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ABSTRACT

Artificial neural networks (ANNs) have occupied the centre stage in deep learning. An

activation function is a crucial component in the neural network, which introduces the

non-linearity in the network. An activation function is considered good if it can gener-

alise better on a variety of datasets, ensure faster convergence and improve neural net-

work performance. The Rectified Linear Unit (ReLU) has emerged as the most popular

activation function due to its simplicity though it has some drawbacks. To overcome

the shortcomings of ReLU (non-smooth, non-zero mean, negative missing, to name a

few), and to increase the accuracy considerably in a variety of tasks, many new acti-

vation functions have been proposed over the years like Leaky ReLU, ELU, Softplus,

Parametric ReLU, ReLU6 etc. However, all of them provides marginal improvement

over ReLU. Swish, GELU, Padé activation unit (PAU), and Mish are some non-linear

smooth activations proposed recently which show good improvement over ReLU in a

variety of deep learning tasks.

ReLU or its variants are non-smooth (continuous but not differentiable) at the origin

though smoothness is an important property during backpropagation. We construct

several smooth activation functions, which are approximation by a smooth function of

ReLU, Leaky ReLU or its variants. Some of these functions are hand-engineered, while

some come from underline mathematical theory. All these functions have shown good

improvement over ReLU or Swish in the variety of standard datasets in different deep

learning problems like image classification, object detection, semantic segmentation,

and machine translation.

KEYWORDS: Smooth Activation Function ; Artificial Neural Network ; Deep

Learning
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CHAPTER 1

INTRODUCTION

Deep artificial neural networks (ANNs) are made up of several hidden layers, while

each hidden layer consists of several neurons. At the level of each neuron, an affine

linear map is composed with a nonlinear function known as activation function. During

the training of an ANN, the linear map is optimized; however, an activation function is

usually fixed in the beginning, along with the architecture of the ANN. There has been

an increasing interest in developing a methodical understanding of activation functions,

particularly with regards to the construction of novel activation functions and identify-

ing mathematical properties leading to better learning (Nwankpa et al. (2018)).

Mathematically speaking, an activation function is a nonlinear mapping f : R � R.

A choice of such an f is considered good if it can generalise well on a variety of

datasets, ensure faster convergence and improve neural network performance, which

leads to more accurate results. During the early stages of deep learning research, shal-

low networks (fewer hidden layers) were used, along with tanh or sigmoid as activation

functions. However as time progressed, and ANNs found more and more success in

various fields of scientific research as well as in real life applications, and the need for

deeper networks (more hidden layers) arose. The research also progressed and such

networks came into fashion to achieve challenging tasks.

Deep neural networks has occupied the center-stage in modern machine learning

research and application. And the activation functions, introducing non-linearity in the

network can be considered to be the brain of the neural network. Consequently, the

choice of activation function in a deep network can have a central role and significant

impact on the performance, effectiveness, and training dynamics of deep neural net-

works.

Consequently, a significant amount of research has been dedicated to design better

activation function in the recent years. The central focus of this thesis too is to construct

novel activation functions that outperform the traditional used functions. We propose

several novel activation functions, most of which consists of trainable parameters and



exhibit how they perform better than the popular ones in several metrics. All activation

functions we construct are infinitely differentiable (smooth).

1.1 Related Works

Designing a new novel activation function is a difficult task. The machine learning

community has so far relied on hand-designed activations like ReLU (Nair and Hin-

ton (2010)), Leaky ReLU (Maas et al. (2013a)) or their variants. ReLU, in particular,

remains widely popular due to faster training times and decent performance. How-

ever, evidence suggests that considerable gains can be made when more sophisticated

activation functions are used to design networks. For example, activation functions

such as ELU (Clevert et al. (2016)), Parametric ReLU (PReLU) (He et al. (2015b)),

ReLU6 (Krizhevsky (2010)), PAU (Molina et al. (2020)), ACON (Ma et al. (2021)),

Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), Swish (Ramachandran

et al. (2017)) etc. have appeared as powerful contenders to the traditional ones. Though

ReLU remains a go-to choice in both research and practice, it has certain well-documented

shortcomings such as non-zero mean (Clevert et al. (2016)), non-differentiability and

negative missing, which leads to the infamous vanishing gradients problem (also known

as the dying ReLU problem). Worth noting that prior to the introduction of ReLU,

Tanh and Sigmoid were popularly used, but performance gains and training time gains

achieved by ReLU led to their decline.

Swish, GELU, Mish, and PAU are a few recently proposed activations, which gained

popularity in the deep learning community. They share similar mathematical proper-

ties like smoothness, non-linearity, non-monotonic, small and bounded negative output.

GELU is a popular activation widely used in Natural language processing tasks and re-

cently used in BERT (Devlin et al. (2018)), GPT-2 (Radford et al. (2019)), and GPT-3

(Brown et al. (2020)) architectures. Swish was found by a group of researchers from

Google by automated neural architecture search and shown promising results com-

pared to ReLU. Mish is recently proposed by Misra, which shown some promising

results on computer vision problems, especially on object detection task in YOLO v4

(Bochkovskiy et al. (2020)) model. PAU has been proposed recently, and it is con-

structed from the approximation of the Leaky ReLU function by rational polynomials
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of a given order. Though PAU improves network performance in the image classifica-

tion problem over ReLU, its variants, and Swish, it has a major drawback. PAU contains

many trainable parameters, which significantly increases the network complexity and

computational cost.

Motivated by these activation functions, we are interested in constructing some ac-

tivations which share similar properties like the widely used activations. Also, they

provides better performance in a wide range of deep learning problems (like Image

classification, Object Detection, Semantic Segmentation, Machine Translation etc.) on

different datasets and models when compared to widely used activations like ReLU,

Leaky ReLU, Swish, GELU, PAU, and Mish.

1.1.1 Types of Activation Functions:

Activation functions can broadly be classified into two types: fixed activation functions

and trainable activation functions.

Fixed activation functions: Fixed activations are handcrafted activations and fixed be-

fore training. They may contain constant hyperparameters but does not contain any

trainable parameters. The following are some well established fixed activation func-

tions.

1. Sigmoid:Sigmoid is a nonlinear activation function and widely used in feed-
forward network in internal networks before ReLU had been proposed. Now,
it is used in output-layer for binary classification problems. Sigmoid is defined as

f(x) =
1

1 + e�x

It has a major drawback that it ranges in 0 to 1 which sometime leads to vanishing
gradient problem.

2. tanh: The hyperbolic tangent, or tanh function was also used before ReLU pro-
posed as activation function. tanh is defined as

f(x) =
ex ⇤ e�x

ex + e�x

tanh ranges between -1 to 1.

3. ReLU: ReLU (Nair and Hinton (2010)) is defined as

f(x) =

(
x if x ⌅ 0

0 if x < 0
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ReLU is popular due to its simplicity though has some drawbacks like "Dying
ReLU" (Maas et al. (2013b)) problem (It happens when a large number of neurons
produce zero output irrespective of any inputs) or non-differentiable at zero.

4. Leaky ReLU: Leaky ReLU (Maas et al. (2013a)) is a variant of ReLU where
a non-negative component has been introduced to overcome the "Dying ReLU"
problem. Leaky ReLU is defined as

f(x; a) =

(
x if x ⌅ 0

ax if x < 0

where a is constant hyperparameter. Leaky ReLU increases the network perfor-
mance marginally compared to ReLU..

5. ReLU6: ReLU6 (Krizhevsky (2010)) is a special case of ReLU where the maxi-
mum value of the function is 6 and the function is defined as

f(x) =

�
⇥⇤

⇥⌅

0 if x < 0

x if 0 ⇧ x < 6

6 if x ⌅ 6

6. ELU: ELU (Clevert et al. (2016)) is a piecewise activation function defined as

f(x; a) =

(
x if x ⌅ 0

a(ex ⇤ 1) if x < 0

a is a hyperparameter controls the values in the negative axis. ELU try to keep
the mean towards zero which leads to faster learning (see (Clevert et al. (2016))
for more details).

7. Softplus: Softplus (Zheng et al. (2015)) is a smooth activation function and can
be viewed as a approximation by a smooth function of ReLU. Softplus is defined
as

f(x) = ln(1 + ex)

8. Sigmoid-weighted linear unit: Sigmoid-weighted linear unit (SiLU) (Elfwing
et al. (2017)) is a smooth activation function. It is the product of linear function
with sigmoid function. Formally, it is defined as

f(x) =
x

1 + e�x

SiLU increases the network performance significantly compared to ReLU.

9. GELU: Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel (2020)) is a
non-linear activation function which can be seen as a approximation by a smooth
function of ReLU. GELU is defined as

f(x) = x.⌃(x) =
x

2
(1 + erf(

x⌃
2
))

4



Figure 1.1: Some widely used fixed activation functions

where ⌃(x) is the cumulative Gaussian distribution function and erf is the Gaus-
sian error function defined as

erf(x) =
2⌃
⌥

Z x

0

e�t2 dt.

GELU can be approximated by

f(x) = 0.5x
⇧
1 + tanh

hp
2/⌥

⌃
x+ 0.044715x3

⌥i�

GELU improves the performance of ReLU and widely used in natural language
processing architectures.

10. Mish: Mish (Misra (2020)) is a popular activation function proposed recently and
is defined as

f(x) = x tanh(ln(1 + ex))

Mish is a smooth non-monotonic, non-linear activation function which usually
provide better performance compared to ReLU and Swish.

Trainable Activation functions: Trainable activation function contains trainable pa-

rameter(s) which is initialized at a point before training and updated during backpropa-

gation. The following are some well established trainable activation functions.

1. Parametric ReLU: Parametric ReLU (PReLU) (He et al. (2015b)) is the train-
able form of Leaky ReLU. PReLU is defined as

f(x; a) =

(
x if x ⌅ 0

ax if x < 0

where a is a trainable parameter. Observe that for a = 0, it is ReLU and if a
is constant, then it is Leaky ReLU. PReLU is continuous, unbounded but non-
differentiable at zero.

2. Swish: Swish (Ramachandran et al. (2017)) is a popular activation function pro-
posed by Google brain team by neural architecture search. Swish is defined as

f(x) =
x

1 + e��x
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Figure 1.2: Some widely used trainable activation functions

Observe that as ⇥ � ⇥, Swish � ReLU. So Swish can be seen as a approxima-
tion by a smooth function of ReLU. Swish outperforms ReLU on variety of large
datasets in large models in different deep learning problems. Swish has a good
potentials to replace ReLU.

3. Padé Activation Unit: Padé Activation Unit (PAU) (Molina et al. (2020)) has
been proposed recently and it is defined as the approximation of known activation
function by rational polynomial approximation known as Padé approximation.
PAU is defined as the approximation of Leaky ReLU using the following form

F2(x) =
P (x)

Q(x)
=

Pk
i=0 aix

i

1 + |
Pl

j=1 bjx
j|

=
a0 + a1x+ a2x2 + · · ·+ akxk

1 + |b1x+ b2x2 + · · ·+ blxl|

1.2 Research Contributions

As discussed in the previous section, two types of activations gain attention from the

research community: (i) Fixed activation function and (ii) trainable activation function.

To on this effect, this thesis primarily focuses on designing new novel activations which

performs better than the widely used activations such as ReLU, Leaky ReLU, Swish

etc. in standard deep learning problems. All the activation that has been proposed in

the subsequent chapters are either designed from some underlying approximation theory

or handcrafted. The proposed functions can be used as trainable activation functions or

fixed activation functions. The proposed activations have been widely tested on standard

publicly available benchmark datasets, and comparisons have been done on the state-

of-the-art models with the widely used activations. The main contributors to this thesis

are as follows:

• Smooth Maximum Unit: ReLU or its variants are non-smooth at the origin.

The functional form of these functions contains absolute function which is non-
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differentiable at the origin. We have replaced the absolute function by two func-

tions which have been approximated by a smooth function. We show that the

resulting function is smooth. It can approximate general maxout (Goodfellow

et al. (2013)) family, ReLU or its variants. We also show that GELU is a spe-

cial case of our proposal. Experimentally, we show that the proposed functions

outperforms widely used functions in bench-marking datasets on standard deep

learning problems.

• Smooth Activation Unit: As discussed earlier, ReLU and its variants are non-

smooth at the origin. Approximation by a smooth function using mollifier and ap-

proximate identities, an activation has been proposed. This function can smoothly

approximate ReLU or its variants. Experimentally it has been shown that the

function outperforms widely used activations in standard deep learning problems

on bench-marking datasets.

• Maximum Activation Unit: This chapter presents that the maximum function

can be written in a special form and then it has been shown that we can smoothly

approximate that special form by some approximation formula. Three smooth

activations have been proposed in this chapter. Experimentally, it has been found

that the propose functions outperforms widely used activations in standard deep

learning problems on bench-marking datasets.

• Orthogonal-Padé Activation Unit: Padé approximation is a well known ap-

proximation by rational function approximation using polynomials. The polyno-

mials have been replaced in both numerator and denominator with some widely

used popular orthogonal polynomials and a special form is proposed. The form

can approximate any continuous function. Leaky ReLU is approximated by or-

thogonal Padé form and the approximated form is a approximation by a smooth

function, it has been named as Orthogonal-Padé Activation Unit (OPAU). Six or-

thogonal polynomial is considered to test their performance. Hermite polynomial

form comes out to be the best choice. Experimentally, it has been found that the

propose functions outperforms widely used activations in standard deep learning

7



problems on bench-marking datasets.

• ErfAct and Pserf: This chapter presents two activations which is called ErfAct

and Pserf. These functions are handcrafted functions like other widely used ac-

tivation’s. Both the functions are constructed using the Gaussian error function.

It is shown that both the functions are approximation by a smooth function of

ReLU. Experimentally, it has been found that the propose functions outperforms

widely used activations in standard deep learning problems on bench-marking

datasets.

• TanhSoft: This chapter presents three handcrafted activations which are named

as TanhSoft-1, TanhSoft-2, and TanhSoft-3. These functions are constructed us-

ing the tanh function. Experimentally, it has been found that the propose func-

tions outperforms widely used activations in standard deep learning problems on

bench-marking datasets.

• EIS: This chapter presents three handcrafted activations which are named as EIS-

1, EIS-2, and EIS-3. Experimentally, it has been found that the propose func-

tions outperforms widely used activations in standard deep learning problems on

bench-marking datasets.

Each subsequent chapters in this thesis provides details about construction and anal-

ysis of the above mentioned activation functions, along with data from several experi-

ments.
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CHAPTER 2

Proposed Problems and Methodology

2.1 Proposed problems

This thesis addresses three points: (1) Proposing novel activation functions that outper-

form the existing activation functions, (2) Making methodical perturbations of modifi-

cations to known activation function to understand how it affects performance, and (3)

Exploring through automated parameter search, extensive classes of functions and their

suitability as activation functions.

There is increasing interest in designing new neural network architecture to boost

network performance in the deep learning domain. An important part of this problem

is the search for novel activation functions, which in recent times has evolved into a

fundamental research problem in deep learning, and the domain requires further explo-

ration. An activation function is the core component of a neural network that introduces

non-linearity. In the early ’90s, tanh and sigmoid were widely used activation func-

tions. Once ReLU was proposed, it gained attention from the deep learning community

and became the default activation for the neural network due to its simplicity. How-

ever, ReLU has some serious drawbacks (non-smooth, negative missing etc.) and to

overcome them, researchers have come up with more sophisticated smooth activation

functions. Two such activation functions proposed only a few years ago, namely, Swish

(Ramachandran et al. (2017)) and GELU (Hendrycks and Gimpel (2020)), have seen an

increase in popularity in the community. These, in a certain sense, can be considered to

be an approximation by a smooth function of the ReLU function, and their usage boosts

network performance compared to ReLU in various deep learning tasks. Motivated by

these new developments in network design via the construction of more evolved activa-

tion functions, this thesis tries to develop novel activation functions that perform better

than the other widely used ones such as ReLU, Swish, ELU, SoftPlus, GELU, PAU, etc.

The thesis proposes activation functions in two different ways: handcrafted and via

the usage of approximation methods. This thesis not only concentrates on constructing



activation functions using the brute force method but also on constructing activation

functions by approximating known activation functions and using various well-known

approximations to the general maximum family. The performance of the proposed acti-

vation functions are evaluated on standard and widely used datasets on four fundamental

and different deep learning problems: image classification, object detection, semantic

segmentation, and machine translation. The performance of the proposed activation

functions is compared with widely used functions like ReLU, Leaky ReLU, Parametric

ReLU, Mish, GELU, Swish, Softplus etc.

2.2 Methodology:

The efficacy of the proposed activation functions are established via empirical evalua-

tion on four different fundamental deep learning problems: image classification, object

detection, semantic segmentation, and machine translation.

For experiments, a comprehensive list of benchmarking datasets was considered.

MNIST, Fashion MNIST, SVHN, CIFAR10, CIFAR100, and Tiny Imagenet were used

for image classification problems. Pascal VOC is considered for object detection prob-

lems. CityScapes is considered for the semantic segmentation problem. WMT2014 has

been considered for the machine translation problem. All the datasets mentioned above

have been historically used for the four important problems mentioned earlier.

We follow the same standard methodology & experimental procedure (problem and

datasets) that previously established popular works like Swish, PAU etc., considered to

establish their method. We also report and compare the running time for each proposed

activation function. To compare the performance and efficiency of our proposed acti-

vation function, we report results with other widely used activations like ReLU, Leaky

ReLU, ELU, SoftPlus, GELU, Swish etc., for each dataset.
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CHAPTER 3

Smooth Activation Unit1

3.1 Introduction

As described in the previous two introductory chapters, two primary methods for con-

structing novel activation are being explored in this thesis: handcrafting activation func-

tions and perturbation of known activation functions. This chapter, in particular, deals

with the later of the two methods. The ReLU or Leaky ReLU is methodically perturbed

to smooth activations, and yet these functions lie close to the original activations from

which they were obtained.

Deep networks form a crucial component of modern deep learning. Non-linearity is

introduced in such networks by using activation functions, and the choice substantially

impacts network performance and training dynamics. Designing a new novel activation

function is a difficult task. ReLU remains the favourite choice among the deep learning

community due to its simplicity and better performance when compared to Tanh or Sig-

moid. However, it has a drawback known as dying ReLU, in which the network starts

to lose the gradient direction due to the negative inputs and produces zero outcomes.

In 2017, Swish (Ramachandran et al. (2017)) was proposed by the Google brain team.

Swish was found by automatic search technique, and it has shown some promising per-

formance across different deep learning tasks.

3.2 Related works and Motivation

Handcrafted activations like Rectified Linear Unit (ReLU) (Nair and Hinton (2010)),

Leaky ReLU (Maas et al. (2013a)) or its variants are very common choices for acti-

vation functions and exhibits promising performance on different deep learning tasks.

There are many activations that have been proposed so far. Some of them are ELU
1This chapter is a slightly modified version of the paper in Arxiv Biswas et al. (2021d).



(Clevert et al. (2016)), Parametric ReLU (PReLU) (He et al. (2015b)), Swish (Ra-

machandran et al. (2017)), Padé Activation Unit (PAU) (Molina et al. (2020), ACON

Ma et al. (2021), Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), ReLU6

(Krizhevsky (2010)), Softplus (Zheng et al. (2015)) etc. Activation functions are usu-

ally handcrafted and fixed before training. PReLU (He et al. (2015b)) tries to overcome

this problem by introducing a learnable negative component to ReLU (Nair and Hin-

ton (2010)). Maxout (Goodfellow et al. (2013)) and Mixout (Hui-zhen Zhao (2017))

are constructed with piecewise linear components, and theoretically, they are universal

function approximators, though they increase the number of parameters in the network.

Recently, meta-ACON (Ma et al. (2021)), a smooth activation, has been proposed,

which is the generalization of the ReLU and Maxout activations and can smoothly

approximate Swish. Meta-ACON has shown some good improvement on both small

models and highly optimized large models. PAU (Molina et al. (2020)) is a promising

candidate for trainable activations, which have been introduced recently based on ra-

tional function approximation. However, PAU contains a large number of parameters

which increase the computational complexity of the network.

3.3 Research Contribution

In this chapter, we introduce a smooth approximation of known non-smooth activation

functions like ReLU or Leaky ReLU based on the approximation of identity. To vali-

date the performance of the proposed activation function, a wide range of experiments

have been conducted on four important and different deep learning problems like image

classification, object detection, semantic segmentation, and machine translation. The

results are reported in the experiment section.

3.4 Mathematical formalism

3.4.1 Convolution

Convolution is a binary operation, which takes two functions f and g as input, and

outputs a new function denoted by f ⌥ g. Mathematically, we define this operation as

12



follows

(f ⌥ g)(x) =
Z ⇥

�⇥
f(y)g(x⇤ y) dy. (3.1)

The convolution operation has several properties. Below, we will list two of them which

will be used larter in this article.

P1. (f ⌥ g)(x) = (g ⌥ f)(x),

P2. If f is n-times differentiable with compact support over R and g is locally inte-
grable over R then f ⌥ g is at least n-times differentiable over R.

Property P1 is an easy consequence of definition (3.1). Property P2 can be easily

obtained by moving the derivative operator inside the integral. Note that this exchange

of derivative and integral requires f to be of compact support. An immediate conse-

quence of property P2 is that if one of the functions f or g is smooth with compact

support, then f ⌥ g is also smooth. This observation will be used later in the article to

obtain smooth approximations of non-differentiable activation functions.

3.4.2 Mollifier and Approximate identities

A smooth function ⌃ over R is called a mollifier if it satisfies the following three prop-

erties:

1. It is compactly supported.

2.
R
R ⌃(x) dx = 1.

3. lim
⇥⇤0

⌃⇥(x) := lim
⇥⇤0

1

�
⌃(x/�) = ⌅(x), where ⌅(x) is the Dirac delta function.

We say that a mollifier ⌃ is an approximate identity if for any locally integrable

function f over R, we have

lim
⇥⇤0

(f ⌥ ⌃⇥)(x) = f(x) pointwise for all x.

13



3.4.3 Smooth approximations of non-differentiable functions

Let ⌃ be an approximate identity. Choosing � = 1/n for n � N, one can define

⌃n(x) := n⌃(nx). (3.2)

Using the property of approximate identity, for any locally integrable function f over

R, we have

lim
n⇤⇥

(f ⌥ ⌃n)(x) = f(x) pointwise for all x.

That is, for large enough n, f ⌥ ⌃n is a good approximation of f . Moreover, since ⌃

is smooth, ⌃n is smooth for each n � N and therefore, using property P2, f ⌥ ⌃n is a

smooth approximation of f for large enough n.

Let  : R � R be any activation function. Then, by definition,  is a continuous

and hence, a locally integrable function. For a given approximate identity ⌃ and n � N,

we define a smooth approximation of  as  ⌥ ⌃n, where ⌃n is defined in (3.2).

3.5 Smooth Activation Unit (SAU)

Consider the Gaussian function

⌃(x) =
1⌃
2⌥

e�
x2

2

which is a well known approximate identity. Consider the Leaky Rectified Linear Unit

(Leaky ReLU) activation function

LeakyReLU[�](x) =

�
⇥⇤

⇥⌅

x x ⌅ 0

�x x < 0

Note that LeakyReLU[�] activation function is hyperparametrized by � and it is non-

differentiable at the origin for all values of � except � = 1. For � = 0, LeakyReLU[�]

reduces to well known activation function ReLU (Nair and Hinton (2010)) while for

constant and trainable �, LeakyReLU[�] reduces to Leaky ReLU (Maas et al. (2013a))

14



Figure 3.1: Approximation of Leaky ReLU (� = 0.25) using SAU. The left figure
shows that SAU approximate Leaky ReLU smoothly, and in the right figure,
we plot the same functions on a larger domain range.

and Parametric ReLU (He et al. (2015b)) respectively. For a given n � N, and �  = 1, a

smooth approximation of LeakyReLU[�] is given by

G(x,�, n) = (LeakyReLU[�] ⌥ ⌃n)(x) =
1

2n

r
2

⌥
e

�n2x2

2 +
(1 + �)

2
x (3.3)

+
(1⇤ �)

2
x erf

 
nx⌃
2

⌦

where erf is the Gaussian error function

erf(x) =
2⌃
⌥

Z x

0

e�t2 dt.

For the rest of the chapter, we will only consider the approximate identity of Leaky

ReLU (� = 0.25) given in equation 3.3 as the activation function. We call this function

Smooth Activation Unit (SAU). Approximation of Leaky ReLU (� = 0.25) by SAU

is given in figure 3.1. It is clear from the figure 3.1 that SAU can smoothly approxi-

mate Leaky ReLU (as well as ReLU or its variants) quite well. We note that in GELU

(Hendrycks and Gimpel (2020)) paper, the authors use the product of x with the cu-

mulative distribution function of a suitable probability distribution (see (Hendrycks and

Gimpel (2020)) for further details).

3.5.1 Learning activation parameters via back-propagation

Back-propagation algorithm (LeCun et al. (1989)) and gradient descent is used in neural

networks to update Weights and biases. Parameters in trainable activation functions are
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updated using the same technique. The forward pass is implemented in both Pytorch

(Paszke et al. (2019)) & Tensorflow-Keras (Chollet et al. (2015)) API, and automatic

differentiation will update the parameters. Alternatively, CUDA (Nickolls et al. (2008))

based implementation (see (Maas et al. (2013a))) can be used and the gradients of

equation 3.3 for the input x and the parameter � & n can be computed as follows:

⌦G

⌦x
=

⇤nx

2

r
2

⌥
e

�n2x2

2 +
(1 + �)

2
+

(1⇤ �)

2
erf

 
nx⌃
2

⌦
+

n(1⇤ �)⌃
2⌥

x e�
n2x2

2

(3.4)

⌦G

⌦�
=

x

2

 
1⇤ erf

 
nx⌃
2

⌦⌦
. (3.5)

⌦G

⌦n
= ⇤ 1

2n2

r
2

⌥
e

�n2x2

2 ⇤ x2

2

r
2

⌥
e

�n2x2

2 +
x2(1⇤ �)⌃

2⌥
e�

n2x2

2 . (3.6)

where

d

dx
erf(x) =

2⌃
⌥
e�x2

� and n can be either hyperparameters or trainable parameters.

Now, note that the class of neural networks with SAU activation function is dense in

C(K), where K is a compact subset of Rn and C(K) is the space of all continuous

functions over K.

The proof follows from the following proposition (see (Molina et al. (2020))).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 (Kidger and Lyons

(2020))) :- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class

of neural networks with activation function ↵, with n neurons in the input layer, one

neuron in the output layer, and one hidden layer with an arbitrary number of neurons.

Let K ⌦ Rn be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.
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3.6 Experiments

To explore and compare the performance of SAU, we consider eight popular standard

activation functions on different standard datasets and popular network architectures

on standard deep learning problems like image classification, object detection, seman-

tic segmentation, and machine translation. We consider the following activations to

compare with SAU: ReLU, Leaky ReLU, Parametric ReLU (PReLU), ELU, ReLU6,

Softplus, PAU, Swish, and GELU. It is evident from the experimental results in the

next sections that SAU outperform in most cases compared to the standard activations.

We consider � as a hyperparameter and n as a trainable parameter for the rest of our

experiments. We fix � at 0.25. The value of n is considered 20000 and updated via

backpropagation according to equation 3.6. All the experiments are conducted on an

NVIDIA V100 GPU with 32GB RAM.

3.6.1 Image Classification

MNIST, Fashion MNIST and The Street View House Numbers (SVHN) Database:

In this section, we present results on MNIST (LeCun et al. (2010)), Fashion MNIST

(Xiao et al. (2017)), and SVHN (Netzer et al. (2011)) datasets. The MNIST and Fash-

ion MNIST databases have a total of 60k training and 10k testing 28 ◊ 28 grey-scale

images with ten different classes. SVHN consists of 32 ◊ 32 RGB images with a total

of 73257 training images and 26032 testing images with ten different classes. We have

applied standard data augmentation methods like rotation, zoom, height shift, shear-

ing on the three datasets. We report results with LeNet (Lecun et al. (1998)), AlexNet

(Krizhevsky et al. (2012)), and VGG-16 (Simonyan and Zisserman (2015)) (with batch-

normalization (Ioffe and Szegedy (2015))) architecture in Table 3.1, Table 3.2, and Ta-

ble 3.3 respectively. We report a more detailed experiment on MNIST, Fashion MNIST,

and SVHN datasets on a custom-designed model in Table 3.4. We design the custom

network with CNN layers with 3 ◊ 3 kernels and max-pooling layers with 2 ◊ 2 ker-

nels. We consider Channel depths of size 128 (twice), 64 (thrice), 32 (twice), with

a dense layer of size 128, Max-pooling layer(thrice), and dropout. We have applied
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batch-normalization before the activation function layer. For all the experiments to

train a model on these three datasets, we use a batch size of 128, stochastic gradient

descent (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9

momentum & 5e�4 weight decay, and trained all networks up-to 100 epochs. We begin

with 0.01 learning rate and decay the learning rate with cosine annealing (Loshchilov

and Hutter (2017)) learning rate scheduler.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.21± 0.10 91.51± 0.20 92.17± 0.19

Leaky ReLU 99.17± 0.10 91.61± 0.21 92.31± 0.18
PReLU 99.27 ± 0.09 91.62 ± 0.18 92.05± 0.21
ReLU6 99.29 ± 0.08 91.57 ± 0.17 92.25± 0.17
ELU 99.28± 0.10 91.48± 0.19 92.20± 0.18

Softplus 99.06± 0.16 91.21± 0.23 91.89± 0.25
PAU 99.34± 0.07 91.69 ± 0.12 92.31± 0.22

Swish 99.31± 0.07 91.64 ± 0.14 92.39± 0.20
GELU 99.29± 0.06 91.61 ± 0.14 92.42± 0.20
SAU 99.40 ± 0.05 91.47 ± 0.16 92.61 ± 0.12

Table 3.1: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on MNIST, Fashion MNIST, and SVHN Datasets for Image Classifi-
cation Problem with LeNet Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean±std is Reported in the Table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.51± 0.06 92.77± 0.18 95.11± 0.14

Leaky ReLU 99.50± 0.06 92.79± 0.20 95.21± 0.17
PReLU 99.48 ± 0.08 92.76 ± 0.18 95.19 ± 0.17
ReLU6 99.55 ± 0.06 93.01 ± 0.16 95.22 ± 0.15
ELU 99.56± 0.05 92.89± 0.17 95.30± 0.18

Softplus 99.22± 0.10 92.32± 0.25 94.82± 0.21
PAU 99.53± 0.08 93.01 ± 0.17 95.22 ± 0.13

Swish 99.58± 0.06 92.96± 0.16 95.32± 0.14
GELU 99.55± 0.06 93.05 ± 0.14 95.28 ± 0.14
SAU 99.64 ± 0.04 93.17 ± 0.14 95.45 ± 0.11

Table 3.2: A Detailed Comparison between SAU Activation and Other Baseline Activa-
tions on MNIST, Fashion MNIST, and SVHN Datasets for Image Classifica-
tion Problem with AlexNet Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean±std is Reported in the Table.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.55± 0.07 93.75± 0.14 96.04± 0.12

Leaky ReLU 99.59± 0.05 93.89± 0.14 96.12± 0.15
PReLU 99.58 ± 0.07 93.85 ± 0.16 96.12 ± 0.17
ReLU6 99.59 ± 0.05 93.88 ± 0.11 96.18 ± 0.16
ELU 99.51± 0.05 93.82± 0.16 96.13± 0.14

Softplus 99.34± 0.12 93.69± 0.19 95.88± 0.21
PAU 99.58± 0.05 94.27± 0.12 96.20± 0.15

Swish 99.54± 0.06 94.10± 0.12 96.26± 0.13
GELU 99.60± 0.04 94.17 ± 0.12 96.23 ± 0.13
SAU 99.67 ± 0.04 94.40 ± 0.12 96.41 ± 0.12

Table 3.3: A Detailed Comparison between SAU Activation and Other Baseline Activa-
tions On MNIST, Fashion MNIST, and SVHN Datasets for Image Classifica-
tion Problem with VGG16 Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean±std is Reported in the Table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.48± 0.07 93.06± 0.14 94.52± 0.13

Leaky ReLU 99.43± 0.08 93.22± 0.15 94.67± 0.16
PReLU 99.41 ± 0.09 93.14 ± 0.12 94.61 ± 0.15
ReLU6 99.45 ± 0.07 93.31 ± 0.14 94.70 ± 0.10
ELU 99.50± 0.05 93.28± 0.16 94.62± 0.13

Softplus 99.32± 0.10 92.95± 0.20 94.41± 0.18
PAU 99.58±0.09 93.26 ± 0.16 94.89± 0.11

Swish 99.57±0.08 93.29 ± 0.14 94.72± 0.12
GELU 99.50± 0.05 93.35 ± 0.12 94.79 ± 0.09
SAU 99.57 ± 0.04 93.50 ± 0.09 95.10 ± 0.09

Table 3.4: A Detailed Comparison Between SAU Activation and Other Baseline Acti-
vations in MNIST, Fashion MNIST, and SVHN Datasets for Image Classi-
fication Problem on Custom-designated Architecture. We Report top-1 Test
Accuracy (in %) for the Mean of 10 Different Runs. mean±std is Reported
in the Table.
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CIFAR:

The CIFAR (Krizhevsky (2009)) is one of the most popular databases for image classi-

fication consists of a total of 60k 32◊ 32 RGB images and is divided into 50k training

and 10k test images. CIFAR has two different datasets- CIFAR10 and CIFAR100 with

a total of 10 and 100 classes, respectively. We report the top-1 accuracy on Table 3.5

and Table 3.10 on CIFAR100 and CIFAR10 datasets respectively. We consider Mo-

bileNet V1 (Howard et al. (2017)), MobileNet V2 (Sandler et al. (2019)), Shufflenet

V2 (Ma et al. (2018)), PreActResNet (He et al. (2016)), ResNet (He et al. (2015a)), In-

ception V3 (Szegedy et al. (2015a)), squeeze and excitation networks (SeNet) (Hu et al.

(2017)), ResNext (Xie et al. (2017)), LeNet (Lecun et al. (1998)), AlexNet (Krizhevsky

et al. (2012)), DenseNet (Huang et al. (2016a)), Xception (Chollet (2017)), Squeezenet

(Iandola et al. (2016)), WideResNet (Zagoruyko and Komodakis (2016)), VGG (Si-

monyan and Zisserman (2015)) (with batch-normalization (Ioffe and Szegedy (2015))),

and EfficientNet B0 (Tan and Le (2020)). For all the experiments to train a model on

these two datasets, we use a batch size of 128, stochastic gradient descent (Robbins and

Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e�4

weight decay, and trained all networks up-to 200 epochs. We begin with 0.01 learning

rate and decay the learning rate by a factor of 10 after every 60 epochs. Standard data

augmentation methods like width shift, height shift, horizontal flip, and rotation is ap-

plied on both datasets. It is noticeable from these two tables that replacing ReLU by

SAU, there is an increment in top-1 accuracy from 1% to more than 5% in most of the

models. A more detailed result on these two datasets with other baseline activations are

reported Tables 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12. Training and test accuracy & loss

curves for baseline activation functions and SAU are given in Figures 3.2 and 3.3 re-

spectively on CIFAR100 dataset on ShuffleNet V2 (2.0x) network. From these learning

curves, it is evident that after training few epochs, SAU has stable & smooth learn-

ing, faster convergence speed, and higher accuracy and lower loss on the test dataset

compared to other baseline activation functions.

Also, We compare the performance of SAU with other baseline activations with state

of the art data augmentation method like Mixup (Zhang et al. (2017a)) on CIFAR 100

dataset with ShuffleNet V2 (2.0x), ResNet 18 & ResNet 50 models, and we got very

good improvement over the baseline activations. Results are reported on Table 3.13
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Model ReLU SAU

Top-1 accuracy (mean± std) Top-1 accuracy (mean ± std)

Shufflenet V2 0.5x 61.76 ± 0.27 64.39 ± 0.23
Shufflenet V2 1.0x 64.12 ± 0.28 68.41 ± 0.24
Shufflenet V2 1.5x 66.52 ± 0.28 71.97 ± 0.24
Shufflenet V2 2.0x 66.94 ± 0.24 72.57 ± 0.21

PreActResNet 18 72.58 ± 0.24 74.01 ± 0.22
PreActResNet 34 72.92 ± 0.24 75.37 ± 0.24
PreActResNet 50 73.27 ± 0.25 76.22 ± 0.22

ResNet 18 73.02 ± 0.25 74.27 ± 0.22
ResNet 34 73.12 ± 0.26 74.64 ± 0.23
ResNet 50 73.89 ± 0.23 76.39 ± 0.20

MobileNet V1 70.95 ± 0.26 72.09 ± 0.23
MobileNet V2 73.85 ± 0.24 75.69 ± 0.19

Inception V3 74.03 ± 0.27 76.01 ± 0.22

WideResNet 28-10 75.89 ± 0.23 77.39 ± 0.20

DenseNet 121 75.72 ± 0.27 77.11 ± 0.23

EffitientNet B0 76.22 ± 0.24 78.07 ± 0.26

VGG16 71.10 ± 0.30 71.18 ± 0.28

Table 3.5: A Detailed Comparison between SAU Activation and Other Baseline Ac-
tivations on The CIFAR100 Dataset for Image Classification Problem with
Different Popular Network Architectures. We Report top-1 Test Accuracy
(in %) for the Mean of 10 Different Runs. mean±std is Reported in the
Table.

Figure 3.2: Top-1 Train and Test accu-
racy Curves (Higher is Better)
for SAU and Baseline Activa-
tion Functions on CIFAR100
Dataset with ShuffleNet V2
(2.0x) Model.

Figure 3.3: Top-1 Train and Test Loss
Curves (Lower is Better) for
SAU and Baseline Activa-
tion Functions on CIFAR100
Dataset with ShuffleNet V2
(2.0x) Model.
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Model ReLU SAU

Top-1 accuracy (mean± std) Top-1 accuracy (mean ± std)

ShuffleNet V2 0.5x 88.01 ± 0.23 90.50 ± 0.17
ShuffleNet V2 1.0x 90.74 ± 0.25 92.78 ± 0.20
ShuffleNet V2 1.5x 91.07 ± 0.23 93.20 ± 0.18
ShuffleNet V2 2.0x 91.32 ± 0.22 93.52 ± 0.16

PreActResNet 18 93.36 ± 0.18 94.62 ± 0.15
PreActResNet 34 94.01 ± 0.16 95.10 ± 0.14
PreActResNet 50 94.01 ± 0.15 94.94 ± 0.14

ResNet 18 93.32 ± 0.20 93.47 ± 0.17
ResNet 34 93.77 ± 0.20 94.22 ± 0.16
ResNet 50 93.89 ± 0.19 94.62 ± 0.16

MobileNet V1 92.27 ± 0.24 93.54 ± 0.14
MobileNet V2 93.89 ± 0.19 95.37 ± 0.09

Inception V3 93.89 ± 0.18 94.51 ± 0.10

WideResNet 28-10 94.74 ± 0.18 95.52 ± 0.12

DenseNet 121 94.41 ± 0.16 95.31 ± 0.10

EffitientNet B0 94.64 ± 0.16 95.52 ± 0.14

VGG16 93.14 ± 0.23 93.31 ± 0.21

Table 3.6: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on The CIFAR10 Dataset for Image Classification Problem with Dif-
ferent Popular Network Architectures. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean±std is Reported in the Table.

Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

MobileNet
V1

MobileNet
V2

ResNet
18

ResNet
34

ResNet
50

Leaky ReLU 88.11
±0.24

90.85
±0.27

91.02
±0.23

91.44
±0.24

92.40
±0.26

93.78
±0.21

93.22
±0.21

93.89
±0.21

93.78
±0.20

PReLU 88.17
±0.24

90.88
±0.27

91.19
±0.24

91.39
±0.22

92.44
±0.23

94.08
±0.22

93.20
±0.23

93.79
±0.22

93.91
±0.20

ReLU6 88.23
±0.22

90.89
±0.24

91.09
±0.21

91.57
±0.22

92.49
±0.24

93.89
±0.20

93.37
±0.21

93.98
±0.20

93.85
±0.22

ELU 88.22
±0.23

90.84
±0.26

91.17
±0.24

91.52
±0.23

92.52
±0.25

93.89
±0.22

93.32
±0.23

94.01
±0.21

93.80
±0.21

Softplus 87.86
±0.26

90.52
±0.28

91.01
±0.27

91.42
±0.24

92.32
±0.29

93.95
±0.24

93.31
±0.24

93.59
±0.24

93.70
±0.23

PAU 88.86
±0.24

91.55
±0.26

92.45
±0.19

92.71
±0.22

92.67
±0.17

94.68
±0.19

93.79
±0.17

94.01
±0.20

94.12
±0.16

Swish 88.67
±0.23

91.72
±0.25

92.21
±0.20

92.45
±0.21

92.52
±0.19

94.78
±0.21

93.71
±0.18

94.10
±0.19

94.24
±0.18

GELU 88.51
±0.22

91.81
±0.23

92.59
±0.21

92.81
±0.22

92.40
±0.20

94.60
±0.22

93.99
±0.21

94.01
±0.20

94.12
±0.20

Table 3.7: Experimental Results for Baseline Activations in CIFAR10 Dataset for Im-
age Classification Problem on Different Popular Network Architectures. We
Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean±std is Reported in the Table. This Table is an extension to the Ta-
ble 3.6 given in the CIFAR Section.

22



Activation
Function ResNext Squeezenet AlexNet LeNet Xception SeNet 18 SeNet 34 SeNet 50

ReLU 92.95
±0.22

90.10
±0.23

83.86
±0.22

75.45
±0.21

90.47
±0.23

94.01
±0.20

94.19
±0.19

94.29
±0.20

Leaky ReLU 93.10
±0.21

90.22
±0.24

83.81
±0.20

75.55
±0.23

90.62
±0.25

94.10
±0.21

94.20
±0.17

94.18
±0.20

PReLU 93.18
±0.23

90.40
±0.22

83.94
±0.22

75.71
±0.24

90.60
±0.23

94.17
±0.22

94.41
±0.19

94.47
±0.23

ReLU6 93.22
±0.20

90.39
±0.21

84.10
±0.20

75.85
±0.21

90.52
±0.22

94.21
±0.22

94.34
±0.18

94.39
±0.21

ELU 93.22
±0.22

90.32
±0.22

83.99
±0.23

75.48
±0.21

90.78
±0.24

94.29
±0.24

94.28
±0.19

94.29
±0.23

Softplus 92.79
±0.25

90.01
±0.26

83.65
±0.26

75.32
±0.28

90.49
±0.29

94.14
±0.25

94.11
±0.22

93.91
±0.24

PAU 93.72
±0.18

90.64
±0.20

84.71
±0.19

76.10
±0.21

90.98
±0.20

94.74
±0.23

94.89
±0.20

94.90
±0.21

Swish 93.64
±0.20

90.89
±0.21

84.85
±0.20

76.45
±0.19

90.81
±0.18

94.61
±0.22

94.81
±0.23

94.97
±0.23

GELU 93.87
±0.22

90.71
±0.20

85.10
±0.22

76.59
±0.23

90.97
±0.20

94.70
±0.21

94.89
±0.23

95.10
±0.24

SAU 94.37
±0.20

91.42
±0.19

85.72
±0.20

77.01
±0.20

91.59
±0.21

95.21
±0.19

95.29
±0.20

95.57
±0.24

Table 3.8: Experimental Results for Baseline Activations and SAU in CIFAR10 Dataset
for Image Classification Problem on Different Popular Network Architec-
tures. We Report top-1 Test Accuracy (in %) for the Mean of 10 Different
Runs. mean±std is Reported in the Table.

Activation
Function

Inception
V3

WideRes
Net 28-10

DenseNet
121

Effitient
Net B0 VGG16 PreAct

ResNet 18
PreAct

ResNet 34
PreAct

ResNet 50

Leaky ReLU 93.80
±0.20

94.97
±0.22

94.49
±0.17

94.51
±0.19

93.10
±0.24

93.41
±0.19

93.97
±0.16

94.27
±0.18

PReLU 93.87
±0.22

94.85
±0.22

94.57
±0.19

94.67
±0.20

93.19
±0.25

93.31
±0.21

91.21
±0.19

94.39
±0.21

ReLU6 93.97
±0.19

95.14
±0.20

94.71
±0.19

94.40
±0.20

93.21
±0.22

93.62
±0.20

93.82
±0.17

94.51
±0.16

ELU 93.85
±0.20

95.05
±0.22

94.79
±0.21

94.57
±0.22

93.15
±0.20

93.78
±0.23

93.70
±0.18

94.50
±0.17

Softplus 93.52
±0.26

94.71
±0.25

94.45
±0.22

94.77
±0.23

93.02
±0.26

93.23
±0.24

91.29
±0.22

94.41
±0.23

PAU 94.10
±0.20

94.57
±0.21

94.83
±0.20

94.89
±0.21

93.41
±0.24

94.22
±0.20

94.46
±0.21

94.51
±0.22

Swish 94.01
±0.22

94.61
±0.23

94.71
±0.21

94.65
±0.22

93.52
±0.23

94.65
±0.22

94.58
±0.23

94.67
±0.20

GELU 94.12
±0.21

94.50
±0.22

94.95
±0.22

94.61
±0.20

93.59
±0.21

94.30
±0.22

94.45
±0.22

94.61
±0.21

Table 3.9: Experimental Results for Baseline Activations in CIFAR10 Dataset for Im-
age Classification Problem on Different Popular Network Architectures. We
Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean±std is Reported in the Table. This Table is an extension to the Ta-
ble 3.6 given in the CIFAR Section.
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Activation
Function ResNext Squeezenet AlexNet LeNet Xception SeNet 18 SeNet 34 SeNet 50

ReLU 74.02
±0.24

65.95
±0.22

54.51
±0.27

45.08
±0.29

70.89
±0.23

74.37
±0.22

75.01
±0.23

75.89
±0.20

Leaky ReLU 74.32
±0.26

66.21
±0.23

54.89
±0.24

45.10
±0.29

71.35
±0.25

74.67
±0.23

75.18
±0.23

76.20
±0.22

PReLU 74.61
±0.25

66.51
±0.24

55.30
±0.22

45.29
±0.28

71.59
±0.27

74.54
±0.23

75.32
±0.22

76.61
±0.23

ReLU6 74.52
±0.24

66.23
±0.22

55.52
±0.21

45.10
±0.26

71.49
±0.26

74.32
±0.22

75.20
±0.21

76.78
±0.22

ELU 74.77
±0.23

66.35
±0.24

56.52
±0.22

45.56
±0.25

71.78
±0.24

74.56
±0.23

75.29
±0.22

76.97
±0.24

Softplus 73.89
±0.27

66.10
±0.26

54.45
±0.28

45.56
±0.29

70.77
±0.25

74.07
±0.24

74.78
±0.25

75.98
±0.22

PAU 75.86
±0.23

66.78
±0.20

57.89
±0.27

46.75
±0.27

73.10
±0.24

74.52
±0.22

75.18
±0.20

77.39
±0.18

Swish 75.36
±0.22

66.42
±0.22

57.32
±0.26

46.54
±0.26

72.77
±0.22

74.45
±0.23

75.58
±0.21

77.10
±0.17

GELU 75.52
±0.22

66.69
±0.22

57.56
±0.28

46.45
±0.29

72.97
±0.25

74.47
±0.24

75.47
±0.22

77.14
±0.21

SAU 76.80
±0.23

68.01
±0.19

60.85
±0.25

47.10
±0.26

74.09
±0.25

75.64
±0.20

76.10
±0.21

78.64
±0.18

Table 3.10: Experimental Results for Baseline Activations and SAU in CIFAR100
Dataset for Image Classification Problem on Different Popular Network
Architectures. We Report top-1 Test Accuracy (in %) for the Mean of 10
Different Runs. mean±std is Reported in the Table.

Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

MobileNet
V1

MobileNet
V2

ResNet
18

ResNet
34

ResNet
50

Leaky ReLU 61.99
±0.29

64.39
±0.29

66.59
±0.27

67.41
±0.26

70.90
±0.26

74.10
±0.25

73.29
±0.24

73.49
±0.24

74.15
±0.22

PReLU 62.20
±0.27

64.12
±0.28

66.84
±0.29

67.65
±0.25

71.10
±0.26

74.19
±0.27

73.39
±0.25

73.61
±0.23

74.41
±0.23

ReLU6 62.12
±0.26

64.32
±0.26

66.72
±0.26

67.52
±0.24

71.32
±0.24

74.28
±0.25

73.20
±0.25

73.13
±0.22

74.40
±0.21

ELU 62.10
±0.27

64.52
±0.26

66.51
±0.28

67.62
±0.24

71.20
±0.25

74.35
±0.26

73.23
±0.22

73.52
±0.23

74.29
±0.23

Softplus 61.75
±0.30

64.42
±0.31

66.51
±0.29

67.49
±0.28

70.95
±0.25

74.01
±0.27

73.15
±0.26

73.20
±0.26

74.25
±0.26

PAU 63.20
±0.27

66.50
±0.25

69.12
±0.24

70.18
±0.24

71.25
±0.25

74.72
±0.23

74.07
±0.22

73.68
±0.23

75.51
±0.22

Swish 63.11
±0.26

66.31
±0.26

69.01
±0.26

70.59
±0.25

71.39
±0.26

74.56
±0.24

74.54
±0.21

74.10
±0.22

75.45
±0.23

GELU 63.35
±0.25

66.10
±0.25

69.39
±0.26

70.79
±0.25

71.14
±0.26

74.68
±0.25

74.18
±0.24

73.87
±0.24

75.30
±0.23

Table 3.11: Experimental Results for Baseline Activations in CIFAR100 Dataset for
Image Classification Problem on Different Popular Network Architectures.
We Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean±std is Reported in the Table. This Table is an extension to the Ta-
ble 3.5 given in the CIFAR Section.
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Activation
Function

Inception
V3

WideRes
Net 28-10

DenseNet
121

Effitient
Net B0 VGG16 PreAct

ResNet 18
PreAct

ResNet 34
PreAct

ResNet 50

Leaky ReLU 74.25
±0.26

75.74
±0.24

75.97
±0.26

76.29
±0.26

71.01
±0.30

72.82
±0.22

72.97
±0.26

73.49
±0.23

PReLU 74.37
±0.27

75.91
±0.26

76.04
±0.27

76.41
±0.28

71.16
±0.31

72.80
±0.26

73.40
±0.25

73.87
±0.24

ReLU6 74.24
±0.24

75.98
±0.24

75.91
±0.23

76.11
±0.25

71.10
±0.29

72.59
±0.25

73.12
±0.23

73.61
±0.23

ELU 74.37
±0.25

76.10
±0.26

75.80
±0.24

76.01
±0.26

71.05
±0.30

72.25
±0.28

73.35
±0.26

74.10
±0.25

Softplus 74.10
±0.28

75.56
±0.28

75.69
±0.26

75.78
±0.29

71.02
±0.31

71.96
±0.30

73.12
±0.30

74.18
±0.29

PAU 75.10
±0.22

75.98
±0.23

76.22
±0.24

76.55
±0.24

71.68
±0.27

73.95
±0.23

73.99
±0.23

75.44
±0.24

Swish 74.79
±0.23

75.64
±0.22

75.91
±0.22

76.30
±0.24

71.92
±0.25

73.72
±0.25

74.35
±0.24

75.57
±0.23

GELU 74.64
±0.23

76.18
±0.25

76.31
±0.22

76.97
±0.24

71.52
±0.26

74.11
±0.22

74.20
±0.23

75.42
±0.22

Table 3.12: Experimental Results for Baseline Activations in CIFAR100 Dataset for
Image Classification Problem on Different Popular Network Architectures.
We Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean±std is Reported in the Table. This Table is an extension to the Ta-
ble 3.5 given in the CIFAR Section.

for the mean of 10 different runs. We use the same experimental setup as used for the

CIFAR100 dataset.

Activation Function ShuffleNet V2 (2.0x) ResNet 50 ResNet 18
ReLU 69.10 ± 0.24 75.10 ± 0.23 73.88 ± 0.24

Leaky ReLU 69.04 ± 0.23 75.04 ± 0.23 73.97 ± 0.26
PReLU 69.29 ± 0.25 75.17 ± 0.25 74.12 ± 0.25
ReLU6 69.36 ± 0.23 75.27 ± 0.22 74.17 ± 0.23
ELU 69.34 ± 0.24 75.32 ± 0.24 74.03 ± 0.24

Softplus 68.84 ± 0.28 74.52 ± 0.26 73.69 ± 0.27
Swish 72.78 ± 0.21 76.42 ± 0.22 74.39 ± 0.23
GELU 72.91 ± 0.22 76.54 ± 0.23 74.51 ± 0.23
PAU 73.09 ± 0.22 76.77 ± 0.22 74.62 ± 0.25
SAU 74.22 ± 0.21 77.81 ± 0.21 75.59 ± 0.21

Table 3.13: Top-1 Test Accuracy Reported with Mixup Augmentation Method on CI-
FAR100 Dataset for the Mean of 10 Different Runs. mean±std is Reported
in the Table

Tiny Imagenet:

This section presents results on the Tiny ImageNet dataset, a similar kind of image clas-

sification database like the ImageNet Large Scale Visual Recognition Challenge(ILSVRC).

Tiny Imagenet contains 64◊64 RGB images with total 100,000 training images, 10,000

validation images, and 10,000 test images and have total 200 image classes. We report

the mean of 6 different runs for Top-1 accuracy in table 3.14 on WideResNet 28-10
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(WRN 28-10) (Zagoruyko and Komodakis (2016)) and ResNet 18 (He et al. (2015a))

models. We consider a batch size of 64, 0.2 dropout rate (Srivastava et al. (2014)),

SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), He Normal

initializer (He et al. (2015b)), initial learning rate(lr rate) 0.1, and lr rate is reduced by a

factor of 10 after every 50 epochs up-to 300 epochs. Standard data augmentation tech-

niques like rotation, width shift, height shift, shearing, zoom, horizontal flip, fill mode is

applied to improve performance. It is evident from the table that the proposed function

performs better than the baseline functions, and top-1 accuracy is stable (mean±std)

and got a good improvement for SAU over ReLU.

Activation Function WideResNet 28-10 ResNet 18
ReLU 62.77 ± 0.46 58.27 ± 0.42

Leaky ReLU 62.72 ± 0.46 58.52 ± 0.44
PReLU 62.70 ± 0.48 58.39 ± 0.44
ReLU6 62.59 ± 0.46 58.67 ± 0.41
ELU 62.58 ± 0.50 58.62 ± 0.43

Softplus 61.77 ± 0.59 58.04 ± 0.47
PAU 63.62 ± 0.44 59.47 ± 0.40

Swish 63.47 ± 0.46 59.02 ± 0.42
GELU 63.26 ± 0.48 59.27 ± 0.39
SAU 64.07 ± 0.44 60.12 ± 0.40

Table 3.14: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations in Tiny ImageNet Dataset for Image Classification Problem. We
Report top-1 Test Accuracy (in %) for the Mean of 6 Different Runs.
mean±std is Reported in the Table.

ImageNet-1k:

ImageNet-1k is a popular image database with more than 1.2 million training images

and have 1000 classes. We report result on ImageNet-1k with ShuffleNet V2 (Ma et al.

(2018)) and ResNet-50 He et al. (2015a) model in Table 3.15. We use a batch size of

256, SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), 0.9

momentum, 5e�4 weight decay. We consider a linear decay learning rate scheduler

from 0.1 and trained upto 600k iterations. Experiments on ImageNet-1k is conducted

on four NVIDIA V100 GPUs with 32GB RAM each.
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Activation Function ShuffleNet V2 (1.0x) ResNet-50
ReLU 69.31 75.50

Leaky ReLU 69.25 75.64
PReLU 69.20 75.48
ReLU6 69.44 75.77
ELU 69.62 75.54

Softplus 69.21 75.37
Swish 70.45 76.39
GELU 70.31 76.12
PAU 70.64 76.22
SAU 71.52 77.47

Table 3.15: top-1 Accuracy Reported on ImageNet-1k Dataset.

3.6.2 Object Detection

A standard problem in computer vision is object detection, in which the network model

try to locate and identify each object present in the image. Object detection is widely

used in face detection, autonomous vehicle etc. In this section, we present our results

on challenging Pascal VOC dataset (Everingham et al. (2010)) on Single Shot Multi-

Box Detector(SSD) 300 (Liu et al. (2016)) with VGG-16(with batch-normalization)

(Simonyan and Zisserman (2015)) as the backbone network. No pre-trained weight

is considered for our experiments in the network. The network has been trained with

a batch size of 8, SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz

(1952)) with 0.9 momentum, 5e�4 weight decay, 0.001 learning rate, and trained up to

120000 iterations. We report the mean average precision (mAP) in Table 3.16 for the

mean of 6 different runs.

Activation Function mAP
ReLU 77.2±0.14

Leaky ReLU 77.2±0.19
PReLU 77.2±0.20
ReLU6 77.1±0.15
ELU 75.1±0.22

Softplus 74.2±0.25
PAU 77.4±0.14

Swish 77.3±0.11
GELU 77.3±0.12
SAU 77.7±0.10

Table 3.16: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on Pascal VOC Dataset for Object Detection Problem with SSD300
Network Architecture. We Report mAP for the Mean of 6 Different Runs.
mean±std is Reported in the Table.
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3.6.3 Semantic Segmentation

Semantic segmentation is a computer vision problem that narrates the procedure of

associating each pixel of an image with a class label. We present our experimental

results in this section on the popular Cityscapes dataset (Cordts et al. (2016)). The

U-net model (Ronneberger et al. (2015)) is considered as the segmentation framework

and is trained up-to 250 epochs, with adam optimizer (Kingma and Ba (2015)), learning

rate 5e�3, batch size 32 and Xavier Uniform initializer (Glorot and Bengio (2010)). We

report the mean of 6 different runs for Pixel Accuracy and the mean Intersection-Over-

Union (mIOU) on test data on table 3.17.

Activation Function Pixel
Accuracy mIOU

ReLU 79.45±0.47 69.39±0.28
PReLU 78.88±0.40 68.80±0.40
ReLU6 79.67±0.40 69.79±0.42

Leaky ReLU 79.32±0.40 69.60±0.40
ELU 79.38±0.51 68.10±0.40

Softplus 78.60±0.49 68.20±0.49
PAU 79.52±0.49 69.12±0.31

Swish 79.99±0.47 69.61±0.29
GELU 80.10±0.37 69.39±0.38
SAU 81.11±0.40 71.02±0.32

Table 3.17: A Detailed Comparison between SAU Activation and Other Baseline Ac-
tivations in CityScapes Dataset for Semantic Segmentation Problem on U-
NET Model. We Report Pixel Accuracy and mIOU for the Mean of 6 Dif-
ferent Runs. mean±std is Reported in the Table.

3.6.4 Machine Translation

Machine Translation is a deep learning technique in which a model translate text or

speech from one language to another language. In this section, we report results on

WMT 2014 English�German dataset. The database contains 4.5 million training sen-

tences. Network performance is evaluated on the newstest2014 dataset using the BLEU

score metric. An Attention-based 8-head transformer network (Vaswani et al. (2017))

in trained with Adam optimizer (Kingma and Ba (2015)), 0.1 dropout rate (Srivastava

et al. (2014)), and trained up to 100000 steps. Other hyperparameters are kept similar

as mentioned in the original paper (Vaswani et al. (2017)). We report the mean of 6
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different runs on Table 3.18 on the test dataset(newstest2014).

Activation Function BLEU Score on
the newstest2014 dataset

ReLU 26.2±0.15
Leaky ReLU 26.3±0.17

PReLU 26.2±0.21
ReLU6 26.1±0.14
ELU 25.1±0.15

Softplus 23.6±0.16
PAU 26.3±0.14

Swish 26.4±0.10
GELU 26.4±0.19
SAU 26.7±0.12

Table 3.18: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations in WMT-2014 Dataset for Machine Translation Problem on Trans-
former Model. We Report BLEU Score for the Mean of 6 Different Runs.
mean±std is Reported in the Table.

3.7 Baseline Table

In this section, we present a table for SAU and the other baseline functions, which

shows that SAU beat or perform equally well compared to baseline activation functions

in most cases. We report a detailed comparison with SAU and the baseline activation

functions based on all the experiments in earlier sections in Table 3.19. We notice that

SAU performs remarkably well in most of the cases when compared with the baseline

activations.

Baselines ReLU Leaky
ReLU PReLU ReLU6 ELU Softplus PAU Swish GELU

SAU > Baseline 71 71 71 71 71 72 67 66 67
SAU = Baseline 0 0 0 0 0 0 0 0 0
SAU < Baseline 1 1 1 1 1 0 5 6 5

Table 3.19: Baseline Table for SAU. In the Table, We Report the Total Number of Cases
in Which SAU Underperforms, Equal, or Outperforms When We Compare
with the Baseline Activation Functions
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3.8 Computational Time Comparison

HP-1, HP-2 contains trainable parameters, which increases the complexity of the net-

work, and due to this, there is a trade-off between network performance and computa-

tional cost. We have reported the Computational time comparison for HP-1, HP-2, and

the baseline activation functions for both forward and backward pass on a 32◊32 RGB

image on ResNet-18 model in Table 3.20 for the mean of 100 runs. We have used an

NVIDIA Tesla V100 GPU with 32GB ram.

Activation
Function Forward Pass Backward Pass

ReLU 6.51 ± 0.35 µs 6.42 ± 0.81 µs
Leaky ReLU 6.61 ± 0.40 µs 6.52 ± 0.89 µs

PReLU 8.64 ± 1.50µs 9.52 ± 1.75 µs
ReLU6 6.58 ± 0.50 µs 6.49 ± 0.85 µs
ELU 6.49 ± 0.52 µs 6.56 ± 0.81 µs

Softplus 6.59 ± 0.49 µs 6.38 ± 0.50 µs
GELU 10.91 ± 1.59 µs 12.62 ± 1.70 µs
Swish 10.59 ± 1.19 µs 12.60 ± 1.33 µs
PAU 18.69 ± 3.21 µs 25.91 ± 5.21 µs
SAU 12.96 ± 2.00 µs 17.34 ± 1.31µs

Table 3.20: Runtime comparison for the forward and backward passes for SAU and
other baseline activation functions for a 32◊ 32 RGB image in ResNet-18
model.

3.9 Conclusion

In this chapter, a new novel smooth activation function using approximate identity has

been proposed, and the proposed function is called Smooth Activation Unit (SAU). The

proposed function can approximate ReLU or its different variants (like Leaky ReLU

etc.) quite well. For all experiments, SAU is considered as a trainable activation func-

tion. It has been shown that in a wide range of experiments on different deep learning

problems, the proposed functions outperform the known activations like ReLU, Leaky

ReLU or Swish in most cases which shows that replacing the hand-crafted activation

functions by SAU can be beneficial in deep networks.
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Though SAU improves network performance in different deep learning problems, it

is slower than other smooth activation functions like Swish, GELU etc. (but still faster

than PAU). To address this drawback of SAU, two better activations have been proposed

in the next chapter using an approximation by a smooth function of the maximum func-

tion.
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CHAPTER 4

Smooth Maximum Unit1

4.1 Introduction

This chapter proposes two smooth novel activations based on the approximation by a

smooth function of the maximum function. Deep Neural network has emerged signif-

icantly in recent years and impacted our real-life applications. Neural networks are

the backbone of deep learning. An activation function is the brain of the neural net-

work, which plays a central role in the effectiveness & training dynamics of deep neu-

ral networks. Hand-designed activation functions are quite a common choice in neural

network models. ReLU (Nair and Hinton (2010)) is a widely used hand-designed ac-

tivation function. Despite its simplicity, ReLU has a major drawback, known as the

dying ReLU problem, in which up to 50% neurons can be dead during network train-

ing. To overcome the shortcomings of ReLU, many activations have been proposed in

recent years. Leaky ReLU (Maas et al. (2013a)), Parametric ReLU (He et al. (2015b)),

ELU (Clevert et al. (2016)), Softplus (Zheng et al. (2015)), Randomized Leaky ReLU

(Xu et al. (2015a)) are a few of them though they marginally improve performance

of ReLU. Swish (Ramachandran et al. (2017)) is a non-linear activation function pro-

posed by the Google brain team, showing some good improvement of ReLU. GELU

(Hendrycks and Gimpel (2020)) is another popular smooth activation function. It can

be shown that Swish and GELU are both approximation function of ReLU. Recently, a

few non-linear activations have been proposed that improve the performance of ReLU,

Swish or GELU. Some of them are either hand-designed or approximation by a smooth

function of the Leaky ReLU function. Mish (Misra (2020)) and Padé activation unit

(Molina et al. (2020)) are a few of them.

In the previous chapter, a novel activation called SAU was presented. Though SAU

improves performance compared to the widely used activation functions, SAU has a
1This chapter is a slightly modified version of the paper published in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Biswas et al. (2022).



drawback. SAU takes higher training time than other smooth activations like Swish,

GELU etc. In this chapter, the problem has been tried to resolve. The proposed activa-

tion functions (SMU & SMU-1) have either similar or lesser training time compared to

Swish, GELU etc., while both SMU and SMU-1 perform better than the earlier men-

tioned activation functions.

4.2 Related Works and Motivation

In a deep neural network, activations are either fixed before training or trainable. Re-

searchers have proposed several activations in recent years by combining known func-

tions. Some of these functions have hyperparameters or trainable parameters. In the

case of trainable activation functions, parameters are optimized during training. Swish

is a popular activation function that can be used as a constant or trainable activation

function. It performs well in various deep learning tasks like image classification, ob-

ject detection, machine translation etc. GELU shares similar properties like the Swish

activation function, and it has gained popularity in the deep learning community due to

its efficacy in natural language processing tasks. GELU has been used in BERT (Devlin

et al. (2018)), GPT-2 (Radford et al. (2019)), and GPT-3 (Brown et al. (2020)) architec-

tures. Padé activation unit (PAU) has been proposed recently, and it is constructed from

the approximation of the Leaky ReLU function by rational polynomials of a given order.

Though PAU improves network performance in the image classification problem over

ReLU, its variants, and Swish, it has a major drawback. PAU contains many trainable

parameters, and due to this, PAU significantly increases the network complexity and

computational cost. The proposed method in this chapter tried to solve this problem.

4.3 Research contribution

In this chapter, we propose activation functions using the smoothing maximum tech-

nique. The maximum function is non-smooth at the origin. We want to explore how

does the approximation by a smooth function of the maximum function (which can be

used as an activation function) affects a network’s training dynamics and performance.

Our experimental evaluation shows that our proposed activation functions are compar-
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atively more effective than ReLU, Mish, Swish, GELU, PAU etc., across different deep

learning tasks. This chapter can be summarised as follows:

1. We have proposed activation functions by smoothing the maximum function. We
show that it can approximate GELU, ReLU, Leaky ReLU or the general Maxout
family.

2. We show that the proposed functions outperform widely used activation functions
in a variety of deep learning tasks.

4.4 Smooth Maximum Unit

We use approximation by a smooth function of the maximum function to construct a

smooth activation function. We refer to this function as the Smooth Maximum Unit

(SMU). Using the approximation by a smooth function of the |x| function, one can

find a general approximating formula for the maximum function, which can smoothly

approximate the general Maxout (Goodfellow et al. (2013)) family, ReLU, Leaky ReLU

or its variants, Swish etc. We also show that the well established GELU (Hendrycks and

Gimpel (2020)) function can be obtained as a special case of SMU.

4.4.1 Approximation by a smooth function of the maximum func-

tion

Note that the maximum function can be expressed as following two different ways:

max(x1, x2) =

�
⇥⇤

⇥⌅

x1 if x1 ⌅ x2

x2 otherwise

=
(x1 + x2) + |x1 ⇤ x2|

2
(4.1)

Note that the max function is not differentiable at the origin. Using approxima-

tions of the |x| function by a smooth function, we can create approximations to the

maximum functions. There are many known approximations to |x|, but for the rest of

this article, we will focus on two specific approximations of |x|, namely xerf(µx) and
p
x2 + µ2. We noticed that the activations constructed using these two functions pro-

vide good performance on standard datasets on different deep learning problems. Note
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Figure 4.1: Approxima-
tion of ReLU
using SMU
(� = 0) for
different val-
ues of µ. As
µ � ⇥, SMU
smoothly
approximate
ReLU

Figure 4.2: Approximation
of Leaky ReLU
(� = 0.25)
using SMU
for different
values of µ.
As µ � ⇥,
SMU smoothly
approximate
Leaky ReLU

Figure 4.3: First order
derivatives
of SMU for
� = 0.25 and
different values
of µ.

Figure 4.4: Approxima-
tion of ReLU
using SMU-1
(� = 0) for
different val-
ues of µ. As
µ � 0, SMU-
1 smoothly
approximate
ReLU

Figure 4.5: Approximation
of Leaky ReLU
(� = 0.25)
using SMU-1
for different
values of µ. As
µ � 0, SMU-
1 smoothly
approximate
Leaky ReLU

Figure 4.6: First order
derivatives of
SMU-1 for
� = 0.25 and
different values
of µ.

that
p
x2 + µ2 as µ � 0 approximate |x| from above while xerf(µx). as µ � ⇥ gives

an approximation of |x| from below. Here erf is the Gaussian error function defined as

follows:

erf(x) =
2⌃
⌥

Z x

0

e�t2 dt.

Now, replacing the |x| function by xerf(µx) in equation (4.1), we have the approxi-
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Figure 4.7: Approximation by a smooth function of |x|

mation by a smooth function formula for the maximum function as follows:

f1(x1, x2;µ) =
(x1 + x2) + (x1 ⇤ x2) erf(µ(x1 ⇤ x2))

2
. (4.2)

Similarly, we can derive the the approximation by a smooth function formula for the

maximum function from equation (4.1) by replacing the |x| function by
p
x2 + µ2 as

follows:

f2(x1, x2;µ) =
(x1 + x2) +

p
(x1 ⇤ x2)2 + µ2

2
(4.3)

Note that as µ � ⇥, f1(x1, x2;µ) � max(x1, x2) and as µ � 0, f2(x1, x2;µ) �

max(x1, x2). For particular values of x1 and x2, we can approximate known activation

functions. For example, consider x1 = ax, x2 = bx, with a  = b in (4.2), we get:

f1(ax, bx;µ) =
(a+ b)x+ (a⇤ b)x erf(µ(a⇤ b)x)

2
. (4.4)

This is a simple case from the Maxout family (Goodfellow et al. (2013)) while more

complicated cases can be found by considering nonlinear choices of x1 and x2. We can

similarly get approximation by a smooth function formula to ReLU and Leaky ReLU.

For example, consider x1 = x and x2 = 0, we have approximation by a smooth function
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of ReLU as follows:

f1(x, 0;µ) =
x+ x erf(µx)

2
. (4.5)

We know that GELU (Hendrycks and Gimpel (2020)) is a approximation by a smooth

function of ReLU. Notice that, if we choose µ = 1⌅
2

in equation (4.5), we can recover

GELU activation function which also show that GELU is approximation by a smooth

function of ReLU. Also, considering x1 = x and x2 = �x, we have a approximation

by a smooth function of Leaky ReLU or Parametric ReLU depending on whether � is a

hyperparameter or a learnable parameter.

f1(x,�x;µ) =
(1 + �)x+ (1⇤ �)x erf(µ(1⇤ �)x)

2
. (4.6)

Note that, equation (4.5) and equation (4.6) approximate ReLU or Leaky ReLU from

below. Similarly, we can derive approximating function from equation (4.3) which will

approximate ReLU or Leaky ReLU from above.

The corresponding derivatives of equation (4.6) for input variable x is

d

dx
f1(x,�x;µ) =

1

2
[(1 + �) + (1⇤ �) erf(µ(1⇤ �)x)

+
2⌃
⌥
µ(1⇤ �)2xe�(µ(1�⌅)x)2 ] (4.7)

where
d

dx
erf(x) =

2⌃
⌥
e�x2

.

Figures 4.1, 4.2, and 4.3 show the plots for f1(x, 0;µ), f1(x, 0.25x;µ), and derivative

of f1(x, 0.25x;µ) for different values of µ. From the figures it is clear that as µ � ⇥,

f1(x,�x;µ) smoothly approximate ReLU or Leaky ReLU depending on value of �.

We call the function in equation (4.6) as Smooth Maximum Unit (SMU). Similarly, We

can derive a function by replacing x1 = x and x2 = �x in equation (4.3) and we call

this function SMU-1. For all of our experiments, we will use SMU and SMU-1 as our

proposed activation functions.

Figure 4.4, 4.5 represents approximation of ReLU (� = 0), Leaky ReLU (� = 0.25)

by SMU-1 for different values of µ and as µ � 0, SMU-1 overlap ReLU or Leaky

ReLU depending on the value of �. Figure 4.6 represents the derivatives of SMU-1 for

� = 0.25 and different valus of µ.
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There are many known approximation by a smooth function to the |x| function like

x erf(µx),
p
x2 + µ2, x2⌃

x2+µ2
etc. As µ � 0, x2⌃

x2+µ2
gives approximation by a smooth

function of |x| from below. We give a plot of well known approximation to |x| in

Figure 4.7.

Replace x1 = x and x2 = �x in equation (3), we have a approximation by a

smooth function of Leaky ReLU or Parametric ReLU depending on whether � is a

hyperparameter or a learnable parameter. We call it SMU-1 and is defined as

f2(x,�x;µ) =
(1 + �)x+

p
(1⇤ �)2x2 + µ2

2

and the corresponding derivative with respect to input variable x is

d

dx
f2(x,�x;µ) =

(1 + �) + (1�⌅)2x⌃
(1�⌅)2x2+µ2

2

.

4.4.2 Learning activation parameters via back-propagation

Trainable activation function parameters are updated using backpropagation (LeCun

et al. (1989)) technique (see He et al. (2015b)) according to (4.8) and for a single layer,

the gradient of a hyper-parameter � is:

⌦L

⌦�
=

X

x

⌦L

⌦f(x)

⌦f(x)

⌦�
(4.8)

where L is the objective function, � � {�, µ} and f(x) � {f1(x,�x;µ), f2(x,�x;µ)}.

We implemented forward pass in both Pytorch (Paszke et al. (2019)) & Tensorflow-

Keras (Chollet et al. (2015)) API, and automatic differentiation will update the param-

eters. Alternatively, CUDA (Nickolls et al. (2008)) based implementation (see Maas

et al. (2013a)) can be used and the gradients are given in (4.9) and (4.10)) for the pa-

rameters � and µ of equation (4.6) are as follows:

⌦f1
⌦�

=
x

2
⇤ x erf(µ(1⇤ �)x)

2
⇤ (1⇤ �)µx2e�(µ(1�⌅)x)2

⌃
⌥

(4.9)
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⌦f1
⌦µ

=
1⌃
⌥
(1⇤ �)2x2e�(µ(1�⌅)x)2 (4.10)

� and µ can be either hyperparameters or trainable parameters.

Now, note that the class of neural networks with SMU and SMU-1 activation functions

are dense in C(K), where K is a compact subset of Rn and C(K) is the space of all

continuous functions over K.

The proof follows from the following proposition (see Molina et al. (2020)).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 Kidger and Lyons

(2020)) :- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class

of neural networks with activation function ↵, with n neurons in the input layer, one

neuron in the output layer, and one hidden layer with an arbitrary number of neurons.

Let K ⌦ Rn be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.

4.5 Experiments

We report a detailed experimental evaluation in the next subsections on four differ-

ent deep learning problems like image classification, object detection, semantic seg-

mentation, and machine translation. To compare performance of our proposed ac-

tivation function, we consider ten popular activation functions as the baseline func-

tions. The following activations are considered to compare performance with SMU and

SMU-1: ReLU (Nair and Hinton (2010)), Leaky ReLU (Maas et al. (2013a)), ReLU6

(Krizhevsky (2010)), Parametric ReLU (PReLU) (He et al. (2015b)), ELU (Clevert

et al. (2016)), Softplus (Zheng et al. (2015)), Swish (Ramachandran et al. (2017)),

Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), and Pade Activation Unit

(PAU) (Molina et al. (2020)). For all experiments, we consider Swish (x. Sigmoid(⇥x)),

PReLU (max(x, ax)), and PAU as trainable activation functions. We initialize the train-

able parameter ⇥ at 1.0 for Swish, a at 0.25 for PReLU. PAU function has ten trainable

parameters and all the parameters are initialized as suggested in (Molina et al. (2020)).

All the trainable parameters are updated via the backpropagation (LeCun et al. (1989))

algorithm. We report results for baseline activation functions, SMU and SMU-1 activa-

tion functions in the following sections. SMU-1 is a computationally cheap activation

function due to its simple form, while it boosts the network performance remarkably
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well in all the experiments compared to the baseline activations. All the experiments

are conducted on an NVIDIA Tesla V100 GPU with 32GB RAM.

4.5.1 Image Classification

We report results for the image classification problem on six popular benchmarking

datasets: MNIST, Fashion MNIST, SVHN, CIFAR10, CIFAR100, and Tiny ImageNet.

Detailed results are reported in the following subsections. For SMU, we consider � =

0.25, a constant hyperparameter and µ as a trainable parameter and initialise at 1.0.

MNIST, Fashion MNIST, and SVHN

In this section, We present our experimental comparison for SMU, SMU-1 and other

baseline activations on MNIST (LeCun et al. (2010)), Fashion MNIST (Xiao et al.

(2017)), and SVHN (Netzer et al. (2011)) datasets. The MNIST and Fashion MNIST

databases contain 60k training and 10k testing 28 ◊ 28 grey-scale images. Both the

datasets have ten different classes. The SVHN database has 32 ◊ 32 RGB images and

a total of 73257 training images and 26032 testing images with ten different classes.

Standard data augmentation methods like zoom, rotation, height shift, shearing are ap-

plied to these three datasets. We consider a batch size of 128, 0.01 initial learning

rate and decay the learning rate with cosine annealing (Loshchilov and Hutter (2017))

learning rate scheduler. We use stochastic gradient descent (Robbins and Monro (1951),

Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e�4 weight decay, and

trained all networks up-to 100 epochs. We report results with VGG-16 (Simonyan and

Zisserman (2015)) (with batch-normalization (Ioffe and Szegedy (2015))) architecture

in Table 4.1 for mean of 15 different runs. We report more results on MNIST, Fashion

MNIST, and SVHN datasets with SMU, SMU-1 and baseline activations with LeNet,

AlexNet, and a custom-designed model in Table 4.2, Table 4.3, and Table 4.4 respec-

tively. Our custom homogeneous convolutional neural network has max-pooling lay-

ers(thrice), channel depths of size 128 (twice), 64 (thrice), 32 (twice), and a dense layer

of size 128. Batch-normalization is applied before the activation function layer. We use

3◊ 3 kernels in CNN layers and 2◊ 2 kernels in max-pooling layers.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.53± 0.07 93.79± 0.15 95.97± 0.14

Leaky ReLU 99.58± 0.08 93.80± 0.15 96.02± 0.15
PReLU 99.55 ± 0.07 93.90 ± 0.17 96.10 ± 0.16
ReLU6 99.59 ± 0.06 93.93 ± 0.12 96.11 ± 0.15
ELU 99.48± 0.05 93.87± 0.16 96.05± 0.17

Softplus 99.22± 0.14 93.58± 0.18 95.81± 0.21
Swish 99.57± 0.05 94.17± 0.11 96.20± 0.12
Mish 99.63± 0.04 94.25 ± 0.13 96.31 ± 0.12

GELU 99.59± 0.04 94.22 ± 0.14 96.21 ± 0.14
PAU 99.55± 0.07 94.09 ± 0.14 96.20 ± 0.14
SMU 99.69 ± 0.04 94.48 ± 0.10 96.59 ± 0.11

SMU-1 99.65 ± 0.04 94.37 ± 0.14 96.43 ± 0.14

Table 4.1: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on VGG16 architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean±std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.16± 0.11 91.42± 0.18 92.10± 0.21

Leaky ReLU 99.12± 0.12 91.43± 0.22 92.27± 0.20
ReLU6 99.21 ± 0.10 91.47 ± 0.19 92.28± 0.16
PReLU 99.23 ± 0.10 91.40 ± 0.20 92.09± 0.20

ELU 99.30± 0.10 91.41± 0.21 92.28± 0.19
Softplus 99.01± 0.19 91.11± 0.25 91.92± 0.26
GELU 99.33± 0.08 91.60 ± 0.13 92.47± 0.17
Swish 99.29± 0.09 91.66 ± 0.15 92.35± 0.20
PAU 99.37± 0.10 91.56 ± 0.14 92.37± 0.21
Mish 99.36± 0.06 91.68 ± 0.13 92.41± 0.17
SMU 99.47 ± 0.04 91.58 ± 0.16 92.79 ± 0.16

SMU-1 99.41 ± 0.05 91.51 ± 0.14 92.66 ± 0.17

Table 4.2: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on LeNet architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean±std is reported in the table.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.48± 0.07 92.70± 0.20 95.03± 0.16

Leaky ReLU 99.47± 0.07 92.81± 0.19 95.10± 0.18
ReLU6 99.52 ± 0.05 92.94 ± 0.14 95.16 ± 0.14
PReLU 99.45 ± 0.09 92.79 ± 0.20 95.12 ± 0.16

ELU 99.51± 0.06 92.96± 0.15 95.19± 0.16
Softplus 99.27± 0.11 92.30± 0.27 94.71± 0.20
GELU 99.57± 0.07 93.09 ± 0.12 95.20 ± 0.13
Swish 99.59± 0.06 92.90± 0.17 95.35± 0.16
PAU 99.51± 0.10 93.06 ± 0.18 95.29 ± 0.15
Mish 99.61± 0.06 93.12 ± 0.15 95.31 ± 0.12
SMU 99.68 ± 0.04 93.31 ± 0.15 95.59 ± 0.12

SMU-1 99.65 ± 0.05 93.20 ± 0.11 95.46 ± 0.13

Table 4.3: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on AlexNet architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean±std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.41± 0.09 92.97± 0.16 94.48± 0.14

Leaky ReLU 99.40± 0.07 93.17± 0.14 94.59± 0.18
ReLU6 99.46 ± 0.07 93.35 ± 0.16 94.61 ± 0.12
PReLU 99.37 ± 0.11 93.18 ± 0.13 94.58 ± 0.15

ELU 99.49± 0.07 93.24± 0.14 94.57± 0.15
Softplus 99.21± 0.14 92.99± 0.24 94.34± 0.22
GELU 99.52± 0.05 93.39 ± 0.14 94.87 ± 0.10
Swish 99.54±0.07 93.34 ± 0.15 94.84± 0.14
PAU 99.55±0.12 93.37 ± 0.17 94.79± 0.14
Mish 99.64±0.06 93.43 ± 0.12 94.87± 0.10
SMU 99.61 ± 0.06 93.61 ± 0.09 95.06 ± 0.10

SMU-1 99.57 ± 0.07 93.49 ± 0.11 95.18 ± 0.12

Table 4.4: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on custom designed architecture. We report Top-1 test accuracy
(in %) for the mean of 15 different runs. mean±std is reported in the table.
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CIFAR

In this section, we report results on the popular image classification datasets CIFAR10

(Krizhevsky (2009)) and CIFAR100 (Krizhevsky (2009)). Both the datasets have 50k

training and 10k testing images. While CIFAR10 has ten classes and CIFAR100 has

100 classes. In these two datasets for all experiments, we consider a batch size of 128,

0.01 initial learning rate and decay the learning rate with cosine annealing (Loshchilov

and Hutter (2017)) learning rate scheduler, stochastic gradient descent (Robbins and

Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e�4

weight decay, and trained all networks up-to 200 epochs. We consider standard data

augmentation methods like horizontal flip and rotation. Top-1 accuracy is reported in

Table 4.5, Table 4.7, Table 4.8, & Table 4.9 on CIFAR100 (Krizhevsky (2009)) dataset

and Table 4.6, Table 4.10, Table 4.11 & Table 4.12 on CIFAR10 (Krizhevsky (2009))

dataset for mean of 15 different runs. The results are reported with MobileNet V1

(Howard et al. (2017)), MobileNet V2 (Sandler et al. (2019)), ShuffleNet V1 (Zhang

et al. (2017b)) (SF V1), ShuffleNet V2 (Ma et al. (2018)), PreActResNet (He et al.

(2016)), ResNet (He et al. (2015a)), GoogleNet (Szegedy et al. (2014a)), Inception V3

(Szegedy et al. (2015a)), DenseNet (Huang et al. (2016a)), Squeeze-and-Excitation

Networks (SeNet) (Hu et al. (2017)), SqueezeNet (Iandola et al. (2016)), ResNext

(Xie et al. (2017)), WideResNet (Zagoruyko and Komodakis (2016)), Xception (Chol-

let (2017)), VGG (Simonyan and Zisserman (2015)) (with batch-normalization (Ioffe

and Szegedy (2015))), AlexNet (Krizhevsky et al. (2012)), LeNet (Lecun et al. (1998)),

and EfficientNet B0 (Tan and Le (2020)). From Table 4.5 it is clear that Top-1 classifi-

cation accuracy improves by 6.19%, 6.22%, 3.39%, 3.51%, 3.09%, 3.40% and 3.08%

when we replace ReLU by SMU on the CIFAR100 dataset with ShuffleNet V2 (1.0x),

ShuffleNet V2 (2.0x), PreActResNet-50, ResNet-50, ResNext, Xception and SeNet-50

models respectively. The Figures 4.8 and 4.9 shows the learning curves on CIFAR100

dataset with ShuffleNet V2 (2.0x) model for the baseline and the proposed activation

functions.

Tiny Imagenet

In this section, We report results for classification problem on a more challenging

dataset, Tiny Imagenet (Le and Yang (2015)). Tiny imagenet has RGB images of size
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Model ReLU SMU SMU-1

Top-1 accuracy Top-1 accuracy Top-1 accuracy

Shufflenet V2 0.5x 62.07 ± 0.26 66.67 ± 0.24 65.60 ± 0.24
Shufflenet V2 1.0x 64.41 ± 0.25 70.60 ± 0.21 69.96 ± 0.22
Shufflenet V2 1.5x 67.20 ± 0.26 72.68 ± 0.19 72.05 ± 0.20
Shufflenet V2 2.0x 67.52 ± 0.25 73.74 ± 0.20 73.45 ± 0.23

PreActResNet 18 73.18 ± 0.22 76.07 ± 0.20 75.72 ± 0.22
PreActResNet 34 73.41 ± 0.24 76.21 ± 0.20 75.87 ± 0.21
PreActResNet 50 73.89 ± 0.23 77.28 ± 0.17 76.85 ± 0.20

ResNet 18 73.23 ± 0.26 75.22 ± 0.20 74.91 ± 0.20
ResNet 34 73.33 ± 0.27 75.77 ± 0.20 75.59 ± 0.21
ResNet 50 74.12 ± 0.24 77.63 ± 0.20 76.89 ± 0.23

SeNet 18 74.77 ± 0.22 76.17 ± 0.17 75.44 ± 0.20
SeNet 34 75.12 ± 0.22 76.79 ± 0.18 75.79 ± 0.21
SeNet 50 76.09 ± 0.20 79.17 ± 0.16 78.45 ± 0.20

ResNext 74.43 ± 0.22 77.52 ± 0.18 77.03 ± 0.21

MobileNet V1 71.10 ± 0.26 73.59 ± 0.22 73.10 ± 0.22
MobileNet V2 74.17 ± 0.24 76.31 ± 0.19 76.03 ± 0.19

Xception 71.22 ± 0.26 74.62 ± 0.23 74.11 ± 0.23

EffitientNet B0 76.60 ± 0.27 79.10 ± 0.22 78.77 ± 0.23

Table 4.5: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR100 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean±std is reported
in the table.

64◊ 64 with total 1,00,000 training images, 10,000 validation images, and 10,000 test

images with total 200 classes. Standard data augmentation methods like rotation, hori-

zontal flip is applied. We consider a batch size of 64, 0.1 initial learning rate and reduce

the learning rate after every 50 epochs by a factor of 10. We use stochastic gradi-

ent descent (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with

0.9 momentum & 5e�4 weight decay, and trained all networks up-to 200 epochs. Re-

sults are reported with WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis

(2016)), DenseNet-121 (Huang et al. (2016a)), ResNet-18, and ResNet-50 (He et al.

(2015a)) models and Top-1 classification accuracy is reported in table 4.14 for mean of

10 different runs. The proposed functions performs better than the baseline functions

and results are stable (mean±std) and we get very good improvement over the baseline

activation functions. Replacing ReLU by SMU, we have 2.56%, 2.23%, 2.31%, and

2.78% boost in Top-1 classification accuracy on DenseNet-121, ResNet-18, ResNet-50,
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Model ReLU SMU SMU-1

Top-1 accuracy Top-1 accuracy Top-1 accuracy

ShuffleNet V2 0.5x 88.40 ± 0.22 90.63 ± 0.16 90.39 ± 0.18
ShuffleNet V2 1.0x 90.81 ± 0.24 92.72 ± 0.18 92.42 ± 0.20
ShuffleNet V2 1.5x 91.21 ± 0.22 93.42 ± 0.17 92.27 ± 0.18
ShuffleNet V2 2.0x 91.70 ± 0.20 93.61 ± 0.14 93.40 ± 0.16

PreActResNet 18 93.57 ± 0.20 94.63 ± 0.15 94.52 ± 0.17
PreActResNet 34 94.21 ± 0.17 95.12 ± 0.13 94.93 ± 0.14
PreActResNet 50 94.30 ± 0.18 95.37 ± 0.11 94.94 ± 0.12

ResNet 18 94.10 ± 0.20 94.78 ± 0.17 94.51 ± 0.19
ResNet 34 94.22 ± 0.18 94.91 ± 0.16 94.77 ± 0.17
ResNet 50 94.26 ± 0.18 95.38 ± 0.16 94.92 ± 0.17

SeNet 18 94.29 ± 0.20 94.75 ± 0.17 94.56 ± 0.19
SeNet 34 94.42 ± 0.20 95.27 ± 0.15 94.89 ± 0.17
SeNet 50 94.55 ± 0.19 95.92 ± 0.12 95.22 ± 0.17

ResNext 93.37 ± 0.18 94.52 ± 0.15 94.04 ± 0.18

MobileNet V1 92.41 ± 0.14 93.81 ± 0.11 93.47 ± 0.11
MobileNet V2 94.22 ± 0.15 95.50 ± 0.09 95.27 ± 0.10

Xception 90.51 ± 0.22 93.25 ± 0.17 92.59 ± 0.20

EffitientNet B0 95.10 ± 0.15 96.23 ± 0.10 96.11 ± 0.12

Table 4.6: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR10 dataset for image classification problem. We report Top-1
test accuracy (in %) for the mean of 15 different runs. mean±std is reported
in the table.

and WideResNet 28-10 models respectively.

We run experiments with Mixup augmentation method on CIFAR100 dataset with

ShuffleNet V2 (2.0x), MobileNet V2, AlexNet, Xception, ResNet-50 models and results

are reported in Table 4.13. The results are reported with the same experimental setup is

reported in the CIFAR section. From table 4.13, it is clear that the proposed activations

perform better than the baseline activations in all the models.

ImageNet-1k

We also evaluate the performance of proposed and baseline activation functions on

bookmarking the ImageNet-1k dataset. The dataset consists of 1,281,167 training im-

ages and 50,000 validation images with 1000 classes. The images have a resolution of

224◊224. Results are reported on Table 4.15 with ShuffleNet V2 (1.0x) and ResNet-50
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Figure 4.8: Top-1 train and test accu-
racy curves for SMU, SMU-
1 and other baseline activa-
tion functions on CIFAR100
dataset with ShuffleNet V2
(2.0x) model.

Figure 4.9: Top-1 train and test loss
curves for SMU, SMU-1 and
other baseline activation func-
tions on CIFAR100 dataset
with ShuffleNet V2 (2.0x)
model.

Activation
Function

Alex
Net

Shuffle
Net V1

Google
Net

Inception
V3

Dense
Net 121

WideRes
Net 28-10

Squeeze
Net

VGG
16 LeNet

SMU 61.27
±0.21

69.15
±0.22

74.61
±0.25

77.52
±0.24

78.57
±0.23

78.89
±0.24

68.51
±0.24

73.26
±0.22

47.20
±0.25

SMU-1 60.98
±0.23

68.71
±0.22

74.29
±0.24

76.88
±0.23

78.01
±0.24

78.30
±0.23

68.07
±0.25

72.79
±0.23

47.03
±0.24

ReLU 54.89
±0.28

65.79
±0.29

72.52
±0.30

74.12
±0.27

75.81
±0.28

76.45
±0.26

66.22
±0.29

71.87
±0.30

45.54
±0.28

Leaky ReLU 55.26
±0.27

65.99
±0.30

72.42
±0.31

74.49
±0.28

75.93
±0.27

76.61
±0.27

66.15
±0.27

71.92
±0.29

45.77
±0.29

ReLU6 55.89
±0.26

66.19
±0.28

72.47
±0.28

74.51
±0.25

75.98
±0.28

76.71
±0.27

66.39
±0.26

71.95
±0.28

45.79
±0.27

PReLU 55.47
±0.29

65.87
±0.32

72.69
±0.29

74.39
±0.30

76.06
±0.29

76.71
±0.27

66.35
±0.28

71.96
±0.32

45.59
±0.31

ELU 55.91
±0.26

65.72
±0.28

72.92
±0.28

74.65
±0.26

75.72
±0.25

76.25
±0.26

66.39
±0.28

71.79
±0.30

46.02
±0.28

Softplus 54.99
±0.39

65.11
±0.38

71.81
±0.38

74.25
±0.35

75.19
±0.35

75.42
±0.37

65.73
±0.35

70.92
±0.32

44.12
±0.39

GELU 57.32
±0.26

67.22
±0.25

73.16
±0.26

75.66
±0.26

76.68
±0.26

77.07
±0.25

66.99
±0.29

71.88
±0.27

47.27
±0.25

Swish 57.55
±0.27

67.01
±0.26

73.32
±0.26

75.47
±0.28

76.51
±0.29

77.35
±0.24

66.56
±0.27

71.94
±0.28

47.34
±0.23

PAU 57.35
±0.29

67.45
±0.28

73.68
±0.27

75.85
±0.31

76.72
±0.28

77.02
±0.26

66.89
±0.24

71.79
±0.25

47.30
±0.29

Mish 58.22
±0.23

67.85
±0.24

73.97
±0.24

76.29
±0.25

77.25
±0.24

77.45
±0.23

67.35
±0.23

72.45
±0.22

47.42
±0.27

Table 4.7: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR100 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean±std is reported
in the table.
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Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

SeNet
18

SeNet
34

SeNet
50

Res-
Next

Xcep-
tion

EffitientNet
B0

Leaky ReLU 62.25
±0.33

65.39
±0.34

67.39
±0.29

67.79
±0.29

74.51
±0.23

75.14
±0.24

76.23
±0.22

74.58
±0.23

71.01
±0.26

76.81
±0.28

ReLU6 62.39
±0.30

65.71
±0.29

67.65
±0.29

68.10
±0.26

74.69
±0.20

75.34
±0.22

76.61
±0.21

74.65
±0.24

71.39
±0.23

76.67
±0.24

PReLU 62.01
±0.34

65.10
±0.33

67.37
±0.34

67.99
±0.29

74.39
±0.27

75.19
±0.23

76.39
±0.24

74.48
±0.26

71.19
±0.28

76.68
±0.30

ELU 62.61
±0.30

65.60
±0.28

67.71
±0.27

67.91
±0.31

74.79
±0.22

75.10
±0.21

76.49
±0.23

74.69
±0.22

71.45
±0.24

76.71
±0.30

Softplus 61.87
±0.35

64.45
±0.37

67.19
±0.32

68.79
±0.30

74.36
±0.34

74.78
±0.34

75.22
±0.37

74.31
±0.35

71.30
±0.39

76.56
±0.36

GELU 64.40
±0.26

66.79
±0.23

69.79
±0.29

70.10
±0.28

74.82
±0.19

76.20
±0.21

77.20
±0.21

75.17
±0.24

72.07
±0.22

77.31
±0.22

Swish 63.79
±0.25

66.99
±0.25

69.59
±0.27

70.29
±0.24

74.62
±0.19

75.77
±0.22

76.89
±0.24

75.17
±0.25

72.19
±0.21

77.17
±0.20

PAU 64.10
±0.26

66.77
±0.27

69.52
±0.25

70.54
±0.26

74.89
±0.20

75.92
±0.24

77.10
±0.23

75.66
±0.26

72.62
±0.27

77.41
±0.24

Mish 64.91
±0.24

67.78
±0.24

70.44
±0.25

71.49
±0.22

75.32
±0.19

76.52
±0.23

77.69
±0.23

76.20
±0.24

73.49
±0.22

78.15
±0.22

Table 4.8: This is an extension to the Table-4.5 (4.5). We report Top-1 test accuracy (in
%) on CIFAR100 dataset for baseline functions for the mean of 15 different
runs. mean±std is reported in the table. SF V2 stands for ShuffleNet v2.

Activation
Function

ResNet
18

ResNet
34

ResNet
50

PreAct
ResNet

18

PreAct
ResNet

34

PreAct
ResNet

50

MobileNet
V1

MobileNet
V2

Leaky ReLU 73.12
±0.25

73.41
±0.28

74.19
±0.25

73.29
±0.23

73.33
±0.24

74.02
±0.24

71.22
±0.26

74.03
±0.25

ReLU6 73.35
±0.24

73.59
±0.26

74.23
±0.23

73.47
±0.23

73.56
±0.22

74.46
±0.23

71.56
±0.24

74.51
±0.23

PReLU 73.02
±0.27

73.52
±0.29

74.32
±0.28

73.21
±0.25

73.45
±0.26

74.29
±0.25

71.41
±0.29

74.45
±0.30

ELU 73.42
±0.24

73.68
±0.26

74.48
±0.24

73.32
±0.20

73.49
±0.25

74.44
±0.25

71.32
±0.24

74.22
±0.23

Softplus 72.86
±0.39

73.20
±0.38

74.10
±0.40

72.99
±0.41

73.10
±0.35

73.96
±0.38

71.04
±0.38

74.27
±0.36

GELU 73.89
±0.22

74.10
±0.25

75.59
±0.22

74.98
±0.23

74.41
±0.21

74.92
±0.22

71.74
±0.22

75.01
±0.23

Swish 73.68
±0.23

74.17
±0.24

75.35
±0.24

75.12
±0.25

74.81
±0.22

75.10
±0.21

71.92
±0.21

75.15
±0.22

PAU 74.10
±0.20

74.44
±0.22

75.87
±0.21

74.92
±0.21

74.72
±0.19

75.68
±0.17

71.83
±0.22

75.19
±0.19

Mish 74.59
±0.20

74.70
±0.21

76.22
±0.22

75.11
±0.23

75.34
±0.21

76.98
±0.19

72.24
±0.20

75.45
±0.20

Table 4.9: This is an extension to the Table-4.5 (4.5). We report Top-1 test accuracy (in
%) on CIFAR100 dataset for baseline functions for the mean of 15 different
runs. mean±std is reported in the table.

47



Activation
Function

ResNet
18

ResNet
34

ResNet
50

PreAct
ResNet

18

PreAct
ResNet

34

PreAct
ResNet

50

MobileNet
V1

MobileNet
V2

Leaky ReLU 94.00
±0.25

94.18
±0.24

94.29
±0.24

93.51
±0.20

94.29
±0.22

94.32
±0.22

92.54
±0.21

94.10
±0.19

ReLU6 94.19
±0.26

94.20
±0.25

94.26
±0.27

93.69
±0.21

94.19
±0.25

94.52
±0.23

92.69
±0.20

94.21
±0.20

PReLU 94.22
±0.28

94.29
±0.29

94.17
±0.27

93.58
±0.23

94.31
±0.25

94.48
±0.28

92.50
±0.20

94.29
±0.23

ELU 94.15
±0.23

94.24
±0.22

94.20
±0.24

93.59
±0.22

94.42
±0.24

94.45
±0.20

92.69
±0.21

94.04
±0.19

Softplus 93.82
±0.29

93.99
±0.31

93.77
±0.31

93.09
±0.28

94.01
±0.35

94.08
±0.32

92.01
±0.32

93.91
±0.27

GELU 94.38
±0.22

94.41
±0.23

94.59
±0.23

93.70
±0.21

94.24
±0.25

94.69
±0.23

92.81
±0.20

94.20
±0.16

Swish 94.31
±0.21

94.32
±0.20

94.64
±0.22

93.80
±0.21

94.14
±0.24

94.61
±0.23

92.69
±0.22

94.22
±0.17

PAU 94.40
±0.20

94.46
±0.22

94.59
±0.22

93.84
±0.20

94.29
±0.22

94.73
±0.24

93.01
±0.15

94.54
±0.13

Mish 94.52
±0.23

94.39
±0.22

94.79
±0.22

93.78
±0.22

94.51
±0.22

94.81
±0.24

92.78
±0.20

94.77
±0.18

Table 4.10: This is an extension to the Table-4.6 (4.6). We report Top-1 test accuracy (in
%) on CIFAR10 dataset for baseline functions for the mean of 15 different
runs. mean±std is reported in the table.

Activation
Function

Alex
Net

Shuffle
Net V1

Google
Net

Inception
V3

Dense
Net 121

WideRes
Net 28-10

Squeeze
Net

VGG
16 LeNet

SMU 87.25
±0.15

92.42
±0.14

94.10
±0.17

95.59
±0.14

96.07
±0.12

96.23
±0.14

91.77
±0.16

94.54
±0.14

77.66
±0.16

SMU-1 86.77
±0.16

92.01
±0.15

93.69
±0.16

95.11
±0.15

95.65
±0.12

95.71
±0.13

91.38
±0.15

94.32
±0.15

77.39
±0.16

ReLU 84.10
±0.20

91.34
±0.19

92.91
±0.18

94.04
±0.18

94.77
±0.19

95.08
±0.21

90.59
±0.20

93.59
±0.18

75.80
±0.21

Leaky ReLU 84.22
±0.22

91.56
±0.20

92.79
±0.17

94.29
±0.22

94.68
±0.22

95.01
±0.20

90.71
±0.20

93.71
±0.19

75.99
±0.20

ReLU6 84.79
±0.19

91.68
±0.18

92.97
±0.16

94.21
±0.19

94.59
±0.20

95.39
±0.20

90.87
±0.19

93.70
±0.17

75.88
±0.18

PReLU 84.30
±0.24

91.74
±0.23

92.91
±0.24

94.45
±0.20

94.59
±0.23

95.10
±0.20

90.79
±0.23

93.58
±0.22

75.90
±0.21

ELU 84.89
±0.19

91.89
±0.18

92.99
±0.16

94.45
±0.17

94.72
±0.18

95.23
±0.17

90.87
±0.15

93.78
±0.16

75.88
±0.18

Softplus 84.01
±0.30

91.10
±0.29

92.56
±0.32

94.17
±0.31

94.54
±0.29

94.89
±0.28

90.55
±0.33

93.39
±0.29

75.45
±0.35

GELU 85.02
±0.19

91.77
±0.18

93.36
±0.18

94.32
±0.17

94.71
±0.20

95.19
±0.18

90.89
±0.16

93.64
±0.16

77.71
±0.19

Swish 85.19
±0.18

91.49
±0.20

93.26
±0.19

94.40
±0.19

94.69
±0.17

95.47
±0.17

91.12
±0.19

93.68
±0.17

77.70
±0.18

PAU 84.91
±0.20

91.95
±0.21

93.20
±0.19

94.32
±0.23

94.50
±0.22

95.07
±0.20

90.51
±0.19

93.50
±0.21

77.68
±0.20

Mish 85.78
±0.17

91.96
±0.15

93.29
±0.17

94.49
±0.16

95.03
±0.13

95.39
±0.16

91.14
±0.16

93.77
±0.17

77.79
±0.15

Table 4.11: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR10 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean±std is re-
ported in the table.
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Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

SeNet
18

SeNet
34

SeNet
50

Res-
Next

Xcep-
tion

EffitientNet
B0

Leaky ReLU 88.32
±0.24

91.20
±0.26

91.24
±0.24

91.70
±0.24

94.18
±0.24

94.52
±0.23

94.51
±0.21

93.25
±0.20

90.81
±0.25

95.35
±0.15

ReLU6 88.52
±0.22

91.15
±0.23

91.32
±0.20

91.64
±0.22

94.39
±0.22

94.50
±0.24

94.61
±0.22

93.49
±0.21

91.20
±0.22

95.40
±0.16

PReLU 88.28
±0.24

91.02
±0.22

91.29
±0.24

91.77
±0.24

94.35
±0.24

94.57
±0.25

94.62
±0.24

93.35
±0.24

91.07
±0.23

95.37
±0.19

ELU 88.20
±0.22

91.17
±0.26

91.40
±0.22

91.81
±0.24

94.22
±0.22

94.42
±0.24

94.71
±0.22

93.52
±0.23

91.45
±0.22

95.19
±0.19

Softplus 87.95
±0.30

90.42
±0.30

91.01
±0.28

91.00
±0.30

93.82
±0.29

94.05
±0.30

94.22
±0.27

93.10
±0.29

90.56
±0.27

95.07
±0.25

GELU 88.92
±0.20

91.62
±0.24

91.77
±0.20

92.29
±0.19

94.49
±0.20

94.77
±0.20

94.79
±0.16

93.61
±0.20

91.99
±0.22

95.45
±0.15

Swish 89.04
±0.20

91.71
±0.22

91.81
±0.20

92.20
±0.19

94.30
±0.18

94.69
±0.18

94.55
±0.17

93.61
±0.19

91.69
±0.19

95.56
±0.16

PAU 89.18
±0.21

91.70
±0.24

92.20
±0.20

92.31
±0.19

94.32
±0.21

94.77
±0.22

94.70
±0.20

93.50
±0.19

91.91
±0.22

95.49
±0.15

Mish 89.42
±0.20

91.98
±0.18

92.18
±0.17

92.47
±0.18

94.49
±0.19

94.81
±0.18

94.97
±0.15

93.89
±0.17

92.07
±0.20

95.70
±0.12

Table 4.12: This is an extension to the Table-4.6 (4.5). We report Top-1 test accuracy (in
%) on CIFAR10 dataset for baseline functions for the mean of 15 different
runs. mean±std is reported in the table. SF V2 stands for ShuffleNet v2.

Activation Function Shuffle
Net V2 (2.0x)

ResNet
50 Xception Alex

Net
Mobile
Net V2

ReLU 70.21 ± 0.23 75.61 ± 0.26 72.10 ± 0.20 55.80 ± 0.27 75.72 ± 0.23
Leaky ReLU 70.09 ± 0.25 75.74 ± 0.27 72.22 ± 0.22 56.10 ± 0.28 75.81 ± 0.25

PReLU 70.17 ± 0.24 75.82 ± 0.28 72.18 ± 0.24 56.52 ± 0.26 75.98 ± 0.27
ReLU6 70.21 ± 0.23 76.14 ± 0.25 72.35 ± 0.19 56.69 ± 0.26 75.87 ± 0.22
ELU 70.34 ± 0.24 76.15 ± 0.26 72.41 ± 0.23 56.97 ± 0.25 75.79 ± 0.25

Softplus 69.91 ± 0.26 75.51 ± 0.30 71.94 ± 0.26 55.65 ± 0.35 75.60 ± 0.27
Swish 73.64 ± 0.21 76.80 ± 0.24 73.45 ± 0.20 58.77 ± 0.24 76.67 ± 0.21
Mish 74.25 ± 0.22 77.30 ± 0.24 74.34 ± 0.21 59.87 ± 0.25 77.02 ± 0.22

GELU 73.51 ± 0.21 76.85 ± 0.25 73.71 ± 0.18 58.50 ± 0.26 76.61 ± 0.22
PAU 73.85 ± 0.20 77.07 ± 0.24 73.87 ± 0.20 58.80 ± 0.25 76.81 ± 0.21
SMU 75.78 ± 0.20 78.71 ± 0.24 75.30 ± 0.18 62.42 ± 0.23 77.83 ± 0.20

SMU-1 75.01 ± 0.21 77.81 ± 0.24 74.84 ± 0.20 61.93 ± 0.25 77.49 ± 0.22

Table 4.13: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR100 dataset for image classification problem with Mixup
augmentation method. We report Top-1 test accuracy (in %) for the mean
of 15 different runs. mean±std is reported in the table.
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Activation Function DenseNet-121 ResNet-18 ResNet-50 WideResNet
28-10

ReLU 63.31 ± 0.47 59.12 ± 0.44 61.23 ± 0.46 63.74 ± 0.40
Leaky ReLU 63.63 ± 0.48 59.40 ± 0.44 61.29 ± 0.44 63.61 ± 0.42

PReLU 63.71 ± 0.46 59.59 ± 0.42 61.35 ± 0.44 63.78 ± 0.44
ReLU6 63.54 ± 0.49 59.49 ± 0.46 61.41 ± 0.44 63.72 ± 0.43
ELU 63.51 ± 0.46 59.34 ± 0.44 61.49 ± 0.43 63.72 ± 0.43

Softplus 63.01 ± 0.57 59.01 ± 0.57 60.93 ± 0.57 63.01 ± 0.59
Swish 64.21 ± 0.40 60.05 ± 0.40 61.79 ± 0.41 64.58 ± 0.41
Mish 64.47 ± 0.40 60.21 ± 0.39 62.07 ± 0.42 64.79 ± 0.38

GELU 64.34 ± 0.42 60.21 ± 0.41 61.66 ± 0.42 64.39 ± 0.40
PAU 64.04 ± 0.43 60.37 ± 0.39 61.72 ± 0.41 64.42 ± 0.40
SMU 65.87 ± 0.37 61.35 ± 0.35 63.54 ± 0.40 66.52 ± 0.35

SMU-1 65.09 ± 0.38 60.93 ± 0.38 62.79 ± 0.40 65.25 ± 0.37

Table 4.14: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on Tiny ImageNet dataset for image classification problem. We report
Top-1 test accuracy (in %) for the mean of 10 different runs. mean±std is
reported in the table.

models. We use four NVIDIA V100 GPUs with 32GB RAM each to run these experi-

ments. We trained the models up to 600k iterations with a batch size of 256 and SGD

optimizer, 0.9 momentum, 5e�4 weight decay rate.

Activation Function ShuffleNet V2 (1.0x) ResNet-50
ReLU 69.21 75.52

Leaky ReLU 69.28 75.67
PReLU 69.01 75.40
ReLU6 69.45 75.70
ELU 69.49 75.62

Softplus 69.01 75.30
Swish 70.35 76.06
Mish 70.53 76.45

GELU 70.12 76.01
PAU 70.28 76.14
SMU 71.93 77.48

SMU-1 71.17 76.89
Table 4.15: Top-1 accuracy reported on ImageNet-1k dataset.
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4.5.2 Object Detection

In this section, we report results on object detection problem on Pascal VOC dataset

(Everingham et al. (2010)) with Single Shot MultiBox Detector(SSD) 300 model (Liu

et al. (2016)) and we consider VGG-16 (with batch-normalization) (Simonyan and Zis-

serman (2015)) as the backbone network. We use VOC2007 & VOC2012 as train data

and VOC2007 as the test dataset. The dataset contains 20 different objects. We consider

a batch size of 8, 0.001 initial learning rate and decay the learning rate as reported in

(Liu et al. (2016)). We use SGD (Robbins and Monro (1951), Kiefer and Wolfowitz

(1952)) optimizer with 0.9 momentum & 5e�4 weight decay, and trained networks up-

to 120000 iterations. We do not consider any pre-trained weight. We report the mean

average precision (mAP) in Table 4.16 for the mean of 10 different runs. Replacing

ReLU by SMU, we got a 1% improvement in mAP in the test dataset.

Activation Function mAP

ReLU 77.2 ± 0.14

Leaky ReLU 77.2 ± 0.13

PReLU 77.2 ± 0.16

ReLU6 77.1 ± 0.15

ELU 75.1 ± 0.18

Softplus 74.2 ± 0.25

Swish 77.5 ± 0.11

Mish 77.6 ± 0.11

GELU 77.5 ± 0.12

PAU 77.4 ± 0.14

SMU 78.2 ± 0.09

SMU-1 77.8 ± 0.11

Table 4.16: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on Pascal VOC dataset for object detection problem. We report mAP
for the mean of 10 different runs. mean±std is reported in the table.
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4.5.3 Semantic Segmentation

In this section, we report experimental results on semantic segmentation problems on

the popular CityScapes dataset (Cordts et al. (2016)). CityScapes (Cordts et al. (2016))

is a popular dataset consisting of diverse urban street scenes across 50 different cities at

varying times of the year, as well as ground truths for semantic segmentation, instance-

level segmentation. Label annotations for segmentation tasks span across 30+ classes.

We consider U-net model (Ronneberger et al. (2015)) as the segmentation framework.

The model is trained with adam optimizer (Kingma and Ba (2015)), 5e�3 learning rate,

a batch size 32 up to 250 epochs. We report the mean of 10 different runs for Pixel

Accuracy and the mean Intersection-Over-Union (mIOU) on test data on table 4.17.

Activation Function Pixel
Accuracy mIOU

ReLU 79.49 ± 0.46 69.31 ± 0.28
Leaky ReLU 79.41 ± 0.41 69.64 ± 0.42

PReLU 78.95 ± 0.42 68.88 ± 0.41
ReLU6 79.58 ± 0.41 69.70 ± 0.42
ELU 79.48 ± 0.50 68.19 ± 0.40

Softplus 78.45 ± 0.52 68.08 ± 0.49
Swish 80.22 ± 0.46 69.81 ± 0.30
Mish 80.59 ± 0.44 70.12 ± 0.30

GELU 80.14 ± 0.37 69.59 ± 0.40
PAU 79.89 ± 0.39 69.31 ± 0.44
SMU 81.79 ± 0.36 71.11 ± 0.30

SMU-1 80.75 ± 0.41 70.55 ± 0.30

Table 4.17: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CityScapes dataset for semantic segmentation problem. We report
pixel accuracy and mIOU for the mean of 10 different runs. mean±std is
reported in the table.

4.5.4 Machine Translation

In this section, we report the result on the machine translation problem. This problem

deals with the translation of text or speech data from one language to another language

without the help of any human being. The WMT 2014 English�German dataset is

used for our experiment. The database contains 4.5 million training sentences. We

use an attention-based (Vaswani et al. (2017)) 8-head transformer network with Adam

optimizer (Kingma and Ba (2015)), 0.1 dropout rate (Srivastava et al. (2014)), and
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train up to 100000 steps. Other hyperparameters are kept similar as mentioned in the

original paper (Vaswani et al. (2017)). We evaluate the network performance on the

newstest2014 dataset using the BLEU score metric. We report the mean of 10 different

runs on Table 4.18 on the test dataset(newstest2014). The table shows that the results

are stable on different runs (mean±std), and we got around 0.6% boost in BLEU score

for SMU compared to ReLU.

Activation Function BLEU Score
ReLU 26.2 ± 0.14

Leaky ReLU 26.3 ± 0.15
PReLU 26.2 ± 0.18
ReLU6 26.1 ± 0.14
ELU 25.1 ± 0.14

Softplus 23.6 ± 0.18
Swish 26.4 ± 0.11
Mish 26.3 ± 0.12

GELU 26.4 ± 0.15
PAU 26.3 ± 0.15
SMU 26.8 ± 0.11

SMU-1 26.6 ± 0.10

Table 4.18: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on WMT2014 dataset for machine translation problem. We report
BLEU score for the mean of 10 different runs. mean±std is reported in the
table.

4.6 Baseline Table

SMU and SMU-1 are novel activation functions constructed using the smoothing of

maximum function. For a detailed comparison, we report a summary of all the experi-

ments in Table 4.19 given in earlier sections. It is pretty clear from Table 4.19 that the

proposed functions outperform baseline functions almost in all experiments.

4.7 Computational Time Comparison

In this section, we report the computational Time Comparison for SMU, SMU-1, and

baseline activation functions. We report results in Table 4.20 for the mean of 100 runs

on a 32 ◊ 32 RGB image in ResNet-18 He et al. (2015a) model for both forward and
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Baselines ReLU Leaky
ReLU ELU Softplus PReLU ReLU6 Swish Mish GELU PAU

SMU > Baseline 80 80 80 80 80 80 77 76 77 78
SMU = Baseline 0 0 0 0 0 0 0 0 0 0
SMU < Baseline 0 0 0 0 0 0 3 4 3 2

SMU-1 > Baseline 80 80 80 80 80 80 77 76 77 78
SMU-1 = Baseline 0 0 0 0 0 0 0 0 0 0
SMU-1 < Baseline 0 0 0 0 0 0 3 4 3 2

Table 4.19: Baseline table for SMU. These numbers represent the total number of mod-
els in which SMU underperform, equal or outperform compared to the base-
line activation functions

backward pass. The experiments are conducted on an NVIDIA Tesla V100 GPU with

32GB RAM. It is noticeable from the experiment section and Table 4.20 that there is

a small trade-off between the computational time and model performances compared

to ReLU or its variants. The proposed activations have significantly boosted the model

performance though it has slightly higher computational time (due to non-linearity and

the trainable parameter µ) than ReLU or its variants. In contrast, the computational time

is similar to popular non-linear activations like Swish, Mish & GELU and much better

than PAU, while model performance at the same time is comparatively much better than

these four popular non-linear activations in almost all cases.

Activation

Function
Forward Pass Backward Pass

ReLU 6.43 ± 0.31 µs 6.28 ± 0.74 µs

Leaky ReLU 6.49 ± 0.41 µs 6.41 ± 0.95 µs

PReLU 8.20 ± 1.57µs 9.26 ± 1.86 µs

ReLU6 6.45 ± 0.45 µs 6.41 ± 0.91 µs

ELU 6.51 ± 0.50 µs 6.42 ± 0.88 µs

Softplus 6.49 ± 0.49 µs 6.40 ± 0.55 µs

Mish 10.02 ± 1.79 µs 11.97 ± 1.75 µs

GELU 10.75 ± 1.49 µs 12.49 ± 1.77 µs

Swish 10.47 ± 1.10 µs 12.61 ± 1.22 µs

PAU 18.45 ± 3.40 µs 25.99 ± 5.06 µs

SMU 10.74 ± 1.29 µs 12.95 ± 1.54 µs

SMU-1 9.68 ± 1.81 µs 11.98 ± 1.49 µs

Table 4.20: Runtime comparison for the forward and backward passes for SMU and
SMU-1 and other baseline activation functions for a 32◊ 32 RGB image in
ResNet-18 model.
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4.8 Conclusion

This work uses the maximum smoothing technique to approximate Leaky ReLU, a well-

established activation function (not differentiable at 0) by two smooth functions. These

two functions are named SMU and SMU-1 and are being proposed as potential can-

didates for activation functions. Our experimental evaluation shows that the proposed

functions beat the traditional activation functions in well-known deep learning prob-

lems and have the potential to replace them. An extensive amount of experiments are

being conducted in different datasets on four different deep learning problems to show

the efficacy of the proposed activation functions. From the running time table, it is clear

that the proposed activation functions have similar ruining time like Swish, GELU, and

Mish, while both SMU and SMU-1 improves network performance compared to these

three non-linear activation functions.
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CHAPTER 5

ErfAct and Pserf 1

5.1 Introduction

This chapter, in particular, deals with the hand-designed activation function. ReLU

and Leaky ReLU are popular hand-designed activation functions. Though both are

non-differentiable at the origin, differentiability is an important property in the deep

neural network. Swish is a smooth activation function and approximation of the ReLU

activation function. In this chapter, two new smooth activations have been proposed,

which are approximations by a smooth function of the ReLU activation function.

The choice of activation function in a deep learning architecture can have a sig-

nificant impact on the training and performance of the neural network. The machine

learning community has so far relied on hand-designed activations like ReLU Nair and

Hinton (2010), Leaky ReLU (Maas et al. (2013a)) or their variants. ReLU, in particu-

lar, remains widely popular due to faster training times and decent performance. How-

ever, evidence suggests that considerable gains can be made when more sophisticated

activation functions are used to design networks. For example, activation functions

such as ELU (Clevert et al. (2016)), Parametric ReLU (PReLU) (He et al. (2015b)),

ReLU6 (Krizhevsky (2010)), PAU (Molina et al. (2020)), ACON (Ma et al. (2021)),

Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), Swish (Ramachandran

et al. (2017)), Serf (Nag and Bhattacharyya (2021)) etc. have appeared as powerful

contenders to the traditional ones. ReLU remains a go-to choice in research and prac-

tice. However, it has certain well-documented shortcomings, such as non-zero mean,

non-differentiability and negative missing, which leads to the infamous vanishing gra-

dients problem (also known as the dying ReLU problem). Worth noting that prior to the

introduction of ReLU, Tanh and Sigmoid were popularly used, but performance gains

and training time gains achieved by ReLU led to their decline.
1This chapter is a slightly modified version of the paper accepted at AAAI conference Biswas et al.

(2021c).



5.2 Related Works and Motivation

The newer activation functions are obtained by combining well-known functions with

simple forms in various ways, often using hyper-parameters or trainable parameters. In

the case of trainable parameters, we optimize them during the training process itself,

yielding networks that are better fitted. In the case of trainable parameters, note that

the actual activation function curve may change in different layers during backpropaga-

tion. For example, SiLU (Elfwing et al. (2017)) shows good performance over known

activation functions. In contrast, Swish (Ramachandran et al. (2017)) is a trainable ver-

sion of SiLU, which is a non-linear, non-monotonic, smooth activation function. Swish,

PReLU, PAU, and ACON are trainable activation functions, among the other activation

functions. Swish is a non-monotonic activation function and shows promise across a

variety of deep learning tasks. Mish is one of the popular functions proposed recently

and gained popularity due to its effectiveness in object detection tasks on the COCO

dataset (Lin et al. (2015)) in Yolo (Bochkovskiy et al. (2020)) models. GELU is very

similar to Swish and gained attention due to its effectiveness in computer vision and

natural language processing tasks. It is also used in popular architectures like GPT-2

(Radford et al. (2019)) and GPT-3 (Brown et al. (2020)). Apart from using a combi-

nation of known functions, a somewhat fundamentally different technique to construct

activation functions is to use perturbation or approximations to well-known activation

functions to remove some shortcomings yet retain the positive aspects. Recent success-

ful examples where this strategy was employed include PAU, which is activation based

on an approximation of Leaky ReLU by rational polynomials were constructed.

5.3 Research contribution

Motivated by these works, we have proposed two activation functions with trainable

parameters; we call them ErfAct and Pserf and have shown that they are more effec-

tive than conventional activation functions like ReLU, Leaky ReLU, PReLU, ReLU6,

Swish, Mish or GELU in a wide range of standard deep learning problems. We sum-

marize the chapter as follows:

• We have proposed two new novel trainable activation functions, which are ap-
proximation by a smooth function of ReLU.
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• In a wide range of deep learning tasks, the proposed functions outperform widely
used activation functions.

5.4 ErfAct and Pserf

We present, ErfAct and Parametric-Serf (Pserf), two novel trainable activation functions

which outperforms the widely used activations and has the potential to replace them.

ErfAct and Pserf is defined as

ErfAct : F1(x;�, ⇥) :=x erf(�e�x), (5.1)

Pserf : F2(x; ⇤, ⌅) :=x erf(⇤ln(1 + e⇧x)) (5.2)

where �, ⇥, ⇤, and ⌅ are trainable parameters (they can be used as hyper-parameters as

well) and ‘erf’ is the error function also known as the Gauss error function and defined

as

erf(x) =
2⌃
⌥

Z x

0

e�t2 dt (5.3)

The corresponding derivatives of the proposed activations are

d

dx
F1(x;�, ⇥) = erf(�e�x) +

2x�⇥⌃
⌥

e�xe�(⌅e�x)2 (5.4)

d

dx
F2(x; ⇤, ⌅) =erf(⇤ln(1 + e⇧x))

+
2x⇤⌅⌃

⌥

e⇧x

1 + e⇧x
e�(⌃ln(1+e⇥x))2 (5.5)

where

d

dx
erf(x) =

2⌃
⌥
e�x2

(5.6)

ErfAct and Pserf are non-monotonic, zero-centered, continuously differentiable, un-

bounded above but bounded below, and trainable functions. Figures 5.1 and 5.2 show
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Figure 5.1: Swish and Er-
fAct activation
for different
values of � and
⇥

Figure 5.2: Swish and Pserf
activation for
different values
of ⇤ and ⌅

Figure 5.3: First order
derivative of
ErfAct, Pserf,
and Swish

the plots for F1(x;�, ⇥) and F2(x; ⇤, ⌅) activation functions for different values of �,

⇥, and ⇤, ⌅ respectively. A comparison between the first derivative of F1(x;�, ⇥),

F2(x; ⇤, ⌅), and Swish are given in Figures 5.3, different values of �, ⇥, and ⇤, ⌅ re-

spectively. From the figures 5.1 and 5.2 it is evident that the parameters �, ⇥, and

⇤, ⌅ controls the slope of the curves for the proposed activations in both positive and

negative axis. The proposed functions converges to some known functions for specific

values of the parameters. For example, F1(x; 0, ⇥), F2(x; 0, ⌅) are zero function while

F1(x;�, 0), F2(x; ⇤, 0) are linear functions. In particular, F2(x; 1, 1) share the equiv-

alent form as Serf (Nag and Bhattacharyya (2021)) which is a non-parametric form of

Pserf. Also, The proposed functions can be seen as approximation by a smooth function

of ReLU.

lim
�⇤⇥

F1(x;�, ⇥) = ReLU(x),

↵x � R for any fixed � > 0.

lim
⇧⇤⇥

F2(x; ⇤, ⌅) = ReLU(x),

↵x � R for any fixed ⇤ > 0.

For any K, a compact (closed and bounded) subset of Rn, the set of neural networks

with ErfAct (or Pserf) activation functions is dense in C(K), the space of all continuous

functions over K (see Molina et al. (2020)). This follows from the next proposition, as

the proposed activation functions are not polynomials.
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Proposition (Theorem 1.1 in Kidger and Lyons, 2019 Kidger and Lyons (2020))

:- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class of neural

networks with activation function ↵, with n neurons in the input layer, one neuron in

the output layer, and one hidden layer with an arbitrary number of neurons. Let K ⌦ Rn

be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.

5.5 Experiments

We have compared our proposed activations against ten popular standard activation

functions on different datasets and models on standard deep learning problems like

image classification, object detection, semantic segmentation, and machine translation.

The experimental results show that ErfAct and Pserf outperform in most networks com-

pared to the standard activations. For all our experiments, we have first initialized the

parameters �, ⇥ for ErfAct and ⇤, ⌅ for Pserf and then updated via the backpropagation

(LeCun et al. (1989)) algorithm (see He et al. (2015b)) according to (5.7) and for a

single layer, the gradient of a parameter ↵ is:

⌦L

⌦↵
=

X

x

⌦L

⌦f(x)

⌦f(x)

⌦↵
(5.7)

where L is the objective function, ↵ � {�, ⇥, ⇤, ⌅} and f(x) � {F1(x;�, ⇥),F2(x; ⇤, ⌅).

For all of our experiments, to make a fair comparison between all the activations, we

have first trained a network with hyper-parameter settings with the ReLU activation

function and then only replaced ReLU with proposed activation functions and other

baseline activations.

5.5.1 Image Classification

We present a detailed experimental comparison on MNIST (LeCun et al. (2010)), Fash-

ion MNIST (Xiao et al. (2017)), SVHN (Netzer et al. (2011)), CIFAR10 (Krizhevsky

(2009)), CIFAR100 (Krizhevsky (2009)), Tiny ImageNet (Le and Yang (2015)), and

ImageNet-1k (Deng et al. (2009)) dataset for image classification problem. We have

trained the datasets with different standard models and report the Top-1 accuracy. We

have initialized the parameters � = 0.75, ⇥ = 0.75 for ErfAct, and ⇤ = 1.25, ⌅ = 0.85
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for Pserf and update them according to (5.7).

MNIST, Fashion MNIST, and The Street View House Numbers (SVHN) Database:

We first evaluate our proposed activation functions on the MNIST (LeCun et al. (2010)),

Fashion MNIST (Xiao et al. (2017)), and SVHN (Netzer et al. (2011)) datasets with

AlexNet (Krizhevsky et al. (2012)) and VGG-16 (Simonyan and Zisserman (2015))

(with batch-normalization) models and results for 10-fold mean accuracy are reported

in Table 5.1 and Table 5.2 respectively. More detailed experiments on these datasets

on LeNet (Lecun et al. (1998)) and a custom-designed CNN architecture and the re-

sults are reported on Table 5.3 & 5.4. The custom network is constructed with an

8-layer homogeneous custom convolutional neural network (CNN) architecture with

3 ◊ 3 kernels and max-pooling layers with 2 ◊ 2 kernels. We have used Channel

depths of size 128 (twice), 64 (thrice), 32 (twice), with a dense layer of size 128, Max-

pooling layer(thrice), and dropout (Srivastava et al. (2014)). We have applied batch-

normalization (Ioffe and Szegedy (2015)) before the activation function layer. We don’t

use any data augmentation for MNIST or Fashion MNIST, while we use standard data

augmentation like rotation, zoom, height shift, shearing for the SVHN dataset. From

Table 5.1, 5.2, 5.3, and Table 5.4, it is clear that the proposed functions outperformed

all the baseline activation functions in all the three datasets and the performance are

stable clear from mean±standard deviation.

CIFAR:

Next we have considered more challenging datasets like CIFAR100 and CIFAR10 to

compare the performance of baseline activations and ErfAct and Pserf. We have re-

ported the Top-1 accuracy for both the datasets for mean of 12 different runs on Ta-

ble 5.5 and Table 5.6 with VGG-16 (with batch-normalization) (Simonyan and Zisser-

man (2015)), PreActResNet-34 (PA-ResNet-34) (He et al. (2016)), Densenet-121 (DN-

121) (Huang et al. (2016a)), MobileNet V2 (MN V2) (Sandler et al. (2019)), Resnet-50

(He et al. (2015a)), Inception V3 (IN-V3) (Szegedy et al. (2015a)), WideResNet 28-10

(WRN 28-10) (Zagoruyko and Komodakis (2016)), and Shufflenet V2 (SF-V2 2.0x)

(Ma et al. (2018)) models. A more detailed experiments on CIFAR10 and CIFAR100

datasets with EfficientNet B0 (EN-B0) (Tan and Le (2020)), LeNet (LN) (Lecun et al.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.09 ± 0.10 93.22 ± 0.21 95.50 ± 0.22
Swish 99.30 ± 0.12 93.29 ± 0.22 95.59 ± 0.20

Leaky ReLU 99.15 ± 0.13 93.30 ± 0.22 95.50 ± 0.28
ELU 99.29 ± 0.13 93.20 ± 0.25 95.60 ± 0.20

Softplus 99.10 ± 0.14 93.18 ± 0.32 95.20 ± 0.37
Mish 99.27 ± 0.14 93.45 ± 0.32 95.60 ± 0.31

GELU 99.22 ± 0.12 93.40 ± 0.25 95.55 ± 0.27
PAU 99.31 ±0.10 93.47 ± 0.23 95.67 ± 0.26

PReLU 99.15 ± 0.16 93.37 ± 0.31 95.42 ± 0.39
ReLU6 99.11 ± 0.10 93.26 ± 0.26 95.47 ± 0.24
ErfAct 99.51 ± 0.10 93.79 ± 0.19 95.87 ± 0.20
Pserf 99.49 ± 0.10 93.82 ± 0.19 95.74 ± 0.22

Table 5.1: Comparison between different baseline activations and ErfAct and Pserf acti-
vations on MNIST, Fashion MNIST, and SVHN datasets in AlexNet. 10-fold
mean accuracy (in %) have been reported. mean±std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.05± 0.11 93.13± 0.23 95.09± 0.26
Swish 99.09± 0.09 93.34± 0.21 95.29± 0.20

Leaky ReLU 99.02± 0.14 93.17± 0.28 95.24± 0.23
ELU 99.01± 0.15 93.12± 0.30 95.15± 0.28

Softplus 98.97± 0.14 92.98± 0.34 94.94± 0.30
Mish 99.18 ± 0.07 93.47 ± 0.27 95.12 ± 0.25

GELU 99.10 ± 0.09 93.41 ± 0.29 95.11 ± 0.24
PAU 99.07 ± 0.09 93.52 ± 0.24 95.23 ± 0.20

PReLU 99.01 ± 0.09 93.12 ± 0.27 95.14 ± 0.24
ReLU6 99.20 ± 0.08 93.25 ± 0.27 95.22 ± 0.20
ErfAct 99.37 ± 0.06 93.81 ± 0.20 95.67 ± 0.18
Pserf 99.38 ± 0.09 93.87 ± 0.22 95.66 ± 0.20

Table 5.2: Comparison between different baseline activations, ErfAct, and Pserf activa-
tions on MNIST, Fashion MNIST, and SVHN datasets on VGG-16 network.
10-fold mean accuracy (in %) have been reported. mean±std is reported in
the table.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.09±0.10 92.92±0.21 95.10±0.22
Swish 99.20±0.09 93.04±0.23 95.21±0.23

Leaky ReLU(� = 0.01) 99.14±0.09 92.99±0.22 95.30±0.25
ELU 99.10±0.13 92.91±0.30 95.17±0.27

Softplus 98.95 ±0.17 92.72±0.28 95.08±0.37
Mish 99.32±0.10 93.12±0.21 95.33±0.21

GELU 99.28±0.09 93.19±0.22 95.22±0.24
PReLU 99.08±0.17 92.89±0.35 95.15±0.30
ReLU6 99.17±0.12 92.99±0.20 95.17±0.22

PAU 99.24±0.10 93.24±0.20 95.15±0.23
ErfAct 99.42±0.08 93.42±0.23 95.49±0.24
Pserf 99.40±0.08 93.35±0.20 95.55±0.23

Table 5.3: Comparison between different baseline activations and ErfAct and Pserf on
MNIST, Fashion MNIST, and SVHN datasets with Custom designed net-
work. 10-fold mean accuracy (in %) have been reported. mean±std is re-
ported in the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 98.95±0.11 91.00±0.20 93.17±0.24
Swish 99.04±0.11 91.15±0.22 93.22±0.21

Leaky ReLU(� = 0.01) 99.02±0.10 91.05±0.20 93.25±0.24
ELU 98.95±0.12 91.98±0.28 93.11±0.24

Softplus 98.81 ±0.14 90.81±0.29 93.08±0.37
Mish 99.12±0.11 91.12±0.21 93.30±0.21

GELU 99.15±0.10 91.17±0.20 93.22±0.21
PReLU 99.01±0.17 90.89±0.25 93.05±0.28
ReLU6 99.07±0.10 90.99±0.24 93.10±0.20

PAU 99.14±0.09 91.20±0.19 93.17±0.20
ErfAct 99.30±0.08 91.37±0.20 93.52±0.21
Pserf 99.32±0.08 91.31±0.22 93.43±0.21

Table 5.4: Comparison between different baseline activations and ErfAct and Pserf on
MNIST, Fashion MNIST, and SVHN datasets with LeNet model. 10-fold
mean accuracy (in %) have been reported. mean±std is reported in the table.
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(1998)), AlexNet (AN) (Krizhevsky et al. (2012)), PreActResnet-18 (PARN-18) (He

et al. (2016)), Deep Layer Aggregation (DLA) (Yu et al. (2019)), Googlenet (GN)

(Szegedy et al. (2014a)), Resnext-50 (Rxt) (Xie et al. (2017)), Xception (Xpt) (Chol-

let (2017)), ShuffleNet V2 (SN-V2) (Ma et al. (2018)), ResNet18 (RN-18) (He et al.

(2015a)), and Network in Network (NIN) (Lin et al. (2014)) is reported in the Table 5.7

and 5.8. respectively. We get good improvement with EfficientNet B0, PreActResnet-

18, LeNet, GoogleNet, Resnext-50, and ShuffleNet V2 models on both the datasets

compared to ReLU or other baseline activation functions. From all the tables it is evi-

dent that the training is stable (mean±std) and the proposed activations archive 1%-6%

higher Top-1 accuracy in most of models compared to the baselines. The networks are

trained upto 200 epochs with SGD optimizer (Robbins and Monro (1951); Kiefer and

Wolfowitz (1952)), 0.9 momentum, and 5e�4 weight decay. We have started with 0.01

initial learning rate and decay the learning rate with cosine annealing (Loshchilov and

Hutter (2017)) learning rate scheduler. We consider batch size of 128. We consider

standard data augmentation methods like horizontal flip, rotation for both the datasets.

The Figures 5.4 and 5.5 shows the learning curves on CIFAR100 dataset with Shufflenet

V2 (2.0x) model for the baseline and the proposed activation functions and it is notice-

able that training & test accuracy curve is higher and loss curve is lower respectively

for ErfAct and Pserf compared to the baseline activations.

We report more detailed results with Mixup (Zhang et al. (2017a)) augmentation

method with ShuffleNet V2 (2.0x) and ResNet-18 models in Table 5.9. The table shows

that the proposed activations beat the baseline activation functions in both models with

Mixup augmentation. We consider the same experimental setup for Mixup as reported

in the CIFAR section.

Tiny Imagenet:

We consider a more challenging and important classification dataset Tiny Imagenet

(Le and Yang (2015)) which is a similar type of dataset like ILSVRC and consisting

of 200 classes with RGB images of size 64 ◊ 64 with total 1,00,000 training images,

10,000 validation images, and 10,000 test images. To compare the performance, we

have considered WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis (2016))

model and Top-1 accuracy is reported in table 5.10 for mean of 5 different runs. The
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Activation
Function VGG-16 WRN 28-10 ResNet-50 PA-ResNet-34 DN-121 IN-V3 MN-V2 SF-V2

2.0x

ReLU 71.67
±0.28

76.32
±0.25

74.17
±0.24

73.12
±0.23

75.67
±0.28

74.23
±0.26

74.02
±0.24

67.49
±0.26

Leaky ReLU 71.77
±0.30

76.69
±0.27

74.11
±0.27

73.41
±0.26

75.90
±0.27

74.40
±0.28

74.17
±0.24

67.71
±0.27

ELU 71.71
±0.28

76.39
±0.28

74.51
±0.24

73.61
±0.25

75.87
±0.26

74.71
±0.26

74.29
±0.22

67.91
±0.30

Swish 72.07
±0.26

77.18
±0.23

75.10
±0.24

73.97
±0.23

76.59
±0.28

75.31
±0.27

75.02
±0.24

70.49
±0.23

Softplus 71.10
±0.32

75.36
±0.37

74.19
±0.38

73.17
±0.36

75.08
±0.36

74.20
±0.34

74.33
±0.38

68.93
±0.36

Mish 72.31
±0.24

77.40
±0.25

76.30
±0.22

75.14
±0.21

77.11
±0.25

76.22
±0.25

75.31
±0.21

71.79
±0.22

GELU 71.98
±0.25

77.35
±0.25

75.61
±0.22

74.28
±0.23

76.79
±0.27

75.52
±0.25

75.21
±0.23

70.35
±0.27

PAU 71.72
±0.25

77.20
±0.26

75.89
±0.24

74.41
±0.23

76.59
±0.28

75.79
±0.28

75.07
±0.19

70.68
±0.26

PReLU 71.77
±0.30

76.79
±0.27

74.45
±0.29

73.32
±0.27

76.19
±0.30

74.51
±0.29

74.31
±0.32

68.35
±0.30

ReLU6 72.07
±0.27

76.62
±0.28

74.37
±0.24

73.50
±0.24

76.07
±0.26

74.69
±0.25

74.64
±0.24

67.93
±0.26

ErfAct 72.93
±0.22

78.49
±0.23

77.09
±0.20

76.21
±0.20

78.18
±0.23

77.12
±0.24

76.23
±0.19

73.17
±0.22

Pserf 72.69
±0.24

78.31
±0.24

76.97
±0.20

75.91
±0.22

78.38
±0.22

77.01
±0.25

76.07
±0.21

72.91
±0.21

Table 5.5: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean±std is reported in the table.

Activation
Function VGG-16 WRN 28-10 ResNet-50 PA-ResNet-34 DN-121 IN-V3 MN-V2 SF-V2

2.0x

ReLU 93.44
±0.22

95.17
±0.21

94.35
±0.18

94.17
±0.19

94.77
±0.20

94.15
±0.20

94.20
±0.16

91.63
±0.21

Leaky ReLU 93.65
±0.21

95.02
±0.22

94.45
±0.20

94.33
±0.18

94.89
±0.22

94.20
±0.22

94.32
±0.19

91.82
±0.23

ELU 93.70
±0.19

95.28
±0.20

94.27
±0.24

94.30
±0.25

94.64
±0.18

94.38
±0.17

94.27
±0.18

91.99
±0.20

Swish 93.77
±0.18

95.41
±0.17

94.61
±0.24

94.47
±0.25

94.81
±0.19

94.51
±0.17

94.40
±0.20

92.17
±0.25

Softplus 93.10
±0.33

94.77
±0.30

93.91
±0.30

94.07
±0.35

94.41
±0.34

94.21
±0.32

93.79
±0.29

91.32
±0.33

Mish 93.91
±0.17

95.35
±0.18

94.78
±0.22

94.55
±0.23

95.03
±0.15

94.64
±0.18

94.71
±0.18

92.41
±0.20

GELU 93.71
±0.17

95.28
±0.19

94.64
±0.23

94.31
±0.25

94.99
±0.19

94.57
±0.21

94.40
±0.18

92.27
±0.20

PAU 93.57
±0.22

95.27
±0.20

94.67
±0.23

94.41
±0.24

94.74
±0.20

94.57
±0.19

94.51
±0.14

92.30
±0.21

PReLU 93.41
±0.23

95.02
±0.24

94.27
±0.26

94.30
±0.26

94.51
±0.24

94.49
±0.22

94.32
±0.23

91.80
±0.25

ReLU6 93.72
±0.17

95.32
±0.19

94.30
±0.24

94.21
±0.24

94.61
±0.20

94.42
±0.20

94.18
±0.19

91.71
±0.21

ErfAct 94.47
±0.15

95.88
±0.12

95.01
±0.17

95.21
±0.18

95.71
±0.15

95.29
±0.14

95.34
±0.12

93.74
±0.18

Pserf 94.24
±0.16

95.71
±0.13

95.14
±0.19

95.08
±0.29

95.62
±0.17

95.10
±0.13

95.19
±0.14

93.59
±0.18

Table 5.6: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR10 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean±std is reported in the table.
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Activation
Function EN-B0 LN AN PARN-18 DLA GN Rxt Xpt SN-V1 RN-18 NIN

ReLU 95.04
±0.16

75.68
±0.21

84.18
±0.21

93.47
±0.22

93.90
±0.18

93.02
±0.20

93.28
±0.18

90.64
±0.22

94.20
±0.20

94.01
±0.21

90.49
±0.24

Leaky ReLU
(⌅ = 0.01)

95.22
±0.16

75.91
±0.22

84.32
±0.23

93.61
±0.21

94.01
±0.20

92.91
±0.18

93.39
±0.19

90.80
±0.24

94.32
±0.22

94.12
±0.24

90.59
±0.26

ELU 95.35
±0.18

76.10
±0.20

84.78
±0.20

93.65
±0.22

93.96
±0.20

93.06
±0.17

93.55
±0.23

91.38
±0.24

94.32
±0.21

94.19
±0.24

90.55
±0.24

Swish 95.60
±0.17

77.55
±0.19

85.10
±0.20

93.87
±0.20

94.25
±0.17

93.30
±0.20

93.69
±0.19

91.94
±0.20

94.65
±0.19

94.29
±0.21

90.97
±0.25

Softplus 95.10
±0.27

75.65
±0.33

84.22
±0.30

93.12
±0.26

93.71
±0.25

92.64
±0.29

93.01
±0.29

90.69
±0.30

93.92
±0.25

93.99
±0.27

90.39
±0.30

Mish 95.75
±0.15

78.76
±0.16

85.70
±0.18

93.70
±0.24

94.40
±0.17

93.22
±0.20

93.92
±0.17

92.15
±0.19

94.78
±0.19

94.45
±0.25

91.17
±0.23

GELU 95.39
±0.19

77.79
±0.17

85.15
±0.21

93.77
±0.19

94.12
±0.20

93.45
±0.20

93.77
±0.19

91.89
±0.22

94.55
±0.21

94.45
±0.24

91.01
±0.24

PReLU 95.20
±0.18

75.85
±0.24

84.38
±0.23

93.46
±0.25

93.01
±0.22

92.89
±0.24

93.45
±0.26

91.29
±0.26

94.34
±0.22

94.15
±0.28

90.83
±0.27

ReLU6 95.43
±0.16

75.71
±0.18

84.64
±0.22

93.75
±0.22

94.09
±0.17

92.89
±0.18

93.48
±0.22

91.38
±0.24

94.22
±0.20

94.28
±0.24

90.87
±0.24

PAU 95.35
±0.17

77.59
±0.21

85.01
±0.24

93.75
±0.22

94.34
±0.20

93.29
±0.21

93.52
±0.20

91.79
±0.21

94.60
±0.21

94.31
±0.21

90.97
±0.25

ErfAct 96.10
±0.15

77.48
±0.19

87.01
±0.20

94.10
±0.20

94.67
±0.17

94.12
±0.18

94.17
±0.18

93.01
±0.17

95.14
±0.19

94.71
±0.23

90.81
±0.24

Pserf 95.98
±0.18

77.52
±0.20

87.15
±0.20

94.01
±0.22

94.56
±0.20

93.95
±0.20

94.01
±0.19

93.18
±0.18

94.96
±0.18

94.68
±0.18

90.78
±0.24

Table 5.7: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR10 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean±std is reported in the table.

Activation
Function EN-B0 LN AN PARN-18 DLA GN Rxt Xpt SN-V1 RN-18 NIN

ReLU 76.45
±0.26

45.50
±0.30

55.02
±0.30

73.10
±0.20

74.50
±0.22

72.64
±0.28

74.31
±0.22

71.20
±0.20

73.70
±0.23

73.17
±0.25

65.12
±0.25

Leaky ReLU
(⌅ = 0.01)

76.70
±0.25

45.64
±0.28

55.34
±0.28

73.30
±0.21

74.62
±0.23

72.51
±0.28

74.60
±0.23

71.10
±0.24

73.89
±0.25

73.21
±0.23

65.27
±0.23

ELU 76.77
±0.26

45.23
±0.27

55.72
±0.28

73.41
±0.23

74.54
±0.24

72.85
±0.27

74.71
±0.24

71.40
±0.22

73.98
±0.21

73.40
±0.25

65.39
±0.23

Swish 77.34
±0.20

47.30
±0.25

57.64
±0.28

74.98
±0.24

75.20
±0.20

73.45
±0.28

75.06
±0.26

72.16
±0.24

74.29
±0.22

73.65
±0.24

66.20
±0.22

Softplus 76.41
±0.30

44.10
±0.38

54.85
±0.36

73.10
±0.35

74.31
±0.26

72.09
±0.35

74.20
±0.34

71.51
±0.36

73.90
±0.27

72.80
±0.36

65.25
±0.30

Mish 78.02
±0.23

47.49
±0.28

58.35
±0.25

74.84
±0.24

75.45
±0.20

73.85
±0.25

76.07
±0.24

73.34
±0.23

74.40
±0.21

74.39
±0.22

66.50
±0.22

GELU 77.30
±0.24

47.23
±0.25

57.55
±0.27

74.87
±0.23

75.20
±0.23

73.32
±0.27

75.32
±0.23

72.25
±0.22

73.15
±0.22

73.77
±0.22

66.01
±0.22

PReLU 76.62
±0.28

45.69
±0.30

55.41
±0.30

73.16
±0.25

74.98
±0.24

72.60
±0.30

74.50
±0.26

71.30
±0.23

73.79
±0.24

73.10
±0.26

65.56
±0.27

ReLU6 76.58
±0.23

45.86
±0.28

55.75
±0.28

73.30
±0.25

74.69
±0.21

72.40
±0.24

74.69
±0.24

71.40
±0.24

73.99
±0.23

73.30
±0.25

65.42
±0.24

PAU 77.21
±0.26

47.17
±0.28

57.42
±0.27

74.71
±0.22

75.50
±0.22

73.60
±0.28

75.60
±0.25

72.50
±0.24

74.36
±0.22

73.99
±0.22

66.20
±0.22

ErfAct 78.97
±0.23

47.29
±0.26

60.89
±0.25

75.77
±0.24

76.43
±0.18

74.47
±0.26

77.23
±0.23

74.32
±0.22

74.90
±0.21

74.79
±0.24

66.25
±0.22

Pserf 78.75
±0.24

47.27
±0.27

60.57
±0.24

75.60
±0.25

76.23
±0.20

74.50
±0.25

77.10
±0.24

74.20
±0.24

74.72
±0.20

74.84
±0.23

66.35
±0.23

Table 5.8: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean±std is reported in the table.
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Activation Function ShuffleNet V2 (2.0x) ResNet 18
ReLU 70.02 ± 0.22 73.72 ± 0.23

Leaky ReLU 69.85 ± 0.24 73.91 ± 0.24
ELU 70.25 ± 0.23 73.92 ± 0.26

Swish 73.12 ± 0.23 74.52 ± 0.23
Softplus 69.52 ± 0.30 73.63 ± 0.26

Mish 73.65 ± 0.21 74.97 ± 0.24
GELU 73.25 ± 0.23 74.45 ± 0.23
PReLU 70.05 ± 0.23 74.10 ± 0.27
ReLU6 70.20 ± 0.24 74.01 ± 0.24

PAU 73.28 ± 0.24 74.65 ± 0.25
ErfAct 75.07 ± 0.22 75.67 ± 0.21
Pserf 74.84 ± 0.24 75.46 ± 0.21

Table 5.9: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) with Mixup augmentation method
for mean of 12 different runs have been reported. mean±std is reported in
the table.

model is trained with a batch size of 32, He Normal initializer (He et al. (2015b)), 0.2

dropout rate (Srivastava et al. (2014)), adam optimizer (Kingma and Ba (2015)), with

initial learning rate(lr rate) 0.01, and lr rate is reduced by a factor of 10 after every 60

epochs up-to 300 epochs. We have considered the standard data augmentation methods

like rotation, width shift, height shift, shearing, zoom, horizontal flip, fill mode. From

the table, it is clear that the performance for the proposed functions are better than the

baseline functions and stable (mean±std) and got a boost in Top-1 accuracy by 2.59%

and 2.40% for ErfAct and Pserf compared to ReLU.

ImageNet-1k

ImageNet-1k (Deng et al. (2009)) is a widely used computer vision database with more

than 1.2 million training images and have 1000 different classes. We report result with

ShuffleNet V2 (1.0x) (Ma et al. (2018)) model on ImageNet-1k dataset in Table 5.11.

We use SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), 0.9

momentum, 5e�4 weight decay, and a batch size of 256 and trained upto 600k iterations.

Experiments on ImageNet-1k is conducted on four NVIDIA V100 GPUs with 32GB

RAM each.
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Activation Function Wide ResNet
28-10 Model

ReLU 61.61 ± 0.47
Swish 62.44 ± 0.49

Leaky ReLU 61.47 ± 0.44
ELU 61.99 ± 0.57

Softplus 60.42 ± 0.61
Mish 63.02 ± 0.57

GELU 62.64 ± 0.62
PAU 62.04 ± 0.54

PReLU 61.25 ± 0.51
ReLU6 61.72 ± 0.56
ErfAct 64.20 ± 0.51
Pserf 64.01 ± 0.49

Table 5.10: Comparison between different baseline activations and ErfAct and Pserf on
Tiny ImageNet dataset. Mean of 5 different runs for Top-1 accuracy(in %)
have been reported. mean±std is reported in the table.

Activation Function ShuffleNet V2 (1.0x)
ReLU 69.20

Leaky ReLU 69.32
PReLU 69.28
ReLU6 69.40
ELU 69.24

Softplus 69.07
Swish 70.06
GELU 69.91
Mish 69.95
PAU 70.17

ErfAct 70.65
Pserf 70.57

Table 5.11: Top-1 Accuracy reported on ImageNet-1k dataset.
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5.5.2 Semantic Segmentation

Semantic segmentation is an important problem in deep learning. In this section, we

present experimental results on the Cityscapes dataset (Cordts et al. (2016)). We re-

port the pixel accuracy and mean Intersection-Over-Union (mIOU) on the U-net model

(Ronneberger et al. (2015)). The model is trained up to 250 epochs, with adam opti-

mizer (Kingma and Ba (2015)), learning rate 5e�3, batch size 32 and Xavier Uniform

initializer (Glorot and Bengio (2010)). A mean of 5 different runs on the test dataset is

reported in table 5.12. We got around 1.97% and 1.89% boost on mIOU for ErfAct and

Pserf compared to ReLU.

Activation Function Pixel
Accuracy mIOU

ReLU 79.60 ± 0.45 69.32 ± 0.30
Swish 79.71 ± 0.49 69.68 ± 0.31

Leaky ReLU 79.41 ± 0.42 69.48 ± 0.39
ELU 79.27 ± 0.54 68.12 ± 0.41

Softplus 78.69 ± 0.49 68.12 ± 0.55
Mish 80.12 ± 0.45 69.87 ± 0.29

GELU 79.60 ±0.39 69.51 ± 0.39
PAU 79.95 ± 0.41 69.42 ± 0.46

PReLU 78.99 ± 0.42 68.82 ± 0.41
ReLU6 79.59 ± 0.41 69.66 ± 0.41
ErfAct 81.41 ± 0.45 71.29 ± 0.31
Pserf 81.12 ± 0.42 71.21 ± 0.34

Table 5.12: Comparison between different baseline activations and ErfAct and Pserf on
semantic segmentation problem on U-NET model in CityScapes dataset.
mean±std is reported in the table.

5.5.3 Object Detection

Object detection is a standard problem in computer vision. In this section, we have re-

ported our experimental results on challenging Pascal VOC dataset (Everingham et al.

(2010)) with Single Shot MultiBox Detector(SSD) 300 (Liu et al. (2016)) with VGG-

16(with batch-normalization) (Simonyan and Zisserman (2015)) as the backbone net-

work. The mean average precision (mAP) is reported in Table 5.13 for a mean of 8

different runs. The model is trained with batch size of 8, 0.001 learning rate, SGD

optimizer (Robbins and Monro (1951); Kiefer and Wolfowitz (1952)) with 0.9 momen-
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Figure 5.4: Top-1 Train and Test accu-
racy (higher is better) on CI-
FAR100 dataset with Shuf-
flenet V2 (2.0x) network for
different baseline activations,
ErfAct, and Pserf.

Figure 5.5: Top-1 Train and Test loss
(lower is better) on CIFAR100
dataset with Shufflenet V2
(2.0x) network for different
baseline activations, ErfAct,
and Pserf.

tum, 5e�4 weight decay for 120000 iterations. The results are stable on different runs

(mean±std). We got around 1% boost in mAP for both ErfAct and Pserf compared to

ReLU.

Activation Function mAP
ReLU 77.2 ± 0.14
Swish 77.5 ± 0.12

Leaky ReLU 77.2 ± 0.19
ELU 75.1 ± 0.22

Softplus 74.2 ± 0.25
Mish 77.6 ± 0.14

GELU 77.5 ± 0.14
PAU 77.4 ± 0.16

PReLU 77.2 ± 0.20
ReLU6 77.1 ± 0.15
ErfAct 78.2 ± 0.12
Pserf 78.2 ± 0.14

Table 5.13: Comparison between different baseline activations and ErfAct and Pserf
on Object Detection problem on SSD 300 model in Pascal-VOC dataset.
mean±std is reported in the table.

.
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5.5.4 Machine Translation

Activation Function BLEU Score on
the newstest2014 dataset

ReLU 26.2 ± 0.15
Swish 26.4 ± 0.10

Leaky ReLU 26.3 ± 0.17
ELU 25.1 ± 0.15

Softplus 23.6 ± 0.16
Mish 26.3 ± 0.12

GELU 26.4 ± 0.19
PAU 26.3 ± 0.16

PReLU 26.2 ± 0.21
ReLU6 26.1 ± 0.14
ErfAct 26.8 ± 0.11
Pserf 26.7 ± 0.10

Table 5.14: Comparison between different baseline activations and ErfAct and Pserf on
Machine translation problem on transformer model in WMT-2014 dataset.
mean±std is reported in the table.

Machine Translation is a procedure in which text or speech is translated from one

language to another language without the help of any human being. We consider the

standard WMT 2014 English�German dataset for our experiment. The database con-

tains 4.5 million training sentences. We train an attention-based 8-head transformer

network (Vaswani et al. (2017)) with Adam optimizer (Kingma and Ba (2015)), 0.1

dropout rate (Srivastava et al. (2014)), and train up to 100000 steps. We try to keep other

hyperparameters similar as mentioned in the original paper (Vaswani et al. (2017)).

We evaluate the network performance on the newstest2014 dataset using the BLEU

score metric. The mean of 5 different runs is being reported on Table 5.14 on the test

dataset(newstest2014). From the table, it is clear that the results are stable on different

runs (mean±std), and we got around 0.6% and 0.5% boost in BLEU score for ErfAct

and Pserf compared to ReLU.

5.6 Baseline Table

The experiment section shows that ErfAct and Pserf beat or perform equally well with

baseline activation functions in most cases while under-performs marginally on rare
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Baselines ReLU Leaky
ReLU ELU Softplus Swish PReLU ReLU6 Mish GELU PAU

ErfAct > Baseline 57 57 57 57 54 56 56 53 55 55
ErfAct = Baseline 0 0 0 0 0 0 0 0 0 0
ErfAct < Baseline 0 0 0 0 3 1 1 4 2 2

Pserf > Baseline 57 57 57 57 54 56 56 53 55 54
Pserf = Baseline 0 0 0 0 0 0 0 0 0 0
Pserf < Baseline 0 0 0 0 3 1 1 4 2 3

Table 5.15: Baseline table for ErfAct and Pserf. These numbers represent the total num-
ber of models in which ErfAct and Pserf underperforms, equal or outper-
forms compared to the baseline activation functions

occasions. We provide a detailed comparison based on all the experiments in earlier

sections with the proposed and the baseline activation functions in Table 5.15.

5.7 Computational Time Comparison

Activation
Function Forward Pass Backward Pass

ReLU 5.39 ± 0.39 µs 5.70 ± 1.56 µs
Swish 8.35 ± 1.44 µs 10.56 ± 2.34 µs

Leaky ReLU 5.50 ± 0.51 µs 5.97 ± 0.75 µs
ELU 6.17 ± 0.50 µs 5.93 ± 0.93 µs

Softplus 6.13 ± 0.49 µs 5.94 ± 0.55 µs
Mish 7.45 ± 2.55 µs 8.89 ± 2.85 µs

GELU 8.87 ± 1.54 µs 9.22 ± 1.75 µs
PAU 19.05 ± 2.69 µs 32.62 ± 3.76 µs

PReLU 6.12 ± 0.90 µs 6.23 ± 1.41 µs
ReLU6 5.77± 0.73 µs 5.73± 0.66 µs
ErfAct 7.41 ± 1.51 µs 10.62 ± 1.53 µs
Pserf 7.53 ± 1.77 µs 10.77 ± 1.78 µs

Table 5.16: Runtime comparison for the forward and backward passes for ErfAct
and Pserf and baseline activation functions for a 32◊ 32 RGB image in
PreActResNet-18 model.

We present the time comparison for the baseline activation functions and ErfAct,

Pserf for the mean of 100 runs for both forward and backward pass on a 32 ◊ 32 RGB

image in PreActResNet-18 He et al. (2016) model in Table 5.16. An NVIDIA Tesla

V100 GPU with 32GB ram is used to run the experiments. From Table 5.16 and the

experiment section, it is clear that there is a small trade-off between the computational

time and the model performance when compared to ReLU as the proposed activations
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contain trainable parameters. In contrast, the time is comparable with Swish, Mish or

GELU & much better than PAU and model performance comparatively much better

than baseline activations in most cases.

5.8 Conclusion

In this chapter, two simple and effective novel activation functions have been proposed.

They are named as ErfAct and Pserf. The proposed functions are unbounded above,

bounded below, non-monotonic, smooth and zero-centred. It is shown that both func-

tions can approximate the ReLU activation function. Both functions have similar train-

ing times, like Swish, GELU, and Mish. Across most of the experiments, ErfAct and

Pserf are top-performing activation functions from which it can be concluded that the

proposed functions have the potential to replace the widely used activations like ReLU,

Swish or Mish.
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CHAPTER 6

Maximum Activation Unit

6.1 Introduction

Deep Neural network has emerged a lot in recent years and has significantly impacted

our real-life applications. Neural networks are the backbone of deep learning. An ac-

tivation function is the brain of the neural network, which plays a central role in the

effectiveness & training dynamics of deep neural networks. Hand-designed activation

functions are quite a common choice in neural network models. ReLU (Nair and Hin-

ton (2010)) is a widely used hand-designed activation function. Despite its simplicity,

ReLU has a significant drawback, known as the dying ReLU problem, in which up to

50% of neurons can be dead during network training. To overcome the shortcomings of

ReLU, many activations have been proposed in recent years. Leaky ReLU (Maas et al.

(2013a)), Parametric ReLU (He et al. (2015b)), ELU (Clevert et al. (2016)), Softplus

(Zheng et al. (2015)), Randomized Leaky ReLU (Xu et al. (2015a)) are a few of them

though they marginally improve performance of ReLU. Swish (Ramachandran et al.

(2017)) is a non-linear activation function proposed by the Google brain team, showing

some good improvement of ReLU. GELU (Hendrycks and Gimpel (2020)) is another

popular smooth activation function. It can be shown that Swish and GELU are both are

approximation by a smooth function of ReLU. Recently, a few non-linear activations

have been proposed that improve the performance of ReLU, Swish or GELU. Some

of them are either hand-designed or approximation by a smooth function of the Leaky

ReLU function, Swish (Ramachandran et al. (2017)), Mish Misra (2020), and Padé

activation unit (Molina et al. (2020)) are a few of them.

6.2 Related works and Motivation

The deep learning community is quite interested in proposing hand-designed activa-

tion functions. ReLU (Nair and Hinton (2010)), Leaky ReLU (Maas et al. (2013a)),



Parametric ReLU (He et al. (2015b)), ReLU6 (Krizhevsky (2010)), ELU (Clevert et al.

(2016)), Swish (Ramachandran et al. (2017), and Softplus (Zheng et al. (2015)) are

hand-designed widely used activation functions. While ReLU is the first choice for

the deep learning community due to its simplicity, it has some serious drawbacks. To

overcome it, some better activations have been proposed so far. Swish, Softplus, ELU,

and Leaky ReLU are a few of them. At the same time, only a few activation functions

have been proposed so far by the direct approximation method, which is approximation

by a smooth function of the Leaky ReLU or maximum function. Padé Activation Unit

(Molina et al. (2020)) is proposed by approximating the Leaky ReLU function, and it

performs better than ReLU, Swish in the image classification problem.

6.3 Research Contribution

In the last chapter, two hand-designed smooth activation functions have been proposed,

which are approximation by a smooth function of the ReLU function. That work has

been extended in this chapter. Instead of approximating only the ReLU function, the

proposed functions approximate the maximum function using ErfAct, Pserf, and para-

metric Mish. The proposed functional form is called Maximum Activation Unit (MAU).

The extensive experiments presented in the experiment section on four important deep

learning problems (image classification, object detection, semantic segmentation, and

machine translation) in widely used standard datasets with a large number of architec-

tures prove the efficacy of the proposed activation functions.

6.4 Maximum Activation Unit

In this chapter, I am interested in looking at the maximum function, like the SMU chap-

ter. The maximum function is not differentiable at the origin and can be approximated

by smooth functions, as explored in the SMU chapter. Instead of approximating the

maximum function by previously proposed functions directly. Note that I can rewrite
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the maximum function in the following way:

max(x1, x2) =

�
⇥⇤

⇥⌅

x1 if x1 ⌅ x2

x2 otherwise

= x1 +max(0, x2 ⇤ x1) (6.1)

Recall that the maximum function is not differentiable at the origin as explored in the

SMU chapter. An interesting consequence of rewriting the maximum function in this

way is the observation that the second summoned in the above equation actually looks

like the ReLU function. Since I already have a good theory or approximation of the

ReLU function (as explored in the previous chapter), using differentiable functions, I

have used such approximations here to approximate this portion of the maximum func-

tion. Then I add x1 to get back an approximation of the maximum function. Compli-

cated cases can be constructed by considering nonlinear choices of x1 and x2. But, for

rest of the chapter, I will only focus on the Leaky ReLU approximation of the equa-

tion 6.1. In the experimental section, I run extensive experiments to explore whether

this significantly impacts training and testing accuracy. I found that the proposed func-

tions actually perform better than the traditional functions like ReLU, Swish etc. I can

approximate the maximum function using approximation by a smooth function. From

equation 6.1, an approximation by a smooth function of the maximum function can be

derived. I will only consider approximations of ReLU or Leaky ReLU functions to

keep everything simple. From the last chapter, it is known that the ErfAct (Biswas et al.

(2021c)), Pserf (Biswas et al. (2021c)), and parametric form of Mish (Misra (2020))

are approximation by a smooth function of ReLU. From equation 6.1, the formula for

Leaky ReLU can be written as follows:

max(�x, x) = �x+max(0, (1⇤ �)x) (6.2)

ErfAct is defined as

f(x; ⇥, ⇤) = x erf(⇥e⌃x)) (6.3)
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Figure 6.1: Approximation of Leaky ReLU (� = 0.25) and Leaky ReLU (� = 0.1)
using MAU.

where erf is the Gaussian error function defined as follows:

erf(x) =
2⌃
⌥

Z x

0

e�t2 dt. (6.4)

Notice that, for any fixed ⇥, as ⇤ � ⇥, ErfAct converges to ReLU smoothly. Similarly,

it can be shown that Pserf and parametric Mish are approximation by a smooth function

of ReLU. Replacing 2nd term in 6.2 by 6.3, we have approximation by a smooth func-

tion of Leaky ReLU or PReLU (depending on �, ⇥, ⇤ are hyperparameters or trainable

parameters) as

max(�x, x; ⇥, ⇤) � F1(�x, x; ⇥, ⇤) = �x+ (1⇤ �)x erf(⇥e(1�⌅)⌃x)) (6.5)

Similarly, for Pserf and Parametric Mish, we have

max(�x, x; ⇥, ⇤) � F2(�x, x; ⇥, ⇤) = �x+ (1⇤ �)x erf(⇥ln(1 + e(1�⌅)⌃x))) (6.6)

and

max(�x, x; ⇥, ⇤) � F3(�x, x; ⇥, ⇤) = �x+ (1⇤ �)x tanh(⇥ln(1 + e(1�⌅)⌃x)))

(6.7)

For the rest of this chapter, I will call these functions in equation 6.5, 6.6, and 6.7

as MAU-1, MAU-2, and MAU-3 respectively. Observe that as ⇤ � ⇥, these three

functions will smoothly approximate ReLU or Leaky ReLU (depending on the value of

�).
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The corresponding derivative of the equation (6.5) for input variable x is

d

dx
F1(x,�x, x; ⇥, ⇤) = [(� + (1⇤ �) erf(⇥e(1�⌅)⌃x))

+
2⌃
⌥
⇥⇤(1⇤ �)2xe(1�⌅)⌃xe�(�e(1�⇤)⌅x)2 (6.8)

where
d

dx
erf(x) =

2⌃
⌥
e�x2

.

Similarly, the derivatives of equation (6.6) and equation (6.7) can be derived for

input variable x. A plot of MAU-1, MAU-2, and MAU-3 are given in figure 6.1.

6.4.1 Learning activation parameters via back-propagation

The trainable parameters are updated via backpropagation (LeCun et al. (1989)) algo-

rithm. I have considered Pytorch (Paszke et al. (2019)) & Tensorflow-Keras (Chol-

let et al. (2015)) API to implement Forward and backward pass, and parameters are

updated via automatic differentiation methods. Alternatively, CUDA (Nickolls et al.

(2008)) based implementation (see (Maas et al. (2013a))) can be used to update the

trainable parameters. the For a single layer, the gradient of a parameter � is:

⌦L

⌦�
=

X

x

⌦L

⌦f(x)

⌦f(x)

⌦�
(6.9)

where L is the objective function, � � {�, ⇥, ⇤} and f(x) � {F1(�x, x; ⇥, ⇤), F2(�x, x; ⇥, ⇤),

F3(�x, x; ⇥, ⇤)}. �, ⇥, and ⇤ can be used as trainable parameters or hyperparameters.

Now, note that the class of neural networks with MAU-1, MAU-2, and MAU-3 activa-

tion function is dense in C(K), where K is a compact subset of Rn and C(K) is the

space of all continuous functions over K.

The proof follows from the following proposition (see Molina et al. (2020)).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 Kidger and Lyons (2020))

:- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class of neural net-

works with activation function ↵, with n neurons in the input layer, one neuron in the

output layer, and one hidden layer with an arbitrary number of neurons. Let K ⌦ Rn

be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.
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6.5 Experiments

To explore and compare the performance of MAU-1, MAU-2, and MAU-3, I have con-

sidered eight standard activation functions on different standard datasets and popular

network architectures. I have considered four different deep learning problems like

image classification, object detection, semantic segmentation, and machine translation.

The following activation functions are considered as baseline functions to compare with

the proposed activations: ReLU, ReLU6, Softplus, Leaky ReLU, Parametric ReLU

(PReLU), ELU, PAU, Swish, and GELU. It is clear from the experimental results in the

next sections that MAU-1, MAU-2, and MAU-3 outperform in most cases compared

to the standard activations. I consider � as a hyperparameter and ⇥ & ⇤ as trainable

parameters for the rest of our experiments. All the experiments are conducted on an

NVIDIA V100 GPU with 32GB RAM.

6.5.1 Image Classification

MNIST, Fashion MNIST and The Street View House Numbers (SVHN) Database:

In this section, I present results on MNIST (LeCun et al. (2010)), Fashion MNIST

(Xiao et al. (2017)), and SVHN (Netzer et al. (2011)) datasets. These three datasets

have total 10 classes. I consider standard data augmentation methods like shearing,

rotation, height shift, zoom on the three datasets. I report results for mean of 20 different

runs with AlexNet (Krizhevsky et al. (2012)), and VGG-16 (Simonyan and Zisserman

(2015)) (with batch-normalization (Ioffe and Szegedy (2015))) architecture in Table 6.1,

Table 6.2 respectively. To train a network on these three datasets, I use a batch size of

128, stochastic gradient descent (Robbins and Monro (1951), Kiefer and Wolfowitz

(1952)) optimizer with 0.9 momentum & 5e�4 weight decay, and trained all networks

up-to 100 epochs. I consider 0.01 initial learning rate and decay the learning rate with

cosine annealing (Loshchilov and Hutter (2017)) learning rate scheduler.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.52± 0.07 92.81± 0.19 95.14± 0.15

Leaky ReLU 99.48± 0.08 92.84± 0.22 95.26± 0.18
PReLU 99.50 ± 0.08 92.84 ± 0.20 95.18 ± 0.17
ReLU6 99.54 ± 0.06 93.08 ± 0.17 95.26 ± 0.14
ELU 99.54± 0.07 92.92± 0.17 95.35± 0.18

Softplus 99.19± 0.12 92.37± 0.24 94.92± 0.20
PAU 99.50± 0.07 93.07 ± 0.17 95.20 ± 0.14

Swish 99.60± 0.06 92.91± 0.17 95.42 ± 0.15
GELU 99.54± 0.08 93.10 ± 0.16 95.40 ± 0.16
MAU-1 99.65 ± 0.05 93.22 ± 0.13 95.37 ± 0.10
MAU-2 99.66 ± 0.04 93.29 ± 0.12 95.39 ± 0.12
MAU-3 99.63 ± 0.05 93.32 ± 0.13 95.32 ± 0.11

Table 6.1: A Detailed Comparison between MAU-1, MAU-2, and MAu-3 and Other
Baseline Activations on MNIST, Fashion MNIST, and SVHN Datasets for
Image Classification Problem with AlexNet Model. Top-1 Test Accuracy (in
%) is reported for the Mean of 20 Different Runs. mean±std is reported in
the Table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.53± 0.09 93.70± 0.15 96.12± 0.14

Leaky ReLU 99.55± 0.07 93.95± 0.16 96.14± 0.15
PReLU 99.59 ± 0.08 93.88 ± 0.15 96.11 ± 0.18
ReLU6 99.56 ± 0.07 93.90 ± 0.10 96.21 ± 0.17
ELU 99.50± 0.08 93.86± 0.18 96.16± 0.14

Softplus 99.31± 0.14 93.65± 0.20 95.85± 0.22
PAU 99.56± 0.07 94.29± 0.14 96.25± 0.16

Swish 99.53± 0.08 94.15± 0.14 96.30± 0.15
GELU 99.59± 0.06 94.20 ± 0.13 96.20 ± 0.14
MAU-1 99.68 ± 0.06 94.47 ± 0.11 96.46 ± 0.10
MAU-2 99.66 ± 0.05 94.42 ± 0.10 96.48 ± 0.11
MAU-3 99.65 ± 0.04 94.45 ± 0.13 96.48 ± 0.11

Table 6.2: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
and Other Baseline Activations on MNIST, Fashion MNIST, and SVHN
Datasets for Image Classification Problem with VGG16 Model. Top-1 Test
Accuracy (in %) for the Mean of 20 Different Runs is reported. mean±std is
reported in the table.
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CIFAR:

The CIFAR (Krizhevsky (2009)) is considered for image classification task and it has

a total of 60k 32 ◊ 32 RGB images and is divided into 50k training and 10k test im-

ages. CIFAR is divided into two different datasets- CIFAR10 and CIFAR100 with a

total of 10 and 100 classes, respectively. Top-1 accuracy is reported on Table 6.3, 6.4,

6.5 on CIFAR10 dataset and on Table 6.6, 6.7, 6.8 on CIFAR100 dataset. I consider

MobileNet V1 (Howard et al. (2017)), MobileNet V2 (Sandler et al. (2019)), ResNet

(He et al. (2015a)), PreActResNet (He et al. (2016)), Shufflenet V2 (Ma et al. (2018)),

Inception V3 (Szegedy et al. (2015a)), squeeze and excitation networks (SeNet) (Hu

et al. (2017)), ResNext (Xie et al. (2017)), DenseNet (Huang et al. (2016a)), Xception

(Chollet (2017)), Squeezenet (Iandola et al. (2016)), WideResNet (Zagoruyko and Ko-

modakis (2016)), VGG (Simonyan and Zisserman (2015)) (with batch-normalization

(Ioffe and Szegedy (2015))), AlexNet Krizhevsky et al. (2012), LeNet (Lecun et al.

(1998)), and EfficientNet B0 (Tan and Le (2020)). Standard data augmentation methods

like height shift, horizontal flip, width shift, and rotation is applied on both datasets. For

all the experiments on CIFAR10 & CIFAR100 to train a network, I consider stochastic

gradient descent (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)) optimizer

with 0.9 momentum & 5e�4 weight decay, a batch size of 128, and trained all networks

up-to 200 epochs. I start with 0.01 learning rate and decay the learning rate by a factor

of 10 after every 60 epochs. It is quite clear from these six tables that replacing ReLU

by MAU-1, MAU-2, and MAU-3, there is an improvement in top-1 accuracy from 1%

to more than 5% in most of the models. Accuracy and loss curves are given in Fig-

ure 6.2 & Figure 6.3 respectively. It is quite clear from the learning curves that after

training few epochs, MAU-1, MAU-2, and MAU-3 has stable & smooth learning, and

higher accuracy and lower loss on the test dataset compared to other baseline activation

functions. I consider state of the art data augmentation method like Mixup (Zhang et al.

(2017a)) on CIFAR 100 dataset with ShuffleNet V2 (2.0x), ResNet 18 & ResNet 50

models to compare the performance of MAU-1, MAU-2, and MAU-3 with the baseline

activations. MAU-1, MAU-2, and MAU-3 got improvement over the baseline activation

functions with Mixup augmentation method. Results are reported on Table 6.9 for the

mean of 20 different runs. I consider the same experimental setup as I have used for the

CIFAR100 dataset.
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Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

MobileNet
V1

MobileNet
V2

ResNet
18

ResNet
34

ResNet
50

ReLU 88.15
±0.22

90.80
±0.25

91.12
±0.24

91.42
±0.24

92.40
±0.25

93.75
±0.23

93.34
±0.20

93.85
±0.24

93.98
±0.24

Leaky ReLU 88.20
±0.23

90.92
±0.27

91.00
±0.22

91.52
±0.23

92.55
±0.27

93.82
±0.20

93.20
±0.21

93.78
±0.23

93.71
±0.23

PReLU 88.22
±0.23

90.81
±0.29

91.11
±0.25

91.32
±0.24

92.41
±0.23

94.12
±0.23

93.29
±0.22

93.90
±0.25

93.92
±0.22

ReLU6 88.29
±0.22

90.96
±0.23

91.19
±0.22

91.56
±0.22

92.60
±0.23

93.81
±0.21

93.30
±0.20

93.90
±0.20

93.82
±0.20

ELU 88.20
±0.21

90.74
±0.26

91.20
±0.22

91.50
±0.22

92.49
±0.23

93.81
±0.20

93.45
±0.23

94.10
±0.23

93.81
±0.22

Softplus 87.81
±0.27

90.59
±0.30

91.07
±0.26

91.47
±0.22

92.40
±0.30

93.94
±0.22

93.23
±0.23

93.50
±0.26

93.75
±0.26

PAU 88.90
±0.22

91.62
±0.25

92.43
±0.20

92.83
±0.24

92.78
±0.17

94.79
±0.20

93.74
±0.19

94.20
±0.22

94.22
±0.15

Swish 88.70
±0.22

91.80
±0.23

92.18
±0.21

92.51
±0.21

92.41
±0.20

94.70
±0.20

93.72
±0.19

94.15
±0.22

94.30
±0.17

GELU 88.52
±0.20

91.89
±0.21

92.55
±0.20

92.87
±0.24

92.30
±0.22

94.67
±0.22

93.77
±0.20

94.07
±0.22

94.10
±0.21

MAU-1 90.67
±0.16

92.98
±0.19

93.35
±0.18

93.65
±0.17

93.78
±0.14

95.51
±0.10

93.67
±0.18

94.40
±0.17

94.65
±0.14

MAU-2 90.59
±0.15

92.91
±0.20

93.40
±0.19

93.55
±0.16

93.70
±0.16

95.45
±0.12

93.65
±0.17

94.45
±0.19

94.75
±0.16

MAU-3 90.60
±0.17

92.90
±0.20

93.45
±0.17

93.60
±0.18

93.70
±0.15

95.55
±0.11

93.61
±0.18

94.47
±0.16

94.69
±0.16

Table 6.3: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
and Other Baseline Activations on CIFAR10 Dataset for Image Classification
on Different Models. I Report top-1 Test Accuracy (in %) for the Mean of
20 Different Runs. I report mean±std in the Table.

Activation
Function ResNext Squeezenet AlexNet LeNet Xception SeNet 18 SeNet 34 SeNet 50

ReLU 92.90
±0.20

90.11
±0.22

83.90
±0.21

75.35
±0.23

90.52
±0.22

94.10
±0.22

94.20
±0.20

94.20
±0.20

Leaky ReLU 93.12
±0.22

90.27
±0.24

83.89
±0.22

75.60
±0.22

90.63
±0.24

94.17
±0.22

94.27
±0.18

94.26
±0.22

PReLU 93.26
±0.24

90.42
±0.24

83.81
±0.20

75.65
±0.22

90.55
±0.22

94.20
±0.25

94.52
±0.20

94.41
±0.22

ReLU6 93.29
±0.20

90.41
±0.22

84.19
±0.19

75.82
±0.22

90.60
±0.22

94.18
±0.21

94.29
±0.20

94.27
±0.21

ELU 93.20
±0.20

90.43
±0.22

83.87
±0.21

75.59
±0.22

90.90
±0.23

94.40
±0.22

94.35
±0.18

94.20
±0.21

Softplus 92.70
±0.26

90.10
±0.28

83.59
±0.24

75.40
±0.27

90.52
±0.26

94.17
±0.26

94.21
±0.22

93.84
±0.23

PAU 93.75
±0.20

90.80
±0.21

85.20
±0.17

76.77
±0.20

90.91
±0.21

94.72
±0.24

94.97
±0.21

94.95
±0.22

Swish 93.70
±0.21

90.99
±0.21

85.15
±0.22

77.10
±0.22

90.80
±0.20

94.78
±0.20

94.82
±0.23

94.90
±0.24

GELU 93.80
±0.23

90.72
±0.22

85.14
±0.20

76.67
±0.22

90.88
±0.22

94.79
±0.22

94.90
±0.22

95.17
±0.22

MAU-1 94.55
±0.21

91.60
±0.18

86.12
±0.18

77.05
±0.21

91.80
±0.19

95.50
±0.20

95.39
±0.18

95.75
±0.21

MAU-2 94.67
±0.22

91.77
±0.20

86.17
±0.21

77.01
±0.20

91.78
±0.20

95.59
±0.18

95.47
±0.18

95.65
±0.22

MAU-3 94.60
±0.21

91.65
±0.20

86.22
±0.19

77.02
±0.22

91.64
±0.23

95.60
±0.18

95.36
±0.20

95.61
±0.21

Table 6.4: Experimental Results for MAU-1, MAU-2, MAU-3 and Baseline Activations
in CIFAR10 Dataset for Image Classification on Different Models. I Report
top-1 Test Accuracy (in %) for the Mean of 20 Different Runs. I report
mean±std in the Table.
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Activation
Function

Inception
V3

WideRes
Net 28-10

DenseNet
121

Effitient
Net B0 VGG16 PreAct

ResNet 18
PreAct

ResNet 34
PreAct

ResNet 50

ReLU 93.97
±0.20

94.81
±0.20

94.35
±0.17

94.50
±0.18

93.19
±0.24

93.37
±0.20

93.99
±0.17

94.07
±0.18

Leaky ReLU 93.87
±0.21

94.90
±0.21

94.50
±0.16

94.44
±0.20

93.15
±0.22

93.49
±0.20

93.85
±0.17

94.21
±0.20

PReLU 93.85
±0.20

94.90
±0.23

94.60
±0.20

94.75
±0.21

93.25
±0.26

93.35
±0.23

91.29
±0.19

94.49
±0.22

ReLU6 93.90
±0.20

95.22
±0.20

94.79
±0.22

94.41
±0.22

93.29
±0.20

93.51
±0.20

93.89
±0.18

94.52
±0.18

ELU 93.78
±0.20

95.21
±0.20

94.77
±0.20

94.45
±0.22

93.20
±0.21

93.70
±0.24

93.79
±0.20

94.55
±0.18

Softplus 93.40
±0.23

94.65
±0.24

94.40
±0.21

94.65
±0.22

93.20
±0.26

93.33
±0.26

91.19
±0.24

94.31
±0.25

PAU 94.17
±0.19

94.45
±0.20

94.90
±0.20

94.85
±0.22

93.31
±0.22

94.52
±0.20

94.50
±0.22

94.52
±0.20

Swish 94.00
±0.20

94.69
±0.23

94.77
±0.22

94.67
±0.24

93.64
±0.22

94.54
±0.20

94.60
±0.22

94.60
±0.21

GELU 94.01
±0.20

94.57
±0.24

94.81
±0.23

94.69
±0.21

93.60
±0.22

94.50
±0.23

94.40
±0.22

94.60
±0.22

MAU-1 94.55
±0.12

95.65
±0.13

95.30
±0.12

95.46
±0.15

93.99
±0.20

94.47
±0.16

95.17
±0.15

95.04
±0.15

MAU-2 94.49
±0.11

95.55
±0.14

95.31
±0.14

95.40
±0.16

93.97
±0.19

94.42
±0.17

95.18
±0.16

95.15
±0.16

MAU-3 94.59
±0.10

95.61
±0.15

95.39
±0.12

95.49
±0.16

93.95
±0.18

94.50
±0.18

95.29
±0.14

95.10
±0.14

Table 6.5: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
and Other Baseline Activations on CIFAR10 Dataset for Image Classification
on Different Models. I Report top-1 Test Accuracy (in %) for the Mean of
20 Different Runs. I report mean±std in the Table.

Activation
Function ResNext Squeezenet AlexNet LeNet Xception SeNet 18 SeNet 34 SeNet 50

ReLU 74.18
±0.22

65.83
±0.23

54.50
±0.28

45.29
±0.27

70.79
±0.22

74.30
±0.21

75.10
±0.22

75.80
±0.21

Leaky ReLU 74.40
±0.27

66.30
±0.24

54.81
±0.25

45.21
±0.28

71.30
±0.26

74.59
±0.25

75.31
±0.23

76.29
±0.23

PReLU 74.52
±0.27

66.49
±0.24

55.21
±0.23

45.30
±0.26

71.50
±0.26

74.50
±0.22

75.21
±0.20

76.55
±0.22

ReLU6 74.55
±0.24

66.16
±0.24

55.64
±0.20

45.26
±0.28

71.50
±0.25

74.41
±0.23

75.41
±0.24

76.80
±0.22

ELU 74.85
±0.23

66.45
±0.22

56.61
±0.23

45.63
±0.26

71.89
±0.26

74.60
±0.24

75.37
±0.23

76.89
±0.24

Softplus 73.80
±0.26

66.30
±0.28

54.47
±0.28

45.69
±0.32

70.65
±0.26

74.20
±0.23

74.77
±0.25

75.85
±0.24

PAU 75.79
±0.24

66.91
±0.22

58.07
±0.26

46.77
±0.27

73.21
±0.23

74.50
±0.21

75.27
±0.22

77.54
±0.17

Swish 75.49
±0.24

66.44
±0.23

57.59
±0.27

46.61
±0.25

72.61
±0.22

74.50
±0.21

75.60
±0.22

77.21
±0.17

GELU 75.59
±0.21

66.56
±0.20

57.77
±0.29

46.49
±0.29

72.91
±0.24

74.50
±0.24

75.59
±0.20

77.16
±0.20

MAU-1 77.10
±0.22

68.17
±0.20

61.10
±0.24

47.24
±0.25

74.23
±0.24

75.89
±0.21

76.45
±0.19

78.80
±0.20

MAU-2 76.95
±0.21

68.20
±0.21

61.17
±0.26

47.15
±0.24

74.20
±0.23

75.98
±0.19

76.50
±0.19

78.89
±0.20

MAU-3 77.01
±0.22

68.26
±0.20

61.01
±0.25

47.55
±0.24

74.26
±0.23

75.88
±0.21

76.52
±0.20

78.81
±0.20

Table 6.6: Experimental Results for MAU-1, MAU-2, MAU-3 and Baseline Activations
in CIFAR100 Dataset for Image Classification on Different Models. I Report
top-1 Test Accuracy (in %) for the Mean of 20 Different Runs. I report
mean±std in the Table.
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Activation
Function

SF V2
0.5x

SF V2
1.0x

SF V2
1.5x

SF V2
2.0x

MobileNet
V1

MobileNet
V2

ResNet
18

ResNet
34

ResNet
50

ReLU 61.85
±0.26

64.20
±0.29

66.65
±0.28

66.85
±0.25

70.94
±0.26

74.02
±0.26

73.12
±0.24

73.25
±0.25

73.85
±0.23

Leaky ReLU 61.81
±0.28

64.30
±0.30

66.50
±0.26

67.40
±0.26

71.06
±0.25

74.15
±0.24

73.20
±0.23

73.40
±0.23

74.26
±0.21

PReLU 62.23
±0.26

64.20
±0.29

66.98
±0.29

67.79
±0.24

71.21
±0.26

74.20
±0.26

73.45
±0.24

73.62
±0.23

74.48
±0.25

ReLU6 62.20
±0.27

64.34
±0.24

66.84
±0.26

67.67
±0.26

71.40
±0.23

74.42
±0.23

73.12
±0.24

73.12
±0.23

74.51
±0.22

ELU 62.19
±0.28

64.60
±0.26

66.55
±0.26

67.72
±0.22

71.27
±0.26

74.46
±0.27

73.32
±0.23

73.59
±0.24

74.41
±0.25

Softplus 61.80
±0.32

64.50
±0.31

66.63
±0.31

67.31
±0.30

70.90
±0.27

74.15
±0.26

73.30
±0.24

73.29
±0.27

74.22
±0.22

PAU 63.35
±0.26

66.48
±0.26

69.25
±0.26

70.20
±0.25

71.41
±0.28

74.65
±0.24

74.50
±0.20

73.52
±0.22

75.61
±0.21

Swish 63.13
±0.25

66.26
±0.24

69.15
±0.27

70.71
±0.24

71.50
±0.24

74.57
±0.25

74.64
±0.23

74.20
±0.21

75.52
±0.22

GELU 63.40
±0.26

66.20
±0.24

69.30
±0.28

70.81
±0.24

71.31
±0.26

74.60
±0.24

74.60
±0.24

73.99
±0.23

75.41
±0.22

MAU-1 64.56
±0.24

68.64
±0.23

72.10
±0.26

72.60
±0.23

72.10
±0.22

75.89
±0.20

74.48
±0.22

74.69
±0.24

76.56
±0.21

MAU-2 64.50
±0.23

68.56
±0.24

72.12
±0.24

72.51
±0.24

72.21
±0.23

75.97
±0.22

74.45
±0.24

74.75
±0.25

76.60
±0.22

MAU-3 64.60
±0.25

68.50
±0.22

72.11
±0.25

72.65
±0.25

72.01
±0.23

75.80
±0.21

74.49
±0.23

74.59
±0.22

76.51
±0.20

Table 6.7: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
and Other Baseline Activations on CIFAR100 Dataset for Image Classifica-
tion on Different Models. I Report top-1 Test Accuracy (in %) for the Mean
of 20 Different Runs. I report mean±std in the Table.

Activation
Function

Inception
V3

WideRes
Net 28-10

DenseNet
121

Effitient
Net B0 VGG16 PreAct

ResNet 18
PreAct

ResNet 34
PreAct

ResNet 50

ReLU 74.12
±0.26

75.95
±0.24

75.80
±0.28

76.20
±0.23

71.16
±0.31

72.60
±0.26

72.99
±0.23

73.32
±0.25

Leaky ReLU 74.30
±0.28

75.85
±0.26

75.81
±0.25

76.37
±0.24

71.15
±0.28

72.75
±0.21

72.91
±0.27

73.50
±0.24

PReLU 74.30
±0.29

75.99
±0.26

76.15
±0.25

76.54
±0.27

71.20
±0.30

72.91
±0.25

73.51
±0.25

73.81
±0.25

ReLU6 74.31
±0.25

75.81
±0.25

75.81
±0.22

76.26
±0.24

71.19
±0.27

72.55
±0.25

73.101
±0.24

73.60
±0.23

ELU 74.40
±0.24

76.25
±0.26

75.75
±0.25

76.24
±0.27

71.15
±0.28

72.10
±0.27

73.17
±0.28

74.18
±0.25

Softplus 74.09
±0.30

75.45
±0.27

75.86
±0.26

75.70
±0.28

71.21
±0.30

71.84
±0.30

73.10
±0.28

74.32
±0.32

PAU 75.19
±0.21

75.87
±0.24

76.23
±0.23

76.60
±0.25

71.59
±0.24

74.12
±0.25

73.91
±0.24

75.48
±0.24

Swish 74.70
±0.24

75.85
±0.23

75.87
±0.24

76.45
±0.23

71.97
±0.24

74.15
±0.24

74.41
±0.26

75.65
±0.23

GELU 74.70
±0.24

76.30
±0.23

76.35
±0.24

76.91
±0.23

71.60
±0.27

74.22
±0.23

74.32
±0.23

75.47
±0.24

MAU-1 76.12
±0.20

77.54
±0.20

77.19
±0.24

78.15
±0.24

73.12
±0.26

74.10
±0.23

75.52
±0.25

76.78
±0.21

MAU-2 76.19
±0.19

77.47
±0.22

77.16
±0.23

78.20
±0.24

73.01
±0.24

74.07
±0.24

75.50
±0.25

76.70
±0.22

MAU-3 76.01
±0.21

77.41
±0.20

77.06
±0.23

78.23
±0.26

73.10
±0.25

74.01
±0.22

75.61
±0.23

76.65
±0.20

Table 6.8: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
and Other Baseline Activations on CIFAR100 Dataset for Image Classifica-
tion on Different Models. I Report top-1 Test Accuracy (in %) for the Mean
of 20 Different Runs. I report mean±std in the Table.
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Figure 6.2: Top-1 Train and Test accu-
racy (higher is better) on CI-
FAR100 dataset with Shuf-
flenet V2 (2.0x) network for
different baseline activations
and the proposed activations.

Figure 6.3: Top-1 Train and Test loss
(lower is better) on CIFAR100
dataset with Shufflenet V2
(2.0x) network for different
baseline activations and the
proposed activations.

Activation Function ShuffleNet V2 (2.0x) ResNet 50 ResNet 18
ReLU 69.20 ± 0.23 75.15 ± 0.24 73.97 ± 0.23

Leaky ReLU 69.15 ± 0.22 75.12 ± 0.23 73.90 ± 0.25
PReLU 69.30 ± 0.24 75.20 ± 0.24 74.20 ± 0.24
ReLU6 69.45 ± 0.24 75.30 ± 0.23 74.20 ± 0.22
ELU 69.45 ± 0.23 75.42 ± 0.26 74.15 ± 0.26

Softplus 68.85 ± 0.30 74.40 ± 0.25 73.81 ± 0.27
Swish 72.87 ± 0.20 76.55 ± 0.25 74.50 ± 0.24
GELU 72.90 ± 0.22 76.67 ± 0.24 74.65 ± 0.22
PAU 73.15 ± 0.23 76.80 ± 0.23 74.70 ± 0.26

MAU-1 74.45 ± 0.20 77.99 ± 0.20 75.89 ± 0.18
MAU-2 74.54 ± 0.20 78.01 ± 0.21 75.78 ± 0.22
MAU-3 74.46 ± 0.18 77.89 ± 0.20 75.74 ± 0.21

Table 6.9: Top-1 Test Accuracy Reported with Mixup Augmentation Method on CI-
FAR100 Dataset for the Mean of 20 Different Runs. I report mean±std in
the Table.

Tiny Imagenet:

Tiny Imagenet dataset (Le and Yang (2015)) is a similar kind of image classification

database like the ImageNet Large Scale Visual Recognition Challenge(ILSVRC) (Deng

et al. (2009)). This section presents results on the Tiny ImageNet dataset. Tiny Ima-

genet has a total of 200 image classes. I report the results for top-1 accuracy on ta-

ble 6.10 for a mean of 20 different runs. I consider WideResNet 28-10 (WRN 28-10)
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(Zagoruyko and Komodakis (2016)) and ResNet 18 (He et al. (2015a)) models to report

results. I consider SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz

(1952)), He Normal initializer (He et al. (2015b)), a batch size of 64, 0.2 dropout rate

(Srivastava et al. (2014)), initial learning rate(lr rate) 0.1, and lr rate is reduced by a

factor of 10 after every 50 epochs up-to 300 epochs. To improve performance, I con-

sider standard data augmentation techniques like width shift, height shift, shearing,

rotation, zoom, horizontal flip, and fill mode. It is quite clear from the table that the

proposed function performs better than the baseline functions, and top-1 accuracy is

stable (mean±std) for all models. I got a good improvement for MAU-1, MAU-2, and

MAU-3 over ReLU.

Activation Function WideResNet 28-10 ResNet 18
ReLU 62.65 ± 0.44 58.20 ± 0.40

Leaky ReLU 62.87 ± 0.47 58.51 ± 0.42
PReLU 62.52 ± 0.48 58.57 ± 0.45
ReLU6 62.41 ± 0.48 58.62 ± 0.40
ELU 62.67 ± 0.52 58.51 ± 0.40

Softplus 61.51 ± 0.62 58.24 ± 0.49
PAU 63.50 ± 0.46 59.58 ± 0.42

Swish 63.57 ± 0.46 59.19 ± 0.43
GELU 63.20 ± 0.47 59.36 ± 0.40
MAU-1 64.50 ± 0.41 60.61 ± 0.42
MAU-2 64.57 ± 0.43 60.65 ± 0.41
MAU-3 64.01 ± 0.46 60.19 ± 0.43

Table 6.10: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
Functions and Other Baseline Activation’s in Tiny ImageNet Dataset for
Image Classification Problem. I Report top-1 Test Accuracy (in %) for the
Mean of 20 Different Runs. I report mean±std in the Table.

ImageNet-1k:

ImageNet-1k has more than 1.2 million training images with 1000 classes. Results are

reported with ResNet-50 He et al. (2015a) and ShuffleNet V2 Ma et al. (2018) models

in Table 6.11 in this dataset. I consider SGD optimizer (Robbins and Monro (1951),

Kiefer and Wolfowitz (1952)), 0.9 momentum, 5e�4 weight decay, and a batch size of

256. I consider a linear decay learning rate scheduler from 0.1 and trained upto 600k
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iterations. Experiments are conducted on four NVIDIA V100 GPUs with 32GB RAM

each.

Activation Function ShuffleNet V2 (1.0x) ResNet-50
ReLU 69.20 75.25

Leaky ReLU 69.34 75.49
PReLU 69.23 75.31
ReLU6 69.47 75.55
ELU 69.49 75.66

Softplus 69.20 75.49
Swish 70.52 76.55
GELU 70.43 76.21
PAU 70.54 76.29

MAU-1 71.20 77.32
MAU-2 71.32 77.17
MAU-3 71.01 77.16

Table 6.11: top-1 Accuracy Reported on ImageNet-1k Dataset.

6.5.2 Object Detection

In this section, I report results on challenging Pascal VOC dataset (Everingham et al.

(2010)) on Single Shot MultiBox Detector(SSD) 300 (Liu et al. (2016)). I consider

VGG-16 (with batch-normalization) (Simonyan and Zisserman (2015)) as the backbone

network. W do not use any pre-trained weights for our experiments in the network. I

consider SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952))

with 0.9 momentum, 5e�4 weight decay, 0.001 learning rate, a batch size of 8, and

trained up to 120000 iterations. The results are reported for the mean average precision

(mAP) in Table 6.12 for the mean of 12 different runs.

6.5.3 Semantic Segmentation

Semantic segmentation is a computer vision problem that narrates the procedure of

associating each pixel of an image with a class label. I present our experimental results

in this section on the popular Cityscapes dataset (Cordts et al. (2016)). The U-net model

(Ronneberger et al. (2015)) is considered as the segmentation framework and is trained
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Activation Function mAP
ReLU 77.2±0.16

Leaky ReLU 77.2±0.18
PReLU 77.2±0.19
ReLU6 77.1±0.18
ELU 75.1±0.20

Softplus 74.2±0.23
PAU 77.4±0.15

Swish 77.3±0.13
GELU 77.3±0.12
MAU-1 78.3±0.10
MAU-2 78.3±0.11
MAU-3 78.0±0.12

Table 6.12: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
Functions and Other Baseline Activations on Pascal VOC Dataset for Ob-
ject Detection Problem with SSD300. I Report mAP for the Mean of 12
Different Runs. I report mean±std in the Table.

up-to 250 epochs, with adam optimizer (Kingma and Ba (2015)), learning rate 5e�3,

batch size 32 and Xavier Uniform initializer (Glorot and Bengio (2010)). I report the

mean of 12 different runs for Pixel Accuracy and the mean Intersection-Over-Union

(mIOU) on test data in table 6.13.

6.5.4 Machine Translation

In this section, I report results on WMT 2014 English�German dataset. To evaluate

network performance, I consider the newstest2014 dataset using the BLEU score met-

ric. I consider an attention-based 8-head transformer network (Vaswani et al. (2017))

and I consider Adam optimizer (Kingma and Ba (2015)), 0.1 dropout rate (Srivastava

et al. (2014)). The network is trained up to 100000 steps. I try to keep the other hyper-

parameters similar as mentioned in the original paper (Vaswani et al. (2017)). I report

the mean of 12 different runs on Table 6.14 on the test dataset(newstest2014).
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Activation Function Pixel
Accuracy mIOU

ReLU 79.54±0.45 69.52±0.29
PReLU 78.96±0.42 68.99±0.35
ReLU6 79.81±0.39 69.98±0.40

Leaky ReLU 79.62±0.42 69.95±0.43
ELU 79.49±0.50 68.39±0.41

Softplus 78.51±0.53 68.28±0.55
PAU 79.69±0.50 69.35±0.32

Swish 80.12±0.46 70.01±0.30
GELU 80.01±0.41 69.61±0.35
MAU-1 81.85±0.38 71.58±0.30
MAU-2 81.65±0.40 71.52±0.32
MAU-3 81.29±0.41 71.01±0.32

Table 6.13: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
Functions and Other Baseline Activations for Semantic Segmentation Prob-
lem in CityScapes Dataset with U-NET Model. I Report Pixel Accuracy
and mIOU for the Mean of 12 Different Runs. mean±std is Reported in the
Table.

Activation Function BLEU Score on
the newstest2014 dataset

ReLU 26.2±0.16
Leaky ReLU 26.3±0.16

PReLU 26.2±0.23
ReLU6 26.1±0.16
ELU 25.1±0.18

Softplus 23.6±0.18
PAU 26.3±0.13

Swish 26.4±0.11
GELU 26.5±0.17
MAU-1 26.8±0.12
MAU-2 26.7±0.12
MAU-3 26.6±0.12

Table 6.14: A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activation
Functions and Other Baseline Activations in WMT-2014 Dataset for Ma-
chine Translation Problem on Transformer Model. I Report BLEU Score
for the Mean of 12 Different Runs. mean±std is Reported in the Table.
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Baselines ReLU Leaky
ReLU PReLU ReLU6 ELU Softplus PAU Swish GELU

MAU-1 > Baseline 66 66 66 66 66 66 62 60 61
MAU-1 = Baseline 0 0 0 0 0 0 0 0 0
MAU-1 < Baseline 0 0 0 0 0 0 4 6 5

MAU-2 > Baseline 66 66 66 66 66 66 62 60 61
MAU-2 = Baseline 0 0 0 0 0 0 0 0 0
MAU-2 < Baseline 0 0 0 0 0 0 4 6 5

MAU-3 > Baseline 66 66 66 66 66 66 62 60 61
MAU-3 = Baseline 0 0 0 0 0 0 0 0 0
MAU-3 < Baseline 0 0 0 0 0 0 4 6 5

Table 6.15: Baseline Table for MAU-1, MAU-2, & MAU-3. In the Table, I Report the
Total Number of Cases in Which the proposed functions Underperforms,
Equal, or Outperforms When compared with the Baseline Activation Func-
tions

6.6 Baseline Table

In this section, I present the baseline table for MAU-1, MAU-2, & MAU-3 and the other

baseline functions, which shows that MAU-1, MAU-2, & MAU-3 beat the baseline ac-

tivation functions in most cases and underperform in marginal cases. A detailed com-

parison with MAU-1, MAU-2, & MAU-3 and the baseline activation functions based

on all the experiments in previous sections has been reported in Table 6.15. From the

baseline table, it is clear that the proposed functions perform well in most of the cases

compared to the baseline activation function.

6.7 Computational Time Comparison

This section presents the computational time comparison for the baseline activation

functions and MAU-1, MAU-2, ad MAU-3 for the mean of 100 runs. The results are

reported for both forward and backward pass on a 32◊32 RGB image in PreActResNet-

18 He et al. (2016) model in Table 6.16. An NVIDIA Tesla V100 GPU with 32GB ram

is considered to run the experiments.

Note that, here is a small trade-off between running time and model performance for

the proposed activation functions and the activation functions like ReLU, Leaky ReLU,

ReLU6. It Is quite clear from the Table 6.16 and the experiment section. Also, note

that the time is almost similar to other smooth activations like Swish, Mish or GELU &
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better than PAU.

Activation
Function Forward Pass Backward Pass

ReLU 5.50 ± 0.41 µs 5.72 ± 1.63 µs
Swish 8.15 ± 1.54 µs 10.40 ± 2.25 µs

Leaky ReLU 5.56 ± 0.50 µs 6.04 ± 0.71 µs
PReLU 6.21 ± 0.91 µs 6.31 ± 1.31 µs
ReLU6 5.98± 0.75 µs 6.01± 0.71 µs
ELU 6.18 ± 0.52 µs 5.99 ± 0.95 µs

Softplus 6.19 ± 0.49 µs 6.10 ± 0.51 µs
GELU 8.59 ± 1.48 µs 9.19 ± 1.69 µs
PAU 19.16 ± 2.65 µs 32.71 ± 3.70 µs

MAU-1 7.81 ± 1.51 µs 10.62 ± 1.53 µs
MAU-2 7.69 ± 1.83 µs 10.95 ± 1.70 µs
MAU-3 7.41 ± 1.45 µs 10.53 ± 1.70 µs

Table 6.16: Runtime comparison for the forward and backward passes for MAU-1,
MAU-2, & MAU-3 and baseline activation functions for a 32◊ 32 RGB
image in PreActResNet-18 model.

6.8 Conclusion

In this chapter, three smooth activation functions have been presented. The maximum

function is not smooth. A special form of the maximum function is derived and then

approximated the form by known smooth functions. I call these three functions as Max-

imum Activation Unit (MAU). The proposed functions are smooth and can approximate

ReLU or its different variants quite well. By experimental evaluation, in a large number

of datasets on different deep learning problems, it has been shown that the proposed

functions perform better than the known widely used activations like ReLU, Leaky

ReLU or Swish in most cases which shows that replacing the hand-crafted activation

functions by MAU-1, MAU-2, and MAU-3 can be beneficial in deep networks.
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CHAPTER 7

Orthogonal-Padé Activation Unit 1

7.1 Introduction

Deep networks are constructed with multiple hidden layers and neurons. Non-linearity

is introduced in the network via activation function in each neuron. ReLU (Nair and

Hinton (2010)) is proposed by Nair and Hinton and is the favourite activation in the

deep learning community due to its simplicity. Though ReLU has a drawback called

dying ReLU, and in this case, up to 50% neurons can be dead due to the vanishing

gradient problem, i.e. there are numerous neurons which have no impact on the net-

work performance. To overcome this problem, later Leaky Relu (Maas et al. (2013a)),

Parametric ReLU (He et al. (2015b)), ELU (Clevert et al. (2016)), and Softplus (Zheng

et al. (2015)) were proposed, and they have improved the network performance through

its still an open problem for researchers to find the best activation function. Recently

Swish (Ramachandran et al. (2017)) was found by a group of researchers from Google

brain, and they used an automated searching technique. Swish has shown some im-

provement in accuracy over ReLU. GELU (Hendrycks and Gimpel (2020)), and Mish

(Misra (2020)) are a few other candidates proposed recently which can replace ReLU

and Swish. Recently, there has been an increasing interest in trainable activation func-

tions. Trainable activation functions have learnable hyperparameter(s), updated dur-

ing training via backpropagation algorithm (LeCun et al. (1989)). In this chapter, we

have proposed Orthogonal-Padé activation functions. Orthogonal-Padé functions can

approximate most of the continuous functions.

7.2 Related works and motivation

Activation functions are a crucial component of a neural network. It introduces the

non-linearity in a network. ReLU (Nair and Hinton (2010)) is a popular non-linear acti-
1This chapter is a slightly modified version of the paper in Arxiv Biswas et al. (2021a).



vation function though it has some drawbacks. Leaky ReLU (Maas et al. (2013a)) and

Parametric ReLU (He et al. (2015b)) are proposed later to overcome the drawback of

ReLU. Swish (Ramachandran et al. (2017)) is a recently proposed activation proposed

by the Google Brain team. All these functions are handcrafted though there is another

way of proposing an activation function using the approximation method, which is not

explored much. Padé Activation Unit (Molina et al. (2020) is proposed recently by

approximation method using rational polynomial approximation method. Experimen-

tally PAU shows that the proposed activation function improves performance in image

classification problems.

7.3 Research contribution

In this chapter, we propose activation functions using the rational polynomial approx-

imation technique using standard orthogonal polynomials. We replace the standard

polynomial basis in Padé approximation by orthogonal basis and approximate the Leaky

ReLU function. Now the approximating function can be used as an activation function.

We have conducted extensive experiments to find the effects of various neural network’s

training dynamics and performance. Our experimental evaluation shows that our pro-

posed activation functions are comparatively more effective than ReLU, Swish, GELU,

PAU etc., across different deep learning tasks. We summarise the chapter as follows:

1. We have proposed activation functions using rational orthogonal polynomial ap-
proximation technique. We approximate the Leaky ReLU function and find the
coefficients of the polynomials for the proposed functions.

2. We show that the proposed functions outperform widely used activation functions
across four different deep learning tasks.

7.4 Padé activation Unit (PAU) and Orthogonal-PAU

Let {Pn(x)}⇥n=0 be a sequence of polynomials in x with degreePn(x) = n for each n.

For a positive, continuous function w(x) on the interval (a, b) with a < b, define an

inner product on Pn(x) as

< P,Q >w =

Z b

a

w(x)P (x)Q(x) dx. (7.1)
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A finite set of polynomials {P1(x), P2(x), · · · , Pk(x)} is said to be orthogonal with

respect to the weight function w(x) on the interval (a, b) with a < b if

< Pi, Pj >w = 0 if i  = j. (7.2)

A basis for Pn(x) is a set of n polynomials whose span is whole of Pn(x). An orthog-

onal basis is a basis that is also an orthogonal set. A more detailed information about

orthogonal polynomials, see (Weisstein).

A standard basis for Pn(x) is {1, x, x2, · · · , xn}. But the standard basis is not or-

thogonal with respect to the inner product defined in (7.1). In many applications, work-

ing with an orthogonal basis simplifies expressions and reduce calculations. There are

several well known orthogonal basis for the space of polynomials. Table 7.1 enlists

some of these polynomial bases. Note that some of them are given by recurrence rela-

tions and others by direct expressions.

Polynomial Recurrence Relation/Expression
Chebyshev polynomial
of the first kind (CP-1) r0(x) = 1, r1(x) = x, rn+1(x) = 2xrn(x)⇤ rn�1(x)

Chebyshev polynomial
of the Second kind (CP-2) r0(x) = 1, r1(x) = 2x, rn+1(x) = 2xrn(x)⇤ rn�1(x)

Laguerre polynomials (LAU) r0(x) = 1, r1(x) = 1⇤ x, rn+1(x) =
(2n+1�x)rn(x)�nrn�1(x)

n+1

Legendre polynomials (LEG) rn(x) =
P[n/2]

k=0 (⇤1)k (2n�2k)!
2nk!(n�2k)!(n�k)x

n�2k

Probabilist’s Hermite
polynomials (HP-1) rn(x) = (⇤1)ne

x2

2 dn

dxn e
�x2

2

Physicist’s Hermite
polynomials (HP-2) rn(x) = (⇤1)nex

2 dn

dxn e�x2

Table 7.1: Some well-known Orthogonal Polynomial Basis.

7.4.1 Padé activation Unit (PAU)

The Padé approximation of f(x) by a rational function F1(x) is defined as

F1(x) =
P (x)

Q(x)
=

Pk
i=0 aix

i

1 +
Pl

j=1 bjx
j
=

a0 + a1x+ a2x2 + · · ·+ akxk

1 + b1x+ b2x2 + · · ·+ blxl
(7.3)

where P (x) and Q(x) are polynomials of degree k and l respectively and they have

no common factor. PAU (Molina et al. (2020)) is a learnable activation function of the

form given in (7.3) where the polynomial coefficients ai, bj, 0 ⇧ i ⇧ k, 1 ⇧ j ⇧ l
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Figure 7.1: Appximation of Leaky ReLU
(� = 0.25) by HP-1 function.

Figure 7.2: Appximation of Leaky ReLU
(� = 0.25) by HP-2 function.

are learnable parameters and updated during back-propagation. To remove the pole of

F1(x) coming from zeros of Q(x), authors in (Molina et al. (2020)) proposed safe PAU.

Safe PAU is defined as

F2(x) =
P (x)

Q(x)
=

Pk
i=0 aix

i

1 + |
Pl

j=1 bjx
j|

=
a0 + a1x+ a2x2 + · · ·+ akxk

1 + |b1x+ b2x2 + · · ·+ blxl| (7.4)

Introducing the absolute value in the denominator ensures that the denominator will not

vanish. In fact, one can take absolute value inside the sum and define

F3(x) =
P (x)

Q(x)
=

Pk
i=0 aix

i

1 +
Pl

j=1 |bj||xj|
=

a0 + a1x+ a2x2 + · · ·+ akxk

1 + |b1||x|+ |b2||x2|+ · · ·+ |bl||xl| (7.5)

We will show that in many tasks activation functions defined by F3 provide better results

than safe PAU defined in F2.

7.4.2 Orthogonal-Padé activation Unit (OPAU)

The orthogonal-Padé approximation of g(x) by a rational function G(x) is defined as

G(x) =
P (x)

Q(x)
=

Pk
i=0 cifi(x)

1 +
Pl

j=1 djfj(x)
=

c0 + c1f1(x) + c2f2(x) + · · ·+ ckfk(x)

1 + d1f1(x) + d2f2(x) + · · ·+ dlfl(x)

(7.6)

where ft(x) belongs to a set of orthogonal polynomials (see Weisstein). As in the case

of PAU, the learnable activation function, OPAU, is defined by (7.6) where ci, dj, 0 ⇧
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i ⇧ k, 1 ⇧ j ⇧ l are learnable parameters. The parameters are initialized by taking

approximation of the form (7.6) of a well-known activation function like ReLU, Leaky

ReLU etc., see (Molina et al. (2020)). To remove poles of G(x), we propose safe OPAU

as follows:

G(x) =
P (x)

Q(x)
=

Pk
i=0 cifi(x)

1 +
Pl

j=1 |dj||fj(x)|
=

c0 + c1f1(x) + c2f2(x) + · · ·+ ckfk(x)

1 + |d1||f1(x)|+ |d2||f2(x)|+ · · ·+ |dl||fl(x)|

(7.7)

We consider six orthogonal polynomial bases - Chebyshev (two types), Hermite (two

types), Laguerre, and Legendre polynomial bases for this work. Details about these

polynomial bases are given in Table 7.1.

7.4.3 Learning activation parameters via back-propagation

Weights and biases in neural network models are updated via backpropagation algo-

rithm and gradient decent. The same method is adopted to update the activation pa-

rameters. We implement the forward pass in both Pytorch (Paszke et al. (2019)) &

Tensorflow-Keras (Chollet et al. (2015)) API and automatic differentiation will update

the parameters. Alternatively, CUDA (Nickolls et al. (2008)) based implementation

(see (Molina et al. (2020)), (Maas et al. (2013a))) can be used and the gradients of

equations (7.6) for the input x and the parameters ci’s and dj’s can be computed as

follows:

⌦G

⌦x
=

1

Q(x)

⌦P (x)

⌦x
⇤ P (x)

Q(x)2
⌦Q(x)

⌦x
,

⌦G

⌦ci
=

fi(x)

Q(x)
,

⌦G

⌦dj
= ⇤ sgn(dj)|fj(x)|

P (x)

Q(x)2
.

(7.8)

7.5 Networks with orthogonal-Padé activations and func-

tion approximation

Orthogonal-Padé networks are similar to Padé networks (Molina et al. (2020)) in which

a network with PAU or safe PAU is replaced with an OPAU or safe OPAU. In this article,

we consider safe OPAUs’ as an activation function with different orthogonal bases as

given in Table 7.1. We initialize the learnable parameters (polynomial coefficients)
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using the approximation of Leaky ReLU (� = 0.01) by the functional form given in

(7.7). The network parameters are optimized via the backpropagation method (LeCun

et al. (1989)). We kept a similar design for all networks as PAU in (Molina et al.

(2020)), for example, weight sharing and learning activation parameter per layer (Teh

and Hinton (2000)). From equation (7.7), we have a total of (k + l) extra parameters

per layer. Therefore, if there are L layers in a network, there will be extra L ◊ (k + l)

numbers of learnable parameters in the network. To train a network, we adopt Leaky

ReLU initialization (� = 0.01) instead of the random initialization method, and results

are reported in the experiments section. A plot of HP-1 and HP-2 are given in figure 7.1

and figure 7.2.

Also, note that the class of neural networks with safe OPAU activation functions

is dense in C(K), where K is a compact subset of Rn and C(K) is the space of all

continuous functions over K.

The proof follows from the following propositions (see Molina et al. (2020)).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2019 Kidger and Lyons

(2020)) :- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class

of neural networks with activation function ↵, with n neurons in the input layer, one

neuron in the output layer, and one hidden layer with an arbitrary number of neurons.

Let K ⌦ Rn be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.

Proposition 2. (From Theorem 3.2 in (Kidger and Lyons, 2019 Kidger and

Lyons (2020))):- Let ↵ : R � R be any continuous function which is continuously

differentiable at at least one point, with nonzero derivative at that point. Let K ⌦ Rn

be compact. Then NN⇤
n,m,n+m+2 is dense in C(K;Rm).

7.6 Appximation coefficients for different orthogonal poly-

nomials

The coefficients for different orthogonal polynomials given in Table 7.1 are reported

in Table 7.2. The coefficients are found with orthogonal polynomial basis for rational

function approximation (using equation (6)) to Leaky ReLU (� = 0.01) activation func-

tion. We have computed the orthogonal polynomials (from Table 7.1 using recurrence
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relations) for k = 5 and l = 4 in equation 7.7. The least-square method is adopted

to optimize the error between Leaky ReLU and the rational function with orthogonal

polynomials.

PC CP-1 CP-2 LAU LEG HP-1 HP-2

c0

0.43463
381995
28298

0.26646
729134
92625

1.83604
452353
54788

0.32073
3733020
75475

1.13719
634240
21352

0.46209
15542
74137

c1

0.75822
186996
82254

0.34803
0470194
67215

-2.9554
5059092
67266

0.71427
996686
06886

1.79794
191284
49188

0.48393
211064
20414

c2

0.31781
494330
90529

0.16180
67408
60617

1.63873
68018
88696

0.42468
163573
28257

1.1020
7705501
87182

0.18164
108628
37883

c3

0.05703
79742924

44685

0.030197
9928897
31528

-0.317749
758837
76296

0.023434
0936823
45926

0.32948
857204
34351

0.03037
625251
52446

c4

0.004000
91162698

71334

0.002163
1764095
56791

-0.023982
81897
0702

0.007618
7459904
66922

0.04271
8579950
60412

0.002074
690747
081737

c5

9.93204
2145345
177e-05

5.44252
19890802
244e-05

0.01114
23449225

87972

0.000212
0535423
305138

0.002084
0356797
464945

5.145762
05169

9321e-05

d1

-0.42263
7203997
40756

0.167403
991429
00575

-0.58902
621993
20808

0.35334
1300183
60843

1.08464
598880
19664

0.240243
594312
60522

d2

0.14463
24151
547079

0.08512
431596
790718

-0.09392
2337654
24439

0.214676
829578
40964

0.30850
1565523
30404

0.075156
681726
28485

d3

-0.006010
64666153

19236

0.002646
1214606
926624

0.003915
139808
859812

0.00861
13281499

30994

-0.041635
9246952
19075

0.003128
166547
86619

d4

0.000244
05206679

94119

0.000148
137501455

71406

0.006420
352790
087902

0.0005072
095551
410509

0.002240
515203
527783

0.000127
09353203
643316

Table 7.2: Coefficient Table for Leaky ReLU rational function approximation with or-
thogonal basis (using equation (6)) for network initialization. ’PC’ stands for
polynomial coefficients.
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7.7 Experimental results with Orthogonal-Padé Activa-

tion

We first initialize the trainable parameters (polynomial coefficients) of safe OPAU ac-

tivation functions by rational function approximation of Leaky ReLU (� = 0.01) ac-

tivation and then update the parameters via backpropagation algorithm via 7.8. The

coefficients for Leaky ReLU (� = 0.01) approximation are given in Table 7.2. Also,

from our experiments, we notice that orthogonal basis approximate a continuous func-

tion uniquely much faster than the standard polynomial basis.

Also, note that widely used activation functions in most cases are zero centered.

We impose some conditions on safe PAU and safe OPAU approximation to make the

known function approximation (in our case, Leaky ReLU initialization) zero centered

and check whether there is any advantage (one definite advantage is the number of

parameters reduces in each layer) on model performance. To make safe Padé zero cen-

tered, we first replace a0 = 0 in equation 7.4 and then we find the rest of the parameters

a1, a2, · · · , ak and b1, b2, · · · , bl by approximation of the Leaky ReLU function. For

safe OPAU, several cases arrive, and we explore all possible cases. For example, if we

choose HP-1 as a basis, the safe OPAU function approximation can be zero centered if

the constant term in the numerator is zero. So, we have from equation 7.7 and Table 7.1,

c0 ⇤ c2 +3c4 = 0, which means either c0 = c2 = c4 = 0 or one of c0 or c2 or c4 is equal

to zero or c0 = c2 ⇤ 3c4 or c2 = c0 + 3c4 or c4 = 1
3(c2 ⇤ c0).

In all the above cases for HP-1, and a0 = 0 for PAU, the rational function approxi-

mation to Leaky ReLU (� = 0.01) are explored and tested on CIFAR10 (Krizhevsky

(2009)) and CIFAR100 (Krizhevsky (2009)) datasets on several standard networks like

PreActResNet-34 (He et al. (2016)), LeNet (Lecun et al. (1998)), AlexNet (Krizhevsky

et al. (2012)), DenseNet-121 (Huang et al. (2016a)), and EfficientNet B0 (Tan and Le

(2020)) networks. We find that in most cases, network performance in top-1 accuracy

reduces by 0.2%-0.6%.

In the next subsections, we give details of our experimental setup, experimental

results on different deep learning problems like image classification, object detection,

semantic segmentation, and machine translation in some widely used standard datasets
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and networks. We consider ReLU (Nair and Hinton (2010)), Leaky ReLU (Maas et al.

(2013a)), ELU (Clevert et al. (2016)), Softplus (Clevert et al. (2016)), PReLU (He et al.

(2015b)), GELU (Hendrycks and Gimpel (2020)), ReLU6 (Krizhevsky (2010)), PAU

(Molina et al. (2020)) and Swish (Ramachandran et al. (2017)) as our baseline activa-

tion functions to compare performance on different networks. From all our experiments,

we notice that HP-1 and HP-2 continuously outperform CP-1, CP-2, LAU, and LEG

activations. Also, theoretically there are some benefits of using Hermite-Padé approx-

imation over Padé approximation (for details, please see (Beckermann et al. (2011))).

For all our experiments, we choose networks and hyper-parameters with ReLU acti-

vation and replace ReLU by baselines and safe OPAU activations to compare network

performances.

7.7.1 Image Classification

MNIST, Fashion MNIST, and The Street View House Numbers (SVHN) Database

The MNIST (LeCun et al. (2010)), and Fashion MNIST (Xiao et al. (2017)) are popular

computer vision database and both databases contains a total of 60k training and 10k

testing 28◊ 28 grey-scale spread over ten different classes. MNIST contains handwrit-

ten digits from 0 to 9, while Fashion MNIST contains fashion items. SVHN (Netzer

et al. (2011)) consists of 32◊32 RGB images of real-world house numbers of Google’s

street view images with a total of 73257 training images and 26032 testing images, and

the images are spread over 10 different classes. The data augmentation method is not

used in MNIST and Fashion MNIST, while the data augmentation method is used in

SVHN database. Results on VGG-16 (Simonyan and Zisserman (2015)) (with batch-

normalization) network are reported in Table 7.3. We have carried out more experi-

ments on AlexNet (AN) (Krizhevsky et al. (2012)), LeNet (Lecun et al. (1998)), and

with a custom 8-layer homogeneous convolutional neural network (CNN) architecture

on MNIST, Fashion MNIST, and SVHN datasets on Table 7.4, 7.5, and 7.6 respec-

tively. The custom network is constructed with 3◊3 kernels on CNN layers and pooling

layers with 2 ◊ 2 kernels. Channel depths of size 128 (twice), 64 (thrice), 32 (twice),

a dense layer of size 128, Max-pooling layer(thrice) are used with batch-normalization

(Ioffe and Szegedy (2015)), and dropout (Srivastava et al. (2014)).
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Activation Function MNIST Fashion MNIST SVHN
ReLU 99.01± 0.10 93.17± 0.25 95.07± 0.27

Leaky ReLU(� = 0.01) 99.05± 0.14 93.12± 0.29 95.18± 0.23
PReLU 99.03±0.19 93.11±0.33 94.99±0.31
ReLU6 98.91±0.12 93.14±0.25 94.91±0.28
GELU 99.10±0.11 93.27±0.23 95.33±0.30
ELU 99.09± 0.15 93.08± 0.32 95.23± 0.30

Softplus 98.89± 0.12 92.89± 0.29 95.04± 0.34
Swish 99.14± 0.07 93.3± 0.19 95.31± 0.22
PAU 99.12±0.07 93.35±0.23 95.21 ±0.20
CP-1 99.10±0.15 93.20±0.31 95.14±0.30
CP-2 99.07±0.12 93.24±0.28 95.09±0.31
LAU 99.12±0.14 93.11±0.24 95.14±0.30
LEG 99.14±0.12 93.22±0.28 95.12±0.24
HP-1 99.31±0.08 93.75±0.17 95.67±0.18
HP-2 99.27±0.07 93.74±0.20 95.61±0.21

Table 7.3: Comparison between different baseline activations, HP-1, and HP-2 activa-
tions on MNIST, Fashion MNIST, and SVHN datasets on VGG-16 network.
We report results for 10-fold mean accuracy (in %). mean±std is reported in
the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.12±0.11 93.28±0.22 95.45±0.21

Leaky ReLU(� = 0.01) 99.11±0.14 93.24±0.25 95.41±0.27
PReLU 99.17±0.17 93.30±0.31 95.51±0.35
ReLU6 99.06±0.10 93.21±0.24 95.49±0.21
GELU 99.21±0.12 93.39±0.27 95.62±0.29
ELU 99.19±0.16 93.34±0.32 95.49±0.29

Softplus 99.04±0.14 93.12±0.31 95.22±0.37
Swish 99.25±0.13 93.36±0.22 95.67±0.21
PAU 99.22±0.11 93.39±0.21 95.52±0.19
CP-1 99.23±0.12 93.31±0.27 95.59±0.22
CP-2 99.20±0.11 93.41±0.24 95.49±0.23
LAU 99.22±0.13 93.57±0.27 95.42±0.27
LEG 99.28±0.12 93.34±0.28 95.45±0.24
HP-1 99.57±0.09 93.88±0.21 95.94±0.18
HP-2 99.44±0.10 93.79±0.21 95.83±0.20

Table 7.4: Comparison between different baseline activations and safe OPAU activa-
tions on MNIST, Fashion MNIST, and SVHN datasets in AlexNet. 10-fold
mean accuracy (in %) have been reported. mean±std is reported in the table.
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Activation Function MNIST Fashion MNIST SVHN
ReLU 98.92±0.12 91.01±0.24 93.12±0.19

Leaky ReLU(� = 0.01) 98.87±0.14 91.11±0.20 93.19±0.22
PReLU 99.01±0.19 91.15±0.25 93.27±0.20
ReLU6 99.00±0.09 91.12±0.20 93.24±0.19
GELU 99.12±0.15 91.27±0.21 93.42±0.20
ELU 99.01±0.12 91.22±0.24 93.35±0.22

Softplus 98.82±0.17 91.01±0.28 93.17±0.36
Swish 99.12±0.10 91.31±0.25 93.52±0.22
PAU 99.11±0.12 91.39±0.25 93.46±0.21
CP-1 99.15±0.14 91.36±0.28 93.41±0.30
CP-2 99.10±0.09 91.22±0.24 93.37±0.26
LAU 99.17±0.15 91.36±0.22 93.48±0.21
LEG 99.14±0.14 91.47±0.27 93.51±0.25
HP-1 99.42±0.08 91.79±0.20 93.77±0.18
HP-2 99.36±0.10 91.72±0.24 93.82±0.21

Table 7.5: Comparison between different baseline activations and safe OPAU activa-
tions on MNIST, Fashion MNIST, and SVHN datasets in LeNet. 10-fold
mean accuracy (in %) have been reported. mean±std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
ReLU 99.14±0.09 92.87±0.21 95.17±0.24

Leaky ReLU(� = 0.01) 99.22±0.11 92.91±0.20 95.22±0.27
PReLU 99.17±0.15 92.81±0.29 95.21±0.31
ReLU6 99.11±0.10 92.85±0.22 95.12±0.23
GELU 99.19±0.11 92.99±0.25 95.25±0.26
ELU 99.15±0.11 92.97±0.31 95.19±0.27

Softplus 99.01 ±0.15 92.78±0.28 95.01±0.35
Swish 99.23±0.09 92.99±0.25 95.27±0.22
PAU 99.24±0.11 93.05±0.21 95.29±0.24
CP-1 99.22±0.14 93.02±0.22 95.25±0.27
CP-2 99.27±0.14 93.01±0.25 95.23±0.28
LAU 99.25±0.12 93.15±0.24 95.30±0.29
LEG 99.20±0.15 93.09±0.29 95.21±0.31
HP-1 99.47±0.10 93.39±0.24 95.43±0.22
HP-2 99.40±0.09 93.31±0.21 95.42±0.25

Table 7.6: Comparison between different baseline activations and safe OPAU activa-
tions on MNIST, Fashion MNIST, and SVHN datasets in Custom network.
10-fold mean accuracy (in %) have been reported. mean±std is reported in
the table.
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CIFAR

The CIFAR (Krizhevsky (2009)) database consists of total 60k images 32 ◊ 32 RGB

images, which is divided into 50k training and 10k test images. CIFAR dataset is di-

vided into two database- CIFAR10 and CIFAR100. CIFAR10 database contains total

10 classes with 6000 images per class, while CIFAR100 database contains total 100

classes with 600 images per class. Experimental results for top-1 accuracy for the

mean of 10 runs is reported on Table 7.7 and Table 7.8 on CIFAR10 dataset CIFAR100

datasets, respectively. Results are reported in both the database on VGG-16 (with batch-

normalization) (Simonyan and Zisserman (2015)), PreActResNet-34 (PA-ResNet-34)

(He et al. (2016)), Densenet-121 (DN-121) (Huang et al. (2016a)), MobileNet V2 (MN

V2) (Sandler et al. (2019)), Shufflenet V2 (SF V2) (Ma et al. (2018)), EfficientNet B0

(EN-B0) (Tan and Le (2020)), and LeNet (Lecun et al. (1998)) networks. More ex-

perimental results on AlexNet (AN) (Krizhevsky et al. (2012)), Resnet-50 (He et al.

(2015a)), Deep Layer Aggregation (DLA) (Yu et al. (2019)), Googlenet (Szegedy et al.

(2014a)), Inception Network (Szegedy et al. (2015b)), WideresNet 28-10 (WRN 28-

10) (Zagoruyko and Komodakis (2016)), Resnext (Xie et al. (2017)) are reported in

Table 7.9 and 7.10. It evident from Table 7.7, 7.8, 7.9, and 7.10 that in most cases

HP-1, and HP-2 constantly outperforms ReLU and Swish. Also, notice that there is an

improvement in Top-1 accuracy from 1% to 6% when compared with ReLU activation

in the above mentioned networks. We have considered batch size of 128, Adam opti-

mizer Kingma and Ba (2015) with 0.001 learning rate and trained the networks up-to

100 epochs. Data augmentation is used for both the datasets. Analysing these learning

curves, it is clear that after training few epochs HP-1, and HP-2 have faster conver-

gence speed, smooth & stable learning, higher accuracy and lower loss when compared

to ReLU. Experiments with AlexNet (with batchNorm) (Krizhevsky et al. (2012)),

ResNet-50 (He et al. (2015a)), GoogleNet (GN) (Szegedy et al. (2014a)), Inception

V3 (IN v3) (Szegedy et al. (2015b)), WideResNet 28-10 (WRN 28-10) (Zagoruyko

and Komodakis (2016)), ResNext-50 (RNxt-50) (Xie et al. (2017)), and Deep Layer

Aggregation (DLA) Yu et al. (2019) is reported on Table 7.9, and 7.10 on CIFAR10

and CIFAR100 datasets respectively. Accuracy and loss curve on CIFAR10 dataset

on LeNet Lecun et al. (1998) is given in figure 7.3 and 7.4. Training and validation

curves for ReLU, Leaky ReLU, ELU, Softplus, Swish, PAU, CP-1, CP-2, LAU, LEG,

HP-1, and HP-2 activations are given in Figures 7.5 and 7.6 on CIFAR100 dataset on

103



MobileNet V2 (Sandler et al. (2019)) network.

Activation
Function VGG-16 MN V2 PA-

ResNet-34 SF V2 LeNet DN-121 EN-
B0

ReLU 89.78
±0.18

89.71
±0.30

90.18
±0.21

88.47
±.34

67.35
±0.47

91.89
±0.21

85.52
±0.34

Leaky ReLU
(� = 0.01)

89.89
±0.21

89.92
±0.31

90.32
±0.24

88.59
±0.31

66.99
±0.54

92.15
±0.23

85.42
±0.37

PReLU 89.72
± 0.32

89.79
±0.39

90.32
±0.35

88.61
±0.41

67.18
±0.29

91.81
±0.31

85.41
±0.41

ReLU6 89.76
±0.25

89.67
±0.31

90.15
±0.19

88.57
±0.34

67.31
±0.32

91.99
±0.24

85.27
±0.32

GELU 89.99
±0.26

90.12
±0.31

90.42
±0.24

88.41
±0.32

67.59
±0.24

92.07
±0.29

86.12
±0.31

ELU 89.97
±0.27

89.62
±0.34

90.20
±0.31

88.69
±0.39

67.02
±0.57

92.07
±0.31

85.65
±0.41

Softplus 89.62
±0.24

89.52
±0.35

90.01
±0.33

88.52
±0.42

66.71
±0.55

91.71
±0.34

85.07
±0.39

Swish 90.47
±0.21

90.07
±0.31

90.98
±0.24

89.22
±0.34

67.95
±0.46

91.87
±0.21

86.27
±0.31

PAU 90.21
±0.22

90.27
±0.32

90.49
±0.27

89.37
±0.35

68.42
±0.48

92.14
±0.23

86.35
±0.34

CP-1 90.27
±0.27

90.35
±0.29

91.28
±0.29

89.67
±0.39

68.30
±0.28

91.36
±0.24

86.66
±0.37

CP-2 90.42
±0.28

90.29
±0.24

91.38
±0.31

89.55
±0.32

68.07
±0.34

91.51
±0.29

86.48
±0.39

LAU 90.34
±0.31

90.22
±0.29

91.21
±0.26

89.51
±0.38

68.31
±0.25

91.81
±0.20

86.41
±0.32

LEG 90.29
±0.24

90.35
±0.31

91.02
±0.28

89.48
±.37

68.40
±0.29

91.89
±0.25

86.23
±0.29

HP-1 91.24
± 0.20

90.92
±0.28

92.20
±0.20

90.12
±0.33

69.59
±0.41

92.97
±0.20

87.67
±0.24

HP-2 91.12
±0.20

90.67
±0.32

91.96
±0.22

89.92
±0.36

69.41
±0.44

92.77
±0.21

87.55
±0.28

Table 7.7: Comparison between different baseline activations, HP-1, and HP-2 activa-
tions on CIFAR10 dataset. We report results for Top-1 accuracy(in %) for
mean of 10 different runs. mean±std is reported in the table.

Figure 7.3: Top-1 Train and Test accuracy
(higher is better) on CIFAR10
dataset with LeNet model for
different activations

Figure 7.4: Top-1 Train and Test loss
(lower is better) on CIFAR10
dataset with LeNet model for
for different activations
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Activation
Function AN ResNet-50 GN IN V3 WRN

28-10 RNxt-50 DLA

ReLU 89.12
±0.29

90.65
±0.19

91.01
±0.21

91.67
±0.17

91.81
±0.23

91.42
±0.19

89.59
±0.27

Leaky ReLU
(� = 0.01)

89.27
±0.25

90.79
±0.24

91.09
±0.25

91.58
±0.17

91.69
±0.22

91.52
±0.26

89.51
±0.32

PReLU 89.34
±0.29

90.69
±0.27

91.17
±0.23

91.77
±0.24

91.77
±0.27

91.57
±0.35

89.61
±0.29

ReLU6 89.22
±0.31

90.75
±0.20

91.01
±0.25

91.59
±0.19

91.63
±0.25

91.35
±0.19

89.52
±0.26

GELU 89.65
±0.31

90.82
±0.29

90.91
±0.24

92.01
±0.24

92.07
±0.18

91.77
±0.19

90.19
±0.25

ELU 89.49
±0.27

90.41
±0.27

91.21
±0.29

91.97
±0.26

91.89
±0.25

91.47
±0.19

89.88
±0.32

Softplus 89.37
±0.34

90.35
±0.32

90.81
±0.26

91.54
±0.24

91.52
±0.29

91.35
±0.29

89.51
±0.35

Swish 89.89
±0.24

90.99
±0.18

91.32
±0.25

92.13
±0.23

92.27
±0.24

91.65
±0.20

90.12
±0.30

PAU 89.65
±0.23

90.46
±0.21

91.49
±0.25

92.31
±0.19

92.54
±0.29

91.91
±0.25

90.27
±0.24

CP-1 89.55
±0.29

90.50
±0.23

91.45
±0.29

92.34
±0.24

92.42
±0.34

91.81
±0.23

90.37
±0.36

CP-2 89.69
±0.31

90.47
±0.23

91.42
±0.29

92.27
±0.23

92.49
±0.25

91.77
±0.23

90.29
±0.32

LAU 89.59
±0.30

90.56
±0.23

91.31
±0.25

92.41
±0.21

92.39
±0.29

91.85
±0.25

90.20
±0.32

LEG 89.75
±0.31

90.51
±0.26

91.52
±0.26

92.
±0.29

92.61
±0.29

91.69
±0.23

90.24
±0.30

HP-1 90.25
±0.21

90.59
±0.21

92.41
±0.20

93.61
±0.14

93.42
±0.20

93.23
±0.15

91.24
±0.23

HP-2 90.40
±0.23

90.56
±0.19

92.25
±0.24

93.50
±0.16

93.29
±0.20

93.01
±0.14

91.10
±0.32

Table 7.8: Comparison between different baseline activations and safe OPAU activa-
tions on CIFAR10 dataset. We report results for Top-1 accuracy(in %) for
mean of 10 different runs. mean±std is reported in the table.
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Activation
Function AN ResNet-50 GN IN V3 WRN

28-10 RNxt-50 DLA

ReLU 59.49
±0.40

64.52
±0.41

70.18
±0.32

69.34
±0.39

69.79
±0.31

69.11
±0.43

63.15
±0.39

Leaky ReLU
(� = 0.01)

59.49
±0.49

64.72
±0.42

70.12
±0.34

69.51
±0.35

69.61
±0.38

69.19
±0.40

63.01
±0.37

PReLU 59.65
±0.45

64.65
±0.43

70.29
±0.38

69.37
±0.40

69.82
±0.40

69.29
±0.42

63.25
±0.42

ReLU6 59.35
±0.39

64.57
±0.42

70.01
±0.35

69.42
±0.38

69.69
±0.35

69.34
±0.45

63.22
±0.42

GELU 59.99
±0.48

65.29
±0.40

70.68
±0.35

70.29
±0.39

69.84
±.39

69.59
±0.40

63.35
±0.47

ELU 59.41
±0.40

64.41
±0.47

70.51
±0.42

69.21
±0.45

69.65
±0.36

69.11
±0.47

63.39
±0.46

Softplus 59.19
±0.45

64.59
±0.45

70.00
±0.39

69.24
±0.51

69.52
±0.39

68.92
±0.44

63.01
±0.48

Swish 60.35
±0.38

65.85
±0.41

70.85
±0.40

70.21
±0.35

70.19
±0.39

70.12
±0.35

63.52
±0.39

PAU 60.65
±0.42

65.65
±0.41

71.12
±0.36

70.39
±0.38

70.52
±0.42

70.01
±0.45

63.82
±0.40

CP-1 60.40
±0.48

65.21
±0.40

71.22
±0.39

70.31
±0.37

70.29
±0.45

70.19
±00.49

63.41
±0.49

CP-2 60.54
±0.45

65.32
±0.45

71.25
±0.39

70.11
±0.42

70.37
±0.39

70.31
±0.44

63.56
±0.51

LAU 60.32
±0.40

65.39
±0.45

71.11
±0.40

70.51
±0.39

70.21
±0.45

70.09
±0.44

63.25
±0.45

LEG 60.39
±0.45

65.19
±0.45

71.39
±0.41

70.44
±036

70.51
±0.44

69.99
±0.49

63.37
±0.46

HP-1 61.20
±0.38

65.45
±0.42

72.09
±0.30

71.67
±0.35

71.62
±0.31

71.27
±0.40

64.22
±0.31

HP-2 61.01
±0.35

65.39
±0.32

72.36
±0.28

71.35
±0.31

71.47
±0.25

70.92
±0.35

64.51
±0.38

Table 7.9: Comparison between different baseline activations and safe OPAU activa-
tions on CIFAR100 dataset. We report results for Top-1 accuracy(in %) for
mean of 10 different runs. mean±std is reported in the table.

Tiny Imagenet

The ImageNet Large Scale Visual Recognition Challenge(ILSVRC) is considered to

be one of the most popular benchmarks for image classification problems. A similar

type of image classification database like ILSVRC is Tiny Imagenet, which is a smaller

dataset with fewer image classes. The images in this database are of size 64 ◊ 64 with

total 100,000 training images, 10,000 validation images, and 10,000 test images. The

database has 200 image classes with 500 training images, 50 validation images, and 50

test images in each class. A mean of 5 different runs for Top-1 accuracy is reported

in table 7.11 on WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis (2016))

network. We have used a batch size of 32, He Normal initializer (He et al. (2015b)), 0.2

dropout rate (Srivastava et al. (2014)), adam optimizer (Kingma and Ba (2015)), initial
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Activation
Function VGG-16 MN V2 PA-

ResNet-34 SF V2 LeNet DN-121 EN-
B0

ReLU 57.03
±0.62

63.20
±0.60

60.39
±0.51

61.30
±0.47

32.62
±0.35

67.50
±0.38

53.02
±0.49

Leaky ReLU
(� = 0.01)

57.17
±0.59

63.54
±0.62

60.51
±0.50

61.55
±0.39

32.94
±0.35

67.61
±0.42

53.25
±0.44

PReLU 57.15
±0.67

63.35
±0.51

60.15
±0.59

61.12
±0.54

33.12
±0.48

67.62
±0.45

53.15
±0.54

ReLU6 57.19
±0.64

63.22
±0.48

60.01
±0.54

61.35
±0.48

33.29
±0.45

67.50
±0.39

53.17
±0.55

GELU 57.59
±0.57

63.82
±0.57

62.20
±0.58

62.01
±0.54

33.12
±0.38

67.81
±0.57

53.59
±0.54

ELU 57.59
±0.71

63.47
±0.64

60.89
±0.47

61.85
±0.52

33.89
±0.31

67.32
±0.49

53.34
±0.45

Softplus 56.89
±0.70

63.28
±0.70

60.32
±0.61

61.22
±0.59

32.84
±0.45

67.42
±0.38

53.17
±0.41

Swish 58.22
±0.55

63.91
±0.56

62.02
±0.48

62.26
±.47

34.12
±0.39

68.07
±0.32

54.54
±0.34

PAU 58.54
±0.58

64.97
±0.51

62.18
±0.53

62.14
±0.51

33.94
±0.35

67.96
±0.41

53.81
±0.40

CP-1 58.31
±0.70

65.45
±0.57

64.34
±0.54

62.34
±0.49

34.57
±0.36

68.32
±0.45

54.35
±0.51

CP-2 58.22
±0.64

65.32
±0.45

64.49
±0.55

62.17
±0.55

34.18
±0.39

68.17
±0.38

54.28
±0.39

LAU 58.54
±0.61

65.64
±0.45

64.01
±0.49

62.12
±0.55

34.01
±0.48

68.09
±0.45

54.21
±0.48

LEG 58.19
±0.64

65.51
±0.45

64.65
±0.51

62.29
±0.50

34.21
±0.36

67.89
±0.39

54.54
±0.55

HP-1 60.77
±0.52

66.22
±0.55

65.45
±0.49

63.04
±0.42

35.36
±0.21

68.72
±0.30

54.99
±0.37

HP-2 60.64
±0.58

65.95
±0.51

65.02
±0.54

63.02
±0.46

34.85
±0.27

68.66
±0.27

54.74
±0.42

Table 7.10: Comparison between different baseline activations, HP-1, and HP-2 activa-
tions on CIFAR100 dataset. We report results for Top-1 accuracy(in %) for
mean of 10 different runs. mean±std is reported in the table.

learning rate(lr rate) 0.01, and lr rate is reduced by a factor of 10 after every 50 epochs

up-to 250 epochs. The Data augmentation method is used in this database.

7.7.2 Object Detection

Object Detection is considered one of the most important problems in computer vision.

The Pascal VOC dataset (Everingham et al. (2010)) is used for our object detection

experiments. We report results on Single Shot MultiBox Detector(SSD) 300 (Liu et al.

(2016)) with VGG-16(with batch-normalization) as the backbone network. We do not

use any pre-trained weight in the network. The network is trained on Pascal VOC 07+12

training data and tested network performance on Pascal VOC 2007 test data. We con-

sider a batch size of 8, 0.001 learning rate, SGD optimizer (Robbins and Monro (1951);
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Figure 7.5: Top-1 Train and Test accu-
racy (higher is better) on CI-
FAR100 dataset with Mo-
bileNet V2 network for differ-
ent activations

Figure 7.6: Top-1 Train and Test loss
(lower is better) on CI-
FAR100 dataset with Mo-
bileNet V2 network for
different activations

Kiefer and Wolfowitz (1952)) with 0.9 momentum, 5e�4 weight decay for 120000 iter-

ations. We report results for the mean average precision(mAP) in Table 7.12 for a mean

of 5 different runs.

7.7.3 Semantic Segmentation

Semantic segmentation another important problem in computer vision. We report ex-

perimental results on the Cityscapes dataset (Cordts et al. (2016)). We use U-net net-

work (Ronneberger et al. (2015)) as the segmentation framework and is trained for 250

epochs, with adam optimizer (Kingma and Ba (2015)), learning rate 5e�3, batch size 32

and Xavier Uniform initializer (Glorot and Bengio (2010)). A mean of 5 different runs

for Pixel Accuracy and mean Intersection-Over-Union (mIOU) on test data is reported

on table 7.13.

7.7.4 Machine Translation

Machine Translation is a deep learning technique in which one language is translated to

another language. For our experiments, WMT 2014 English�German dataset is used.

The database contains 4.5 million training sentences. We evaluate network performance

on the newstest2014 dataset using the BLEU score metric. An Attention-based 8-head
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Activation Function Top-1
accuracy(in %)

ReLU 60.35±0.53
Leaky ReLU(� = 0.01) 60.62±0.42

PReLU 60.21±0.67
ReLU6 60.47±0.54
GELU 60.91±0.59
ELU 60.02±0.67

Softplus 59.81±0.61
Swish 60.69±0.42
PAU 60.52±0.47
CP-1 60.54±0.61
CP-2 60.61±0.49
LAU 60.32±0.57
LEG 61.31±0.64
HP-1 62.52±0.39
HP-2 62.21±0.46

Table 7.11: Comparison between different
baseline activations, HP-1, and
HP-2 activations on the Im-
age classification Problem. We
report results for mean of 5
different runs on WRN 28-
10 network on Tiny Imagenet
Dataset. mean±std is reported
in the table.

Activation Function mAP
ReLU 77.2±0.14

Leaky ReLU(� = 0.01) 77.2±0.19
PReLU 77.2±0.21
ReLU6 77.1±0.14
GELU 77.3±0.19
ELU 75.1±0.22

Softplus 74.2±0.25
Swish 77.3±0.11
PAU 77.3±0.15
CP-1 77.3±0.17
CP-2 77.3±0.15
LAU 77.2±0.19
LEG 77.4±0.12
HP-1 78.0±0.14
HP-2 77.9±0.10

Table 7.12: Comparison between dif-
ferent baseline activations,
HP-1, and HP-2 activations
on the Object Detection
Problem. We report results
on SSD 300 with VGG-16
backbones on Pascal-VOC
dataset. mean±std is re-
ported in the table.

transformer network (Vaswani et al. (2017)) is used with Adam optimizer (Kingma

and Ba (2015)), 0.1 dropout rate (Srivastava et al. (2014)), and trained up to 100000

steps. Other hyper-parameters are tried to keep similar as mentioned in the original

paper (Vaswani et al. (2017)). Mean of 5 runs is been reported on Table 7.14 on the test

dataset(newstest2014).

7.8 Comparison With the baseline activation functions

We observe that HP-1 and HP-2, in most cases, beat or performs equally well with

baseline activation functions and under-performs marginally on rare occasions, and a

detailed comparison of these activation functions on the basis of all the experiments

provided in earlier sections is given in Table 7.15.
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Activation
Function

Pixel
Accuracy mIOU

ReLU 79.49±0.41 69.10±0.32
Leaky ReLU

(� = 0.01) 79.51±0.5 69.22±0.39

PReLU 79.66±0.59 69.08±0.41
ReLU6 79.41±0.48 69.01±0.35
GELU 79.95±0.39 69.89±0.30
ELU 79.45±0.59 69.18±0.47

Softplus 78.78±0.65 68.01±0.52
Swish 79.97±0.41 69.45±0.27
PAU 79.92±0.49 69.62±0.34
CP-1 80.01±0.49 69.85±0.39
CP-2 80.17±0.52 70.19±0.40
LAU 70.91±0.41 69.99±0.32
LEG 80.01±0.48 70.12±0.37
HP-1 81.22±0.37 70.72±0.29
HP-2 81.09±0.45 70.59±0.32

Table 7.13: Comparison between dif-
ferent baseline activations,
HP-1, and HP-2 activations
on semantic segmentation
Problem. We report re-
sults on U-NET network
on the Cityscapes dataset.
mean±std is reported in
the table.

Activation
Function

BLEU
Score

ReLU 26.2±0.15
Leaky ReLU

(� = 0.01) 26.3±0.17

PReLU 26.2±0.21
ReLU6 26.1±0.14
GELU 26.4±0.19
ELU 25.1±0.15

Softplus 23.6±0.16
Swish 26.4±0.10
PAU 26.2±0.12
CP-1 26.4±0.18
CP-2 26.3±0.14
LAU 26.3±0.20
LEG 26.3±0.20
HP-1 26.8±0.10
HP-2 26.7±0.12

Table 7.14: Comparison between different
baseline activations, HP-1, and
HP-2 activations on Machine
translation Problem. We report
results on Multi-head trans-
former network on the WMT-
2014 dataset. mean±std is re-
ported in the table.

Baselines ReLU Leaky
ReLU ELU Softplus PReLU ReLU6 GELU Swish PAU

HP-1 > Baseline 43 43 44 44 43 43 43 42 43
HP-1 = Baseline 0 0 0 0 0 0 0 0 0
HP-1 < Baseline 1 1 0 0 1 1 1 2 1

HP-2 > Baseline 43 43 44 44 43 43 43 42 43
HP-2 = Baseline 0 0 0 0 0 0 0 0 0
HP-2 < Baseline 1 1 0 0 1 1 1 2 1

Table 7.15: Baseline table for HP-1 and HP-2. These numbers represent the total num-
ber of networks in which HP-1 and HP-2 outperforms, equal or underper-
forms when we compare with the baseline activation functions

7.9 Computational Time Comparison

HP-1, HP-2 contains trainable parameters, which increases the complexity of the net-

work (like PAU), and due to this, there is a trade-off between network performance and

computational cost. We have reported the Computational time comparison for HP-1,
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HP-2, and the baseline activation functions for both forward and backward pass on a

32 ◊ 32 RGB image on VGG-16 model in Table 7.16 for the mean of 100 runs. We

have used an NVIDIA Tesla V100 GPU with 32GB ram.

Activation
Function Forward Pass(STD) Backward Pass(STD)

ReLU 5.18(±1.10) µs 5.55(±1.24) µs
Swish 6.26(±0.97) µs 8.21(±1.57) µs

Leaky ReLU
(� = 0.01) 5.26(±1.05) µs 5.67(±1.48) µs

ELU 5.56(±1.12) µs 5.77(±1.28) µs
Softplus 5.50(±1.25) µs 5.41(±1.37) µs
GELU 8.01(±1.90) µs 8.23(±2.54) µs
ReLU6 5.30(±1.20) µs 5.81(±1.21) µs
PReLU 5.62(±1.22) µs 5.92(±1.35) µs

PAU 13.42(±2.12)µs 23.22(±3.01)µs
HP-1 14.50(±2.89) µs 20.55(±2.13) µs
HP-2 14.65(±2.67) µs 20.86(±2.20) µs

Table 7.16: Runtime comparison for the forward and backward passes for HP-1, HP-
2, and baseline activation functions for a 32◊ 32 RGB image in VGG-16
model.

7.10 Conclusion

In this chapter, two trainable and effective activation functions have been proposed,

which are called HP-1 and HP-2, based on rational function approximation. From the

experimental evaluation, it is clear that replacing known activation functions like PAU,

ReLU, Swish etc., with HP-1 and HP-2 provides significant improvement in results on

important deep learning problems like image classification, object detection, semantic

segmentation, and machine translation.

A significant drawback of the proposed functions is that they have higher running

times compared to ReLU, Swish, and GELU and have almost similar running times

to PAU. The proposed activation functions contain ten trainable parameters, which in-

creases the computational cost. A future direction can be to decrease the trainable

parameters in the proposed functions to reduce the computational cost.
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CHAPTER 8

TanhSoft 1

8.1 Introduction

Artificial neural networks (ANNs) have occupied the center stage in deep learning in

the recent past. ANNs are made up of several hidden layers, and each hidden layer

consists of several neurons. At each neuron, an affine linear map is composed of a

nonlinear function known as activation function. During the training of an ANN, the

linear map is optimized; however, an activation function is usually fixed in the begin-

ning, along with the architecture of the ANN. There has been an increasing interest in

developing a methodical understanding of activation functions, particularly with regard

to the construction of novel activation functions and identifying mathematical proper-

ties leading to better learning (Nwankpa et al. (2018)). An activation function is

considered good if it can generalise better on a variety of datasets, ensure faster conver-

gence and improve neural network performance, which leads to more accurate results.

At the early stage of deep learning research, researchers used shallow networks (fewer

hidden layers), along with tanh or sigmoid were used as activation functions. As the

research progressed and deeper networks (multiple hidden layers) came into fashion to

achieve challenging tasks, the Rectified Linear Unit (ReLU) (Nair and Hinton (2010);

Hahnloser et al. (2000)) emerged as the most popular activation function. Despite its

simplicity, deep neural networks with ReLU have learned many complex and highly

nonlinear functions with high accuracy. To overcome the shortcomings of ReLU (non-

zero mean, negative missing, unbounded output, to name a few (Zhou et al. (2020)),

and to increase the accuracy considerably in a variety of tasks in comparison to net-

works with ReLU, many new activation functions have been proposed over the years.

Many of these new activation functions are variants of ReLU, for example, Leaky ReLU

(Maas et al. (2013a)), Exponential Linear Unit (ELU)) (Clevert et al. (2016)), Paramet-

ric Rectified Linear Unit (PReLU) (He et al. (2015b)), Randomized Leaky Rectified
1This chapter is a slightly modified version of the paper accepted at IEEE access Biswas et al. (2021e).



Linear Units (RReLU) (Xu et al. (2015a)), and Inverse Square Root Linear Units (IS-

RLU) (Carlile et al. (2017)), Flexible ReLU (FReLU) (Qiu et al. (2017)). In the recent

past, some activation functions constructed from tanh or sigmoid have achieved state-of-

the-art results on a variety of challenging datasets. Most notably, among such activation

functions, Swish Ramachandran et al. (2017) has emerged as a close favourite to ReLU.

Some of these novel activation functions have shown that introducing hyper-parameters

in the argument of the functions may provide activation functions for special values

of these hyper-parameters that can outperform activation functions for other values of

hyper-parameters, for example, see (Ramachandran et al. (2017); Zhou et al. (2020)).

8.2 Related works and Motivation

An activation function that can improve neural network model performance is an active

field of research. It is always hard to find the best activation function. In earlier days,

Tanh and Sigmoid were mostly used as activation functions in networks. ReLU (Nair

and Hinton (2010)) was first proposed by Nair and Hinton in 2010, and since then,

ReLU has been the widely used activation function in neural network models due to

its simplicity. ReLU produces a positive outcome for positive inputs. In contrast, zero

for negative inputs, and due to this, ReLU undergoes from vanishing gradient problem,

which is known as dying ReLU (Maas et al. (2013a)). Several activation functions have

been suggested by researchers to overcome this problem. Leaky ReLU (Maas et al.

(2013a)) has been proposed with a small negative linear function for negative input,

and it shows promising results compared to ReLU. PReLU (He et al. (2015b)) has been

introduced with a modification of Leaky ReLU and added a trainable linear part for neg-

ative inputs. Later, RReLU (Xu et al. (2015b)), ISReLU (Carlile et al. (2017)), FReLU

(Qiu et al. (2017)), PELU (Trottier et al. (2017)), SiLU (Elfwing et al. (2017)), ELU

(Clevert et al. (2016)), and GELU (Hendrycks and Gimpel (2020)) have been proposed

and they have improved model performances. Mish (Misra (2020)), which has been

introduced recently, has shown some improvement over ReLU and Swish (Ramachan-

dran et al. (2017)). Most of the functions mentioned above, except PReLU, PELU, and

FReLU are non-trainable. A trainable activation function contains trainable parame-

ter(s), which are tuned via backpropagation. In the early 1990s and 2000s, during the

pre-ReLU era, there were a few trainable activations proposed like Adjustable Gener-
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alized Hyperbolic Tangent (Chen and Chang (1996)), Sigmoidal selector (Singh and

Chandra (2003)) etc. Later, Leaky ReLU, ELU, and ReLU were modified by PReLU,

PELU, and FReLU, respectively, by introducing trainable parameter(s). Recently, in

2017, Swish (Ramachandran et al. (2017)), a trainable activation, was found using ex-

haustive search (Negrinho and Gordon (2017)), and reinforcement learning techniques

(Baker et al. (2016)), which found lots of attention from the deep learning community

due to its simplicity and efficiency.

8.3 Research contribution

The standard ANN training process involves tuning the weights in the linear part of the

network; however, there is merit in the ability to custom design activation functions,

to better fit the problem at hand. Real-world datasets are noisy or challenging, and

it is always difficult to construct the best activation function to generalize on random

datasets. It is hard to say whether an activation function will generalize successfully and

replace ReLU on challenging or noisy datasets. Though there may be merit in having a

custom activation function corresponding to the problem at hand, but yet it is beneficial

to identify activation functions that generalize to several real-world data sets, making it

easier to implement. Hence we proposed three activation functions, namely, TanhSoft-

1, TanhSoft-2, and TanhSoft-3, and established their generalizability and usefulness

over other conventional activation functions. In what follows, we discuss the properties

of these activations, experiments with complex models, and a comparison with a few

other widely used activation functions.

8.4 TanhSoft-1, TanhSoft-2, and TanhSoft-3 & their prop-

erties

In this chapter, we propose three activation function with hyper-parameters which we

call TanhSoft-1, TanhSoft-2, and TanhSoft-3. The hyper-parameters can be used as
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Figure 8.1: Plots of
F1(x;�)
for dif-
ferent
values of
�.

Figure 8.2: Plots of
F2(x; ⇥, ⇤)
for dif-
ferent
values of
⇥, ⇤.

Figure 8.3: Plots of
F3(x; ⌅)
for dif-
ferent
values of
⌅.

Figure 8.4: Plots of
F1(x; 0.87),
F2(x; 0.75,
0.75),
F3(x; 0.85)
and
Swish.

trainable or constant. TanhSoft-1, TanhSoft-2, and TanhSoft-3 are defined as

TanhSoft-1 : F1(x;�) := tanh(�x)Softplus(x)

= tanh(�x) ln(1 + ex), (8.1)

TanhSoft-2 : F2(x; ⇥, ⇤) :=x tanh(⇥e⌃x), (8.2)

TanhSoft-3 : F3(x; ⌅) := ln(1 + ex tanh(⌅x)). (8.3)

The corresponding derivatives are

d

dx
F1(x;�) = tanh(�x)

ex

(1 + ex)

+� sech2(�x) ln(1 + ex),

(8.4)

d

dx
F2(x; ⇥, ⇤) = tanh(⇥e⌃x)

+⇥⇤xe⌃x sech2(⇥e⌃x), (8.5)

d

dx
F3(x; ⌅) =

ex tanh(⌅x) + ⌅ex sech2(⌅x)

1 + ex tanh(⌅x)
. (8.6)

Figures 8.1, 8.2 and 8.3 show the graph for F1(x;�), F2(x; ⇥, ⇤), and F3(x; ⌅)

activation functions for different values of � and ⇥, ⇤ and ⌅ respectively. Plots of the first

derivative of F1(x;�), F2(x; ⇥, ⇤), and F3(x; ⌅) are given in Figures 8.5, 8.6, and 8.7

for different values of � and ⇥, ⇤ and ⌅ respectively. A comparison between F1(x;�),
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Figure 8.5: Plots
of first
deriva-
tive of
F1(x;�)
for dif-
ferent
values of
�.

Figure 8.6: Plots
of first
deriva-
tive of
F2(x; ⇥, ⇤)
for dif-
ferent
values of
⇥, ⇤.

Figure 8.7: Plots
of first
deriva-
tive of
F3(x; ⌅)
for dif-
ferent
values of
⌅.

Figure 8.8: Plots
of first
order
deriva-
tives of
F1(x; 0.87),
F2(x; 0.75,
0.75),
F3(x; 0.85)
and
Swish.

F2(x; ⇥, ⇤), F3(x; ⌅) and Swish and their first derivatives are given in Figures 8.4 and

8.8. The author of (Misra (2020)) has reported unstable training behaviour for a specific

function which can be obtained from TanhSoft-1, however, we tested and failed to find

any such instability. Also, in (Liu and Di (2020)) the authors have mentioned a special

case which can be obtained from TanhSoft-2.

The three functions have non-monotonic curvature in the negative axis. The hyper-

parameters � for TanhSoft-1, ⇥, ⇤ for TanhSoft-2 and ⌅ for TanhSoft-3 plays a major

role and controls the slope of the curve in both positive and negative axes as evident

from Figures 8.1, 8.2 and 8.3. Like Swish, F1(x;�), F2(x; ⇥, ⇤), and F3(x; ⌅) are both

smooth, non-monotonic activation functions and bounded below.

F1(x;�), F2(x; ⇥, ⇤), and F3(x; ⌅) becomes the zero function for � = 0, ⇥ = 0 and

⌅ = 0 respectively. F2(x; ⇥, 0) becomes the linear function family tanh(⇥)x. For large

values of some parameter while fixing the other parameters, the proposed functions

converges to some known activation functions point-wise. For example,

lim
⌃⇤⇥

F2(x; ⇥, ⇤) = ReLU(x),

↵x � R for any fixed ⇥ > 0.
(8.7)

Also, The class of neural networks with TanhSoft-1 or TanhSoft-2 or TanhSoft-3

activation function is dense in C(K), where K is a compact subset of Rn and C(K) is

the space of all continuous functions over K (see (Molina et al. (2020))).
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The proof follows from the following proposition as all three proposed activations are

non-polynomial.

Proposition (Theorem 1.1 in Kidger and Lyons, 2019 Kidger and Lyons (2020))

:- Let ↵ : R � R be any continuous function. Let N⇤
n represent the class of neural

networks with activation function ↵, with n neurons in the input layer, one neuron in

the output layer, and one hidden layer with an arbitrary number of neurons. Let K ⌦ Rn

be compact. Then N⇤
n is dense in C(K) if and only if ↵ is non-polynomial.

8.5 Experiments with TanhSoft-1, TanhSoft-2, and

TanhSoft-3

In this work we have initialized and updated hyper-parameter values of TanhSoft-1,

TanhSoft-2, and TanhSoft-3 using the backpropagation (LeCun et al. (1989)) algorithm

(see He et al. (2015b)). For a single layer, the gradient of a hyper-parameter ⇧ is:

⌦E

⌦⇧
=

X

x

⌦E

⌦F (x)

⌦F (x)

⌦⇧
(8.8)

where E is the objective function, ⇧ � {�, ⇥, ⇤, ⌅} and F (x) � {F1(x;�),F2(x; ⇥, ⇤),

F3(x; ⌅)}.

We have considered several models and datasets to measure the performance of

F1(x;�), F2(x; ⇥, ⇤), and F3(x; ⌅) and have compared with seven baseline widely used

activation functions.

In the following subsections, we have provided experimental results of TanhSoft-1,

TanhSoft-2, and TanhSoft-3 with baseline activation functions such as ReLU, Leaky

ReLU, ELU, Softplus, Swish, GELU, and Mish for different deep learning problems

like Image classification, Object detection, Semantic segmentation, and Machine trans-

lation. We have initialized � = 0.87 for TanhSoft-1, ⇥ = 0.75, ⇤ = 0.75 for TanhSoft-

2, and ⌅ = 0.85 for TanhSoft-3 (see (He et al. (2015b))) and updated these hyper-

parameter values via backpropagation during training as mentioned in equation (8). In

the following subsections, we will provide details of our experimental setup, frame-

work, and results. All the experiments were conducted on an NVIDIA tesla V-100

GPU with 16GB RAM.
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8.5.1 Image Classification:

We have reported results for image classification problem in some widely used standard

datasets like MNIST (LeCun et al. (2010)), Fashion MNIST (Xiao et al. (2017)), SVHN

(Netzer et al. (2011)), CIFAR10 (Krizhevsky (2009)), CIFAR100 (Krizhevsky (2009)),

and Tiny Imagenet (Le and Yang (2015)).

MNIST

The MNIST (LeCun et al. (2010)) database contains image data of handwritten digits

from 0 to 9. The dataset contains 60k training and 10k testing 28◊28 grey-scale images.

A 8-layer customised homogeneous convolutional neural network (CNN) architecture

with 3 ◊ 3 kernels for CNN layers and 2 ◊ 2 kernels for pooling layers are being

used. We have used channel depths of size 128 (twice), 64 (thrice), 32 (twice), a dense

layer of size 128, Max-pooling layer(thrice), batch-normalization (Ioffe and Szegedy

(2015)), and dropout (Srivastava et al. (2014)) on the custom CNN architecture. Data

augmentation method is not used. The results are reported in Table 8.1.

Activation Function
5-fold mean accuracy (%)

on MNIST test data

TanhSoft-1 99.40

TanhSoft-2 99.34

TanhSoft-3 99.37

ReLU 99.14

Swish 99.18

Leaky ReLU(� = 0.01) 99.20

ELU 99.10

Softplus 99.05

Mish 99.28

GELU 99.21

Table 8.1: Experimental results on MNIST dataset.
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Fashion MNIST

Fashion-MNIST (Xiao et al. (2017)) is a popular computer vision database consisting

of 28◊28 pixels grey-scale images, consists of ten fashion items in each class.

Activation Function
5-fold mean accuracy (%)

on Fashion MNIST test data

TanhSoft-1 93.52

TanhSoft-2 93.40

TanhSoft-3 93.37

ReLU 92.90

Swish 92.92

Leaky ReLU(� = 0.01) 92.95

ELU 92.85

Softplus 92.40

Mish 93.17

GELU 93.12

Table 8.2: Experimental results on Fashion MNIST dataset.

It has 60k training images and 10k testing images. Fashion-MNIST provides a more

challenging classification problem than MNIST. The data augmentation method is not

used. We have considered the same CNN architecture used in the MNIST dataset for

this database as well for training and testing purpose and, the results are reported in

Table 8.2.

The Street View House Numbers (SVHN) Database

SVHN (Netzer et al. (2011)) is a popular image database consists of real-world house

numbers of Google’s street view images with 32◊32 RGB images. The database has

73257 training images and 26032 testing images. The database has a total of 10 classes.

We have considered the same CNN architecture used in the MNIST dataset for this

database as well for training and testing purpose and, the results are reported in Ta-

ble 8.3. We have used the data augmentation method in this database.
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Activation Function
5-fold mean accuracy (%)

on SVHN test data

TanhSoft-1 95.36

TanhSoft-2 95.52

TanhSoft-3 95.43

ReLU 95.14

Swish 95.23

Leaky ReLU(� = 0.01) 95.20

ELU 95.15

Softplus 95.08

Mish 95.33

GELU 95.20

Table 8.3: Experimental results on SVHN dataset.

CIFAR

The CIFAR (Krizhevsky (2009)) is a popular computer vision dataset consists of 32◊32

colored images, with total 60k images and divided into 50k training and 10k test im-

ages. There are two type of CIFAR dataset - CIFAR10 and CIFAR100. CIFAR10

dataset has 10 classes with 6000 images per class while CIFAR100 has 100 classes

with 600 images per class. Top-1 accuracy for mean of 10 runs have been reported on

CIFAR10 dataset in Table 8.4 & 8.5 and on CIFAR100 dataset in Table 8.6 & 8.7 on

ResNet-34 (He et al. (2015a)), PreActResNet-34 (PA-ResNet-34) (He et al. (2016)),

VGG-16 (with Batch-normalization) (Simonyan and Zisserman (2015)), Densenet-121

(DN-121) (Huang et al. (2016a)), DenseNet-169 (DN-169) (Huang et al. (2016a)), In-

ceptionNet V3 (IN-V3) (Szegedy et al. (2015a)), SimpleNet(SN) (Hasanpour et al.

(2016)), MobileNet V2 (MN) (Sandler et al. (2019)), WideResNet 28-10 (WRN 28-

10) (Zagoruyko and Komodakis (2016)), GoogleNet (GN) (Szegedy et al. (2014b)),

ResNeXt-50 (Xie et al. (2017)), StochasticDepth (Huang et al. (2016b)), Shufflenet

V2 (Ma et al. (2018)), Deep Layer Aggregation (DLA) (Yu et al. (2019)), RegNet

(Radosavovic et al. (2020)), NASNet (Zoph et al. (2018)), Resnet in Resnet (RIR)

(Targ et al. (2016)), Xception Network (Chollet (2017)), EfficientNet B0 (EN-B0) (Tan
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and Le (2020)), Le-Net (Lecun et al. (1998)) and SqueezeNet (SQ-Net) (Iandola et al.

(2016)) models. It is clear from these tables that TanhSoft-1, TanhSoft-2, and TanhSoft-

3 constantly outperforms ReLU and Swish in most cases and we have got around 1%

to 6% improvement in Top-1 accuracy when compared to models with ReLU activa-

tion. We have trained the networks with batch size 128, Adam optimizer (Kingma and

Ba (2015)) with 0.001 learning rate and up to 100 epochs for all the models mentioned

above except SimpleNet and VGG-16, which is trained till 200 epochs. Data augmenta-

tion is used for both datasets. Learning curves of ReLU, Swish, TanhSoft-1, TanhSoft-2,

and TanhSoft-3 activations are given in Figures 8.9 & 8.10 on WideResNet 28-10 model

in CIFAR100 dataset and Figures 8.11 & 8.12 on Le-net model in CIFAR10 dataset.

From these figures it is evident that after training few epochs TanhSoft-1, TanhSoft-2,

TanhSoft-3 have faster convergence capability, higher accuracy and lower loss when

compared to ReLU.

Activation
Function VGG-16 WRN 28-10 ResNet-34 PA-ResNet-34 DN-121 DN-169 IN-V3 MN-V2 SN SQ-Net

TanhSoft-1 90.77 93.42 91.98 92.22 93.69 93.17 93.12 91.55 92.12 88.12
TanhSoft-2 90.70 93.67 91.77 92.53 93.97 93.32 93.07 91.87 92.21 88.01
TanhSoft-3 90.97 93.18 91.89 92.01 93.59 93.01 92.91 91.54 92.33 87.71

ReLU 89.85 91.77 90.22 90.52 91.59 91.41 91.59 89.56 91.12 86.85
Leaky ReLU
(⇤ = 0.01) 89.70 91.85 90.54 90.77 91.92 90.77 91.82 89.42 91.28 86.75

ELU 89.07 91.52 90.61 90.67 91.39 90.27 91.27 89.91 91.01 86.35
Swish 89.81 92.12 90.75 91.09 92.42 91.89 91.84 90.41 91.63 87.21

Softplus 89.35 91.24 89.53 90.22 91.02 91.31 91.41 89.40 91.31 83.41
Mish 89.93 92.48 90.67 91.52 92.62 91.99 92.01 90.67 92.45 87.29

GELU 89.88 92.21 90.71 90.87 92.77 91.88 91.77 90.11 91.60 87.18

Table 8.4: Experimental results on CIFAR10 dataset. Top-1 accuracy(in %) for mean
of 10 different runs have been reported.

Activation
Function GN ResNeXt-50 Stochastic

Depth Shufflenet V2 DLA RegNet NASNet RIR Xception Le-Net EN-B0

TanhSoft-1 92.96 93.12 92.97 90.42 91.18 92.67 93.18 92.55 90.98 69.85 87.52
TanhSoft-2 92.87 92.97 93.01 90.27 91.07 92.61 93.02 92.65 90.92 69.77 87.71
TanhSoft-3 92.77 92.82 92.85 89.91 91.12 92.77 93.12 92.47 90.67 69.95 87.31

ReLU 91.07 91.52 91.14 88.54 89.47 90.25 91.09 90.65 90.05 67.05 85.96
Leaky ReLU
(⇤ = 0.01) 90.97 91.37 91.22 88.49 89.59 90.39 91.37 90.45 90.09 67.14 86.17

ELU 91.28 91.72 91.49 88.70 89.23 90.47 91.01 90.55 90.45 67.89 85.72
Swish 91.45 91.92 91.59 90.09 89.77 90.41 91.89 90.09 91.12 67.98 86.42

Softplus 90.42 91.32 91.01 88.12 89.63 90.32 91.21 90.52 89.87 66.62 85.11
Mish 91.72 91.79 91.57 90.55 90.31 90.67 92.09 91.06 91.22 68.03 86.42

GELU 90.65 91.71 91.77 89.01 90.12 90.62 92.27 90.77 91.01 67.66 86.27

Table 8.5: Experimental results on CIFAR10 dataset. Top-1 accuracy(in %) for mean
of 10 different runs have been reported.

Tiny Imagenet

The ImageNet Large Scale Visual Recognition Challenge(ILSVRC) is one of the most

popular benchmarks for image classification problems. Tiny ImageNet Challenge is a
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Activation
Function VGG-16 WRN 28-10 ResNet-34 PA-ResNet-34 DN-121 DN-169 IN-V3 MN-V2 SN SQ-Net

TanhSoft-1 63.11 69.70 65.11 64.54 69.12 68.07 70.89 66.22 65.20 61.09
TanhSoft-2 62.78 69.60 65.65 64.77 69.37 68.02 70.58 66.52 65.01 61.22
TanhSoft-3 62.41 69.59 65.65 64.45 69.01 67.99 70.67 65.81 65.01 60.98

ReLU 57.03 67.57 63.52 61.52 67.11 66.22 69.25 63.89 63.52 60.27
Leaky ReLU
(⇤ = 0.01) 57.17 68.05 63.12 61.82 66.98 67.15 69.01 64.01 63.64 60.29

ELU 56.24 67.49 63.89 61.41 67.34 66.89 69.39 63.52 63.59 60.71
Swish 60.14 68.54 64.57 63.87 68.01 66.89 69.67 64.76 64.85 60.75

SoftPlus 54.22 66.84 61.93 62.22 66.99 66.82 68.91 63.22 62.56 59.98
Mish 60.11 69.09 64.22 63.87 68.52 68.19 69.77 65.18 64.89 60.47

GELU 59.77 68.86 64.47 63.69 67.89 67.15 69.68 64.59 64.72 60.09

Table 8.6: Experimental results on CIFAR100 dataset. Top-1 accuracy(in %) for mean
of 10 different runs have been reported.

Activation
Function GN ResNeXt-50 Stochastic

Depth Shufflenet V2 DLA RegNet NASNet RIR Xception Le-Net EN-B0

TanhSoft-1 71.22 71.17 69.56 63.01 64.87 68.87 71.05 65.12 66.12 36.82 54.52
TanhSoft-2 71.42 71.02 69.77 63.07 65.01 68.52 71.22 64.99 66.36 36.79 54.44
TanhSoft-3 71.01 71.39 69.22 62.70 64.62 68.77 70.87 65.20 65.76 37.09 54.18

ReLU 70.09 69.22 67.97 61.22 63.06 66.02 68.56 63.22 65.32 32.26 52.87
Leaky ReLU
(⇤ = 0.01) 69.87 69.55 67.75 61.42 63.45 65.87 68.99 63.59 63.17 32.89 53.11

ELU 70.22 69.29 67.55 61.21 63.15 65.99 68.42 63.67 63.34 33.99 52.78
Swish 70.27 69.42 68.22 61.67 63.39 66.99 69.22 63.85 66.72 34.99 53.38

Softplus 69.97 68.86 67.55 61.29 62.78 65.52 68.64 62.89 64.89 32.79 52.51
Mish 70.62 69.89 68.19 62.77 63.49 67.22 69.10 63.87 66.46 35.17 53.79

GELU 70.67 69.58 68.11 62.52 63.77 67.24 68.35 63.72 65.81 34.99 53.45

Table 8.7: Experimental results on CIFAR100 dataset. Top-1 accuracy(in %) for mean
of 10 different runs have been reported.

Figure 8.9: Top-1 Train and Test
accuracy (higher is better)
on CIFAR100 dataset
with WideResNet 28-10
model for ReLU, Swish,
TanhSoft-1, TanhSoft-2,
and TanhSoft-3.

Figure 8.10: Top-1 Train and Test
loss (lower is better)
on CIFAR100 dataset
with WideResNet 28-10
model for ReLU, Swish,
TanhSoft-1, TanhSoft-2,
and TanhSoft-3.
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Figure 8.11: Top-1 Train and Test
accuracy (higher is better)
on CIFAR10 dataset
with LeNet model for
ReLU, Swish, TanhSoft-
1, TanhSoft-2, and
TanhSoft-3.

Figure 8.12: Top-1 Train and Test
loss (lower is better)
on CIFAR10 dataset
with LeNet model for
ReLU, Swish, TanhSoft-
1, TanhSoft-2, and
TanhSoft-3.

similar type of challenges like ILSVRC for image classification, which has a smaller

dataset and fewer image classes. The database has images of size 64 ◊ 64 with 200

image classes with a training dataset of 100,000 images, a validation dataset of 10,000

images, and a test dataset of 10,000 images. Each class has 500 training images, 50

validation images, and 50 test images. We have reported results for top-1 accuracy

for mean of 5 runs in Table 8.8 on WideResNet 28-10 (WRN 28-10) (Zagoruyko and

Komodakis (2016)) model. The network is trained with He Normal initializer (He et al.

(2015b)), a batch size of 32, Adam optimizer (Kingma and Ba (2015)), 0.2 dropout rate

(Srivastava et al. (2014)), initial learning rate(lr rate) 0.01, and reduce lr rate by a factor

of 10 after every 50 epochs up-to 250 epochs. We have used data augmentation method

in this database.

8.5.2 Object Detection

Object Detection is an important problem in computer vision. We have considered

the Pascal VOC dataset (Everingham et al. (2010)) for our experiments. Results are

reported on Single Shot MultiBox Detector(SSD) 300 model (Liu et al. (2016)), and

VGG-16(with batch-normalization) is considered as the backbone network. The model

is trained on Pascal VOC 07+12 training data, and model performance is evaluated

on Pascal VOC 2007 test data. The model has been trained with a batch size of 8,
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Activation Function Wide ResNet
28-10 Model

TanhSoft-1 62.01
TanhSoft-2 62.28
TanhSoft-3 62.17

ReLU 60.35
Swish 60.69

Leaky ReLU(� = 0.01) 60.62
ELU 60.02

Softplus 59.81
Mish 60.77

GELU 60.72

Table 8.8: Experimental results on Tiny ImageNet dataset. Mean of 5 different runs for
top-1 accuracy(in %) have been reported.

5e�4 weight decay for 120000 iterations, 0.001 learning rate, SGD optimizer (Robbins

and Monro (1951); Kiefer and Wolfowitz (1952)) with 0.9 momentum. No pre-trained

weight is used in the network. The mean average precision(mAP) is reported in Ta-

ble 8.9 for a mean of 5 different runs.

Activation Function mAP

TanhSoft-1 77.9

TanhSoft-2 78.0

TanhSoft-3 77.8

ReLU 77.2

Swish 77.3

Leaky ReLU(� = 0.01) 77.2

ELU 75.1

Softplus 74.2

Mish 77.5

GELU 77.3

Table 8.9: Object Detection results on SSD 300 model in Pascal-VOC dataset .
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8.5.3 Semantic Segmentation

Semantic segmentation is a very important problem in computer vision. We have shown

our experimental results on the CityScapes dataset (Cordts et al. (2016)). CityScapes

training data with U-net model (Ronneberger et al. (2015)) is trained for 250 epochs,

with adam optimizer (Kingma and Ba (2015)), with batch size 32 and Xavier Uniform

initializer (Glorot and Bengio (2010)), and learning rate 5e�3. Pixel Accuracy and

mean Intersection-Over-Union (mIOU) on test data have been reported on Table 8.10

for mean of 5 different runs.

Activation Function Pixel
Accuracy mIOU

TanhSoft-1 80.71 70.45
TanhSoft-2 80.62 70.34
TanhSoft-3 80.65 70.37

ReLU 79.54 69.39
Swish 79.87 69.68

Leaky ReLU(� = 0.01) 79.59 69.48
ELU 79.12 68.12

Softplus 78.89 68.04
Mish 80.39 69.87

GELU 79.69 69.62

Table 8.10: semantic segmentation results on U-NET model in CityScape dataset.

8.5.4 Machine Translation

Machine Translation is a deep learning technique to translate from one language to

another. For this problem, WMT 2014 English�German dataset is used. It has 4.5 mil-

lion training sentences, and model performance is evaluated on the newstest2014 dataset

using the BLEU score metric. We have consider an Attention-based multi-head trans-

former model (Vaswani et al. (2017)) for our experiments. A 8-head transformer model

is considered with 0.1 dropout (Srivastava et al. (2014)), Adam optimizer (Kingma and

Ba (2015)), and trained for 100000 steps. Other hyper-parameters are tried to retain

similar as mentioned in the original paper (Vaswani et al. (2017)). We have reported a

Mean of 5 runs has on Table 8.11 on the test dataset(newstest2014).
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Activation Function
BLEU Score on

the newstest2014 dataset

TanhSoft-1 26.7

TanhSoft-2 26.7

TanhSoft-3 26.6

ReLU 26.2

Swish 26.4

Leaky ReLU(� = 0.01) 26.3

ELU 25.1

Softplus 23.6

Mish 26.3

GELU 26.2

Table 8.11: Machine translation results on transformer model in WMT-2014 dataset.

8.6 Comparison With Baselines

Based on all the experiments given in earlier sections, we observe that TanhSoft-1,

TanhSoft-2, and TanhSoft-3, beats or performs equally well in most cases when com-

pared with the baseline activation functions and under-performs marginally on rare oc-

casions, and we provide a detailed comparison of the proposed activations with the

baseline activations in Table 8.12. Table 8.12 contains the total number of cases in

which the proposed activations performs better, equal or less than the baseline activa-

tions. The proposed activations outperform concerning model performance in all cases

compared to ReLU, Leaky ReLU, ELU, and Softplus. Also, compared to Swish, Mish,

and GELU, the proposed activations outperform most cases while under-performing on

infrequent occasions.
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Baselines ReLU Leaky ReLU ELU Swish Softplus GELU Mish

TanhSoft-1 > Baseline 49 49 49 47 49 48 44
TanhSoft-1 = Baseline 0 0 0 0 0 0 0
TanhSoft-1 < Baseline 0 0 0 2 0 1 5

TanhSoft-2 > Baseline 49 49 49 47 49 48 44
TanhSoft-2 = Baseline 0 0 0 0 0 0 0
TanhSoft-2 < Baseline 0 0 0 2 0 1 5

TanhSoft-3 > Baseline 49 49 49 46 49 47 43
TanhSoft-3 = Baseline 0 0 0 0 0 0 0
TanhSoft-3 < Baseline 0 0 0 3 0 2 6

Table 8.12: Baseline table for TanhSoft-1, TanhSoft-2, and TanhSoft-3 based on all the
experiments. The numbers represents the total number of models in which
TanhSoft-1, TanhSoft-2, and TanhSoft-3 outperforms, equal or underper-
forms when compared to baseline activation functions

8.7 Computational Time Comparison

We have reported the computational time comparison for TanhSoft-1, TanhSoft-2, and

TanhSoft-3 and the baseline activation functions for both forward and backward pass

on a 32 ◊ 32 RGB image in ResNet-34 model in Table 8.13 for the mean of 100 runs.

All the runs are performed on an NVIDIA Tesla V100 GPU with 16GB ram. The com-

putational time for both forward and backward passes are reported in milliseconds (µs).

From Table 8.13, we notice that due to the nonliterary of the proposed activations, the

computational time for both forward and backward pass is slightly higher than ReLU

(in milliseconds) while it is similar to Mish and better than GELU. Also, due to the non-

linearity of the proposed activations, there is a trade-off between state-of-the-art model

performances and computational time. From the experimental section, we notice that

compared to ReLU networks with the proposed activations networks, the model per-

formance has increased significantly, but the computational time increased marginally.

8.8 Conclusion

We have explored three novel trainable activation functions in this work, TanhSoft-1,

TanhSoft-2, and TanhSoft-3. The proposed functions are zero-centred, non-monotonic,

non-zero negative bounded curve, continuous, and differentiable. In the beginning, we
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Activation
Function Forward Pass(STD) Backward Pass(STD)

TanhSoft-1 15.26(±1.93) µs 13.40(±2.50) µs
TanhSoft-2 15.68(±2.07) µs 11.55(±1.80) µs
TanhSoft-3 15.34(±2.16) µs 12.47(±1.93) µs

ReLU 12.38(±1.10) µs 9.51(±1.24) µs
Swish 13.21(±1.57) µs 10.91(±1.91) µs

Leaky ReLU
(� = 0.01) 12.42(±2.05) µs 10.22(±1.58) µs

ELU 12.56(±2.12) µs 10.27(±1.88) µs
Softplus 12.50(±2.35) µs 10.41(±2.37) µs

Mish 14.21(±2.55) µs 14.60(±3.45) µs
GELU 19.02(±2.90) µs 19.88(±3.41) µs

Table 8.13: Runtime comparison for the forward and backward passes for TanhSoft-1,
TanhSoft-2, and TanhSoft-3 and baseline activation functions for a 32◊ 32
RGB image in ResNet-34 model.

have conducted experiments with the three activations with constant hyper-parameters,

and we found that these activations perform equally or slightly better than ReLU. Later,

we tune the hyper-parameters via backpropagation and make the proposed activations

trainable. In this case, we found a considerable change in results (Top-1 accuracy or

mAP or mIOU or BLEU score), and they perform far better than ReLU or the other

baseline activations in most of the experiments. It shows that introducing a trainable

parameter plays an essential role in activation functions, and a non-zero bounded neg-

ative part & trainable parameters result in better performance. We have used hyperpa-

rameters and models with the ReLU activation function and then replace ReLU with

other baseline activations & the proposed activations to compare model performances.

Our empirical evaluation on different deep learning tasks like Image classification, Ob-

ject Detection, Semantic Segmentation, Machine Translation in a variety of complex

models on datasets like MNIST, Fashion MNIST, SVHN, CIFAR10, CIFAR100, Tiny

ImageNet, Pascal VOC, CityScapes, and WMT 2014 shows that the proposed activa-

tion functions produce state-of-the-art results and have an excellent potential to replace

the widely used activations functions like ReLU, Leaky ReLU, ELU, Softplus, Swish,

Mish, and GELU.
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CHAPTER 9

EIS 1

9.1 Introduction

Multi-layered neural networks are widely used to learn nonlinear functions from com-

plex data. An activation function is an integral part of neural networks that provides es-

sential non-linearity. A universal activation function may not be suitable for all datasets,

and selecting an appropriate activation function for the task at hand is important. Never-

theless, a piecewise activation function, Rectified Linear Unit (ReLU) (Nair and Hinton

(2010)), defined as max(x, 0), is widely used due to its simplicity, convergence speed,

and lesser training time. Despite its simplicity and better convergence rate than Sig-

moid and Tanh, ReLU has drawbacks like non-zero mean, negative missing, unbounded

output, and dying ReLU, to name a few (see (Zhou et al. (2020))). The prominent draw-

back of ReLU is the dying ReLU that provides zero output for negative input. Many

novel activation functions are built to overcome this problem. Many activation func-

tions resolved it by simply defining a piecewise function that resembles ReLU for pos-

itive input and taking non-zero values for negative input. Swish (Ramachandran et al.

(2017)) is proposed by a team of researchers from Google Brain through an exhaustive

search (Negrinho and Gordon (2017)) and reinforcement learning techniques (Baker

et al. (2016)). Experimental evaluation shows that Swish performs better than ReLU

on different deep learning problems. Swish is different from such piecewise activation

functions in the sense that it is a product of two smooth functions and manages to re-

main close to ReLU for positive input and takes small negative values for the negative

input.
1This chapter is a slightly modified version of the paper accepted at ICANN conference Biswas et al.

(2021b).



9.2 Related works

Several activation functions have been proposed as a substitute for ReLU that can over-

come its drawbacks. Because of the dying ReLU problem, it has been observed that

a large fraction of neurons become inactive due to zero outcomes. Another issue that

activation functions face is that during the flow of gradient in the network, the gradient

can become zero or diverge to infinity, which is commonly known as vanishing and ex-

ploding gradient problems. Leaky Relu (Maas et al. (2013a)) has been introduced with

a small negative linear component to solve the dying ReLU problem and has shown im-

provement over ReLU. A hyper-parametric component is incorporated in PReLU (He

et al. (2015b)) to find the best value in the negative linear component. Many other im-

provements have been proposed over the years - Leaky ReLU (Maas et al. (2013a)),

Randomized Leaky Rectified Linear Units (RReLU) (Xu et al. (2015a)), Exponential

Linear Unit (ELU) (Clevert et al. (2016)), Inverse Square Root Linear Units (ISRLUs)

(Carlile et al. (2017)), GELU (Hendrycks and Gimpel (2020)), Swish (Ramachandran

et al. (2017)), and Parametric Rectified Linear Unit (PReLU) (He et al. (2015b)) to

name a few. However, none of the above-mentioned activation functions has come

close to ReLU in terms of popularity. Recently, Swish (Ramachandran et al. (2017))

has been proposed. Swish is a one-parameter family of activation functions defined as

x sigmoid(⇥x) and managed to gain attention from the deep learning community. Some

other hyper-parametrized families of activation functions include Soft-Root-Sign (Zhou

et al. (2020)) activation function.

9.3 Research Contribution

In this chapter, we have proposed three parametric smooth activation functions and

shown that they outperform widely used activation functions, including ReLU and

Swish. To validate the performance of these activations, we have performed a wide

range of experiments on four very important and different deep learning problems like

image classification, object detection, semantic segmentation, and machine translation,

and the results are reported in the experiment section.
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9.4 EIS-1, EIS-2, and EIS-3

We have proposed three families of activation functions with learnable parameters. We

call them EIS-1 (F1(x;�, ⇥)), EIS-2 (F2(x; ⇤)), and EIS-3 (F3(x; ⌅, ⇧)). They are de-

fined as follows:-

Figure 9.1: Graph of
F1(x;�, ⇥)
for different
values of �, ⇥.

Figure 9.2: Graph of
F2(x; ⇤) for
different val-
ues of ⇤.

Figure 9.3: Graph of
F3(x; ⌅, ⇧)
for different
values of ⌅, ⇧.

Figure 9.4: Graph of first
derivative of
F1(x;�, ⇥)
for different
values of �, ⇥.

Figure 9.5: Graph of first
derivative
of F2(x; ⇤)
for different
values of ⇤.

Figure 9.6: Graph of first
derivative of
F3(x; ⌅, ⇧)
for different
values of ⌅, ⇧.

F1(x;�, ⇥) =
x ln(1 + ex)

x+ �e��x
, (9.1)

F2(x; ⇤) =
x ln(1 + ex)p

⇤ + x2
, (9.2)

F3(x; ⌅, ⇧) =
x

1 + ⌅e�⌥x
. (9.3)

The derivative of the above activations are:-
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Figure 9.7: Graph of Swish, F1(x;�, ⇥),
F2(x; ⇤) and F3(x; ⌅, ⇧)

Figure 9.8: Graph of first order deriva-
tives of Swish, F1(x;�, ⇥),
F2(x; ⇤), and F3(x; ⌅, ⇧)

d

dx
F1(x;�, ⇥) =

ln(1 + ex)

x+ �e��x
+

x

x+ �e��x

ex

1 + ex
⇤ (1⇤ �⇥e��x)(x ln(1 + ex))

(x+ �e��x)2
,

(9.4)

d

dx
F2(x; ⇤) =

ln(1 + ex)p
⇤ + x2

+
xp

⇤ + x2

ex

1 + ex
⇤ x2 ln(1 + ex)

(⇤ + x2)
3
2

, (9.5)

d

dx
F3(x; ⌅, ⇧) =

1

1 + ⌅e�⌥x
+

⌅⇧xe�⌥x

(1 + ⌅e�⌥x)2
. (9.6)

The hyper-parameters �, ⇥ for EIS-1, ⇤ for EIS-2, and ⌅, ⇧ for EIS-3 controls the slope

of the functions in both negative and positive axes as evident from figure 9.1, 9.2, and

9.3. For square root function, we have considered only the positive branch . Note that

F1(x; 0, ⇥) and F2(x; 0) recovers the Softplus function while F3(x; 0, ⇧) recovers the

identity function x. Moreover,

lim
⇧⇤⇥

F3(x; ⌅, ⇧) = 0 ↵x � R. (9.7)

Graph of some functions from these three families are given in Figures 9.1, 9.2, and

9.3. The first-order derivatives of these functions are shown in Figures 9.4, 9.5, and

9.6. Moreover, one function from each of these three families and their derivatives are

compared with Swish in Figures 9.7 and 9.8. As evident from graphs, chosen functions

of these three subfamilies have bounded negative domain, smooth derivative and, non-
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monotonic curve like Swish.

9.5 Experiments with EIS-1, EIS-2, and EIS-3

In all the experiments, the learnable parameters in EIS-1, EIS-2, and EIS-3 are first

initialized and then updated using the back propagation (LeCun et al. (1989)) algorithm

(see He et al. (2015b)). For a single layer, the gradient of a hyper-parameter � is:

⌦E

⌦�
=

X

x

⌦E

⌦F (x)

⌦F (x)

⌦�
(9.8)

where E is the objective function, � � {�, ⇥, ⇤, ⌅, ⇧} and F (x) � {F1(x;�, ⇥),

F2(x; ⇤),F3(x; ⌅, ⇧)}. Table 9.1 provides a detailed comparison of EIS-1, EIS-2, and

EIS-3 with seven baseline activation functions, ReLU (Nair and Hinton (2010)), Leaky

Relu (Maas et al. (2013a)), ELU (Clevert et al. (2016)), Softplus (Zheng et al. (2015)),

Swish (Ramachandran et al. (2017)), Mish (Misra (2020)), and GELU (Hendrycks and

Gimpel (2020)). We have given detailed experimental setup and results for different

deep learning problems like image classification, object detection, semantic segmenta-

tion, and Machine translation in the next section. We have initialized the learnable pa-

rameters at � = 1.25, ⇥ = 0.75 for EIS-1, ⇤ = 1.0 for EIS-2, and ⌅ = 0.75, ⇧ = 1.25

for EIS-3 throughout all the experiments and they are updated in network models during

back-propagation.

Baselines ReLU Leaky ReLU ELU Swish Softplus Mish GELU

EIS-1 > Baseline 29 29 29 28 29 26 29
EIS-1 = Baseline 0 0 0 0 0 0 0
EIS-1 < Baseline 0 0 0 1 0 3 0

EIS-2 > Baseline 29 29 29 28 29 26 29
EIS-2 = Baseline 0 0 0 0 0 0 0
EIS-2 < Baseline 0 0 0 1 0 3 0

EIS-3 > Baseline 29 29 29 28 29 26 29
EIS-3 = Baseline 0 0 0 0 0 0 0
EIS-3 < Baseline 0 0 0 1 0 3 0

Table 9.1: Baseline table for EIS-1, EIS-2, and EIS-3. The integers represents the total
number of models in which EIS-1, EIS-2, and EIS-3 outperforms, equal or
underperforms when compared to baseline activations

It is evident from the baseline table 9.1 that EIS-1, EIS-2, and EIS-3 outperform

when compared to baseline activations in most cases and perform equally or under-
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perform occasionally. The forward pass is implemented in both Pytorch (Paszke et al.

(2019)) & Tensorflow-Keras (Chollet et al. (2015)) API and automatic differentiation

updates the parameters. All the experiments are conducted on an NVIDIA tesla V-100

GPU with 16GB RAM.

9.5.1 Image Classification:

We have reported results for image classification with six benchmarking databases like

MNIST, Fashion MNIST, Street View House Numbers (SVHN), CIFAR10, CIFAR100,

and Tiny Imagenet. A brief description of the databases and experimental setup is as

follows.

MNIST:

MNIST (LeCun et al. (2010)) is a well established standard databases consisting of 28

◊ 28 pixels grey-scale images of handwritten digits from 0 to 9. The dataset consists

of 60k training images and 10k testing 28 ◊ 28 grey-scale images. We consider a cus-

tom 8-layer homogeneous convolutional neural network (CNN) architecture to carried

out experiments on MNIST. Channel depths of size 128 (twice), 64 (thrice), 32 (twice),

a dense layer of size 128, Max-pooling layer(thrice), batch-normalization (Ioffe and

Szegedy (2015)) and dropout (Srivastava et al. (2014)) is being used on the CNN archi-

tecture. No data augmentation is used. The results are reported in Table 9.2.

Fashion-MNIST:-

Fashion-MNIST (Xiao et al. (2017)) is a database consisting of 28 ◊ 28 pixels grey-

scale images of Zalando’s ten fashion items class like T-shirt, Trouser, Coat, Bag, etc.

It’s consists of 60k training examples and 10k testing examples. No data augmentation

is used. The same CNN model architecture used in the MNIST dataset is also used

for this database as well for training and testing purpose and, the results are given in

Table 9.2.
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Activation Function
5-fold mean
Accuracy on
MNIST data

5-fold mean
Accuracy on

Fashion MNIST data

5-fold mean
Accuracy on
SVHN data

EIS-1 99.39 93.32 95.46
EIS-2 99.38 93.29 95.45
EIS-3 99.44 93.30 95.43
ReLU 99.17 92.95 95.20
Swish 99.21 92.92 95.21

Leaky ReLU 99.18 92.99 95.18
ELU 99.15 92.83 95.10

Softplus 99.02 92.51 95.01
GELU 99.20 93.08 95.23
Mish 99.26 93.16 95.29

Table 9.2: Results on MNIST, Fashion-MNIST and SVHN Datasets.

Street View House Numbers (SVHN) Database:

SVHN (Netzer et al. (2011)) is a popular computer vision database consists of real-

world house numbers with 32 ◊ 32 RGB images. The database has 73257 training

images and 26032 testing images. The database has a total of 10 classes. We have used

the data augmentation method in this database. The same CNN model architecture

used in the MNIST dataset is also used for this database as well for training and testing

purpose and, the results are given in Table 9.2.

CIFAR:

The CIFAR (Krizhevsky (2009)), is another standard well established computer-vision

dataset that is generally used to establish the efficacy of deep learning models. It con-

tains 60k color images of size 32 ◊ 32, out of which 50k are training images, and 10k

are testing images. It has two versions CIFAR 10 and CIFAR100, which contains 10

and 100 target classes, respectively. Top-1 accuracy for mean of 9 different runs is re-

ported on CIFAR10 and CIFAR100 datasets in Table 9.3 and Table 9.4 respectively on

ResNet-50 (RN 50) (He et al. (2015a)), ResNet V2 34 (RN-V2 34) (He et al. (2016)),

VGG-16 (with Batch-normalization) (Simonyan and Zisserman (2015)), Densenet-121

(DN 121) (Huang et al. (2016a)), DenseNet-169 (DN 169) (Huang et al. (2016a)), In-

ceptionNet V3 (IN V3) (Szegedy et al. (2015a)), SimpleNet (SN) (Hasanpour et al.

(2016)), MobileNet V2 (MN V2) (Sandler et al. (2019)), WideResNet 28-10 (WRN

28-10) (Zagoruyko and Komodakis (2016)), ShuffleNet V2 (SF Net) (Ma et al. (2018))

and SqueezeNet (SQ Net) (Iandola et al. (2016)) models. The networks have been
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trained with batch size 128, Adam optimizer Kingma and Ba (2015) with 0.001 learn-

ing rate and up-to 100 epochs for all the models mentioned above except SimpleNet and

VGG-16 which is trained till 200 epochs. Data augmentation is used for both datasets.

Accuracy and loss graphs on WRN 28-10 model with CIFAR100 dataset for ReLU,

Swish, EIS-1, EIS-2, and EIS-3 are given in Figures 9.9 and 9.10.

AF VGG
16

WRN
28-10

RN
50

RN-V2
34

DN
121

DN
169

IN
V3

MN
V2 SN SQ

Net
SF
Net

EIS-1 90.83 92.75 91.37 91.92 91.29 91.17 92.11 91.22 92.45 87.09 90.17
EIS-2 90.71 92.69 91.35 91.79 91.17 91.33 92.02 91.11 92.37 86.99 90.02
EIS-3 90.79 92.81 91.30 91.97 91.29 91.31 92.15 91.32 92.47 87.22 90.09
ReLU 89.62 91.65 90.35 90.52 90.31 90.47 91.25 89.77 91.01 86.72 88.42
Leaky
ReLU 89.64 91.77 90.53 90.62 90.69 90.52 91.52 89.71 91.15 86.22 88.40

ELU 89.01 91.22 90.22 90.27 90.23 90.27 91.02 89.09 90.89 86.31 88.31
Swish 89.86 92.01 90.77 90.87 90.71 91.34 91.32 90.12 91.41 86.41 89.01

Softplus 89.22 91.36 89.67 89.98 90.12 90.17 91.11 88.99 91.23 85.61 88.01
Mish 90.01 92.23 90.99 90.87 91.45 90.77 91.52 90.42 91.99 86.71 89.00

GELU 89.72 92.11 90.78 90.91 90.42 90.73 91.77 90.01 91.52 86.80 89.19

Table 9.3: Comparison between baseline activation functions and EIS-1, EIS-2, & EIS-
3 on image classification problem on CIFAR10 dataset based on top-1 test
accuracy. Top-1 accuracy(in %) for mean of 9 different runs have been re-
ported.

AF VGG
16

WRN
28-10

RN
50

RN-V2
34

DN
121

DN
169

IN
V3

MN
V2 SN SQ

Net
SF
Net

EIS-1 62.52 69.22 65.62 65.44 67.05 64.92 69.29 65.87 65.11 61.42 63.42
EIS-2 62.49 69.11 65.52 65.21 67.01 64.94 69.27 65.71 64.99 61.23 63.23
EIS-3 63.01 69.21 65.61 65.49 67.11 65.19 69.52 65.90 65.40 61.50 63.62
ReLU 57.25 67.20 64.45 59.89 66.11 64.01 68.11 63.24 63.12 60.12 61.12
Leaky
ReLU 57.29 67.86 64.15 60.22 66.82 64.49 68.01 63.27 63.64 60.01 61.03

ELU 56.12 67.58 64.11 59.87 66.11 64.02 67.99 63.02 63.45 60.00 61.07
Swish 60.25 68.22 65.01 60.89 66.92 64.52 68.42 64.11 64.74 60.45 61.15

SoftPlus 54.13 67.01 62.20 59.11 66.20 64.54 68.02 62.98 62.81 59.79 60.89
Mish 60.02 68.99 65.11 62.33 67.42 65.20 68.51 64.82 64.68 60.12 61.48

GELU 59.89 68.71 64.92 62.45 66.52 64.54 68.40 64.10 64.49 60.03 61.55

Table 9.4: Comparison between baseline activation functions and EIS-1, EIS-2, & EIS-
3 on image classification problem on CIFAR100 dataset based on top-1 test
accuracy. Top-1 accuracy(in %) for mean of 9 different runs have been re-
ported.

Tiny Imagenet

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is the standard

and most popular benchmark for image classification problems. The database contains

images of size 64 ◊ 64 with 200 image classes with a training dataset of 100,000 im-

ages, a validation dataset of 10,000 images, and a test dataset of 10,000 images. Top-1
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Figure 9.9: Graph for train and test accu-
racy on CIFAR100 dataset on
WideResNet 28-10 model

Figure 9.10: Graph for train and test
loss on CIFAR100 dataset on
WideResNet 28-10 model

accuracy for mean of 5 runs for different activation functions are reported in table 9.5

on WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis (2016)) model. The

model is trained with a batch size of 32, He Normal initializer (He et al. (2015b)),

0.2 dropout rate (Srivastava et al. (2014)), adam optimizer, initial learning rate(lr rate)

0.01, and reduce lr rate by a factor of 10 after every 50 epochs up-to 250 epochs. Data

augmentation is used.

9.5.2 Object Detection

Object Detection is one of the most important problems in computer vision. We have

shown our experimental results on the Pascal VOC dataset (Everingham et al. (2010)).

Results are reported on Single Shot MultiBox Detector(SSD) 300 model. VGG-16(with

batch-normalization) is used as the base network. No pre-trained weight is used in the

network. The network is trained on Pascal VOC 07+12 training data and tested model

performance on Pascal VOC 2007 test data. The model is trained with a batch size of 8,

0.001 learning rate, SGD optimizer with 0.9 momentum, 5e�4 weight decay for 120000

iterations. A mean of 5 different runs for the mean average precision(mAP) is reported

in table 9.6.
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Activation Function
Wide ResNet

28-10 Model

EIS-1 61.85

EIS-2 61.70

EIS-3 61.95

ReLU 60.11

Leaky ReLU 60.05

Swish 60.45

ELU 59.87

Softplus 59.55

Mish 60.61

GELU 60.59

Table 9.5: Comparison between baseline
activation functions and EIS-1,
EIS-2, & EIS-3 on Tiny Ima-
geNet dataset on WRN 28-10
model. Results are reported for
mean of 5 different runs.

Activation Function mAP

EIS-1 77.7

EIS-2 77.6

EIS-3 77.7

ReLU 77.2

Swish 77.3

Leaky ReLU 77.2

ELU 75.1

Softplus 74.2

Mish 77.4

GELU 77.3

Table 9.6: Comparison between base-
line activation functions and
EIS-1, EIS-2, & EIS-3 on
Object Detection problem
on SSD 300 model on
Pascal-VOC dataset. Re-
sults are reported for mean
of 5 different runs.

9.5.3 Semantic Segmentation

We carry out our experiment for semantic segmentation task on the Cityscapes dataset

(Cordts et al. (2016)). We use U-net (Ronneberger et al. (2015)) as the base network

and train till 250 epochs, with adam optimizer (Kingma and Ba (2015)), learning rate

5e�3, batch size 32 and Xavier Uniform initializer (Glorot and Bengio (2010)). Mean

of 5 different runs for Pixel Accuracy and mean Intersection-Over-Union (mIOU) on

test data is reported on table 9.7.

9.5.4 Machine Translation

In this section, we report results for the machine translation problem. For this problem,

we use WMT 2014 English�German dataset, which has 4.5 million training sentences,

and evaluate model performance on the newstest2014 dataset using BLEU score metric.
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We use an Attention-based multi-head transformer model (Vaswani et al. (2017)). 8-

head attention model is used with Adam optimizer, 0.1 dropout, and trained for 100000

steps. We try to kept other hyper-parameters similar as mentioned in the original paper

(Vaswani et al. (2017)). Table 9.8 shows the results on the test dataset(newstest2014).

A mean of 5 different runs is reported on table 9.8.

Activation Function Pixel
Accuracy mIOU

EIS-1 80.55 70.34
EIS-2 80.61 70.29
EIS-3 80.51 70.27
ReLU 79.64 69.45
Swish 79.94 69.73

Leaky ReLU 79.71 69.65
ELU 79.05 68.07

Softplus 78.98 68.02
Mish 80.03 69.55

GELU 79.77 69.67

Table 9.7: Comparison between baseline
activation functions and EIS-1,
EIS-2, & EIS-3 on semantic seg-
mentation problem on U-NET
model on Cityscapes dataset.
Results are reported for mean of
5 different runs.

Activation Function

BLEU Score
on the

newstest2014
dataset

EIS-1 26.6
EIS-2 26.5
EIS-3 26.6
ReLU 26.2
Swish 26.4

Leaky ReLU 26.3
ELU 25.1

Softplus 23.6
Mish 26.3

GELU 26.2

Table 9.8: Comparison between base-
line activation functions and
EIS-1, EIS-2, & EIS-3 on
Machine translation prob-
lem on multi-head trans-
former model on WMT-
2014 dataset. Results are re-
ported for mean of 5 differ-
ent runs.

9.6 Computational Time Comparison

In this section, computational time comparison are reported for baseline activation func-

tions and EIS-1, EIS-2, & EIS-3 for both forward and backward pass for a 32◊32 RGB

image on the VGG-16 model. All the runs are performed on an NVIDIA Tesla V100

GPU with 16GB ram, and results are reported in Table 9.9 for the mean of 100 runs.
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Activation Function Forward Pass(STD) Backward Pass(STD)
EIS-1 6.52(±0.99) µs 7.11(±0.96) µs
EIS-2 6.34(±1.17) µs 7.81(±1.74) µs
EIS-3 6.99(±1.01) µs 6.96(±1.34) µs
ReLU 5.10(±1.02) µs 4.95(±0.81) µs
Swish 5.52(±1.11) µs 5.70(±1.05) µs

Leaky ReLU 5.11(±0.59) µs 4.99(±1.01) µs
ELU 5.15(±0.70) µs 5.01(±0.45) µs

Softplus 5.12(±1.01) µs 5.07(±0.99) µs
Mish 6.29(±1.16) µs 5.52(±0.79) µs

GELU 7.59(±1.04) µs 7.89(±1.11) µs

Table 9.9: Runtime comparison between baseline activation functions and EIS-1, EIS-
2, & EIS-3 for the forward and backward passes for a 32◊ 32 RGB image
on VGG-16 model. Results are reported for mean of 100 runs.

9.7 Conclusion

In this chapter, we proposed three parametric activation functions, which we call EIS-1,

EIS-2, and EIS-3, and exhibit that they consistently outperform well-known activation

functions such as ReLU and Swish, as evident from the baseline table on several well-

known datasets and models.

We also advocate through this article that it is time to move away from simple ac-

tivation functions and adopt comprehensive search schemes on parametric functions to

build models. This allows for building more accurate and dependable models. Another

scope of future research is to develop a mathematical understanding of reasons leading

to improved accuracy.
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CHAPTER 10

Conclusion and Future Research Directions

10.1 Conclusion:

In this chapter, we will summarise the contribution of this thesis work. This dissertation

mainly focuses on one of the fundamental problems in deep learning- the construction

of new novel and practical activation functions. We proposed two types of activation

functions; one type is constructed using mathematical approximation theory, and an-

other type of activation function is constructed with traditional handcrafted methods &

neural architecture search. Hand-designated activations are widely used in deep learn-

ing. As a part of this thesis work, several activations have been proposed, which have

been widely tested on standard benchmarking datasets on different deep learning prob-

lems like image classification, object detection, semantic segmentation, and machine

translation. The proposed functions have been compared with state-of-the-art activation

functions like ReLU, Leaky ReLU, Swish, Mish, PAU, GELU etc. The main contribu-

tion to this thesis are:

• Activation’s from approximation of known functions: This types of activa-
tions has been introduced in chapter 4, 3, 6, and 7. We show that these four
proposed methods can approximate ReLU, Leaky ReLU, or its variants. Also,
it is possible to approximate a more general maximum family with the proposed
methods.

• Handcrafted activation functions: This types of activation functions function
have been introduced in chapter 5, 8, and 9. These three proposals are hand-
designated. We also show that a few of these functions are actually an approxi-
mation by a smooth function of the ReLU activation function.

In this thesis, I have shown that the proposed activation functions can be effectively

used in four important and different deep learning problems- image classification, ob-

ject detection, semantic segmentation, and machine translation. They perform better

than the widely used activation functions in most cases. The proposed activation func-

tions can be used in many other domains of deep learning where the artificial neural



network has applications (biomedical engineering, healthcare, weather prediction, pose

estimation, action recognition, face recognition etc.). I have obtained good results in

some these domains and will use the proposed activation functions in future applied

works.

10.2 Summary of the proposed works

In the following subsections, a mathematical and experimental summary of the pro-

posed activation function has been given.

10.2.1 Mathematical Summary of existing and proposed works

A detailed summary of the mathematical properties of existing and proposed works has

been reported in Table 10.1.

Activation Function Zero-Centered Non-Monotonic Non-zero Negative Continuous Smooth Trainable
ReLU Yes No No Yes No No

ReLU6 Yes No No Yes No No
Leaky ReLU Yes No Yes Yes No No

Parametric ReLU Yes No Yes Yes No Yes
Swish Yes Yes Yes Yes Yes Yes
ELU Yes No Yes Yes Yes No

Softplus No No No Yes Yes No
Mish Yes Yes Yes Yes Yes No

GELU Yes Yes Yes Yes Yes No
PAU No Yes Yes Yes Yes Yes
SAU Yes Yes Yes Yes Yes Yes
SMU Yes Yes Yes Yes Yes Yes

SMU-1 No Yes Yes Yes Yes Yes
ErfAct Yes Yes Yes Yes Yes Yes
Pserf Yes Yes Yes Yes Yes Yes

MAU-1 Yes Yes Yes Yes Yes Yes
MAU-2 Yes Yes Yes Yes Yes Yes
MAU-3 Yes Yes Yes Yes Yes Yes
HP-1 No Yes Yes Yes Yes Yes
HP-2 No Yes Yes Yes Yes Yes

TanhSoft-1 Yes Yes Yes Yes Yes Yes
TanhSoft-2 Yes Yes Yes Yes Yes Yes
TanhSoft-3 Yes Yes Yes Yes Yes Yes

EIS-1 Yes Yes Yes Yes Yes Yes
EIS-2 Yes Yes Yes Yes Yes Yes
EIS-3 Yes Yes Yes Yes Yes Yes

Table 10.1: The relationship and difference between the proposed Activation functions
and previously proposed widely used activation functions.
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10.2.2 Experimental Summary of the proposed works

A brief summary of the experimental evaluation of the proposed functions has been

given in the following subsections. All the experiments have similar experimental se-

tups as presented in chapter 4 on Image Classification, Object detection, and Machine

Translation.

Image Classification

In Table 10.2, Top-1 accuracy has been reported on the CIFAR100 dataset for the mean

of 5 different runs for the image classification problem.

Activation Function Shufflenet V2 2.0x ResNet-50
SAU 73.02 ± 0.21 76.77 ± 0.24
SMU 73.69 ± 0.20 77.48 ± 0.22

SMU-1 73.31 ± 0.22 76.74 ± 0.23
ErfAct 73.20 ± 0.21 77.04 ± 0.21
Pserf 73.01 ± 0.23 77.01 ± 0.21

MAU-1 73.32 ± 0.22 77.02 ± 0.20
MAU-2 73.21 ± 0.25 77.10 ± 0.20
MAU-3 73.10 ± 0.23 76.91 ± 0.22
HP-1 73.11 ± 0.22 76.86 ± 0.22
HP-2 72.91 ± 0.22 76.56 ± 0.23

TanhSoft-1 72.52 ± 0.24 76.60 ± 0.20
TanhSoft-2 72.65 ± 0.22 76.45 ± 0.24
TanhSoft-3 72.46 ± 0.24 76.20 ± 0.21

EIS-1 72.20 ± 0.26 76.10 ± 0.25
EIS-2 72.31 ± 0.24 76.21 ± 0.24
EIS-3 72.59 ± 0.23 76.40 ± 0.23

Table 10.2: Comparison between the proposed activations on the CIFAR100 dataset for
image classification problem. We report Top-1 test accuracy (in %) for the
mean of 5 different runs. mean±std is reported in the table

Object detection

In Table 10.3, mAP has been reported on the Pascal VOC dataset for the mean of 3

different runs for the object detection problem.
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Activation Function mAP
SAU 77.7 ± 0.12
SMU 78.1 ± 0.10

SMU-1 77.8 ± 0.10
ErfAct 78.1 ± 0.12
Pserf 78.2 ± 0.12

MAU-1 78.2 ± 0.10
MAU-2 78.2 ± 0.12
MAU-3 77.8 ± 0.14
HP-1 78.0 ± 0.14
HP-2 77.9 ± 0.10

TanhSoft-1 77.8 ± 0.10
TanhSoft-2 77.6 ± 0.11
TanhSoft-3 77.7 ± 0.14

EIS-1 77.6 ± 0.16
EIS-2 77.5 ± 0.14
EIS-3 77.5 ± 0.17

Table 10.3: Comparison between the proposed activations on the Pascal VOC dataset
for the object detection problem. We report the mAP for the mean of 3
different runs. mean±std is reported in the table.

Machine Translation

In Table 10.4, BLUE score has been reported on the WMT2014 dataset for the mean of

3 different runs for the machine translation problem.

Activation Function BLEU Score
SAU 26.7 ± 0.12
SMU 26.8 ± 0.10

SMU-1 26.6 ± 0.11
ErfAct 26.8 ± 0.11
Pserf 26.7 ± 0.10

MAU-1 26.7 ± 0.10
MAU-2 26.7 ± 0.12
MAU-3 26.5 ± 0.11
HP-1 26.8 ± 0.10
HP-2 26.7 ± 0.12

TanhSoft-1 26.6 ± 0.14
TanhSoft-2 26.7 ± 0.15
TanhSoft-3 26.5 ± 0.16

EIS-1 26.5 ± 0.18
EIS-2 26.4 ± 0.18
EIS-3 26.5 ± 0.17

Table 10.4: Comparison between the proposed activations on the WMT2014 dataset for
the machine translation problem. We report the BLEU score for the mean
of 3 different runs. mean±std is reported in the table.

Computational Time Comparison

In the following Table, computational time comparisons are reported for both forward

and backward passes for a 224 ◊ 224 RGB image on the ResNet-18 model. All the
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runs are performed on an NVIDIA RTX 3090 GPU with 24 GB RAM, and results are

reported in Table 10.5 for the mean of 100 runs.

Activation Function Forward Pass(STD) Backward Pass(STD)
SAU 8.37 (±1.23) µs 10.82(±0.80) µs
SMU 5.16(±2.13) µs 6.63(±1.93) µs

SMU-1 5.26(±0.90) µs 5.89(±0.81) µs
ErfAct 5.11(±1.63) µs 6.55(±2.13) µs
Pserf 5.55(±1.82) µs 6.09(±1.50) µs

MAU-1 5.38(±0.91) µs 6.83(±1.00) µs
MAU-2 5.42(±1.22) µs 7.13(±1.49) µs
MAU-3 5.29(±0.88) µs 6.24(±1.18) µs
HP-1 15.77(±2.23) µs 22.62(±2.72) µs
HP-2 17.90(±2.47) µs 24.20(±2.41) µs

TanhSoft-1 5.99(±2.03) µs 6.60(±1.94) µs
TanhSoft-2 5.70(±1.92) µs 6.93(±1.89) µs
TanhSoft-3 5.53(±1.46) µs 6.73(±2.02) µs

EIS-1 4.53(±1.04) µs 6.06(±2.11) µs
EIS-2 5.07(±1.33) µs 6.15(±1.01) µs
EIS-3 5.49(±1.62) µs 6.80(±2.01) µs

Table 10.5: Runtime comparison between the proposed activation functions for the for-
ward and backward passes for a 224◊ 224 RGB image on the ResNet-18
model. Results are reported for a mean of 100 runs. Experiments are con-
ducted on an NVIDIA RTX 3090 GPU with 24 GB RAM.

10.3 Future Direction

While the proposed functions have been widely tested on different deep learning prob-

lems, still there is theoretical scope to improve these works. Some possible future

directions are as follows:

• (Xu and Zhang (2021)) shows why deep networks with ReLU activation function
converge. It is a possible interesting direction for theoretical work on why deep
network with smooth activation functions converges and why they provide better
performance than ReLU networks.

• There is a trade-off between training time and model performance for smooth
activation functions (proposed functions along with Swish, Mish, GELU, PAU
etc.) compared with ReLU, Leaky ReLU etc. It is a possible exciting research
direction to reduce the training time for smooth functions without dropping the
model performance.
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• Deep neural network models are vulnerable to adversarial attacks (Goodfellow
et al. (2014)). There are few existing defence techniques to prevent these attacks.
It is a possible exciting research direction to make a robust defence system against
strong adversarial attacks with the help of smooth activation functions.

• Extending the proposed activation functions for complex-valued neural networks.

• It is a possible research direction to define novel activation functions for graph
neural networks.
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