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ABSTRACT 

 
Alzheimer’s disease is progressing as the most prevalent neurological disorder world- 

wide. It is the most common cause of dementia in ageing society. An artificial Neural 

Network (ANN) is a set of neural networks which are inspired by the human brain. They 

are learning algorithms which can learn and make corrections as they receive input. 

Despite these benefits, they are not actively used in classification problems involving 

single-cell genomics. Many recent studies have reported the effectiveness of Machine 

Learning models in predicting diseases using single-cell genomics, but the sample sizes 

were too small. Thus, here we have compared ANN with other ML models in prediction 

and biomarker identification with a large dataset. In this study, ANN was compared to 

other machine learning models on 169,496 cells of RNA-seq data from normal human 

subjects and AD patients’ prefrontal cortex. Of these, 90713 were AD labelled, and 

78783 were NC labelled. Two different feature sets were selected, and classification 

accuracies were determined with ANN, LR (Logistic Regression), RF (Random 

Forest) and other models. As a result, ANN showed the highest performance in both 

the features of 100 genes and 35 genes with accuracies of 82% and 74%, respectively. 

Interestingly, when the feature size was decreased to 35 genes, the ANN showed a 

small decline (7-8%) in accuracy, but it did not change drastically to a low value. In 

conclusion, it indicates that these conserved 35 genes can be used to predict 

Alzheimer’s patients and can very well act as potential biomarkers for AD diagnosis 

and screening. Eventually we have developed a python package named "AlzScPred" 

based on the above study to facilitate the scientific community. 

(https://webs.iiitd.edu.in/raghava/alzscpred/) 

 

KEYWORDS: In silico models, Alzheimer’s disease, Genetic Biomarkers, Deep 

Learning, and Machine Learning 

https://webs.iiitd.edu.in/raghava/alzscpred/
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CHAPTER 1 
 

 
INTRODUCTION 

 

 
Alzheimer’s disease (AD) is one of the main reasons for dementia and has become one 

of the biggest challenges for the medical industry [1]. About 6.2 million individuals are 

currently affected with AD-induced dementia globally, and this number is predicted to 

double every 20 years if a cure is not found [2, 3]. It is a progressive neurological disorder 

that results in the death of brain cells along with brain atrophy and is characterized by 

a steady decline in social, behavioral, and cognitive abilities, and impairs a person’s 

capacity for independent functioning [4]. Some of the pathological biomarkers of AD 

include neuroinflammation, deposition of amyloid-beta peptides, and tau 

neurofibrillary tangles [5].Refer figure 4.3. However, their presence does not 

necessarily indicate AD specific dementia. It is unclear how they are directly related 

to neurodegeneration [6]. The pathogenesis of AD usually starts much earlier than the 

symptoms show up. There are several studies and clinical trials that have been designed 

to focus on these pathological changes but were unsuccessful in treating AD [6]. 

Presently, there is no known effective cure for this disease. The current treatment 

procedures only suppress the symptoms [7]. 

One of the reasons for the absence successful treatment methods for AD is the lack 

of knowledge of molecular underpinnings of cell-type specific responses for the 

pathogenesis of atrophy and neurodegeneration [8]. The bulk-tissue-level analysis may 

obscure the complexity of modifications between within cells, particularly for rare cell 

types [9]. It is one of the major challenges to understand the complex human brain 

which comprises a huge variety of cells which include billions of neurons of different 

subtypes [10]. Single-cell RNA sequencing provides an approach to analyze thousands 

of individual cells and study the compositional as well as activity changes within the 

cells to gain a clear insight of mechanism of AD [11]. 

In this study, we have used the single-cell RNA sequencing data to identify gene- 

based biomarkers for Alzheimer’s. To achieve this, we have applied computational 

methods to a dataset [12] that contains 169,496 nuclei from normal human subjects, 
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Figure 1.1: Neuro Pathological Features of Alzheimer’s affected brain 

 

and AD patients’ prefrontal cortex [13]. The gene expression profiles of these samples 

were analyzed using the maximum relevance minimum redundancy (mRMR) method. 

After applying mRMR, a set of 35 genes was retrieved. The 35 genes recognized in this 

study can prove to be essential biomarkers for AD. Since we have identified the 

biomarkers using single-cell data, they could be helpful in finding more specific targets 

for the development of treatment methods for Alzheimer’s. We believe this study will 

be helpful for the scientific community working on finding molecular-based therapies 

for Alzheimer’s disease. 

 

 

1.1   Single cell Genomics 

 
Genomics is an interdisciplinary field of biology that deals with the study of the entire 

genome in order to understand the functioning at the genetic/ fundamental level.It 

increases our understanding of illnesses and diagnostic methods at the most 

fundamental level. Although there are many other forms of sequencing, such as single- 

cell DNA methylome sequencing, single-cell assay for transposase-accessible chromatin 

sequencing, and so on, we are focused on RNA-sequencing profiles. Traditionally, 
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RNA-seq profiling was done with bulk-RNA seq samples, which are made up of a 

variety of different cells. The bulk-RNA seq has numerous uses, such as identifying 

characteristic biomarkers between tissues of healthy/diseased samples or 

control/treated samples, discriminating between tissues by comparing transcriptomes, 

and locating and labelling novel genes, among others. However, bulk RNA-seq 

provides an estimate of the average expression level of each gene across a population 

of cells without taking into account cell heterogeneity. As a result, it does not provide 

a good picture of the individual cells in a sample and cannot be utilized to examine 

heterogeneous systems such as early development studies. 

With the introduction of next-generation sequencing technology, transcriptome pro- 

filing became less expensive and time-consuming, paving the way for single-cell RNA 

sequencing. The single-cell RNA sequencing (scRNA-seq) fully overcame the 

constraints of bulk- RNA seq and made it feasible to estimate the distribution of 

expression levels of each gene throughout the population of cells. As a result, it is 

now able to answer fundamental biological questions such as what sort of cells are 

present in the tissue, what tasks these cells carry out, and how these functions differ 

from healthy tissues. Cell-type-specific information may be understood, which can aid 

in the discovery of novel or unusual cell types, the knowledge of cell differentiation 

throughout development, and the determination of cell composition in healthy and 

diseased tissues. 

 
 

1.1.1 Challenges with scRNA-seq data 

 
Because the starting material per cell is so little, scRNA-seq data presents numerous 

challenges. As a result, the data is quite sparse and contains a lot of zeros. The zeroes 

in the data may or may not be accurate. When a gene is not expressed in a cell, it 

is considered as a "actual" zero; however, when a gene is expressed in a cell but can- 

not be detected because of technological difficulties, it is counted as a "fake" zero or 

a "dropout." This causes unwanted variance across cells that did not arise due to bio- 

logical variation but rather due to technical difficulties, such as the gene not being PCR 

amplified to a suitable level. This issue, however, can be resolved by doing 

normalization. Another concern with single-cell RNA sequencing data is batch effects. 

One of the most important stages in single-cell data analysis is data integration or data 
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harmonization. The batch effect is a phenomenon that occurs when many datasets from 

different laboratory settings are combined and sequenced using diverse technologies 

and equipment to generate a single huge reference dataset. This causes technical noise 

in the data, making it harder to determine the true biological variation present in the 

data. 



 

CHAPTER 2 
 

 
PREDICTION 

 
 

2.1 Workflow 
 

 

 
Figure 2.1: Workflow of data collection to prediction 

 

 
 

5 



6  

2.2 Materials and Method 

 
2.2.1 Data Collection 

 
We obtained the dataset from NCBI GEO (Gene Expression Omnibus) with GEO 

accession number GSE157827 [13]. The keywords used for search were Alzheimer’s, 

Single cell, RNA seq data, Control data etc. The dataset consisted of Single-cell 

expression profiling data of both Alzheimer’s (Diseased) and Normal Patients. 

 
 

2.2.2 Data description 

 
The dataset consists of single-nucleus RNA sequencing of 169,496 nuclei from the pre- 

frontal cortical samples of AD patients and normal control (NC) subjects. The total 

Number of Patients samples was 21, out of which 12 patients were Alzheimer’s 

affected, and 9 were normal controls. The data present was in the form of 10x single 

sequencing data consisting of raw counts, barcodes and gene files for each patient. The 

sequencing platform used for sequencing was Illumina NovaSeq 6000 (Homo sapiens), 

which measured a total of 33538 genes. 

We determined the number of expressed genes, or the number of genes with mapped 

reads, in each patient sample. 5401 genes on average were expressed across all samples. 

 
 

2.2.3 Data Pre-Processing 

 
First of all, the full data processing and analysis were done in the python3 environment 

on a Jupyter notebook. Since the data provided by Cell Ranger Pipeline was in the 

sparse format, i.e. contains only the non-zero entries to minimize the file size. So using 

the os, csv, gzip and scipy.io modules we converted the data into a matrix in the form 

of a data frame. 

 

 Data loading and filtering 
 

Similarly, each patient’s data was converted into a data frame, and then the dataset was 

pre-processed to remove insignificant columns and cells. The genes which didn’t have 
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any mapped expression reads to more than 80% of the cells were removed and the cells 

were filtered with the help of scanpy’s library scanpy.pp.filter_cells [14]. Then the 

filtered data frames were labelled with 0’s and 1’s. Healthy patients were labelled with 

0’s, and Alzheimer’s disease patients were labelled with 1’s. 

 

 Normalization 
 

Prior to performing any type of analysis, the count data must be normalized because the 

sequencing depth causes the range of values for the features to differ. In order to give 

the values of highly expressed and lowly expressed genes equal weight, we performed 

the CPM (counts per million) normalization to our data and then performed a log trans- 

formation, this was done with the help of scanpy.pp.normalize_total [14] library. 

 

 Data Partition 
 

Initially, the dataset was split into 2 parts validation and training, with 3 validation 

samples from both Alzheimer’s and Normal for validation. Finally, all the training data 

frames [15] were combined to form a large data frame containing the entries of both the 

classes of Alzheimer’s and Normal. 

 
 

2.2.4 mRMR Feature selection algorithm 

 
Many statistical methods have been developed to identify the differentially expressed 

genes (DEG’s) in cells. But the relationship between cells was ignored in such cases. 

The number of DEG which came out after DEG analysis were quite large in number 

to be applied as biomarkers. Therefore we used the method of mRMR gene selection 

algorithm [16]. mRMR stands for Minimum Redundancy and Maximum Relevance 

which is a feature selection algorithm which helps us to select features which have a 

high correlation with the class (output) and have a low correlation between themselves. 

The main benefit of using mRMR is that it is designed to find the smallest relevant 

subset of features from the total given features i.e. to find the smallest subset of features 

which has the maximum predictive power. Whereas on the other hand the majority of 

other feature selection techniques uses an all-relevant approach in which they find out all 



 

the features which have some or other relationship with the output classes. The mRMR 

approach takes into account both gene redundancy and correlations between genes and 

samples. Only the gene that is the most significant will be chosen if multiple genes 

are similar [17]. This method has been widely adopted and demonstrated to be useful 

for a variety of biological feature selection tasks, particularly in single-cell RNA-Seq 

analysis. 

Because the single-cell sample data was vast and sparse, any other statistical 

technique yielded too many significant genes, which was not a good criterion for 

selecting biomarkers. As a result, the mRMR technique was best suited to selecting 

the best subset of a minimal number of non-redundant biomarkers for single-cell data 

analysis. 

We applied a K value of 100 to select the top 100 ranked features identified by 

mRMR from the total 5401 expressed genes in the dataset. These 100 genes were then 

used to classify the cells based on their category of diseased and non-diseased using 

different Machine Learning and Deep Learning techniques. 

 
 

2.2.5 Machine Learning Models 

 
Various machine Learning models have been developed which help to classify the data 

into categories. In bioinformatics, a variety of strategies have been used to solve 

classification problems. Here, we’ve selected methods like Decision Trees, Random 

Forest, extra tree classifiers, logistic regression, K neighbors’ classifier and neural 

networks. 

a) Artificial Neural network: - This approach is inspired by biological neuron 

net- works [18]. They are made up of numerous layers, each of which contains several 

nodes (or neurons) that aid in decision-making. Each node is initialized with a random 

weight at the start, which is then fine-tuned after each iteration and set to the best-suited 

value as the learning process goes on [19]. The final output is the predicted label 

(Diseased or Normal) of the sample. 

b) Logistic Regression: - It is similar to the linear regression algorithm, which 

converts the probability of prediction of each sample into a yes/no decision [20].It 

makes use of the idea of the sigmoid function, which is used to calculate the likelihood 

that a sample belongs to a specific class. [21]. 

8 
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c) Decision trees: - A decision tree is a decision-making method that presents 

possibilities and their results in the form of a tree [22]. Decision tree utilizes the concept of 

entropy and information gain to make classification choices [23]. 

d) Random Forest: - The random forest technique refers to a categorization system 

composed of several decision trees [24]. It employs the ideas of bagging and feature 

randomization in an attempt to generate an independent and identically distributed forest of 

trees whose prediction is more accurate than that of any individual tree [25]. 

e) Extra Tree Classifiers: - This is an ensemble-based decision tree classifier. It 

combines the output of multiple de-correlated trees. Finally, we arrive at the classification 

output that is required [26]. The main ideology is similar to that of Random forests, but 

decision trees are constructed in a different manner. 

f) K neighbors classifier: - The K-NN approach keeps all current data and classifies 

new data points based on similarity. This means that when new data is created, it may be 

swiftly classified into a suitable category using the K- NN approach [27]. It is a non-

parametric algorithm. 

2.2.6 Evaluation Parameter 

 
To evaluate how good our classifier is, several metrics have been chosen to show the 

results. Our performance is evaluated on 5-fold cross-validation. Metrics used for 

evaluation are: 

a) Accuracy: It tells how many of our predictions are correctly predicted in the dataset. 

 
Accuracy = 

TP + TN  

 
TP  + FP  + FN  + TN 

 

(1) 

 

 

 

 

b) Sensitivity: It is also called the true positive rate. It is expressed as the ratio of the 

number of times a sample was classified as positive when it was actually positive to the 

total number of positive samples. 

TP 

Sensitivity = 
TP  + FN 

(2) 
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c) Specificity: The true negative rate is a different name for it. It is calculated as the ratio 

of the total number of negative samples to the number of times a sample was incorrectly 

labeled as negative. 

 

Specificity = 

TN 
 

FP  + TN 

 
(3) 

d) Precision: It is also called the Positive Predictive value. It is expressed as the ratio 

of a total number of times a sample was classified as positive when it was actually 

positive to the total number of times the classifier labeled a sample positive. 

 

 
Precision = 

TP 

TP + FP 

 
(4) 

e) ROC-AUC: By graphing the True positive rate and the False positive rate, the 

Receiver Operating Characteristics (Area Under Curve) visual tool helps to 

demonstrate the predictive ability of a classifier. 

 

 
TruePositiveRate(TPR) = Recall = 

TP 

TP 
 

+ FN 

 
(5) 

 

FalsePositiveRate(FPR) =  1 − Specificity   = FP 

TN + FP 
(6) 

 

 

 

f) F1 Score: A classifier’s precision and recall are combined into one metric by 

the F1-score in statistics of the classification model by calculating their harmonic 

means. 

2 ∗ Precision ∗ Recall 

F1 Score = 
Precision + Recall 

(7) 
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(where TP, FN, FP, and TN stand for true positive, false negative, false positive, and 

true negative, respectively.) 

 
 

2.2.7 Cross- Validation 

 
The dataset was divided in an 80:20 ratio, with training data accounting for 80% and 

independent validation data accounting for the remaining 20%. During the 5-fold cross- 

validation procedure, the training data was further separated into training and testing 

datasets, and the mean of the findings for each fold of the cross-validation was recorded. 

The total training data is split into five equivalent folds in the 5-fold cross-validation 

method, with four folds used for training and the fifth fold utilized for testing. The entire 

method is iterated five times, with each fold having a chance to be utilized as testing 

data. This is a common practice in many studies [28, 29]. 

2.2.8 Model Architecture 

 
For this study, we have prepared a customized Artificial Neural Network Model to 

classify samples based on their diagnosis. The neural Network consists of an input 

layer, 3 hidden layers and an output layer. Also, a dropout of 0.3 is done at each step to 

reduce the over fitting of neural networks. This approach is inspired by biological 

neuron networks. An ANN is composed of a network of interconnected systems or 

nodes known as artificial neurons, which are generally designed like neurons in the 

human brain [18]. They are made up of numerous layers, each of which contains several 

nodes (or neurons) that aid in decision-making [19]. The final output is the predicted 

label (Diseased or Normal) of the sample. 

The Neural Network Architecture is shown in the figure below. 
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Figure 2.2: The diagram shows ANN model architecture with 1 input layer, 3 Hidden 

Layers, 3 dropout layers and 1 output layer 

 

 

 
2.2.9 Packages and Tools 

 
The entire data analysis and prediction pipeline were coded in Python 3.9.13 using 

‘scikit-learn’ (sklearn) [30] library for machine learning and mRMR classification 

library [16] was used for feature selection. ‘Pandas’ [15] library for loading and 

preprocessing of data and multiple scanpy[14] libraries for preprocessing and filtering. 

Also, the library used to build ANN model was Tensor flow [31] and Keras [32]. 

 

 

2.3 Biomarkers O p t i m i z a t i o n  

 
2.3.1 Incremental feature selection 

 
Feature selection is typically used to decrease a large number of biological 

characteristics in order to establish a robust data-independent classification or 

regression model [33]. The disease diagnosis panel development are heavily 

dependent on the efficiency of the feature selection technologies. 
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An Incremental Feature Selection (IFS) algorithm is used to evaluate the 

performance of top n ranked features where n = (1, 2, 3, 4 n), where n denotes the total 

number of given features [34]. 

 
After the application of mRMR on ANN classifiers, we still did not know the 

optimal number of features to select as biomarkers. We adopted the IFS method to 

optimize the selected features (genes), which could act as potential biomarkers with 

high predictive power. 

After every iteration, a new feature was added to the previous feature set and a new 

set was obtained and fed to the ANN classifier. Then new ANN classifiers were built, 

and labels were predicted and accuracy was determined by using five-fold cross- 

validation. The IFS curve was plotted for all the combinations of gene set (features) on 

the x-axis, and the accuracy value was obtained from all sets on the y-axis as shown in 

plot 3.4. 



 

CHAPTER 3 
 

 
RESULTS 

 

 
3.1 Analysis on top 100 genes 

 
mRMR feature selection algorithm was applied to find out the actual discriminative 

effect of important features based on iteration. Our main objective was to find out the 

features (genes) that were directly related to the sample classes and were not redundant 

with all the other features present. Using the mRMR method the top 100 genes we 

obtained are shown in the table 3.1. 

Table 3.1: Top 100 genes obtained by mRMR 
 

Rank Genes Rank Genes Rank Genes Rank Genes 

01 ARL17B 26 HIBADH 51 DDX3X 76 APOD 

02 NAIP 27 ZBED5 52 NSL1 77 KIF9-AS1 

03 BCOR 28 PTDSS2 53 TMED10 78 TYW1 

04 XIST 29 ATG4B 54 UGT8 79 GNAI2 

05 TSC22D4 30 PWWP2A 55 SNX1 80 BAZ1B 

06 HEPACAM 31 XRRA1 56 ALG13 81 MBTPS1 

07 FGF17 32 OTUD7B 57 LINC00320 82 CDH4 

08 EZH1 33 SCD 58 RAD9A 83 RAB40B 

09 FOXN2 34 UBE2Z 59 RGS12 84 SPP1 

10 NDUFAF6 35 PIGQ 60 ST13 85 GPBP1L1 

11 CC2D1A 36 PCMTD2 61 PTN 86 FSCN1 

12 MARCKSL1 37 COL4A5 62 USP8 87 CAPZA1 

13 ZDHHC11B 38 ARFIP1 63 EDF1 88 SPPL2B 

14 PLXNB1 39 CCND3 64 SLCO1A2 89 MED15 

15 PLPPR2 40 FOXK2 65 NUP153 90 C1GALT1 

16 AC090517.4 41 CPOX 66 SYNRG 91 ITGB3BP 

17 CDK18 42 STXBP3 67 EIF3E 92 CCDC82 

18 LGI4 43 ITPKB 68 LPCAT4 93 CDK12 

19 CHD7 44 TBCB 69 ARMCX4 94 EGLN1 

20 RBMX 45 SRSF10 70 PREX2 95 CCDC57 

21 CDKL1 46 SPTLC2 71 APC2 96 SEL1L 

22 DNAJC7 47 LYPLAL1 72 SLC38A9 97 CHORDC1 

23 SLC25A13 48 FAM107B 73 UTP23 98 ATG10 

24 PER1 49 PDIA2 74 RCN2 99 C4orf48 

25 LPAR1 50 C1orf61 75 PRR14L 100 AC097103.2 

14 
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a) Training: - After training Machine Learning and Deep Learning models on these 

100 genes models  performance are shown in the table below in table 3.2. 
 

Model Name Accuracy Sensitivity Specificity AUC-ROC Precision f1-Score Mis-Classification 

Decision Tree 0.9953 0.99 1.00 0.9948 1.00 0.99 0.001 

Random Forest 0.98 0.96 1.00 0.9784 1.00 0.98 0.02 

Logistic Regression 0.9953 0.99 1.00 0.9948 1.00 0.99 0.001 

XGBClassifier 0.99 0.99 1.00 0.9948 1.00 0.99 0.00 

ExtraTree Classifier 0.9953 0.99 1.00 0.9948 1.00 0.99 0.00 

K Neighbors classifier 1 0.99 1.00 0.9948 1.00 0.99 0.00 

Deep Learning Model 0.99 0.99 1.00 0.9948 1.00 0.99 0.00 

Table 3.2: Training results on top 100 genes 

 

All the models were trained with very high accuracy i.e. 99% but Machine learning 

techniques such as logistic regression, decision trees etc failed on predicting the samples 

with low accuracy. Whereas, compared to other Machine Learning techniques Deep 

learning technique performed significantly well in the prediction part as compared to 

other models. 

b) Validation:- The results achieved were 99% accuracy on the training dataset 

and 82% accuracy on testing dataset. AUC-ROC achieved on the validation set was 

0.84 on Deep learning ANN model. The external validation data results are shown in 

the table 3.3. 

As it can be seen in the table that Deep Learning ANN model outperforms all other 

models with accuracy of 0.82, Sensitivity 0.86, Specificity 0.77, AUC-ROC 0.84 on 

 

Models Accuracy Sensitivity Specificity AUC-ROC Precision f1-Score Mis-Classification 

Decision Tree 0.40 0.97 0.02 0.49 0.02 0.04 0.59 

Random Forest 0.41 0.89 0.09 0.49 0.09 0.16 0.58 

Logistic Regression 0.38 0.68 0.18 0.43 0.18 0.28 0.62 

XGBClassifier 0.47 0.36 0.55 0.45 0.55 0.43 0.53 

ExtraTree Classifier 0.43 0.85 0.13 0.50 0.13 0.23 0.57 

K Neighbors classifier 0.37 0.33 0.39 0.36 0.39 0.36 0.63 

Deep Learning Model 0.82 0.86 0.77 0.84 0.82 0.80 0.18 

 

Table 3.3: Validation results on top 100 genes 
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the validation dataset, whereas other models fail to predict sample labels with very low 

accuracy. A graphical representation of the training and validation accuracy of all the 

models on the top 100 genes identified by mRMR is shown in the chart below 3.1. 

 

Figure 3.1: Training and validation accuracy of all models on top 100 genes 

 

 

 

3.2 Patient wise analysis on top 100 genes 

 
Since we had the data in a patient-wise format, we decided to analyze how accurately 

our best-selected Deep Learning Model (ANN) could predict the patient’s diagnosis. 

Each patient’s full single-cell RNA seq profiling was given to the model to predict the 

percentage of 1’s and 0’s in it. 1’s label denotes the number of diseased cells, and 0’s 

denotes the number of normal cells. The table 3.4 below shows patient-wise obtained 

results via the ANN Deep learning model. 

 

Patient Name Predicted Diseased Cells Predicted Normal Cells 

Alzheimer Test 1 43.00% 57.00% 

Alzheimer Test 2 83.27% 16.70% 

Alzheimer Test 3 83.97% 16.02% 

 
Table 3.4: Alzheimer’s Test patient’s analysis results on top 100 genes 
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Patient Name Predicted Diseased Cells Predicted Normal Cells 

Normal test 1 31.00% 69.00% 

Normal Test 2 23.21% 76.80% 

Normal Test3 22.98% 77.01% 
 

Table 3.5: Healthy Test patient’s analysis results on top 100 genes 
 

 
 

Figure 3.2: Diagrammatic representation of normal and diseased cells in Alzheimer’s 

Patients 

 

Figure 3.3: Diagrammatic representation of Normal and diseased cells in Normal 

Patients 

 
A graphical representation of the amount of predicted diseased cells and normal 

cells for each sample of Alzheimer’s test and Normal Test patient is shown in Figure 
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3.2 and 3.3 

 

 

3.3 Biomarkers Optimization - Incremental Feature Selection 

 
Based on the top 100 mRMR extracted genes, we prepared 100 different ANN 

classifiers and applied an Incremental Feature selection method to find out the best 

optimum number of genes which could act as biomarkers. 

Initially, the top 1st gene was taken to train the model and then accuracy was 

determined, then top 2 genes were taken to train the model and similarly accuracy of 

this model was determined. Subsequently, models were trained with more subsets of 

top 3, top 4, top 100 genes to determine the accuracy of all the subsets. The accuracy 

values are shown in the table 3.6. 

 

Geneset(TOP) Accuracy values Geneset(TOP) Accuracy values Geneset(TOP) Accuracy values Geneset(TOP) Accuracy values 

01 0.685286 26 0.948541 51 0.9765 76 0.9852 

02 0.685286 27 0.952565 52 0.9765 77 0.9857 

03 0.753898 28 0.952565 53 0.9767 78 0.9861 

04 0.753898 29 0.957285 54 0.9771 79 0.9866 

05 0.803021 30 0.957285 55 0.978 80 0.9876 

06 0.803021 31 0.957285 56 0.978 81 0.989 

07 0.838826 32 0.960116 57 0.9781 82 0.9891 

08 0.838826 33 0.960116 58 0.9793 83 0.9896 

09 0.848441 34 0.964502 59 0.9796 84 0.9898 

10 0.859855 35 0.964502 60 0.9796 85 0.9909 

11 0.871953 36 0.964502 61 0.98 86 0.9909 

12 0.878375 37 0.966266 62 0.9808 87 0.9911 

13 0.893185 38 0.966266 63 0.9811 88 0.9913 

14 0.893185 39 0.969948 64 0.9812 89 0.9916 

15 0.906203 40 0.969948 65 0.9818 90 0.9921 

16 0.906203 41 0.971426 66 0.9819 91 0.9924 

17 0.918308 42 0.971426 67 0.9819 92 0.9924 

18 0.917066 43 0.97365 68 0.9829 93 0.9935 

19 0.928251 44 0.97365 69 0.9834 94 0.9936 

20 0.928251 45 0.975414 70 0.9839 95 0.9938 

21 0.935705 46 0.975414 71 0.9839 96 0.9944 

22 0.935705 47 0.975414 72 0.9841 97 0.9945 

23 0.937469 48 0.97639 73 0.9844 98 0.9959 

24 0.943465 49 0.97639 74 0.9845 99 0.996 

25 0.948541 50 0.976014 75 0.9848 100 0.9969 

Table 3.6: IFS accuracy values on top 100 genes 

 

A graphical representation of Accuracy vs Gene subsets using IFS is shown in figure 

3.4. Out of the total top 100 genes returned by mRMR, the optimal value of biomarkers 
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found out was 35. Because after 35 genes the curve starts to flatten out and no significant 

increase in training accuracy is observed. Thus the optimal 35 genes are shown in Table 

3.7 

Figure 3.4: IFS accuracy graph representing accuracy vs gene subsets, out of which 35 

genes is selected as optimal. 
 
 

Rank Gene Rank Gene Rank Gene 
01 ARL17B 13 ZDHHC11B 25 LPAR1 

02 NAIP 14 PLXNB1 26 HIBADH 

03 BCOR 15 PLPPR2 27 ZBED5 

04 XIST 16 AC090517.4 28 PTDSS2 

05 TSC22D4 17 CDK18 29 ATG4B 

06 HEPACAM 18 LGI4 30 PWWP2A 

07 FGF17 19 CHD7 31 XRRA1 

08 EZH1 20 RBMX 32 OTUD7B 

09 FOXN2 21 CDKL1 33 SCD 

10 NDUFAF6 22 DNAJC7 34 UBE2Z 

11 CC2D1A 23 SLC25A13 35 PIGQ 

12 MARCKSL1 24 PER1   
 

Table 3.7: Optimal 35 genes selected by IFS 
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3.3.1 Analysis on 35 selected Biomarkers 

 
a) Training: - The genes mentioned in the above table 3.7 were used to train multiple 

Machine Learning and a Deep Learning (ANN) model. After training, the performance 

of training of models are shown in the table below in table 3.8. 

 

Models Accuracy Sensitivity Specificity AUC-ROC Precision f1-score Mis-Classification 

Decision Tree 0.96388 1.00 0.93 0.967 0.93 0.97 0.04 

Random Forest 0.9593 0.91 1.00 0.9551 1.00 0.95 0.04 

Logistic Regression 0.96388 1.00 0.93 0.967 0.93 0.97 0.04 

XGB Classifier 0.9638 1.00 0.93 0.967 0.93 0.97 0.04 

Extra tree Classifier 0.96 0.91 1.00 0.9551 1.00 0.95 0.04 

Deep Learning Model 0.964 1.00 0.93 0.967 0.93 0.97 0.04 

Table 3.8: Different models training results on 35 selected genes 

 

b)  Validation:- All the models were trained with very high accuracy i.e. 96% but 

Machine learning techniques such as logistic regression, decision trees, Random Forest 

etc. failed to predict the samples and showed low prediction accuracy. Whereas, 

compared to other Machine Learning techniques, the Deep learning technique 

performed significantly well in the prediction part compared to other models. The 

results of Validation accuracy can be shown in table 3.9 

 

Models Accuracy Sensitivity Specificity AUC-ROC Precision f1-score Mis-Classification 

Decision Tree 0.42 0.92 0.07 0.50 0.07 0.13 0.58 

Random Forest 0.42 0.81 0.15 0.48 0.15 0.25 0.58 

Logistic Regression 0.38 0.62 0.4 0.38 0.4 0.38 0.62 

XGB Classifier 0.46 0.54 0.41 0.48 0.41 0.47 0.54 

Extra tree Classifier 0.46 0.5 0.43 0.47 0.43 0.46 0.54 

Deep Learning Model 0.74 0.75 0.66 0.75 0.66 0.71 0.34 

Table 3.9: Different models validation results on 35 selected genes 

 

As it is significant from the above-mentioned Table 3.9 that the Deep learning ANN 

model outperforms all other models in the validation assessment of samples. Thus ANN 

outperforms all other machine learning models. The ANN model displays significant 

accuracy of 0.74, Sensitivity 0.66, AUC- ROC 0.75 etc. 
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Also, A graphical representation of the comparison of training and validation accu- 

racy of all models on the 35 selected genes by IFS is shown in the chart 3.5 

 

Figure 3.5: Training and validation accuracy comparison of all models on 35 genes 

 

 
 

3.3.2 Patient-wise Analysis on 35 genes 

 
Now, each patient’s sample data was taken and the optimal 35 genes which were 

selected as biomarkers were extracted from each sample and fed to the model to check 

the percentage of diseased and healthy cells in the sample which could help us get an 

insight about the patient’s diagnosis. The percentage of cells predicted in each test 

sample was calculated. The results of patient-wise cell prediction are shown in Table 

3.10 below. 
 

Patient Name Predicted Diseased Cells Predicted Normal Cells 

Alzheimer Test 1 50.41% 49.58% 

Alzheimer Test 2 83.98% 16.01% 

Alzheimer Test 3 83.97% 16.02% 

 
Table 3.10: Alzheimer’s Test patient’s analysis results on 35genes 

 

A graphical representation of the amount of predicted diseased cells and normal 

cells for each sample of Alzheimer’s test and Normal Test patient with the selected 35 
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Patient Name Predicted Diseased Cells Predicted Normal Cells 

Normal test 1 43.00% 57.00% 

Normal Test 2 31.00% 69.00% 

Normal Test3 25.17% 74.80% 
 

Table 3.11: Healthy Test patient’s analysis results on top 35 genes 

 

 
genes is shown in the Figure 3.6 and 3.7. 

 

Figure 3.6: Diagrammatic representation of normal and diseased cells in Alzheimer’s 

Patients (35 genes) 
 

 

Figure 3.7: Diagrammatic representation of Normal and diseased cells in Normal 

Patients (35 genes) 
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3.4 Data Visualization of Samples 

 
Since the data present with us is in form of a high-dimensional space, thus in order to 

represent it into a low-dimensional space with the goal of keeping the low-dimensional 

representation as near as possible to the actual dimension of the original data we have 

tried to visualize them using two different techniques namely tsne and umap [35]. 

Because sample tissues are typically a combination of disease-affected and normal 

cells, sample purity may result in misclassifications. So, we have selected the 35 genes 

from samples and plotted both tsne and Umap visualization of the data points in 2D 

and 3D. 

a) t-SNE:- t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensional- 

ity reduction approach that is well known for visualizing large datasets. It represents 

data by giving each data point a location in a two or three-dimensional map. [36]. The 

t-SNE 2-Dimensional and 3-Dimensional Visualization is shown in figure 3.8 below. 

As we can see 2d graph shows a clear separation between both the classes of Diseased 

(Alzheimer’s) cells and Normal (Healthy) cells. Whereas in the 3- dimensional 

representation we can see some overlap between the cells. As some of the data points 

seem to be merged with each other. 

 

 
Figure 3.8: 2D visualization using tsne of both classes 

 

b) UMAP: - UMAP stands for uniform manifold approximation and projection 

[37]. It is a dimension reduction approach that like t-SNE, may be used for 

visualization as well as generic non-linear dimension reduction. Despite having 

certain benefits over tSNE in terms of separating batch effects, recognizing pre- 
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defined biological groups, and exposing in-depth clusters in two-dimensional 

space, UMAP outperforms PCA 

 

 

 

Figure 3.9: 3D visualization using tsne of both classes 

 

and MDS. UMAP’s sample clustering is important since it exposes biological traits and 

clinical importance [37]. 

UMAP 2d and 3d representations of the dataset on the selected 35 genes have been 

developed. We can clearly see the separation of data based on the selected 35 genes 

which could act as biomarkers. 

 

 

 

Figure 3.10: 2D visualization using umap of both classes 



 

25  

 

 
 

 

Figure 3.11: 3D visualization using umap of both classes 

 

3.5 Biological Functions of the Selected Genes 

 
After completion of analysis by mRMR, 35 genes were extracted which could serve as 

potential diagnostic biomarkers of Alzheimer’s. We then performed Gene Ontology 

(GO) Enrichment Analysis on these extracted 35 genes to map the biological 

functions of the selected genes. The Go enrichment analysis results are shown in the 

Table 3.12. 

 

GO term Activity Genes 

(GO:0140657) ATP-dependent activity CHD7 

 

(GO:0005488) 

 

 
Binding 

CHD7, ARL17B, UBE2Z, FGF17, OTUD7B, CDKL1, MARCKSL1, FOXN2, 

 
NAIP, PER1, CC2D1A, AC090517, LPAR1, PWWP2A, CDK18 

(GO:0003824) Catalytic Activity ZDHHC11B, CHD7, UBE2Z, HIBADH, OTUD7B, CDKL1, NAIP, CDK18, PLPPR2 

(GO:0098772) Molecular Function Regulator UBE2Z, FGF17, NAIP 

(GO:0060089) Molecular Transducer Activity PLXNB1, FGF17, LPAR1 

(GO:0140110) Transcription Regulator Activity BCOR, FOXN2, CC2D1A, AC090517 

(GO:0005215) Transporter Activity SLC25A13 

Table 3.12: Gene ontology Enrichment analysis results 

 

As we can see, most of the Genes are involved in the Binding Activity and catalytic 

activity of various metabolic processes. Other activities associated with reported genes 

are ATP-dependent activity, Molecular function regulator, Molecular Transducer 

activity, transcription regulator activity, and transporter activity. 



 

CHAPTER 4 
 

 
PIPELINE PACKAGING 

 

 
The Deep Learning model (ANN) trained on the training set was saved, and the next 

step of packaging the code into a proper pipeline was performed. Python packaging 

includes a total collection of all essential requirements and prerequisites to run the code 

efficiently on any system containing python. The pipeline was built so the user could 

input their respective data and get the output whether the patient is “Diseased” or “Nor- 

mal/Healthy”. The python package was uploaded on https://www.pypi.org, and the 

package was named “AlzScPred”. 

 

 

4.1 Directory Structure 

 
The directory is the place/folder where all the prerequisites and requirements are kept. 

The structure of the directory is as shown in the chart below 4.1. In place of the 

mentioned YOUR _USERNAME _HERE, mention the name of the package you want 

to create. The name of the package should be unique such that it does not conflict with 

people that have uploaded previously with the same name. Also, make sure the 

directory/ folder consisting of python scripts should have the same name as the project. 

This simplifies the configuration and installation for new users. Also, an initialization 

file for every folder of the project is necessary, naming it as init .py, which can also be 

an empty file. It is required to import the folder as a package. 

 

 

4.2 Package Requirements 

 
Along with the python script the package directory also needs to have certain important 

configuration files for easy installation and processing of the package on any user 

system. The other required files are as follows: 
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http://www.pypi.org/
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Figure 4.1: Package directory structure example 

 
• Setup.py 

• Manifest.in 

• README.md 

• LICENSE.txt 

• Example files 

• test files 

 
 

The setup.py file consists of all the important configuration details and prerequisites 

for the software installation. It consists of data about the required packages needed 

before installation, version number, description of the package, author name, contact 

etc. Whereas, the Manifest.in the file is required to include extra important files in our 

source distribution because when we build a python package by default only a minimal 

set of files are included in the source distribution. So in order to include extra files and 

let them be recognized by the system a MANIFEST.in file containing all folder names 

and codes is required. README.md file contains information about the project and its 

detailed description for other users so that they it works as a guide for the project. It 

is a file containing information for the users. Similarly, a LICENSE.txt file is required 

which describes the copyrights, licenses, and restrictions which apply to that code. 
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4.3 Packaging process 

 
After preparation of the package directory with all the requirements. The package needs 

to be converted into a .tar file and .whl (wheel) file with the below commands. 

 

Figure 4.2: Wheel file creation code 

 

This command will create a wheel file for the source distribution of the package and 

a tar file containing all the files of the package in the tar format. After preparation of 

the wheel file, you need to have twine installed which is required to upload the whl and 

tar file on www.pypi.org. The command file used is shown below. It will require the 

PyPI credential to log in and upload to the PyPI account. 

 

Figure 4.3: Upload on PyPI using twine 

 

 

 

4.4 Package Details 

 
4.4.1 AlzScPred 

 
It is a computational approach tool to predict Alzheimer’s affected patients from their 

single-cell RNA seq data using Deep Learning. This tool aims to use Artificial Neural 

Network (Deep Learning) model to classify Normal Control (NC) patients and 

Alzheimer’s disease (AD) patients from their single-cell RNA seq data. It takes 10x 

single cell genomics data as input and predicts whether the patient is diseased or healthy 

with the help of a highly trained model. 

An excellent feature selection method called mRMR (Minimum Redundancy 

Maximum Relevance) was used to find out the top 100 features for classification. 

Followed by Incremental Feature Selection (IFS) which led to the identification of 35 

conserved genes which act as promising biomarkers in the classification and 

prediction of Normal and Diseased patients. 

http://www.pypi.org/
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4.5 Installation 

 
The user can download the package on any python environment with Python 3.0 or 

higher with the following command. It can also be found directly on www.pypi.org site. 

The screenshot of the PyPI is shown below. 

Figure 4.4: pip install command to install package 

 

Also in case the tool is previously installed, the tool can be upgraded to the latest 

version using the command. 

Figure 4.5: pip upgrade command to upgrade package 
 
 

Figure 4.6: PyPI screenshot of package 

 

 

4.6 Usage 

 
After installation of the AlzScPred package in your python environment. Import the 

library using the below code. The AlzScPred comes with 1 inbuilt module. 

• Prediction Module 

http://www.pypi.org/
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Please import the modules in your python environment before executing the code 

below. 

Figure 4.7: Python code to import package 
 
 

Figure 4.8: Python code to import Validation Module 

 

 

 

4.6.1 Input 

 
The input file should be in the form of a data frame in which the columns should be 

features (genes) and the rows should be cells. The file should contain the read count 

data of each gene in each cell. 

 

Figure 4.9: Example of input file 

 

 
 

4.6.2 Demo 

 
The demo to run the python package is shown in the figure below: 

 

Figure 4.10: Code Demo 
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Note: Please make sure that your single-cell data file is prepared in the above ex- 

ample.csv format. And the file should also contain the read count data for the selected 

35 genes in the above 35_genes.txt file. Which can be found at 

https://webs.iiitd.edu.in/raghava/alzscpred/ 

 

 

4.6.3 Output 

 
The output of the file can be obtained by the code as shown below. It will display the 

patient diagnosis i.e. Diseased or Healthy with the amount of Diseased or healthy cells 

found in the patient. 

Figure 4.11: Output 

https://webs.iiitd.edu.in/raghava/alzscpred/


 

CHAPTER 5 
 
 

DISCUSSION 
 

 
Alzheimer’s has now been recognized in the category of world health concerns. It 

accounts for nearly 60-70% cases of dementia [38]. There are several criteria that have 

been proposed for the screening and diagnosis of AD, including physical symptoms, 

bodily fluids, and imaging studies. Despite this, there is currently no cure for AD, and 

the only effective therapy is symptomatic. Various drugs such as galantamine, 

donepezil, and rivastigmine are prescribed to increase memory power and brain 

alertness, but they cannot control the disease progression [39]. Numerous studies have 

demonstrated that altering lifestyle practices, including as food and exercise, can 

enhance brain health and lessen AD without requiring medical attention [40]. This is 

why it is recommended as a first-line prevention strategy for all AD patients. 

In this study, we have obtained a subset of genes which could act as potential diagnostic 

biomarkers for AD. Significant neuronal loss and neuropathological abnormalities can 

harm several brain regions by the time it is normally identified [41]. To prevent 

hazardous issues like these, the study aims to highlight some specific biomarkers which 

could aid in early screening and diagnosis of Alzheimer’s disease from the Single Cell 

genome. The biomarkers are shown in the table 3.7. The single-cell data is usually very 

large and sparse, which makes it difficult for people to analyze for multiple patients. 

The principal changes in AD are the metabolic pathways for AD’s neurodegenerative 

nature, which include extracellular amyloid plaques, intracellular neurofibrillary 

tangles, synaptic degeneration, and neuronal death [42]. 

We have obtained a set of 35 genes which could classify AD patients from Normal 

control patients via the Deep Learning ANN model. We have also tried to implement 

Machine Learning technologies on Single cell data, but they did not classify with much 

effect and demonstrated a low accuracy. In particular, ANN achieved 82% 

classification accuracy on 100 genes selected by mRMR method. However, the ANN 

method proved robust and showed approximately 75% accuracy on a smaller subset of 

35 genes selected by the Incremental Feature Selection method. 

 

 
 

32



 

The low performance or misclassification may be due to sample impurity and RNA 

sequencing dropout in the dataset. Nonetheless, we still believe it to be an interesting 

result to achieve decent classification accuracy from single-cell data, which is highly 

sparse and error-prone. A generic threshold of 45% is set to classify the patient’s 

diagnosis, i.e. if the patient has more than 45 % of diseased cells, he/she would be 

diagnosed as Alzheimer’s affected, and if the patient has more than 55% of normal 

cells  predicted, he she is classified in the category of healthy persons. 

Silencing of lncRNA X-inactive specific transcript (XIST) was found to be directly 

connected to an increase in Alzheimer’s symptoms. The XIST gene was found to be 

upregulated in AD models in both invitro and invivo [43]. Gene "TSC22D4" in a study 

in Japanese Alzheimer’s Patients showed to be significantly differentially regulated as 

compared to normal controls [44]. "FGF17", i.e. Fibroblast growth factor dysregulation, 

has been reported in various brain-related (neurological and psychiatric disorders). It 

has been shown to be altered in epileptogenesis [45]. Transcriptional regulatory 

changes are prominent features of brain diseases, transcriptional changes in gene 

"FOXN2" highlights the convergence of genetic risk with psychiatric and 

neurodegenerative disorders [46]. 

Genes such as "CDK18" have uncharacterized mechanisms by which they may pro- 

mote AD neurodegeneration, and this increases the probability that their inhibition may 

cause protection against AD development pathology [47]. There are also genes such as 

’BCOR’, ’AC090517.4’, ’LGI4’, ’SLC25A13’ and "ZBED5’, which have not yet been 

reported any connection with Alzheimer’s disease progression and development. Thus 

further deep studies are required to evaluate these biomarkers, and these could act as 

novel findings. Genes ’SCD’ and ’UBE2Z’ have been reported in various studies 

related to cognitive impairment and diagnosis or treatment of Alzheimer’s disease [48] 

[49]. 21 genes out of the 35 genes above in the table 3.7 have been reported with con- 

nection to Alzheimer’s disease and their relation with neurodegeneration. Other genes 

need further study and research. We have evaluated a total of 21 samples from both 

Normal and Alzheimer’s affected patients. The data obtained was from the prefrontal 

cortex of the brain. More data from areas like the hippocampus and amygdala can be 

obtained to add to this dataset for identifying further promising biomarkers. 
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CHAPTER 6 
 

 
CONCLUSION 

 

 
In this study, we have used various Machine Learning models and an ANN deep learning 

model to classify Normal Control(NC) cells and Alzheimer’s Disease(AD) cells from 

their single-cell RNA seq data. Also, patient-wise analysis to classify the samples is 

also done in this study on a total of 21 samples. We compared the Deep Learning 

model with other Machine Learning models to find out that the deep learning model 

performed well very against all the Machine learning models. Initially, the dataset was 

quite large with a very high number of features (>30000). The data was then 

preprocessed and the feature count was reduced to a significantly low number (=5000). 

Since many features were co-related and redundant, so a feature selection method 

known as mRMR [16] was applied, to get a minimal set of features which could be 

helpful in classifying the samples. Out of these 5000 features, mRMR was applied to 

extract the top 100 features with minimal redundancy and maximal relevance. The IFS 

method was then applied to select the optimal number of biomarkers. 35 genes were 

selected to be optimal. In addition, there 35 genes (features) distinguished the AD 

patients from NC patients with an accuracy of 74% and AUC- ROC of 0.75. ANN 

proved to be a powerful tool for biomarker identification and classification. However, 

more studies on the identified genes in clinical setups are required for in-depth analysis 

and their role in how they affect and cause Alzheimer’s disease progression. 
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