiles query (Cusanovich et al.)
are used. Also shown are the silhouette coefficients for the query cells.
C) Incorrect assessment of the 2D embedding figures when all cells, in-
cluding the reference MCA cells silhouette coefficients are considered.
Mouse endothelial cells, mouse macrophages, and 3-cell combinations
are shown by the corresponding labels on the subfigures. (Mishra et. al.
(248)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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3.5 Utilizing the reference scRNAseq of mouse cells as the basis for com-
parison and the scATACseq profile of human cells as the query A) The
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CHAPTER 1

INTRODUCTION

1.1 Graph Theory Fundamentals

Network topology and properties are a popular topic in discrete mathematics and com-

puter science (2). Graphs may be utilized to depict a wide spectrum of physical, social,

and biological framework. They are commonly used to express pairwise relationships

among a set of components. Graph theory is concerned with the statistical and compu-

tative tools and methodologies that can be utilized to study and analyse graphs.

Formally, Graphs can be defined as G(V,E,W ) constituting finite compilation of

vertices (V ) (also known as nodes) linked by an ensemble of edges E. Vertices of the

network/graph are usually labeled as v1, v2, ..., vN with |V | = N . The set of edges E

connecting these vertices, such that ei,j would be an edge associating vertex vi to vertex

vj .

The weighted adjacency matrixW , which defines the strength of connections among

the vertices. If there exist an edge ei,j in graph, wi,j represents its weight. For two ver-

tices vi and vj not directly connected, wi,j = 0.

Graphs can be categorised in a variety of ways. A graph can be characterised as

undirected or directed on the basis of direction of its edges. Connections among ver-

tices(nodes) in an undirected graph are oriented from one vertex to the next. Graphs can

be categorized as weighted or unweighted based on the weights assigned to the graph’s

edges. An unweighted graph has all of its edges with the same weight. Wi,j for such a

graph is either 1 if vi is linked to vj , or 0 otherwise. A graph can be connected or discon-

nected based on its connectivity. If there exist a route connecting each pair of vertices

in the network, it is believed to be connected; otherwise, it is said to be unconnected.

A vertex’s degree is defined as number of nodes connected directly to the given

vertex. Let degi indicate vertex vi’s degree. A vertex’s weighted degree would be the

total of weights of every edge adjacent to it.



The vertex’s clustering coefficient is defined as the fraction of number of associa-

tions within its neighbours to the aggregate number of possible associations within its

neighbours. Clustering coefficient of a vertex in a simple graph is computed as

Ci = |ei, j| (1.1)

1.1.1 Centrality

Due to the extremely heterogeneous structure of complex networks, certain nodes may

be regarded more important than others. However centrality can also be defined in

respect of payload that a particular vertex endures. The definition of centrality is not

universal and varies depending on the context. Several metrics of centrality have been

developed, each of which takes into account a different notion (4).

The number of connections connected to each node determines its degree centrality.

Since a densely linked node (hub) may not be central, the degree centrality might be

regarded a local centrality metric. With respect to adjacency matrix (A), the total of

components in row i of matrix A may be used to compute degree based centrality of the

vertex i i.e.

ki =
N∑
j=1

Ai,j (1.2)

Here, number of vertices in graph are denoted by N .

Closeness centrality (3) can be defined as a total of edges in the shortest path con-

necting vertices i , j determining the distance between them. In terms of distance, a

central node would be adjacent to every other vertex/node in the graph. The closeness

centrality for i (average length of i with other nodes) is defined mathematically as

Ci =
N∑N

j=1,j ̸=i di,j
(1.3)

where di,j would be the shortest distance between i, j, and N would be a number of

vertices in graph.

Centrality can also be defined in terms of load, if we examine the movement of par-

ticles on a network (betweeness centrality) (3). The total number of shortest pathways
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traveling through a node determines the load in node i. However, there might be more

than one smallest length between vertices a, b, load in vertex i is better defined being

the proportion of smallest pathways linking every set of vertices (a, b)a,b=1,...,N . Hence

betweeness centrality of node i,

Bi =
∑
(a,b)

η(a, i, b)

η(a, b)
(1.4)

Here η(a, i, b) is total of smallest paths between nodes a , b crossing along nodes i.

η(a, b) would be a total of smallest length inbetween a , b. The total includes all com-

binations of unique vertices (a, b). In this instance, several pathways pass a centralized

node, which produces the largest value of B.

PageRank (5) is a modification of Eigen Vector centrality and can be applied to any

kind of network. Three discrete factors that determine PageRank are 1. The number of

incoming links 2. Link propensity of linkers 3. The centrality of linkers. The PageRank

of a non-directed graph can be defined as: Let R be the PageRank vector and D would

be distribution array, then

D =
1

2|E|
[deg(p1) deg(p2) ..... deg(pN)] (1.5)

Here deg(p1) deg(p2) ..... deg(pN) would be vertices’ degree. E would be set of

edges of graph. N is the number of pages. Hence, as proved by Grolmusz (5), v = 1
N
.1

gives,

1− d

1 + d
||v −D||1 ≤ ||R−D||1 ≤ ||v −D||1 (1.6)

Here, d is the damping factor and D is degree distribution array.

Thus, undirected graphs’ PageRank is equal to degree distribution array if (only if)

the network is regular, implying every vertex has the same degree.
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1.2 Graph Signal Processing

1.2.1 Fundamentals of Graph Signal Processing

DSP (discrete signal processing) has shown to be very effective in operating/analyzing

time signals including speech, communications, econometric time series, radar, time-

space signals, and space-dependent signals (such as images as well as multidimensional

signals as seismic, hyperspectral information). Data referenced by a network’s vertices

is referred to as a signal on a graph or just a signal. This technique is referred to as DSP

on graphs (1).

Graph Signals

Considering dataset with size n with a few relational parameters about the identified

data components. A networkG = (V,A) could be employed to depict this data, wherein

V = v0, ..., vN would be set of vertices, A would be graph’s weighted adjacency ma-

trix. Every dataset constituent a vertex vn, and the weighted An,m corresponds to di-

rected edge between vm and vn represents relationship degree between nth and mth

component. G is a directed, weighted graph in general, because data elements can be

connected to each other in a multitude of ways. The edge weights An,m don’t have to

be non negative reals, they can be any real or complex number ( data elements could

be negatively correlated). The neighbourhood of vn is defined by Nn = m|An,m ̸= 0

and consists of the indices of nodes linked to vn. Hence, graph signals can be defined

as vector s = (s0, s1, ...., sN−1)
T .

Filters on Graphs

Filters are approaches which accept input in the form of a signal and create an other

output signal — are used in traditional DSP to process signals. In DSPG, a similar

idea of graph filters exists for graph signals where Linear,shift-invariant filters, an ex-

tension of linear time-invariant filters applied in time series Digital signal processing,

are considered.

Similar to traditional DSP, applying filters on a network is accomplished via matrix

4



and vector multiplication. A graph filter H ∈ CNxN which produces output Hs for

input s ∈ S representing linear method. Given that the linear combination of the filter’s

outcomes for each signal’s input and output signals is linear,

H(αs1 + βs2) = αHs1 + βHs2 (1.7)

Additionally, shift-invariant graph filters apply graph shift to output corresponding to

employing graph shift to input before filtering such that

A(Hs) = H(As) (1.8)

1.2.2 Spectral Graph Theory

In spectral graph theory, methodologies and concepts from traditional graph theory are

extended to matrices’ eigen values, characteristic polynomial and eigen vectors (for

e.g., the adjacency matrix) relating to graphs.

Weighted Graphs

The components of a weighted graph are a collection of nodes/vertices (V ), a pool of

edges (E), a weighted function w : E =⇒ R+ that gives each edge a non-negative

weight. Here, considering only the finite graphs. A NXN 2-D array with entries am,n

serves in form of adjacency matrix (A) considering a weighted graph G.

am,n =

w(e), if e ∈ E connects vertices m and n

0, otherwise
(1.9)

The degree pertaining to every node m in a weighted graph, denoted by d(m), which is

equal to total of all edge weights that intersect the given node. It suggests that d(m) =∑
n am,n. It can also be specified that matrix D contains zeros everywhere else and

diagonal elements equal to the degrees.

Just like L = D − A, a non-normalized Laplacian, an alternate normalized version
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of the Laplacian given as (218)

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2 (1.10)

It can also be emphasized that matrices L and Lnorm can not be compared, particularly

in terms of the eigen vectors.

Graph Fourier Transform

In graph Fourier transform (218), graph Laplacian L has all possible orthonormal eigen-

vectors given it is real symmetric matrix. For l = 0, ..., N − 1, we designate them as χl,

and the corresponding eigenvalues are λl.

Lχl
= λlχl (1.11)

Since each of the λl is real, L is symmetric. It has been shown that for the graph lapla-

cian, all positive eigenvalues and given that zero occurs in terms of eigen value along

with frequency equals a total number of connected graph components (132). Assuming

graph G is connected, eigenvalues can be arranged such as

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 (1.12)

For a given function f ∈ RN on nodes of G, Graph Fourier transform is defined as

ˆf(l) = ⟨χl, f⟩ =
∑

n = 1Nχ∗
l (n)f(n) (1.13)

Inverse Fourier transform is defined as

f(n) =
N−1∑
l=0

ˆf(l)χl(n) (1.14)

1.2.3 Spectral Graph Wavelet Transform

The kernel function, which would be comparable to the Fourier domain wavelet ψ̂∗,

will decide the wavelet transform: g : R+ =⇒ R+. The kernel g would function in

form of band-pass filter since limx =⇒ ∞g(x) = 0 and it fulfils g(0) = 0.
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Wavelet

As operator-valued expressions of Laplacian, wavelet operators provide spectral graph

wavelet transform. The continuous functional calculus may be used to create mea-

surable function of bounded self-adjoint linear operator on Hilbert space (133). The

Spectral representation of operator, which in this context is equal to graph Fourier trans-

form described in the preceding section, is used to achieve this. The wavelet operator

Tg = g(L) specifically modulates each Fourier mode as it works on a given function f

for the spectral graph wavelet kernel g.

ˆTgf(l) = g(λl)f̂(l) (1.15)

Implementing inverse transform gives

(Tgf)(m) =
N−1∑
l=0

g(λl)f̂(l)χl(m) (1.16)

The equation T t
g = g(tL) defines the wavelet operators at given scale t. Afterwards,

localising such operators and implementing these on impulse on a particular node, the

spectral graph wavelets are produced as,

ψt,n = T t
gθn (1.17)

Explicitly extending this in field of graph demonstrates,

ψt,n =
N−1∑
l=0

g(tλl)χ
∗
l (n)χl(m) (1.18)

Thresholding methods

• Hard Thresholding: This is a linear function that, according to (134), discards
coefficients that are less than cutoff score which is based on variance of noise.
The hard thresholding based filter parameters can be provided by (135),

hh(i) =

{
1, if |y(i)| > τ

0, otherwise
(1.19)

It generally follows the "keep or kill" principle. When the noise terms do not
surpass the threshold in this technique, false "blips" and discontinuities show up
in the output.
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• Soft Thresholding: This non-linear function would be comparable with a hard
threshold however, it decreases larger valued wavelet coefficients over threshold
(134). Relative to the hard threshold, this results in a more continuous and smooth
output. The soft threshold based filter coefficients can be taken (135) as i.e,

ηt(y) = sgn(y)[|y| − t] (1.20)

The universal threshold value is taken into account for both hard and soft thresh-
olds, would be provided through tn = γ1σ

√
2log(n)/n, where n is input signals’

length, γ1isaconstantandσ would be an estimate of variance made using coeffi-
cients at the highest degree of detail.

• BayesShrink: BayesShrink (137) (138) employs Bayesian computational frame-
work which can determine optimum cutoff which minimises Bayesian associated
risk, which is defined for wavelet coefficients in form of the generalised Gaussian
distribution in every specifics of the sub band.

σB =
λ2noise
λsignal

=
λ2noise√

max(λ2G − λ2noise, 0)
(1.21)

Here, λ2G = 1
Ps

∑Ns
x,y=1 V

2
xy , Ps would be number of wavelet coefficients Vxy on

sub band being considered.

• SureShrink: To choose the ideal threshold value, Dohono and Johnstone (136)
suggested using the sure shrink approach (134). The Stein’s unbiased estimator
of risk serves as the foundation for this approach. This approach provides an
objective estimate of the loss ||(µ̂ − µ)2||. The SURE (quadratic loss) function
is used to evaluate the risk for a certain threshold tau. At this point, cutoff score
can be chosen by reducing risks associated with tau. For large samples of data,
this technique has improved MSE characteristics. The unbiased risk assessment
provided by the stein can be defined as

Rs(τ) = N + E{||g(y)2||+ 2∇.g(y)} (1.22)

This threshold value can now be chosen taking into account set y0, y1, ..., yN−1

minimal’s risk value.

surethreshold(τ) = arg minRs(τ) where τ = y0, y1, ...yN−1 (1.23)

1.3 Graph based Approaches in Improving Gene Regu-

latory Graphs in Transcriptomics

1.3.1 RNA-sequencing Fundamentals

Much of the progress in understanding disease phenotypes has come from analyzing

gene transcriptional data. It is achieved by taking static indicators of the abundance of
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RNA levels in different cellular states and using these measurements to develop net-

work models showing the transient processes driving biological systems. However, it

is argued that transcriptomic data do not adequately depict the complexities of gene

regulation or the kinetics of biological activities. But, given the limitations of the ex-

perimental limitations, gene expression data are the finest resource available today for

modeling regulatory networks and developing predictive models of cellular response in

a variety of conditions.

Transcriptome can be defined as collection of entire RNA molecules contained

within cells, notably messenger RNA (mRNA). The abundance levels of these molecules

referred to popularly as gene expression are often employed as the key input variables

for algorithms that attempt to predict transcriptional networks.

Despite the fact that inference of cellular networks is one of the areas where most

substantial advancements have been made in terms of model development. These mod-

els may be useful in the field of network medicine, still it remains both a problem and

an active research topic (6) (99). This research has highlighted the need of having

integrated datasets that capture the numerous components contributing to the gene reg-

ulation process. Fortunately, new DNA-sequencing methods are enabling the collection

of increasingly massive and complicated datasets from individual samples, including

genome-sequence data, transcriptome data, and genome-wide data on epigenetic modi-

fication patterns.

RNA-seq begins by identifying the base sequences of individual RNA molecules,

which are then projected to reference genome to calculate abundance of specific gene

transcripts. RNA-seq data, in contrast to continuous values recorded with microarrays,

reflect counts of RNA sequence reads that relate to a specific gene. One benefit of this

technique is that it can, in theory, monitor the stages of expression of each and every

gene. However, many variables, including gene sequence, biases in sequencing library

creation, the total quantity of sequenced reads, and the technique used to map sequence

reads to genes, can all have an influence on the efficacy and precision of RNA-seq

measurements.

The complexity of biological systems contributes to the difficulty of correlating

genetic information to observable phenotypes. With reference to gene regulatory net-

works, transcription reveals an underlying process in which the concentration of mRNA
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in a particular cell or pool of many cells is regulated by context-specific activity of a

range of regulating factors. Transcriptional activation of a specific gene begins with the

collective binding of various transcription factors in special control areas of the DNA

which are mostly located immediately before the target gene, in its promoter, but they

can also be located distally, in what are known as enhancers.

1.3.2 Challenges with RNA-seq based Gene Network Inference

Gene regulation cannot be viewed as a single interaction or even a single route, but in-

stead as a complex network of interconnected genes and gene products. One approach

to think about these regulatory interactions is network, where genes and TFs are de-

noted as nodes associated with one other by directed edges. In general, this network

and the interactions between its components are to be understood since this is what un-

derpins how organisms respond to environmental and other signals and may dictate how

functioning biological systems are changed when disorder occurs. Understanding and

deducing these networks properties has become one of many intriguing and demanding

area of research in computational and systems biology.

Even in a homogenous cell population, scRNAseq profiles frequently exhibit vari-

ation in levels. It is possible to identify dominant pathways in a cell type and infer

regulatory networks between genes using this heterogeneity. Due to the sparseness

and ambiguity in the pattern of gene expression in single-cell RNA-seq profiles, how-

ever, the optimum metrics for gene–gene interactions remain uncertain. Regulatory

mechanisms involved in diseases and development is being widely understood through

gene-regulatory network inference and are used for system-level modeling. The edge

weights among nodes (edge weights indicating regulatory interactions between genes)

represent interdependences between the network’s variables. Gene-Gene interaction

networks may be beneficial in inferring causal models (83) (84), comprehend perturba-

tion studies, comparative analysis (85) (11), and identify new drugs (87) (13). Many

approaches for estimating node interdependence have been developed with majority of

approaches relying on mutual information (MI), pairwise correlation or other similarity

metrics across gene expression data from distinct conditions or time points. However,

with patterns exhibiting low but effective background similarity, the resultant edges are

frequently impacted by indirect dependencies. Even when there is a meaningful inter-
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action between two nodes, their influence and strength are frequently underestimated

owing to noise, background-pattern similarity, and other indirect interactions.
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Figure 1.1: By converting gene expression profiles into a gene-gene interaction matrix

that represents the pairwise similarity in the expression patterns of all the
genes in the system, gene co-expression networks are created. Edges in
these networks could represent coincidental correlations between gene ex-
pression levels, correlations between genes that are directly regulated by the
same transcription factors, correlations between genes that are regulated by
the same TF, or direct regulatory relationships between genes.

1.3.3 Methods for Inferring Gene Regulatory Graphs

The Methods for inferring co-expression networks (14) (15) generally begin by calcu-

lating a similarity score, such as a Pearson correlation coefficient, between each pair

of genes by comparing their expression levels across samples. Then, a threshold value

is specified for the lowest value at which genes are considered correlated. If we set

every element in the matrix to either zero (below the threshold) or one (at or above the

threshold), we get an adjacency matrix with rows and columns representing genes and

matrix entries representing the existence or absence of an edge linking them. Sknnider

et al. (13) used seventeen measures of association to build a network of gene inter-

actions. In their research, they found that utilising scRNA-seq profiles, two metrics
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of association—phi and rho—performed the finest at predicting gene-gene interaction

(co-expression based).

The correlation-based similarity matrices are symmetric across the diagonal, the

networks created by these metrics are often undirected. They also incorporate infor-

mation about every pair of genes rather than simply TF-target gene interactions; hence,

regulatory linkages are mixed along with coregulatory correlations (Figure 1.1). Edges

connecting two genes, neither of which is a TF, can be trimmed to generate a puta-

tive regulatory network from this matrix. To remove implausible associations, more

specificity may be applied to the remaining edges using TF binding site motifs, and

directionality can be assigned by assuming that edges point from TFs to non-TFs. It

quickly became clear that networks built in this manner did not correctly represent the

underlying regulatory mechanisms.

WGCNA (89) was developed for solving the latter problem. In WGCNA, the cal-

culated co-expression levels between pairs of genes are adjusted by employing a power

adjacency function and taking the absolute value of the correlation to a power i.e,

aij = |cor(xi, xj)|β (1.24)

The correlation values are limited to a maximum of one, the least correlated gene

pairs will have their weight converge to zero as the value of β increases, while perfect

correlation will remain unaffected. It is crucial to highlight that WGCNA is especially

designed to find set of co-expressed genes with improved precision in the regulatory

network.

Several scientists realized that biological relationships may be nonlinear and that

simple linear measurements would overlook them. Alternative approaches for captur-

ing such complicated interactions and inferring networks have been developed, which

employ correlation measures such as mutual information (MI) (16) (18) (19). However

these measures can capture more complex information, they often require large datasets

to approximate the right underlying probability distribution and infer connections ef-

fectively.

A method ARACNE (Algorithm for the Reconstruction of Accurate Cellular Net-

works) (87) was introduced that used MI to reconstruct a gene regulatory network.
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ARACNE considers that a high mutual information value between two genes can be the

consequence of both indirect and direct linkages. ARACNE evaluates all node triads

in a network and removing the edge in the triad with the least evidence of direct con-

trol. One restriction of the approach may be the algorithm’s removal of all triads in the

network, a structure that could be vital in feedback and feed-forward loops (20) (21).

1.3.4 RNA-seq Denoising Methods for Better Gene-Gene Interac-

tion Graph Inference

Chen et al. (90) found that these methods failed to successfully recreate the network for

scRNAseq datasets collected through simulations and experiments. Denoising gene-

expression patterns may improve the efficacy of these methods. As a consequence,

the crucial problem of handling noise and dropout in scRNA-seq profiles is still open.

Pre-processing techniques that may reduce noise and sparsity in single cell transcrip-

tomic profiles are necessary for efficient regulation inference.

For scRNA-seq profiles, a few imputation techniques based on cell graphs or em-

ploying KNN-based imputation have been presented. MAGIC constructs its affinity

matrix in four phases (104). First, a preprocessing step for data such as PCA for scRNA-

seq. Then, using an adaptive Gaussian Kernel to convert distances to affinities in such a

way that the similarity between two cells decreases exponentially with increasing dis-

tance. The probability distribution of switching from one cell to every other cell in the

data in a single step is represented by the Markov transition matrix M, which is cre-

ated by converting the affinity matrix A into the matrix. Finally, exponentiation of M is

used to diffuse data, filtering away similarity based on high frequencies, which are often

noisy, and increasing similarity based on significant patterns in the data. The imputation

stage of MAGIC includes exchanging data across cells in the generated neighbourhoods

using matrix multiplication once the affinity matrix has been built Dimputed =M t ∗D.

KNN-Impute (109) is a KNN-based approach that chooses genes with expression

patterns like the gene of interest in order to impute missing data. This strategy would

identify K more genes whose expression in trials 2-N is most comparable to that of

gene A, which has one missing value in experiment 1, and which has a value present in

experiment 1 where N is the total number of experiments. The missing value in gene
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A is then estimated using a weighted average of the values from the K genes that were

closest in experiment 1. Each gene’s contribution is weighted in the weighted average

based on how closely its expression resembles that of gene A.

Based on the finding that across protocols, the technical noise shown by UMI-

filtered scRNA-Seq data closely resembles Poisson statistics, KNN-Smooth was de-

veloped (110). Based on partly smoothed and variance-stabilized expression profiles,

each cell’s closest neighbours are first identified step-by-step, and their transcript counts

are then aggregated.

Since our method is also based on KNN based approach, we have performed bench-

marking of our approach with other imputation methods for single-cell RNA-seq pro-

files.

1.4 Graph Based Embedding and Multimodal Integra-

tive Approach for Epigenomic Profiles

High-throughput experimental methods have made it possible to identify and measure

biological constituents on a revolutionary scale, from genes and proteins to cells and

tissues. Conjointly, these technologies offer a list of components for biological sys-

tems such as biochemical pathways, large-scale interaction networks, etc. With the

help of network formulations, high-throughput data may be contextualised in a way

that makes it easier to comprehend and identify patterns and trends that are important.

Networks explain the interactions among several components in a system as determined

by scientifically defined or statistically inferred associations, as opposed to a more re-

ductionist approach, which focuses primarily on the function of individual molecular

components. As a result, there are many ways to use network information to solve

medical problems. For instance, using a priori specified networks, one may include and

assess high-dimensional -omics data such as genomics, transcriptomics, proteomics,

and metabolomics. Studies are now investigating how to successfully integrate several

measurement categories, hence extending the breadth, depth, and accuracy of under-

standing for biological systems. This is due to the accessibility of varied -omics data

and related network analysis techniques. By using network formalisms, such integra-
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tive -omics techniques seek to bridge across various data kinds while promoting the

development of multiscale networks.

Understanding the genetic determinants of the human body is greatly facilitated by

identifying the molecular characteristics that distinguish the types and functionalities of

each particular cells. The traditional method of classifying cells is qualitative character-

isation, which includes physical appearance, the presence or absence of a few surface

proteins, and general cellular activity. Transcriptomic and epigenomic characteristics

of cells must be taken into account for a more complete description of cell identity. Nu-

merous high-throughput single-cell sequencing methods were developed recently that

analyse the chromatin accessibility, DNA methylation, and gene expression of various

individual cells. Together, these data types provide researchers the ability to reevaluate

the traditional categorizations of cell types and states in a quantitative, systematic, and

objective manner. Such a quantitative definition of cell identity has the potential to fun-

damentally alter our comprehension of cell biology in a variety of situations, including

developmental biology and neurology (22). By providing a reference map of the molec-

ular states of healthy cells, it will be possible to investigate the root causes of cellular

irregularity and maybe even design new, specifically targeted therapies. This objective

requires an analytical approach that can include multiple single-cell datasets. The "es-

sential" parts of a cell’s identity must be identified by such an integrated approach, as

opposed to the "dispensable" characteristics that fluctuate depending on the biological

context, modality, procedure, or timeframe (39).

1.4.1 Challenges with Single-cell Epigenome Profiles

At the single-cell level, single-cell ATAC-seq (scATACseq) shows changes in chromatin

accessibility and may be used to identify the factors controlling cell-to-cell heterogene-

ity (155) (25). Each diploid genome single-cell open chromatin site, however, contains

merely one or two possibilities that can be acquired in scATACseq experiment. Typi-

cally, just a few thousand different reads are acquired for each cell, resulting in a large

number of authentic open chromatin regions that are devoid of peaks i.e., data signal

sequencing. The "missingness" curse and excessive dimensionality are therefore both

present in the analysis of scATACseq data.

15



Single-cell open-chromatin profiles provide specific challenges as compared to the

single-cell transcriptome. Currently, single-cell epigenome profiling primarily aims to

capture open chromatin regions using DNase I hypersensitive site sequencing (DNase-

seq), Micrococcal Nuclease digestion with deep sequencing MNase-seq, or Assay for

Transposase-Accessible Chromatin using sequencing (ATAC-seq) (158) (159) (154).

When contrasted to a comparable matrix for a single-cell expression dataset, the read-

count matrices constructed using single-cell open-chromatin contain more genomic loci

(peaks) as features. The read-count matrices of single-cell open chromatin profiles

generated by several research teams often include genomic locations (peaks) that are

distinct from one another. Therefore, single-cell open-chromatin profiles cannot be

directly analysed using the current algorithms and search techniques established for

single-cell expression profiles.

1.4.2 Graph Methods for Integrative Analysis of Multimodal Omics

Data

Multimodal technologies that concurrently profile several kinds of molecules inside a

single-cell may be used to directly produce multimodal single-cell data, or computa-

tional approaches can be used to combine signals from many assays into a single-cell

multi-omics dataset. One can find a thorough analysis of approaches for the continuous

assessment of single-cell multi-omics in Nathan et. al. (26), Bock et. al. (27), Stuart et.

al. (150), Leonavicius et. al. (29) and Zhu et.al. (30).

The fact that all measurements come from the same cells aids in the combination of

various modalities obtained through one experiment. The study is limited to using tech-

niques to connect complementary information from several sources, eliminating the re-

quirement to resolve cell identification across modalities. Before testing for association,

the correlation of several modalities sometimes begins by summarising the signals of

one modality in reference to the genetic entities examined by the other. This strategy is

well shown by two studies that incorporated data from the concurrent DNA methylation

single cell profiling and gene expression (31) (32). First, the mean binarized methyla-

tion rates of genomic regions comprising promoters, gene bodies and enhancers have

been assigned to the nearest gene based on 10 kb upstream and downstream windows of

the start/end sites of gene transcription. Then, weighted Pearson correlation coefficients
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and multi-omics factor analysis (MOFA) (31) (32), an adaptation of group factor anal-

ysis to multimodal -omics data, have been used to identify coordinated changes and

heterogeneous interactions between methylation states and transcriptional profiles in

individual cells. Recent advancements in the MOFA+ approach have increased the ca-

pability of MOFA to support large datasets and several batches across modalities (34).

On the other hand, the integration of several data types that are not measured on

the same cell needs agglomeration of signals obtained through various protocols and

alignment of datasets obtained through various cells. The approach is predicated on the

idea that cells belonging to the same type or state have a set of associated characteristics.

Such characteristics direct profiles matching across datasets as well as the combining

of information from other modalities. Both techniques that precisely orient numerous

datasets on the basis of exclusive single-cell dataset and models developed on bulk data

may be used to generate signal pairing and dataset integration.

Following the conversion of scATACseq accessibility peaks into gene accessibility

based acitivity scores, Conos (152) and Seurat(v3) (150) are specifically being used

in the fusion of single cell transcriptomic (scRNAseq) profiles and open chromatin

(scATACseq) accessibility profiles. This may be achieved either by adding the sig-

nals from the distal and proximal cis-regulatory regions inferred on the basis of scores

for co-accessibility, as determined by Cicero (195), or by intersecting the signals from

the gene body and an upstream area of a certain length (such as 2 kb). After annotating

the methylated areas in accordance with the closest gene, LIGER (39) been applied to

combine DNA methylation and gene expression datasets. Clonealign (40), SOMatic

(41), and MATCHER (42) have all implemented methods that were especially created

in order to incorporate multimodal single cell data.

CONOS (Clustering on network of samples): In Conos (152), a weighted graph

representation is created by integrating several datasets, and common populations are

found using community detection techniques. The cells of all datasets are used as nodes

in the network, which are linked by both intra- and inter-dataset edges. A neighbour

mapping approach is used to determine the weights of edges in between datasets in

rotation space such as principal components in common space used in MNN (Mu-

tual nearest neighbors). The edges within datasets are scaled down in order to mini-

mize their impact on the merged graph and are weighted based on distances estimated
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top principal components within each batch. The graph is then aggregated using ei-

ther Louvain, Walktrap, or Leiden community discovery methods in order to identify

joint clusters connecting cell populations across datasets.

LIGER (Linked inference of genomic experimental relationships): The ideas

of the technique based on graph and anchor are used by LIGER (39). To create a la-

tent space where every sample/cell is characterised by various elements unique for each

data profiles along with elements common throughout data generated through various

protocols, integrative non-negative matrix factorization is initially used in this case.

Then, in the factor space, a shared factor neighbourhood network is built, connecting

samples/cells along with similar factor loading throughout batches, and Louvain com-

munity identification is used to find common clusters across datasets. By matching their

quantiles across datasets, the final data alignment created by the joint clusters’ factor

loadings is adjusted.

Seurat: A unified approach pertaining to transfer learning technique utilizing ref-

erence assembly for proteomic, epigenomic, transcriptomic, and spatial single cell pro-

files is presented by Seurat (150). Even when there are significant technological and/or

biological differences across datasets, they may be turned into a common space by

identifying pairwise cells comparable between individual cells across datasets, often

known as "anchors". As a result, synchronous atlases may be developed at the tis-

sue/organism scale and discrete/continuous data from a reference dataset successfully

transferred onto a query dataset.

Integrative approaches’ findings for co-embedding of single-cell open-chromatin

profiles were not adequate, however it could be because the query set were homogenous

and smaller. It could be because integrative approaches like Seurat and LIGER were de-

signed to group homogeneous single-cell epigenome cells query with other dissimilar

cells incorrectly since they utilise variation in single-cell data to discover anchor. A vast

number of published methods that use canonical correlation (CCA) and principal com-

ponent analysis (PCA) concentrate on visualising and analysing single-cell epigenome

cells amongst a set, which might result in the loss of rare cells which could be only a

few cells in the complete data.
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1.4.3 Embedding Methods Utlizing Graph and other Techniques

for Single-cell Epigenome Profiles

To get an understanding of distinct/mixed cell types or states, it becomes often neces-

sary to analyze and integrate cellular profiles from several sources. There are a few

methods which have introduced methods to handle such challenges.

SCALE: In SCALE (Single-Cell ATAC-seq analysis via Latent feature Extraction)

(190), the Variational autoencoders framework and GMM (Gaussian Mixture Model)

are combined where GMM is probabilistic approach for estimating observed values us-

ing a mix of Gaussian distributions. On several distinct datasets produced on various

platforms with various methods, and of varying overall data quality, the authors con-

firm the efficacy of SCALE to extract low dimensional representation that represents

distribution of queried scATACseq profiles. Then, SCALE denoised and imputed miss-

ing values in the scATACseq profiles and utilized low dimensional features to cluster

mixtures of cells into well defined subgroups.

EpiScanpy : The batch corrected k-nearest neighbours (BBKNN) (44) technique

is used in EpiScanpy (149) to combine scATACseq datasets generated by various labs

and by means of various experimental procedures. BBKNN (batch balanced k-nearest

neighbours) provides a hybrid graph consisting of inter,intra-dataset edges which are

calculated separately on every batch using K-nearest neighbors and edge weights are

given in accordance with the Uniform Manifold Approximation and Projection method.

snapATAC : Harmony (45) is used by snapATAC (46) to incorporate single-cell

epigenome profiles from various procedures and labs. Harmony initially clusters cells

into many datasets using a PCA embedding. To take into account smoother transi-

tion in cell states, it uses soft clustering, which involves putting cells into perhaps many

groupings. Instead of establishing separate cell-types, these clusters work as stand-in

variables. To prefer clusters having representation across various datasets, it creates a

unique soft k-means clustering variation. An information theoretic measure penalises

clusters that include substantially unbalanced proprotion of cells in a small batch of

datasets. Harmony enables the user to impose a variety of penalties to account for vari-

ous biological or technical aspects, such as various batches and technological platforms.

While preventing local minima that may arise from rapidly maximising representation
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over several datasets, the uncertainty represented in the fuzzy clustering retains distinct

and continuous topologies and conserve variability. Every data-set has a cluster-specific

centroid after clustering, which is employed to calculate the cluster-specific linear cor-

rection component. Under ideal circumstances, cell types and cell states are represented

by surrogate variables, which are determined by cluster membership. As a result, Har-

mony’s cluster-specific adjustment variables calculated are equivalent with the correc-

tion factors unique to each cell type and cell state. Harmony acquires a straightforward

linear adjustment function which are responsive to inherent cellular phenotypes in this

manner. Finally, a mean of these terms weighted by clusters is allocated to each cell,

which is then adjusted by its unique linear factor. As a consequence, susceptible to

fuzzy clustering distribution, each cell may have a different correction factor. These

four processes are repeated until convergence by harmony. At convergence, further it-

erations would calculate the same linear correction factors and assign cells to the same

clusters.

scFind : scfind is a technique for searching huge databases pertaining single-cell

profiles to find cell specific clusters that match specific criteria. Single-cell profiles may

be searched using scfind (145) to find sets of housekeeping and cell-type-specific genes.

By merging single-cell transcriptome profiles with single-cell ATAC-seq profiles, scfind

may be utilised for multi-omics analysis.

Some other RNA-seq embedding methods such as, one where cells are mutually

adjacent to one another across batches are known as mutual nearest neighbour (MNN)

pairings. Seurat v3 (150), BEER (48), Scanorama (187) and SMNN (47) all make use of

the MNN idea.. Other methods can be MINT (188), SCVI (189). The near to twofold

character and increasing sparsity in the epigenome profiles, however, may preclude

direct applicability of such transcriptomic profile analytical approaches for scATACseq

profiles.

Despite the fact that such integration may be highly successful, it is dependent on

the data’s resolution and the capacity to establish a meaningful connection between

gene expression and other modalities. When there is no anticipated biological similar-

ity across datasets, LIGER shouldn’t be employed. Additionally, LIGER depends on

matching traits that are shared by all datasets being studied. Therefore, it cannot be

directly used to combine single-cell metabolomic, morphological, or chromatin con-
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formation data with single-cell gene expression data since these characteristics are not

clearly related to the expression of specific genes.

Hence, there is a lack of a reliable mapping method that can result in the devel-

opment of search engines contemplated to accurately find equivalent for scATACseq

query profile in large set of numerous single-cell epigenome and transcriptomic profiles

regardless of batch effect, despite the availability of large single-cell epigenome atlases

(148) (149) (150), as well as approaches for latent space visualisation of these cells.

Therefore, a search engine technique that can handle each individual cell indepen-

dently of the others would be very helpful in conserving the data of rare and peculiar

cells in an experiment and allowing the use of datasets from other studies.

1.5 Protein Biophysical Property Modeling

Amongst the most extensively researched subjects in the field of computational biology

is proteins (49). The primary function drivers in a cell are proteins. Proteins have a

role in every significant internal process of an organism, from metabolism to defense

against invading invaders. Hemoglobin is crucial for delivering oxygen to all regions

of the body, and enzymes, which breakdown food, are specialised proteins that carry

out assigned functions. A human cell is thought to have between one and three model-

ing proteins, which demonstrate the abundance of proteins. Thus, knowing proteins is

essential to comprehending living things.

Macromolecules known as proteins are composed of lengthy sequences of simple

building units. Peptide bonds hold these building pieces, also known as amino acids,

together. The amino acids, thus, are often denoted as "residues" in a protein. A plethora

of 20 conventional amino acids, and varied arrangements of these 20 amino acids result

in various proteins. These amino acids are often represented by one or three English

letter codes. Table 1.1 provides a list of these 20 amino acids along with their codes.

The fundamental structure of a protein is pretty routinely represented in a network

since it corresponds to a route Pn. However, 3-D structure obtained for proteins is

everything along with being monotonous. Protein’s linear backbone is folded into an

exact three-dimensional shape, with certain protein sections forming helices, sheets, or
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Amino Acid Alanine Cysteine Aspartic acid Glutamic acid Phenylalanine Glycine Histidine Isoleucine Lysine Leucine

3-Letter Code Ala Cys Asp Glu Phe Gly His Ile Lys Leu
1-Letter Code A C D E F G H I K L

Amino Acid Proline Asparagine Methionine Threonine Glutamine Arginine Serine Tryptophan Tyrosine Valine

3-Letter Code Pro Asn Met Thr Gln Arg Ser Trp Tyr Val
1-Letter Code P N M T Q R S W Y V

Table 1.1: Amino acids and their 1,3-letter codes

loops.

Experimental methods for learning about a protein’s three-dimensional structure

include X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.

Protein Databank (PDB), where each protein has a specific PDB identification number

(50), receives this information and stores it. One may view this database for free at

http://www.pdb.org.

1.5.1 Protein Graph Model

A protein’s equivalent graph model is known as a protein contact network (PCN).

Residues, which are nodes in PCNs, are often connected using various methods. Typi-

cally, PCNs are undirected graphs without any self-loops. In the following subsections,

the main PCN models that were developed in general are discussed. A PCN model

typically starts with a protein’s contact map. A contact map is a residue-residue inter-

action 2-D array of a protein in which a coloured patch at the appropriate cell in the

matrix highlights a pair of residues that are in more proximity to one another.

Residue Interaction Network

A simplified protein network model is the residue interaction graph (RIG) model. In

a RIG model specific to protein, every vertex constitutes residue, if two residues are

adjacent to one another, an edge connects them. The affinity is calculated using their

native state structures. Inter-residue distances are computed using per atom’s three-

dimensional coordinates within a protein (retrieved from Protein Data Bank). To main-

tain uniformity, the alpha carbon atom is taken into account as the residue’s center. If

two vertices’ proximity, v1 and v2 is lower than or the same as a predetermined thresh-

old rc, then the two vertices are linked, with their associated alpha carbon coordinates

22

http://www.pdb.org


being (x1, y1, z1) and (x2, y2, z2). Overall, we have

wi,j =

1, if
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

0, otherwise
(1.25)

Here, wi,j is the weighted edge connecting vertices vi, vj .

The discussed model produces a straightforward undirected graph. The threshold

value rc is deliberately selected in order to take into account the necessary intensity of

attraction that does in fact maintain the stability of the protein structure. The standard

threshold, rc = 8Å, is appropriate and relevant as shown by prior publications (210).

RIG with distance information : The RIG model is the best model for mathemat-

ically representing a protein. However, it omits the vital detail of the actual separations

between residues. A slight modification in the RIG model is also used by using cal-

culated distances as edge weights wherever a RIG edge exists. As a result, we have

wi,j =

di,j, if di,j ≤ rc

0, otherwise
(1.26)

Here di,j =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2. This produces a weighted, undi-

rected network as opposed to the straightforward RIG model.

Long Range Interactions Graph

The Long-Range Interactions Network is an additional protein graph model (LIN). An

associated RIG model’s LIN model is a subgraph of that model. Only long-distance

interactions—those from the RIG model where the connecting vertices are more than

a certain threshold of residues away on the basic structure—are taken into account by

LIN. Naturally, the backbone interactions are chosen to maintain network connectivity.

In terms of math, we have

wLIN
i,j =

Wi,j, if |i− j| = 1or|i− j| ≥ lc

0, otherwise
(1.27)
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where the LIN threshold in terms of residues is represented by lc. It’s important to

note that the LIN threshold itself is not a set number; instead, research groups choose

somewhere from 6 and 14 amino acids.

Weighted Residue Interaction Graph

There is a lot of research on the RIG and LIN models. However, there are several

shortcomings. While the RIG model captures all of the necessary information in terms

of the edges, it misses interactions that are far away, which are what truly hold the folded

structure in place. It is captured by the LIN model. However, short-range interactions

are left out.

A novel protein interaction network model is suggested to address this problem. The

shortcomings of the two types mentioned above are handled in this one. It considers

all of the RIG model’s edges and weights them such that edges that are further apart

have larger weighted edges. These weights comprise inversely correlated with spacing

in the middle of residues accompanying protein’s foundation. Long-range interactions

are thus given greater weight. The Weighted RIG (RIGW) model is the name given to

this concept. The edge weights are determined as follows:

wRIGW
i,j =

|j − i|, if di,j ≤ rc

0, otherwise
(1.28)

1.5.2 Existing Graph-based Methods for Modelling Biophysical Prop-

erties of Proteins

A number of efforts contrived to represent protein molecules in form of a residue in-

teraction network of residues related to one another based on their proximity in the

protein’s 3D structure (210) (52) (53). Protein architectures have been utilised to pre-

dict biophysical features by making use of network attributes from graph theory-based

metrics of vertices i.e., residues, including clustering coefficient, centrality and be-

tweenness (52). Community network analysis (CNA) is another example, it serves

as examination of kinetics of enzymes and complexes of protein/DNA/RNA in order to

comprehend their allosteric processes (54) (55). Similar to this, network features based
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only on graph-theoretic method have also been used to simulate the protein folding rate.

Although such methods emphasise the significance of residue network features, disre-

garding the biophysical characteristics of amino acids may result in the under utilization

of the residues’ prior knowledge. As a result, the challenge of how to effectively com-

bine various signals owing the amino acid characteristics and three-dimensional vicinity

neighbourhood statistics emerges.

One convenient method to transform a graph which is in the form that resembles

a multi-channel image that can be handled by a conventional two dimensional CNN is

proposed by Graph-CNN (212). Three phases may be used to summarise the proce-

dure: (1) network node embedding. (2) embedding space compression. (3) repeatedly

extracting two-dimensional slices from the compression region and calculating two di-

mensional histogram for every slice. Stack of network’s 2D histograms provides the

final "image" representation where each histogram comprises a channel. It should be

noted that the final representation of a graph’s dimensions is self-contained by graph’s

innumerable nodes or edges. Images of the same size is used to illustrate both large and

smaller graphs.

The following are the ways in which technique overcomes graph kernel limitations

are: 1. At the instance level, time complexity is delivered as constant, whereas at the

dataset level, time complexity is linear which is achieved by transforming all networks

in a certain data-set to depictions of similar dimensions along with utilising traditional

two dimensional CNN model to process such graph depictions. Additionally, best node

embeddings for particular network may be produced in linear time relative to the num-

ber of nodes in network, such as using node2vec. 2. 2D CNN classifier allows for the

direct learning of features from the raw data during training, resulting in the highest

possible classification accuracy. 3. This strategy makes use of cutting-edge graph node

embedding methods that apprehend global as well as local characteristics of networks.

It also does away with the need for customized features.

To describe the biophysical characteristics of proteins, graph signal processing (GSP)

(231) combines residue attributes and residue network topology. Notably, it demon-

strate how the physicochemical characteristics of a protein residue and its structural

information affect the folding rate of protein folding. The method also demonstrates

the use of regression algorithms to predict three distinct protein characteristics by com-
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bining various amino acid residue features with structural data.

Prior research has shown a relationship between the network characteristics of dif-

ferent protein interaction networks and the rate of protein folding (210). These as-

sertions were verified using GSP, which was also utilised to determine if signals on

residue, as seen within the frequency spectrum, include explanatory segments that can

be attributed to protein’s folding rate. A total of fifty two single domain two-state fold-

ing proteins were examined to further verify this theory (229). Non-negative signal

strength obtained from lower eigenvalues was seen as useful since lower frequencies

were thought to be explanatory and high frequencies to be noise (175). This signal’s

instructive portion is known as the "Low Frequency Component" (LFC)

LFC =

λ̂i≤ ˆλcutoff∑
ˆλi=0

|f̂i| (1.29)

In order to find the cutoff frequency that optimises the correlation between LFC and

ln(kf ), the cutoff frequency ˆλcutoff was altered from 0.01 to ˆλmax in increments of

0.01.

Deep learning based CNN (Convolutional Neural Network) has attained great en-

hancement in the area of protein function modelling, still the method requires large

pool of data points which can be used to train a CNN architecture. In reality, obtaining

a large enough sample size for training is too challenging, and given the limitations of a

limited dataset, overfitting is most likely to occur. However, we may utilise the Fourier

transform to determine the signal amplitudes needed to duplicate any signal (231). The

Fourier transform does have the fundamental restriction that all signal properties must

be considered globally. The wavelet transform, on the other hand, depicts the signal in

both the time and frequency domain, enabling effective access to the signal’s localised

information (231).

1.5.3 Effect of Biophysical Properties on Mutation Sites

It has been hypothesised that mutations on conserved residues have detrimental con-

sequences, which may help to elucidate the preservational phenomena which arise un-

derneath strong evolutionary coercion. In fact, the concept has received substantial
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prior scientific support (245) (60). Functional residues, however, are not necessarily

preserved; frequently, the residues change pertaining a number of grounds, including

changing functional precision (61) (62) (63); preserving structural stability (64); and

causing allosteric signals such as conformational epitasis (65). As a result, examining

variable placements might provide an additional chance to discover functional sites that

conservational data has missed.

For the purpose of protein engineering and design, as well as to comprehend protein

evolution and genetic diversity in humans, it is crucial to be able to accurately assess

and anticipate the impact of amino acid changes in proteins. Natural proteins’ sequence

analysis and laboratory tests are the two main sources of information on the impact

of certain mutations. Phylogenetic studies provide insights on the divergence of pro-

tein sequences and the factors that control the eradication of mutations (66) (67) (68)

(69). Presuming the mutations’ fitness impacts correspond along with the presence in

orthologous sequences, protein phylogenies further enable in forecasting if a particular

mutation may be neutral or detrimental (70) (71) (72). According to (73) and (74), the

algorithms are rather good at predicting mutations that cause diseases. Though sev-

eral nonsynonymous Single-Nucleotide Polymorphisms (SNPs) anticipated to possess

detrimental effect are not distinctly linked to a disease profiles (75), due to their rarity

(76) or because a detrimental effect just on one gene frequently has none phenotypic

consequences at organism level (77). Actually, there isn’t always a correlation between

the impact of mutations on isolated proteins and organisms. Additionally, predictors

may struggle to attribute harmful consequences to mutations in highly conserved re-

gions which, when altered empirically, seem they have no impact (78). Therefore,

comprehensive databases that detail the impacts of every mutation in a gene or pro-

tein, irrespective of organismal effects, would significantly enhance prediction (79). To

better understand protein evolution, systematic experimental mappings of the effects of

mutations within a single gene or protein are therefore crucial. They are also a valuable

resource for enhancing predictions (80) (81); and optimising protein design algorithms

(82).

Li et al. (213) state that as disease aberrations often occur at residues with high

centrality or degree, nearby residues of a mutation site may aid in determining if a mu-

tation is connected to a certain disease. Using network parameters, functional modules

in proteins have also been researched. In order to identify functional residues and func-
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tional module clusters in rhodopsin that encode typical coevolutionary information in

the amino acid network, Park & Kim (214) performed structure-based correlation mu-

tation analysis. A mechanistic understanding of the detrimental effects of amino acid

mutations may be gained by connecting their property to the behavior of proteins.

1.6 Objectives and Rationale of thesis

This thesis work addresses the following three main challenges that exist in the field of

omics. We also demonstrate how our developed methods can be utilised to understand

disease profiles in transcriptomics, epigenomics, and proteomics.

1.6.1 To Denoise Large Read Count Matrices of Single-cell Expres-

sion Profiles with Graph Signal Processing for Better Net-

work Inference

In order to improve gene-network inference, a technique is devised to address gene-

expression profiles associated noise. Our approach is based on filtering gene expression

using graph-wavelets. Our method aims to enhance the performance of current network

inference techniques rather than conflict or contend with them. In order to compare

different network inference technique output, we did so after processing (Filtered) as

well as without processing (Raw) data through graph-wavelet. Several bulk patient sam-

ples and single-cell expression samples were used to assess our method. We also looked

at how the estimation of the gene network’s graph-theoretic characteristics is affected by

our denoising technique. It also suggests that inferred interactions are becoming more

similar to the real gene-gene interactions when there is an enhancement in intersection

between predicted gene-gene networks obtained from two expression profiles for a spe-

cific cell-type. Thus, by employing our proposed denoising method prior to measuring

the contrast in predicted gene-gene networks owing to ageing or extrinsic stimuli, we

may be able to detect real fluctuations in regulatory arrangements. As a result of our

tool’s ability to filter the single-cell transcriptomic data of pancreatic cells, we could

be able to compare the gene-gene networks identified for elderly and juvenile cells. It

may be possible to learn more about the susceptibility for disease in the elderly genera-
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tion by examining alterations specific to cell-types in gene regulatory networks brought

on by aging. Therefore, utilizing scRNA-seq data of juvenile and elderly mouse cells

from lung (97), we predicted gene-gene networks for various cell-types. Our strategy

of denoising single cell expression patterns increased the consistency of the predicted

gene networks for numerous cell-types in juveline and elderly lungs from mice. An-

other important topic we raised was how the gene regulatory networks of young and

aged lung cells vary. We also contrasted the differential expression in lungs infected

with COVID-19 with pattern of differences in effect of genes brought on by aging.

1.6.2 To Use Graph-based Integration Method for Embedding Large

Single-cell Epigenome Profiles with Different Batch Effects

Our strategy uses cutting-edge computational techniques to compare the single-cell

scATACseq profiles that are queried with immense collection of reference single-cell

open-chromatin and single-cell expression datasets. With scEpiSearch, one may handle

non-identical peak lists from single-cell ATACseq profiles provided by various research

teams and figure out the statistical significance of the query’s counterpart with single-

cell RNAseq and ATACseq profiles. Instead of relying on gene activity as a representa-

tive for cell type specificity, scEpiSearch reduces noise and bias among reference pro-

files by using a gene-enrichment score. Additionally, scEpiSearch overcomes the issue

of batch effect, peak-list and species independent query joint-embedding from single-

cell ATACseq cells utilising reference cell atlases.

Recently, a number of groups began analysing frozen nuclei obtained from tumour

samples using scATACseq. It is well known that tumour cells are heterogeneous and

that they often exhibit unidentified intermediate cellular states. In cancer cells, repro-

gramming and dedifferentiation are often linked to treatment resistance and unantici-

pated lineage shift. For a clearer apprehension of tumour pathophysiology, it is crucial

to contrast single-cell ATAC-seq samples of cancer cells to the large set of existing cells

in order to determine their ancestry and potency. Because of this, we initially assessed

scEpiSearch’s effectiveness in determining lineage using scATACseq samples of K562

cell line and HL60 cell lines as a proof of concept. In order to get a deeper knowl-

edge of regulatory behaviors via their epigenomes, we also utilised scEpiSearch on the

epigenomes of embryonic stem cells in this study. We captured heterogeneity, lineage
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bias, and stress-response across single-cells.

1.6.3 To Develop an Explainable Predictive Model Using Graph-

Wavelet for Modeling Biophysical Properties of Proteins and

Measuring Mutational Effects on Diseases

In order to represent the biophysical characteristics of amino acids, we provide a tech-

nique based on the graph-wavelet transform of signals of features of amino acids in

protein residue networks based on their structures. Additionally, it fared better than

approaches based on convolutional neural networks and graph Fourier in predicting the

physicochemical characteristics of proteins. Our technique can quantify the influence of

each amino acid on the physicochemical characteristics of proteins, even though it can-

not anticipate deleterious mutations. Such an assessment of amino acid effects has the

ability to elucidate the mechanism behind the detrimental non-synonymous mutation

effect. Therefore, for better categorization and deeper comprehension, our technique

may highlight patterns of distribution of amino-acid characteristics in the context of a

biophysical feature in the structure of the protein.
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CHAPTER 2

Denoising Large Read Count Matrices of Single-cell

Expression Profiles with Graph Signal Processing for

Better Network Inference

2.1 Background

To understand the regulatory mechanisms involved in disease and development, gene

regulatory networks are interpreted and used for design and simulation. The network’s

interdependencies are frequently depicted in form of weighted edges connecting set

of nodes, in which the weighted edges potentially depict the regulatory associations

between genes. Gene-Gene network can also be employed in the inference of causal

models (83), the design and comprehension of perturbation experiments, comparative

analysis (84)), and the discovery of new drugs (85). Numerous methods to estimate

node interdependencies have been proposed as an outcome of broad applicability of

network inference. Majority of methods rely on mutual information, pairwise correla-

tion, or other similarity metrics between values for gene expression that are provided

in various conditions or at various times. Furthermore, because of lesser but significant

background pattern similarities, resulting edges can be frequently persuaded by indirect

dependencies. Even when there is genuine interaction between two nodes, noise, simi-

larity in background patterns, and some other incidental dependencies frequently make

it difficult to estimate the effect and strength of the interaction. Therefore, recent meth-

ods have begun to infer more confident interactions by using alternative approaches.

ARACNE (87), which is a technique that applies statistical cutoff of mutual informa-

tion or partial correlations by Maetschke et al. (86) could serve as the basis for such an

alternative strategy.

Although in a homogeneous population of cells, single-cell RNAseq cells frequently

reveal variability within expression scores. This heterogeneity can be used to predict

gene regulation networks and uncover dominant cell-type-specific pathways. The best



ways to evaluate gene-gene interaction, however, are still unknown since single-cell

RNA-seq profiles are sparse and ambiguous about the distribution of gene expression.

As a result, Sknnider et al. (13) recently assessed 17 indicators of association to infer a

network based on gene co-expression. They conducted a study and discovered that the

two interactions estimation, ϕ (phi) and ρ (rho), performed effectively for estimating

gene interactions based on co-expression by utilizing single-cell RNA-seq data. Within

a different research (90) the authors independently assessed a few approaches suggested

for gene-gene interaction network prediction by utlizing single-cell RNA-seq data, in-

cluding SCENIC (215), SCODE (216), and PIDC (93). When using single-cell RNAseq

cells derived out of simulations/experiments, Chen et al. (90) discovered that these tech-

niques performed poorly in reconstructing the network. Gene-expression profiles can

be denoised to increase the performance of such approaches. Therefore, controlling

dropout, noise within single-cell RNA-seq profiles may be significantly difficult that

still needs to be resolved. There may be biological and technical causes for noise in the

single-cell transcriptomic patterns. There could be many possible sources of biologi-

cal noise in transcriptomic profiles such as some stochastic procedures which could be

convoluted in translation or transcription, jagged binding of transcription factors with

DNA, expression specific to alleles, Thermal fluctuations etc. Technical noise, however,

could result from stochastic detection caused by low RNA levels and amplification bias.

The phrase "noise in gene expression" was coined by Raser and O’Shea (95) to describe

the degree of heterogeneity in gene expression among cells that should be exactly sim-

ilar. Raser and O’Shea divided likely causes of disparity in expression of genes into 4

categories:

• An intrinsic stochasticity of biochemical procedure caused by limited count of
molecule

• Heterogeneity between cells caused by progression of cell-cycle or some random
process like mitochondria partitioning

• Minuscule micro-environmental variations in the tissue

• Genetic mutation

The all-inclusive noise within expression patterns of genes makes it difficult to draw

valid conclusions regarding the gene activity regulation in particular cell type. There-

fore, a pre-processing technique is needed which is capable of dealing with the sparsity

as well as noise in single-cell RNAseq cells to enable accurate regulation prediction.
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Using techniques taken from graph theory, the anticipated gene-gene interaction

network can be additionally examined such as to deduce important regulatory patterns

in each specific cell-type. Finding communities and modules of genes (84), as well

as calculating gene relevance in terms of centrality, are typical downstream analytic

techniques. Similar to gene-expression profiles, inferred gene networks can be used to

compare two groups of cells and identify differences in the regulatory pattern brought

on by illness, exposure to the environment, or aging. Recent interest has focused on a

comparison of regulatory changes brought on by aging, in particular since older people

have a higher chance of metabolic disorders and mortality on the basis of infections.

Researchers are concerned about this issue, particularly given the current condition

of pandemics caused by new COVID-19 (SARS-COV-2), where elder people have a

greater likelihood of mortality. Why do elderly cells from lung hold a greater chance

of onset of severe COVID-19 contagion is major question. However, utilising gene-

gene interaction network prediction with erratic single-cell RNAseq cells from lung

to understand regulatory alterations brought on by ageing is not a simple task. Thus,

a method that can suppress batch effect, noise is required for network biology-based

examination of single-cell RNAseq dataset of lung aging cells (97).

Overall, this objective showcased the effectiveness of the graph-wavelet-driven (which

is a graph based method) gene-expression filtering approach in enhancing gene-network

inference. Moreover, by applying this method to examine gene expression in the con-

text of aging and COVID-19 infection, we shed light on the specific gene regulatory

networks associated with these conditions and hence, helps decipher omics signature

of diseases. This contributes to our understanding of the underlying biological pro-

cesses and provides valuable insights for further investigation and potential therapeutic

interventions.

2.2 Materials and Methods

As defined by various researchers, including Raser and O’Shea (95), we used the phrase

noise in gene expression to direct towards computed degree of fluctuation in gene ex-

pression across cells that should be identical. As a result, we started by creating a

base-graph (networks), which consists of edges connecting cells that are purportedly
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identical. With the use of such graph as base and applying graph-wavelet transform,

we can measure how much each gene’s expression varies between connected samples

at various graph spectral resolutions in each sample (cell). To achieve this, we first

determined the distances between samples (cells). Principal component analysis or any

dimensionality reduction techniques for expression data can be used to obtain a more

accurate estimation of the distances between samples (cells). Each cell/sample was

treated as vertex of the network. Two vertices were only linked with edges provided one

of those nodes would be one from remaining cells K nearest neighbours. On the basis

of number of sample/cell in expression profiles, value of K here was chosen, which is

in the range of 10 to 50. As a result, we used K-nearest neighbours (KNN) to generate

the primary adjacency matrix by making use of the euclidean distance scores among

cells in expression matrix. The computed adjacency matrix was used such that we can

create base graph. As a result, every node within base-graph represents a different cell,

edge weights representing their Euclidean distance from one another.

A collection of edges E representing interconnections among cells (if present) and

weighted function that produces positive weighted associations among cells constitute

the weighted graph G that was created using a KNN-based adjacency matrix of cells.

Such weighted matrix may be alternatively described in form of NXN (where N is the

number of samples/cells) weighted adjacency matrix A, here Aij would be zero if cells

i and j do not have any edge between them, and Aij = weight(i, j) otherwise.

Total edge weight that are incident on a particular cell in the graph constitutes the

cell’s degree. Additionally, the degree (diagonal) matrix D of such network would

consist degree d(i) if i = j and degree 0 otherwise. L is the unnormalized graph

Laplacian operator, and it can be defined such that it would be equal to D − A for a

graph. This is the definition of the normalised version of the graph Laplacian operator.

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2 (2.1)

According to sandryhaila et. al. (131), the two separate laplacian operators generate

two distinct sets of eigenvectors. On the other hand, for our approach of graph deriva-

tion between cells we have used normalised version of the Laplacian operator. Further

applications of graph Laplacian include signals’ Graph Fourier transformation logged

on every node ((218) (131)).
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For fourier transform coefficients filtering, Chebyshev-filter was used for filter-

ing single-cell RNAseq in Fourier domain. We projected the raw graph (where each

node refers to a different cell) object (101) using the expression of each gene, using it

as a signal. We started with the signal’s forward Fourier transform, applied a Chebyshev

filter, and took inverse transform of signal to get the denoised profiles. For each gene,

the same procedures were repeated. Thus,We ultimately get filtered gene expression as

a result which is used to further get insights.

2.2.1 Spectral Graph Wavelet Transform

Approach similar to fourier transform, spectral graph wavelet is implemented which re-

quires the selection of a positive real-valued kernel function that may act in form of

bandpass filter. The wavelet operator provided by the graph laplacian’s rescaled kernel

function ultimately yields graph wavelet coefficients at every scale. On the basis of

the spectral representation of network, a self adjoint operator function using continu-

ous functional calculus can be created. Although this may be accomplished by utlizing

eigenvalues, eigenvectors of the laplacian L, (218), for the graph with finite dimensional

Laplacian. g = g(L) gives the wavelet operator. A signals’ wavelet coefficients with

scale = 1 are provided by Tgf . When applied to eigenvectors Ul, this operator acts as

TgUl = g(λl)Ul (2.2)

As a result, operator Tg modifies each graph Fourier coefficient by operating on every

graph signal. ̂Tgf(l) = g(λl)f̂(l) (2.3)

Further, Inverse Fourier transform can be defined

(Tgf)(m) =
N−1∑
l=0

f̂(l)Ul(m) (2.4)

Wavelet operator is interpreted as T s
g = g(sL) for each scale s. When these wavelet

operators are applied to δn, which yields signal with value 1 on node n else 0 and are

localized to yield individual wavelets (218). Consequently, if all scales are taken into

account, the inverse Fourier transform is then used to calculate wavelet coefficient using
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the concept of convolution which is calculated as

ψt,n(m) = (tsgf)(n) =
N−1∑
l=0

g(sλl)f̂(l)Ul(n) (2.5)

Despite using Fourier domain filtering in this case, we measured the wavelet coef-

ficients of every gene expression signal on various scales. Each scale’s wavelet coeffi-

cients were filtered using thresholding. On wavelet coefficients, we used both hard and

soft thresholding. However, ee used the conventional techniques Bayes Shrink, Sure

Shrink to implement soft thresholding.

2.2.2 Selecting Optimal Threshold for Graph-wavelet Coefficients

It has been a focus of intense study to determine the best wavelet coefficient threshold

for noise removal from linear signals and images. We investigated information theoretic

criteria i.e. minimal description length principle (MDL) and assessed both soft and hard

thresholding methods. The user of our application, GWNet, may choose from a variety

of threshold-finding alternatives, including visuShrink, sureShrink, and MDL.

As appropriate soft-thresholding with respect to Graph-wavelet coefficient is fun-

damentally a subject of much investigation and might require additional fine-tuning,

hence hard-thresholding was chosen for majority of the data used in this study.

Another option is to employ a hard-threshold criteria on the basis of the best protein-

protein interaction and projected gene-network overlap (PPI). We discovered that cutoff

determined through MDL criterion as well as the most overlap between the projected

network and the ground set interactions/PPI were found to be in between 60–70 per-

centile when applying it to various data sets. We need a consistent percentile thresh-

old to cutoff graph-wavelet coefficients so that projected networks from different data

sources can be compared. In order to analyse various data sets uniformly, We estab-

lished a 70 percentile baseline cutoff value. As a result, wavelet coefficients with abso-

lute values below the 70th percentile were set to zero in default mode.
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2.2.3 Methodologies for Inferring Gene Interaction Network

Any network inferences technique may be fed into the adaptable GWNet tool to make

regulatory predictions utilizing graph-theoretic methodology. Thus, gene expression

raw counts in form of fragments per kilobase of exon model per million reads mapped

(FPKM) for single-cell RNAseq profiles were used. The quantile normalisation and

log transformation were employed in order to pre-process single-cell gene expression.

To begin with, we simply estimated the measure of gene interdependencies using the

Spearman and Pearson correlation. Algorithm for the Reconstruction of Accurate Cel-

lular Networks (ARACNE) was also utilised for inferring the gene regulatory network.

For each gene-pair, ARACNE first calculates the mutual information. Then, all poten-

tial gene triplets are taken into account, and indirect interactions were removed applying

Data Processing Inequality (DPI) method. The following inequality is supported by DPI

provided gene i, gene j exhibit reliance on gene k rather than direct interaction.

I(Gi, Gj) ≤ min(I(Gi, Gk), I(Gj, Gk)) (2.6)

Here, i and j genes’ mutual information is represented by the symbol I(Gi, Gj). ARACNE

also eliminates interactions with mutual information (MI) that is shared less often than

a predetermined eps parameter.

For predicting gene-gene co-expression networks obtained from single-cell RNAseq

profiles, Skinnider et al. have shown the precedence of 2 proportionality metrics, rho(ρ)

, phi(ϕs) (140). As a result, we also assessed the advantages of gene-expression denois-

ing based on graph-wavelet using the proportionality metrics ρ , ϕs.

Proportionality metric ϕ is described below

ϕ(Gi, Gj) =
var(Gi −Gj)

var(Gi)
(2.7)

Where var() is the variance function and Gi would be array carrying the i genes’ ex-

pression log scores over numerous samples/cells. The symmetric representation of ϕ is

denoted by

ϕs(Gi, Gj) =
var(Gi −Gj)

var(Gi) + var(Gj)
(2.8)

37



While rho is described below

rho(Gi, Gj) = 1− var(Gi −Gj)

var(Gi +Gj)
(2.9)

We used the ’propr’ package 2.0 in R to estimate the ρ and ϕ metrics of proportionality.

(141).

2.2.4 Raw-Filtered Gene Network Comparison

Ground truth was compared with the networks estimated from filtered and raw gene

expression profiles. In order to assemble the ground truth for single-cell profiles, thus,

Human Integrated Protein-Protein Interaction Reference (HIPPIE) repository (142) was

used. However, the known interaction set for the DREAM5 challenge expression set

was available at prior. We took into account all potential network edges and ordered

them according to their importance as per edge weights. Through comparison to edges

in the known set of interactions, we were able to determine the area under Receiver

operator curve for filtered as well as raw interactions. Receiver operator is common

assessment statistic in the field of machine learning that was modified for use in the

DREAM5 evaluation approach. Here, we modified the Receiver operating curve by us-

ing a certain number of edges ordered by weights plotted on the X-axis rather than the

false-positive rate. For assessment, all plausible edges obtained from gene-gene inter-

actions inferred from filtered as well as raw graphs are collected and sorted according

to their weights in the network. By comparing the fold change between the raw and

filtered scores, improvement was determined.

2.2.5 Comparison with Other Methods

We contrasted our methodology outcomes obtained by denoising using graph-wavelet

with those of additional techniques designed for imputation or noise reduction in scRNA-

seq profiles. We also utilised Graph-Fourier based filtering for comparison (101), MAGIC

(104), scImpute (105), DCA (106) , SAVER (107), Randomly (108), KNN-impute

(109).
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MAGIC

High dimensional scRNA-seq data are imputed using Markov Affinity-based Graph

Imputation of Cells(MAGIC). MAGIC builds graph to get smoothed characteristics and

then restores the data’s organisational structure. By detecting the most similar cells,

it aggregates highly similar cells to create a graph. Imputation is used to adjust for

dropout and noise in this way. By building a weighted affinity matrix, it employs data

diffusion. The Markov transition matrix illustrates the probability distribution of further

transitions between cells. The URL1 was utilized to install the method. With the prin-

cipal component (PC) parameter setting of 20, parameter t setting of 6 for the power of

Markov affinity matrix, autotune parameter setting of 10, number of closest neighbours

setting of 30, and scaling setting of 99th percentile, we employed MAGIC.

ScImpute

ScImpute begins with dimensionality-reduction (PCA) on the expression matrix before

calculating the distance matrix. It employs a first quartile and third quartile for the

set of neighbours to eliminate outlier cells. On the remaining cells, spectral clustering

is carried out. ScImpute employs a statistical model to determine whether or not a

dropout results in a zero value. When dropout occurs, it is assumed that genes exhibit

a bimodal pattern of expression, which may be explained by two-component mixture

models. Gamma distribution and normal distribution, which account for dropouts and

reflect the actual amount of gene expression, are the two components. Two gene sets

are created, the first of which includes genes that need imputation and have a certain

threshold for gene dropout probability in a cell, and the second of which includes genes

that do not have exact gene expression. Genes from the second group are used to gauge

how similar cells are to one another. Additionally, using non-negative least squares

regression, data from the second gene set’s expression in other cells that are comparable

is used to impute the first gene set’s genes. The URL for scImpute was 2. We also used

the default ScImpute settings, which were : threshold set at 0.5 for dropout probability

and 2 for cell subpopulation.

1https://github.com/pkathail/magic
2https://github.com/Vivianstats/scImpute
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DCA

By taking into consideration the count pattern, sparsity, and overdispersed nature of

scRNA-seq data, deep count autoencode (DCA) employs deep autoencoder with loss

function of zero-inflated negative binomial (ZINB), eliminating dropouts and noise in

read-count. For each gene’s input expression data, DCA utilises an autoencoder model

to learn the dropout (π), dispersion (θ), and mean (µ) parameters of the ZINB dis-

tribution. The size of the input layer and the three output layers, which provide the

aforementioned three parameters, have the same number of genes in this autoencoder

network. But unlike a conventional autoencoder, DCA contains three output layers,

each of which represents the gene-specific parameters and as a result, each gene has a

loss function that compares its output to its original input. As a result, the output layer

may be thought of as ZINB regression with new representations of cells as predictors.

From the following URL: 3, DCA was downloaded. For optimization, we utilised DCA

with default settings and RMSProp with 32 batches, 20 epochs, and a learning rate of

0.001.

SAVER

Using regularised regression prediction and the empirical Bayes approach, Single-cell

Analysis Via Expression Recovery (SAVER) attempts to recover real gene expression

patterns from sparse and noisy scRNA-seq data. A multi-gene prediction model based

on adaptive shrinkage is hence called SAVER. SAVER employs the poisson distribution

to manage cellular biological variance. In order to take into consideration the prediction

uncertainty, it assumes a gamma prior with a set of mean to prediction and parameter

dispersion. The parameter dispersion gauges how well the prediction mean can forecast

a gene’s expression. SAVER recovers gene expressions using posterior mean. The URL

for SAVER is 4. SAVER was also run using default settings, with a maximum of 300

genes allowed for prediction, 50 for lambda value used for cross-validation, and 5 folds

in cross-validation.
3https://github.com/theislab/dca
4https://github.com/mohuangx/SAVER
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Randomly

The technique Randomly use Random matrix theory to denoise single-cell data. Creates

a wishart matrix at random and uses singular value decomposition to calculate the whole

collection of eigenvalues and eigenvectors for the creation of wishart matrix. Using

eigenvalues that are higher than the Tracy-Widom critical threshold, biological signals

are extracted. The genes with the highest variation between eigenvector signals and

eigenvector noise signals are then chosen. As a result, the method ignores genes with a

significant variation over the eigenvector signal. From the github URL : 5), Randomly

was downloaded. Additionally, randomly was used with the default values of 0 for

min_tp, min_genes_per_cell, and min_cells_per_gene.

KNN-Impute

KNN-impute uses the k-Nearest Neighbour method to accomplish the imputation of

missing values in the expression matrix. The R package bnstruct contains the KNN-

Imputed function knn.impute. We selected 10 as the value of k for KNN-Imputed.

Graph Fourier Transform

Typically, the Fourier transform magnifies a signal into the Fourier basis of filters-

invariant signals. A conventional Fourier transform is therefore provided by

f̂(ω) =

∫
e−itωf(t) dx (2.10)

Complex exponentials are the eigenfunctions of the one-dimensional Laplacian in this

case, e(−itω). As a result, the Fourier transform or calculating the Fourier coefficient

f̂(ω) is defined as the inner product of the signal f(t) and the Eigen function of the

Laplacian. The formula for inverse Fourier transform is

f̂(t) =
1

2π

∫
f̂(ω)e−itω dω (2.11)

where the signal f(t) is expanded as a weighted sum of the Laplacian eigen func-

5https://github.com/RabadanLab/randomly
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tions. By substituting graph Laplacian for the Laplacian in the previous equation, one

may also obtain the graph Fourier transform in a similar manner. The orthonormal

eigenvectors of the symmetric Laplacian matrix are designated as Ul for 0...N − 1. Be-

cause of their symmetry, eigenvalues may be sorted in ascending order and are likely

to be real. Additionally, the minimum eigenvalue for the graph Laplacian is 0, and the

eigenvalues are all non-negative. Eigenvalues λ must fulfil 0 = λ0 < λ1 ≤ λ2... ≤

λ(N − 1) given that graph G is connected. Consequently, Fourier transform would be

for every signal graph :

f̂(l) =
N∑

n=1

U∗
l (n)f(n) (2.12)

and inverse graph Fourier transform [3] as

f(n) =
N−1∑
l=0

f̂(l)Ul(n) (2.13)

Chebyshev-filter was utilised for gene expression profile filtering in the Fourier do-

main. This strategy does not include this technique. We projected the raw graph object

(where each vertex corresponds to a different sample) with the expression of each gene

at a time, using it as a signal. We started with the signal’s forward Fourier transform, ap-

plied a Chebyshev filter in the Fourier domain, and then inverse-transformed the signal

to get the filtered expression. For each gene, the same steps were repeated. We would

ultimately get filtered gene expression as a result. With beta set to 2, offset set to 0, and

order set to 5, the Chebyshev filter was created for filtering in the Fourier domain.

2.2.6 Differential Centrality

Centrality is a key concept in graph theory and network-based research for identifying

significant nodes in a graph. It measures how central node is or how significant a node

in the network is. The majorly applied centrality measures are closeness, degree, be-

tweenness, PageRank, and eigenvector centrality, which further offer crucial analytical

information about the network and the nodes, and may be defined in a variety of ways.

To determine differential centrality in ageing data, we have employed two centrality

metrics, namely degree and PageRank.
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2.2.7 Data Sources

The DREAM5 portal’s bulk gene-expression data was downloaded for the initial eval-

uation of the method (6). From the GEO database, the single-cell expression profile

of mESC produced using several procedures, (102), was downloaded from (GEO id:

GSE75790). From the GEO database, single-cell expression profiles of pancreatic cells

from people of various ages were retrieved from (GEO id:GSE81547). The GEO id for

the scRNA-seq profile of murine ageing lung from Kimmel et al. (97) is GSE132901.

While the GEO id: GSE132901 is available for the ageing lung scRNA-seq data pub-

lished by Angelids et al.

2.3 Results

Our approach is based on the idea that cells (samples) with similar characteristics will

have more similar gene expression profiles. As a result, we start by creating a network

where two cells are linked by an edge if one of them is one of the other’s top K closest

neighbours (KNN). Following the construction of a KNN-based network between cells

(samples), we filter the expression of one gene at a time using a graph-wavelet technique

(Figure 2.1). We employ a gene’s expression as a signal on the nodes of the cell graph.

In order to conduct spectral decomposition of the graph signal, we use a graph-wavelet

transform. Following the graph-wavelet transformation, the wavelet coefficient thresh-

old is selected using sureShrink and BayesShrink or a preset percentile value defined

following extensive testing on several data sets. To rebuild a filtered expression ma-

trix for the gene, we employ the coefficient for inverse graph-wavelet transformation’s

preserved values. For gene-network inference and other downstream analyses of regula-

tory differences, filtered gene-expression is employed. We evaluated inter-dependencies

across genes for assessment purposes using five distinct co-expression metrics, includ-

ing Pearson and Spearman correlations, phi and rhoscores, andARACNE.

6http://dreamchallenges.org/project/dream-5-network-inference-challenge/
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Figure 2.1: The GWNet schematic flow. The first step is creating a KNN-based net-
work connecting samples. For the KNN-based network of samples, a graph
wavelet based filter is learnt. Graph-wavelet transform is used to filter the
gene-expression of a single gene at a time. For network inference, filtered
gene-expression profiles is utilized. Calculations of differential centrality
between cell groups are done using the inferred network. (Mishra et. al.
(247))

2.3.1 Assessment using DREAM Challenge Bulk Expression Pro-

files

A bulk sample expression profile may include both biological and technological noise

((95)). We initially assessed the effectiveness of our technique on a bulk expression

data-set in order to test the premise that graph-based denoising may enhance gene-

network inference. We utilised four data sets that the DREAM5 challenge consortium

made accessible (99). Based on the original expression profiles of the single-celled

eukaryotes Saccharomyces cerevisiae and S aureus as well as the bacteria Escherichia

coli, three data sets were created. While GeneNetWeaver, which uses the chemical
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Langevin equation to simulate molecular noise in transcription and translation, was

used to replicate the fourth data set using an in silico network (100).

For each of the four data sets, the real positive interactions are also accessible. Uti-

lizing three alternative methods to cutoff the wavelet-coefficients, we contrasted graph-

wavelet based denoising with graph-fourier based low pass filtering. With correlation,

ARACNE, and rho-based network prediction, we were able to improve the score by 5

to 25 percent compared to the raw data using the DREAM5 criteria (99). In three of the

four DREAM5 data sets, the gene-network prediction method based on phis showed

improvement (Fig. 2.2). Following the graph-wavelet based denoising of the simulated

data (in silico) from the DREAM5 consortium, all five network inference algorithms

shown improvement (Fig. 2.2). Further, graph-wavelet based filtering performed bet-

ter than Chebyshev filter-based low pass in Fourier domain filtering. It draws attention

to the fact that even large-scale bulk gene-expression sample data may include noise

and that denoising it using a graph-wavelet after creating a KNN-based graph among

samples has the potential to improve inference of gene networks. It also emphasises an-

other well-known fact in the domain of signal processing—namely, that wavelet-based

filtering is more adaptable than low pass filtering.

2.3.2 Gene-networks Inference Improved by Graph-wavelet based

Denoising of Single-cell Expression Profiles

In single-cell expression profiles, noise and dropout are more apparent than in bulk

data. Technical issues prevent actual expression from being detected, which leads to

dropouts. Since low-pass filtering fills in the background signal at missing values and

suppresses high-frequency outlier signals, using it after graph Fourier transform seems

to be an obvious choice (101). However, a blind smoothing of a signal may not be

successful in the absence of knowledge regarding cell-type and cell-states. Therefore,

to analyse the gene-expression data set from the scRNA-seq profile, we used graph-

wavelet based filtering.

We started by using the Ziegenhain 2017 scRNA-seq data set of mouse embryonic

stem cells (mESCs). We utilised gene regulatory interactions documented by another

research team (98) in order to assess network inference objectively. Our method of pre-
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Figure 2.2: Gene-network inference is improved by graph-wavelet based gene-
expression denoising. (A) Network inference techniques’ performance util-
ising DREAM5 challenge’s bulk gene-expression data sets. Low pass fil-
tering based on the graph Fourier transform was compared to three distinct
methods of graph-wavelet coefficient thresholding. The Y-axis displays the
fold change in the receiver operating characteristic curve’s (ROC) area un-
der the curve (AUC) for the overlap of the anticipated network with the
ground truth set of interactions. The default value of 70% percentile was
applied for the hard threshold. (Mishra et. al. (247))

processing the mESC scRNA-seq data set using graph-wavelet technology increased the

efficiency of gene-network inference techniques by 8–10%. (Fig. 2.3). The gold-set of

interactions, however, is often limited and restricts a fair evaluation of performance in

gene-network inference. As a result, we also adopted a different strategy to evaluate our

methodology. We utilized a measure of network overlap that was derived from two sets

of scRNA-seq data that were of the same cell type but had distinct technical biases and

batch effects. The inferred networks from both data sets will exhibit substantial overlap

if they are more closely related to the real gene-interaction model. We utilized two

sets of mESC scRNA-seq data produced using two separate protocols for this purpose

(SMARTseq and Drop-seq).

We also employed a few additional imputation and denoising approaches that were

reported to filter and estimate the missing expression values in scRNA-seq profiles in

order to compare consistency and performance of our method. We tested 7 other algo-

rithms, including Graph-Fourier based filtering (101), MAGIC (104), scImpute (105),

DCA (106), SAVER (107), Randomly (108), and KNN-impute (109). The overlap of
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the projected network with the known interaction was improved more by graph-wavelet

based denoising than by the other 7 methods introduced for imputing and filtering

scRNA-seq profiles (Figure 2.3). The other 7 approaches did not significantly enhance

the AUC for overlap among the gene-network inferred by two sets of mESC data, sim-

ilar to the graph-wavelet based denoising (Fig. 2.3). Even though they were denoised

individually, graph wavelet-based filtering improved the overlap significantly across

networks estimated from various batches of the scRNA-seq profile of the mESC (Fig.

2.3B). Due to graph-wavelet based denoising, the overlap between projected gene net-

works increased by 80% using ϕs based edge weights (Fig. 2.3B). The improvement

in network overlap between the two batches suggests that graph-wavelet denoising dif-

fers from imputation approaches and has the potential to significantly enhance inferring

gene networks from expression data.

2.3.3 Age-based Regulatory Differences Shown by Improved Gene-

network Inference from Single-cell Profiles.

Improved overlap between inferred gene networks from two sets of expression data for

a particular cell type also suggests that predicted networks after denoising are more

similar to true gene-interaction patterns. Thus, by employing our denoising method be-

fore measuring the difference in predicted gene-networks owing to ageing or external

stimuli, we may be able to detect real changes in the regulatory pattern. We used the

scRNA-seq profile of young and old pancreatic cells, which had been filtered by our

method (111), to compare the gene networks identified for each group. According to

Martin et al., there were three age categories: young adult (21–22 years), aged (38–54

years), and juvenile (1 month–6 years). We independently used graph-wavelet based

denoising on three distinct sets of pancreatic cells. In other words, while denoising,

we did not mix cells from various age groups. A single-cell profile of pancreatic cells

that had been denoised using graph-wavelets performed better in terms of overlap with

protein-protein interactions (PPI) (Fig. 2.4A). Although we employed PPI to gauge re-

finement in gene-network inference, similar to Chen et al. (35), it’s possible that not all

gene interactions were taken into account. As a result, we also evaluated our technique

for scRNA-seq profiles of pancreatic cells using the criterion of an increase in over-

lap across projected networks for the same cell types. Denoising scRNA-seq profiles
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Figure 2.3: (A) A comparison of a few smoothing and imputing techniques with graph-
wavelet based denoising. Fold change in the AUC-ROC for the predicted
gene network’s overlap with a set of known interactions For mouse embry-
onic stem cells, the gene-networks were predicted after the imputation or
filtering of scRNA-seq profiles using various techniques. The interactions
in the gold set were taken from (103). (B) A comparison of the consistency
of the gene-interaction network prediction using denoising using graph
wavelet with other relevant smoothing and imputing techniques. Here, the
Phi (ϕs) score was used to forecast the gene regulatory network. To test
resilience against the batch effect, inferred networks from two scRNA-seq
profiles of mESC were compared. (C, D) Reliability in the gene-interaction
network prediction for mESC using two batches of scRNA-seq data. Re-
sults for Pearson correlation and a co-expression network based on ρ scores
are shown below. (Mishra et. al. (247))

significantly enhanced overlap in estimated gene networks between elderly (aged) and

young people’s pancreatic cells (Fig. 2.4B). In order to put the three age groups on a

level basis and measure the variance of expression across cells for each gene, we quan-

tile normalised the original and denoised expression matrix. The median variance of

gene expression was larger in elderly and young pancreatic alpha cells than in juvenile

cells. The variation level of genes across the three age groups, however, became almost

equal and had a comparable median value following graph-wavelet based denoising

(Fig. 2.4C). It should be noted that estimating the proportion of variations attributable

to transcriptional or technological noise is not simple.

Transcriptional bursting happens when a gene promoter cycles between a “on" and

a “off" state for varying amounts of time. Every time the promoter switches to a “on"
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state, transcription is produced in bursts. The frequency, duration, and amplitude of

bursts affect how much RNA is produced from a particular gene (144). This is a result

of a technique called transcriptional bursting. This noise is often described in terms of

the degree of gene expression variability seen within a population of cells.

However, single-cell expression patterns of elderly and young people seemed to

have less noise after graph-wavelet based denoising. Studying variations in the ef-

fect of genes has been done using differential centrality in the co-expression network.

However, noise in single-cell expression patterns might result in fictitious centrality

variations. As a result, we demonstrated the differential gene expression levels in the

network that was inferred from the scRNA-seq profiles of young and old cells. When

compared to the denoised version, the networks inferred from unfiltered expression

showed a much greater number of non-zero differential degree values (Fig. 2.4D).

Thus, denoising seems to lessen centrality differences, which may be caused by noise’s

randomness. The characteristics of the genes whose variance decreased the greatest as

a result of graph-wavelet based denoising were then examined. Surprisingly, we dis-

covered that diabetes mellitus and hyperinsulinism were substantially linked with the

top 500 genes with the larger drop in variance caused by denoising in elderly pancreatic

beta cells. Conversely, the top 500 genes in young pancreatic beta cells with the largest

variance decline showed either no or a negligible connection with diabetes (Fig. 2.4E).

Pancreatic alpha cells showed the same pattern. Such a finding suggests that ageing

increases the stochasticity of the level of gene expression connected with pancreatic

function, and denoising may aid in correctly revealing these genes interdependencies

with other genes.

2.3.4 Improved Gene-network Inference Utilized to Analyze Regu-

latory Variations Between Young and Aged Lung Cells.

It may be possible to learn more about the susceptibility for illness in the older pop-

ulation by examining cell-type-specific alterations in regulatory networks brought on

by ageing. Therefore, using scRNA-seq profiles of young and elderly mouse lung cells

reported by Kimmel et al. (97), we inferred gene networks for various cell types. Nu-

merous cell types, including bronchial epithelial and alveolar epithelial cells, fibroblast,

alveolar macrophages, endothelial, and other immune cells, make up the lower lung
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Figure 2.4: Performance and noise analysis for pancreatic single-cell RNA-seq pro-
file.(A) Performance as measured by the estimated network’s overlap with
the data set on protein-protein interactions. (B) A consistency assessment
of the anticipated network. It’s crucial to minimise noise-related discrepan-
cies when comparing two networks. The results for the correlation-based
co-expression network are shown below. (C) This figure illustrates the dif-
ferences in gene expression across single cells both before and after denois-
ing (filtering). Gene variation in a cell type was determined independently
for each of the three phases of aging (young, adult and old). Compared
to young alpha and beta cells, the variance (estimated noise) is larger in
older alpha and beta cells. However, after denoising, the gene variance in
each stage of ageing becomes equal. (D) Here, the impact of noise on the
calculated differential centrality is seen. Here is a comparison of the es-
timated gene network degrees for elderly and young pancreatic beta cells.
Denoised expression-based networks predict fewer non-zero differential de-
grees than unfiltered expression-based networks do. (E) Enriched panther
pathway terms for the top 500 genes in old and young pancreatic beta cells
that exhibited the significant reduction in variance after denoising. (Mishra
et. al. (247))

epithelia, where a few viruses seem to have the most damaging effects. There are two

main categories of alveolar epithelial cells, often known as pneumocytes. The perme-

ability barrier function of the alveolar membrane is significantly influenced by the type
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1 alveolar (AT1) epithelial cells for main gas exchange surface of the lung alveolus. The

synthesis of surfactants is a critical function of type 2 alveolar cells (AT2), which are

the ancestors of type 1 cells. Since AT2 cells, also known as pneumocytes type II, are a

popular target for many viruses, it’s critical to understand their regulation mechanisms,

given the significance of ageing.

The scRNA-seq profiles of cells obtained from old and young mice lung cell (97)

were filtered using our approach of denoising. Multiple cell types in the lungs of young

and old mouse showed increased robustness in the predicted gene network after graph

wavelet-based denoising (Fig. 2.5A). Increased consistency in inferred gene networks

from data sets reported by two distinct groups was also a result of graph-wavelet based

denoising (Fig. 2.5B). Despite being denoised individually, the gene networks pre-

dicted for old and young cells overlaped more, which suggests that true interactions

are more likely to be anticipated using our method. Therefore, there was less possibil-

ity that noise would overpower any gene-network-based differences between old and

young cells. We examined ageing based alterations in PageRank centrality (nodes i.e

Genes). Studying the change in PageRank centrality, which measures the "popularity"

of nodes, has the ability to reveal changes in the effect of genes. First, we used Enrichr

to conduct a gene-set enrichment analysis and estimated the differential PageRank of

genes in young and aged AT2 cells. Young AT2 cells contained enriched elements for

integrin signalling, 5HT2 type receptor-mediated signalling, the H1 histamine receptor-

mediated signalling pathway, VEGF, cytoskeleton control by Rho GTPase, and thy-

rotropin activating receptor signalling in the top 500 genes with higher PageRank (Fig.

2.5C). Since the expression of oxytocin and thyrotropin-activating hormone (TRH) re-

ceptors in AT2 cells was low, we disregarded the oxytocin and thyrotropin-activating

hormone-receptor-mediated signalling pathways as an artefact. Additionally, the gene-

set for the 5Ht2 type receptor-mediated signalling pathway included genes that were

associated with the phrases "oxytocin receptor-mediated signalling" and "thyrotropin

activating hormone-mediated signalling."

Most of the enriched pathways have evidence of activation in AT2 cells in the liter-

ature. The expression of several 5-HTR, including 5-Ht2, 5-Ht3, and 5-Ht4, as well as

their function in calcium ion mobilisation, have been demonstrated in alveolar epithelial

cells type II (AT2) cells. However, there were very few studies that demonstrated their

differential importance in old and young cells. Similar to this, Chen et al (113) demon-

51



strated that adult rat alveolar AT2 cells in primary culture secreted less pulmonary sur-

factant in the presence of a histamine 1 receptor antagonist. In AT2 cells, the VEGF

pathway is active, and it is well known that ageing affects VEGF-mediated angiogene-

sis in the lung. Additionally, it is known that VEGF-based angiogenesis declines with

ageing. (114).

In older mouse AT2 cells, we also conducted gene-set enrichment analysis for genes

with higher pageRank. The terms that appeared among the top 10 most enriched in both

the Kimmel et al. and Angelids et al. data sets for the top 500 genes with higher pageR-

ank in old AT2 cells were T cell activation, B cell activation, cholesterol biosynthesis

and FGF signalling pathway, angiogenesis, and cytoskeletal regulation by Rho GTPase

(Fig. 2.5D). In terms of the enrichment of pathway words for genes with greater pageR-

ank in older AT2 cells, the findings from Kimmel et al. and Angelids et al. data-sets

overlapped by 60 %. In general, our study revealed that inflammatory response genes

were more significant in older AT2 cells. The relevance of genes involved in choles-

terol production has increased along with the inflammatory response, which suggests

that ageing affects the quality of pulmonary surfactants generated by AT2. Al Saedy et

al. have shown that elevated cholesterol enhances surface activity deficiencies brought

on by lung surfactant degradation (115).

Additionally, we used Enrichr to analyse the genes that were differently expressed

in aged AT2 cells. The phrases cholesterol production, T cell and B cell activation path-

ways, angiogenesis, and inflammation mediated by chemokine and cytokine signalling

recurred for genes up-regulated in elderly AT2 cells compared to young. RAS path-

way, JAK/STAT signalling, and cytoskeletal signalling through Rho GTPase, however,

did not show up as enriched keywords for genes up-regulated in senescent AT2 cells

(Figure 2.6). However, it has been shown in the past that ageing alters the equilibrium

of the pulmonary renin-angiotensin system (RAS), which is linked to aggravated in-

flammation and increased lung damage (116). It is well established that the JAK/STAT

pathway contributes to the reduction in surfactant protein gene expression brought on

by oxidative stress in AT2 cells (Park 2012). Overall, our findings reveal that although

age-related changes in the expression of genes implicated in key pathways may not be

statistically significant, these genes regulatory effect may be.

We further investigated significance of transcription factors change in ageing AT2
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cells in order to get more understanding. We discovered numerous pertinent TFs in the

top 500 genes in the aged AT2 cells with a higher PageRank. To create a more restrictive

list, we only took into account the TFs that showed a non-zero value for the difference in

degree between the gene networks of old and young AT2 cells. With the Kimmel at el.

data set, we discovered 46 TFs with a change in PageRank and degree related to ageing

for AT2 cells (Fig. 2.5E). The findings of the pathway enrichment were consistent with

changes in the centrality (PageRank and degree) of the TFs with ageing. In AT2 cells,

RAS signalling is known to stabilise some proteins, such as Etv5, which has a greater

degree and PageRank in aged cells (118). Inflammation in the lung’s alveolar cells is

known to be regulated by another TF Jun (c-jun), which has a larger effect on aged AT2

cells (119). In aged AT2 cells, we also discovered that Etv5 and Jund were co-expressed

(Figure 2.7). It is known that Jund participates in cytokine-mediated inflammation, and

its role tends to grow in aged AT2 cells. Stat4 shown a greater degree of PageRank in

the old AT2 among the TFs Stats 1-4 that are involved in JAK/STAT signalling. Older

AT2 cells also seem to be more affected by androgen receptor (Ar) (Fig. 2.5E). It has

been shown that androgen receptors are expressed in AT2 cells, though there may be

aging-related variations in how they regulate cells (120).

A comparable investigation of the interstitial macrophages (IMs) in the lungs was

also carried out, and we discovered literature supporting the activation of enriched path-

ways. As both seem to have greater pro-inflammatory response pathways, such as T

cell activation and JAK/STAT signalling, the gene-set enrichment output for significant

genes in older IMs was somewhat comparable to the findings from AT2 cells. Ageing

in IMs, in contrast to AT2 cells, seems to promote glycolysis and the pentose phos-

phate pathway. In the past, Viola et al. (121) showed that higher glycolysis and pentose

phosphate pathway activity levels were implicated in the pro-inflammatory response in

macrophages. According to our findings, the RAS pathway was not substantially en-

riched for genes that are more important in aged macrophages. These findings suggest

that the pro-inflammatory mechanisms that become active with age may differ amongst

various lung cell types.
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Figure 2.5: Improved regulatory inferences from single-cell transcriptome pre-
processing of ageing lung cells using graph-wavelet (A) Reliability of net-
works predicted using the scRNA-seq profiles of young and elderly lung
cells from Kimmel et al. . This figure show the coverage of the top 10,000
edges in young cells in the network inferred from old cells. After graph-
wavelet based filtering, the estimated networks for old and young cells with
the same type seem to have more overlap. The term "Raw" here denotes that
the unfiltered scRNA-seq profiles were used to infer both networks (for old
and young). Whereas the same result from the filtered scRNA-seq profile is
shown. Utilizing correlation-based co-expression, networks were inferred.
(B) The network overlap inferred from two distinct data sets, each with
their unique batch effect, is shown. The X-axis displays the number of
edges in the network inferred using the data set from Angelidis et al (GEO
Id: GSE124872). The percentage of the top 10,000 edges in the network
calculated using the Kimmel et al. data set is shown on the Y-axis. (C) The
top 500 genes with the 10 most enriched Panther pathways have greater
PageRank in young AT2 cells than in elderly AT2 cells. (D) The top 1000
genes with the 10 most enriched panther pathways had greater PageRank
in older AT2 cells than in younger ones. (E) Scatter plot showing the dif-
ference in transcription factor (TF) PageRank (old-young) computed using
networks predicted for old and young AT2 cells from the Kimmel et al.
data set. Only TFs having a differential degree that is not zero are shown.
(Mishra et. al. (247))
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Comparison of the Impact of COVID-19 Infection and Ageing on Lung

An emerging pattern in the present SARS-COV-2 pandemic is that elderly people are

more likely than younger people to have lung fibrosis and severity. We compared

our findings to the expression profiles of lung infected with SARS-COV-2 reported

by Blanco-Melo et al. (122) since our study demonstrated alterations in the effect of

genes in lung cells owing to ageing. The host cell surface receptor for SARS-COV-2

attachment and infection, ACE2, has recently been shown to be primarily expressed by

AT2 cells, according to (123). As a result, AT2 cells may be most significantly affected

by COVID infection. We discovered that genes with considerable upregulation in the

lung during SARS-COV-2 infection also had greater PageRank in the gene-network

predicted for older AT2 cells (Fig.2.8A). We also used all varieties of lung cells collec-

tively to perform the network inference procedure and calculate differential centrality

between old and young. For genes that were up-regulated in the lung of SARS-COV-2

patients, we used gene-set enrichment. The majority of the 7 PANTHER pathway key-

words were also enriched for genes with higher PageRank in aged lung cells in addition

to being enriched for genes up-regulated in SARS-COV-2 infected lung (combined).

In each of the two data sets utilised here, 6 out of 7 highly enriched panther pathways

for genes up-regulated in COVID-19 infected lung were also enriched for genes with

greater PageRank in older AT2 cells (5 in Angelids et al., 3 in Kimmel et al. data-based

results).

Seven genes have a notable enrichment for genes with higher pageRank in aged

AT2 cells among the top 10 enriched wikipathway keywords for genes up-regulated in

COVID infected lung. However, in elderly AT2 cells, the term type-II interferon sig-

nalling did not significantly enrich for genes with greater PageRank. We also looked at

the promoters of the genes that were up-regulated in the lungs of those with COVID

infection. The top two enriched motifs for the promoters of genes up-regulated in

COVID-infected lung belonged to the ETS and IRF families of transcription factors.

It is known that Etv5 is a constituent of the ETS group of TFs. Further investiga-

tion showed that COVID-infected lung has up-regulated expression of the majority of

the genes whose expression is positively linked with Etv5 in aged AT2 cells. In contrast,

COVID-infected lung’s mostly down-regulated genes that had a negative correlation

with Etv5 in aged AT2 cells. The Stat4 gene had a same pattern. The pattern was the
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Result with differential gene-expression 

A Top 500 upregulated genes on old AT2 cells in kimmel et al. data-set

B Top 500 upregulated in old At2 cells in Angeledis et al. data-set.

Figure 2.6: Panther pathway keywords were enriched for genes with substantially in-
creased differential expression (FDR < 0.1) in aged AT2 cells vs young
cells. The bar in grey indicates negligible enrichment (Pvalue < 0.05). Dif-
ferential expression analysis results do not include some of the phrases that
appear in PageRank-based results. RAS Pathway, JAK/STAT Signaling,
and Cytoskeletal Regulation by Rho GTPase are examples of phrases that
did not seem to be enriched for genes with greater expression in elderly AT2
cells. (Mishra et. al. (247))

inverse for the Erg gene, which had a higher pageRank in young AT2 cells. Positively

linked genes with Erg in aged AT2 cells exhibited greater down regulation in COVID-

infected lung compared to genes with negative association. This pattern suggests that

a few TFs, such as Etv5 and Stat4, with greater PageRank in aged AT2 cells, may play

a role in the positioning or activation of genes that become more expressed by COVID

infection.

2.4 Discussion

Single-cell expression profiles have a huge amount of potential for utilizing to infer

regulatory changes in pure primary cells caused by ageing and other factors. These

56



Interacting partners of JUN 
in old AT2 cell

Interacting partners of JUN 
in young AT2 cells

A B

Figure 2.7: In both old and young mouse At2 cells, Jun genes interact with other genes.
Ribosomal proteins make up the majority of Jun’s interaction partners. Ad-
ditionally, Etv5 and Jund seem to be dependent on c-JUN via co-expression.
(Mishra et. al. (247))

applications can include figuring out how a disorder develops or identifying signalling

pathways and master regulators as possible therapeutic targets. Therefore, to aid biolo-

gists in their work-flow for graph-theory based analysis of single-cell transcriptome, we

created GWNet to facilitate such investigations. By using a graph-wavelet based tech-

nique to decrease noise brought on by technological problems or cellular biochemical

stochasticity, GWNet enhances the inference of regulatory interaction among genes. By

comparing our filtering strategy to four benchmark data sets from the DREAM5 con-

sortium and a number of single-cell expression profiles, we were able to show an im-

provement in gene-network inference. We demonstrated how our strategy for filtering

gene-expression may aid gene-network inference approaches using 5 distinct methods

for estimating networks. Our comparisons of graph-wavelet with alternative imputa-

tion, smoothing, and filtering techniques revealed that graph-wavelet is more adaptable

to changes in the expression level of genes with shifting cellular surroundings. Thus,

a theoretically distinct method for pre-processing gene-expression profiles is graph-

wavelet based denoising.

There is a good amount of literature on using gene-networks inferred from bulk

gene-expression profiles to compare and measure differences in two groups of sam-

ples. However, using conventional techniques on single-cell transcriptome profiles

hasn’t given significant results. Even though each data set was filtered individually,
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Figure 2.8: Analysis of scRNAseq profile in SARS-COV-2-infected lungs (COVID).
(A) PageRank distribution of genes up-regulated in COVID-infected lung
(FDR < 0.05) (122). For networks that were computed using scRNA-seq
of both young and elderly AT2 cells, the PageRank is shown. For genes
that were downregulated (FDR0.05) in COVID-infected lung, PageRank
is shown in a similar fashion.(B) Top 10 Panther pathway genes that are
abundant in COVID-infected lung. In older AT2 cells, the phrases indi-
cated by an asterisk (*) likewise significantly enrich for higher pagerRank
genes. (C) Top 10 wiki pathway for genes that have higher expression in
COVID-infected lungs. In older AT2 cells, the phrases indicated by an aster-
isk (*) are likewise enriched (Pvalue0.05) for genes with higher pageRank.
(D) The top 3 known transcription factors (TF) motif enrichments in gene
promoters in COVID-infected lung. (E) Fold change in expression of genes
with positive and negative correlations to transcription factors in aged AT2
cells in lung with COVID infection. Two transcription factors (TFs) Etv5
and Stat4, which have increased PageRank in elderly AT2 cells, are shown.
The results for Erg, which had higher PageRank in young AT2 cells, are also
shown as a control. The majority of the genes whose expression correlated
positively with those of Etv5 and Stat4 in aged AT2 cells were also up-
regulated in COVID-infected lung. Erg, meanwhile, perceives the reverse
trend. In aged AT2, genes with positive association to Erg genes were more
down-regulated than those with negative correlation. Such findings imply
a potential role for transcription factors (TFs) whose impact (PageRank)
increases with age in either activating or posing the genes up-regulated in
COVID infection. (Mishra et. al. (247))
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our strategy seems to address this problem by boosting consistency and overlap across

gene-networks inferred using an expression from diverse sources (batches) for the same

cell type. After graph-wavelet based denoising of expression profiles, the inferred net-

work from independently processed data sets from various sources shows an increase

in overlap, suggesting that the estimated interactions among genes are approaching ac-

curate values. It is more reliable to compare a regulatory pattern between two groups

of cells when network prediction is closer to actual values.

Furthermore, Chow and Chen (124) recently shown that SARS-COV-2 infection is

a significant inducer or suppressor of the expression of age-associated genes discovered

utilising bulk lung expression profiles. They did not, however, analyse data using a

systems-level perspective. Our results showed that genes with stronger influence on

ageing AT2 cells and genes up-regulated in COVID-infected lung are enriched for the

RAS and JAK/STAT pathways. RAS signalling is thought to be crucial for AT2 cell

self-renewal (118). Similar to this, Yew et al (125) notes that the JAK/STAT pathway is

known to be activated in the lung following damage and affect surfactant quality (214).

When we employed our method on murine aging-lung scRNA-seq profiles, our

analysis offered a crucial insight i.e. elderly AT2 cells may be predisposed to have

more RAS and JAK/STAT signalling because of their regulatory patterns and master-

regulators. The androgen receptor (AR), which has been linked to male pattern bald-

ness and a greater risk of men contracting COVID, had a higher pageRank and degree

in elderly AT2 cells (126). However, further research is required to link the severity

of COVID infection brought on by ageing and AR. Contrarily, we see a strong effect

of genes implicated in Histamine H1 receptor-mediated signalling in young AT2 cells,

which is known to control allergy responses in the lungs (127). Our kind of analysis

also has the advantage of highlighting a few particular treatment candidates for future

research. In therapeutic trials for pulmonary fibrosis, a kinase named JNK that binds to

and phosphorylates c-Jun (128) is being examined. According to Montepoli et. al (129),

androgen restriction treatment has been found to provide a limited degree of protection

against SARS-COV-2 infection. In keeping with this pattern, our study suggests that

Etv5 may potentially be a potential therapeutic target to lessen the impact of age-related

RAS pathway activation in the lung.

However, the method suffers some limitations as well. The search for an optimal
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threshold for denoising linear signals and images using wavelet coefficients has been

an active area of research. In our study, we examined both soft and hard thresholding

approaches and investigated the minimum description length principle (MDL) which is

an information-theoretic criterion. In this work, we predominantly utilized hard thresh-

olding for most of the datasets. Soft thresholding of Graph-wavelet coefficients requires

further refinement and is still an ongoing research topic. Additionally, for determining

the hard threshold value, we explored the best overlap between predicted gene-network

and protein-protein interaction (PPI) data. This approach offers a robust way to estab-

lish the threshold while identifying the frequency cutoff. However, this approach can be

automated for finding optimal threshold which works best for eahc signal individually.

Secondly, validating the top predicted gene-gene interactions presents challenges

due to the wide variation of regulatory mechanisms across different cell types or tissues.

Consequently, establishing a ground truth for each set of predicted interactions becomes

laborious and complex. Therefore, validating these interactions remains a difficult task,

given the diverse nature of regulatory mechanisms across various biological contexts.
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CHAPTER 3

Graph-based Integration of Large Single-cell

Epigenome Profiles with Different Batch Effects

3.1 Background

Integration of several disparate modalities such as transcriptional and epigenetic pro-

files or integration across species or batch effect, is a crucial topic that poses consid-

erable technical challenges. To integrate an ATACseq-based panel of measurements,

several graph-based algorithms, including CONOS (clustering on network of samples)

(152), employ a unified graph representation approach. These methods subsequently

demonstrate the integration between ATAC-seq and RNA-seq datasets. However, they

demonstrate that, despite the fact that such integration may be highly successful, it relies

majorly on the data’s resolution and the capability to establish a meaningful relationship

between gene expression and other modalities.

Other reported methods that extract latent properties using generative frameworks

based on deep learning or canonical correlation are unable to capture cell-type speci-

ficity across batches and species. A search engine methodology, on the other hand,

may assist in processing each individual cell independently of the others, which has the

huge advantage of retaining each cell’s unique information and simultaneously making

use of datasets from other research. Single-cell profiles may be searched using tech-

niques like scfind (145) to find housekeeping and cell-type specific genes. A few other

methods (146), (147) (148) (149) have combined single-cell epigenome with single-cell

expression profiles, but they did not use the strategy of looking through a large pool of

reference cells. Seurat (150), LIGER (151), and Conos (152) are other tools that have

been suggested for integrating single-cell open-chromatin profiles.

The majority of integrative techniques, according to recent benchmarking research

by (153), performed poorly for batch correction when integration of scATACseq profiles

was performed. The study assessed more than 30 such single-cell integration methods.



Only 27 % of Leucken et al. integration’s outputs for scATACseq profiles outperformed

the best-unintegrated findings, revealing a peculiarity about such integrative approaches

(153). Due to this, there is a lack of a reliable mapping method that can enhance the de-

velopment of search engines intended to accurately match query single-cell epigenome

profiles to a large number of single-cell profiles regardless of batch effect, despite the

availability of large single-cell epigenome atlases (148) (149) (150) and methods for

their low-dimensional visualisation.

We develop a Graph based methodology for joint embedding of cells from various

batches, species, and peak-lists that includes a novel approach for computing the dis-

tance between cells by projecting them onto a common reference pool of dataset. The

proposed technique resolves the issue of employing reference cell atlases for extremely

effective graph-based joint-embedding of query single-cell open-chromatin profiles re-

gardless of batch effect, species, and peak-list. This aids in eliminating the batch ef-

fect and learning a reliable neighbourhood of the cells using knowledge-based learn-

ing of edge weights among cells. The approach also offers an interactive visualisa-

tion of the joint embedding’s KNN-based graph. ScEpiSearch also incorporates com-

putational techniques for matching a substantial pool of reference single-cell expres-

sion profiles with the queried single-cell open-chromatin profiles. scEpiSearch is also

able to handle non-identical peak-lists of single-cell epigenome profiles from diverse

research groups and determine the statistical significance of the query’s match with

single-cell expression profiles. Instead of using gene activity (154) as a proxy for cell-

type specificity, scEpiSearch calculates gene-enrichment score. In order to get a deeper

understanding of regulatory behaviours via their epigenomes in pathogenic profiles, we

also use scEpiSearch on single cell K562 cells and capture heterogeneity, lineage bias,

and stress-response across single-cells.

Additionally, single-cell epigenome profiling allows to recognize poised and active

cis-regulatory sites as well as the fundamental mechanisms governing genome regula-

tion in a variety of in vivo and in vitro cell types and tissues. Single-cell epigenome

profiling is increasingly being adapted for large scale atlas datasets and provides ac-

curate insights into underlying cell state regulation due to its various advantages like

lack of RNA degradation, digital readout of chromatin status and a better understand-

ing of heterogeneity in cellular responses (155) (156). So handling the complexities of

searching for and meta-analyzing single-cell epigenome profiles is crucial.
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Such tasks can be handled by a search engine, which can also show distinct phases

of cancer cell’s de-differentiation and anticipate a cell’s behaviour in an unknown con-

dition. As the approach makes use of the additional information found in the reference

pool of cells in various cellular states, such an approach has the ability to result in

improved annotation and regulatory inference from query single-cell open-chromatin

profiles. Lahnemann et al. (157) identified mapping a single-cell to reference atlas as

one of the eleven great challenges in single-cell data science and emphasised the poten-

tial and pitfalls of such techniques. Another major problem they identified is combining

single-cell data from many samples and trials. Several (145) groups (146) (147) have

made an attempt to develop a search engine for single-cell expression profiles. They do

not, however, address the problems posed by similar obstacles for single-cell epigenome

datasets.

Single-cell open-chromatin profiles provide unique challenges compared to the single-

cell transcriptome. Currently, single-cell epigenome profiling primarily aims to capture

open chromatin regions(preferentially at promoters, enhancers, etc.) using MNase-seq

(Micrococcal Nuclease digestion with deep sequencing) (159), ATAC-seq (Assay for

Transposase-Accessible Chromatin using sequencing), DNase-seq (DNase I hypersen-

sitive site sequencing) (158), or ATAC-seq (154) When compared to an equivalent

matrix for a single-cell expression dataset, the read-count matrices constructed using

single-cell open-chromatin contain more genomic loci (peaks) as features. The read-

count matrices of single-cell open chromatin profiles generated by several research

teams often include genomic locations (peaks) that are distinct from one another. There-

fore, single-cell open-chromatin profiles cannot be directly analysed using the current

algorithms and search techniques established for single-cell expression profiles.

Hence, in our second contribution, we introduced a unique graph-based embed-

ding method of scATAC-seq and scRNAseq. This method incorporates a method which

computes similarity among cells and provides a graph based visualization enabling

researchers to gain insights into the underlying biological processes. It also handles

single-cell ATAC-seq profiles from diverse sources, irrespective of the species of origin

or batch effects. By overcoming species and batch effects, our method enables the inves-

tigation of diverse datasets and facilitates the discovery of important regulatory patterns

and cellular behaviors. This contribution contributes to advancing our understanding

of complex biological systems and has potential implications for the development of
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targeted therapies and treatments in cancer research.

3.2 Material and Methods

3.2.1 Pre-processing Reference Profiles

Using the same set of genes, datasets from several studies on human/mouse cells are

integrated. Similar to this, single-cell expression profiles from mouse samples were

convened together. The quantile-normalized of single-cell RNA-seq based expression

(FPKM) profiles were performed as pre-processing step(160). The mean expression

of all reference cells for each gene is then computed. The expression of a gene is

normalised for each reference cell by its average expression across all cells. Thus, we

change the relative expression of genes for each cell to their cell-specific expression.

Instead of using any dimension reduction or latent representation directly, we em-

ployed cell-type annotation to cluster single-cell expression data. Cell-type annotations

were previously available for a number of human and mouse scRNA-seq datasets. We

conducted annotation for scRNA-seq data without cell-type information using match-

score2 (165). The KNN-based approach was used to identify sub-clusters of cells in

each main cluster of cells created using cell-type annotation. As their representative,

the vectors expressing the average scores of gene expression in cells that form a sub-

cluster were chosen. We created nearly 30000 representative expression vectors for 3

million or more human and mouse scRNA-seq profiles. Hence, the representative mean

vectors became less sparse as a result of this technique, and it also sped up the hierarchi-

cal search for the expression profile that matches a given query. We used Python in both

the standalone and web server implementations of scEpiSearch. The scEpiSearch archi-

tecture is flexible enough to accommodate extremely large reference single cell profiles.

Approximately 3.3 million cells altogether, including 1288653 human single cells and

2141797 mouse single cells (scRNAseq), make up the current version of scEpiSearch.
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3.2.2 Single-cell ATACseq Pre-processing to be Projected on Refer-

ence RNA-seq Profiles

Initially, the query is pre-processed by dividing each peak’s scATACseq read count by

its global accessibility score, thus, revealing cell type-specific peaks (mainly enhancers)

in query cells (equation (3.1)).

tij = ri,j/(ai + ϵ) (3.1)

The rij is the read count with ith peak in jth single cell which is normalized by its global

accessibility score ai with pseudo-count ϵ added to it.

It identifies genes nearest to peaks in the scATACseq query profile. It initially

makes advantage of the pre-existing table of genes proximal to the global accessibil-

ity peak list in order to efficiently identify proximal genes. Every query scATACseq

profile has overlaps between its peaks and sites on the global accessibility list, accord-

ing to scEpiSearch. Our evaluation also helped determine that for 65 to 80 percent of

query peaks, scEpiSearch successfully achieved overlap with the global accessibility

peak list. ScEpisearch optimizes the proximal genes from pre-existing tables for peaks

that coincide with regions in the global accessibility list. If accurate mode is selected,

then it separately searches for proximal genes individually for peaks that did not have

an overlap with the global accessibility peak list. As a result, for the majority of the

peaks, scEpiSearch does not repeat the process of seeking proximal genes.

scEpiSearch calculates gene enrichment (GE) scores for each query cell by selecting

genes proximal to peaks with higher normalised read-count as foreground and leaving

genes nearby to all other peaks as background. Fischer’s exact test determines gene-

enrichment scores for each query cell using foreground and background genes, as shown

in equation (3.2).

min(n,Km)∑
i=km

(
Km

i

) (
N−Km

n−i

)(
N
n

) (3.2)

Here, Km is the frequency with which a gene m occurs in the background set, and

N denotes the total number of times that all genes in the background have been ob-

served. The number of times the gene m occurs in the foreground is km. The total

65



number of all foreground genes is n at the same moment. As a result, the p-values of

the genes around numerous cell type-specific sites—mostly enhancers—are lower (and

hence more substantial). It is to be noted that this is the gene-enrichment calculation

and that it is distinct from the gene-set enrichment carried out by other tools (162) (163)

3.2.3 Finding Matches for Query Cells in Reference Expression Pro-

files

The methodology for searching the scATACseq profile for a similar expression profile

is based on the known evidence that genes close to enhancers have significant cell-

type-specific expression. To highlight genes commonly detected proximal to putative

enhancers or cell-type-specific loci, scEpiSearch first calculates gene enrichment scores

of the query cells. Using representative expression vectors for clusters of scRNA-seq

cells, ScEpiSearch calculates MExTEG (Median expression of top enriched genes) so

that for query cell q the MExTEG value of query in reference cell m is

MExTEGq(m) = median(Exprm(top enriched genes in q)) (3.3)

Furthermore, it should be emphasized that we employ cell-type-specific expression

rather than the raw transcripts (FPKM or TPM) of cells or the representative vectors of

cells. By dividing a gene’s expression in a cell by the median expression score of

the same gene across all cells, the cell-type specific expression of a gene is obtained.

Therefore, MExTEG reflects the median score of cell-type-specific expression of the

top enriched genes for query scATACseq profile for a reference scRNA-seq profile.

The MExTEG value is initially computed using an expression vector for the cluster of

reference scRNA-seq profiles due to the hierarchical nature of the search for matching

expression profiles. Another point to be noted is that for each cluster, the representative

expression vector comprises the mean of the cell type specific gene expression profiles

for each cell in the cluster.

Moreover, using the null model of representative expression vectors, the MExTEG

for query cells is transformed to a P-value. The top N clusters with the lowest MEx-

TEG p-value are then selected. Additionally, MExTEG is once again calculated for
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the query cells using a cell-type-specific expression profile of single-cells found in the

top N chosen clusters. The top 100 reference cells with highest MExTEG values are

selected. Using a null model, the MExTEG is transformed to a p-value score for 100

reference cells with higher MExTEG for the query. The null model described below is

used to determine the p-value for these matches. A new P-value is computed as the final

refinement score based on rank computed using P-value-ranks. Below are the specifics

of how two different P-values were calculated.

Statistical Approach to Calculate the Significance of Match of Query in Reference

We used a few randomly chosen normalised scATACseq profiles (normalized by global

accessibility scores of peaks) to create a null model for our search process. The top

1000 genes with the highest gene-enrichment score were retrieved for the 500 cells

that were randomly chosen. The highest enriched gene lists of two cells in a pair were

combined after 500 randomly chosen cells were divided into pairs. 1000 genes were

chosen at random from the combined list of 2000 genes for each pair of cells. As a

result, we created thousand query vectors with 1,000 genes each that were used as false

query cells. Using the reference cell’s cell-type specific expression profiles,MExTEG

is computed for each cell in the set of false queries to produce a matrix with the dimen-

sions 1000XNoof referencesingle−cells. We determine the p-value of similarity for

a reference cell as the proportion of null model cells (false queries) that have greater val-

ues of MExTEG than the query cell. Consequently, the P-value of the match between

the query q and the reference expression profile of cell m is determined as follows.

Pvalq(m) =
Number of Null model cells with MExTEG(m) > MExTEGq(m)

1000
(3.4)

Rank-based statistical method to improve match significance: The rank of matches

owing to P-values computed by MExTEG is further adjusted or refined using scEpiSearch

in order to decrease bias in the search for matching expression cells. We retain the pre-

calculated rank of each reference cell for all cells in the null model for this reason (false

queries explained above). A perspective of bias in the data is provided by this rank

computation, which also counts the instances in which a reference cell is a top hit for

cells in the null model. As a result, we determine a new P-value after computing the
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match’s P-value and ranking the reference cell for the query cell. The proportion of

cells in the null model for which the identical reference cell has a better rank than the

query cell is used to determine the new P-value of the match between a reference cell

and a query cell.

3.2.4 Finding a Match in Mouse Reference Expression Profiles for

Better Graph Learning

Additionally, the mouse reference scRNA-seq dataset and the human cell scATACseq

profile may be matched using scEpiSearch. It is based on the idea that because the same

markers are often used to distinguish distinct cell types in both mice and humans, it is

extremely probable that the cell-type-specific expression of genes in the same cell type

from two species would be comparable. Because of this, scEpiSearch employs a strat-

egy that emphasises enriched genes close to foreground peaks (potentially enhancers)

with a high degree of cell-type specificity.

Therefore, it is theoretically conceivable to query the scATACseq profiles of human

cells and discover the appropriate matching mouse reference expression profiles using

our technique. In order to query the scATACseq profile of human cells, scEpSearch

translates read counts to gene enrichment scores. It computes MExTEG utilising the

reference single-cell expression profile of mouse cells for the human cell query. P-

value is obtained using a precalculated MExTEG value for a null model created using

human scATACseq profiles and a mouse cell reference expression dataset. scEpiSearch

creates a new P-value for the match with a reference mouse expression vector based on

its precalculated rankings for the null model created from human cells after determining

the rank of reference mouse cells for the query human scATACseq profile based on

MExTEG based p-value.

3.2.5 Graph Based Embedding of Multiple Query Single-cell AT-

ACseq Profile

In order to manage input multiple query read-count matrices with various peak-lists

from both human and mouse cells and achieve their co-embedding, we developed a
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distinct approach that is incorporated in scEpiSearch. For this reason, scEpiSearch in-

dependently calculates gene enrichment scores for each batch of the query scATACseq

profiles with various peaks/species. Different scATACseq read counts are integrated

into the same feature set since enrichment scores are computed for all genes in the same

list. As a result, scEpiSearch combines GE scores from several read-count matrices into

a single matrix. The batch effect has an impact on scEpiSearch when GE scores are di-

rectly used, hence it does not directly employ GE for embedding. The method outlined

above is used to find matches for queries in mouse single-cell expression profiles after

GE scores from several read-count matrices are combined.

The mouse null model is used to mouse query cells. Similar to how cross-species

search was described above, scEpiSearch employs a null model created using human

cells for human query cells.

Calculation of Distance between query cells: For smart Graph-based embedding

of queries, scEpiSearch creates a network with each node representing a query cell after

identifying matched mouse cells for each and every query cell. It creates an edge with

a weight equal to the number of top matching reference cells in the same cluster that

links two query cells (nodes). Take the query cell X as an example, where 4 of the

top 10 matched mouse expression profiles are members of the sub-cluster A. The edge

connecting query cells X and Y would have a weight of 4 if another query cell Y has 5

out of the top 10 matching expression profiles from the same sub-cluster.

Graph Visualization of Query cells Embedding: The associations of a node with

just K neighbours are retained after computing all edge weights. In order to get the

2D coordinates of nodes, Fruchterman and Reingold technique is used after creating a

KNN-based network with edge weights. Force-directed graph drawing is accomplished

using the Fruchterman and Reingold algorithm (164). When creating a KNN-based

graph, we choose an appropriate value for K (number of neighbours) in order to use the

Fruchterman and Reingold technique to prevent overlap between different cells. The

’networkX’ library (draw network nodes function) is used to visualise the network

after calculating the 2D coordinate of the nodes (representing query cells) (165). It

further conducts spectral clustering (166) to aid users by locating cell clusters using a

KNN-based network of queries.

Fruchterman and Reingold algorithm: The algorithm considers two principles
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as basis for the node positioning i.e 1) Vertices connected by an edge should be drawn

near each other. and 2) Vertices should not be drawn too close to each other.

It calculates k, the optimal distance between vertices as

k = C

√
area

No of vertices
(3.5)

where C is constant.

Spectral Clustering to assign clusters to cells in embedded graph The founda-

tions of spectral clustering may be found in graph theory, which uses the method to

find communities of nodes in a network based on the connections that connect them.

The information used in spectral clustering comes from the eigenvalues (spectrum) of

unique matrices created from the graph or data collection.

Spectral clustering employs clustering on a projection of the normalised Laplacian.

When a cluster’s centre and spread cannot adequately describe the whole cluster, as

is the case when clusters are nested circles on a 2D plane, or more broadly when a

cluster’s structure is substantially non-convex, spectral clustering is particularly helpful

in practice.

This technique may be used to discover normalised graph cuts if the affinity matrix

is the graph’s adjacency matrix (246). A kernel function like the Gaussian (also known

as RBF) kernel with Euclidean distance is used to generate an affinity matrix, or the user

may give their own pre-computed affinity matrix. We provide our own created affinity

matrix to ’sklearn’ function.

Calculation of Clustering Purity

We used ’DBSCAN’ to cluster the 2D coordinates of the cells in order to compare the

2D embedding from various approaches (Figure 3.4). For instance, n clusters would

be 2 if human and mouse B cell and T cell types were present. To assess if the em-

bedding was done correctly, we employed two metrics. The adjusted Rand index and

Normalized mutual information are the metrics used for evaluation.

Adjusted Rand index (ARI) : Let, T = [t + 1, ..., tP ] represents the true p classes

consisting of no of observations as ni in class ti and V = [v1, ..., vK ] are the clustering
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result with k clusters having nj number of observations in cluster vj . ARI is determined

by:

∑p
i=1

∑k
j=1

(nij

2

)
− [
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j=1 (ni2)

∑k
j=1 (nj2)]/

(
n
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where,

n =
k∑

j=1

nj =

p∑
i=1

ni (3.7)

Normalized mutual information (NMI): Normalized Mutual Information (NMI),

the second metric we used, is computed as

2I(U, V )

H(U) +H(V )
(3.8)

Here, I(U, V ) is mutual information and H(U) and H(V ) are the entropies of U

and V are cluster labels. We utilised the adjusted_rand_score() and normalized_ mu-

tual_info_score() methods from ’sklearn’ in the python programming language to cal-

culate the ARI and NMI.

Comparison of Embedding with Other Tools

Other techniques for scATACseq profile analysis do not look through reference datasets

to seek comparable cells. Few researchers have, however, suggested utilising their tech-

niques to integrate several scATACseq profiles from diverse sources into a single visu-

alisation display. We downloaded these tools and evaluated how well they performed

when we tried to incorporate scATACseq profiles from various sources. The sources

they utilised and the criteria they used are described below.

• SCALE: The URL for SCALE (190) is 1. The following settings were used to ex-
ecute it: batchsize = 500, seed = 43, minpeaks = 400, lr = 0.0002, and maxiter
= 500. We merged the results of each query’s latent space representation and then
submitted them to tSNE to get the final visualization.

• SCVI: The URL for SCVI (189) is 2. The model learnt the latent representation
of the query cells after receiving the pooled gene enrichment scores of all queries

1https://github.com/jsxlei/SCALE
2https://github.com/YosefLab/scvi-tools
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which we generated. To get a scatter graph, we further passed these latent at-
tributes to tSNE.

• SCANORAMA: The URL for SCANORAMA (187) is 3. In order to get inte-
grated form for cells for SCANORAMA as well, we aggregated the gene enrich-
ment scores of all queries supplied to the scanorama.correct() method.

• MINT: By installing the mixOmics library in R, accessible at 4, MINT (188) was
used. Gene enrichment scores of the query cells were supplied to the function
mint.plsda() in MINT, and their function plotIndiv was used to create the plot.

3.2.6 Evaluation of Co-Embedding of Single-cell ATACseq and RNAseq

Profiles Across Species

Despite the fact that integrative techniques for scATACseq yielded to unsatisfactory

findings reported by Leucken et al. reported (171). We compared our method with three

distinct approaches (Seurat, LIGER, and Conos) since we wanted to be certain and

compare them to scEpiSearch. The parameters utilised by various techniques are listed

below.

• Seurat: Details on Seurat 3.2 (150) and the ATACseq integration vignette.html
can be found at 5. The Seurat object was constructed after the RNA-seq refer-
ence count data and ATAC-seq queries were loaded into R. On the RNA-seq data,
further conventional analyses were carried out (normalization, finding variable
genes, scaling data and running PCA, tSNE). Separate ATAC-seq data analysis
is done, and gene annotation data is added to the Seurat object. There were
anchors determined between the two modalities. Canonical correlation analy-
sis uses the gene activity scores and scRNA-seq gene expression quantifications
with all the genes that were highly variable in the RNA-seq dataset (parame-
ters being reduction = "cca", k.anchor = 5, k.filter = 80). Utilizing the option
weight.reduction = human.atac[[“lsi”]], the label transfer was accomplished.
Finally, using pre-calculated anchors, RNA-seq is imputed into the scATACseq
for visualisation, and the datasets are then combined with parameters using the
default settings. It is to be noted that human version of the single-cell ATACseq
read-count matrix was in hg19 format while the mouse version used the mm9
format.

• LIGER: Linked Inference of Genomic Experimental Relationships was used with
details available at 6 ATAC-seq data was transformed into gene counts so that

3https://github.com/brianhie/scanorama
4http://www.bioconductor.org/packages/release/bioc/html/mixOmics.

html
5satijalab.org/Seurat/archive/v3.2
6(https://github.com/welch-lab/liger/blob/master/vignettes/

Integrating_scRNA_and_scATAC_data.html)
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they could be compared to RNA − seq which were obtained by counting to-
tal number of ATAC-seq reads within gene and promoter region (3 kb upstream)
of each gene in each cell. Then after loading read counts in R, LIGER object
was created with createLiger function. Both datasets are normalized using nor-
malize function. Highly variable genes are identified and combined from both
datasets. The parameter datasets.use was set to 2 such that genes could be se-
lected from RNA-seq dataset in function selectGenes. Joint matrix factorization
(iNMF) was performed on the normalized and scaled RNA and ATAC data using
optimizeALS function with value of k being 20. Finally to fully integrate datasets
quantile normalization was performed through quantilenorm function with value
of knnk = 5. runUMAP function was used to get coordinates for each cell in in-
tegrated visualization with parameters being distance = ‘cosine′, nneighbors =
30,mindist = 0.3. Notice that here we used the hg19 version of our read-
count/peakfiles.

• Conos: The github repository located at 7 was used to install the Conos (152) R
package. The tutorial’s instructions for integrating RNA and ATAC-seq 8 were
abided to while implementing. For ATAC-seq, the gene activity scores pro-
duced by Seurat v3.2 were utilised. The pagoda2 package was used for the ba-
sicP2proc preprocessing phase. With the following parameters: k=15, k.self=5,
k.self.weigh=0.01, ncomps=30, and n.odgenes=5e3, the buildGraph function was
also utilised. The embedGraph() method was used to produce the embedding,
and largeVis was used to get the coordinates.

• ScEpiSearch: Reference dataset was prepard as per the steps mentioned in meth-
ods section. With prepared reference mouse RNA-seq datasets, a cross-species
search was conducted for ATAC-seq query datasets. The top three matches were
chosen and filtered using a 0.05 p-value threshold. The average of the coordinates
of the top three matches in the reference dataset was used to generate the coor-
dinates for each query cell. R is then used to plot the combined visualisation of
the reference and ATAC-seq queries. We utilised mouse cell atlas (MCA) dataset
tSNE coordinates of reference cells, which were supplied by Chawla et al., for
the majority of the figures. To ensure that our results could be reproduced by
other researchers, we also conducted tSNE-based dimension reduction for refer-
ence cells. For example, we calculated new tSNE coordinates for the reference
cells in Figure 3.3B.

Silhouette Coefficient Calculation

Another measure to evaluate clustering in order to calculate how close a data point

is to its own anticipated cluster when compared to other clusters is measured by the

silhouette index or coefficient. The mean intra-cluster distance (a) and the mean nearest-

cluster distance (b) are used to determine the silhouette coefficient for each sample, as

7https://github.com/kharchenkolab/conos#basics-of-using-conos
8http://pklab.med.harvard.edu/peterk/conos/atacrna/example.html
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Si =
b(i)− a(i)

max(a(i), b(i))
(3.9)

Where b(i) is the mean distance between the ith sample and all samples in the near-

est cluster (other than the cluster of the ith sample), and a(i) is the average distance

between the ith sample and all other samples in the same cluster. We used the cluster

package in R 9 to calculate the silhouette coefficient. For this, we considered queries

and their related cell types from a reference in one class, and the remaining cell types

were given their corresponding clusters or cell labels. For instance, if the reference and

query cells were both macrophage cells, the reference and query cells were placed in

the same cluster, while the other cell types were given their own cluster labels. We took

into account the tSNE coordinates of the cells from the TSNE plot of each approach

when determining the distance between cells.

3.2.7 Dataset Sources

The GEO database provides the scATAC-seq mouse dataset that was used to create the

query sets (GSE111586). The GEO ids for the HL60 and K562 cell lines scATACseq

profiles, which were utilised to examine the lineage, are GSE109828 and GSE65360,

respectively.

We used the following dataset for embedding case studies: Human Neuron (GSE

97942), cells from Mouse Forebrain (GSE100033), Human HSC (GSE96769), Mouse

HSC (GSE111586), Human Myoblast (GSE109828), Human GM12878 (GSE109828),

Mouse B-cell (GSE111586), and Human GM12878 (GSE68103), Human Neuron (GSE

97942) (GSE111586)

We carried out the embedding of scATACseq profiles (Figure 3.8) of cells from two

patients with multiple phenotype acute leukaemia (MPAL), peripheral blood mononu-

clear cells from healthy people (GEO id: GSE139369), progenitors of hematopoietic

cells (GEO id: GSE96772), T cells (GEO id: GSE107817), and B cells (GEO (GEO

id: GSE109828). We employed the scATACseq profile of progenitors of hematopoi-

etic cells in blood, which included the progenitors MEP (megakaryocytic-erythroid),

9https://www.rdocumentation.org/packages/cluster/versions/2.1.2/
topics/silhouette)
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CMP (common myeloid), CLP (common lymphoid), GMP (granulocyte-monocyte),

and MCP (mast cell progenitor).

Figure 3.1: An illustration of the proposed method in scEpiSearch for improved regu-
latory state inference and annotation of query scATACseq utilising a large
pool of single-cell epigenome data sets. It consists of the following steps:
Expression Reference Data Preparation, Query Processing, Mapping and
Projection Based Cross-Species and Cross-batch Query embedding. The
cross-species and cross-batch query embedding provides co-embedding of
various open-chromatin profiles utilising existing reference single-cell pro-
files, regardless of variation in peak-list in read-count matrix, batch effect,
and species. (Mishra et. al. (248))

3.3 Results

The reference set of sc-expression profiles undergo initial preprocessing using scEpi

Search. In practice, it also maintains a reference collection of single-cell transcriptomes

and epigenomes that it has analysed (Figure 3.1). Nearly 3.3 million single-cell expres-

sion profiles from both human and mouse cell lines and over 8,00,000 cell lines make up

the existing reference pool of scEpiSearch. The single-cell expression and epigenome

profiles in the reference pool are handled by scEpiSearch in a clustered format to enable
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Figure 3.2: A) Evaluation of scEpisearch in comparison to 3 other methods based on
the retrieved gene scores correlation for matching query scATACseq to a
collection of reference single-cell scRNAseq. 10,000 MCA (mouse cell at-
las) cells were selected as the scRNAseq reference dataset (MCA). Here,
accuracy displays the proportion of query cells with the correct cell-type
among the first 5 matches.B) Accuracy using the scEpiSearch for queries on
the scATACseq read-count matrices is shown as follows, from left to right:
i) query human scATACseq to reference human single-cell expression ii)
search the mouse reference scRNAseq using the mouse scATACseq. iii)
cross-species search – reference mouse scRNAseq using human scATAC-
seq. The proportion of query cells for which the right annotation was one
of the top 5 results is shown on the Y-axis.For the scEpiSearch modules for
both faster and accurate, accuracy is shown as bar-plots. (Mishra et. al.
(248))

hierarchical searching (Figure 3.1).

To identify possible enhancers while querying single-cell open-chromatin profiles,

scEpiSearch initially normalises the read-count of each peak using a global accessibility

score (172). We utilised the global accessibility peak-list created from numerous public
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Figure 3.3: (A) A comparison of scEpiSearch with integrative approaches, using
scRNA-seq profiles of 10,000 cells from the mouse cell atlas. Here, the
search was restricted to the scATACseq profiles of three mouse cell types:
B cells, macrophages, and endothelial cells. T he silhuotte index of the
query cells for vicinity to the correct reference cell-types is shown. (B)
Analysis of cross-species integrative approaches and scEpiSearch employ-
ing reference scRNAseq from MCA and human PBMC scATACseq profiles
as the query. Also, human PBMC silhouette coefficients are shown. For the
purposes of calculating the silhouette coefficients, immune cells and query
cells were assumed to belong to single class in the references, whereas other
cell types were regarded to be in other class. (Mishra et. al. (248))

open-chromatin profiles of bulk samples released by various groups and consortiums

for both the human and mouse species (173) , (174). The bias is eliminated by normali-

sation by global accessibility score for peaks, which may have originated from different

cells in the same query. As a result, each cell in the query is handled separately. The

proximal genes are detected easily using a predetermined peak list in the fast version

of scEpiSearch. The process of finding proximal genes is 1000 times faster for queries

with more than 200000 peaks when intersecting with a predetermined peak-list with

global accessibility, with almost 75-90 percent of peaks covered most of the time.

3.3.1 Reference Supported Improved Distance Calculation Despite

Species Batch Effect

When scEpiSearch calculates the gene-enrichment score using the Fisher exact test,

it takes peaks with high normalised counts as the foreground and others as the back-

ground set (hypergeometric test). It utilises its normalised expression values (explained

in Methods) to determine the median expression for the top 1000 enriched genes (MEx-
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Figure 3.4: Utilizing reference expression and the query scATACseq from mouse cells,
scEpiSearch is compared to integrative approaches. A) Mouse endothelial
scATACseq profile was the query (Cusanovich et al.). For each of the 4
approaches, the query cells’ silhouette coefficients are shown. B) Mouse
macrophage epigenome profiles query (Cusanovich et al.) are used. Also
shown are the silhouette coefficients for the query cells. C) Incorrect as-
sessment of the 2D embedding figures when all cells, including the refer-
ence MCA cells silhouette coefficients are considered. Mouse endothelial
cells, mouse macrophages, and 3-cell combinations are shown by the corre-
sponding labels on the subfigures. (Mishra et. al. (248))

TEG) of query cells in order to match to a reference single-cell transcriptome profile.

Using precalculated MExTEG values for cells in the null model, the MExTEG of a

reference cell is translated to a P-value for the query (Figure 3.1). The scEpiSearch

algorithm employs a hierarchical method to first match the query with representative

expression vectors for clusters of cells instead of comparing to a vast pool of reference

single-cell transcriptome profiles. The MExTEG values and accompanying P-values

are then calculated using reference cells from the top matched clusters. To lessen bias

in the dataset and search methods, scEpiSearch also computes a new P-value based on

the rankings of reference cells for a query (Figure 3.1). In other words, scEpiSearch

uses its pre-calculated rankings for the null model to change the rank of results.

Utilizing a reference set of 10,000 mouse single-cell expression profiles from the

mouse cell atlas (MCA), we first evaluated our approach. We contrasted it with three

other strategies:
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Figure 3.5: Utilizing the reference scRNAseq of mouse cells as the basis for com-
parison and the scATACseq profile of human cells as the query A) The
search comprised of human embryonic stem cell single-cell ATAC-seq pro-
file (H1ESC). Additionally provided are the query cell silhouette coeffi-
cients for the four approaches. B) The scATACseq of human neuronal cells
were query. Also included are the silhouette coefficients for the query cells.
C) The silhouette coefficients presented for all cells in 2D embedding plot,
including the reference MCA cells. According to the labels on the corre-
sponding sub-figures, H1ESC, human neurons, or human PBMC were the
source of the single-cell ATAC-seq profiles. (Mishra et. al. (248))

• Using scATACseq gene activity scores to compare to gene expression

• scATACseq gene enrichment scores and the reference expression profile correla-
tion based comparison

• Computing the correlation between the reference expression and the predicted
expression of the query scATACseq profile based on BABEL (Figure 3.2A).

We discovered that the direct comparison (or correlation) of reference gene-expression

values to gene-activity, gene-enrichment, or projected expression of query scATACseq

profiles is significantly inferior to our MExTEG-based technique (Figure 3.2A).

Comparison with Integrative methods

We also compared Seurat, LIGER, and Conos integrative approaches, to scEpiSearch

in order to identify the single-cell expression profile that most closely matches a spe-
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cific type of scATACseq read-count matrix. The identical reference single-cell expres-

sion pool of around 1000 cells from the MCA dataset was utilised here (176). We

gave Seruat, LIGER, Conos, and scEpiSearch the identical reference cells. We utilised

the average of the coordinates (in the tSNE plot) of the top 3 matched cells for the

2D depiction of the scEpiSearch output. We observed that the co-embedding outcomes

using integrative approaches with homogenous and small query sets of single-cell open-

chromatin profiles were not sufficient (Figure 3.5A,B). It could be because integrative

approaches like Seurat and LIGER were not designed to group homogeneous query

single-cell ATAC-seq profiles with other non-similar cells incorrectly since they utilise

heterogeneity in single-cell profiles to discover anchors. In fact, Leucken et al. (171)

pointed out that many integrative approaches’ usage of gene activity scores may not be

the best way to describe scATACseq data. They also demonstrated the weak perfor-

mance of integrative methods for single-cell epigenome profiles. Unlike other meth-

ods, we did not consider silhouette coefficients for reference single-cell expression

data-points in the co-embedding graphs because it might have carried away the cor-

responding values for query single-cell ATAC-seq profiles, which is another reason for

the revelation of such a result (Figure 3.4C). We only generated silhouette coefficients

for query cells since our goal was to assess the method of finding matches from expres-

sion profiles for single-cell ATAC-seq data sets (like a search engine).

When we included the single-cell ATAC-seq profiles of three different kinds of

mouse cells (macrophages, B cells, and endothelial cells), we enhanced the heterogene-

ity of the query, which resulted in an improvement in the co-embedding plot (Figure

3.3A). However, the integrative techniques (Seurat, LIGER, Conos) were not significant

compared to scEpiSearch based on the silhouette coefficient scores for query single-cell

ATAC-seq profiles (Figure 3.3B).When human scATACseq profiles were utilised as a

query for the same mouse reference expression profiles made up of 10,000 cells from

MCA, a similar trend was observed. Human embryonic stem cells (HESC) scATACseq

profiles were used as a query, and scEpiSearch based plots revealed they were more sim-

ilar to mouse ESC. Results based on scEpiSearch for the scATACseq profile of Human

Neuron cells revealed their connectivity to reference Neuron Cells from MCA (Figure

3.5B). Whereas Seurat and LIGER had the same issue, causing homogeneous query

cells to spread out and colocalize with several clusters of reference expression profiles

that were dissimilar in co-embedding plots (Figure 3.5). The outcomes for LIGER
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and Seurat enhanced such that query cells appeared proximal to immune cells in their

co-embedding plots when we employed a query comprised of human PBMC scATAC-

seq profiles with more heterogeneity (Figure 3.5). However, based on the outcomes

of scEpiSearch, when we computed the silhouette coefficients for query cells to assess

the effectiveness of the integrative technique as a search engine, their performance was

not comparable to simple embedding. Overall, our findings show that integrative ap-

proaches were unable to effectively search for matching expression profiles for query

scATACseq datasets such as scEpiSearch.

Robustness in Accuracy of scEpiSearch :The scATACseq reference expression

and gene-enrichment scores of the standalone and webserver versions are stored in

their own databases. Scalable visualisation is a feature of both versions of scEpiSearch

that enables interactive viewing of more than 1,000 query scATACseq profiles. The

majority of the queries were evaluated using multiple scATACseq profiles with known

cell-type annotation, and it was found that the search accuracy of scEpiSearch is around

80–100% in identifying the proper cell type among the top 5 hits (Figure 3.2B). We pre-

vent artefacts caused by method or species-specific batch effects by employing proximal

gene enrichment and expression profiles rather than relying on correlation or proxim-

ity among cells. Consequently, scEpiSearch also enables very accurate comparison of

query scATACseq profiles from human cells to mouse reference single-cell expression

profiles (Figure 3.2B).

3.3.2 Reference Dependent Graph Embedding of Query sc-ATACseq

Profiles

Despite the fact that scEpiSearch can match open-chromatin and transcriptome profiles

for a single query cell epigenome, it is often essential to visualise and cluster cellu-

lar profiles from several sources in order to get insight into distinct or mixed cellular

states. Therefore, regardless of the species of origin, scEpiSearch is also intended to

incorporate and give an integrated view of numerous scATACseq profiles with variable

peak-list and batch-effects. Based on how closely top-matching mouse reference ex-

pression profiles resemble each other, scEpiSearch determines the distances between

query cells. When two mouse expression profiles are grouped together in the reference

scRNA-seq dataset of scEpiSearch, they are said to be comparable in this context.
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Figure 3.6: Evaluation of embedding of query sets of single-cell open-chromatin pro-
files irrespective of batch effect, species, differences in peak-list and their
source. Embedding plot from ScEpiSearch derived from projections onto
mouse expression profiles. (A) Queries consisted of scATACseq profiles of
human-neuron, mouse-neuron, human-HSC, house-HSC, human-Myoblast,
human-GM12878 cells from two batches and mouse-B-cells. The purity
of density based spatial clustering (using DBSCAN) with embedded coor-
dinates is shown here in terms of ARI (Adjusted Rand Index) and NMI
(normalized mutual information) scores. (B) Queries made for Human-
GM12878 cell, Mouse B-cell, Human-HEK293T, Mouse-Proximal tubule.
(C) Queries were made for Human-GM12878, Mouse B-cell, Human T-cell,
Mouse T-cell. (Mishra et. al. (248))
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Figure 3.7: Evaluation of query scATACseq profiles from various species and batches
using 2D embedding. a) Query for Human-Neuron, Mouse-Neuron,
Human-HSC, and Mouse-HSC are made. None of the other techniques
examined in this study were able to provide accurate low-dimensional em-
bedding like scEpiSearch. For others,TSNE plot is shown. After utilising
labels HSC and forebrain/neurons and applying DSCAN to the 2D coor-
dinates, the right-bottom panel displays clustering-purity in terms of ARI
and NMI. b) This plot displays the evaluation of 2D embedding plots show-
ing the computation of silhouette coefficients. (Mishra et. al. (248))

We used four distinct sets of scATACseq read-count matrices to test the efficiency of

scEpiSearch with four embedding techniques (SCANORAMA, MINT, SCVI, SCALE)

(187) (188) (189) (190). Gene-enrichment scores from various query scATACseq pro-

files were supplied to SCANORMA, MINT, and SCVI for 2D embedding since they

employ genes as features. While for SCALE, 2D embedding was carried out using

tSNE and its latent feature space encoding of the scATACseq read-count matrices.

The 2D embedding map created by scEpiSearch for scATACseq profiles, as demon-

strated in Figure 3.6A,B,C, 3.7A, displays almost accurate colocalization of comparable

cell types regardless of the species and research lab of origin. Other embedding tech-

niques (SCANORAMA, MINT, SCVI, and SCALE) produced the incorrect cell group-

ing (Figure 3.6, 3.7). After density-based spatial clustering (using DBSCAN (191)) of

the embedding outputs using cell type labels as true clusters, we evaluated clustering pu-

rity to provide further evidence. The ARI (adjusted Rand Index) and NMI (normalised
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Figure 3.8: Using scEpiSearch’s 2D embedding to follow the dedifferentiated state of
blood-cancer patients’ leukaemia cells. A) Pie chart of top scRNAseq types
matches for scATACseq profile of blood cells from individuals with mul-
tiple phenotype acute leukaemia (MPAL) is shown in Figure 1. (GEO id:
GSE139369). B) Pie-chart displaying cell types of human peripheral blood
mononuclear cells (PBMCs) with top matching scRNAseq cells (GEO id:
GSE139369) C) scEpiSearch based 2D embedding of scATACseq of 3 kinds
of cells: peripheral blood mononuclear cells (PBMC) from healthy cells,
progenitors of blood cells, and blood cells taken from patients with mixed
phenotype acute leukaemia (MPAL). Granja et al. released the scATACseq
profiles of MPAL and PBMC cells, and progenitor cell scATACseq are from
a different study. Most PBMC cells are located further from progenitor cells
and closer to B cells in the embedding plot created by scEpiSearch. Pro-
genitor cells are further distant from MPAL cells. Some MPAL cells are so
thoroughly dedifferentiated that they even entirely overlap with blood cell
progenitors. the identical 2D embedding result, but the MPAL cells were
coloured in accordance with the origins of the patient (P1 and P2). MPAL
cells from two patients have some overlap, but they also have various de-
grees of dedifferentiation. D) Outcomes from other tools for 2D embedding
of scATACseq of three different kinds of cells: peripheral blood mononu-
clear cells (PBMC) from healthy persons, progenitors of blood cells, and
blood cells from patients with mixed phenotype acute leukaemia (MPAL).
Other approaches either failed to colocalize B and T cells with PBMC or
jumbled up the location of several hematopoietic progenitor cell types. (
Mishra et. al. (248))
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mutual information) ratings based on clustering purity demonstrated the advantage of

scEpiSearch in the objective embedding of open-chromatin profiles (Figure 3.6, 3.7).

The comparison using silhouette coefficients is shown in Figure 3.7B.

Case Studies for Embedding of Multiple sc-ATACseq Profiles Across Batches and

Species

With the standalone variant of scEpiSearch, we experimented with a number of scAT-

ACseq read-count matrix combinations. We were able to successfully incorporate scAT-

ACseq profiles, resulting in colocalized cells of the same kind while preserving distinct

cell-type separability.

• Case 1 : Cells from Human Neuron (GSE97942), Mouse forebrain (GSE100033),
Human HSC (GSE96769), Mouse HSC (GSE111586), Human Myoblast (GSE
109828), Human GM (GSE109828), Mouse B-cell (GSE111586), and Human
GM12878 (GSE68103) were taken which had their own batch-effect and belong
to both human and mouse species from which we made our queries. We then
passed these queries to scEpiSearch to obtain top 10 matching clusters. This in-
formation is then used to create an adjacency matrix, which was then forwarded to
create the final embedding plot. In order to create graphs and visualize clusters,
NetworkX was employed. HSC cells from both species can be seen to be grouped
together, whilst neuronal cells out of both species (Mouse and Human) can be
seen to be grouped together. The graph shows the separation among HSC and
neuron cells (Figure 3.6A). Due to their classification as immune cells, B Cells
and GM out of both species may be seen in discrete clusters next to HSC cells. No
other type of cells cluster with human myoblast cells. The read-count matrices’
peak lists varied from one another. Here are five distinct approaches’ embedding
charts. While MINT was unable to group cells of the same kind together like
scEpiSearch, SCANORAMA was able to mix the locations of all cells.

• Case 2 : Here, we employed read-count matrices from the scATACseq profiles of
four different cell types, including the human B cell line (GM12878), mouse B
cells, human T cells, and mouse T cells (Figure 3.6B). Human B cells and mouse
B cells colocalize in the 2D embedding figure created by scEpiSearch (Figure
3.6B). In scEpiSearch-based embedding, human and mouse T cells colocalize
similarly. In comparison, the other four methods were unable to provide such
accurate embedding.

• Case 3: We employed four read-count matrices of scATACseq profiles of four
different cell types for the third example (Figure 3.6C), including human B cell
line (GM12878), mouse B cells, human embryonic HEK293T kidney cell line,
and cells from the mouse proximal kidney tubules. In this instance, scEpiSearch
offered almost accurate embedding demonstrating the colocalization of mouse
B cells with human GM12878 cells (Figure 3.6C). Other techniques, however,
displayed incorrect co-localizations in the embedding outcomes, as shown in the
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data from the SCALE, where mouse proximal tubule and B cell colocalized. Ad-
ditionally, SCVI mislocalized mouse proximal tubule and human GM12878 cells.

• Case 4: Human Neuron (GSE97942), Mouse Forebrain (GSE100033), Human
HSC (GSE96769), and all mouse HSC from Bone marrow tissue (GSE111586)
were selected as samples from different batches and species of larger numbers
of cells to demonstrate the consistency of the module. These samples were
then passed to the Embedding module of the standalone system (Figure 3.7A).
The graph was constructed by creating an adjacency matrix using the top twenty
matching clusters, and both groups are clearly separable.

3.3.3 Case Study of Reference based Graph-embedding: Under-

standing Multiple Phenotype Acute Leukaemia

We examined the scATACseq profiles of patient blood cells with mixed-phenotype acute

leukaemia (MPAL) in order to get further insights from the network based embedding

of single-cell epigenome profiles and their underlying cell states (192). A change in

the proportion of cell types was discovered in the same study’s first investigation of

MPAL and PBMC cells from healthy individuals. Similar proportions of the various cell

types were present in the corresponding expression profiles for the scATACseq profile of

PBMC from healthy patients, as reported by others (193) (Figure 3.8A,B). However, we

observed an increase in the proportion of dendritic, monocyte, and erythrocyte cell types

in MPAL cells from two patient samples (Figure 3.8B). It is not simple to determine if

it was caused by sampling bias during scATACseq sequencing or whether it reflected

authentic fractions. However, we carried out the embedding of scATACseq profiles of

MPAL cells from two patient samples, PBMC from healthy persons, progenitors of

hematopoietic cells (progenitors of hematopoietic cells in the blood) (194), T cells, and

B cells (195).

The blood’s progenitors of hematopoietic cells, including the CLP (common lym-

phoid progenitor), MEP (megakaryocytic-erythroid progenitor) CMP (common myeloid

progenitor), MCP (mast cell progenitor), and GMP (granulocyte-monocyte progeni-

tor) were included in our investigation. Many MPAL cells overlapped with different

sorts of hematopoietic progenitor cells in the 2D embedding graph from scEpiSearch.

T cells, B cells, and several MPAL cells are grouped with PBMCs (Figure 3.8C). In

the findings of our embedding, hematopoietic progenitor cells and PBMC hardly over-

lapped. These findings provide some indication of the various degrees and variations
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of de-differentiated states of MPAL profiles. The dedifferentiated states of MPAL pro-

files may account for their flexibility and capacity for lineage flipping (196). Only a

small number of the MPAL cells for two individuals exhibited overlap, according to

more thorough research (Figure 3.8B). The majority of cells from two MPAL patients

did not overlap and shown a strong relationship with several kinds of hematopoietic

progenitor cells. Additionally, we used SCANORAMA, MINT, SCVI, and SCALE on

the similar set of read-count matrices, and we discovered that none of these approaches

exhibited PBMC colocalization with B cells or T cells nor did they mix the locations

of various blood cell progenitors (Figure 3.8D). Given that B cells and T cells are often

found in PBMC, it soon became evident that utilising alternative techniques would not

provide the same results as scEpiSearch (Figure 3.8C,D). In conclusion, scEpiSearch

can highlight dedifferentiated states and adaptability of cells originating from patient

samples and may show similarity and differences across subpopulations of cells regard-

less of source and batch impact.

3.4 Discussion

Projection of single-cell epigenome profiles accurately and robustly onto large pool

of reference expression profiles and interpret matching cells in a meaningful way is a

challenge. Technical and batch biases, such as cell-to-cell variability in signal i.e peak

accessibility and noise, differing read-depths, methods, platforms, and labs, make this

problem difficult to solve. The cross species matching of single-cell epigenome profiles

was made possible by the computational approach we proposed in this work. Notably,

in order to minimize batch and technical biases, our technique relies on median expres-

sion and enrichment of top genes and peaks (MEXTEG), rather than distance-based

methods such as correlation or cosine distance, hashing, or latent-feature extraction

methods. Because of scEpiSearch’s large pool of reference cells and statistical method

for reducing bias, scEpiSearch is distinctive in its ability to find equivalent transcrip-

tome and open-chromatin profiles. In addition to facilitating single-cell searches against

a large collection of reference cell profiles, scEpiSearch also offers low-dimensional

graph based embedding. Therefore, the cross-validation of rare cellular states identified

by single-cell open chromatin profiles may also be accomplished using scEpiSearch.

The standalone version may be securely, and locally for sensitive and clinical data and
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includes an inbuilt reference set for processing.

Other Applications of Reference based Matching for improving graph based

embedding are: Reference-based matching has a variety of potential implications, in-

cluding

• Identifying the appropriate cell types from in vivo samples of unannotated cells
using scATACseq profiles.

• Analyzing heterogeneity and monitoring changes in the cell state and their po-
tency or divergence, such as as one cell line exhibiting the ability to differentiate
into many lineages, such as K562, HL60 cells (177).

• Identifying a suitable mouse model for an imprecise human cell.

• Numerous scATACseq profiles, regardless of their sources, protocols, or species,
can be embedded and clustered. To illustrate such applications, we have used
ScEpiSearch for four different kinds of case studies below.

As shown in the network based co-embedding of scATACseq and single-cell ex-

pression profiles, our research demonstrated the advantages of mapping single-cell

epigenomes to reference-cell profiles. Results based on knowledge oriented reference

based edge weight learning surpassed integrative approaches like Seurat, LIGER, and

Conos. The method using reference based graph embedding approach also revealed

that embedding of open-chromatin profiles with distance calculated using projection on

reference cell profiles could be better than distance estimated by SCALE, MINT, and

SCANORAMA or other latent reference-free feature extraction techniques. Addition-

ally, by using the reference-free feature extraction, novel features in minority popula-

tions of cells could be masked by characteristics of cell-states in the majority.

The developed method introducing a Graph based approach helps learn underlying

distance among cells from various species/batches with different peak lists. The knowl-

edge based learning of edge weights between cells imparts tremendous improvement

in joint embedding of cells that includes a novel approach for computing the distance

between cells by projecting them onto reference pool of dataset. This assists with the

elimination of batch effect and obtain a reliable cell neighbourhood.

This approach of utilizing knowledge from reference profiles to jointly embed query

datasets yields meaningful patterns in diseases profiles. The method also demonstrates

applications such as knowledge based edge-weights learning provides findings indicat-

ing towards various degrees and variations of de-differentiated states of MPAL profiles.
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The de-differentiated states of MPAL profiles may account for their flexibility and ca-

pacity for lineage flipping.

Furthermore, reference based co-embedding demonstration helps shows distinct

phase of cancer cell’s de-differentiation and anticipate a cell’s behaviour in an unknown

condition. The approach makes use of the additional information found in the refer-

ence pool of cells in various cellular-states, such an approach has the ability to result in

improved annotation and regulatory-inference from query single-cell open-chromatin

profiles.

Thus, reference based edge-weight learning yields co-embedding and demonstrates

other applications such as understanding de-differentiated states of cancer cells, empha-

sising imprints within individual cells that are a sign of apoptosis and a stress response

in a subpopulation of embryonic stem cells, evaluation of enhancer landscape activ-

ity in single cells, the incorporation of more single-cell histone modification datasets

and provision of a powerful reference based search for query cells for key epigenetic

regulators.
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CHAPTER 4

Explainable Predictive Model using Graph-Wavelet for

Modelling Biophysical Properties of Proteins and

Measuring Mutational Effects on Diseases

With advancement in experimental and computational methodologies for protein struc-

tures, there is breakthrough in understanding more about the connections between pro-

tein structure, sequence, dynamics, and function attributable to the tremendous prolif-

eration of data on protein structure and sequence. This information is used to assess

the relationships between proteins and other compounds, peptides, and possible thera-

peutic targets (198). Numerous experimental and theoretical techniques have been used

to study protein structures and their functions (199) (200) (201) (202). Recently, re-

searchers have looked at the computational method known as network analysis, which

transforms the protein structure into a network/Graph of amino-acid residues. In the

field of protein systems research, a novel paradigm has been established by the network-

based exploration of interactions (203) between amino acids in protein structure. Pro-

tein architectures are represented by residue interaction networks, which are undirected

networks of amino acids and their relationships (204) (205). Residue interaction net-

works disseminate topological information and have the ability to expose the general

characteristics of a protein molecule, according to Vendruscolo et al. (206) and del Sol

& O’Meara (207).

According to Dokholyan et al. (208), certain network characteristics are associated

with protein unfolding, folding rates, and several key residues that serve as the nu-

cleation for protein folding exhibit significant betweenness values in protein transition

states. The effect of edge removal per residue, calculated as the percentage of change

in average path length divided by protein size to edge removal probability, has been

shown by Jung et al. (209) to have a substantial association with protein unfolding

rate. The network parameter coefficient of assortativity has a positive association with

protein-folding rates, according to Bagler & Sinha’s study (210). In order to discover



crucial residues for protein function, Cusack et al. (211) calculated the frequently vis-

ited residues in networks based on shortest distance and betweenness. Recently, protein

characteristics have also been modelled using graph convolutional networks (212).

Genetic involvement is a crucial driving force in organism evolution. Particular

genetic mutations, like SNPs, can be harmful and result in disease in people. Single

amino acid polymorphisms (SAPs) are SNPs that cause mutations in amino acids and

are thought to be primarily linked to a variety of disorders. However, so far, only a

small percentage of SAPs have been connected to ailments. Additionally, it has been

demonstrated that using network topological properties, disease-related single amino

acid polymorphisms can be predicted to some extent. According to Li et al. (213),

because such aberrations often occur at residues with significant centrality or degree,

nearby residues of a mutation site may aid in determining if a mutation is disease-

related. Using network parameters, protein’s functional modules have indeed been re-

searched. In order to identify functional residues and functional module clusters in

rhodopsin that encode classic coevolutionary information in the protein’s amino acid

network, Park Kim (214) used structure-based correlation mutation analysis.

A mechanistic understanding of the deleterious effects of amino acid mutations may

be gained by coupling their property to the behaviour of proteins. So, using machine

learning methods, we created a novel method for analysing the biophysical characteris-

tics of proteins that is based on graph wavelets. The main benefit of the graph wavelet

transform would be that it fractionates the signal into a pattern of scores with mul-

tispectral resolutions that match to the specific details of latent modules in the graph.

Our approach integrates multispectral data of network-based and physicochemical char-

acteristics of amino acids (nodes) and their interactions in the protein structure. In this

article, we provide a model for estimating the rate of protein folding and distinguish-

ing transmembrane-globular, soluble/insoluble proteins, and -helices/-strands. Our data

was collected from RCSB/PDB (217), which covers the majority of protein structures.

Additionally, it aids in determining how mutations affect multispectral feature rank-

ings, which may be utilised to account for its negative impact. Therefore, we go on to

demonstrate how the trained machine learning model gains explainability by estimating

the significance of multispectral characteristics.

Hence in our third contribution, we introduced a novel methodology that leverages
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graph signal processing to predict biophysical properties of proteins. This approach

utilizes graph wavelets derived from physicochemical signals associated with amino

acids in protein residue networks to model and predict the biophysical properties of

proteins. By utilizing graph wavelets, we were able to estimate the potential effects

of disease-associated mutations on these properties. Through our predictions, we pro-

vided valuable insights into how specific mutations may impact the overall structure

and folding dynamics of proteins. The application of graph signal processing and graph

wavelets in protein biophysics has significant implications. It enables researchers to

gain a deeper understanding of the structure-function relationship in proteins and offers

a valuable tool for predicting the effects of mutations on biophysical properties.

4.1 Material and Methods

4.1.1 Weighted RIG Model

Our approach generates a graphG(V,E) of each protein molecule separately, with each

amino acid represented by a node in the graph and the distances between them repre-

sented by an edge. Typically, a residue interaction graph(RIG) is used to simulate a

protein’s network of residues. An adjacency matrix is created in a RIG-based network

according to the criteria i.e two residues (vertex) are linked if their physical distance is

less than or equal to a predetermined threshold. We have used a weighted RIG-based

network that is capable of incorporating both long- and short-range interactions. Since

they are responsible for maintaining the protein’s structural integrity, long-range inter-

actions are crucial for predicting protein function. The three-dimensional coordinates

of the atoms in the protein structure found in the Protein data bank (PDB) files are used

to compute the distance between residues. Our definition of the residue’s centre is its

alpha carbon atom, or (Cα). The physical distance (di,j) between the residues (ver-

tices) V i and Vj is computed using the Cα coordinates (xi, yi, zi) and (xj, yj, zj) in the

PDB structure.

di,j = (xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2 (4.1)
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If this computed distance is less than or equal to a predetermined threshold, (rc),

then these vertices are regarded as being connected. In this case, we used rc = 8.

The weighted RIG model gives an edge between two residues a value that is inversely

proportional to the distance in the sequence between the two amino-acid (or residue)

sites. The weighted RIG model’s edge weights are computed as

weighted RIG(i, j) = |j − i| if di,j <= rc, otherwise 0 (4.2)

We discovered via our internal research that the weighted RIG model often performs

better than the boolean RIG model.

4.1.2 Amino Acid Features: Curation and Extraction

For each residue in the network of residues in the protein that was modelled using

a residue interaction graph, node degree was computed (RIG). Similar to this, node

weighted degree was calculated using the network of residues while also taking the

weight of the edges and the degree of the nodes into consideration (residues). The ex-

tent to which nodes in a network tend to cluster together is quantified by the clustering

coefficient. It was calculated for the network’s nodes (also known as residues) using

Python’s clustering() method from the networkx package. The network created using a

weighted RIG matrix has a frequency/count of residues that correlates to it. The AAin-

dex database (221) was used to assemble scores for each amino acid’s hydrophobicity,

bulkiness, turn tendency, molecular weight, flexibility, partial specific volume, coil ten-

dency, compressibility, and refractive index, polarity which were then used to compute

feature scores for each protein sequence. Using the source code from Capra JA et al.

(245), which enables file format conversion and employs Jensen-Shannon divergence

to calculate conservation scores for proteins, the conservation score was calculated by

converting pdb files to fasta.

• Hydrophobicity: The hydrophilic and hydrophobic properties of each of the 20
amino acids have been taken into consideration in the development of a hydropa-
thy scale. The scale is associated with a number of experimental discoveries that
were read about in the literature (241).

• Turn tendency: A turn tendency is a structural motif when the distance between
two residues’ Cα atoms is small, often between one and five peptide bonds and
less than seven (0.70 nm) (244).
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• Coil tendency: In proteins, specific hydrophobic, positively and negatively charged
residues have been shown to promote the formation of additional coiled coil do-
mains (243). On the other hand, the surrounding hydrophobicity of residues in
coiled-coil domains is much lower than that of residues in other coiled-coil pro-
tein regions. As a result, it becomes a crucial factor to take into account when
modelling the biophysical characteristics of proteins.

• Flexibility: Protein structural flexibility is essential for allostery, binding, and
catalysis. Flexibility was inferred from the amino acid sequence using a sliding
window averaging method, and it was largely used for epitope search. Based on
whether or not its neighbours are stiff or flexible, every amino acid in the protein
chain is given a flexibility parameter (240).

• Bulkiness: Bulkiness, which measures the chain’s average cross section, is de-
fined as the side chain’s volume to length ratio (236). The bulkiness values were
determined using the data of Waugh et al. (237) and Sorm et al. (238).

• Partial specific volume: An experimental measure that provides data on solute-
solvent interactions and protein hydration is an amino acid’s partial specific vol-
ume (239).

• Compressibility: According to the Miceller model compressibilities (235), the
equation for a protein’s compressibility, Km

Km = αN(CH2) 8.0X 10−15/M (4.3)

Where M is the relative molar mass, N(CH2) is the total number of equivalent
methylenes, and α is a parameter used to determine the folding pattern.

A = (3/4πN)[(n2 − 1)/(n2 + 2)] (4.4)

Here the number of molecules per unit volume is denoted by N .

4.1.3 Spectral Graph Theory

A weighted undirected graph G composed of an established set of vertices V and a set

of positive weights w : E =⇒ R assigned to the graph’s edges E. Let N = |V |

be the equation for the number of vertices. For spectral graph theory, the weighted

adjacency matrix (NXN) produced from the weighted RIG model serves as a finite

weighted graph. The sum of the weights of the edges impacting on the vertex is used

to determine the degree of vertices in a graph. It is also possible to define the degree of

the vertex m as d(m) =
∑

nAm,n in respect with adjacency matrix. A diagonal degree

matrix would thus be:
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D(i, j) = d(i) if i = j, otherwise 0 (4.5)

The equation L = D − A describes a non-normalized Laplacian operator for the

graph. Instead, we have employed the Laplacian operator’s normalised form as pro-

vided by:

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2 (4.6)

The diagonalization of the matrix is possible due to its symmetry, which leads to

the eigenvalue decomposition L = UλU , where U is the eigenbasis matrix and λ is

the diagonal matrix containing L’s eigenvalues. The orthonormal eigenvectors of the

eigenbasis matrix U are designated as χl for 0 ≤ l ≤ N − 1. The corresponding

eigenvalues λl fulfil the equation Lχl
= λlχl. Given that G is linked and given that L is

symmetric, it is likely that the eigenvalues are real, non-negative numbers that may be

ordered in ascending order as 0 = λ0 < λ1 ≤ λ2... ≤ λN−1.

4.1.4 Spectral Graph Wavelet (SGWT)

According to SGWT’s (218) definition, it acts as a bandpass filter and fixes a non-

negative real-valued kernel function called g. Additionally, g(0) = 0 and limλ→+∞ g(λ) =

0 are necessary. The wavelet operators obtained as the rescaled kernel function of the

graph Laplacian provide the SGWT coefficients at each scale. The eigenvectors and

eigenvalues of the Laplacian matrix (L), on the other hand, may do this for a graph

with a Laplacian in a finite dimension. The wavelet operator is specifically specified by

Tg = g(L). The function Tgf returns wavelet coefficients at scale (s) = 1 for a signal

f . Depending on what this operator does with the eigenvectors χl, it is described as

Tgχl = g(λl)χl (4.7)

As a result, the operator may be stated to operate on the graph signal f by adjusting

each graph Fourier coefficient as

Tgf(l̂) = g(λl)f̂(l) (4.8)
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The wavelet operator then would be T s
g = g(sL) for each scale. This is described in

terms of the continuous (g(λ)) domain of the kernel function. Furthermore, ψs,n =

T s
g δn would be the spectral graph-wavelet at scale s, centred on vertex n. Since f and

ψs,n are inner products of each other, wavelet coefficients may be thought of as such

Wf (s, n) =< ψs,n, f > (4.9)

4.1.5 Implementation Details

Building a weighted RIG model of each protein is the first step in our technique (Prote-

inGW) for predicting the properties of proteins using graph wavelets , which then uses

signals on the graph to represent the physiochemical, network-based, and conservation

properties of amino acids (Figure 4.1). Molecular weight, amino acid count frequency,

conservation score, hydrophobicity, polarity, refractive index, turn tendency, coil ten-

dency, partial specific volume, compressibility, flexibility, bulkiness and some graph

properties like node weighted degree, clustering coefficient and node degree are signals

for the amino acids that have been acquired. The number of edges that are close to the

vertex in this case determines the node degree, and the edge weights of the edges that

incidence on the vertex determine the node weighted degree. The geometric average of

the edge weights of the subgraphs, or the clustering coefficient

Cu =
1

deg(u) (deg(u)− 1)

∑
vw

(ŵuvŵuwŵvw)
1/3 (4.10)

where, Cu tends to 0 when deg(u) < 2 and (ŵuv) (edge weights ) are normalized

by network’s maximum weight i.e., ŵuv = wuv/max(w).

By default, ProteinGW produces wavelet coefficients at four different scales. Dur-

ing the model’s evaluation, ProteinGW does hard thresholding by determining the best

percentile threshold for those wavelet coefficients. ProteinGW divides the dataset into

training and test sets, then uses 5-fold cross-validation to train machine learning models.

ProteinGW employs Accuracy, ROC AUC, Macro-F1, and MCC scores as evaluation

metrics for classification tasks and R-sqaure, RMSE for assessment of protein-folding

rate while evaluating the prediction model. Here, we compare random forest with sev-
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eral machine learning models for the classification tasks of transmembrane/globular, all-

α/all-β, soluble/insoluble, XgBoost, AdaBoost, K-Nearest Neighbors, Gaussian Naive

Bayes, Logistic Regression, and SVM. Additionally, we contrasted the random forest

regressor with ElasticNet, Decision Tree, K-Nearest Neighbors, SVR, Ridge, Lasso,

and Linear regressions for protein folding rate estimate using the ProteinGW method.

Furthermore, ProteinGW determines feature importance at each scale for all physico-

chemical/network properties to increase explainability to the trained Random forest pre-

diction model. Finally, it is also investigated how top predictive traits change at protein

mutation locations that cause certain diseases. We investigated the relationship between

amino acid network characteristics and disease-associated mutations using publically

accessible materials (219).

4.1.6 Other Graph Signal Based Methods

Graph Fourier Transform (GFT)

Both the network characteristics and the properties of the residue, which were features

employed in ProteinGW, were the signals that were selected. For each of the three

characteristics (alpha-beta, solubility, and transmembrane globularity), a linear multi-

variable classification model was developed, along with a regression model for protein

folding rate (231). The frequency cutoff for each signal was chosen to optimise the

correlation between the signal’s low-frequency component and the protein biophysical

feature that was being modelled.

Convolutional Neural Network

Given a graph’s adjacency matrix, the matrix may transform it into a 2D picture with

many channels, much like a traditional image representation format, which consists of

a 2D matrix that denotes the pixel densities and several channels that, in most instances,

represent RGB channels. Therefore, we employed eigenvalues and eigenvectors to

translate an adjacency matrix of a network into its counterpart in an image format. The

adjacency matrix’s eigenvalues and related eigenvectors were first taken out. We then

removed the ’n’ biggest eigenvalues and eigenvectors that corresponded to those values

following this operation. We normalised the ’n’ eigenvectors after extraction such that
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Figure 4.1: The pipeline for ProteinGW is shown in a flowchart. For the mod-
elling of each protein function, protein structures were acquired from PDB
database. For each protein, a dictionary was made that included the dis-
tance matrix, sequence, etc. Adjacency matrix known as weighted RIG was
constructed. Then, using a weighted-RIG matrix, a network tailored to each
protein is constructed. Additionally, each amino acid (node) is represented
on the graph as a signal with its physical, chemical, and network character-
istics, and the ideal threshold is determined to cutoff wavelet coefficients.
An ML model is then trained. (Mishra et. al. (249))

their values fall inside a predetermined range between [-1,1]. We initialised a blank

three-dimensional matrix with the shape (n/2,28,28), where n/2 denotes the number of

channels and 28,28 denotes the shape of a single channel, in order to represent these

eigenvectors as images (resolution) (232).

After completing this phase, we chose two eigenvectors at a time, one representing

the dimension x and the other dimension y, and filled the values in the corresponding

pixels, just as we would do in a histogram bin. Therefore, we effectively split our

(28,28) matrix such that a value would go into a given cell of the matrix if it was

located in a certain area. By selecting eigenvectors in pairs, values were filled in all n/2

channels in this manner, and conventional CNN was then applied to the resulting picture
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representation. For CNN, we started with a kernel of form (3,3), added a max-pool

2D layer, flattened the features, and then added four dense layers using the activation

functions "relu", "linear", and "softmax". The first three thick layers had 100, 50, and

20 neurons, respectively, while the number of neurons in the last layer varied depending

on the task at hand.

4.1.7 Data Sources

52 single domain two-state folding proteins were employed for the modelling fold-

ing rate that we used. Multiple sources were used to compile the data for those pro-

teins (200) (220). The alpha/beta modelling process employed the same 52 proteins.

While we gathered 237 transmembrane and 59 globular proteins from the PDB library

to mimic the transmembrane/globular feature. We utilised the proteins on the list pro-

vided by Han et al. that have a PDB structure to predict solubility.

4.2 Results

Each amino acid has a unique set of physicochemical properties that affect how proteins

behave generically and how quickly they fold. Therefore, while comparing proteins

and investigating their functions, it is required and prudent to extract characteristics

based on amino acid properties. We utilised the hydrophobicity scores, flexibility, po-

larity, relative molecular mass, isoelectric point,ionisation equilibrium constant (221),

and conservation (245) of 20 amino acids, which are known physicochemical prop-

erties. Additionally, we estimated the protein folding rate of proteins and classified

proteins based on their transmembrane/globular, soluble/non-soluble, alpha/beta, and

network characteristics of amino acids in the residue interaction graph (RIG) (Figure

4.1). ProteinGW uses a wavelet transform to position signals for each feature on the

weighted RIG network of each protein. Additionally, it produces overall multispectral

feature scores that may be employed in machine learning approaches after determining

a consensus cutoff to remove noise and irrelevant components from wavelet signals. In

all, ProteinGW generates 60 feature scores, with 4 feature scores for each amino acid

characteristic, each of which corresponds to a different wavelet resolution level.
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4.2.1 The predictive Power of Graph-Wavelet Based Feature Ex-

traction

Transmembrane-Globular: First, we predicted the Transmembrane-Globular charac-

teristic of proteins using our method. Globular proteins perform a variety of three-

dimensional tasks, including catalysis, transport, cellular signalling, and others. The

orientation of a transmembrane protein in the membrane, however, is usually highly par-

ticular. The amino acid residues with nonpolar side chains that split these domains make

up the majority of the membrane-spanning regions of the polypeptide chain that interact

with the lipid bilayer’s hydrophobic environment. All peptide linkages are compelled to

form hydrogen bonds since they are polar and the bilayer is devoid of water (223). We

gathered 59 globular proteins and 237 transmembrane proteins to classify globular and

transmembrane using graph wavelets. Following the procedure described in the tech-

niques section, multispectral feature scores, also known as graph wavelet-based feature

scores (GWFS), were computed. Additionally, we analysed the performance of several

machine learning models utilising GWFS. Figure 4.2A displays several categorization

assessment metrics including accuracy, Macro F1 score, ROC-AUC (Receiver Operator

Characteristic - Area Under Curve), and MCC (Mathews correlation coefficient). These

results were deduced after applying 5-fold cross-validation. The figure clearly shows

that the accuracy of the random forest and XgBoost based classifications are superior

to other models, with scores of 0.93, 0.88 Macro-F1, 0.86 ROC-AUC, and 0.77 MCC.

Hence, we used their results for further analysis.

Solubility: We further attempted to use our method to simulate proteins’ solubil-

ity. High levels of protein expression and solubility are necessary for successful re-

combinant protein synthesis, although these requirements are sometimes challenging to

meet. Protein research is hampered by several mistakes made during recombinant pro-

tein synthesis, particularly structural, functional, and pharmacological studies that are

needed for soluble and concentrated protein samples (224) (225). Therefore, it is a con-

tested issue in research to predict solubility and modify protein sequences for enhanced

solubility. Protein solubility is influenced by a variety of intrinsic variables, including

molecular weight, amino acid content, and residue hydrophobicity (226) (227). In order

to predict the solubility of proteins, we employed GWFS derived using such amino-acid

characteristics in combination with machine learning classifiers. Random Forest out-
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performed other machine learning algorithms in performance assessment using 5-fold

cross-validation, with classification accuracy of 0.79, 0.78 Macro-F1, 0.79 ROC-AUC,

and 0.57 MCC scores (see Figure 4.2C).

All-α and All-β: Using our method, we also aimed to tackle the problem of quan-

tifying the content of all-α and all-β in proteins. Globular proteins may be divided into

four structural categories: all-α, all-β, α + β, and α/β. all-α and all-β proteins are

categorised as being essentially entirely made up of α-helices and β-strands. For the

composition of α + β proteins, distinct segments of α-helices and β-strands (primarily

antiparallel) were recognized, while mixed segments of α-helices and β-strands were

described for α/β proteins (mainly parallel). We investigated how well our wavelet-

based learning algorithm performed when classifying proteins that are either alpha or

exclusively beta. After determining the ideal threshold, classification of α-helices and

β-strands is also accomplished by extracting features in the wavelet domain with fre-

quency cutoff using hard thresholding. We mostly observed the performance of all ma-

chine learning models, which were all extremely similar in terms of accuracy, macro-F1,

ROC AUC, and MCC scores (features from ProteinGW are utilised) (Figure 4.2B). The

highest result, however, displayed values of 0.75 accuracy, 0.73 Macro-F1, 0.75 ROC

AUC, and 0.57 MCC.

Protein Folding rate: We utilised ProteinGW to predict the protein fold-rate after

testing the effectiveness of our technique on three protein-classification tasks. An in-

dicator of how rapidly (or slowly) a protein folds from its unfolded state to its natural

3D structure is the rate of protein folding. Research on protein folding rates aids in

a better comprehension of variations in protein folding kinetics that may have a role

in diseases like prion and Alzheimer’s disease, among others (228). We gathered pro-

tein structures (229) and their protein folding speeds in order to assess our approach

for modelling protein folding rate. ProteinGW was used to engineer their characteris-

tics. Regression models were developed using the training dataset, and 5-fold cross-

validation was used to assess performance using the test dataset. Figure 4.3 displays the

RMSE and R-value of several regression models, including linear, lasso, ridge, SVR,

KNN, random forest, decision tree, and elastic net, that were tested using features de-

rived from our technique. Figure 4.3 clearly shows that random forest, with R= 0.81

and RMSE=1.68, has outperformed all other models. We discovered that the perfor-

mance of the other three approaches (Pred-PFR, FoldRate, and SWFoldrate) was worse
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Method R RMSE

ProteinGW 0.81 1.68

Pred-PFR -0.04 3.86

FoldRate 0.17 4.64

SWFoldrate 0.93 5.81

GFT (Graph Fourier) 0.74 1.92

Table 4.1: R and RMSE for modelling Protein folding rate for various methods

to ProteinGW when we evaluated the RMSE for folding rate prediction offered by those

three other methods (Table 4.1).

4.2.2 Comparing Graph Wavelet with Other Graph-Signal Based

Methods

We evaluated our methodology with others that simulate the biophysical characteris-

tics of proteins using protein structure based networks and properties of amino-acid on

nodes. One such technique was recently published (231) and is relied on the graph

Fourier transform. The other technique we employed for comparability is based on con-

volutional neural network, which similarly employs graph structure to aggregate signal

from an input vector of measured amino acid property. Deep learning based Convolu-

tional Neural Network (CNN) has achieved great success in the area of protein function

modelling, however it requires a large number of data samples to train a network of

deep learning. In general, obtaining a large enough sample size for training is too chal-

lenging, and given the limitations of a limited dataset, overfitting is most prone to occur.

However, we may utilise the Fourier transform to determine the signal amplitudes

needed to accurately recreate any signal (231). The Fourier transform does have the

fundamental restriction that all signal properties must be considered globally. However,

wavelet transform effectively accesses localised signal information by representing the

signal in both the temporal and frequency domains (218). In order to assess the robust-

ness and consistency of these approaches, we examined the performance of CNN, GFT,

and ProteinGW when a smaller fraction of the training dataset was used.

In order to assess the performance of the model when trained with fewer data
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Figure 4.2: Performance of several machine learning models after feature extraction
using the graph-wavelet method utilising five fold cross-validation. For
the purpose of modelling the categorization of transmembrane and glob-
ular proteins, (A) MCC, Accuracy, Macro-F1, and ROC-AUC are com-
pared. XgBoost, AdaBoost, KNN, Gaussian Naive Bayes, logistic regres-
sion, SVM, and random forest are machine learning models that are com-
pared.For modelling the classification of soluble and insoluble proteins by
machine learning models, (B) MCC, Accuracy, Macro-F1, and ROC-AUC
are compared. (C) MCC, Accuracy, Macro-F1, and ROC-AUC are com-
pared for modelling classification of all-alpha and all-beta proteins. (Mishra
et. al. (249))
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Figure 4.3: A) correlation value (R) for estimating the rate of protein folding is pre-
sented. The machine learning models are supplied with features taken from
ProteinGW. Comparisons are made between ElasticNet, Decision Tree,
Random Forest, KNN, SVR, Ridge, Lasso, and Linear Regression. (B) The
plot shows models’ Root mean squered error (RMSE) FOR protein folding
rate prediction. (Mishra et. al. (249))
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points, we successively reduced the number of training samples for modelling trans-

membrane/globular properties. The results are shown in Figure 4.4, where the Macro-

F1 Score for ProteinGW ranges from 0.87 at nearly all fractions. However, for all

quantities of training data, the performance of the graph-classifying CNN (232) is sig-

nificantly worse. Additionally, when this proportion is marginally decreased, CNN’s

performance gradually deteriorates. As shown in Figure 4.4, we have also contrasted

our approach with the graph Fourier transform-based filtering approach (231). The per-

formance of the graph wavelet is consistently 92 percent in terms of accuracy even when

just 50 percent of the training data is used.

We also compared all-α and all-β classification, and found that ProteinGW consis-

tently performed well even when the number of training data points decreased (Figure

4.4). While CNN model accuracy decreased further between 0.66 to 0.59, ProteinGW

accuracy decreased from 0.80 to 0.78 at the 50 percent of the training set. Additionally,

GFT accuracy was 0.67 to 0.53.

The results of a more thorough evaluation for solubility are shown in Figure 4.4. As

training data was trimmed from 85 to 50% of the total training data, the ROC AUC for

ProteinGW changed from 0.73 to 0.66. For GFT, it varied between 0.63 and 0.59. Sim-

ilar to CNN, the range was 0.61 to 0.58. Overall, such research shows that our strategy

performs better at all fractions of the training set than other investigated methods.

4.2.3 Pattern and Importance of Graph Wavelet-based Feature Scores

of Amino Acids in Determining Protein’s Biophysical Prop-

erty

The technique of multispectral decomposition method to analyse the protein residue

interaction network with the signal on the node has rarely been used so far. Therefore,

it is crucial to study the characteristics of features extracted and get insights of their

pattern. For each protein function modelling, we looked at the pattern in the ranking of

the scores based on the multispectral representation of the physicochemical and network

characteristics of amino-acid residues. From the random forest machine learning model,

we retrieved the significance of the graph wavelet-based feature score (GWFS) at four

scales.
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Gene Name Mutation Disease References

LMNA
p.Arg25Pro
(6YF5)
(rs61578124)

Emery-Dreifuss muscular
dystrophy 2, autosomal
dominant (EDMD2)
[MIM:181350]

https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P02545
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.1463

CDKN2A
p.Met53Ile
(2A5E)
(rs104894095)

Melanoma, cutaneous
malignant 2 (CMM2)
[MIM:155601]

https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P42771

CA2
p.His94Tyr
(1V9E)
(rs id not available)

Osteopetrosis,
autosomal recessive 3
(OPTB3) [MIM:259730]

https://www.uniprot.org/docs/humsavar

CDKN2A
p.Val95Ala
(2A5E)
(rs id not available)

Non-small cell lung
carcinoma

https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P42771

CDKN2A
p.Glu119Gln
(2A5E)
(rs id not available)

A biliary tract tumor https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P42771

EPHB4
p.Glu59Lys
(2BBA)
(rs1584667224)

Capillary malformation-
arteriovenous malformation 2
(CMAVM2) [MIM:618196]

https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P54760

LMNA
p.Arg50Pro
(6YF5)
(rs60695352)

Emery-Dreifuss muscular
dystrophy 2, autosomal
dominant (EDMD2) [MIM:181350]

https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P02545
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.1463

MET p.His150Tyr
(rs1436957498) - https://www.uniprot.org/docs/humsavar

ABO p.Glu223Asp
(rs id not available) - https://www.uniprot.org/docs/humsavar

ABO p.Arg176Gly
(rs387907096) - https://www.uniprot.org/docs/humsavar

EPHA3 p.Lys207Asn
(rs200567888)

A pancreatic ductal
adenocarcinoma sample

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935892/
https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/uniprot/P29320

Table 4.2: Details of Protein mutation sites for case studies

Protein Folding Rate: Conservation score, node-weighted degree, refractive index,

node degree, and residue frequency signals at scale 4 (low frequency) were the features

most crucial for describing protein-folding rate, whereas hydrophobicity and polarity

had little significance at scale 1 (high frequency). Similarly, scale 3 polarity and the

conservation score both seemed to be somewhat significant (Figure 4.6A). Since low

frequencies (high scales) in wavelet transform correspond to a signal’s global informa-

tion (or the concentration of many interactive residues with the same physiochemical

property), it follows that a high folding rate occurs when many residues with a given

property (such as node-degree or refractive index) are connected to one another. The

folding rate is slower, however, if there are smaller clusters of these densely coupled

residues or if the structure is made up of smaller modules.

Transmembrane-Globular: Additionally, we determined how crucial the char-

acteristics of amino acids and how they are distributed on the residue-graph are for

classifying globular and transmembrane proteins (see Figure 4.6C). Based on random

forest-based classifiers, the most prominent characteristics were polarity and molecular

weight at scales 1 and 4. This outcome may be explained by the fact that polar amino

acids with lower interactivity are found at the surface of proteins with greater globu-

larity (higher value of high-resolution signal at scale-1). Transmembrane proteins, in

106



contrast, contain nonpolar amino acids scattered throughout their surface such that polar

amino acids interact with one another at the protein’s core, resulting in a higher value

for the low-frequency spectrum of polarity at scale-4 of polarity (Figure 4.6C). The

coiled-coil tendency, whose low-frequency component seems to be significant, can be

supported by a similar reasoning. It suggests that globular proteins may include bigger

modules of interacting residues with a high propensity for coiling. Refractive index at

wavelet scales 1 and 2 and turn tendency at scales 1 and 3 were other intriguing patterns

in the significance of GWFS for modelling transmembrane/globular features.

α-β: The categorization of alpha and beta proteins (Figure 4.6B) also revealed that

molecular weight, coil tendency, compressibility, and bulkiness at scale 4 were the most

important factors. Alpha proteins would have bigger modules of interacting residue

with a strong coil propensity since it is widely known that coiled-coil structures stabilise

alpha-helices.

Solubility: However, our model indicated that scale 4 (poor resolution) refractive

index seemed to be more significant than other feature scores for identifying soluble and

insoluble proteins. Flexibility, node degree, residue frequency, and partial specific vol-

ume at scale 1 were other characteristics that had discernible value (Fig 4.6D). Overall,

the significance of GWFS matching to a few residue characteristics and wavelet scales

offers insights into the interactions between various kinds of amino acids to create var-

ious modules.

4.2.4 Graph Wavelet-based Features add Explainability About the

Effect of Mutations on Protein’s Biophysical Property

The benefit of our method is that it measures the multispectral magnitude of the score

of significant and predictive characteristics for each amino acid. For instance, we may

obtain the multispectral score based on graph of the most important predictive indicator

(polarity) for each amino acid for the transmembrane/globular proteins classification.

The significance of each amino acid in defining the type of protein—transmembrane

or globular—can be explained using the feature score information for each amino acid.

As a result, we looked at the effectiveness of our approach for determining a poten-

tial mechanism behind the impact of disease-associated mutations. With the use of the
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Figure 4.4: Comparison of ProteinGW with other methods and feature-weights for their
amino-acid properties. (A) Accuracy of protienGW, convolutional neural
network (CNN) and graph Fourier Transform (GFT) at the different num-
ber of training data points, The training fraction is reduced from 0.85 to
0.50. The importance of the feature score was calculated using a Random
forest-based model for Solubility,Transmembbrane-Globular, All alpha-all
beta (B) Similarly, AUROC is shown. (C) Here, F1-score is shown for all 3
properties. (Mishra et. al. (249))

UNIPROT (198) and HuVarBase (HUmanVARiantdataBASE) databases, we selected

the disease-associated mutations in proteins utilized in our work for modelling protein

globularity and folding rate (219). We were able to use our model to explain the poten-

tial effects of the mutations listed in Table 4.2. This explanation is described in more

detail below.

Case studies based on Transmembrane/Globular property of Proteins

We investigated GWFS percentile scores at each amino acid’s for the top features deter-

mined by feature-importance reported by random forest classifiers. Further, we eval-

uated at whether their mechanism of impact could be explained by high percentile

scores GWFS for top predictive features for an amino acid for globularity prediction.

For instance, a mutation in arginine to glycine/proline at mutation site 25 in one of
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Figure 4.5: Benchmarking of Protein Solubility prediction methods.

the globular proteins Lamin A 17-70 coil1A dimer maintained by C-terminal capping

(PDB ID:6YF5) has been linked to Emery-Dreifuss muscular dystrophy 2 (autosomal

dominant form) (219) (EDMD2). Our preliminary study reveals that the corresponding

mutation site has a comparatively higher than average polarity-based GWFS i.e nearly

75th percentile across all amino acids based on the average of all layers. In the PDB

structure Lamin A (6YF5), we also discovered a second mutation at position 50 that

is associated to EDMD2 (autosomal dominant). Additionally, the average GWFS for

residue 50 in the LAMIN A structure (PDB id: 6YF5) is relatively high i.e 75% per-

centile (Figure 4.7A). Both of the residue sites (25 and 50) in 6YF5 had ranks below

72 percentile in the fourth layer of wavelet, which is crucial for modelling globularity,

when we computed layer-wise GWFS for polarity (Figure 4.7).

multirow, makecell

The Human EphA3 Kinase Protein, which is most often mutated in lung cancer

and other malignancies such as melanoma, glioma, and pancreatic (233) (234), as well

as hepatocellular carcinoma and head and neck squamous cell carcinoma (233), was

another site where we discovered high polarity based GWFS. The mutation in residue

site 207 from leucine to asparagine is known to be related with the disorder pancre-

atic ductal adenocarcinoma, and it can be seen in the structure of the human EphA3

kinase domain in association with the inhibitor AWL-II-38.3 (PDB ID: 3DZQ) (Po-

sition:207). Among all amino acids, the polarity-based GWFS at position 207 is the

109



Method Error
Error
Statistic

Reference

Pred-PFR 2.03 RMS Error Shen H-B, Song J-N, Chou K-C.
Prediction of protein folding rates from
primary sequence by fusing multiple
sequential features, Journal of
Biomedical Science and Engineering
2009.

FoldRate 2.03 RMS Error Kuo-Chen C, Hong-Bin S. FoldRate: A
web-server for predicting protein folding
rates from primary sequence, The Open
Bioinformatics Journal 2009;3.

SWFoldRate 2.27
Standard
Error

Cheng X., Xiao X., Wu Zc et al.
Swfoldrate:Predicting protein folding
rates from amino acid sequence with
sliding window method, Proteins:
Structure, Function, and Bioinformatics
2013;81:140-148.

Graph
Fourier
based

1.92 RMS Error Srivastava D, Bagler G, Kumar V. Graph
Signal Processing on protein residue
networks helps in studying its
biophysical properties, bioRxiv 2021.

Graph
wavelet
based

1.685 RMS Error Our Objective

Table 4.3: Benchmarking various Protein folding rate prediction methods.

highest (85.63). We also discovered another protein EPHB4 kinase domain inhibitor

complex with a mutation (Glutamic acid to Lysine at position 59) known to be related

with Capillary malformation-arteriovenous malformation within our collection of PDB

structures used to mimic globularity (PDB ID: 2BBA). According to our analyses, the

polarity of residue 59 in the structure of EPHB4 kinase has a high percentile score

(81.422). Figure 4.7 displays the key top predictive feature percentile scores for the

proteins mentioned above. the wavelet level-wise rank and average percentile of the

polarity-based GWFS.

Using our trained model for the transmembrane/globular properties of proteins, we

further examined the effects of mutations via a change in estimated globularity. Upon
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substituting proline for arginine (at Position:25), the predicted likelihood of Lamin A

structure (6YF5) being globular dropped only by 15% (from 0.71 to 0.60). (Figure 4.7).

The predicted chance for the Lamin A structure (PDB ID: 6YF5) to be globular reduced

from 0.79 to 0.58. We also calculated changes in expected likelihood for globularity af-

ter simulating mutations at 10 randomly selected residue sites on the Lamin A structure

(6YF5). Ten random mutations had an average effect on globularity probability that was

almost equivalent to replacing residues at positions 25 and 50. On the other hand, the

projected likelihood after the mutation from glu to asp at position 223 in the transmem-

brane protein structure of Histo-blood group ABO system transferase (PDB Id:4Y63)

was dropped by 40%. ( from 0.99 to 0.55). The chance of transmembrane property

decreased by around 25% as a result of 10 random mutations in the Histo-blood Group

ABO System Transferase (PDB Id:4Y63) at the same time. Similar to this, after muta-

tions at residues 207 and 59 in transmembrane proteins with PDB IDs 3DZQ(EphA3)

and 2BBA(EPHB4), respectively, the chance of becoming trans-membrane decreased

from 0.86, 0.96, to 0.41, 0.38. EphA3’s mutation Lys207Asm significantly reduces

transmembrane likelihood by more than 50%, supporting the theory that EphA3 may

have lost its surface localisation, which has been linked to cancer formation (234). Only

25% of the protein structures 3DZQ and 3BBA were reduced by the simulated muta-

tions at 10 random sites. The likelihood that the protein belonged to the transmembrane

class before and after the mutation in Histo-blood Group ABO System Transferase

(4Y63, Glu223Asp) is also depicted. Overall, our findings suggested that a plausi-

ble reason for the negative effects of matching mutations is the loss of transmembrane

characteristic caused by mutation at a position with increased polarity based GWFS (

Glu223Asp in Histo-blood Group ABO System Transferase, Lys207Asm EphA3 and

Glu59Lys in EPHB4). However, for the LAMIN A structure, the GWFS of polarity at

the corresponding residue were not that high and the reduction in globularity caused by

the simulated mutations at residues 25 and 50 was not very significant, suggesting that

the aforementioned mutations may have another mechanism of action ( Arg25Pro and

Arg50Pro).
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Figure 4.6: Graph wavelet-based features scores (GWFS) on various scales in
simulating protein biophysical properties A) Protein-folding rate mod-
elling with four wavelet scales scores is illustrated. Plot shows that at scale
4 (corresponding to low frequency), conservation score, node weighted de-
gree, refractive index, node degree, and residue count are critical, but po-
larity is more significant at scale 1. Similar to this, polarity at scale 3 also
seemed to be important. (B) 4 wavelet scales for distinguishing all-alpha
and all-beta proteins are shown. The most relevant features were molecu-
lar weight, coil propensity, compressibility, and bulkiness at scale 4. In a
similar way, (C) polarity, molecular weight at scales 1 and 4, conservation
score at scale 3, coil tendency at scale 4, refractive index at scales 1 and 2,
and turn tendency at scales 1 and 3 have shown to be more significant for
transmembrane-globular. (D) Similarly, the refractive index at scale 4 and
flexibility, node degree, residue frequency, and partial specific volume at
scale 1 seemed to be more significant for the categorization of soluble and
insoluble proteins. (Mishra et. al. (249))

Case Studies on the effect of mutations on Folding rate

For the proteins used in predicting protein folding rate, we additionally compiled known

disease-associated mutations for those proteins. After aggregating their values at four

levels of the wavelet spectrum, we looked at percentile scores for significant features in

protein folding rate prediction. One such protein is the tumour suppressor P16INK4A
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(PDB id: 2A5E), which has a mutation that links it to cutaneous malignant melanoma at

position 53 (Met53Ile). A high percentile score for conservation (76.76) and a compar-

atively higher percentile score for flexibility can be noted for the corresponding residue

position 53. (Figure 4.8). We also investigated two other mutations in the protein

P16INK4A that have been associated to non-small cell lung cancer: glucine to glycine

at residue position 119 (Glu119Gln) and valine to alanine at residue 95 (Val95Ala).

We took into consideration the crystal structure of bovine carbonic anhydrase II

(CAII) (PDB id: 1V9E), as osteopetrosis is associated with a mutation in its human

homologue at position 94 (histidine to tyrosine). Based on conservation, the refrac-

tive index, which emerged as a crucial component for folding rate, the relevant region

in Bovine CAII protein has a marginally high GWFS ( Figure 4.7A). We also utilised

our pre-trained model to see whether the estimated protein folding rate changed as

a result of the disease-causing mutations at the specified regions. Figure 4.7B dis-

plays the modifications in protein folding rate brought on by simulated mutations.

Changes for 2A5E (Met53Ile) and 1V9E (His94Tyr) were 4.10809 and 12.11, respec-

tively (526 percent change). The changes are 4.10527 and 4.10739 for 2A5E(Val95Ala)

and 2A5E(Glu119Gln), respectively. The impact of mutations at random locations on

the rate of protein folding in the protein structures 2A5E and 1E9E was not consis-

tent with the research on deleterious mutations here. Even while we discovered that

mutations significantly affected folding rate, this cannot be proved as the origin of the

mutation’s deleterious attribute. However, our approach has the ability to provide a

hypothesis about how the deleterious mutation affect folding rate, which may aid re-

searchers in developing relevant tests.

4.3 Discussion

Our research reveals a broadly applicable use of spectral graph wavelets for protein fea-

ture extraction. The possibility for these traits to be used to modelling different physical

properties of proteins has been combined by ProteinGW. ProteinGW uses spectral graph

wavelets to explain the understanding of the global and local significance of a feature for

improved protein property prediction. To further filter the signal noise, our technique

additionally determines an ideal threshold for each residue wavelet coefficient. We have
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Figure 4.7: Transmembrane/globular property in effect of disease caus-
ing mutation(A)Percentile Scores of top features for proteins
PDB:3DZQ(EPHA3),2BBA(EPHB4),6YF5(LMNA),6YF5(LMNA),4Y63(ABO
gene).Average value for features across all four wavelet spectrum is
shown.(B)Probability of proteins before,after mutation of original class.For
control,average change in probability for mutations at 10 random sites is
shown for every protein.(C)Visualization of 4Y63 mutation site. (Mishra
et. al. (249))
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Figure 4.8: Assessing impact of disease-causing mutation on folding rate(A) Percentile
Scores for top features for proteins 2A5E (Met53Ile, Melanoma), 1V9E
(His94Tyr, Osteopetrosis), 2A5E (Val95Ala, Non-small cell lung carci-
noma), and 2A5E(Glu119Gln, A biliary tract tumor) are bulkiness, conser-
vation score, flexibility, refractive index, clustering coefficient, partial spe-
cific volume, residue frequency, and molarity . (B) The difference in rate of
protein folding before and after a mutation. Every protein’s average change
in likelihood due to mutations at 10 random locations is also shown. (C)
A visual representation of the 2A5E mutation site (Met53Ile, Melanoma,
and Cutaneous Malignant) and the anticipated, actual, and changed protein
folding rates. (Mishra et. al. (249))

shown the effectiveness of our technique for classifying transmembrane, globular, solu-

ble, all-alpha, and all-beta proteins as well as for estimating the rate of protein folding.

Nevertheless, every protein attribute may be modelled using the suggested technique.

In order to predict four protein attributes, our technique has also exceeded CNN and

feature extraction using the Graph Fourier transform. We also contrasted RMSE with

three other approaches in order to assess the folding rate prediction.

The fact that the graph-based Fourier technique does not allow for evaluating the

impact of each amino acid on the biophysical properties of proteins is a significant

disadvantage. The graph-wavelet based technique, on the other hand, enables the in-

115



vestigation of each residue’s impact and the prediction of its relationship with known

deleterious consequences (disease-causing mutation). As a result, ProteinGW demon-

strates explainability to wavelet-based predictive modelling, which helps users have a

better understanding of the significance of each feature for each individual property.

Given that the training set for ProteinGW only contains four attributes, it is not essen-

tial that it will always identify the potential mechanism of a mutation’s impact. In such

situation, it may be found in silico. The results of our analysis, for instance, point to

potential connections between the proteins EPHA3 (PDB id: 3DZQ), LMNA (PDB

id: 6YF5), EPHB4 (PDB id: 2BBA), and polarity score at residue sites 207, 50, and

59, respectively, which may be the cause of these proteins’ well-known associations

with various disorders. The effects of the simulated mutations at a single important

residue site (Glu59Lys and Glu207Asm) were substantially greater, especially for the

cell membrane proteins EPHB4 and EPHA3. These findings demonstrate how a little

change in the signal of an amino acid’s physiochemical properties, without altering the

residue-interaction graph, may have a significant impact. The 3-dimensional modular

organisation of physicochemical effects like hydrophobicity and the strategic arrange-

ment of residues connecting various modules may be the root cause of such a broad

impact. The community of related residues having the same physicochemical attribute

signals is described in this module. Therefore, the pattern of linked components of

the physicochemical signal at various resolutions, in addition to the structure of the

residue-interaction graph, also determines the significance of a residue. Our approach

can identify these patterns in the structure of proteins and utilise them to produce a hy-

pothesis about the impact of exonic mutations that can then be used for a more thorough

investigation.

In the field of predicting the impact of mutations on protein function and dynamics,

various methods have been proposed. Sequence-based methods, such as SIFT/CADD or

PolyPhen, primarily utilize protein sequences and their associated characteristics, such

as the position-specific substitution matrix (PSSM). On the other hand, structure-based

methods typically employ machine learning techniques that rely on training datasets.

However, the influence of an individual amino acid on specific protein properties is

often not well understood, which leads to skepticism among researchers regarding the

reliability of predictive methods, particularly for new protein structures. To address this

concern and enhance the confidence in predictive models, we have taken further steps
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in our research.

In addition to predicting the effect of mutations, we have incorporated the estima-

tion of the importance of multispectral features and the incorporation of explainability

within machine learning models. By considering multiple spectral features, we aim to

capture a broader range of information that could influence protein properties and better

assess the impact of mutations. Furthermore, the inclusion of explainability techniques

enables us to gain insights into the reasoning behind the predictions made by machine

learning models, making the results more interpretable and transparent.

By integrating these additional steps into our approach, we strive to improve the

reliability and trustworthiness of mutation effect predictions. We acknowledge the need

for a comprehensive understanding of the factors affecting protein properties and seek

to provide researchers with a more robust framework for predicting the effects of muta-

tions on protein function and dynamics.

Our study of the residue interaction network using graph wavelet transform also

provides a way to categorise proteins. The issue of structure-based categorization of

proteins (SCOPE) has persisted, but in the post-genome-sequencing age, it’s also crit-

ical to understand the impact of mutations. ProteinGW’s ingenious use of the graph-

wavelet has potential for fixing both challenges. Finally, the unsupervised classification

of proteins may benefit from feature extraction from protein structures utilising graph-

wavelet based on ProteinGW. As a result, ProteinGW may prove to be a valuable tool

for many studies. ProteinGW has the drawback of relying on a training set to report

the potential effects of mutations. Let’s say a mutation affects a protein’s biophysical

characteristic for which there is a scarcity of training data. In such instance, adopting a

graph-wavelet based strategy to emphasise the precise mechanism of its influence may

not be simple. Therefore, in the future, we intend to accumulate additional training sets

for many different protein features.
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CHAPTER 5

Conclusion

Due to the diversity of illnesses, omics markers of disease are crucial for personalized

therapy. Despite the development of computational tools, there are still just a few tech-

niques that can capture the latent interactions between the many genes and amino acids

that make up proteins. This gap may be filled by the graph-based learning technique,

both supervised and unsupervised, which enables the creation of physiologically driven

learning problems on graphs. Utilizing a collection of tools for processing graph sig-

nals—functions defined over the vertices in a graph—we used graph signal processing.

Therefore, the goals we met in our thesis study are as follows.

5.1 Summary of Contribution

5.1.1 Denoising Large Read Count Matrices of Single-cell Expres-

sion Profiles with Graph Signal Processing for Better Net-

work Inference

Unprecedented information on the effects of internal and external influences may be

learned by using a regulatory-networks based technique for single-cell expression pro-

files. The accurate estimate of gene and regulatory connections might be hampered

by noise and batch effects in sparse single-cell expression profiles. Here, we provide a

theoretically novel technique for enhancing GWNet-based transcriptome analysis utilis-

ing graph-wavelet filters. Multiple gene-network inference techniques performed better

owing to our approach. Most importantly, even in the presence of batch effect, GWNet

enhanced consistency in gene-regulatory network prediction using single-cell transcrip-

tome. The projected gene network’s consistency allowed for accurate estimations of the

changes in the effect of genes that were not specifically emphasised by the differential-

expression study. When GWNet was applied to the single-cell transcriptomic profiles of

lung cells, it was discovered that ageing had a physiologically significant impact on the



effect of pathways and master-regulators. Surprisingly, patterns caused by the effects

of a new coronavirus infection in the human lung and the regulatory impact of age on

pneumocyte type II cells exhibited a notable resemblance.

One advantage of our type of evaluation is that it may identify a few particular

therapeutic targets that need more research. In clinical trials for pulmonary fibrosis,

a kinase named JNK that binds and phosphorylates c-Jun is being examined. Treat-

ment with androgen deprivation has shown to provide a limited degree of protection

against SARS-COV-2 infection. In keeping with this tendency, our study suggests that

Etv5 may also be a therapeutic target to lessen the impact of age-related RAS pathway

activation in the lung.

5.1.2 Graph based Integration of Large Single-cell Epigenome Pro-

files with Different Batch Effects

The proposed graph based co-embedding of scATACseq and scRNAseq demonstrated

the advantages of mapping single-cell epigenomes to reference-cell profiles. Results

based on knowledge-oriented reference-based edge weight learning surpassed integra-

tive approaches like Seurat, LIGER, and Conos. It also revealed a pattern that showed

superior embedding of open-chromatin profiles when distance was calculated based on

projection on reference cell profiles for feature extraction and cell distance calculation

than with SCALE, MINT, and SCANORAMA or other latent feature extraction tech-

nique. Moreover, when latent features are learnt using other methods, features in mi-

nority populations of cells that would have been masked by characteristics of cell-states

in the majority might have been highlighted by clustering with reference cells.

Single-cell epigenome profiles are accurately and robustly mapped on large pool

of reference expression profiles and matching cells are interpreted in a meaningful way

using our proposed methodology. Technical and batch biases, such as cell-to-cell vari-

ability in signal i.e peak accessibility and noise, differing read-depths, methods, plat-

forms, and labs, make this problem difficult to solve. Hence, in order to minimize batch

and technical biases, our technique relies on median expression of top genes and peaks,

rather than distance-based or latent feature extraction methods.

The devised method, which uses a graph-based approach, aids in discovering ac-
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curate distances (edge-weights) between cells from varied species/batches with various

peak lists. A unique method for calculating the distance between cells by projecting

them upon a reference pool of datasets is included. The method relies on knowledge-

based learning of edge weights between cells, which leads to a significant improvement

in the joint embedding of cells. This helps to get rid of the batch effect and establish a

reliable cell neighbourhood.

By jointly embedding query datasets on the basis of knowledge from reference

profiles, this method produces useful patterns in disease profiles. The approach also

shows applications like results pointing to varied levels and varieties of de-differentiated

MPAL profiles. The flexibility and ability to flip lineages of MPAL profiles may be ex-

plained by their co-embedding with various progenitor cells.

As a result, reference-based edge-weight learning produces co-embedding and demon-

strates other applications, including understanding the dedifferentiated states of cancer

cells, highlighting imprints within individual cells that are a sign of apoptosis and a

stress response in a subpopulation of embryonic stem cells, evaluating the enhancer

landscape activity in single-cells, incorporating more single-cell histone modification

datasets, and providing a powerful reference based search for query cells for key epi-

genetic regulators.

5.1.3 Explainable Predictive Model using Graph-Wavelet for Mod-

eling Biophysical Properties of Proteins and Measuring Mu-

tational Effects on Diseases

Integrative analysis techniques are required in the present post-genomic age to integrate

data from protein structures with other relevant information to assess their biophysical

characteristics and the consequences of non-synonymous mutations. Proteins include

multispectral patterns of various physicochemical properties of amino acids, which may

be used to understand how proteins behave. In order to describe the biophysical char-

acteristics of amino acids, we here offer a technique based on the graph-wavelet trans-

form of signals of features of amino acids in protein residue networks based on their

structures. Additionally, it fared better than approaches based on convolutional neural

networks and graph Fourier in predicting the physicochemical characteristics of pro-
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teins. Our technique can quantify the impact of each amino acid on the physicochemical

characteristics of proteins, even though it cannot forecast harmful mutations. Such an

assessment of amino acid effects has the ability to elucidate the mechanism behind the

detrimental non-synonymous mutation effect. Therefore, for better categorization and

deeper comprehension, our technique may highlight patterns of distribution of amino-

acid characteristics in the context of a biophysical feature in the structure of the protein.

5.2 Future Work

In order to improve denoising using GWNet, it is required to replace hard thresholding

with automated system to find appropriate threshold for each dataset and there is a need

to find an automated method to find value of "k" in KNN based graph which is initially

built between cells.

However for scEpiSearch, future plans include expanding the use of single-cell hi-

stone modification datasets, evaluating enhancer landscape activity in single-cells, and

providing an effective search engine for key epigenetic regulators.

ProteinGW has the drawback of relying on a training set to report the potential

effects of mutations. Let’s say a mutation affects a protein’s biophysical characteristic

for which there is a dearth of training data. In such instance, adopting a graph-wavelet

based strategy to emphasise the precise mechanism of its influence may not be simple.

Therefore, in the future, we intend to amass additional training sets for many different

protein features.
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