D

A Study on Smooth Activation Functions

A Thesis

Submitted in partial fulfillment of the requirement for the degree of

Doctor of Philosophy
by

Koushik Biswas

Roll No: PhD16007

Under the supervision of
Dr. Ashish Kumar Pandey

Dr. Shilpak Banerjee

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

New Delhi- 110020

THESIS CERTIFICATE

This is to certify that the thesis titled “A Study on Smooth Activation Functions”,
submitted by Mr. Koushik Biswas, to the Indraprastha Institute of Information Tech-
nology Delhi, for the award of the degree of Doctor of Philosophy, is a bonafide record
of the research work done by him under my supervision. In my opinion, the thesis has
reached the standards fulfilling the requirements of the regulations relating to the de-
gree. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Thesis Supervisors

Fplaplndey

August, 2023
Dr. Ashish Kumar Pandey
Assistant Professor

Department of Mathematics
IIT Delhi.

51'%%0/2(« ganej ee
August, 2023

Dr. Shilpak Banerjee
Assistant Professor

Department of Mathematics & Statistics
IIT Tirupati.

ACKNOWLEDGEMENTS

I am really fortunate to get support from several fantastic people during my Ph.D. time.
I would like to begin by expressing my sincere gratitude to my advisors, Dr. Ashish
Kumar Pandey and Dr. Shilpak Banerjee for their continuous support, guidance, and
trust throughout my Ph.D. I would like to thank them for providing me with all the

opportunities they gave me to work on the specific thesis topic.

I was really fortunate to be a part of the Cryptology Research Group (CRG), IIIT
Delhi, where I was advised by Dr. Somitra Sanadhya and Dr. Donghoon Chang. 1
would also like to thank Dr. Sourav Mukhopadhyay and Dr. Ratna Dutta for giving me
proper guidance during my summer internship at the Indian Institute of Technology,
Kharagpur. I am also thankful to Dr. Bapi Chatterjee for providing the necessary advice

and computational resources to complete some essential experiments.

Next, I am extremely fortunate to get support from my labmate, Dr. Sandeep Ku-
mar, on every occasion. He helped me professionally and personally whenever I needed
any support. I also like to thank my friends Omkar, Mohit, Prawendra, Ridam, Sayan-
tan, and my seniors Dr. Rahul Gangopadhyay and Dr. Amit Kumar Chauhan for their

constant support and help throughout my Ph.D.

Finally, I would like to heartily thank my family members and my parents for their

constant encouragement and unconditional support in every event of my life.

Koutind %‘%Suo%

Koushik Bis

PUBLICATIONS

Publications Related to the Dissertation

1. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey.
Smooth Maximum Unit: Smooth Activation Function for Deep Networks using
Smoothing Maximum Technique. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. Biswas et al. (2022)

2. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey.
SAU: Smooth activation function using convolution with approximate identi-
ties. In European Conference on Computer Vision (ECCV), 2022. Biswas et al.
(20214)

3. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey.
ErfAct and Pserf: Non-monotonic smooth trainable Activation Functions. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2022. Biswas et al.
(2021¢)

4. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey.
TanhSoft—Dynamic Trainable Activation Functions for Faster Learning and Bet-
ter Performance, in IEEE Access, vol. 9, pp. 120613-120623, 2021, doi: 10.1109/AC-
CESS.2021.3105355. Biswas et al. (2021e)

5. Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey.
EIS - Efficient and trainable activation functions for better accuracy and perfor-
mance. In Artificial Neural Networks and Machine Learning -ICANN 2021.
Springer International Publishing, Cham, 2021. ISBN 978-3-030-86340-1. Biswas
et al. (2021b)

Preprints Related to the Dissertation

1. Koushik Biswas, Shilpak Banerjee, and Ashish Kumar Pandey. Orthogonal-Padé
Activation Functions: Trainable Activation functions for smooth and faster con-
vergence in deep networks.

2. Koushik Biswas. Maximum Activation Unit: Smooth Activation from Approxi-
mation of the Maximum Function.

Other Publications

1. Sandeep Kumar, Koushik Biswas, and Ashish Kumar Pandey. Prediction of land-
fall intensity, location, and time of a tropical cyclone. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35. 2021. Kumar et al. (2021b)

i

. Sandeep Kumar, Koushik Biswas, and Ashish Kumar Pandey. Predicting land-
fall’s location and time of a tropical cyclone using reanalysis data. In Artificial
Neural Networks and Machine Learning — ICANN 2021. Springer International
Publishing, 2021. ISBN 978-3-030-86380-7. Kumar et al. (2021a)

. Sandeep Kumar, Koushik Biswas, and Ashish Kumar Pandey. Track prediction
of tropical cyclones using long short-term memory network. In 2021 IEEE 11th
Annual Computing and Communication Workshop and Conference (CCWC) 2021.
Kumar et al. (2021c¢)

. Sandeep Kumar, Koushik Biswas, and Ashish Kumar Pandey. Will a Tropical
Cylone make Landfall? Neural Computing and Applications, 2022. Kumar ef al.
(2022b)

. Sandeep Kumar, Koushik Biswas, and Ashish Kumar Pandey. Forecasting for-
mation of a Tropical Cyclone Using Reanalysis Data (Communicated). Kumar
et al. (2022a)

il

ABSTRACT

Artificial neural networks (ANNs) have occupied the centre stage in deep learning. An
activation function is a crucial component in the neural network, which introduces the
non-linearity in the network. An activation function is considered good if it can gener-
alise better on a variety of datasets, ensure faster convergence and improve neural net-
work performance. The Rectified Linear Unit (ReLU) has emerged as the most popular
activation function due to its simplicity though it has some drawbacks. To overcome
the shortcomings of ReLU (non-smooth, non-zero mean, negative missing, to name a
few), and to increase the accuracy considerably in a variety of tasks, many new acti-
vation functions have been proposed over the years like Leaky ReLLU, ELU, Softplus,
Parametric ReLU, ReLU6 etc. However, all of them provides marginal improvement
over ReLU. Swish, GELU, Padé activation unit (PAU), and Mish are some non-linear
smooth activations proposed recently which show good improvement over ReLLU in a
variety of deep learning tasks.

ReLU or its variants are non-smooth (continuous but not differentiable) at the origin
though smoothness is an important property during backpropagation. We construct
several smooth activation functions, which are approximation by a smooth function of
ReL.U, Leaky ReLU or its variants. Some of these functions are hand-engineered, while
some come from underline mathematical theory. All these functions have shown good
improvement over ReLU or Swish in the variety of standard datasets in different deep
learning problems like image classification, object detection, semantic segmentation,

and machine translation.

KEYWORDS: Smooth Activation Function ; Artificial Neural Network ; Deep

Learning

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

PUBLICATIONS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

ABBREVIATIONS

1 INTRODUCTION

2

1.1

Related Works

1.1.1 Types of Activation Functions:

Smooth Activation Unit

3.1
3.2
3.3
34

3.5

Introduction Lo
Related works and Motivation
Research Contribution
Mathematical formalism
34.1 Convolution. L Lo
3.4.2 Mollifier and Approximate identities
3.4.3 Smooth approximations of non-differentiable functions . . .
Smooth Activation Unit (SAU)

3.5.1 Learning activation parameters via back-propagation

ii

iv

Xix

xxii

xxiii

AN W N -

o

10

11
11
11
12
12
12
13
14
14
15

3.6 Experiments
3.6.1 Image Classification .
3.6.2 Object Detection . . .

3.6.3 Semantic Segmentation

3.6.4 Machine Translation
377 BaselineTable.
3.8 Computational Time Comparison
39 Conclusion

Smooth Maximum Unit

4.1 Introduction
4.2 Related Works and Motivation
4.3 Research contribution

4.4 Smooth Maximum Unit

4.4.1 Approximation by a smooth function of the maximum function

4.4.2 Learning activation parameters via back-propagation

4.5 Experiments
4.5.1 Image Classification .
4.5.2 Object Detection . . .

4.5.3 Semantic Segmentation

454 Machine Translation
46 BaselineTable.
47 Computational Time Comparison
48 Conclusion L e
ErfAct and Pserf
5.1 Introduction

5.2 Related Works and Motivation

5.3 Research contribution
5.4 ErfActand Pserf
5.5 Experiments

5.5.1 Image Classification .

5.5.2 Semantic Segmentation

vi

17
17
27
28
28
29
30
30

32
32
33
33
34
34
38
39
40
51
52
52
53
53
55

56
56
57
57
58
60
60
69

5.53 ObjectDetection 69

5.5.4 Machine Translation 71

5.6 BaselineTable. 71
5.7 Computational Time Comparison 72
5.8 Conclusion 73
6 Maximum Activation Unit 74
6.1 Introduction 74
6.2 Related works and Motivation 74
6.3 Research Contribution 75
6.4 Maximum Activation Unit L. 75
6.4.1 Learning activation parameters via back-propagation 78

6.5 Experiments 79
6.5.1 Image Classification 79

6.5.2 ObjectDetection 87

6.5.3 Semantic Segmentation 87

6.5.4 Machine Translation 88

6.6 BaselineTable. 90
6.7 Computational Time Comparison 90
6.8 Conclusion 91
7 Orthogonal-Padé Activation Unit 92
7.1 Introduction 92
7.2 Related works and motivation 92
7.3 Research contribution L. 93
7.4 Padé activation Unit (PAU) and Orthogonal-PAU 93
7.4.1 Padé activation Unit (PAU) 94

7.4.2 Orthogonal-Padé activation Unit (OPAU) 95

7.4.3 Learning activation parameters via back-propagation 96

7.5 Networks with orthogonal-Padé activations and function approximation 96

7.6 Appximation coefficients for different orthogonal polynomials . . . 97
7.7 Experimental results with Orthogonal-Padé Activation 99
7.7.1 Image Classification 100

vii

7.7.2 ObjectDetection 107

7.7.3 Semantic Segmentation 108
7.7.4 Machine Translation 108
7.8 Comparison With the baseline activation functions 109
7.9 Computational Time Comparison 110
7.10 Conclusion 111
Tanhsoft 112
8.1 Introduction 112
8.2 Related works and Motivation 113
8.3 Researchcontribution L. 114
8.4 TanhSoft-1, TanhSoft-2, and TanhSoft-3 & their properties 114
8.5 Experiments with TanhSoft-1, TanhSoft-2, and
TanhSoft-3 117
8.5.1 Image Classification: 118
8.5.2 ObjectDetection 123
8.5.3 Semantic Segmentation. 125
8.5.4 Machine Translation 125
8.6 Comparison With Baselines 126
8.7 Computational Time Comparison 127
8.8 Conclusion 127
EIS 129
9.1 Introduction 129
9.2 Relatedworks 130
9.3 Research Contribution 130
9.4 EIS-1,EIS-2,andEIS-3. 131
9.5 Experiments with EIS-1, EIS-2, and EIS-3 133
9.5.1 Image Classification: 134
9.5.2 ObjectDetection, 137
9.5.3 Semantic Segmentation 138
9.5.4 Machine Translation 138
9.6 Computational Time Comparison 139

viil

9.7 Conclusion . .

10 Conclusion and Future Research Directions

10.1 Conclusion: . .

10.2 Summary of the proposed works

10.2.1 Mathematical Summary of existing and proposed works

10.2.2 Experimental Summary of the proposed works

10.3 Future Direction

140

141
141
142
142
143
145

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

LIST OF TABLES

A Detailed Comparison between SAU Activation and Other Baseline
Activations on MNIST, Fashion MNIST, and SVHN Datasets for Im-
age Classification Problem with LeNet Architecture. We Report top-1
Test Accuracy (in %) for the Mean of 10 Different Runs. mean=£std is
Reportedinthe Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations on MNIST, Fashion MNIST, and SVHN Datasets for Image
Classification Problem with AlexNet Architecture. We Report top-1
Test Accuracy (in %) for the Mean of 10 Different Runs. mean-=+std is
Reportedinthe Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations On MNIST, Fashion MNIST, and SVHN Datasets for Im-
age Classification Problem with VGG16 Architecture. We Report top-1
Test Accuracy (in %) for the Mean of 10 Different Runs. mean=£std is
Reportedinthe Table.

A Detailed Comparison Between SAU Activation and Other Baseline
Activations in MNIST, Fashion MNIST, and SVHN Datasets for Image
Classification Problem on Custom-designated Architecture. We Re-
port top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean+std is Reported inthe Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations on The CIFAR100 Dataset for Image Classification Prob-
lem with Different Popular Network Architectures. We Report top-1
Test Accuracy (in %) for the Mean of 10 Different Runs. mean-=+std is
Reportedinthe Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations on The CIFAR10 Dataset for Image Classification Problem
with Different Popular Network Architectures. We Report top-1 Test
Accuracy (in %) for the Mean of 10 Different Runs. mean=£std is Re-
portedinthe Table.

Experimental Results for Baseline Activations in CIFAR10 Dataset for
Image Classification Problem on Different Popular Network Architec-
tures. We Report top-1 Test Accuracy (in %) for the Mean of 10 Differ-
ent Runs. mean=+std is Reported in the Table. This Table is an extension
to the Table 3.6 given in the CIFAR Section.

Experimental Results for Baseline Activations and SAU in CIFARI10
Dataset for Image Classification Problem on Different Popular Network
Architectures. We Report top-1 Test Accuracy (in %) for the Mean of
10 Different Runs. mean+std is Reported in the Table.

18

18

19

19

21

22

22

23

3.9

3.10

3.11

3.12

3.13

3.14

3.15
3.16

3.17

3.18

3.19

Experimental Results for Baseline Activations in CIFAR10 Dataset for
Image Classification Problem on Different Popular Network Architec-
tures. We Report top-1 Test Accuracy (in %) for the Mean of 10 Differ-
ent Runs. mean=+std is Reported in the Table. This Table is an extension
to the Table 3.6 given in the CIFAR Section.

Experimental Results for Baseline Activations and SAU in CIFAR100
Dataset for Image Classification Problem on Different Popular Network
Architectures. We Report top-1 Test Accuracy (in %) for the Mean of
10 Different Runs. mean+std is Reported in the Table.

Experimental Results for Baseline Activations in CIFAR100 Dataset
for Image Classification Problem on Different Popular Network Archi-
tectures. We Report top-1 Test Accuracy (in %) for the Mean of 10
Different Runs. mean=+std is Reported in the Table. This Table is an
extension to the Table 3.5 given in the CIFAR Section.

Experimental Results for Baseline Activations in CIFAR100 Dataset
for Image Classification Problem on Different Popular Network Archi-
tectures. We Report top-1 Test Accuracy (in %) for the Mean of 10
Different Runs. mean-=+std is Reported in the Table. This Table is an
extension to the Table 3.5 given in the CIFAR Section.

Top-1 Test Accuracy Reported with Mixup Augmentation Method on
CIFAR100 Dataset for the Mean of 10 Different Runs. mean4std is
Reportedinthe Table

A Detailed Comparison between SAU Activation and Other Baseline
Activations in Tiny ImageNet Dataset for Image Classification Prob-
lem. We Report top-1 Test Accuracy (in %) for the Mean of 6 Different
Runs. mean+std is Reported in the Table.

top-1 Accuracy Reported on ImageNet-1k Dataset.

A Detailed Comparison between SAU Activation and Other Baseline
Activations on Pascal VOC Dataset for Object Detection Problem with
SSD300 Network Architecture. We Report mAP for the Mean of 6
Different Runs. mean+std is Reported in the Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations in CityScapes Dataset for Semantic Segmentation Problem
on U-NET Model. We Report Pixel Accuracy and mIOU for the Mean
of 6 Different Runs. mean=+std is Reported in the Table.

A Detailed Comparison between SAU Activation and Other Baseline
Activations in WMT-2014 Dataset for Machine Translation Problem
on Transformer Model. We Report BLEU Score for the Mean of 6
Different Runs. mean+std is Reported in the Table.

Baseline Table for SAU. In the Table, We Report the Total Number of
Cases in Which SAU Underperforms, Equal, or Outperforms When We
Compare with the Baseline Activation Functions

xi

23

24

24

25

25

26
27

27

28

29

29

3.20

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Runtime comparison for the forward and backward passes for SAU and
other baseline activation functions for a 32 32 RGB image in ResNet-
I8model.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets for image
classification problem on VGG16 architecture. We report Top-1 test ac-
curacy (in %) for the mean of 15 different runs. mean=+std is reported
inthetable.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets for image
classification problem on LeNet architecture. We report Top-1 test ac-
curacy (in %) for the mean of 15 different runs. mean+std is reported
inthetable.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets for image
classification problem on AlexNet architecture. We report Top-1 test
accuracy (in %) for the mean of 15 different runs. mean-=+std is reported
inthetable.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets for image
classification problem on custom designed architecture. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean4std is
reported inthe table. o oL,

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on CIFAR100 dataset for image classification problem. We
report Top-1 test accuracy (in %) for the mean of 15 different runs.
meantstd is reported inthe table.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on CIFARI10 dataset for image classification problem. We
report Top-1 test accuracy (in %) for the mean of 15 different runs.
meantstd is reported in the table. o000

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on CIFAR100 dataset for image classification problem. We
report Top-1 test accuracy (in %) for the mean of 15 different runs.
mean+std is reported in the table. 0000

This is an extension to the Table-4.5 (4.5). We report Top-1 test accu-
racy (in %) on CIFAR100 dataset for baseline functions for the mean of
15 different runs. mean4std is reported in the table. SF V2 stands for
ShuffleNet v2.

This is an extension to the Table-4.5 (4.5). We report Top-1 test accu-
racy (in %) on CIFAR100 dataset for baseline functions for the mean of
15 different runs. mean=std is reported in the table.

xii

30

41

41

42

42

44

45

46

47

47

4.10

4.11

4.12

4.13

4.14

4.15
4.16

4.17

4.18

4.19

4.20

5.1

This is an extension to the Table-4.6 (4.6). We report Top-1 test accu-
racy (in %) on CIFAR10 dataset for baseline functions for the mean of
15 different runs. mean=std is reported in the table.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on CIFAR10 dataset for image classification problem. We
report Top-1 test accuracy (in %) for the mean of 15 different runs.
mean4std is reported inthe table.

This is an extension to the Table-4.6 (4.5). We report Top-1 test accu-
racy (in %) on CIFAR10 dataset for baseline functions for the mean of
15 different runs. mean4std is reported in the table. SF V2 stands for
ShuffleNet v2.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on CIFAR100 dataset for image classification problem with
Mixup augmentation method. We report Top-1 test accuracy (in %) for
the mean of 15 different runs. mean=+std is reported in the table.

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on Tiny ImageNet dataset for image classification problem.
We report Top-1 test accuracy (in %) for the mean of 10 different runs.
mean4std is reported inthe table.

Top-1 accuracy reported on ImageNet-1k dataset.

Comparison between SMU, SMU-1 activations and other baseline acti-
vations on Pascal VOC dataset for object detection problem. We report
mAP for the mean of 10 different runs. mean4std is reported in the

Comparison between SMU, SMU-1 activations and other baseline acti-
vations on CityScapes dataset for semantic segmentation problem. We
report pixel accuracy and mIOU for the mean of 10 different runs.
mean+std is reported in the table. 0000

Comparison between SMU, SMU-1 activations and other baseline ac-
tivations on WMT2014 dataset for machine translation problem. We
report BLEU score for the mean of 10 different runs. mean-+std is re-
portedinthetable.

Baseline table for SMU. These numbers represent the total number of
models in which SMU underperform, equal or outperform compared to
the baseline activation functions

Runtime comparison for the forward and backward passes for SMU
and SMU-1 and other baseline activation functions for a 32x 32 RGB
image in ResNet-18 model.

Comparison between different baseline activations and ErfAct and Pserf
activations on MNIST, Fashion MNIST, and SVHN datasets in AlexNet.
10-fold mean accuracy (in %) have been reported. mean=+std is reported
inthetable.

Xiil

48

48

49

49

50
50

51

52

53

54

54

62

5.2

5.3

54

5.5

5.6

5.7

5.8

59

5.10

5.11
5.12

5.13

5.14

Comparison between different baseline activations, ErfAct, and Pserf
activations on MNIST, Fashion MNIST, and SVHN datasets on VGG-

16 network. 10-fold mean accuracy (in %) have been reported. mean=+std

isreported inthetable. oo,

Comparison between different baseline activations and ErfAct and Pserf
on MNIST, Fashion MNIST, and SVHN datasets with Custom designed
network. 10-fold mean accuracy (in %) have been reported. mean+std
isreportedinthetable.

Comparison between different baseline activations and ErfAct and Pserf
on MNIST, Fashion MNIST, and SVHN datasets with LeNet model.
10-fold mean accuracy (in %) have been reported. mean=£std is reported
inthetable.

Comparison between different baseline activations and ErfAct and Pserf
on CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different
runs have been reported. mean+std is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on CIFARI10 dataset. Top-1 accuracy(in %) for mean of 12 different
runs have been reported. mean=std is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on CIFARI10 dataset. Top-1 accuracy(in %) for mean of 12 different
runs have been reported. mean=+std is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different
runs have been reported. mean=+std is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on CIFAR100 dataset. Top-1 accuracy(in %) with Mixup augmentation
method for mean of 12 different runs have been reported. mean=+std is
reportedinthetable. 0oL,

Comparison between different baseline activations and ErfAct and Pserf
on Tiny ImageNet dataset. Mean of 5 different runs for Top-1 accu-
racy(in %) have been reported. mean-+std is reported in the table. . .

Top-1 Accuracy reported on ImageNet-1k dataset.

Comparison between different baseline activations and ErfAct and Pserf
on semantic segmentation problem on U-NET model in CityScapes
dataset. mean=std is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on Object Detection problem on SSD 300 model in Pascal-VOC dataset.
meandstd is reported in the table.

Comparison between different baseline activations and ErfAct and Pserf
on Machine translation problem on transformer model in WMT-2014
dataset. mean=std is reported in the table.

X1V

62

63

63

65

65

66

66

67

68
68

69

70

71

5.15

5.16

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Baseline table for ErfAct and Pserf. These numbers represent the total
number of models in which ErfAct and Pserf underperforms, equal or
outperforms compared to the baseline activation functions

Runtime comparison for the forward and backward passes for ErfAct
and Pserf and baseline activation functions for a 32 x 32 RGB image in
PreActResNet-18 model.

A Detailed Comparison between MAU-1, MAU-2, and MAu-3 and
Other Baseline Activations on MNIST, Fashion MNIST, and SVHN
Datasets for Image Classification Problem with AlexNet Model. Top-1
Test Accuracy (in %) is reported for the Mean of 20 Different Runs.
mean+std is reported in the Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activa-
tion and Other Baseline Activations on MNIST, Fashion MNIST, and
SVHN Datasets for Image Classification Problem with VGG16 Model.
Top-1 Test Accuracy (in %) for the Mean of 20 Different Runs is re-
ported. mean+std is reported in the table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Acti-
vation and Other Baseline Activations on CIFAR10 Dataset for Image
Classification on Different Models. I Report top-1 Test Accuracy (in
%) for the Mean of 20 Different Runs. I report mean=std in the Table.

Experimental Results for MAU-1, MAU-2, MAU-3 and Baseline Acti-
vations in CIFAR10 Dataset for Image Classification on Different Mod-
els. I Report top-1 Test Accuracy (in %) for the Mean of 20 Different
Runs. I report mean+tstd in the Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Acti-
vation and Other Baseline Activations on CIFAR10 Dataset for Image
Classification on Different Models. I Report top-1 Test Accuracy (in
%) for the Mean of 20 Different Runs. I report mean=+std in the Table.

Experimental Results for MAU-1, MAU-2, MAU-3 and Baseline Ac-
tivations in CIFAR100 Dataset for Image Classification on Different
Models. I Report top-1 Test Accuracy (in %) for the Mean of 20 Dif-
ferent Runs. I report mean=+std in the Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Acti-
vation and Other Baseline Activations on CIFAR100 Dataset for Image
Classification on Different Models. I Report top-1 Test Accuracy (in
%) for the Mean of 20 Different Runs. I report mean=+std in the Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Acti-
vation and Other Baseline Activations on CIFAR100 Dataset for Image
Classification on Different Models. I Report top-1 Test Accuracy (in
%) for the Mean of 20 Different Runs. I report mean=+std in the Table.

Top-1 Test Accuracy Reported with Mixup Augmentation Method on
CIFAR100 Dataset for the Mean of 20 Different Runs. I report mean+-std
intheTable. oo

XV

72

72

80

80

82

82

83

83

84

84

85

6.10

6.11
6.12

6.13

6.14

6.15

6.16

7.1
7.2

7.3

7.4

7.5

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Ac-
tivation Functions and Other Baseline Activation’s in Tiny ImageNet
Dataset for Image Classification Problem. I Report top-1 Test Accu-
racy (in %) for the Mean of 20 Different Runs. I report mean=std in
theTable. L

top-1 Accuracy Reported on ImageNet-1k Dataset.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activa-
tion Functions and Other Baseline Activations on Pascal VOC Dataset
for Object Detection Problem with SSD300. I Report mAP for the
Mean of 12 Different Runs. I report mean=+std in the Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activa-
tion Functions and Other Baseline Activations for Semantic Segmenta-
tion Problem in CityScapes Dataset with U-NET Model. I Report Pixel
Accuracy and mIOU for the Mean of 12 Different Runs. mean-=+std is
Reportedinthe Table.

A Detailed Comparison between MAU-1, MAU-2, and MAU-3 Activa-
tion Functions and Other Baseline Activations in WMT-2014 Dataset
for Machine Translation Problem on Transformer Model. 1 Report
BLEU Score for the Mean of 12 Different Runs. mean-+std is Reported
intheTable.

Baseline Table for MAU-1, MAU-2, & MAU-3. In the Table, I Report
the Total Number of Cases in Which the proposed functions Under-
performs, Equal, or Outperforms When compared with the Baseline
Activation Functions L L oL

Runtime comparison for the forward and backward passes for MAU-1,
MAU-2, & MAU-3 and baseline activation functions for a 32 x 32 RGB
image in PreActResNet-18 model.

Some well-known Orthogonal Polynomial Basis.

Coefficient Table for Leaky ReL.U rational function approximation with
orthogonal basis (using equation (6)) for network initialization. "PC’
stands for polynomial coefficients.

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets on VGG-16
network. We report results for 10-fold mean accuracy (in %). mean=+std
isreportedinthetable. L.

Comparison between different baseline activations and safe OPAU ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets in AlexNet.
10-fold mean accuracy (in %) have been reported. mean=std is reported
inthetable. L oL

Comparison between different baseline activations and safe OPAU acti-
vations on MNIST, Fashion MNIST, and SVHN datasets in LeNet. 10-
fold mean accuracy (in %) have been reported. mean4-std is reported in
thetable. L

Xvi

86
87

88

89

&9

90

91

94

98

101

101

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

8.1
8.2
8.3

Comparison between different baseline activations and safe OPAU ac-
tivations on MNIST, Fashion MNIST, and SVHN datasets in Custom
network. 10-fold mean accuracy (in %) have been reported. mean+std
isreported inthetable. oo,

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on CIFAR10 dataset. We report results for Top-1 accuracy(in
%) for mean of 10 different runs. mean-=std is reported in the table.

Comparison between different baseline activations and safe OPAU ac-
tivations on CIFAR10 dataset. We report results for Top-1 accuracy(in
%) for mean of 10 different runs. mean=+std is reported in the table.

Comparison between different baseline activations and safe OPAU ac-
tivations on CIFAR100 dataset. We report results for Top-1 accuracy(in
%) for mean of 10 different runs. mean=std is reported in the table.

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on CIFAR100 dataset. We report results for Top-1 accuracy(in
%) for mean of 10 different runs. mean=std is reported in the table.

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on the Image classification Problem. We report results for
mean of 5 different runs on WRN 28-10 network on Tiny Imagenet
Dataset. mean=+tstd is reported inthe table.

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on the Object Detection Problem. We report results on SSD
300 with VGG-16 backbones on Pascal-VOC dataset. mean=+std is re-
portedinthetable.

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on semantic segmentation Problem. We report results on U-
NET network on the Cityscapes dataset. mean=std is reported in the

Comparison between different baseline activations, HP-1, and HP-2 ac-
tivations on Machine translation Problem. We report results on Multi-
head transformer network on the WMT-2014 dataset. mean=std is re-
portedinthetable.

Baseline table for HP-1 and HP-2. These numbers represent the total
number of networks in which HP-1 and HP-2 outperforms, equal or
underperforms when we compare with the baseline activation functions

Runtime comparison for the forward and backward passes for HP-1,
HP-2, and baseline activation functions for a 32x 32 RGB image in
VGG-16model.

Experimental results on MNIST dataset.
Experimental results on Fashion MNIST dataset.

Experimental results on SVHN dataset.

Xvii

102

104

105

106

107

109

109

110

110

110

111

118
119
120

8.4

8.5

8.6

8.7

8.8

8.9

8.10
8.11
8.12

8.13

9.1

9.2
9.3

94

9.5

9.6

Experimental results on CIFAR10 dataset. Top-1 accuracy(in %) for
mean of 10 different runs have been reported.

Experimental results on CIFAR10 dataset. Top-1 accuracy(in %) for
mean of 10 different runs have been reported.

Experimental results on CIFAR100 dataset. Top-1 accuracy(in %) for
mean of 10 different runs have been reported.

Experimental results on CIFAR100 dataset. Top-1 accuracy(in %) for
mean of 10 different runs have been reported.

Experimental results on Tiny ImageNet dataset. Mean of 5 different
runs for top-1 accuracy(in %) have been reported.

Object Detection results on SSD 300 model in Pascal-VOC dataset .

semantic segmentation results on U-NET model in CityScape dataset.

Machine translation results on transformer model in WMT-2014 dataset.

Baseline table for TanhSoft-1, TanhSoft-2, and TanhSoft-3 based on all
the experiments. The numbers represents the total number of models in
which TanhSoft-1, TanhSoft-2, and TanhSoft-3 outperforms, equal or
underperforms when compared to baseline activation functions . . .

Runtime comparison for the forward and backward passes for TanhSoft-
1, TanhSoft-2, and TanhSoft-3 and baseline activation functions for a
32x 32 RGB image in ResNet-34 model.

Baseline table for EIS-1, EIS-2, and EIS-3. The integers represents the
total number of models in which EIS-1, EIS-2, and EIS-3 outperforms,
equal or underperforms when compared to baseline activations . . .

Results on MNIST, Fashion-MNIST and SVHN Datasets.

Comparison between baseline activation functions and EIS-1, EIS-2, &
EIS-3 on image classification problem on CIFARI10 dataset based on
top-1 test accuracy. Top-1 accuracy(in %) for mean of 9 different runs
have beenreported. L.

Comparison between baseline activation functions and EIS-1, EIS-2, &
EIS-3 on image classification problem on CIFAR100 dataset based on
top-1 test accuracy. Top-1 accuracy(in %) for mean of 9 different runs
have beenreported. oL

Comparison between baseline activation functions and EIS-1, EIS-2, &
EIS-3 on Tiny ImageNet dataset on WRN 28-10 model. Results are
reported for mean of 5 differentruns.o

Comparison between baseline activation functions and EIS-1, EIS-2, &
EIS-3 on Object Detection problem on SSD 300 model on Pascal-VOC
dataset. Results are reported for mean of 5 different runs.

xviii

121

121

122

122

124
124
125
126

127

128

133
135

136

136

138

138

9.7 Comparison between baseline activation functions and EIS-1, EIS-2, &
EIS-3 on semantic segmentation problem on U-NET model on Cityscapes
dataset. Results are reported for mean of 5 differentruns. 139

9.8 Comparison between baseline activation functions and EIS-1, EIS-2,
& EIS-3 on Machine translation problem on multi-head transformer
model on WMT-2014 dataset. Results are reported for mean of 5 dif-
ferentruns. L 139

9.9 Runtime comparison between baseline activation functions and EIS-1,
EIS-2, & EIS-3 for the forward and backward passes for a 32x 32 RGB
image on VGG-16 model. Results are reported for mean of 100 runs. 140

10.1 The relationship and difference between the proposed Activation func-
tions and previously proposed widely used activation functions. . . . 142

10.2 Comparison between the proposed activations on the CIFAR100 dataset
for image classification problem. We report Top-1 test accuracy (in %)
for the mean of 5 different runs. mean+std is reported in the table . . 143

10.3 Comparison between the proposed activations on the Pascal VOC dataset
for the object detection problem. We report the mAP for the mean of 3
different runs. meanzstd is reported in the table. 144

10.4 Comparison between the proposed activations on the WMT2014 dataset
for the machine translation problem. We report the BLEU score for the
mean of 3 different runs. mean#std is reported in the table. 144

10.5 Runtime comparison between the proposed activation functions for the
forward and backward passes for a 224 x 224 RGB image on the ResNet-
18 model. Results are reported for a mean of 100 runs. Experiments are
conducted on an NVIDIA RTX 3090 GPU with 24 GB RAM. . .. 145

Xix

1.1
1.2

3.1

3.2

3.3

4.1

4.2

43
4.4

4.5

4.6

4.7

4.8

4.9

5.1
5.2
5.3

LIST OF FIGURES

Some widely used fixed activation functions

Some widely used trainable activation functions

Approximation of Leaky ReLU (« = 0.25) using SAU. The left figure
shows that SAU approximate Leaky ReL.U smoothly, and in the right
figure, we plot the same functions on a larger domain range.

Top-1 Train and Test accuracy Curves (Higher is Better) for SAU and
Baseline Activation Functions on CIFAR100 Dataset with ShuffleNet
V22.0x)Model.

Top-1 Train and Test Loss Curves (Lower is Better) for SAU and Base-
line Activation Functions on CIFAR100 Dataset with ShuffleNet V2
(2.0x)Model. e

Approximation of ReLU using SMU (a = 0) for different values of p.
As . — 0o, SMU smoothly approximate ReLU

Approximation of Leaky ReLU (o = 0.25) using SMU for different
values of p. As o — oo, SMU smoothly approximate Leaky ReL.U .

First order derivatives of SMU for o = 0.25 and different values of p.

Approximation of ReLU using SMU-1 (o = 0) for different values of
. As p — 0, SMU-1 smoothly approximate ReLU

Approximation of Leaky ReLU (o = 0.25) using SMU-1 for different
values of . As pp — 0, SMU-1 smoothly approximate Leaky ReLLU

First order derivatives of SMU-1 for a = 0.25 and different values of

Approximation by a smooth functionof |z|

Top-1 train and test accuracy curves for SMU, SMU-1 and other base-
line activation functions on CIFAR100 dataset with ShuffleNet V2 (2.0x)

Top-1 train and test loss curves for SMU, SMU-1 and other baseline
activation functions on CIFAR100 dataset with ShuffleNet V2 (2.0x)

Swish and ErfAct activation for different valuesof v and 5
Swish and Pserf activation for different values of vyand o

First order derivative of ErfAct, Pserf, and Swish

XX

15

21

21

35

35
35

35

35

35

36

46

46

59
59
59

54

5.5

6.1

6.2

6.3

7.1
7.2
7.3

7.4

7.5

7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9

Top-1 Train and Test accuracy (higher is better) on CIFAR100 dataset
with Shufflenet V2 (2.0x) network for different baseline activations, Er-
fAct,and Pserf. 70

Top-1 Train and Test loss (lower is better) on CIFAR100 dataset with
Shufflenet V2 (2.0x) network for different baseline activations, ErfAct,
andPserf. 70

Approximation of Leaky ReLU (o = 0.25) and Leaky ReLLU (o = 0.1)
using MAU. 77

Top-1 Train and Test accuracy (higher is better) on CIFAR100 dataset
with Shufflenet V2 (2.0x) network for different baseline activations and
the proposed activations. 85

Top-1 Train and Test loss (lower is better) on CIFAR100 dataset with
Shufflenet V2 (2.0x) network for different baseline activations and the

proposed activations.o 85
Appximation of Leaky ReLLU (o = 0.25) by HP-1 function. 95
Appximation of Leaky ReLLU (o = 0.25) by HP-2 function. 95

Top-1 Train and Test accuracy (higher is better) on CIFAR10 dataset
with LeNet model for different activations 104

Top-1 Train and Test loss (lower is better) on CIFAR10 dataset with
LeNet model for for different activations 104

Top-1 Train and Test accuracy (higher is better) on CIFAR100 dataset
with MobileNet V2 network for different activations 108

Top-1 Train and Test loss (lower is better) on CIFAR100 dataset with

MobileNet V2 network for different activations 108
Plots of F(z; «) for different valuesof cv. 115
Plots of F5(x; 3,) for different values of 5,~. 115
Plots of F3(z; d) for different valuesof §. 115
Plots of F(z;0.87), F2(x;0.75,0.75), F3(z;0.85) and Swish. . . . 115
Plots of first derivative of F;(z; «) for different values of av. 116
Plots of first derivative of F»(x; 3,) for different values of 3, . . . 116
Plots of first derivative of F3(x;0) for different values of 9. 116
Plots of first order derivatives of F; (z;0.87), F2(x;0.75,0.75), F3(x;0.85)

andSwish.o Lo 116

Top-1 Train and Test accuracy (higher is better) on CIFAR100 dataset
with WideResNet 28-10 model for ReLLU, Swish, TanhSoft-1, TanhSoft-
2,and TanhSoft-3. 122

Xxi

8.10 Top-1 Train and Test loss (lower is better) on CIFAR100 dataset with
WideResNet 28-10 model for ReLU, Swish, TanhSoft-1, TanhSoft-2,
and TanhSoft-3. 122

8.11 Top-1 Train and Test accuracy (higher is better) on CIFARI10 dataset
with LeNet model for ReLLU, Swish, TanhSoft-1, TanhSoft-2, and TanhSoft-
P 123

8.12 Top-1 Train and Test loss (lower is better) on CIFAR10 dataset with
LeNet model for ReLLU, Swish, TanhSoft-1, TanhSoft-2, and TanhSoft-

B e 123
9.1 Graph of F(z;«a,) for different values of o, 8. 131
9.2 Graph of Fy(x;~) for different valuesof v. 131
9.3 Graph of F3(z; 9, 6) for different valuesof 6,0. 131
9.4 Graph of first derivative of F (z; «, §) for different values of «, 3. . 131
9.5 Graph of first derivative of F»(x;y) for different values of 7. 131
9.6 Graph of first derivative of F3(x; d, #) for different values of 9, 6. . . 131
9.7 Graph of Swish, Fi(x; o, 8), Fo(x;7) and Fs(x;0,6) 132
9.8 Graph of first order derivatives of Swish, Fi(z;«, 8), Fa(x;7), and

F5(m;0,0) o oo o 132

9.9 Graph for train and test accuracy on CIFAR100 dataset on WideResNet
28-10modelo 137

9.10 Graph for train and test loss on CIFAR100 dataset on WideResNet 28-
I0model 137

xxii

AF
ANN
BN
CNN
ELU
erf
Leaky ReLLU
Ir
MAU
OPAU
PAU
PReLU
ReLLU
SAU
SiLU

SMU

ABBREVIATIONS

Activation Function

Artificial Neural Network

Batch Normalization
Convolutional neural network
Exponential Linear Unit
Gaussian error function

Leaky Rectified Linear Unit
Learning Rate

Maximum Activation Unit
Orthogonal Padé Activation Unit
Padé Activation Unit

Parametric Rectified Linear Unit
Rectified Linear Unit

Smooth Activation Unit
Sigmoid-weighted linear unit

Smooth Maximum Unit

xxiii

CHAPTER 1

INTRODUCTION

Deep artificial neural networks (ANNSs) are made up of several hidden layers, while
each hidden layer consists of several neurons. At the level of each neuron, an affine
linear map is composed with a nonlinear function known as activation function. During
the training of an ANN, the linear map is optimized; however, an activation function is
usually fixed in the beginning, along with the architecture of the ANN. There has been
an increasing interest in developing a methodical understanding of activation functions,
particularly with regards to the construction of novel activation functions and identify-

ing mathematical properties leading to better learning (Nwankpa et al. (2018)).

Mathematically speaking, an activation function is a nonlinear mapping f : R — R.
A choice of such an f is considered good if it can generalise well on a variety of
datasets, ensure faster convergence and improve neural network performance, which
leads to more accurate results. During the early stages of deep learning research, shal-
low networks (fewer hidden layers) were used, along with tanh or sigmoid as activation
functions. However as time progressed, and ANNs found more and more success in
various fields of scientific research as well as in real life applications, and the need for
deeper networks (more hidden layers) arose. The research also progressed and such

networks came into fashion to achieve challenging tasks.

Deep neural networks has occupied the center-stage in modern machine learning
research and application. And the activation functions, introducing non-linearity in the
network can be considered to be the brain of the neural network. Consequently, the
choice of activation function in a deep network can have a central role and significant
impact on the performance, effectiveness, and training dynamics of deep neural net-

works.

Consequently, a significant amount of research has been dedicated to design better
activation function in the recent years. The central focus of this thesis too is to construct
novel activation functions that outperform the traditional used functions. We propose

several novel activation functions, most of which consists of trainable parameters and

exhibit how they perform better than the popular ones in several metrics. All activation

functions we construct are infinitely differentiable (smooth).

1.1 Related Works

Designing a new novel activation function is a difficult task. The machine learning
community has so far relied on hand-designed activations like ReLU (Nair and Hin-
ton (2010)), Leaky ReLLU (Maas et al. (2013a)) or their variants. ReLLU, in particular,
remains widely popular due to faster training times and decent performance. How-
ever, evidence suggests that considerable gains can be made when more sophisticated
activation functions are used to design networks. For example, activation functions
such as ELU (Clevert et al. (2016)), Parametric ReLU (PReLU) (He et al. (2015b)),
ReLU6 (Krizhevsky (2010)), PAU (Molina et al. (2020)), ACON (Ma et al. (2021)),
Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), Swish (Ramachandran
et al. (2017)) etc. have appeared as powerful contenders to the traditional ones. Though
ReL.U remains a go-to choice in both research and practice, it has certain well-documented
shortcomings such as non-zero mean (Clevert et al. (2016)), non-differentiability and
negative missing, which leads to the infamous vanishing gradients problem (also known
as the dying ReLLU problem). Worth noting that prior to the introduction of ReLU,
Tanh and Sigmoid were popularly used, but performance gains and training time gains

achieved by ReLLU led to their decline.

Swish, GELU, Mish, and PAU are a few recently proposed activations, which gained
popularity in the deep learning community. They share similar mathematical proper-
ties like smoothness, non-linearity, non-monotonic, small and bounded negative output.
GELU is a popular activation widely used in Natural language processing tasks and re-
cently used in BERT (Devlin et al. (2018)), GPT-2 (Radford et al. (2019)), and GPT-3
(Brown et al. (2020)) architectures. Swish was found by a group of researchers from
Google by automated neural architecture search and shown promising results com-
pared to ReLU. Mish is recently proposed by Misra, which shown some promising
results on computer vision problems, especially on object detection task in YOLO v4
(Bochkovskiy et al. (2020)) model. PAU has been proposed recently, and it is con-

structed from the approximation of the Leaky ReLLU function by rational polynomials

of a given order. Though PAU improves network performance in the image classifica-
tion problem over ReL U, its variants, and Swish, it has a major drawback. PAU contains
many trainable parameters, which significantly increases the network complexity and

computational cost.

Motivated by these activation functions, we are interested in constructing some ac-
tivations which share similar properties like the widely used activations. Also, they
provides better performance in a wide range of deep learning problems (like Image
classification, Object Detection, Semantic Segmentation, Machine Translation etc.) on
different datasets and models when compared to widely used activations like ReLU,

Leaky ReLLU, Swish, GELU, PAU, and Mish.

1.1.1 Types of Activation Functions:

Activation functions can broadly be classified into two types: fixed activation functions
and trainable activation functions.
Fixed activation functions: Fixed activations are handcrafted activations and fixed be-
fore training. They may contain constant hyperparameters but does not contain any
trainable parameters. The following are some well established fixed activation func-
tions.

1. Sigmoid:Sigmoid is a nonlinear activation function and widely used in feed-

forward network in internal networks before ReLU had been proposed. Now,
it is used in output-layer for binary classification problems. Sigmoid is defined as

B 1
S l4en

()

It has a major drawback that it ranges in O to 1 which sometime leads to vanishing
gradient problem.

2. tanh: The hyperbolic tangent, or tanh function was also used before ReLLU pro-
posed as activation function. tanh is defined as

et —e™ "
et 4+ e %

flx) =
tanh ranges between -1 to 1.

3. ReLU: ReLLU (Nair and Hinton (2010)) is defined as

z ifx>0
€Tr) =
/(@) {0 ifx <0

ReLU is popular due to its simplicity though has some drawbacks like "Dying
ReLU" (Maas et al. (2013b)) problem (It happens when a large number of neurons
produce zero output irrespective of any inputs) or non-differentiable at zero.

. Leaky ReLLU: Leaky ReLLU (Maas et al. (2013a)) is a variant of ReLU where
a non-negative component has been introduced to overcome the "Dying ReLU"
problem. Leaky ReL.U is defined as

ar ifz <0

f(x;a):{x ifxz>0

where a is constant hyperparameter. Leaky ReLLU increases the network perfor-
mance marginally compared to ReLU..

. ReLLU6: ReLLU6 (Krizhevsky (2010)) is a special case of ReLU where the maxi-
mum value of the function is 6 and the function is defined as

ifx <0
flz)=<Kz if0<zr<6
6 ifxz>6

. ELU: ELU (Clevert et al. (2016)) is a piecewise activation function defined as

f(x;a):{x ifx>0

ale® —1) ifzx <0

a is a hyperparameter controls the values in the negative axis. ELU try to keep
the mean towards zero which leads to faster learning (see (Clevert et al. (2016))
for more details).

. Softplus: Softplus (Zheng et al. (2015)) is a smooth activation function and can
be viewed as a approximation by a smooth function of ReLLU. Softplus is defined
as

f(x) = In(1 +€%)

. Sigmoid-weighted linear unit: Sigmoid-weighted linear unit (SiLU) (Elfwing
et al. (2017)) is a smooth activation function. It is the product of linear function
with sigmoid function. Formally, it is defined as

B x
Sl 4en

/()
SiLU increases the network performance significantly compared to ReLU.

. GELU: Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel (2020)) is a
non-linear activation function which can be seen as a approximation by a smooth
function of ReLU. GELU is defined as

f(@) = 2.9(x) = 5 (1 + erf(—7))

Sl =

 — Rely — GEW — Mish

-4

Figure 1.1: Some widely used fixed activation functions

where ¢(z) is the cumulative Gaussian distribution function and erf is the Gaus-
sian error function defined as

2 [* e
erf(x) = —/ e dt.
VT Jo
GELU can be approximated by

f(a) = 0.5z (1 + tanh [\/2/7 (z+ 0.044715:(;3)})

GELU improves the performance of ReLU and widely used in natural language
processing architectures.

10. Mish: Mish (Misra (2020)) is a popular activation function proposed recently and
is defined as

f(z) = xtanh(In(1 + %))

Mish is a smooth non-monotonic, non-linear activation function which usually
provide better performance compared to ReLLU and Swish.

Trainable Activation functions: Trainable activation function contains trainable pa-
rameter(s) which is initialized at a point before training and updated during backpropa-

gation. The following are some well established trainable activation functions.

1. Parametric ReLU: Parametric ReLU (PReLU) (He er al. (2015b)) is the train-
able form of Leaky ReLLU. PReL.U is defined as

f(x;a):{m ifxz>0

ar 1ifz <0

where a is a trainable parameter. Observe that for a = 0, it is ReLU and if a
is constant, then it is Leaky ReLU. PReL.U is continuous, unbounded but non-
differentiable at zero.

2. Swish: Swish (Ramachandran et al. (2017)) is a popular activation function pro-
posed by Google brain team by neural architecture search. Swish is defined as

X

0=y

 —— Parametric ReLU (a = 0.25) 7 —— Swish (B =1)

Figure 1.2: Some widely used trainable activation functions

Observe that as § — oo, Swish — ReLU. So Swish can be seen as a approxima-
tion by a smooth function of ReLU. Swish outperforms ReLLU on variety of large
datasets in large models in different deep learning problems. Swish has a good
potentials to replace ReL.U.

3. Padé Activation Unit: Padé Activation Unit (PAU) (Molina er al. (2020)) has
been proposed recently and it is defined as the approximation of known activation
function by rational polynomial approximation known as Padé approximation.
PAU is defined as the approximation of Leaky ReLLU using the following form

P(l‘) Zf:() aixi Qg +a1xr + a,2$2 4+ akxk

Fy(x) = = =
2(7) Q(x) 1+|Z;:1 bja| 1+ |byx + box? + - - - + b2t

1.2 Research Contributions

As discussed in the previous section, two types of activations gain attention from the
research community: (i) Fixed activation function and (ii) trainable activation function.
To on this effect, this thesis primarily focuses on designing new novel activations which
performs better than the widely used activations such as ReLLU, Leaky ReLU, Swish
etc. in standard deep learning problems. All the activation that has been proposed in
the subsequent chapters are either designed from some underlying approximation theory
or handcrafted. The proposed functions can be used as trainable activation functions or
fixed activation functions. The proposed activations have been widely tested on standard
publicly available benchmark datasets, and comparisons have been done on the state-
of-the-art models with the widely used activations. The main contributors to this thesis

are as follows:

* Smooth Maximum Unit: ReLU or its variants are non-smooth at the origin.

The functional form of these functions contains absolute function which is non-

differentiable at the origin. We have replaced the absolute function by two func-
tions which have been approximated by a smooth function. We show that the
resulting function is smooth. It can approximate general maxout (Goodfellow
et al. (2013)) family, ReLLU or its variants. We also show that GELU is a spe-
cial case of our proposal. Experimentally, we show that the proposed functions
outperforms widely used functions in bench-marking datasets on standard deep

learning problems.

Smooth Activation Unit: As discussed earlier, ReL.U and its variants are non-
smooth at the origin. Approximation by a smooth function using mollifier and ap-
proximate identities, an activation has been proposed. This function can smoothly
approximate ReL.U or its variants. Experimentally it has been shown that the
function outperforms widely used activations in standard deep learning problems

on bench-marking datasets.

Maximum Activation Unit: This chapter presents that the maximum function
can be written in a special form and then it has been shown that we can smoothly
approximate that special form by some approximation formula. Three smooth
activations have been proposed in this chapter. Experimentally, it has been found
that the propose functions outperforms widely used activations in standard deep

learning problems on bench-marking datasets.

Orthogonal-Padé Activation Unit: Padé approximation is a well known ap-
proximation by rational function approximation using polynomials. The polyno-
mials have been replaced in both numerator and denominator with some widely
used popular orthogonal polynomials and a special form is proposed. The form
can approximate any continuous function. Leaky ReLU is approximated by or-
thogonal Padé form and the approximated form is a approximation by a smooth
function, it has been named as Orthogonal-Padé Activation Unit (OPAU). Six or-
thogonal polynomial is considered to test their performance. Hermite polynomial
form comes out to be the best choice. Experimentally, it has been found that the

propose functions outperforms widely used activations in standard deep learning

problems on bench-marking datasets.

* ErfAct and Pserf: This chapter presents two activations which is called ErfAct
and Pserf. These functions are handcrafted functions like other widely used ac-
tivation’s. Both the functions are constructed using the Gaussian error function.
It is shown that both the functions are approximation by a smooth function of
ReLU. Experimentally, it has been found that the propose functions outperforms
widely used activations in standard deep learning problems on bench-marking

datasets.

* TanhSoft: This chapter presents three handcrafted activations which are named
as TanhSoft-1, TanhSoft-2, and TanhSoft-3. These functions are constructed us-
ing the tanh function. Experimentally, it has been found that the propose func-
tions outperforms widely used activations in standard deep learning problems on

bench-marking datasets.

* EIS: This chapter presents three handcrafted activations which are named as EIS-
1, EIS-2, and EIS-3. Experimentally, it has been found that the propose func-
tions outperforms widely used activations in standard deep learning problems on

bench-marking datasets.

Each subsequent chapters in this thesis provides details about construction and anal-
ysis of the above mentioned activation functions, along with data from several experi-

ments.

CHAPTER 2

Proposed Problems and Methodology

2.1 Proposed problems

This thesis addresses three points: (1) Proposing novel activation functions that outper-
form the existing activation functions, (2) Making methodical perturbations of modifi-
cations to known activation function to understand how it affects performance, and (3)
Exploring through automated parameter search, extensive classes of functions and their

suitability as activation functions.

There is increasing interest in designing new neural network architecture to boost
network performance in the deep learning domain. An important part of this problem
1s the search for novel activation functions, which in recent times has evolved into a
fundamental research problem in deep learning, and the domain requires further explo-
ration. An activation function is the core component of a neural network that introduces
non-linearity. In the early "90s, tanh and sigmoid were widely used activation func-
tions. Once RelLU was proposed, it gained attention from the deep learning community
and became the default activation for the neural network due to its simplicity. How-
ever, ReLU has some serious drawbacks (non-smooth, negative missing etc.) and to
overcome them, researchers have come up with more sophisticated smooth activation
functions. Two such activation functions proposed only a few years ago, namely, Swish
(Ramachandran et al. (2017)) and GELU (Hendrycks and Gimpel (2020)), have seen an
increase in popularity in the community. These, in a certain sense, can be considered to
be an approximation by a smooth function of the ReLU function, and their usage boosts
network performance compared to ReLU in various deep learning tasks. Motivated by
these new developments in network design via the construction of more evolved activa-
tion functions, this thesis tries to develop novel activation functions that perform better

than the other widely used ones such as ReLLU, Swish, EL.U, SoftPlus, GELU, PAU, etc.

The thesis proposes activation functions in two different ways: handcrafted and via

the usage of approximation methods. This thesis not only concentrates on constructing

activation functions using the brute force method but also on constructing activation
functions by approximating known activation functions and using various well-known
approximations to the general maximum family. The performance of the proposed acti-
vation functions are evaluated on standard and widely used datasets on four fundamental
and different deep learning problems: image classification, object detection, semantic
segmentation, and machine translation. The performance of the proposed activation
functions is compared with widely used functions like ReLU, Leaky ReL U, Parametric

ReLU, Mish, GELU, Swish, Softplus etc.

2.2 Methodology:

The efficacy of the proposed activation functions are established via empirical evalua-
tion on four different fundamental deep learning problems: image classification, object

detection, semantic segmentation, and machine translation.

For experiments, a comprehensive list of benchmarking datasets was considered.
MNIST, Fashion MNIST, SVHN, CIFAR10, CIFAR100, and Tiny Imagenet were used
for image classification problems. Pascal VOC is considered for object detection prob-
lems. CityScapes is considered for the semantic segmentation problem. WMT2014 has
been considered for the machine translation problem. All the datasets mentioned above

have been historically used for the four important problems mentioned earlier.

We follow the same standard methodology & experimental procedure (problem and
datasets) that previously established popular works like Swish, PAU etc., considered to
establish their method. We also report and compare the running time for each proposed
activation function. To compare the performance and efficiency of our proposed acti-
vation function, we report results with other widely used activations like ReLLU, Leaky

ReL.U, ELU, SoftPlus, GELU, Swish etc., for each dataset.

10

CHAPTER 3

Smooth Activation Unit!

3.1 Introduction

As described in the previous two introductory chapters, two primary methods for con-
structing novel activation are being explored in this thesis: handcrafting activation func-
tions and perturbation of known activation functions. This chapter, in particular, deals
with the later of the two methods. The ReLLU or Leaky RelLU is methodically perturbed
to smooth activations, and yet these functions lie close to the original activations from

which they were obtained.

Deep networks form a crucial component of modern deep learning. Non-linearity is
introduced in such networks by using activation functions, and the choice substantially
impacts network performance and training dynamics. Designing a new novel activation
function is a difficult task. ReLU remains the favourite choice among the deep learning
community due to its simplicity and better performance when compared to Tanh or Sig-
moid. However, it has a drawback known as dying ReLLU, in which the network starts
to lose the gradient direction due to the negative inputs and produces zero outcomes.
In 2017, Swish (Ramachandran et al. (2017)) was proposed by the Google brain team.
Swish was found by automatic search technique, and it has shown some promising per-

formance across different deep learning tasks.

3.2 Related works and Motivation

Handcrafted activations like Rectified Linear Unit (ReLLU) (Nair and Hinton (2010)),
Leaky ReLLU (Maas et al. (2013a)) or its variants are very common choices for acti-
vation functions and exhibits promising performance on different deep learning tasks.

There are many activations that have been proposed so far. Some of them are ELU

I'This chapter is a slightly modified version of the paper in Arxiv Biswas et al. (2021d).

(Clevert et al. (2016)), Parametric ReLU (PReLU) (He et al. (2015b)), Swish (Ra-
machandran er al. (2017)), Padé Activation Unit (PAU) (Molina et al. (2020), ACON
Ma et al. (2021), Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), ReLU6
(Krizhevsky (2010)), Softplus (Zheng et al. (2015)) etc. Activation functions are usu-
ally handcrafted and fixed before training. PReLLU (He et al. (2015b)) tries to overcome
this problem by introducing a learnable negative component to ReLU (Nair and Hin-
ton (2010)). Maxout (Goodfellow er al. (2013)) and Mixout (Hui-zhen Zhao (2017))
are constructed with piecewise linear components, and theoretically, they are universal
function approximators, though they increase the number of parameters in the network.
Recently, meta-ACON (Ma et al. (2021)), a smooth activation, has been proposed,
which is the generalization of the ReLU and Maxout activations and can smoothly
approximate Swish. Meta-ACON has shown some good improvement on both small
models and highly optimized large models. PAU (Molina et al. (2020)) is a promising
candidate for trainable activations, which have been introduced recently based on ra-
tional function approximation. However, PAU contains a large number of parameters

which increase the computational complexity of the network.

3.3 Research Contribution

In this chapter, we introduce a smooth approximation of known non-smooth activation
functions like ReLLU or Leaky ReL.U based on the approximation of identity. To vali-
date the performance of the proposed activation function, a wide range of experiments
have been conducted on four important and different deep learning problems like image
classification, object detection, semantic segmentation, and machine translation. The

results are reported in the experiment section.

3.4 Mathematical formalism

3.4.1 Convolution

Convolution is a binary operation, which takes two functions f and ¢ as input, and

outputs a new function denoted by f *x g. Mathematically, we define this operation as

12

follows

T = [" Fgle—y)dy. G.1)

The convolution operation has several properties. Below, we will list two of them which

will be used larter in this article.

PL (fxg)(x) = (g f)(2),

P2. If f is n-times differentiable with compact support over R and g is locally inte-
grable over R then f * g is at least n-times differentiable over R.

Property P1 is an easy consequence of definition (3.1). Property P2 can be easily
obtained by moving the derivative operator inside the integral. Note that this exchange
of derivative and integral requires f to be of compact support. An immediate conse-
quence of property P2 is that if one of the functions f or g is smooth with compact
support, then f * ¢ is also smooth. This observation will be used later in the article to

obtain smooth approximations of non-differentiable activation functions.

3.4.2 Mollifier and Approximate identities

A smooth function ¢ over R is called a mollifier if it satisfies the following three prop-

erties:

1. It is compactly supported.
2. [po(x)dx = 1.

1
3. lir% dc(x) = lir% —¢(x/€e) = 6(x), where 6(x) is the Dirac delta function.
€E— e—U €

We say that a mollifier ¢ is an approximate identity if for any locally integrable

function f over R, we have

lg%(f * ¢)(x) = f(x) pointwise for all .

13

3.4.3 Smooth approximations of non-differentiable functions

Let ¢ be an approximate identity. Choosing ¢ = 1/n for n € N, one can define

Pn(2) := no(nx). (3.2)

Using the property of approximate identity, for any locally integrable function f over

R, we have

lim (f * ¢,)(z) = f(z) pointwise for all z.

n—oo

That is, for large enough n, f * ¢, is a good approximation of f. Moreover, since ¢
is smooth, ¢,, is smooth for each n € N and therefore, using property P2, f x ¢,, is a

smooth approximation of f for large enough n.

Let 0 : R — R be any activation function. Then, by definition, ¢ is a continuous
and hence, a locally integrable function. For a given approximate identity ¢ and n € N,

we define a smooth approximation of o as o * ¢,,, where ¢,, is defined in (3.2).

3.5 Smooth Activation Unit (SAU)

Consider the Gaussian function

—_
M

T

¢(r) = —=e"7

which is a well known approximate identity. Consider the Leaky Rectified Linear Unit

(Leaky ReLU) activation function

T x>0

LeakyReLUla](z) =
ar <0

Note that LeakyReLU[a] activation function is hyperparametrized by « and it is non-
differentiable at the origin for all values of o except & = 1. For o = 0, LeakyReLU|q]
reduces to well known activation function ReLU (Nair and Hinton (2010)) while for

constant and trainable a, LeakyReL.U|a] reduces to Leaky ReLU (Maas e al. (2013a))

14

10 - 2l 100~ ___ gau

8 Meeess Leaky RelLU 80 s Leaky RelU
60 -
40 -

20 -

—20 -

-10 =5 0 5 10 —-100 -50 0 50 100

Figure 3.1: Approximation of Leaky ReLU (o = 0.25) using SAU. The left figure
shows that SAU approximate Leaky ReLLU smoothly, and in the right figure,
we plot the same functions on a larger domain range.

and Parametric ReLU (He er al. (2015b)) respectively. For a givenn € N, and o # 1, a

smooth approximation of LeakyReLUJ[«] is given by

Glz,a.n) = (LeakyReLU[a] % 6,)(x) — %\/ge + “LQO% (33)

20, (1)

where erf is the Gaussian error function

2 T
erf(x) = ﬁ/o e " dt.

For the rest of the chapter, we will only consider the approximate identity of Leaky
ReLU (a = 0.25) given in equation 3.3 as the activation function. We call this function
Smooth Activation Unit (SAU). Approximation of Leaky ReLU (o = 0.25) by SAU
is given in figure 3.1. It is clear from the figure 3.1 that SAU can smoothly approxi-
mate Leaky ReLLU (as well as ReLLU or its variants) quite well. We note that in GELU
(Hendrycks and Gimpel (2020)) paper, the authors use the product of z with the cu-
mulative distribution function of a suitable probability distribution (see (Hendrycks and

Gimpel (2020)) for further details).

3.5.1 Learning activation parameters via back-propagation

Back-propagation algorithm (LeCun et al. (1989)) and gradient descent is used in neural

networks to update Weights and biases. Parameters in trainable activation functions are

15

updated using the same technique. The forward pass is implemented in both Pytorch
(Paszke et al. (2019)) & Tensorflow-Keras (Chollet et al. (2015)) API, and automatic
differentiation will update the parameters. Alternatively, CUDA (Nickolls et al. (2008))
based implementation (see (Maas et al. (2013a))) can be used and the gradients of

equation 3.3 for the input x and the parameter o & n can be computed as follows:

0G _—nx [2 22 (1+a) (1-o) orf <nx> N n(l—a) w22

or 2 V=T T T N N
(3.4)
0G =z n
— =—(1—erf| —))
s (e (33)) =
oG 1 2 22 2?2 %2 231 —a) %2
where
d 2 2
Zerf(x) = e
s (x) ﬁe

« and n can be either hyperparameters or trainable parameters.

Now, note that the class of neural networks with SAU activation function is dense in
C(K), where K is a compact subset of R" and C'(K) is the space of all continuous
functions over K.

The proof follows from the following proposition (see (Molina et al. (2020))).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 (Kidger and Lyons
(2020))) :- Let p : R — R be any continuous function. Let N/ represent the class
of neural networks with activation function p, with n neurons in the input layer, one
neuron in the output layer, and one hidden layer with an arbitrary number of neurons.

Let K C R" be compact. Then NP is dense in C'(K) if and only if p is non-polynomial.

16

3.6 Experiments

To explore and compare the performance of SAU, we consider eight popular standard
activation functions on different standard datasets and popular network architectures
on standard deep learning problems like image classification, object detection, seman-
tic segmentation, and machine translation. We consider the following activations to
compare with SAU: ReLLU, Leaky ReLLU, Parametric ReLU (PReLU), ELU, RelLU®6,
Softplus, PAU, Swish, and GELU. It is evident from the experimental results in the
next sections that SAU outperform in most cases compared to the standard activations.
We consider « as a hyperparameter and n as a trainable parameter for the rest of our
experiments. We fix a at 0.25. The value of n is considered 20000 and updated via
backpropagation according to equation 3.6. All the experiments are conducted on an

NVIDIA V100 GPU with 32GB RAM.

3.6.1 Image Classification
MNIST, Fashion MNIST and The Street View House Numbers (SVHN) Database:

In this section, we present results on MNIST (LeCun et al. (2010)), Fashion MNIST
(Xiao et al. (2017)), and SVHN (Netzer et al. (2011)) datasets. The MNIST and Fash-
ion MNIST databases have a total of 60k training and 10k testing 28 x 28 grey-scale
images with ten different classes. SVHN consists of 32 x 32 RGB images with a total
of 73257 training images and 26032 testing images with ten different classes. We have
applied standard data augmentation methods like rotation, zoom, height shift, shear-
ing on the three datasets. We report results with LeNet (Lecun et al. (1998)), AlexNet
(Krizhevsky et al. (2012)), and VGG-16 (Simonyan and Zisserman (2015)) (with batch-
normalization (Ioffe and Szegedy (2015))) architecture in Table 3.1, Table 3.2, and Ta-
ble 3.3 respectively. We report a more detailed experiment on MNIST, Fashion MNIST,
and SVHN datasets on a custom-designed model in Table 3.4. We design the custom
network with CNN layers with 3 x 3 kernels and max-pooling layers with 2 x 2 ker-
nels. We consider Channel depths of size 128 (twice), 64 (thrice), 32 (twice), with

a dense layer of size 128, Max-pooling layer(thrice), and dropout. We have applied

17

batch-normalization before the activation function layer. For all the experiments to
train a model on these three datasets, we use a batch size of 128, stochastic gradient
descent (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9
momentum & 5e~4 weight decay, and trained all networks up-to 100 epochs. We begin
with 0.01 learning rate and decay the learning rate with cosine annealing (Loshchilov

and Hutter (2017)) learning rate scheduler.

Activation Function MNIST Fashion MNIST SVHN

ReLU 99.21 +0.10 91.51 +0.20 92.17+0.19
Leaky ReLU 99.17 £0.10 91.61 £0.21 92.31 +£0.18
PReLU 99.27 £0.09 | 91.62 £0.18 92.05 +0.21
ReLU6 99.29 +0.08 | 91.57 £0.17 92.25 +0.17
ELU 99.28 +0.10 91.48 +0.19 92.20 +0.18
Softplus 99.06 + 0.16 91.21 +£0.23 91.89 £ 0.25
PAU 99.34 £0.07 | 91.69 +=0.12 92.31 +0.22
Swish 99.31 £ 0.07 | 91.64 +0.14 92.39 + 0.20
GELU 99.29+ 0.06 91.61 = 0.14 92.42 +0.20
SAU 9940 £ 0.05| 9147 +0.16 |92.61 +0.12

Table 3.1: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on MNIST, Fashion MNIST, and SVHN Datasets for Image Classifi-
cation Problem with LeNet Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean4std is Reported in the Table.

Activation Function MNIST Fashion MNIST SVHN

RelLU 9951 +£0.06 | 92.77+£0.18 |95.11+0.14
Leaky ReLU 99.50 £0.06 | 92.79+£0.20 | 95.21 £0.17
PReLLU 9948 £0.08| 92.76 £ 0.18 |95.19 +0.17
ReLLU6 99.55+0.06 | 93.01 £0.16 |95.22 +0.15
ELU 99.56 £0.05 | 92.89 £0.17 | 95.30 £0.18
Softplus 99.22+0.10 | 92.32+£0.25 | 94.82+0.21
PAU 99.534+0.08 | 93.01 £0.17 |95.22 +0.13
Swish 9958 £0.06 | 9296 £0.16 | 95.32+0.14
GELU 99.55+£0.06 | 93.05+0.14 |9528 +0.14
SAU 99.64 £ 0.04 | 93.17 +£0.14 |9545+0.11

Table 3.2: A Detailed Comparison between SAU Activation and Other Baseline Activa-
tions on MNIST, Fashion MNIST, and SVHN Datasets for Image Classifica-
tion Problem with AlexNet Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean4std is Reported in the Table.

18

Activation Function MNIST Fashion MNIST SVHN
RelLU 99.554+0.07 | 93.75+£0.14 | 96.04 +0.12
Leaky ReLLU 99.594+£0.05| 93.89+£0.14 |96.12+0.15
PReLLU 99.58 £0.07 | 93.85+0.16 |96.12+0.17
ReLU6 99.59 +0.05| 93.88+0.11 |96.18 £0.16
ELU 9951 £0.05| 93.82+0.16 |96.13+0.14
Softplus 99.34 +£0.12 | 93.69+£0.19 | 95.88+0.21
PAU 99.58 £ 0.05 | 94.27+£0.12 | 96.20 £ 0.15
Swish 99.54 £ 0.06 | 94.10£0.12 |96.26 +0.13
GELU 99.604+ 0.04 | 94.17 £0.12]96.23 +0.13
SAU 99.67 = 0.04 | 94.40 £ 0.12 |96.41 +=0.12

Table 3.3: A Detailed Comparison between SAU Activation and Other Baseline Activa-
tions On MNIST, Fashion MNIST, and SVHN Datasets for Image Classifica-
tion Problem with VGG16 Architecture. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean+std is Reported in the Table.

Activation Function MNIST Fashion MNIST SVHN
RelLLU 9948 £0.07 | 93.06 £0.14 | 94.52£0.13
Leaky ReLLU 9943 £0.08 | 93.22+0.15 |94.67£0.16
PRelLU 9941 +£0.09 | 93.14 +£0.12 |94.61 +0.15
ReLLU6 9945+ 0.07 | 93.31 £0.14 |94.70 + 0.10
ELU 99.50 £ 0.05 | 93.28+0.16 | 94.62+0.13
Softplus 99.32+£0.10 | 92.95+0.20 |94.41 £0.18
PAU 99.58+0.09 9326 £0.16 | 94.80 +0.11
Swish 99.57+0.08 93.29 +£0.14 |94.72+0.12
GELU 99.50+ 0.05 | 93.35+0.12 |94.79 + 0.09
SAU 99.57 £0.04 | 93.50 +0.09 |95.10 £+ 0.09

Table 3.4: A Detailed Comparison Between SAU Activation and Other Baseline Acti-
vations in MNIST, Fashion MNIST, and SVHN Datasets for Image Classi-
fication Problem on Custom-designated Architecture. We Report top-1 Test
Accuracy (in %) for the Mean of 10 Different Runs. mean+std is Reported
in the Table.

19

CIFAR:

The CIFAR (Krizhevsky (2009)) is one of the most popular databases for image classi-
fication consists of a total of 60k 32 x 32 RGB images and is divided into 50k training
and 10k test images. CIFAR has two different datasets- CIFAR10 and CIFAR100 with
a total of 10 and 100 classes, respectively. We report the top-1 accuracy on Table 3.5
and Table 3.10 on CIFARI100 and CIFARI10 datasets respectively. We consider Mo-
bileNet V1 (Howard et al. (2017)), MobileNet V2 (Sandler et al. (2019)), Shufflenet
V2 (Ma et al. (2018)), PreActResNet (He et al. (2016)), ResNet (He et al. (2015a)), In-
ception V3 (Szegedy et al. (2015a)), squeeze and excitation networks (SeNet) (Hu et al.
(2017)), ResNext (Xie et al. (2017)), LeNet (Lecun et al. (1998)), AlexNet (Krizhevsky
et al. (2012)), DenseNet (Huang et al. (2016a)), Xception (Chollet (2017)), Squeezenet
(Iandola et al. (2016)), WideResNet (Zagoruyko and Komodakis (2016)), VGG (Si-
monyan and Zisserman (2015)) (with batch-normalization (Ioffe and Szegedy (2015))),
and EfficientNet BO (Tan and Le (2020)). For all the experiments to train a model on
these two datasets, we use a batch size of 128, stochastic gradient descent (Robbins and
Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e¢*
weight decay, and trained all networks up-to 200 epochs. We begin with 0.01 learning
rate and decay the learning rate by a factor of 10 after every 60 epochs. Standard data
augmentation methods like width shift, height shift, horizontal flip, and rotation is ap-
plied on both datasets. It is noticeable from these two tables that replacing ReLU by
SAU, there is an increment in top-1 accuracy from 1% to more than 5% in most of the
models. A more detailed result on these two datasets with other baseline activations are
reported Tables 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12. Training and test accuracy & loss
curves for baseline activation functions and SAU are given in Figures 3.2 and 3.3 re-
spectively on CIFAR100 dataset on ShuffleNet V2 (2.0x) network. From these learning
curves, it is evident that after training few epochs, SAU has stable & smooth learn-
ing, faster convergence speed, and higher accuracy and lower loss on the test dataset

compared to other baseline activation functions.

Also, We compare the performance of SAU with other baseline activations with state
of the art data augmentation method like Mixup (Zhang et al. (2017a)) on CIFAR 100
dataset with ShuffleNet V2 (2.0x), ResNet 18 & ResNet 50 models, and we got very

good improvement over the baseline activations. Results are reported on Table 3.13

20

Model | ReLU

| SAU

‘ Top-1 accuracy (mean= std) ‘ Top-1 accuracy (mean = std)

Shufflenet V2 0.5x 61.76 & 0.27 64.39 £ 0.23
Shufflenet V2 1.0x 64.12 £ 0.28 68.41 £ 0.24
Shufflenet V2 1.5x 66.52 & 0.28 71.97 £ 0.24
Shufflenet V2 2.0x 66.94 + 0.24 72.57 £ 0.21
PreActResNet 18 72.58 £ 0.24 74.01 £0.22
PreActResNet 34 72.92 +0.24 75.37 £ 0.24
PreActResNet 50 73.27 £0.25 76.22 + 0.22
ResNet 18 73.02 £ 0.25 74.27 £ 0.22
ResNet 34 73.12 £ 0.26 74.64 -+ 0.23
ResNet 50 73.89 4 0.23 76.39 4 0.20
MobileNet V1 70.95 £ 0.26 72.09 4 0.23
MobileNet V2 73.85 £ 0.24 75.69 = 0.19
Inception V3 | 74.03 +0.27 | 76.01 £ 0.22
WideResNet 28-10 | 75.89 4 0.23 | 77.39 +0.20
DenseNet 121 | 75.72 £ 0.27 | 77.11 + 0.23
EffitientNet BO | 76.22 + 0.24 | 78.07 £ 0.26
VGG16 | 71.10 £ 0.30 | 71.18 £0.28

Table 3.5: A Detailed Comparison between

SAU Activation and Other Baseline Ac-

tivations on The CIFAR100 Dataset for Image Classification Problem with
Different Popular Network Architectures. We Report top-1 Test Accuracy
(in %) for the Mean of 10 Different Runs. mean+std is Reported in the

Table.

100

80 /7

> 60
Q
e
3 ¥
g] ——= SAU train —— SAU test
w | - ReLU train — RelU test
Leaky RelU train Leaky RelU test
Swish train Swish test
————— GELU train —— GELU test
20 [-—= ReLU6 train —— RelU6 test
PRelU train PRelU test
ELU train ELU test
! ~—— PAU train —— PAU test
0 25 50 75 100 125 150 175 200
Epochs

Figure 3.2: Top-1 Train and Test accu-
racy Curves (Higher is Better)
for SAU and Baseline Activa-
tion Functions on CIFAR100
Dataset with ShuffleNet V2
(2.0x) Model.

21

| —-—= SAU train —— SAU test
4 0 T RelU train —— RelU test
| Leaky RelU train Leaky RelU test
‘ Swish train Swish test
——-GELU train —— GELU test
3 ——- ReLU6 train —— RelLUS6 test
\ PReLU train PReLU test
ELU train ELU test
| PAU train PAU test

0 25 50 75 100 125 150 175 200

Figure 3.3: Top-1 Train and Test Loss
Curves (Lower is Better) for
SAU and Baseline Activa-
tion Functions on CIFAR100
Dataset with ShuffleNet V2
(2.0x) Model.

Model |

ReLU

SAU

‘ Top-1 accuracy (mean=+ std) ‘ Top-1 accuracy (mean =+ std)

ShuffleNet V2 0.5x 88.01 +0.23 90.50 = 0.17
ShuffleNet V2 1.0x 90.74 4 0.25 92.78 + 0.20
ShuffleNet V2 1.5x 91.07 +0.23 93.20 +0.18
ShuffleNet V2 2.0x 91.32+£0.22 93.52 +0.16
PreActResNet 18 93.36 £0.18 94.62 £ 0.15
PreActResNet 34 94.01 £ 0.16 95.10 £ 0.14
PreActResNet 50 94.01 £0.15 94.94 + 0.14
ResNet 18 93.32 £ 0.20 93.47 £0.17
ResNet 34 93.77 £ 0.20 94.22 + 0.16
ResNet 50 93.89 4+ 0.19 94.62 + 0.16
MobileNet V1 92.27 + 0.24 93.54 £ 0.14
MobileNet V2 93.89 4 0.19 95.37 4+ 0.09
Inception V3 | 93.89 £0.18 | 94.51 £ 0.10
WideResNet 28-10 | 94.74 £ 0.18 | 95.52 +0.12
DenseNet 121 | 94.41 £0.16 | 95.31 +0.10
EffitientNet BO | 94.64 =+ 0.16 | 95.52 + 0.14
VGG16 | 93.14 £0.23 | 93.31 £0.21

Table 3.6: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on The CIFAR10 Dataset for Image Classification Problem with Dif-
ferent Popular Network Architectures. We Report top-1 Test Accuracy (in
%) for the Mean of 10 Different Runs. mean+std is Reported in the Table.

Activation SFV2 | SEV2 | SFV2 | SFV2 | MobileNet | MobileNet | ResNet | ResNet | ResNet
Function 0.5x 1.0x 1.5x 2.0x Vi V2 18 34 50

Leaky ReLU 88.11 90.85 91.02 91.44 92.40 93.78 93.22 93.89 93.78
+0.24 | +£0.27 | £0.23 | +0.24 +0.26 +0.21 +0.21 +0.21 +0.20

PReLU 88.17 90.88 91.19 91.39 92.44 94.08 93.20 93.79 93.91
+0.24 | +£0.27 | £0.24 | +0.22 +0.23 +0.22 +0.23 +0.22 +0.20

ReLU6 88.23 90.89 91.09 91.57 92.49 93.89 93.37 93.98 93.85
+0.22 | £0.24 | 4+0.21 +0.22 +0.24 +0.20 +0.21 +0.20 +0.22

ELU 88.22 90.84 91.17 91.52 92.52 93.89 93.32 94.01 93.80
+0.23 | +£0.26 | £0.24 | +0.23 +0.25 +0.22 +0.23 +0.21 +0.21

Softplus 87.86 90.52 91.01 91.42 92.32 93.95 93.31 93.59 93.70
+0.26 | +0.28 | £0.27 | +0.24 +0.29 +0.24 +0.24 +0.24 +0.23

PAU 88.86 91.55 92.45 92.71 92.67 94.68 93.79 94.01 94.12
+0.24 | +£0.26 | £0.19 | +0.22 +0.17 +0.19 +0.17 +0.20 +0.16

Swish 88.67 91.72 92.21 92.45 92.52 94.78 93.71 94.10 94.24
+0.23 | +0.25 | £0.20 | +0.21 +0.19 +0.21 +0.18 +0.19 +0.18

GELU 88.51 91.81 92.59 92.81 92.40 94.60 93.99 94.01 94.12
+0.22 | £0.23 | 4+0.21 +0.22 +0.20 +0.22 +0.21 +0.20 +0.20

Table 3.7: Experimental Results for Baseline Activations in CIFAR10 Dataset for Im-
age Classification Problem on Different Popular Network Architectures. We
Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean+std is Reported in the Table. This Table is an extension to the Ta-
ble 3.6 given in the CIFAR Section.

22

?:(i::éiltg;n ResNext | Squeezenet | AlexNet | LeNet | Xception | SeNet 18 | SeNet34 | SeNet 50
ReLU 92.95 90.10 83.86 75.45 90.47 94.01 94.19 94.29
+0.22 +0.23 +0.22 +0.21 +0.23 +0.20 +0.19 +0.20
Leaky ReLU 93.10 90.22 83.81 75.55 90.62 94.10 94.20 94.18
+0.21 +0.24 +0.20 +0.23 +0.25 +0.21 +0.17 +0.20
PReLU 93.18 90.40 83.94 75.71 90.60 94.17 94.41 94.47
+0.23 +0.22 +0.22 +0.24 +0.23 +0.22 +0.19 +0.23
ReLU6 93.22 90.39 84.10 75.85 90.52 94.21 94.34 94.39
+0.20 +0.21 +0.20 +0.21 +0.22 +0.22 +0.18 +0.21
ELU 93.22 90.32 83.99 75.48 90.78 94.29 94.28 94.29
+0.22 +0.22 +0.23 +0.21 +0.24 +0.24 +0.19 +0.23
Softplus 92.79 90.01 83.65 75.32 90.49 94.14 94.11 93.91
+0.25 +0.26 +0.26 +0.28 +0.29 +0.25 +0.22 +0.24
PAU 93.72 90.64 84.71 76.10 90.98 94.74 94.89 94.90
+0.18 +0.20 +0.19 +0.21 +0.20 +0.23 +0.20 +0.21
Swish 93.64 90.89 84.85 76.45 90.81 94.61 94.81 94.97
+0.20 +0.21 +0.20 +0.19 +0.18 +0.22 +0.23 +0.23
GELU 93.87 90.71 85.10 76.59 90.97 94.70 94.89 95.10
+0.22 +0.20 +0.22 +0.23 +0.20 +0.21 +0.23 +0.24
SAU 94.37 91.42 85.72 77.01 91.59 95.21 95.29 95.57
+0.20 +0.19 +0.20 +0.20 +0.21 +0.19 +0.20 +0.24

Table 3.8: Experimental Results for Baseline Activations and SAU in CIFAR10 Dataset
for Image Classification Problem on Different Popular Network Architec-
tures. We Report top-1 Test Accuracy (in %) for the Mean of 10 Different
Runs. mean=std is Reported in the Table.

Activation Inception | WideRes | DenseNet | Effitient VGG16 PreAct PreAct PreAct
Function V3 Net 28-10 121 Net BO ResNet 18 | ResNet 34 | ResNet 50

Leaky ReLU 93.80 94.97 94.49 94.51 93.10 93.41 93.97 94.27
+0.20 +0.22 +0.17 +0.19 +0.24 +0.19 +0.16 +0.18

PReLU 93.87 94.85 94.57 94.67 93.19 93.31 91.21 94.39
+0.22 +0.22 +0.19 +0.20 +0.25 +0.21 +0.19 +0.21

ReLU6 93.97 95.14 94.71 94.40 93.21 93.62 93.82 94.51
+0.19 +0.20 +0.19 +0.20 +0.22 +0.20 +0.17 +0.16

ELU 93.85 95.05 94.79 94.57 93.15 93.78 93.70 94.50
+0.20 +0.22 +0.21 +0.22 +0.20 +0.23 +0.18 +0.17

Softplus 93.52 94.71 94.45 94.77 93.02 93.23 91.29 94.41
+0.26 +0.25 +0.22 +0.23 +0.26 +0.24 +0.22 +0.23

PAU 94.10 94.57 94.83 94.89 93.41 94.22 94.46 94.51
+0.20 +0.21 +0.20 +0.21 +0.24 +0.20 +0.21 +0.22

Swish 94.01 94.61 94.71 94.65 93.52 94.65 94.58 94.67
+0.22 +0.23 +0.21 +0.22 +0.23 +0.22 +0.23 +0.20

GELU 94.12 94.50 94.95 94.61 93.59 94.30 94.45 94.61
+0.21 +0.22 +0.22 +0.20 +0.21 +0.22 +0.22 +0.21

Table 3.9: Experimental Results for Baseline Activations in CIFAR10 Dataset for Im-
age Classification Problem on Different Popular Network Architectures. We
Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean-tstd is Reported in the Table. This Table is an extension to the Ta-
ble 3.6 given in the CIFAR Section.

23

?:(i::éiltg;n ResNext | Squeezenet | AlexNet | LeNet | Xception | SeNet 18 | SeNet34 | SeNet 50
ReLU 74.02 65.95 54.51 45.08 70.89 74.37 75.01 75.89
+0.24 +0.22 +0.27 +0.29 +0.23 +0.22 +0.23 +0.20
Leaky ReLU 74.32 66.21 54.89 45.10 71.35 74.67 75.18 76.20
+0.26 +0.23 +0.24 +0.29 +0.25 +0.23 +0.23 +0.22
PReLU 74.61 66.51 55.30 45.29 71.59 74.54 75.32 76.61
+0.25 +0.24 +0.22 +0.28 +0.27 +0.23 +0.22 +0.23
ReLU6 74.52 66.23 55.52 45.10 71.49 74.32 75.20 76.78
+0.24 +0.22 +0.21 +0.26 +0.26 +0.22 +0.21 +0.22
ELU 74.77 66.35 56.52 45.56 71.78 74.56 75.29 76.97
+0.23 +0.24 +0.22 +0.25 +0.24 +0.23 +0.22 +0.24
Softplus 73.89 66.10 54.45 45.56 70.77 74.07 74.78 75.98
+0.27 +0.26 +0.28 +0.29 +0.25 +0.24 +0.25 +0.22
PAU 75.86 66.78 57.89 46.75 73.10 74.52 75.18 77.39
+0.23 +0.20 +0.27 +0.27 +0.24 +0.22 +0.20 +0.18
Swish 75.36 66.42 57.32 46.54 72.77 74.45 75.58 77.10
+0.22 +0.22 +0.26 +0.26 +0.22 +0.23 +0.21 +0.17
GELU 75.52 66.69 57.56 46.45 72.97 74.47 75.47 77.14
+0.22 +0.22 +0.28 +0.29 +0.25 +0.24 +0.22 +0.21
SAU 76.80 68.01 60.85 47.10 74.09 75.64 76.10 78.64
+0.23 +0.19 +0.25 +0.26 +0.25 +0.20 +0.21 +0.18

Table 3.10: Experimental Results for Baseline Activations and SAU in CIFAR100
Dataset for Image Classification Problem on Different Popular Network
Architectures. We Report top-1 Test Accuracy (in %) for the Mean of 10
Different Runs. mean=std is Reported in the Table.

Activation SFV2 | SEFV2 | SFV2 | SFV2 | MobileNet | MobileNet | ResNet | ResNet | ResNet
Function 0.5x 1.0x 1.5x 2.0x Vi V2 18 34 50

Leaky ReLU 61.99 64.39 66.59 67.41 70.90 74.10 73.29 73.49 74.15
+0.29 | +£0.29 | £0.27 | +0.26 +0.26 +0.25 +0.24 +0.24 +0.22

PReLU 62.20 64.12 66.84 67.65 71.10 74.19 73.39 73.61 74.41
+0.27 | £0.28 | £0.29 | +0.25 +0.26 +0.27 +0.25 +0.23 +0.23

ReLU6 62.12 64.32 66.72 67.52 71.32 74.28 73.20 73.13 74.40
+0.26 | +£0.26 | £0.26 | +0.24 +0.24 +0.25 +0.25 +0.22 +0.21

ELU 62.10 64.52 66.51 67.62 71.20 74.35 73.23 73.52 74.29
+0.27 | +£0.26 | £0.28 | +0.24 +0.25 +0.26 +0.22 +0.23 +0.23

Softplus 61.75 64.42 66.51 67.49 70.95 74.01 73.15 73.20 74.25
+0.30 | +0.31 +0.29 | £0.28 +0.25 +0.27 +0.26 +0.26 +0.26

PAU 63.20 66.50 69.12 70.18 71.25 74.72 74.07 73.68 75.51
+0.27 | +£0.25 | £0.24 | +0.24 +0.25 +0.23 +0.22 +0.23 +0.22

Swish 63.11 66.31 69.01 70.59 71.39 74.56 74.54 74.10 75.45
+0.26 | +£0.26 | £0.26 | +0.25 +0.26 +0.24 +0.21 +0.22 +0.23

GELU 63.35 66.10 69.39 70.79 71.14 74.68 74.18 73.87 75.30
+0.25 | +£0.25 | £0.26 | +0.25 +0.26 +0.25 +0.24 +0.24 +0.23

Table 3.11: Experimental Results for Baseline Activations in CIFAR100 Dataset for
Image Classification Problem on Different Popular Network Architectures.
We Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean=+std is Reported in the Table. This Table is an extension to the Ta-
ble 3.5 given in the CIFAR Section.

24

Activation Inception | WideRes | DenseNet | Effitient VGG16 PreAct PreAct PreAct
Function V3 Net 28-10 121 Net BO ResNet 18 | ResNet 34 | ResNet 50

Leaky ReLU 74.25 75.74 75.97 76.29 71.01 72.82 72.97 73.49

+0.26 +0.24 +0.26 +0.26 +0.30 +0.22 +0.26 +0.23

PReLU 74.37 7591 76.04 76.41 71.16 72.80 73.40 73.87

+0.27 +0.26 +0.27 +0.28 +0.31 +0.26 +0.25 +0.24

ReLU6 74.24 75.98 7591 76.11 71.10 72.59 73.12 73.61

+0.24 +0.24 +0.23 +0.25 +0.29 +0.25 +0.23 +0.23

ELU 74.37 76.10 75.80 76.01 71.05 72.25 73.35 74.10

+0.25 +0.26 +0.24 +0.26 +0.30 +0.28 +0.26 +0.25

Softplus 74.10 75.56 75.69 75.78 71.02 71.96 73.12 74.18

+0.28 +0.28 +0.26 +0.29 +0.31 +0.30 +0.30 +0.29

PAU 75.10 75.98 76.22 76.55 71.68 73.95 73.99 75.44

+0.22 +0.23 +0.24 +0.24 +0.27 +0.23 +0.23 +0.24

Swish 74.79 75.64 75.91 76.30 71.92 73.72 74.35 75.57

+0.23 +0.22 +0.22 +0.24 +0.25 +0.25 +0.24 +0.23

GELU 74.64 76.18 76.31 76.97 71.52 74.11 74.20 75.42

+0.23 +0.25 +0.22 +0.24 +0.26 +0.22 +0.23 +0.22

Table 3.12: Experimental Results for Baseline Activations in CIFAR100 Dataset for
Image Classification Problem on Different Popular Network Architectures.
We Report top-1 Test Accuracy (in %) for the Mean of 10 Different Runs.
mean=+std is Reported in the Table. This Table is an extension to the Ta-
ble 3.5 given in the CIFAR Section.

for the mean of 10 different runs. We use the same experimental setup as used for the

CIFAR100 dataset.

Activation Function | ShuffleNet V2 (2.0x) | ResNet 50 ResNet 18

RelLLU 69.10 + 0.24 75.10 £ 0.23 | 73.88 £ 0.24
Leaky ReLU 69.04 £+ 0.23 75.04 £0.23 | 73.97 £ 0.26
PReLU 69.29 + 0.25 75.17 £0.25 | 74.12 £0.25
ReLU6 69.36 + 0.23 7527 £0.22 | 74.17 £0.23
ELU 69.34 + 0.24 75.32 £0.24 | 74.03 £ 0.24
Softplus 68.84 + 0.28 74.52 £ 0.26 | 73.69 £ 0.27
Swish 72.78 £0.21 76.42 +0.22 | 74.39 £+ 0.23
GELU 72.91 £ 0.22 76.54 +£0.23 | 74.51 £0.23
PAU 73.09 + 0.22 76.77 £ 0.22 | 74.62 £ 0.25
SAU 74.22 + 0.21 77.81 + 0.21 | 75.59 + 0.21

Table 3.13: Top-1 Test Accuracy Reported with Mixup Augmentation Method on CI-
FAR100 Dataset for the Mean of 10 Different Runs. mean=+std is Reported
in the Table

Tiny Imagenet:

This section presents results on the Tiny ImageNet dataset, a similar kind of image clas-
sification database like the ImageNet Large Scale Visual Recognition Challenge(ILSVRC).
Tiny Imagenet contains 64 x 64 RGB images with total 100,000 training images, 10,000
validation images, and 10,000 test images and have total 200 image classes. We report

the mean of 6 different runs for Top-1 accuracy in table 3.14 on WideResNet 28-10

25

(WRN 28-10) (Zagoruyko and Komodakis (2016)) and ResNet 18 (He et al. (2015a))
models. We consider a batch size of 64, 0.2 dropout rate (Srivastava et al. (2014)),
SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), He Normal
initializer (He et al. (2015b)), initial learning rate(lr rate) 0.1, and Ir rate is reduced by a
factor of 10 after every 50 epochs up-to 300 epochs. Standard data augmentation tech-
niques like rotation, width shift, height shift, shearing, zoom, horizontal flip, fill mode is
applied to improve performance. It is evident from the table that the proposed function
performs better than the baseline functions, and top-1 accuracy is stable (mean=std)

and got a good improvement for SAU over ReL.U.

Activation Function | WideResNet 28-10 | ResNet 18

ReLLU 62.77 £ 0.46 58.27 £0.42
Leaky ReLLU 62.72 £ 0.46 58.52 £ 0.44
PReLLU 62.70 + 0.48 58.39 £ 0.44
RelLU6 62.59 + 0.46 58.67 £ 0.41
ELU 62.58 £ 0.50 58.62 +0.43
Softplus 61.77 £ 0.59 58.04 +0.47
PAU 63.62 £ 0.44 59.47 £ 0.40
Swish 63.47 £+ 0.46 59.02 £ 0.42
GELU 63.26 = 0.48 59.27 £ 0.39
SAU 64.07 = 0.44 60.12 £+ 0.40

Table 3.14: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations in Tiny ImageNet Dataset for Image Classification Problem. We
Report top-1 Test Accuracy (in %) for the Mean of 6 Different Runs.
mean=std is Reported in the Table.

ImageNet-1k:

ImageNet-1k is a popular image database with more than 1.2 million training images
and have 1000 classes. We report result on ImageNet-1k with ShuffleNet V2 (Ma et al.
(2018)) and ResNet-50 He et al. (2015a) model in Table 3.15. We use a batch size of
256, SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), 0.9
momentum, 5e~* weight decay. We consider a linear decay learning rate scheduler
from 0.1 and trained upto 600k iterations. Experiments on ImageNet-1k is conducted

on four NVIDIA V100 GPUs with 32GB RAM each.

26

Activation Function | ShuffleNet V2 (1.0x) | ResNet-50
ReLLU 69.31 75.50
Leaky ReLU 69.25 75.64
PReLLU 69.20 75.48
ReLU6 69.44 75.77
ELU 69.62 75.54
Softplus 69.21 75.37
Swish 70.45 76.39
GELU 70.31 76.12
PAU 70.64 76.22
SAU 71.52 77.47

Table 3.15: top-1 Accuracy Reported on ImageNet-1k Dataset.

3.6.2 Object Detection

A standard problem in computer vision is object detection, in which the network model
try to locate and identify each object present in the image. Object detection is widely
used in face detection, autonomous vehicle etc. In this section, we present our results
on challenging Pascal VOC dataset (Everingham et al. (2010)) on Single Shot Multi-
Box Detector(SSD) 300 (Liu et al. (2016)) with VGG-16(with batch-normalization)
(Simonyan and Zisserman (2015)) as the backbone network. No pre-trained weight
is considered for our experiments in the network. The network has been trained with
a batch size of 8, SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz
(1952)) with 0.9 momentum, 5¢~* weight decay, 0.001 learning rate, and trained up to
120000 iterations. We report the mean average precision (mAP) in Table 3.16 for the

mean of 6 different runs.

Activation Function mAP
RelLU 77.21+0.14
Leaky ReLU 77.240.19
PReLLU 77.240.20
RelLU6 77.1+0.15
ELU 75.1+0.22
Softplus 74.2+0.25
PAU 77.44+0.14
Swish 77.31+0.11
GELU 77.3+0.12
SAU 77.7+0.10

Table 3.16: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations on Pascal VOC Dataset for Object Detection Problem with SSD300
Network Architecture. We Report mAP for the Mean of 6 Different Runs.
mean=std is Reported in the Table.

27

3.6.3 Semantic Segmentation

Semantic segmentation is a computer vision problem that narrates the procedure of
associating each pixel of an image with a class label. We present our experimental
results in this section on the popular Cityscapes dataset (Cordts ef al. (2016)). The
U-net model (Ronneberger et al. (2015)) is considered as the segmentation framework
and is trained up-to 250 epochs, with adam optimizer (Kingma and Ba (2015)), learning
rate Se~?, batch size 32 and Xavier Uniform initializer (Glorot and Bengio (2010)). We
report the mean of 6 different runs for Pixel Accuracy and the mean Intersection-Over-

Union (mIOU) on test data on table 3.17.

Activation Function Pixel mIOU
Accuracy

ReLLU 79.45+0.47 | 69.3940.28
PRelLU 78.88+0.40 | 68.80+0.40
ReLU6 79.67+£0.40 | 69.794+0.42
Leaky ReLLU 79.324+0.40 | 69.60+0.40
ELU 79.384+0.51 | 68.10+0.40
Softplus 78.60+0.49 | 68.20+0.49
PAU 79.524+0.49 | 69.1240.31
Swish 79.99+0.47 | 69.61+0.29
GELU 80.104+0.37 | 69.39+0.38
SAU 81.11+0.40 | 71.02+0.32

Table 3.17: A Detailed Comparison between SAU Activation and Other Baseline Ac-
tivations in CityScapes Dataset for Semantic Segmentation Problem on U-
NET Model. We Report Pixel Accuracy and mIOU for the Mean of 6 Dif-
ferent Runs. mean+-std is Reported in the Table.

3.6.4 Machine Translation

Machine Translation is a deep learning technique in which a model translate text or
speech from one language to another language. In this section, we report results on
WMT 2014 English—German dataset. The database contains 4.5 million training sen-
tences. Network performance is evaluated on the newstest2014 dataset using the BLEU
score metric. An Attention-based 8-head transformer network (Vaswani et al. (2017))
in trained with Adam optimizer (Kingma and Ba (2015)), 0.1 dropout rate (Srivastava
et al. (2014)), and trained up to 100000 steps. Other hyperparameters are kept similar

as mentioned in the original paper (Vaswani et al. (2017)). We report the mean of 6

28

different runs on Table 3.18 on the test dataset(newstest2014).

Activation Function BLEU Score on
the newstest2014 dataset
ReLU 26.2+0.15
Leaky ReLU 26.3£0.17
PRelLU 26.240.21
ReLU6 26.14+0.14
ELU 25.1£0.15
Softplus 23.640.16
PAU 26.34+0.14
Swish 26.4+0.10
GELU 26.4+0.19
SAU 26.7+0.12

Table 3.18: A Detailed Comparison between SAU Activation and Other Baseline Acti-
vations in WMT-2014 Dataset for Machine Translation Problem on Trans-
former Model. We Report BLEU Score for the Mean of 6 Different Runs.
mean=+std is Reported in the Table.

3.7 Baseline Table

In this section, we present a table for SAU and the other baseline functions, which

shows that SAU beat or perform equally well compared to baseline activation functions

in most cases. We report a detailed comparison with SAU and the baseline activation

functions based on all the experiments in earlier sections in Table 3.19. We notice that

SAU performs remarkably well in most of the cases when compared with the baseline

activations.
. Leaky .
Baselines ReLU ReLU PReLU ReLU6 ELU Softplus PAU Swish GELU
SAU > Baseline 71 71 71 71 71 72 67 66 67
SAU = Baseline 0 0 0 0 0 0 0 0
SAU < Baseline 1 1 1 1 1 0 5 6 5

Table 3.19: Baseline Table for SAU. In the Table, We Report the Total Number of Cases
in Which SAU Underperforms, Equal, or Outperforms When We Compare
with the Baseline Activation Functions

29

3.8 Computational Time Comparison

HP-1, HP-2 contains trainable parameters, which increases the complexity of the net-
work, and due to this, there is a trade-off between network performance and computa-
tional cost. We have reported the Computational time comparison for HP-1, HP-2, and
the baseline activation functions for both forward and backward pass on a 32 x 32 RGB

image on ResNet-18 model in Table 3.20 for the mean of 100 runs. We have used an

NVIDIA Tesla V100 GPU with 32GB ram.

ActlvaFlon Forward Pass Backward Pass
Function
ReLLU 6.51 = 0.35 us | 6.42 4+ 0.81 us
Leaky ReLU | 6.61 +0.40 us | 6.52 £+ 0.89 us
PReLLU 8.64 + 1.50us | 9.52 + 1.75 us
ReLU6 6.58 + 0.50 us | 6.49 4 0.85 us
ELU 6.49 + 0.52 us | 6.56 4+ 0.81 us
Softplus 6.59 +0.49 us | 6.38 +0.50 us
GELU 10.91 4+ 1.59 us | 12.62 4+ 1.70 us
Swish 10.59 = 1.19 us | 12.60 £+ 1.33 us
PAU 18.69 4+ 3.21 us | 25.91 +5.21 us
SAU 12.96 +2.00 pus | 17.34 = 1.31us

Table 3.20: Runtime comparison for the forward and backward passes for SAU and
other baseline activation functions for a 32x 32 RGB image in ResNet-18
model.

3.9 Conclusion

In this chapter, a new novel smooth activation function using approximate identity has
been proposed, and the proposed function is called Smooth Activation Unit (SAU). The
proposed function can approximate RelLU or its different variants (like Leaky ReLLU
etc.) quite well. For all experiments, SAU is considered as a trainable activation func-
tion. It has been shown that in a wide range of experiments on different deep learning
problems, the proposed functions outperform the known activations like ReLU, Leaky
ReLU or Swish in most cases which shows that replacing the hand-crafted activation

functions by SAU can be beneficial in deep networks.

30

Though SAU improves network performance in different deep learning problems, it
is slower than other smooth activation functions like Swish, GELU etc. (but still faster
than PAU). To address this drawback of SAU, two better activations have been proposed
in the next chapter using an approximation by a smooth function of the maximum func-

tion.

31

CHAPTER 4

Smooth Maximum Unit!

4.1 Introduction

This chapter proposes two smooth novel activations based on the approximation by a
smooth function of the maximum function. Deep Neural network has emerged signif-
icantly in recent years and impacted our real-life applications. Neural networks are
the backbone of deep learning. An activation function is the brain of the neural net-
work, which plays a central role in the effectiveness & training dynamics of deep neu-
ral networks. Hand-designed activation functions are quite a common choice in neural
network models. ReLU (Nair and Hinton (2010)) is a widely used hand-designed ac-
tivation function. Despite its simplicity, ReLU has a major drawback, known as the
dying ReLLU problem, in which up to 50% neurons can be dead during network train-
ing. To overcome the shortcomings of ReLU, many activations have been proposed in
recent years. Leaky ReLLU (Maas et al. (2013a)), Parametric ReLU (He et al. (2015b)),
ELU (Clevert et al. (2016)), Softplus (Zheng et al. (2015)), Randomized Leaky ReLU
(Xu et al. (2015a)) are a few of them though they marginally improve performance
of ReLU. Swish (Ramachandran et al. (2017)) is a non-linear activation function pro-
posed by the Google brain team, showing some good improvement of ReLU. GELU
(Hendrycks and Gimpel (2020)) is another popular smooth activation function. It can
be shown that Swish and GELU are both approximation function of ReLU. Recently, a
few non-linear activations have been proposed that improve the performance of ReL U,
Swish or GELU. Some of them are either hand-designed or approximation by a smooth
function of the Leaky ReLLU function. Mish (Misra (2020)) and Padé activation unit
(Molina et al. (2020)) are a few of them.

In the previous chapter, a novel activation called SAU was presented. Though SAU

improves performance compared to the widely used activation functions, SAU has a

IThis chapter is a slightly modified version of the paper published in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Biswas et al. (2022).

drawback. SAU takes higher training time than other smooth activations like Swish,
GELU etc. In this chapter, the problem has been tried to resolve. The proposed activa-
tion functions (SMU & SMU-1) have either similar or lesser training time compared to
Swish, GELU etc., while both SMU and SMU-1 perform better than the earlier men-

tioned activation functions.

4.2 Related Works and Motivation

In a deep neural network, activations are either fixed before training or trainable. Re-
searchers have proposed several activations in recent years by combining known func-
tions. Some of these functions have hyperparameters or trainable parameters. In the
case of trainable activation functions, parameters are optimized during training. Swish
is a popular activation function that can be used as a constant or trainable activation
function. It performs well in various deep learning tasks like image classification, ob-
ject detection, machine translation etc. GELU shares similar properties like the Swish
activation function, and it has gained popularity in the deep learning community due to
its efficacy in natural language processing tasks. GELU has been used in BERT (Devlin
et al. (2018)), GPT-2 (Radford et al. (2019)), and GPT-3 (Brown et al. (2020)) architec-
tures. Padé activation unit (PAU) has been proposed recently, and it is constructed from
the approximation of the Leaky ReLLU function by rational polynomials of a given order.
Though PAU improves network performance in the image classification problem over
ReL U, its variants, and Swish, it has a major drawback. PAU contains many trainable
parameters, and due to this, PAU significantly increases the network complexity and

computational cost. The proposed method in this chapter tried to solve this problem.

4.3 Research contribution

In this chapter, we propose activation functions using the smoothing maximum tech-
nique. The maximum function is non-smooth at the origin. We want to explore how
does the approximation by a smooth function of the maximum function (which can be
used as an activation function) affects a network’s training dynamics and performance.

Our experimental evaluation shows that our proposed activation functions are compar-

33

atively more effective than ReLU, Mish, Swish, GELU, PAU etc., across different deep

learning tasks. This chapter can be summarised as follows:

1. We have proposed activation functions by smoothing the maximum function. We
show that it can approximate GELU, ReLLU, Leaky ReLU or the general Maxout
family.

2. We show that the proposed functions outperform widely used activation functions
in a variety of deep learning tasks.

4.4 Smooth Maximum Unit

We use approximation by a smooth function of the maximum function to construct a
smooth activation function. We refer to this function as the Smooth Maximum Unit
(SMU). Using the approximation by a smooth function of the |x| function, one can
find a general approximating formula for the maximum function, which can smoothly
approximate the general Maxout (Goodfellow ef al. (2013)) family, ReLU, Leaky ReLU
or its variants, Swish etc. We also show that the well established GELU (Hendrycks and

Gimpel (2020)) function can be obtained as a special case of SMU.

4.4.1 Approximation by a smooth function of the maximum func-

tion
Note that the maximum function can be expressed as following two different ways:

T if T, > To
max(xy,) =

Ty otherwise
(Il + {L‘Q) + |371 — T

= . (4.1)

Note that the max function is not differentiable at the origin. Using approxima-
tions of the |x| function by a smooth function, we can create approximations to the
maximum functions. There are many known approximations to |z|, but for the rest of
this article, we will focus on two specific approximations of |z|, namely xerf(ux) and
\/m. We noticed that the activations constructed using these two functions pro-

vide good performance on standard datasets on different deep learning problems. Note

34

— a=025u=0.5
— a=025u=1.0
— a=025u=15

— a=0.25,u=0.05
— a=025u=0.5
— a=025u=1.0

Leaky

Leaky

RelU

RelU

0.8

0.6

0.4

0.2

1.0 — a=025u=0.05
— @=025u=0.5
— a=0.25u=1.0

0.8

0.6

0.4

—— a=025u=0.5
1.0 — a=025u=1.0
— a=025u=1.5

-4 -2 0 2 4 -4 =2 0 2 4 -4 -2 0 2 4

Figure 4.1: Approxima- Figure 4.2: Approximation Figure 4.3: First order
tion of ReLU of Leaky ReLU derivatives
using SMU (a = 0.25 of SMU for
(o = 0) for using SMU a = 0.25 and
different val- for different different values
ues of u. As values of pu. of .
w — oo, SMU As . — 00,
smoothly SMU smoothly
approximate approximate
ReLLU Leaky ReLU

Figure 4.4: Approxima- Figure 4.5: Approximation Figure 4.6: First order
tion of ReLU of Leaky ReLU derivatives of
using SMU-1 (a = 0.25 SMU-1 for
(o = 0) for using SMU-1 a = 0.25 and
different val- for different different values
ues of u. As values of . As of .

@ — 0, SMU- uw — 0, SMU-
1 smoothly 1 smoothly
approximate approximate
ReLU Leaky ReLU

that \/2? + u? as 4 — 0 approximate |x| from above while xerf(uz). as p — oo gives
an approximation of |x| from below. Here erf is the Gaussian error function defined as

follows:

2 T
erf(x) = ﬁ/o e " dt.

Now, replacing the |x| function by zerf(ux) in equation (4.1), we have the approxi-

35

— Xl

— xerf(ux),u=1.0
5 — Vx2+u2u=1.0
4 — oo
3
2
1
0

-5.0 -25 0.0 2.5 5.0

Figure 4.7: Approximation by a smooth function of |z

mation by a smooth function formula for the maximum function as follows:

(21 + ®2) + (21 — 1) erf(p(r) — 12))
: .

Ji(xy, o5) = 4.2)

Similarly, we can derive the the approximation by a smooth function formula for the
maximum function from equation (4.1) by replacing the |z| function by \/x? + 2 as

follows:

(21 + x2) + \/(931 — 12)% + p?
2

fo(@r, mo;) = (4.3)

Note that as u — oo, fi(z1,x2;) — max(zy,x2) and as u — 0, fo(zy, xo; 1) —
max(z1, z3). For particular values of z; and x5, we can approximate known activation

functions. For example, consider x1 = ax, ro = bx, with a # b in (4.2), we get:

£ (0 b 1) — (a+b)x+ (a— b2)x erf(p(a — b):(:) 44)

This is a simple case from the Maxout family (Goodfellow et al. (2013)) while more
complicated cases can be found by considering nonlinear choices of x; and x5. We can
similarly get approximation by a smooth function formula to ReL.U and Leaky ReLU.

For example, consider 1 = z and x5 = 0, we have approximation by a smooth function

36

of ReLU as follows:

x + x erf(ux)

filz,0;p) = — s (4.5)

We know that GELU (Hendrycks and Gimpel (2020)) is a approximation by a smooth
function of ReLLU. Notice that, if we choose p = \/% in equation (4.5), we can recover
GELU activation function which also show that GELU is approximation by a smooth
function of ReL.U. Also, considering 1 = z and x5, = ax, we have a approximation
by a smooth function of Leaky ReLLU or Parametric ReLU depending on whether « is a

hyperparameter or a learnable parameter.

(I+a)r+ (1 —a)xrerf(u(l — a)x)'

5 (4.6)

filw, s p) =

Note that, equation (4.5) and equation (4.6) approximate ReLLU or Leaky ReLLU from
below. Similarly, we can derive approximating function from equation (4.3) which will

approximate ReLLU or Leaky ReLLU from above.

The corresponding derivatives of equation (4.6) for input variable x is

ooz) = S[(1+a) + (1 - a) erf(u(1 — a)2)
2

+ﬁ/~t(1 —) ze” W=’ 4.7)

2
where —erf(z) = ——e ",

dx VT

Figures 4.1, 4.2, and 4.3 show the plots for f;(z,0; u), fi(x,0.252; 1), and derivative
of fi(z,0.25x;) for different values of u. From the figures it is clear that as y — oo,
fi(z, ax; u) smoothly approximate ReLU or Leaky ReLU depending on value of .
We call the function in equation (4.6) as Smooth Maximum Unit (SMU). Similarly, We
can derive a function by replacing 1 = x and x5 = ax in equation (4.3) and we call
this function SMU-1. For all of our experiments, we will use SMU and SMU-1 as our

proposed activation functions.

Figure 4.4, 4.5 represents approximation of ReLU (« = 0), Leaky ReLU (o = 0.25)
by SMU-1 for different values of x4 and as ¢ — 0, SMU-1 overlap ReLU or Leaky
ReL.U depending on the value of «. Figure 4.6 represents the derivatives of SMU-1 for

a = 0.25 and different valus of p.

37

There are many known approximation by a smooth function to the |z| function like

xerf(ux), \/x% + 12, \/% etc. As u — 0, \/3;2-1-—#2 gives approximation by a smooth

function of |z| from below. We give a plot of well known approximation to |x| in

Figure 4.7.

Replace ;1 = z and o = ax in equation (3), we have a approximation by a
smooth function of Leaky ReLLU or Parametric ReLLU depending on whether « is a

hyperparameter or a learnable parameter. We call it SMU-1 and is defined as

(14 a)z + /(1 — a)?a? + 2
2

fo(x, az;p) =

and the corresponding derivative with respect to input variable x is

(1—a)?x
d (1+a)+ T
%fQ(%OéI;M) = 9

4.4.2 Learning activation parameters via back-propagation

Trainable activation function parameters are updated using backpropagation (LeCun
et al. (1989)) technique (see He et al. (2015b)) according to (4.8) and for a single layer,

the gradient of a hyper-parameter w is:

aL Of (x
Z 57 dw (4.8)

where L is the objective function, w € {«, u} and f(z) € {fi(z, az;p), fo(z, az; pn)}.
We implemented forward pass in both Pytorch (Paszke et al. (2019)) & Tensorflow-
Keras (Chollet et al. (2015)) API, and automatic differentiation will update the param-
eters. Alternatively, CUDA (Nickolls et al. (2008)) based implementation (see Maas
et al. (2013a)) can be used and the gradients are given in (4.9) and (4.10)) for the pa-
rameters « and p of equation (4.6) are as follows:

ofi _x werf(u(l-—a)zr) (1-— o) pae (H1-a))?

Tt R S 7 49

38

af 1 1 2,2 — — 2

(1= (n(1—a)z) 4.10
o ﬁ(a)‘xe (4.10)
a and p can be either hyperparameters or trainable parameters.

Now, note that the class of neural networks with SMU and SMU-1 activation functions
are dense in C'(K), where K is a compact subset of R” and C'(K) is the space of all

continuous functions over K.

The proof follows from the following proposition (see Molina et al. (2020)).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 Kidger and Lyons
(2020)) :- Let p : R — R be any continuous function. Let N/ represent the class
of neural networks with activation function p, with n neurons in the input layer, one
neuron in the output layer, and one hidden layer with an arbitrary number of neurons.

Let K C R" be compact. Then N7 is dense in C'(K) if and only if p is non-polynomial.

4.5 Experiments

We report a detailed experimental evaluation in the next subsections on four differ-
ent deep learning problems like image classification, object detection, semantic seg-
mentation, and machine translation. To compare performance of our proposed ac-
tivation function, we consider ten popular activation functions as the baseline func-
tions. The following activations are considered to compare performance with SMU and
SMU-1: ReLU (Nair and Hinton (2010)), Leaky ReLU (Maas et al. (2013a)), ReLU6
(Krizhevsky (2010)), Parametric ReLU (PReLU) (He et al. (2015b)), ELU (Clevert
et al. (2016)), Softplus (Zheng et al. (2015)), Swish (Ramachandran et al. (2017)),
Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), and Pade Activation Unit
(PAU) (Molina et al. (2020)). For all experiments, we consider Swish (z. Sigmoid(fz)),
PReLU (max(x, ax)), and PAU as trainable activation functions. We initialize the train-
able parameter 3 at 1.0 for Swish, a at 0.25 for PReLU. PAU function has ten trainable
parameters and all the parameters are initialized as suggested in (Molina et al. (2020)).
All the trainable parameters are updated via the backpropagation (LeCun et al. (1989))
algorithm. We report results for baseline activation functions, SMU and SMU-1 activa-
tion functions in the following sections. SMU-1 is a computationally cheap activation

function due to its simple form, while it boosts the network performance remarkably

39

well in all the experiments compared to the baseline activations. All the experiments

are conducted on an NVIDIA Tesla V100 GPU with 32GB RAM.

4.5.1 Image Classification

We report results for the image classification problem on six popular benchmarking
datasets: MNIST, Fashion MNIST, SVHN, CIFAR10, CIFAR100, and Tiny ImageNet.
Detailed results are reported in the following subsections. For SMU, we consider o« =

0.25, a constant hyperparameter and x as a trainable parameter and initialise at 1.0.

MNIST, Fashion MNIST, and SVHN

In this section, We present our experimental comparison for SMU, SMU-1 and other
baseline activations on MNIST (LeCun er al. (2010)), Fashion MNIST (Xiao er al.
(2017)), and SVHN (Netzer et al. (2011)) datasets. The MNIST and Fashion MNIST
databases contain 60k training and 10k testing 28 x 28 grey-scale images. Both the
datasets have ten different classes. The SVHN database has 32 x 32 RGB images and
a total of 73257 training images and 26032 testing images with ten different classes.
Standard data augmentation methods like zoom, rotation, height shift, shearing are ap-
plied to these three datasets. We consider a batch size of 128, 0.01 initial learning
rate and decay the learning rate with cosine annealing (Loshchilov and Hutter (2017))
learning rate scheduler. We use stochastic gradient descent (Robbins and Monro (1951),
Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e~* weight decay, and
trained all networks up-to 100 epochs. We report results with VGG-16 (Simonyan and
Zisserman (2015)) (with batch-normalization (Ioffe and Szegedy (2015))) architecture
in Table 4.1 for mean of 15 different runs. We report more results on MNIST, Fashion
MNIST, and SVHN datasets with SMU, SMU-1 and baseline activations with LeNet,
AlexNet, and a custom-designed model in Table 4.2, Table 4.3, and Table 4.4 respec-
tively. Our custom homogeneous convolutional neural network has max-pooling lay-
ers(thrice), channel depths of size 128 (twice), 64 (thrice), 32 (twice), and a dense layer
of size 128. Batch-normalization is applied before the activation function layer. We use

3 x 3 kernels in CNN layers and 2 x 2 kernels in max-pooling layers.

40

Activation Function MNIST Fashion MNIST SVHN

ReLLU 99.53 £ 0.07 | 93.79+0.15 |95.97+0.14
Leaky RelLU 99.58 £0.08 | 93.80£+0.15 | 96.024+0.15
PReLLU 99.55 £0.07 | 9390+ 0.17 |96.10 £+ 0.16
ReLU6 99.59 +0.06 | 9393 +£0.12 |96.11 £0.15
ELU 99.48 £0.05 | 93.87£0.16 | 96.0540.17
Softplus 99.224+0.14 | 93.58 £0.18 | 95.81 +0.21
Swish 99574+ 0.05| 94.17+£0.11 | 96.20 +0.12
Mish 99.63+ 0.04 | 9425 +£0.13 |96.31 +£0.12
GELU 99.59+ 0.04 | 9422 +0.14 |96.21 +£0.14
PAU 99.554+0.07 | 94.09 +0.14 |96.20 +0.14
SMU 99.69 + 0.04 | 94.48 £ 0.10 |96.59 + 0.11
SMU-1 99.65 - 0.04 | 94.37 £ 0.14 |96.43 +=0.14

Table 4.1: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on VGG16 architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean=std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
RelLU 99.16 £0.11 | 91.42+0.18 | 92.10£0.21
Leaky ReLU 99.12+0.12 | 91.43+£0.22 |92.27+0.20
ReLLU6 9921 £0.10 | 9147 +£0.19 | 92.28+0.16
PReLLU 99.23 +£0.10| 9140+ 0.20 | 92.09 +0.20
ELU 99.30 £0.10 | 91.41 £0.21 | 92.28£0.19
Softplus 99.01 £0.19 | 91.11£0.25 |91.92+£0.26
GELU 9933+ 0.08 | 91.60+0.13 | 92.47+0.17
Swish 99.29+£0.09 | 91.66 £0.15 | 92.35+0.20
PAU 99.37+0.10 | 91.56 £0.14 | 92.37+0.21
Mish 99.36 = 0.06 | 91.68 =0.13 | 92.41 £0.17
SMU 9947 £ 0.04 | 91.58+0.16 |92.79+0.16
SMU-1 9941 £ 0.05| 91.51 +£0.14 |92.66 = 0.17

Table 4.2: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on LeNet architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean-=std is reported in the table.

41

Activation Function MNIST Fashion MNIST SVHN

RelLLU 99.48 £0.07 | 92.70£0.20 | 95.03+0.16
Leaky RelLU 99.47+0.07 | 9281 +£0.19 |95.1040.18
RelLLU6 9952 £0.05| 9294 +0.14 |95.16 +0.14
PReLLU 99454+ 0.09 | 9279 £0.20 |95.12£0.16
ELU 99.51 £0.06 | 9296 £0.15 |95.194+0.16
Softplus 99.274+0.11 | 92.30+£0.27 |94.71+0.20
GELU 99.57+ 0.07 | 93.09 £0.12 |95.20 +£0.13
Swish 99.59 4+ 0.06 | 92.90£0.17 | 95.35+0.16
PAU 99.51 £0.10 | 93.06 £0.18 |95.29 +0.15
Mish 99.61 £0.06 | 93.12 +£0.15 |95.31 +0.12
SMU 99.68 - 0.04 | 93.31 £0.15 |95.59 +0.12
SMU-1 99.65 - 0.05 | 93.20 £0.11 |95.46 +0.13

Table 4.3: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on AlexNet architecture. We report Top-1 test accuracy (in %)
for the mean of 15 different runs. mean=std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN

RelLLU 9941 +£0.09 | 9297+0.16 |94.48+0.14
Leaky ReLU 9940 £0.07 | 93.17+£0.14 | 94.59 £0.18
ReLLU6 9946 £0.07 | 93.35+0.16 |94.61 £0.12
PReLLU 99.37 +£0.11 | 93.18 =0.13 |94.58 +0.15
ELU 9949+ 0.07 | 93.24+0.14 | 94.57+£0.15
Softplus 99.21+£0.14 | 92.99+0.24 | 94.34 £0.22
GELU 9952+ 0.05 | 93.39 +£0.14 |94.87 £0.10
Swish 99.544-0.07 9334 +0.15 |94.84+0.14
PAU 99.55+0.12 93.37+0.17 |94.794+0.14
Mish 99.64+0.06 90343 £0.12 | 94.87+£0.10
SMU 99.61 £0.06 | 93.61 +0.09 |95.06 & 0.10
SMU-1 9957 £0.07 | 93.49 +0.11 |95.18 +0.12

Table 4.4: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on MNIST, Fashion MNIST, and SVHN datasets for image classifica-
tion problem on custom designed architecture. We report Top-1 test accuracy
(in %) for the mean of 15 different runs. mean+std is reported in the table.

42

CIFAR

In this section, we report results on the popular image classification datasets CIFAR10
(Krizhevsky (2009)) and CIFAR100 (Krizhevsky (2009)). Both the datasets have 50k
training and 10k testing images. While CIFAR10 has ten classes and CIFAR100 has
100 classes. In these two datasets for all experiments, we consider a batch size of 128,
0.01 initial learning rate and decay the learning rate with cosine annealing (Loshchilov
and Hutter (2017)) learning rate scheduler, stochastic gradient descent (Robbins and
Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with 0.9 momentum & 5e~*
weight decay, and trained all networks up-to 200 epochs. We consider standard data
augmentation methods like horizontal flip and rotation. Top-1 accuracy is reported in
Table 4.5, Table 4.7, Table 4.8, & Table 4.9 on CIFAR100 (Krizhevsky (2009)) dataset
and Table 4.6, Table 4.10, Table 4.11 & Table 4.12 on CIFARI10 (Krizhevsky (2009))
dataset for mean of 15 different runs. The results are reported with MobileNet V1
(Howard et al. (2017)), MobileNet V2 (Sandler et al. (2019)), ShuffieNet V1 (Zhang
et al. (2017b)) (SF V1), ShuffleNet V2 (Ma et al. (2018)), PreActResNet (He et al.
(2016)), ResNet (He et al. (2015a)), GoogleNet (Szegedy et al. (2014a)), Inception V3
(Szegedy et al. (2015a)), DenseNet (Huang et al. (2016a)), Squeeze-and-Excitation
Networks (SeNet) (Hu er al. (2017)), SqueezeNet (Iandola er al. (2016)), ResNext
(Xie et al. (2017)), WideResNet (Zagoruyko and Komodakis (2016)), Xception (Chol-
let (2017)), VGG (Simonyan and Zisserman (2015)) (with batch-normalization (loffe
and Szegedy (2015))), AlexNet (Krizhevsky er al. (2012)), LeNet (Lecun et al. (1998)),
and EfficientNet BO (Tan and Le (2020)). From Table 4.5 it is clear that Top-1 classifi-
cation accuracy improves by 6.19%, 6.22%, 3.39%, 3.51%, 3.09%, 3.40% and 3.08%
when we replace ReLU by SMU on the CIFAR100 dataset with ShuffleNet V2 (1.0x),
ShuffleNet V2 (2.0x), PreActResNet-50, ResNet-50, ResNext, Xception and SeNet-50
models respectively. The Figures 4.8 and 4.9 shows the learning curves on CIFAR100
dataset with ShuffleNet V2 (2.0x) model for the baseline and the proposed activation

functions.

Tiny Imagenet

In this section, We report results for classification problem on a more challenging

dataset, Tiny Imagenet (Le and Yang (2015)). Tiny imagenet has RGB images of size

43

Model | ReLU | SMU | SMU-1

‘ Top-1 accuracy ‘ Top-1 accuracy ‘ Top-1 accuracy

Shufflenet V2 0.5x | 62.07 £ 0.26 66.67 £ 0.24 65.60 £ 0.24
Shufflenet V2 1.0x | 64.41 £ 0.25 70.60 £ 0.21 69.96 + 0.22
Shufflenet V2 1.5x | 67.20 £ 0.26 72.68 £ 0.19 72.05 £ 0.20
Shufflenet V2 2.0x | 67.52 £0.25 73.74 £ 0.20 73.45 £0.23

PreActResNet 18 73.18 £ 0.22 76.07 £ 0.20 75.72 £0.22
PreActResNet 34 | 73.41 £0.24 76.21 £ 0.20 75.87 £0.21
PreActResNet 50 | 73.89 £ 0.23 77.28 £0.17 76.85 £ 0.20

ResNet 18 73.23+£0.26 | 7522+£020 | 74.91+0.20
ResNet 34 73.33+£0.27 | 75.77+£020 | 75.59+0.21
ResNet 50 74.12+£0.24 | 77.63+£020 | 76.89 + 023
SeNet 18 74774022 | 76.17+0.17 | 75444020
SeNet 34 75.12+£0.22 | 76.79£0.18 | 75.79 +0.21
SeNet 50 76.09+£0.20 | 79.17£0.16 | 78.45+0.20
ResNext | 7443 +022 | 77.52+0.18 | 77.03+0.21
MobileNet VI | 71.10+026 | 73.59+0.22 | 73.10 £0.22
MobileNet V2 | 74.17+024 | 7631+0.19 | 76.03 £0.19
Xception | 7122+026 | 74.62+023 | 74.11+0.23
EffitientNet BO | 76.60 +£0.27 | 79.10 £0.22 | 78.77 +0.23

Table 4.5: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR100 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean=+std is reported
in the table.

64 x 64 with total 1,00,000 training images, 10,000 validation images, and 10,000 test
images with total 200 classes. Standard data augmentation methods like rotation, hori-
zontal flip is applied. We consider a batch size of 64, 0.1 initial learning rate and reduce
the learning rate after every 50 epochs by a factor of 10. We use stochastic gradi-
ent descent (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)) optimizer with
0.9 momentum & 5e~* weight decay, and trained all networks up-to 200 epochs. Re-
sults are reported with WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis
(2016)), DenseNet-121 (Huang et al. (2016a)), ResNet-18, and ResNet-50 (He et al.
(2015a)) models and Top-1 classification accuracy is reported in table 4.14 for mean of
10 different runs. The proposed functions performs better than the baseline functions
and results are stable (mean=std) and we get very good improvement over the baseline
activation functions. Replacing ReLU by SMU, we have 2.56%, 2.23%, 2.31%, and
2.78% boost in Top-1 classification accuracy on DenseNet-121, ResNet-18, ResNet-50,

44

Model | ReLU | SMU | SMU-1

‘ Top-1 accuracy ‘ Top-1 accuracy ‘ Top-1 accuracy

ShuffleNet V2 0.5x | 88.40 £ 0.22 90.63 £ 0.16 90.39 £ 0.18
ShuffleNet V2 1.0x | 90.81 £+ 0.24 92,72 £0.18 92.42 + 0.20
ShuffleNet V2 1.5x | 91.21 £0.22 93.42 £ 0.17 92,27 £0.18
ShuffleNet V2 2.0x | 91.70 £0.20 93.61 £ 0.14 93.40 £ 0.16

PreActResNet 18 93.57 £+ 0.20 94.63 + 0.15 94.52 +0.17
PreActResNet 34 9421 +£0.17 95.12 £ 0.13 94.93 4+ 0.14
PreActResNet 50 94.30 £ 0.18 95.37 - 0.11 94.94 4+ 0.12

ResNet 18 94.10 £0.20 | 9478 £0.17 | 94.51+0.19
ResNet 34 94.22+0.18 | 9491+£0.16 | 94.77 +0.17
ResNet 50 94.26 £ 0.18 | 9538 £0.16 | 94.92+0.17

SeNet 18 9429+ 020 | 94.75+£0.17 | 94.56 +0.19
SeNet 34 9442 +020 | 9527015 | 94.89 +0.17
SeNet 50 94.55+0.19 | 9592+0.12 | 9522+0.17
ResNext | 9337+0.18 | 94.52+0.15 | 94.04 £0.18

MobileNet V1 9241 +£0.14 | 93.81+£0.11 | 93.47+0.11

MobileNet V2 94.22+0.15 | 9550 £0.09 | 95.27 +0.10
Xception | 90.51£022 | 93.25+0.17 | 92.59+0.20

EffitientNet BO | 95.10+0.15 | 96.23+£0.10 | 96.11+0.12

Table 4.6: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR10 dataset for image classification problem. We report Top-1
test accuracy (in %) for the mean of 15 different runs. mean-=+std is reported
in the table.

and WideResNet 28-10 models respectively.

We run experiments with Mixup augmentation method on CIFAR100 dataset with
ShuffleNet V2 (2.0x), MobileNet V2, AlexNet, Xception, ResNet-50 models and results
are reported in Table 4.13. The results are reported with the same experimental setup is
reported in the CIFAR section. From table 4.13, it is clear that the proposed activations

perform better than the baseline activations in all the models.

ImageNet-1k

We also evaluate the performance of proposed and baseline activation functions on
bookmarking the ImageNet-1k dataset. The dataset consists of 1,281,167 training im-
ages and 50,000 validation images with 1000 classes. The images have a resolution of

224x224. Results are reported on Table 4.15 with ShuffleNet V2 (1.0x) and ResNet-50

45

100

90

80

70

Accuracy

60

50

40

A A/
VY
i Wm’j W RelU train ReLU test
1 ’J:’v/’\'\w\y / Leaky RelU train Leaky ReLU test
71V ReLUS train RelUS6 test
/7‘ —— PReLU train —— PReLU test
ELU train ELU test
—— PAU train — PAUtest
—— Mish train —— Mish test
—— Swish train —— Swish test
GELU train GELU test
—— SMU train —— SMU test
—— SMU-1 train —— SMU-1 test
0 25 50 75 100 125 150 175 200
Epochs

Figure 4.8: Top-1 train and test accu-

racy curves for SMU, SMU-
1 and other baseline activa-
tion functions on CIFAR100
dataset with ShuffleNet V2

2.0

15

Loss

1.0

0.5

0.0

RelU train RelU test
Leaky ReLU train Leaky RelU test
ReLUS train RelUG test

—— PRelU train —— PRelU test
ELU train ELU test

—— PAU train — PAU test

—— Mish train —— Mish test

—— Swish train —— Swish test
GELU train GELU test

—— SMU train —— SMU test

‘ R AN
) A 1
v W\ —— SMU-1 train —— SMU-1 test
W \WMW\ N
V V\N\\u \w N
AP Mo ! N
v

PN O

N R ToTes

i o e

25 50 75 100 125 150 175 200
Epochs

Figure 4.9: Top-1 train and test loss

curves for SMU, SMU-1 and
other baseline activation func-
tions on CIFARI100 dataset
with ShuffleNet V2 (2.0x)

(2.0x) model. model.

Activation Alex Shuffle | Google | Inception Dense WideRes | Squeeze | VGG LeNet

Function Net Net V1 Net V3 Net 121 | Net 28-10 Net 16
SMU 61.27 69.15 74.61 77.52 78.57 78.89 68.51 73.26 | 47.20
+0.21 | £0.22 +0.25 +0.24 +0.23 +0.24 +0.24 +0.22 | +0.25
SMU-1 60.98 68.71 74.29 76.88 78.01 78.30 68.07 7279 | 47.03
+0.23 | £0.22 +0.24 +0.23 +0.24 +0.23 +0.25 +0.23 | +0.24
ReLU 54.89 65.79 72.52 74.12 75.81 76.45 66.22 71.87 45.54
+0.28 | +0.29 +0.30 +0.27 +0.28 +0.26 +0.29 +0.30 | +0.28
Leaky ReLU 55.26 65.99 72.42 74.49 75.93 76.61 66.15 71.92 | 45.77
+0.27 | £0.30 +0.31 +0.28 +0.27 +0.27 +0.27 +0.29 | +0.29
ReLUG 55.89 66.19 72.47 74.51 75.98 76.71 66.39 71.95 45.79
+0.26 | +0.28 +0.28 +0.25 +0.28 +0.27 +0.26 +0.28 | +0.27
PReLU 55.47 65.87 72.69 74.39 76.06 76.71 66.35 71.96 | 45.59
+0.29 | £0.32 +0.29 +0.30 +0.29 +0.27 +0.28 +0.32 | +0.31
ELU 5591 65.72 72.92 74.65 75.72 76.25 66.39 71.79 46.02
+0.26 | £0.28 +0.28 +0.26 +0.25 +0.26 +0.28 +0.30 | +0.28
Softplus 54.99 65.11 71.81 74.25 75.19 75.42 65.73 7092 | 44.12
+0.39 | £0.38 +0.38 +0.35 +0.35 +0.37 +0.35 +0.32 | +0.39
GELU 57.32 67.22 73.16 75.66 76.68 77.07 66.99 71.88 47.27
+0.26 | +0.25 +0.26 +0.26 +0.26 +0.25 +0.29 +0.27 | £0.25
Swish 57.55 67.01 73.32 75.47 76.51 77.35 66.56 71.94 | 47.34
+0.27 | £0.26 +0.26 +0.28 +0.29 +0.24 +0.27 +0.28 | +0.23
PAU 57.35 67.45 73.68 75.85 76.72 77.02 66.89 71.79 47.30
+0.29 | £0.28 +0.27 +0.31 +0.28 +0.26 +0.24 +0.25 | +0.29
Mish 58.22 67.85 73.97 76.29 77.25 77.45 67.35 72.45 47.42
+0.23 | £0.24 +0.24 +0.25 +0.24 +0.23 +0.23 +0.22 | £0.27

Table 4.7: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR100 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean=std is reported

in the table.

46

Activation SFV2 | SFV2 | SFV2 | SFV2 | SeNet | SeNet | SeNet Res- Xcep- | EffitientNet
Function 0.5x 1.0x 1.5x 2.0x 18 34 50 Next tion BO

Leaky ReLU 62.25 65.39 67.39 67.79 74.51 75.14 76.23 74.58 71.01 76.81
+0.33 | £0.34 | £0.29 | +£0.29 | £0.23 | £0.24 | £0.22 | £0.23 | £0.26 +0.28

ReLU6 62.39 65.71 67.65 68.10 74.69 75.34 76.61 74.65 71.39 76.67
+0.30 | £0.29 | +£0.29 | £0.26 | £0.20 | +£0.22 | £0.21 | +0.24 | +0.23 +0.24

PReLU 62.01 65.10 67.37 67.99 74.39 75.19 76.39 74.48 71.19 76.68
+0.34 | £033 | +£0.34 | +£0.29 | £0.27 | £0.23 | +0.24 | +£0.26 | £0.28 +0.30

ELU 62.61 65.60 67.71 67.91 74.79 75.10 76.49 74.69 71.45 76.71
+0.30 | £0.28 | +0.27 | +£0.31 | £0.22 | £0.21 | +0.23 | £0.22 | £0.24 +0.30

Softplus 61.87 64.45 67.19 68.79 74.36 74.78 75.22 74.31 71.30 76.56
+0.35 | +£0.37 | £0.32 | £0.30 | +£0.34 | £0.34 | £0.37 | £0.35 | +0.39 +0.36

GELU 64.40 66.79 69.79 70.10 74.82 76.20 77.20 75.17 72.07 77.31
+0.26 | £0.23 | £0.29 | +£0.28 | £0.19 | £0.21 | £0.21 | £0.24 | +0.22 +0.22

Swish 63.79 66.99 69.59 70.29 74.62 75.77 76.89 75.17 72.19 77.17
+0.25 | £0.25 | £0.27 | +£0.24 | £0.19 | £0.22 | +0.24 | +0.25 | £0.21 +0.20

PAU 64.10 66.77 69.52 70.54 74.89 75.92 77.10 75.66 72.62 77.41
+0.26 | £0.27 | £0.25 | +£0.26 | £0.20 | £0.24 | +0.23 | +£0.26 | £0.27 +0.24

Mish 64.91 67.78 70.44 71.49 75.32 76.52 77.69 76.20 73.49 78.15
+0.24 | £0.24 | £0.25 | +£0.22 | £0.19 | £0.23 | +0.23 | +£0.24 | £0.22 +0.22

Table 4.8: This is an extension to the Table-4.5 (4.5). We report Top-1 test accuracy (in
%) on CIFAR100 dataset for baseline functions for the mean of 15 different
runs. mean=std is reported in the table. SF V2 stands for ShuffleNet v2.

Activation ResNet | ResNet | ResNet PreAct | PreAct | PreAct MobileNet | MobileNet
Function 18 34 so | ResNet | ResNet | ResNet | -y V2
18 34 50

Leaky ReLU 73.12 73.41 74.19 73.29 73.33 74.02 71.22 74.03

+0.25 | £0.28 | +£0.25 | £0.23 | +£0.24 | +0.24 +0.26 +0.25

ReLUSG 73.35 73.59 74.23 73.47 73.56 74.46 71.56 74.51

+0.24 | £0.26 | +£0.23 | £0.23 | +£0.22 | £0.23 +0.24 +0.23

PReLU 73.02 73.52 74.32 73.21 73.45 74.29 71.41 74.45

+0.27 | £0.29 | +£0.28 | +£0.25 | +£0.26 | +0.25 +0.29 +0.30

ELU 73.42 73.68 74.48 73.32 73.49 74.44 71.32 74.22

+0.24 | +£0.26 | +0.24 | £0.20 | +0.25 | +0.25 +0.24 +0.23

Softplus 72.86 73.20 74.10 72.99 73.10 73.96 71.04 74.27

+0.39 | +£0.38 | +040 | +0.41 +0.35 | +£0.38 +0.38 +0.36

GELU 73.89 74.10 75.59 74.98 74.41 74.92 71.74 75.01

+0.22 | +£0.25 | +0.22 | £0.23 | +0.21 +0.22 +0.22 +0.23

Swish 73.68 74.17 75.35 75.12 74.81 75.10 71.92 75.15

4+0.23 | +£0.24 | +024 | +0.25 | +£0.22 | +0.21 4+0.21 4+0.22

PAU 74.10 74.44 75.87 74.92 74.72 75.68 71.83 75.19

4+0.20 | £0.22 | +0.21 4+0.21 +0.19 | £0.17 +0.22 +0.19

Mish 74.59 74.70 76.22 75.11 75.34 76.98 72.24 75.45

4+0.20 | £0.21 +0.22 | £0.23 | +0.21 +0.19 +0.20 +0.20

Table 4.9: This is an extension to the Table-4.5 (4.5). We report Top-1 test accuracy (in
%) on CIFAR100 dataset for baseline functions for the mean of 15 different
runs. mean+std is reported in the table.

47

Activation ResNet | ResNet | ResNet PreAct | PreAct | PreAct MobileNet | MobileNet
. ResNet | ResNet | ResNet

Function 18 34 50 18 50 \"A! V2

Leaky ReLU 94.00 94.18 94.29 93.51 94.29 94.32 92.54 94.10

+0.25 +0.24 | +£0.24 | +0.20 | +0.22 +0.22 +0.21 +0.19

ReLU6 94.19 94.20 94.26 93.69 94.19 94.52 92.69 94.21

+0.26 +0.25 +0.27 +0.21 +0.25 +0.23 +0.20 +0.20

PReLU 94.22 94.29 94.17 93.58 94.31 94.48 92.50 94.29

+0.28 +0.29 +0.27 +0.23 +0.25 +0.28 +0.20 +0.23

ELU 94.15 94.24 94.20 93.59 94.42 94.45 92.69 94.04

+0.23 +0.22 | £0.24 | +0.22 | +0.24 | £0.20 +0.21 +0.19

Softplus 93.82 93.99 93.77 93.09 94.01 94.08 92.01 93.91

+0.29 +0.31 +0.31 +0.28 +0.35 +0.32 +0.32 +0.27

GELU 94.38 94.41 94.59 93.70 94.24 94.69 92.81 94.20

+0.22 +0.23 +0.23 +0.21 +0.25 +0.23 +0.20 +0.16

Swish 94.31 94.32 94.64 93.80 94.14 94.61 92.69 94.22

+0.21 +0.20 | £0.22 +0.21 +0.24 | +0.23 +0.22 +0.17

PAU 94.40 94.46 94.59 93.84 94.29 94.73 93.01 94.54

+0.20 | £0.22 | +0.22 +0.20 | +£0.22 +0.24 +0.15 +0.13

Mish 94.52 94.39 94.79 93.78 94.51 94.81 92.78 94.77

+0.23 +0.22 | £0.22 +0.22 | £0.22 +0.24 +0.20 +0.18

Table 4.10: This is an extension to the Table-4.6 (4.6). We report Top-1 test accuracy (in
%) on CIFAR10 dataset for baseline functions for the mean of 15 different

runs. mean4std is reported in the table.

Activation Alex Shuffle | Google | Inception Dense WideRes | Squeeze VGG LeNet
Function Net Net V1 Net V3 Net 121 | Net 28-10 Net 16

SMU 87.25 92.42 94.10 95.59 96.07 96.23 91.77 94.54 77.66

+0.15 | +0.14 +0.17 +0.14 +0.12 +0.14 +0.16 +0.14 | +0.16

SMU-1 86.77 92.01 93.69 95.11 95.65 95.711 91.38 94.32 77.39

+0.16 | £0.15 +0.16 +0.15 +0.12 +0.13 +0.15 +0.15 | +0.16

ReLU 84.10 91.34 9291 94.04 94.77 95.08 90.59 93.59 75.80

+0.20 | +0.19 +0.18 +0.18 +0.19 +0.21 +0.20 +0.18 | +0.21

Leaky ReLU 84.22 91.56 92.79 94.29 94.68 95.01 90.71 93.71 75.99

+0.22 | £0.20 +0.17 +0.22 +0.22 +0.20 +0.20 +0.19 | +0.20

ReLU6 84.79 91.68 92.97 94.21 94.59 95.39 90.87 93.70 75.88

+0.19 | £0.18 +0.16 +0.19 +0.20 +0.20 +0.19 +0.17 | £0.18

PReLU 84.30 91.74 9291 94.45 94.59 95.10 90.79 93.58 75.90

+0.24 | £0.23 +0.24 +0.20 +0.23 +0.20 +0.23 +0.22 | £0.21

ELU 84.89 91.89 92.99 94.45 94.72 95.23 90.87 93.78 75.88

+0.19 | £0.18 +0.16 +0.17 +0.18 +0.17 +0.15 +0.16 | £0.18

Softplus 84.01 91.10 92.56 94.17 94.54 94.89 90.55 93.39 75.45

+0.30 | +0.29 +0.32 +0.31 +0.29 +0.28 +0.33 +0.29 | £0.35

GELU 85.02 9L.77 93.36 94.32 94.71 95.19 90.89 93.64 77.71

+0.19 | £0.18 +0.18 +0.17 +0.20 +0.18 +0.16 +0.16 | +0.19

Swish 85.19 91.49 93.26 94.40 94.69 95.47 91.12 93.68 77.70

+0.18 | £0.20 +0.19 +0.19 +0.17 +0.17 +0.19 +0.17 | £0.18

PAU 84.91 91.95 93.20 94.32 94.50 95.07 90.51 93.50 77.68

+0.20 | £0.21 +0.19 +0.23 +0.22 £0.20 +0.19 +0.21 | +0.20

Mish 85.78 91.96 93.29 94.49 95.03 95.39 91.14 93.71 77.79

+0.17 | £0.15 +0.17 +0.16 +0.13 +0.16 +0.16 +0.17 | £0.15

Table 4.11: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFAR10 dataset for image classification problem. We report Top-
1 test accuracy (in %) for the mean of 15 different runs. mean=+std is re-
ported in the table.

48

Activation SFV2 | SFV2 | SFV2 | SFV2 | SeNet | SeNet | SeNet Res- Xcep- | EffitientNet

Function 0.5x 1.0x 1.5x 2.0x 18 34 50 Next tion BO

Leaky ReLU 88.32 91.20 91.24 91.70 94.18 94.52 94.51 93.25 90.81 95.35

+0.24 | £0.26 | +£0.24 | £0.24 | £0.24 | +£0.23 | £0.21 | £0.20 | £0.25 +0.15

ReLU6 88.52 91.15 91.32 91.64 94.39 94.50 94.61 93.49 91.20 95.40

+0.22 | £0.23 | +£0.20 | +£0.22 | £0.22 | +0.24 | +0.22 | £0.21 | £0.22 +0.16

PReLU 88.28 91.02 91.29 91.77 94.35 94.57 94.62 93.35 91.07 95.37

+0.24 | £0.22 | +£0.24 | +£0.24 | £0.24 | £0.25 | +£0.24 | +£0.24 | £0.23 +0.19

ELU 88.20 91.17 91.40 91.81 94.22 94.42 94.71 93.52 91.45 95.19

+0.22 | £0.26 | £0.22 | +£0.24 | £0.22 | £0.24 | +£0.22 | £0.23 | £0.22 +0.19

Softplus 87.95 90.42 91.01 91.00 93.82 94.05 94.22 93.10 90.56 95.07

+0.30 | +£0.30 | £0.28 | £0.30 | £0.29 | £0.30 | £0.27 | £0.29 | +0.27 +0.25

GELU 88.92 91.62 91.77 92.29 94.49 94.77 94.79 93.61 91.99 95.45

+0.20 | £0.24 | +£0.20 | £0.19 | £0.20 | £0.20 | £0.16 | £0.20 | £0.22 +0.15

Swish 89.04 91.71 91.81 92.20 94.30 94.69 94.55 93.61 91.69 95.56

+0.20 | £0.22 | +£0.20 | +0.19 | £0.18 | +0.18 | +0.17 | £0.19 | £0.19 +0.16

PAU 89.18 91.70 92.20 92.31 94.32 94.77 94.70 93.50 91.91 95.49

+0.21 | £0.24 | £0.20 | +0.19 | £0.21 | £0.22 | +0.20 | £0.19 | £0.22 +0.15

Mish 89.42 91.98 92.18 92.47 94.49 94.81 94.97 93.89 92.07 95.70

+0.20 | +0.18 | £0.17 | £0.18 | +0.19 | £0.18 | £0.15 | +0.17 | £0.20 +0.12

Table 4.12: This is an extension to the Table-4.6 (4.5). We report Top-1 test accuracy (in
%) on CIFAR10 dataset for baseline functions for the mean of 15 different
runs. mean+std is reported in the table. SF V2 stands for ShuffleNet v2.

Activation Function Shuffle ResNet Xception Alex Mobile

Net V2 (2.0x) 50 Net Net V2
ReLU 70.21 £0.23 | 75.61 £0.26 | 72.10 &= 0.20 | 55.80 £ 0.27 | 75.72 & 0.23
Leaky ReLU 70.09 £ 0.25 | 75.74 £0.27 | 72.22 £0.22 | 56.10 £0.28 | 75.81 & 0.25
PReLLU 70.17 £ 0.24 | 75.82 £0.28 | 72.18 = 0.24 | 56.52 £0.26 | 75.98 & 0.27
ReLU6 70.21 £0.23 | 76.14 £0.25 | 72.35 +£0.19 | 56.69 £0.26 | 75.87 £ 0.22
ELU 70.34 £0.24 | 76.15+0.26 | 72.41 £0.23 | 56.97 = 0.25 | 75.79 = 0.25
Softplus 69.91 £0.26 | 75.51 =0.30 | 71.94 & 0.26 | 55.65 +0.35 | 75.60 + 0.27
Swish 73.64 £0.21 | 76.80 &= 0.24 | 73.45 +0.20 | 58.77 £ 0.24 | 76.67 + 0.21
Mish 7425 +£0.22 | 77.30 £0.24 | 74.34 £ 0.21 | 59.87 £ 0.25 | 77.02 + 0.22
GELU 73.51 +£0.21 | 76.85+0.25 | 73.71 = 0.18 | 58.50 £0.26 | 76.61 + 0.22
PAU 73.854+0.20 | 77.07 £0.24 | 73.87 £ 0.20 | 58.80 £ 0.25 | 76.81 4 0.21
SMU 75.78 +0.20 | 78.71 £ 0.24 | 75.30 = 0.18 | 62.42 £ 0.23 | 77.83 + 0.20
SMU-1 75.01 =021 | 77.81 £ 0.24 | 74.84 = 0.20 | 61.93 £0.25 | 77.49 +0.22

Table 4.13: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CIFARI100 dataset for image classification problem with Mixup
augmentation method. We report Top-1 test accuracy (in %) for the mean
of 15 different runs. mean+-std is reported in the table.

49

Activation Function | DenseNet-121 | ResNet-18 ResNet-50 Wldzegl?i:(s)Net
ReLU 63.31 £0.47 | 59.12+0.44 | 61.23 +0.46 | 63.74 + 0.40
Leaky ReLU 63.63 +0.48 | 59.40 +£0.44 | 61.29 £ 0.44 | 63.61 £ 0.42
PRelLLU 63.71 £0.46 | 59.59 +0.42 | 61.354+0.44 | 63.78 = 0.44
ReLU6 63.54 +0.49 | 59.49 +0.46 | 61.41 £0.44 | 63.72 £0.43
ELU 63.51 £0.46 | 59.34 +0.44 | 61.49 +£0.43 | 63.72 £0.43
Softplus 63.01 £0.57 | 59.01 +£0.57 | 60.93 + 0.57 | 63.01 4+ 0.59
Swish 64.21 +£0.40 | 60.05 +0.40 | 61.79 £ 0.41 | 64.58 £ 0.41
Mish 64.47 £0.40 | 60.21 +£0.39 | 62.07 £ 0.42 | 64.79 £+ 0.38
GELU 64.34 +£0.42 | 60.21 =0.41 | 61.66 £ 0.42 | 64.39 £ 0.40
PAU 64.04 £0.43 | 60.37 £0.39 | 61.72 = 0.41 | 64.42 +0.40
SMU 65.87 £ 0.37 | 61.35 + 0.35 | 63.54 + 0.40 | 66.52 + 0.35
SMU-1 65.09 + 0.38 | 60.93 + 0.38 | 62.79 + 0.40 | 65.25 £ 0.37

Table 4.14: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on Tiny ImageNet dataset for image classification problem. We report
Top-1 test accuracy (in %) for the mean of 10 different runs. mean+std is
reported in the table.

models. We use four NVIDIA V100 GPUs with 32GB RAM each to run these experi-
ments. We trained the models up to 600k iterations with a batch size of 256 and SGD

optimizer, 0.9 momentum, 5e~* weight decay rate.

Activation Function | ShuffleNet V2 (1.0x) | ResNet-50
RelLU 69.21 75.52
Leaky ReLLU 69.28 75.67
PRelLU 69.01 75.40
ReLLU6 69.45 75.770
ELU 69.49 75.62
Softplus 69.01 75.30
Swish 70.35 76.06
Mish 70.53 76.45
GELU 70.12 76.01
PAU 70.28 76.14
SMU 71.93 77.48
SMU-1 71.17 76.89

Table 4.15: Top-1 accuracy reported on ImageNet-1k dataset.

50

4.5.2 Object Detection

In this section, we report results on object detection problem on Pascal VOC dataset
(Everingham et al. (2010)) with Single Shot MultiBox Detector(SSD) 300 model (Liu
et al. (2016)) and we consider VGG-16 (with batch-normalization) (Simonyan and Zis-
serman (2015)) as the backbone network. We use VOC2007 & VOC2012 as train data
and VOC2007 as the test dataset. The dataset contains 20 different objects. We consider
a batch size of 8, 0.001 initial learning rate and decay the learning rate as reported in
(Liu et al. (2016)). We use SGD (Robbins and Monro (1951), Kiefer and Wolfowitz
(1952)) optimizer with 0.9 momentum & 5¢~* weight decay, and trained networks up-
to 120000 iterations. We do not consider any pre-trained weight. We report the mean
average precision (mAP) in Table 4.16 for the mean of 10 different runs. Replacing

ReLU by SMU, we got a 1% improvement in mAP in the test dataset.

Activation Function mAP

ReL.U 77.2 £0.14
Leaky ReLU 77.2 £0.13
PReLU 77.2 £0.16
ReLU6 77.1 £0.15
ELU 75.1 £0.18
Softplus 74.2 £0.25
Swish 77.5 +£0.11
Mish 77.6 £0.11
GELU 77.5 +£0.12
PAU 774 £0.14
SMU 78.2 £ 0.09
SMU-1 77.8 £0.11

Table 4.16: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on Pascal VOC dataset for object detection problem. We report mAP
for the mean of 10 different runs. mean=std is reported in the table.

51

4.5.3 Semantic Segmentation

In this section, we report experimental results on semantic segmentation problems on
the popular CityScapes dataset (Cordts et al. (2016)). CityScapes (Cordts et al. (2016))
is a popular dataset consisting of diverse urban street scenes across 50 different cities at
varying times of the year, as well as ground truths for semantic segmentation, instance-
level segmentation. Label annotations for segmentation tasks span across 30+ classes.
We consider U-net model (Ronneberger et al. (2015)) as the segmentation framework.
The model is trained with adam optimizer (Kingma and Ba (2015)), 5¢~3 learning rate,
a batch size 32 up to 250 epochs. We report the mean of 10 different runs for Pixel

Accuracy and the mean Intersection-Over-Union (mIOU) on test data on table 4.17.

Activation Function Pixel mlIOU
Accuracy

ReLLU 79.49 +0.46 | 69.31 £ 0.28
Leaky RelLU 79.41 £ 0.41 | 69.64 +0.42
PReLU 78.95 +£0.42 | 68.88 +£0.41
ReLU6 79.58 £ 0.41 | 69.70 £ 0.42
ELU 79.48 +£0.50 | 68.19 £ 0.40
Softplus 78.45 +0.52 | 68.08 £+ 0.49
Swish 80.22 +0.46 | 69.81 + 0.30
Mish 80.59 £0.44 | 70.12 += 0.30
GELU 80.14 +0.37 | 69.59 + 0.40
PAU 79.89 +£0.39 | 69.31 £0.44
SMU 81.79 + 0.36 | 71.11 + 0.30
SMU-1 80.75 + 0.41 | 70.55 + 0.30

Table 4.17: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on CityScapes dataset for semantic segmentation problem. We report
pixel accuracy and mIOU for the mean of 10 different runs. mean=std is
reported in the table.

4.5.4 Machine Translation

In this section, we report the result on the machine translation problem. This problem
deals with the translation of text or speech data from one language to another language
without the help of any human being. The WMT 2014 English—German dataset is
used for our experiment. The database contains 4.5 million training sentences. We
use an attention-based (Vaswani et al. (2017)) 8-head transformer network with Adam

optimizer (Kingma and Ba (2015)), 0.1 dropout rate (Srivastava et al. (2014)), and

52

train up to 100000 steps. Other hyperparameters are kept similar as mentioned in the
original paper (Vaswani et al. (2017)). We evaluate the network performance on the
newstest2014 dataset using the BLEU score metric. We report the mean of 10 different
runs on Table 4.18 on the test dataset(newstest2014). The table shows that the results

are stable on different runs (mean+std), and we got around 0.6% boost in BLEU score

for SMU compared to ReL.U.
Activation Function | BLEU Score
ReLU 26.2 +0.14
Leaky ReLU 26.3 £0.15
PReLU 26.2 +£0.18
ReLU6 26.1 £0.14
ELU 25.1 £0.14
Softplus 23.6 £0.18
Swish 264 £0.11
Mish 263 +£0.12
GELU 26.4 £0.15
PAU 263 +£0.15
SMU 26.8 £0.11
SMU-1 26.6 £ 0.10

Table 4.18: Comparison between SMU, SMU-1 activations and other baseline activa-
tions on WMT2014 dataset for machine translation problem. We report
BLEU score for the mean of 10 different runs. mean=std is reported in the
table.

4.6 Baseline Table

SMU and SMU-1 are novel activation functions constructed using the smoothing of
maximum function. For a detailed comparison, we report a summary of all the experi-
ments in Table 4.19 given in earlier sections. It is pretty clear from Table 4.19 that the

proposed functions outperform baseline functions almost in all experiments.

4.7 Computational Time Comparison

In this section, we report the computational Time Comparison for SMU, SMU-1, and
baseline activation functions. We report results in Table 4.20 for the mean of 100 runs

on a 32 x 32 RGB image in ResNet-18 He et al. (2015a) model for both forward and

53

Baselines ReLU ReLU ELU Softplus PReLU ReLU6 Swish Mish GELU PAU
SMU > Baseline 80 80 80 80 80 80 77 76 77 78
SMU = Baseline 0 0 0 0 0 0 0 0 0 0
SMU < Baseline 0 0 0 0 0 0 3 4 3 2
SMU-1 > Baseline 80 80 80 80 80 80 77 76 77 78
SMU-1 = Baseline 0 0 0 0 0 0 0 0 0 0
SMU-1 < Baseline 0 0 0 0 0 0 3 4 3 2

Table 4.19: Baseline table for SMU. These numbers represent the total number of mod-
els in which SMU underperform, equal or outperform compared to the base-
line activation functions

backward pass. The experiments are conducted on an NVIDIA Tesla V100 GPU with
32GB RAM. It is noticeable from the experiment section and Table 4.20 that there is
a small trade-off between the computational time and model performances compared
to ReLLU or its variants. The proposed activations have significantly boosted the model
performance though it has slightly higher computational time (due to non-linearity and
the trainable parameter 1) than ReLLU or its variants. In contrast, the computational time
is similar to popular non-linear activations like Swish, Mish & GELU and much better
than PAU, while model performance at the same time is comparatively much better than

these four popular non-linear activations in almost all cases.

Activation Forward Pass Backward Pass
Function
ReLU 643 £031us | 628 +0.74 us
Leaky ReLU | 6.49 £0.41 pus | 6.41 £0.95 us
PReLU 8.20 = 1.57us 9.26 £ 1.86 us
ReLU6 6.45+045pus | 641 £091 us
ELU 6.51 £0.50 us | 6.42 +0.88 us
Softplus 649 £ 049 us | 6.40 £ 0.55 us
Mish 10.02 £ 1.79 ps | 11.97 £ 1.75 us
GELU 10.75 £ 1.49 ps | 12.49 £ 1.77 us
Swish 1047 £ 1.10 pus | 12.61 = 1.22 us
PAU 18.45 £3.40 us | 25.99 £ 5.06 us
SMU 10.74 £ 1.29 us | 12.95 + 1.54 us
SMU-1 9.68 £1.81 us | 11.98 & 1.49 us

Table 4.20: Runtime comparison for the forward and backward passes for SMU and
SMU-1 and other baseline activation functions for a 32x 32 RGB image in

ResNet-18 model.

54

4.8 Conclusion

This work uses the maximum smoothing technique to approximate Leaky ReLLU, a well-
established activation function (not differentiable at 0) by two smooth functions. These
two functions are named SMU and SMU-1 and are being proposed as potential can-
didates for activation functions. Our experimental evaluation shows that the proposed
functions beat the traditional activation functions in well-known deep learning prob-
lems and have the potential to replace them. An extensive amount of experiments are
being conducted in different datasets on four different deep learning problems to show
the efficacy of the proposed activation functions. From the running time table, it is clear
that the proposed activation functions have similar ruining time like Swish, GELU, and
Mish, while both SMU and SMU-1 improves network performance compared to these

three non-linear activation functions.

55

CHAPTER §

ErfAct and Pserf !

5.1 Introduction

This chapter, in particular, deals with the hand-designed activation function. ReLU
and Leaky ReLU are popular hand-designed activation functions. Though both are
non-differentiable at the origin, differentiability is an important property in the deep
neural network. Swish is a smooth activation function and approximation of the ReLU
activation function. In this chapter, two new smooth activations have been proposed,

which are approximations by a smooth function of the ReLU activation function.

The choice of activation function in a deep learning architecture can have a sig-
nificant impact on the training and performance of the neural network. The machine
learning community has so far relied on hand-designed activations like ReLU Nair and
Hinton (2010), Leaky ReLU (Maas et al. (2013a)) or their variants. RelLU, in particu-
lar, remains widely popular due to faster training times and decent performance. How-
ever, evidence suggests that considerable gains can be made when more sophisticated
activation functions are used to design networks. For example, activation functions
such as ELU (Clevert et al. (2016)), Parametric ReLU (PReLLU) (He et al. (2015b)),
ReLU6 (Krizhevsky (2010)), PAU (Molina et al. (2020)), ACON (Ma et al. (2021)),
Mish (Misra (2020)), GELU (Hendrycks and Gimpel (2020)), Swish (Ramachandran
et al. (2017)), Serf (Nag and Bhattacharyya (2021)) etc. have appeared as powerful
contenders to the traditional ones. ReLLU remains a go-to choice in research and prac-
tice. However, it has certain well-documented shortcomings, such as non-zero mean,
non-differentiability and negative missing, which leads to the infamous vanishing gra-
dients problem (also known as the dying ReLLU problem). Worth noting that prior to the
introduction of ReLLU, Tanh and Sigmoid were popularly used, but performance gains

and training time gains achieved by ReLLU led to their decline.

I'This chapter is a slightly modified version of the paper accepted at AAAI conference Biswas et al.
(2021¢).

5.2 Related Works and Motivation

The newer activation functions are obtained by combining well-known functions with
simple forms in various ways, often using hyper-parameters or trainable parameters. In
the case of trainable parameters, we optimize them during the training process itself,
yielding networks that are better fitted. In the case of trainable parameters, note that
the actual activation function curve may change in different layers during backpropaga-
tion. For example, SiLU (Elfwing et al. (2017)) shows good performance over known
activation functions. In contrast, Swish (Ramachandran ef al. (2017)) is a trainable ver-
sion of SiLU, which is a non-linear, non-monotonic, smooth activation function. Swish,
PReLU, PAU, and ACON are trainable activation functions, among the other activation
functions. Swish is a non-monotonic activation function and shows promise across a
variety of deep learning tasks. Mish is one of the popular functions proposed recently
and gained popularity due to its effectiveness in object detection tasks on the COCO
dataset (Lin et al. (2015)) in Yolo (Bochkovskiy ef al. (2020)) models. GELU is very
similar to Swish and gained attention due to its effectiveness in computer vision and
natural language processing tasks. It is also used in popular architectures like GPT-2
(Radford et al. (2019)) and GPT-3 (Brown et al. (2020)). Apart from using a combi-
nation of known functions, a somewhat fundamentally different technique to construct
activation functions is to use perturbation or approximations to well-known activation
functions to remove some shortcomings yet retain the positive aspects. Recent success-
ful examples where this strategy was employed include PAU, which is activation based

on an approximation of Leaky ReLU by rational polynomials were constructed.

5.3 Research contribution

Motivated by these works, we have proposed two activation functions with trainable
parameters; we call them ErfAct and Pserf and have shown that they are more effec-
tive than conventional activation functions like ReLU, Leaky ReLLU, PReL.U, ReL U6,
Swish, Mish or GELU in a wide range of standard deep learning problems. We sum-
marize the chapter as follows:

* We have proposed two new novel trainable activation functions, which are ap-
proximation by a smooth function of ReL.U.

57

* In a wide range of deep learning tasks, the proposed functions outperform widely
used activation functions.

5.4 ErfAct and Pserf

We present, ErfAct and Parametric-Serf (Pserf), two novel trainable activation functions
which outperforms the widely used activations and has the potential to replace them.

ErfAct and Pserf is defined as

ErfAct : Fi(z;a, B) === erf(ae’™), (5.1)

Pserf : Fy(x;7,6) =z erf(yin(1 + 7)) (5.2)

where «, 3,7, and ¢ are trainable parameters (they can be used as hyper-parameters as
well) and ‘erf’ is the error function also known as the Gauss error function and defined

as

erf(z) = % /0 et (5.3)

The corresponding derivatives of the proposed activations are

d 2raf ereB)2
. — erf(ae?® Bz ,—(ce"?) 4
dwfl(x’ a, B) = erf(ae’™) + NG e’e (5.4)

d
——Fo(w;7,0) =erf(yln(1 +)

dx
2070 €T ey
T (55)
where
d 2
—erf(z) = ——e (5.6)

dx

ErfAct and Pserf are non-monotonic, zero-centered, continuously differentiable, un-

bounded above but bounded below, and trainable functions. Figures 5.1 and 5.2 show

58

3.0- — Erfact, a=075B8=1.0 3.0 — pserf, y=075,6=1.0 — ErfAct, a=075,8=075

1.0 - — Pserf,y=1.0,6=125
55 . — ErfAct a=10,8=125 PR~ e p=10,6=125 — swish
— ErfAct, =125,=150 T — Pserf,y=1256=20 08
2.0 - — Swish 2.0- — Swish .

15- 0.6 -

1.0 - 0.4 -

0.5 - 0.2-

0.0 1 0.0 -

-2 0 2 -2 0 2 -4 -2 0 2 4

Figure 5.1: Swish and Er- Figure 5.2: Swish and Pserf Figure 5.3: First order

fAct activation activation for derivative of
for different different values ErfAct, Pserf,
values of « and of v and and Swish

B

the plots for Fi(x; «, 8) and F»(x; -y, d) activation functions for different values of «,
B, and v, ¢ respectively. A comparison between the first derivative of Fi(z;«,),
Fo(x;7,0), and Swish are given in Figures 5.3, different values of «, 3, and ~, J re-
spectively. From the figures 5.1 and 5.2 it is evident that the parameters «, (3, and
7,0 controls the slope of the curves for the proposed activations in both positive and
negative axis. The proposed functions converges to some known functions for specific
values of the parameters. For example, F;(z;0,), F2(x;0,0) are zero function while
Fi(z;,0), Fa(x;,0) are linear functions. In particular, F»(x; 1, 1) share the equiv-
alent form as Serf (Nag and Bhattacharyya (2021)) which is a non-parametric form of
Pserf. Also, The proposed functions can be seen as approximation by a smooth function

of ReLU.

lim Fi(z;«,) = ReLU(x),
B—00

Vax € R for any fixed o > 0.

lim Fy(z;7,0) = ReLU(z),

d—00

Vz € R for any fixed v > 0.

For any K, a compact (closed and bounded) subset of R", the set of neural networks
with ErfAct (or Pserf) activation functions is dense in C'(K), the space of all continuous
functions over K (see Molina et al. (2020)). This follows from the next proposition, as

the proposed activation functions are not polynomials.

59

Proposition (Theorem 1.1 in Kidger and Lyons, 2019 Kidger and Lyons (2020))
:- Let p : R — R be any continuous function. Let N/ represent the class of neural
networks with activation function p, with n neurons in the input layer, one neuron in
the output layer, and one hidden layer with an arbitrary number of neurons. Let X' C R"

be compact. Then N is dense in C'(K) if and only if p is non-polynomial.

5.5 Experiments

We have compared our proposed activations against ten popular standard activation
functions on different datasets and models on standard deep learning problems like
image classification, object detection, semantic segmentation, and machine translation.
The experimental results show that ErfAct and Pserf outperform in most networks com-
pared to the standard activations. For all our experiments, we have first initialized the
parameters «, 3 for ErfAct and v, § for Pserf and then updated via the backpropagation
(LeCun et al. (1989)) algorithm (see He er al. (2015b)) according to (5.7) and for a

single layer, the gradient of a parameter p is:

oL 8f
df(z) 9p

(5.7)

where L is the objective function, p € {«, 3,v,d} and f(x) € {F1(z; o, B), Fa(x;7,0).
For all of our experiments, to make a fair comparison between all the activations, we
have first trained a network with hyper-parameter settings with the RelLU activation
function and then only replaced ReLU with proposed activation functions and other

baseline activations.

5.5.1 Image Classification

We present a detailed experimental comparison on MNIST (LeCun ef al. (2010)), Fash-
ion MNIST (Xiao et al. (2017)), SVHN (Netzer et al. (2011)), CIFAR10 (Krizhevsky
(2009)), CIFAR100 (Krizhevsky (2009)), Tiny ImageNet (Le and Yang (2015)), and
ImageNet-1k (Deng et al. (2009)) dataset for image classification problem. We have
trained the datasets with different standard models and report the Top-1 accuracy. We

have initialized the parameters o = 0.75, 8 = 0.75 for ErfAct, and v = 1.25, § = 0.85

60

for Pserf and update them according to (5.7).

MNIST, Fashion MNIST, and The Street View House Numbers (SVHN) Database:

We first evaluate our proposed activation functions on the MNIST (LeCun et al. (2010)),
Fashion MNIST (Xiao et al. (2017)), and SVHN (Netzer et al. (2011)) datasets with
AlexNet (Krizhevsky et al. (2012)) and VGG-16 (Simonyan and Zisserman (2015))
(with batch-normalization) models and results for 10-fold mean accuracy are reported
in Table 5.1 and Table 5.2 respectively. More detailed experiments on these datasets
on LeNet (Lecun et al. (1998)) and a custom-designed CNN architecture and the re-
sults are reported on Table 5.3 & 5.4. The custom network is constructed with an
8-layer homogeneous custom convolutional neural network (CNN) architecture with
3 X 3 kernels and max-pooling layers with 2 x 2 kernels. We have used Channel
depths of size 128 (twice), 64 (thrice), 32 (twice), with a dense layer of size 128, Max-
pooling layer(thrice), and dropout (Srivastava et al. (2014)). We have applied batch-
normalization (Ioffe and Szegedy (2015)) before the activation function layer. We don’t
use any data augmentation for MNIST or Fashion MNIST, while we use standard data
augmentation like rotation, zoom, height shift, shearing for the SVHN dataset. From
Table 5.1, 5.2, 5.3, and Table 5.4, it is clear that the proposed functions outperformed
all the baseline activation functions in all the three datasets and the performance are

stable clear from mean=+standard deviation.

CIFAR:

Next we have considered more challenging datasets like CIFAR100 and CIFARI10 to
compare the performance of baseline activations and ErfAct and Pserf. We have re-
ported the Top-1 accuracy for both the datasets for mean of 12 different runs on Ta-
ble 5.5 and Table 5.6 with VGG-16 (with batch-normalization) (Simonyan and Zisser-
man (2015)), PreActResNet-34 (PA-ResNet-34) (He et al. (2016)), Densenet-121 (DN-
121) (Huang et al. (2016a)), MobileNet V2 (MN V2) (Sandler et al. (2019)), Resnet-50
(He et al. (2015a)), Inception V3 (IN-V3) (Szegedy et al. (2015a)), WideResNet 28-10
(WRN 28-10) (Zagoruyko and Komodakis (2016)), and Shufflenet V2 (SF-V2 2.0x)
(Ma et al. (2018)) models. A more detailed experiments on CIFAR10 and CIFAR100
datasets with EfficientNet BO (EN-BO) (Tan and Le (2020)), LeNet (LN) (Lecun et al.

61

Activation Function MNIST Fashion MNIST SVHN
RelLLU 99.09 £0.10 | 93.22 +£0.21 |95.50+0.22
Swish 99.30 £ 0.12 | 93.29 +£0.22 |95.59 +0.20

Leaky ReLLU 99.15 £0.13 | 93.30+0.22 |95.50 £ 0.28
ELU 9929 £0.13 | 93.20+£0.25 | 95.60 4+ 0.20
Softplus 99.10 £0.14 | 93.18 £ 0.32 | 95.20 £ 0.37
Mish 99.27 +£0.14 | 93.454+0.32 |95.60 & 0.31
GELU 99.22 +0.12 | 9340+ 0.25 |95.55+0.27
PAU 99.31 £0.10 | 93.47 £0.23 | 95.67 £ 0.26
PRelLU 99.15 £0.16 | 93.37 +£0.31 |9542 4+ 0.39
ReLLU6 99.11 £0.10 | 93.26 £0.26 |9547 +0.24
ErfAct 99.51 £0.10 | 93.79 +£0.19 | 95.87 + 0.20
Pserf 9949 £ 0.10 | 93.82 +0.19 |95.74 +0.22

Table 5.1: Comparison between different baseline activations and ErfAct and Pserf acti-
vations on MNIST, Fashion MNIST, and SVHN datasets in AlexNet. 10-fold
mean accuracy (in %) have been reported. mean=std is reported in the table.

Activation Function MNIST Fashion MNIST SVHN
RelLLU 99.05£0.11 | 93.13£0.23 |95.0940.26
Swish 99.09+£0.09 | 93.34+£0.21 |95.294+0.20

Leaky ReLU 99.024+0.14 | 93.17+£0.28 | 95.24 +0.23
ELU 99.01 £0.15| 93.12+0.30 | 95.15+0.28
Softplus 98974+ 0.14 | 9298 £0.34 | 94.94 +0.30
Mish 99.18 £0.07 | 9347 +£0.27 |95.12 +0.25
GELU 99.10 £0.09 | 9341 +£0.29 |95.11 £0.24
PAU 99.07 £ 0.09 | 93.52 +£0.24 |95.23 +0.20
PRelLU 99.01 £0.09 | 93.12+0.27 |95.14 +0.24
ReLU6 99.20 £0.08 | 93.25 +£0.27 |95.22 +0.20
ErfAct 99.37 £ 0.06 | 93.81 £ 0.20 |95.67 £0.18
Pserf 99.38 £ 0.09 | 93.87 +£0.22 | 95.66 + 0.20

Table 5.2: Comparison between different baseline activations, ErfAct, and Pserf activa-
tions on MNIST, Fashion MNIST, and SVHN datasets on VGG-16 network.
10-fold mean accuracy (in %) have been reported. mean=std is reported in
the table.

62

Activation Function MNIST Fashion MNIST SVHN

RelLLU 99.09+0.10 092.92+0.21 95.10+0.22

Swish 99.204+0.09 93.0440.23 95.2140.23

Leaky ReLU(a =0.01) | 99.14+0.09 92.99+0.22 95.30+0.25
ELU 99.10+0.13 92.9140.30 95.1740.27
Softplus 98.95 £0.17 02.72+0.28 95.08+0.37
Mish 99.324+0.10 93.1240.21 95.3340.21

GELU 99.28+0.09 93.1940.22 905.2240.24
PRelLU 99.084+0.17 92.89+0.35 95.15+0.30
ReLU6 99.174+0.12 92.9940.20 95.1740.22

PAU 99.2440.10 93.2440.20 95.1540.23

ErfAct 99.42+0.08 93.42+0.23 95.49+0.24

Pserf 99.40+0.08 93.35+0.20 95.55+0.23

Table 5.3: Comparison between different baseline activations and ErfAct and Pserf on
MNIST, Fashion MNIST, and SVHN datasets with Custom designed net-
work. 10-fold mean accuracy (in %) have been reported. mean-=+std is re-

ported in the table.

Activation Function MNIST Fashion MNIST SVHN
RelLU 08.95+0.11 91.00+0.20 93.17+0.24
Swish 99.0440.11 91.154+0.22 903.22+0.21
Leaky ReLU(a =0.01) | 99.02+0.10 91.05+0.20 03.25+0.24
ELU 98.954+0.12 91.984+0.28 03.114+0.24
Softplus 08.81 £0.14 90.81+0.29 93.08+0.37
Mish 99.12+0.11 91.124+0.21 93.30+0.21
GELU 99.15+0.10 91.17+0.20 93.22+0.21
PReLLU 99.01+0.17 90.89+0.25 93.0540.28
ReLLU6 99.07+0.10 90.99+0.24 93.10+0.20
PAU 99.1440.09 91.20+0.19 93.1740.20
ErfAct 99.30+0.08 91.37+0.20 93.52+0.21
Pserf 99.324+-0.08 91.31+0.22 93.431+0.21

Table 5.4: Comparison between different baseline activations and ErfAct and Pserf on
MNIST, Fashion MNIST, and SVHN datasets with LeNet model. 10-fold
mean accuracy (in %) have been reported. mean=std is reported in the table.

63

(1998)), AlexNet (AN) (Krizhevsky et al. (2012)), PreActResnet-18 (PARN-18) (He
et al. (2016)), Deep Layer Aggregation (DLA) (Yu et al. (2019)), Googlenet (GN)
(Szegedy et al. (2014a)), Resnext-50 (Rxt) (Xie et al. (2017)), Xception (Xpt) (Chol-
let (2017)), ShuffleNet V2 (SN-V2) (Ma et al. (2018)), ResNet18 (RN-18) (He et al.
(2015a)), and Network in Network (NIN) (Lin ef al. (2014)) is reported in the Table 5.7
and 5.8. respectively. We get good improvement with EfficientNet BO, PreActResnet-
18, LeNet, GoogleNet, Resnext-50, and ShuffleNet V2 models on both the datasets
compared to ReLLU or other baseline activation functions. From all the tables it is evi-
dent that the training is stable (mean+-std) and the proposed activations archive 1%-6%
higher Top-1 accuracy in most of models compared to the baselines. The networks are
trained upto 200 epochs with SGD optimizer (Robbins and Monro (1951); Kiefer and
Wolfowitz (1952)), 0.9 momentum, and 5e~* weight decay. We have started with 0.01
initial learning rate and decay the learning rate with cosine annealing (Loshchilov and
Hutter (2017)) learning rate scheduler. We consider batch size of 128. We consider
standard data augmentation methods like horizontal flip, rotation for both the datasets.
The Figures 5.4 and 5.5 shows the learning curves on CIFAR100 dataset with Shufflenet
V2 (2.0x) model for the baseline and the proposed activation functions and it is notice-
able that training & test accuracy curve is higher and loss curve is lower respectively

for ErfAct and Pserf compared to the baseline activations.

We report more detailed results with Mixup (Zhang et al. (2017a)) augmentation
method with ShuffleNet V2 (2.0x) and ResNet-18 models in Table 5.9. The table shows
that the proposed activations beat the baseline activation functions in both models with
Mixup augmentation. We consider the same experimental setup for Mixup as reported

in the CIFAR section.

Tiny Imagenet:

We consider a more challenging and important classification dataset Tiny Imagenet
(Le and Yang (2015)) which is a similar type of dataset like ILSVRC and consisting
of 200 classes with RGB images of size 64 x 64 with total 1,00,000 training images,
10,000 validation images, and 10,000 test images. To compare the performance, we
have considered WideResNet 28-10 (WRN 28-10) (Zagoruyko and Komodakis (2016))

model and Top-1 accuracy is reported in table 5.10 for mean of 5 different runs. The

64

Activation | G5 16| WRN28-10 | ResNet-50 | PA-ResNet-34 | DN-121 | IN-v3 | MN-v2 | SE-V2
Function 2.0x
ReLU 71.67 7632 7417 7312 7567 | 7423 | 7402 | 6749
+0.28 40.25 +0.24 +0.23 4028 | 4026 | +024 | +0.26

Leaky ReLU | V77 76.69 7411 7341 7590 | 7440 | 7417 | 6771
+0.30 +0.27 +0.27 +0.26 4027 | 4028 | +024 | 4027

BLU 7171 76.39 7451 73.61 7587 | 7471 | 7429 | 6791
+0.28 +0.28 +0.24 40.25 4026 | 4026 | 4022 | 4030

Swich 72.07 7718 75.10 73.97 7659 | 7531 | 7502 | 70.49
+0.26 +0.23 +0.24 40.23 4028 | 4027 | 4024 | 4023

Softplus 71.10 7536 7419 7317 7508 | 7420 | 7433 | 6893
+0.32 +0.37 +0.38 +0.36 4036 | 4034 | 4038 | +036

Mish 7231 77.40 7630 75.14 7711 | 7622 | 7531 | 71.79
+0.24 40.25 +0.22 +0.21 4025 | 4025 | +021 | 4022

GELU 71.98 7735 75.61 7428 7679 | 7552 | 7521 | 7035
+0.25 +0.25 +0.22 +0.23 4027 | 4025 | 4023 | 4027

AU 7172 77.20 75.89 T4 7659 | 7579 | 75.07 | 70.68
40.25 +0.26 +0.24 +0.23 4028 | 4028 | 4019 | +026

PReLU 177 76.79 7445 7332 7619 | 7451 | 7431 | 6835
+0.30 +0.27 +0.29 +0.27 4030 | 4029 | 4032 | +030

ReLUG 72.07 76.62 7437 73.50 7607 | 7469 | 7464 | 6793
+0.27 40.28 +0.24 +0.24 4026 | 4025 | +024 | +0.26

At 72.93 78.49 77.00 7621 7818 | 7712 | 7623 | 73.17
+0.22 40.23 +0.20 +0.20 4023 | 4024 | +0.19 | +0.22

Peort 72.69 7831 76.97 75.91 7838 | 77.01 | 7607 | 7291
+0.24 +0.24 +0.20 +0.22 4022 | 4025 | 4021 | +021

Table 5.5: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean=std is reported in the table.

Activation |y 16 | WRN28-10 | ResNet-50 | PA-ResNet-34 | DN-121 | IN-v3 | MN-v2 | SF-V2
Function 2.0x
ReLU 9344 95.17 9435 9417 9477 | 9415 | 9420 | 91.63
+0.22 +0.21 +0.18 +0.19 4020 | 4020 | +0.16 | 4021

Leaky ReLu | 360 95.02 94.45 9433 9489 | 9420 | 9432 | 91.82
+0.21 +0.22 +0.20 +0.18 4022 | 4022 | 4+0.19 | +0.23

ELU 93.70 9528 94.27 9430 0464 | 9438 | 9427 | 91.99
+0.19 +0.20 +0.24 +0.25 +0.18 | 40.17 | +£0.18 | +0.20

Swich 93.77 9541 94.61 9447 9481 | 9451 | 9440 | 92.17
+0.18 +0.17 +0.24 +0.25 +0.19 | 40.17 | 4020 | +0.25

Softplus 93.10 94.77 9391 94.07 9441 | 9421 | 9379 | 9132
+0.33 +0.30 +0.30 +0.35 4034 | 4032 | 4029 | +0.33

Mich 93.91 9535 94.78 94.55 9503 | 9464 | 9471 | 9241
+0.17 +0.18 +0.22 +0.23 +0.15 | 40.18 | +0.18 | 40.20

GELU 93.71 9528 94.64 9431 9499 | 9457 | 9440 | 9227
+0.17 +0.19 +0.23 +0.25 +0.19 | 4021 | +0.18 | 40.20

PAU 93.57 9527 94.67 0441 9474 | 9457 | 9451 | 9230
+0.22 +0.20 +0.23 +0.24 4020 | 40.19 | +0.14 | +021

PRLU 93.41 95.02 94.27 94.30 9451 | 9449 | 9432 | 91.80
+0.23 +0.24 +0.26 +0.26 4024 | 4022 | 4023 | +025

ReLUS 93.72 9532 9430 9421 9461 | 9442 | 94.18 | 9171
+0.17 +0.19 +0.24 +0.24 4020 | 4020 | +0.19 | 4021

ErtAct 94.47 95.88 95.01 9521 9571 | 9529 | 9534 | 93.74
+0.15 +0.12 +0.17 +0.18 +0.15 | 4+0.14 | +0.12 | +0.18

Peort 94.24 9571 95.14 95.08 9562 | 9510 | 95.19 | 93.59
+0.16 +0.13 +0.19 +0.29 +0.17 | 4+0.13 | +0.14 | +0.18

Table 5.6: Comparison between different baseline activations and ErfAct and Pserf on
CIFARI10 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean+std is reported in the table.

65

Activation | o 5o | N AN | PARN-18 | DLA | GN Rxt Xpt | SN-VI | RN-18 | NIN
Function

ReLU 9504 | 7568 | 84.18 9347 9390 | 93.02 | 9328 | 90.64 | 9420 | 9401 | 90.49
40.16 | 4021 | 4021 | 4022 | +0.18 | 4020 | +0.18 | 4022 | 4020 | +021 | +0.24

Leaky ReLU | 9522 | 75901 | 8432 93.61 9401 | 9291 | 9339 | 90.80 | 9432 | 9412 | 90.59
(@=001) | 40.16 | £022 | 4023 | 4021 | 4020 | +0.18 | £0.19 | 4024 | +£022 | 4024 | +0.26
BLU 9535 | 76.10 | 84.78 93.65 93.96 | 93.06 | 9355 | 9138 | 9432 | 9419 | 9055
4+0.18 | 4020 | 4020 | 4022 | 4020 | +£0.17 | £023 | 4024 | 4021 | 4024 | +024

Swich 95.60 | 77.55 | 85.10 93.87 9425 | 9330 | 93.69 | 91.94 | 94.65 | 9429 | 90.97
4+0.17 | +0.19 | 4020 | 4020 | +0.17 | £020 | £0.19 | 4020 | 4+0.19 | 4021 | +0.25

Sofiplus 9510 | 75.65 | 8422 93.12 9371 | 92.64 | 9301 | 9069 | 9392 | 9399 | 9039
4027 | 4033 | 4030 | 4026 | 4025 | £029 | 4029 | £0.30 | 4025 | 4027 | +0.30

Mish 9575 | 78.76 | 85.70 93.70 9440 | 9322 | 9392 | 92.15 | 9478 | 9445 | 91.17
4015 | +0.16 | 40.18 | 4024 | +0.17 | 4020 | +£0.17 | +0.19 | +0.19 | 4025 | +0.23

GELU 9539 | 7779 | 8.15 93.77 9412 | 9345 | 93.77 | 9180 | 9455 | 9445 | 91.01
40.19 | +0.17 | 4021 | 4019 | 4020 | 4020 | +£0.19 | 4022 | +021 | +024 | +0.24

PReLU 9520 | 75.85 | 8438 93.46 93.01 | 92.80 | 9345 | 9129 | 9434 | 94.15 | 90.83
+0.18 | 4024 | 4023 | 4025 | 4022 | 4024 | £026 | 4026 | 4022 | 4028 | +0.27

ReLUG 9543 | 7571 | 84.64 93.75 9400 | 92.89 | 93.48 | 9138 | 9422 | 9428 | 90.87
+0.16 | +0.18 | 4022 | 4022 | 40.17 | +£0.18 | £022 | 4024 | 4020 | 4024 | +0.24

AU 9535 | 7759 | 8501 9375 9434 | 9329 | 9352 | 9179 | 9460 | 9431 | 90.97
4017 | 4021 | 4024 | 4022 | 4020 | 4021 | £020 | 4021 | 4021 | 4021 | 4025

ErtAct 9610 | 7748 | §7.01 94.10 94.67 | 9412 | 9417 | 9301 | 95.14 | 9471 | 90.81
4015 | +0.19 | 4020 | 4020 | +0.17 | 4018 | +0.18 | 40.17 | +0.19 | +023 | +0.24

Peort 9598 | 7752 | 8715 94.01 9456 | 93.95 | 94.01 | 93.18 | 9496 | 94.68 | 90.78
4018 | 4020 | 4020 | 4022 | 4020 | 4020 | +£0.19 | 40.18 | +0.18 | +0.18 | +0.24

Table 5.7: Comparison between different baseline activations and ErfAct and Pserf on
CIFARI0 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean=std is reported in the table.

Activation | gy o | N AN | PARN-18 | DLA | GN Rxt Xpt | SN-VI | RN-18 | NIN
Function

ReLU 7645 | 4550 | 5502 | 73.10 | 7450 | 72.64 | 7431 | 7120 | 73.70 | 73.17 | 65.12
4026 | £030 | £030 | 4020 | +£022 | +£028 | 4022 | +020 | +0.23 | 4025 | +0.25

Leaky ReLU | 76.70 | 4564 | 5534 | 7330 | 74.62 | 7251 | 7460 | 71.10 | 73.890 | 7321 | 6527
(@=001) | 4025 | 4028 | 4028 | 4021 | 4023 | 4028 | £023 | £024 | +025 | 4023 | +0.23
_— 76.77 | 4523 | 5572 | 7341 7454 | 7285 | 7471 | 7140 | 7398 | 7340 | 65.39
4026 | +027 | £028 | 4023 | +024 | £027 | £024 | +022 | +£021 | +025 | +0.23

Swich 7734 | 4730 | 57.64 | 7498 | 7520 | 7345 | 7506 | 72.16 | 7429 | 73.65 | 66.20
4020 | 4025 | £0.28 | +£024 | +020 | +£0.28 | £026 | +024 | +022 | +024 | +022

Softplus 7641 | 44.10 | 5485 | 73.10 | 7431 | 72.09 | 7420 | 7151 | 7390 | 7280 | 65.25
4030 | £038 | £036 | 4035 | 4+026 | £035 | £034 | £036 | +027 | +036 | +0.30

Midh 7802 | 47.49 | 5835 | 7484 | 7545 | 7385 | 7607 | 7334 | 7440 | 7439 | 6650
4023 | £028 | £025 | 4024 | £020 | £025 | +024 | +023 | +021 | 4022 | +0.22

GELU 7730 | 4723 | 5755 | 7487 | 7520 | 7332 | 7532 | 7225 | 73.15 | 73.77 | 66.01
+024 | £025 | £027 | 4023 | £023 | £027 | +£023 | +£022 | +022 | 4022 | +0.22

PRLU 76.62 | 45.69 | 5541 7316 | 7498 | 7260 | 7450 | 7130 | 7379 | 73.10 | 65.56
4028 | 4030 | £0.30 | +£025 | 4024 | £0.30 | £026 | +023 | +024 | +026 | 027

ReLUS 7658 | 4586 | 55.75 | 7330 | 74.69 | 7240 | 7469 | 7140 | 7399 | 7330 | 6542
4023 | 4028 | £0.28 | 4025 | +021 | +£024 | £024 | 4024 | +023 | +025 | 4024

AU 7721 | 4707 | 5742 | 7471 7550 | 73.60 | 75.60 | 72.50 | 7436 | 7399 | 6620
4026 | 4028 | £027 | 4022 | £022 | £028 | +£025 | +£024 | 4022 | 4+022 | +0.22

ErtAct 7897 | 4729 | 60.89 | 7577 | 76.43 | 7447 | 7723 | 7432 | 7490 | 7479 | 66.25
4023 | 4026 | £025 | 4024 | 4£0.18 | £026 | +023 | +£022 | +021 | +024 | +0.22

peart 7875 | 4727 | 6057 | 75.60 | 7623 | 7450 | 77.10 | 7420 | 7472 | 74.84 | 6635
4024 | £027 | £024 | 4025 | £020 | +£025 | +£024 | +£024 | +0.20 | +£023 | +0.23

Table 5.8: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) for mean of 12 different runs have
been reported. mean+std is reported in the table.

66

Activation Function | ShuffleNet V2 (2.0x) | ResNet 18

ReLLU 70.02 £ 0.22 73.72 £ 0.23
Leaky ReLLU 69.85 + 0.24 73.91 + 0.24
ELU 70.25 +0.23 73.92 +£0.26
Swish 73.12 £ 0.23 74.52 + 0.23
Softplus 69.52 + 0.30 73.63 + 0.26
Mish 73.65 £ 0.21 7497 £ 0.24
GELU 73.25 +£0.23 74.45 + 0.23
PRelLU 70.05 £+ 0.23 74.10 £ 0.27
ReLU6 70.20 + 0.24 74.01 + 0.24
PAU 73.28 +£0.24 74.65 £+ 0.25
ErfAct 75.07 + 0.22 75.67 = 0.21
Pserf 74.84 + 0.24 75.46 + 0.21

Table 5.9: Comparison between different baseline activations and ErfAct and Pserf on
CIFAR100 dataset. Top-1 accuracy(in %) with Mixup augmentation method
for mean of 12 different runs have been reported. mean=+std is reported in
the table.

model is trained with a batch size of 32, He Normal initializer (He et al. (2015b)), 0.2
dropout rate (Srivastava et al. (2014)), adam optimizer (Kingma and Ba (2015)), with
initial learning rate(Ir rate) 0.01, and Ir rate is reduced by a factor of 10 after every 60
epochs up-to 300 epochs. We have considered the standard data augmentation methods
like rotation, width shift, height shift, shearing, zoom, horizontal flip, fill mode. From
the table, it is clear that the performance for the proposed functions are better than the
baseline functions and stable (mean=+std) and got a boost in Top-1 accuracy by 2.59%

and 2.40% for ErfAct and Pserf compared to ReLLU.

ImageNet-1k

ImageNet-1k (Deng et al. (2009)) is a widely used computer vision database with more
than 1.2 million training images and have 1000 different classes. We report result with
ShuffleNet V2 (1.0x) (Ma et al. (2018)) model on ImageNet-1k dataset in Table 5.11.
We use SGD optimizer (Robbins and Monro (1951), Kiefer and Wolfowitz (1952)), 0.9
momentum, 5e 4 weight decay, and a batch size of 256 and trained upto 600Kk iterations.
Experiments on ImageNet-1k is conducted on four NVIDIA V100 GPUs with 32GB
RAM each.

67

Activation Function Wide ResNet
28-10 Model

ReLU 61.61 +0.47
Swish 62.44 +0.49
Leaky ReLU 61.47 £ 0.44
ELU 61.99 4+ 0.57
Softplus 60.42 + 0.61
Mish 63.02 + 0.57
GELU 62.64 £+ 0.62
PAU 62.04 +0.54
PReLLU 61.25 + 0.51
RelLU6 61.72 £ 0.56
ErfAct 64.20 + 0.51
Pserf 64.01 £ 0.49

Table 5.10: Comparison between different baseline activations and ErfAct and Pserf on
Tiny ImageNet dataset. Mean of 5 different runs for Top-1 accuracy(in %)
have been reported. mean=std is reported in the table.

Activation Function | ShuffleNet V2 (1.0x)
ReLU 69.20
Leaky ReLU 69.32
PRelLU 69.28
ReL.U6 69.40
ELU 69.24
Softplus 69.07
Swish 70.06
GELU 69.91
Mish 69.95
PAU 70.17
ErfAct 70.65
Pserf 70.57

Table 5.11: Top-1 Accuracy reported on ImageNet-1k dataset.

68

5.5.2 Semantic Segmentation

Semantic segmentation is an important problem in deep learning. In this section, we
present experimental results on the Cityscapes dataset (Cord<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>