
A Mobile Application for Dish Detection in Food

Platters by Deploying an Object Detection

Computational Protocol

by
Nitesh Narwade

Under the supervision of
Professor. Ganesh Bagler

Master of Technology, Computational
Biology

Center for Computational Biology Indraprastha

Institute of Information Technology - Delhi

June, 2023

Certificate

This is to certify that the thesis titled “A Mobile Application for Dish Detection in Food
Platters by Deploying an Object Detection Computational Protocol” being submitted by
Nitesh Narwade to the Indraprastha Institute of Information Technology Delhi, for
the award of the Master of Technology is an original research work carried out by him
under my supervision. In my opinion, the thesis has reached the standards fulfilling
the requirements of the regulations relating to the degree.

The results contained in this thesis have not been submitted in part or full to any
other university or institute for the award of any degree/diploma.

June 2023 Professor. Ganesh Bagler

Department of Computational Biology
Indraprastha Institute of Information Technology Delhi

New Delhi 110 020

1

Acknowledgements

This entire thesis was possible due to help from a multitude of people. The biggest
contributor is my supervisor, Dr. Ganesh Bagler, without whose help, guidance, and
patience this thesis would have been completed. It’s through his advice that this work
was able to reach this level. Throughout this work members of the Reggen lab were
always there to lend a hand and help me in exploring uncharted areas of knowledge
and I would also like to extend my heartfelt gratitude to my teachers at IIIT Delhi,
my seniors, and my batchmates. I would also like to thank the Department of Biotech-
nology, the Government of India, for the student fellowship and support to the MTech
(Computational Biology) program. Last but not the least, I express my gratitude to
my family members who were always there as a pillar of support.

2

Abstract

The training and deployment of YOLOv4 and YOLOv5 models in an Android appli-
cation play a vital role in achieving real-time object detection on mobile devices. This
abstract overviews the critical steps in training and integrating these models into an
Android application. The training process for YOLOv4 and YOLOv5 begins with col-
lecting and annotating a labelled dataset, where bounding box coordinates and object
classes are assigned to the images. Deep learning techniques are then applied to train
the models, optimizing their parameters through iterative processes to improve ob-
ject detection accuracy. PyTorch and TensorFlow are commonly employed for training
YOLOv4 and YOLOv5 models offer comprehensive support for model architecture de-
sign, data preprocessing, and optimization algorithms. Once trained, the models must
be deployed in an Android application. This involves converting the trained models
into a format compatible with mobile devices like TensorFlow Lite. TensorFlow Lite
enables the efficient execution of deep learning models on Android smartphones and
other resource-constrained devices. The loaded YOLOv4 or YOLOv5 model is utilized
in the Android application for real-time object detection. The application captures
frames from the device’s camera, feeds them into the model, and receives predictions
through bounding boxes and class labels. These predictions are then superimposed on
the camera feed, providing the user a real-time object detection experience. To opti-
mize the performance of the models in the Android application, techniques like model
quantization and hardware acceleration can be employed. Model quantization reduces
memory and computation requirements, leading to faster inference on mobile devices.
Hardware acceleration, such as utilizing the GPU, further enhances the speed and effi-
ciency of the object detection process. In conclusion, training YOLOv4 and YOLOv5
models involve dataset collection, annotation, and deep learning model training, fol-
lowed by deployment in Android applications using frameworks like TensorFlow Lite.
Integrating these models into an Android application enables real-time object detection,
enhancing the functionality and usability of various applications, including augmented
reality and image recognition.

3

Contents

1 INTRODUCTION AND MOTIVATION 7

2 LITERATURE SURVEY 9
2.1 Object Detection . 9
2.2 Object Detection With OpenCV . 10
2.3 YOLO And Similar Models . 10

2.3.1 YOLO . 10
2.3.2 RCNN . 11
2.3.3 SSD . 12

2.4 Deep Learning (Classification) . 13
2.4.1 CNN . 13
2.4.2 RNN . 14

3 DATA COLLECTION AND DATA PREPARATION FOR DIFFER-
ENT YOLO MODELS 15
3.1 Food Classes . 15

3.1.1 Dataset Prepration . 16

4 IMAGE DETECTION FOR THE INDIAN DISHES 18
4.1 YOLO Architecture . 18
4.2 Training YOLOV4 Model . 21
4.3 Training YOLOv5 Model . 22

4.3.1 YOLOV5 Nano Model . 22
4.3.2 YOLOv5 Small Model . 23
4.3.3 YOLOv5 Medium Model . 23
4.3.4 YOLOv5 Large Model . 24
4.3.5 YOLOv5 Extra Large Model . 25

4.4 Performance Evaluation . 25

4

5 MOBILE APPLICATION DEVELOPMENT 29
5.1 WhatDish Application Introduction . 29
5.2 Application UI . 30

5.2.1 Camera Activity . 30
5.2.2 User Activity . 35

5.3 Deployment Of YOLO Model In An Android Application 37

6 CONCLUSION 39

5

List of Figures

4.1 YOLO Architecture. 19
4.2 Performance results of YOLO models 26
4.3 Graphical Representation of Performance results for YOLOv5 models . 28

5.1 WhatDish Android application with no progress in progress bar 31
5.2 WhatDish Android application with progress in progress bar 32
5.3 WhatDish Android application with detected food information stored in

table . 34
5.4 WhatDish Android application user Activity 36

6

Chapter 1

INTRODUCTION AND
MOTIVATION

Object detection has emerged as a crucial task in computer vision, with numerous ap-
plications across various domains. In recent years, the YOLO (You Only Look Once)
models, specifically YOLOv4 and YOLOv5, have gained significant attention for their
outstanding performance in real-time object detection tasks. Integrating these advanced
models into an Android application focused on food detection and recognition offers ex-
cellent potential for enhancing user experiences, promoting healthy eating habits, and
aiding dietary monitoring. This thesis aims to develop an object detection Android
application that utilizes the YOLOv4 and YOLOv5 models to accurately detect and
classify food classes in real time. The application aims to assist users in making in-
formed dietary choices, providing nutritional information based on the identified food
items. By leveraging the power of YOLOv4 and YOLOv5, the Android application can
directly achieve fast and accurate food detection on the device. An Android application
eliminates the need for internet connectivity or server-side processing, enabling users to
receive instant feedback and information about the food items they encounter. One of
the primary advantages of integrating YOLOv4 and YOLOv5 into the Android applica-
tion is their capability to handle complex scenes, occlusions, and varying object scales.
These models have shown remarkable performance in object detection tasks, including
challenging scenarios, making them well-suited for food detection applications that in-
volve diverse food classes and different object sizes. The Android application’s focus on
food detection and recognition has several practical implications. It can empower users
to make healthier dietary choices by providing real-time information about various food
items’ nutritional content. Additionally, the application can offer personalized calorie
goal setting. Moreover, integrating YOLOv4 and YOLOv5 into the Android applica-

7

tion presents research and exploration opportunities. This thesis aims to evaluate the
performance of these models, specifically in the context of food detection and recogni-
tion on mobile platforms. It opens avenues for investigating optimizations, fine-tuning
techniques, and architectural modifications to enhance the models’ accuracy and effi-
ciency for food-related tasks. In conclusion, integrating YOLOv4 and YOLOv5 models
into an Android food detection and recognition application holds immense potential.
By leveraging the strengths of these models, the application can provide real-time, ac-
curate, and context-aware information about various food classes. The thesis seeks to
contribute to advancing mobile vision applications in food detection and support users
in making healthier dietary choices.

8

Chapter 2

LITERATURE SURVEY

2.1 Object Detection

Object detection involves identifying and localising objects within digital images or
video frames. Its significance extends to various domains, such as autonomous driv-
ing, surveillance systems, robotics, image and video analysis, and augmented reality.
Object detection aims to accurately and efficiently identify multiple objects within an
image or video. These objects can range from everyday items like cars, pedestrians,
and animals to domain-specific objects in medical imaging or industrial inspection ar-
eas. Object detection surpasses traditional image classification, which assigns a single
label to an entire image. Instead, it aims to identify and locate individual objects by
drawing bounding boxes around them. Additionally, object detection often involves
assigning a label or class to each detected object, providing further contextual informa-
tion about its identity. The progress in object detection algorithms has been substantial
in recent years, primarily driven by annotated datasets. Deep learning models, partic-
ularly convolutional neural networks (CNNs), have revolutionised object detection by
directly learning hierarchical representations of visual features from raw image data.
Several widely adopted object detection frameworks have emerged, including Faster R-
CNN, YOLO (You Only Look Once), and SSD (Single Shot MultiBox Detector). These
frameworks utilise techniques like region proposal methods, anchor boxes, and feature
pyramid networks to achieve accurate and efficient object detection. Object detection
finds practical applications in autonomous driving by identifying and tracking vehicles,
pedestrians, and traffic signs to ensure the safety and efficiency of self-driving cars.
Surveillance systems enable real-time detection of suspicious activities or individuals in
video streams. It also plays a crucial role in retail analytics by counting and tracking
products on store shelves or analysing customer behaviour. Continued advancements in

9

computer vision are leading to increasingly robust, accurate, and faster object detection
algorithms, creating new possibilities across a wide range of applications. Researchers
and developers continuously explore innovative architectures, optimisation techniques,
and training strategies to enhance the performance and efficiency of object detection
algorithms.[1]

2.2 Object Detection With OpenCV

OpenCV stands for open-source computer vision. It is the library introduced by Intel for
image and video analysis. OpenCV library has more than 2500 optimised algorithms.
This algorithm is used all over the world. This OpenCV library is used primarily
by graduate students and professors for research in the computer vision area. The
OpenCV library functions are mainly made in C and C++. After a few years, they
also introduced all these libraries in Python. In the YOLO model, python libraries have
been used. OpenCV is used in Object Tracking, feature detection, image filtering, image
transformation, face detection, and face recognition. In the YOLO model, OpenCV is
used for image detection. With the help of OpenCV, we can load the image from the
source file. We can convert the image into a grayscale format and create bonding boxes
to track or detect the object. OpenCV is used to reduce the noise from the image
before giving it to the model. OpenCV used a CUDA-based GPU interface which
NVIDIA introduced. To use multiple-thread parallel programming is essential. Users
can do parallel programming using CUDA-based GPU in their computer vision model.
Processing thousands of images and doing quick work is impossible with single CPU
processing. Hence CUDA-based GPU comes into the picture, which divides processing
work on different threads and does quick computation. [2]

2.3 YOLO And Similar Models

2.3.1 YOLO

Introduces YOLO (You Only Look Once), a groundbreaking framework renowned for
its speed and accuracy in object detection. YOLO revolutionized the field by propos-
ing a unified approach directly predicting bounding boxes and class probabilities in a
single convolutional neural network (CNN) pass. The core concept of YOLO is to treat
object detection as a regression problem, where the CNN simultaneously predicts the
coordinates of bounding boxes and the probabilities of object classes within an image.
Unlike previous methods that relied on region proposal techniques, YOLO eliminates

10

the need for time-consuming region proposal stages by directly predicting object loca-
tions and categories. Images are divided into the grid by YOLO, with each grid cell
responsible for predicting a fixed number of bounding boxes and their associated class
probabilities. Each bounding box prediction consists of four coordinates (x, y, width,
height) and includes a confidence score representing the likelihood of containing an
object. YOLO employs multiple convolutional layers with different spatial resolutions
to enable predictions at different scales. Lower-resolution feature maps capture global
context and larger objects, while higher-resolution feature maps focus on finer details
and minor things. This multiscale approach allows YOLO to detect objects of vari-
ous sizes while maintaining a balance between localization accuracy and computational
efficiency. During training, YOLO utilizes a loss function that combines localization
loss (related to the accuracy of bounding box coordinates) and classification loss (re-
lated to the accuracy of predicted object classes). This loss function encourages precise
localization and penalizes incorrect predictions, enabling the network to learn robust
representations for object detection. The experimental results demonstrate that YOLO
achieves impressive real-time object detection accuracy. It surpasses previous methods
in terms of both speed and precision on widely-used datasets like PASCAL VOC and
COCO. Despite its success, YOLO does have some limitations. It may struggle with
detecting small objects or objects with significant aspect ratio variations. Additionally,
it may produce false positives and need help in accurately localizing densely packed
objects due to the fixed grid structure. Nevertheless, the YOLO framework represents
a significant milestone in real-time object detection. Its speed and accuracy have made
it popular for various applications, including video surveillance, autonomous driving,
and robotics. YOLO has also inspired subsequent variants such as YOLOv2, YOLOv3,
and YOLOv4, further enhancing its strengths and addressing its limitations.[3]

2.3.2 RCNN

The R-CNN (Region-based Convolutional Neural Network) was introduced in 2014 by
Girshick et al. as a groundbreaking object detection framework. It combined deep
learning with region proposal techniques, revolutionizing the field of object detection.
The R-CNN approach involves several key steps. First, a selective search algorithm
generates region proposals within an image. These proposals group pixels based on
image features to capture potential object locations. Next, each region proposal is
individually extracted and transformed into a fixed size to match the requirements of
a pre-trained CNN, typically based on architectures like AlexNet or VGGNet. The
CNN extracts feature for each region. The extracted features are then used for region
classification and localization. Linear Support Vector Machines (SVMs) are employed to

11

classify the content of each region proposal into different object categories. Additionally,
bounding box regression is performed to refine object localization. During training, a
large dataset with labelled object instances is used. The CNN is pre-trained on a large-
scale image classification task (e.g., ImageNet) and then fine-tuned specifically for object
detection using the R-CNN framework. SVMs and bounding box regressors are trained
to classify and localize objects within the proposed regions. At its introduction, the R-
CNN framework exhibited significant performance improvements compared to previous
object detection methods. It achieved state-of-the-art results on benchmark datasets
like PASCAL VOC and MS COCO, demonstrating the effectiveness of deep learning
in object detection. However, R-CNN had certain limitations. Processing each region
proposal individually made the method computationally expensive and time-consuming,
rendering it unsuitable for real-time applications. Additionally, the multi-stage R-CNN
pipeline introduced complexity in training and inference. Despite these limitations, R-
CNN laid the foundation for subsequent advancements in object detection. It inspired
the development of faster and more efficient variants such as Fast R-CNN, Faster R-
CNN, and Mask R-CNN, addressing the original R-CNN approach’s computational and
efficiency issues. Overall, R-CNN pioneered the integration of deep learning and region
proposals for object detection, leaving a significant impact on the field and paving the
way for further advancements in subsequent years. [4]

2.3.3 SSD

The main idea behind SSD is to directly estimate object categories and adjustments
to bounding boxes in a single forward pass of a convolutional neural network (CNN).
Instead of relying on region proposal methods like previous techniques, SSD eliminates
the need for a separate stage to propose regions, resulting in faster detection. The SSD
framework divides the input image into default bounding boxes called anchor boxes with
different scales and aspect ratios. These anchor boxes are processed through multiple
feature maps of varying resolutions in the CNN, enabling the detection of objects of
various sizes. Each anchor box is associated with predictions for object classes and ad-
justments to bounding boxes, allowing for simultaneous classification and localization.
To handle objects of different scales, SSD utilizes feature maps from multiple layers
of the CNN with different spatial resolutions. This approach enables the detection of
objects of various sizes and enhances the overall detection accuracy[5]. Including using
convolutional layers to predict class scores and bounding box offsets, implementing de-
fault anchor boxes with diverse scales and aspect ratios, and employing a multi-scale
feature fusion strategy. Experimental results demonstrate that SSD achieves state-of-
the-art object detection on standard datasets such as PASCAL VOC and MS COCO.

12

It strikes a good balance between accuracy and speed, making it suitable for real-time
applications. [6]

2.4 Deep Learning (Classification)

Deep learning classification involves various architectures and techniques for categoriz-
ing data. Below are commonly used types:

2.4.1 CNN

A Convolutional Neural Network (CNN) is an advanced machine learning algorithm
widely used for processing images and videos. It takes inspiration from the human
visual system’s structure and function, particularly the visual cortex’s receptive fields.
CNNs have different components, including convolutional, pooling, and fully connected
layers. The convolutional layers employ filters (also called kernels) that slide over the
input image, performing element-wise multiplication and summation to generate feature
maps.

These feature maps capture various patterns and characteristics found in the input
image. Pooling layers downscale the feature maps, reducing their spatial dimensions
while preserving the most critical information. Common pooling operations involve se-
lecting the maximum or average value within each pooling region, known as max pooling
and average pooling. Fully connected layers are typically positioned at the network’s
end and generate predictions based on the learned features. They establish connections
between every neuron in the preceding layer and every neuron in the subsequent layer.

This connectivity enables the network to comprehend intricate relationships among
components and produces output predictions. Training CNNs involves utilizing large
labelled datasets and employing backpropagation. During backpropagation, the net-
work adjusts the weights and biases of its neurons to minimize the disparity between
predicted outputs and the actual labels. This training process allows the network to
learn distinctive features and generalize effectively to unseen data. CNNs have suc-
ceeded significantly in various computer vision tasks, such as image segmentation and
generation. They have also been extended and applied to other domains, including com-
puter vision and image recognition, by incorporating additional layers and adapting the
architecture to the specific problem.[7]

13

2.4.2 RNN

RNN, or Recurrent Neural Network, is an artificial neural network commonly used
in natural language processing (NLP) and sequential data analysis, unlike traditional
feedforward neural networks, which process inputs in a single forward pass. The crit-
ical characteristic of RNNs is their ability to process sequential data by maintaining
an internal memory state. This memory state enables the network to retain and uti-
lize information from previous steps or time points in the sequence while processing
subsequent inputs. This makes RNNs well-suited for tasks that involve sequential or
temporal dependencies, such as language modelling, speech recognition, machine trans-
lation, sentiment analysis, and time series forecasting.

The structure of an RNN includes recurrent connections, which allow the network
to share and propagate information across different time steps. At each time step, the
RNN combines an input vector with the previous hidden state to produce an output and
update the current hidden state. The secret state acts as the memory of the network,
carrying information from one step to the next.

However, standard RNNs can suffer from the ”vanishing gradient” or ”exploding
gradient” problem, where gradients either diminish exponentially or grow uncontrol-
lably during backpropagation through time. Variations of RNNs have been developed
to address this issue, such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU). LSTM and GRU are RNNs that incorporate specialized memory cells and
gating mechanisms, allowing them to capture long-term dependencies more effectively.

These models have become popular in NLP tasks because they can handle vanishing
gradients and retain important contextual information over longer sequences. RNNs,
particularly LSTM and GRU variants, have significantly advanced the field of NLP and
sequential data analysis. They have proven effective in various applications, including
language generation, sentiment analysis, machine translation, speech recognition, and
more. Researchers and practitioners continue to explore and refine RNN architectures
and techniques to improve their performance and address the challenges associated with
sequential data processing.[8]

14

Chapter 3

DATA COLLECTION AND DATA
PREPARATION FOR
DIFFERENT YOLO MODELS

The team of students collected a dataset of approximately 61,000 images from various
sources, such as social media platforms like Instagram. These images were used to train
the YOLOv4 and YOLOv5 models for object detection. The dataset consisted of 61
food classes, each with a minimum of 1,000 images.

To annotate the images, the team used an AI tool that assisted in the image anno-
tation procedure. With the help of this tool, bounding boxes were placed around the
specific areas of the images where the actual food item of the corresponding class was
present. This annotation process helps the model learn and recognize the objects of
interest by associating the bounding boxes with their respective class labels.

It is worth mentioning that the annotation process was focused on annotating only
the relevant parts of the images containing the actual food items. This approach helps
provide precise training data for the model, reducing the need for annotating the entire
image and improving the efficiency of the annotation process.

3.1 Food Classes

The data has trained for 61 food classes. In 20 food classes, Indian bread (chappati,
roti), Rasgulla, Biryani, Uttapam, Paneer, Poha, Khichadi, Omelette, Plain Rice, Dal
Makhani, Rajma, Poori, Chole, Dal, Sambhar, Papad, Gulab Jamun, Idli, Vada, and
Dosa. On extending these classes to 40, Jalebi, Samosa, Pao bhaji, Dhokla, Barfi,
Fishcurry, Momos, Kheer, Kachori, Vadapav, Rasmalai, Kalachana, Chaat, Saag, Du-

15

maloo, Thupka, Khandvi, Kabab, Thepla, Rasam also added. Again to extend it
to 61 classes, Appam, Gatte, Kadhi Pakora, Ghewar, Aloo mattar, Prawns, Sand-
wich, Dahipuri, Haleem, Mutton, Aloo Gobi, Egg Bhurji, Lemon Rice, Bhendi Masala,
Matar Mushroom, Gajarka Halwa, Motichoor Ladoo, Ragi Roti, Chicken Tikka, Tan-
doori Chicken, and Lauki. The first 20 classes (1 to 20) are trained on YOLOV4 and
YOLOV5 models. The classes from 1 to 40 trained on the YOLOV5 model only. And
again, one set of YOLOV5 models trained for classes from 1 to 61.

3.1.1 Dataset Prepration

The dataset used 61 classes of food. Each category contains a minimum of 1000 images
and corresponding annotation files. These annotation files provide detailed information
about the objects present in the photos, including the object’s location, width, height,
and the specific class it belongs to. In multiple object cases, each object is correctly an-
notated with its dimensions. To create this dataset, a team of 9 students was involved.
They collected images from various social media platforms, such as Instagram, and
utilised AI websites to assist in annotation. This dataset aimed to encompass a com-
prehensive range of Indian dishes, ensuring that various food items were represented.
It’s important to note that the dataset needs to be prepared according to the model’s
specific requirements to utilise the YOLO model effectively. This includes appropriately
annotating the images with bounding boxes and class labels, ensuring consistency and
accuracy throughout the dataset.

YOLOV4 Dataset Prepration

To train the YOLOv4 model, the dataset is divided into training and validation sets
using a 90:10 split. This means that out To manage the dataset, a Python script is
developed to store the results by saving the file paths of each image into text files.
Specifically, two text files are created: one for the training dataset and another for the
validation dataset. Storing these files in the ”darknet/data” directory is essential to
ensure proper organisation. During the training process, the YOLOv4 model produces
various outputs and results. These are stored in the result directory, which includes the
trained weights saved in the ”.pt” format. Additionally, the result directory contains
visualisations such as the map value graph, F1 curve, P curve, PR curve, and R curve.
These visualisations provide valuable insights into the performance of the trained model.
By analysing these results, one can evaluate the effectiveness of the YOLOv4 model
in object detection tasks and make informed decisions regarding its performance and
potential areas for further improvement.

16

YOLOV5 Dataset Prepration

In preparation for training the YOLOv5 model, two distinct folders were created: one
for the training data and another for the validation data. Within the training data
folder, two sub-folders were established. One sub-folder was designated for storing the
images, while the other was dedicated to keeping their corresponding annotation files.

The same structure was replicated in the validation data folder. A 90:10 ratio
was employed to split the data between the training and validation folders to ensure
an appropriate data division. This means that 90% of the data was allocated to the
training folder, while the remaining 10% was assigned to the validation folder. With the
data organized this way, the YOLOv5 model is now ready to be executed. To ensure the
model utilizes the correct dataset, it is essential to modify the training and validation
data paths in the ”coco.yaml” file, replacing them with the respective paths to the
current dataset. The YOLOv5 model can be effectively trained using the designated
training and validation data, enabling accurate object detection and recognition by
completing these steps.

17

Chapter 4

IMAGE DETECTION FOR THE
INDIAN DISHES

4.1 YOLO Architecture

Introduction

YOLO (You Only Look Once) is an advanced object detection model renowned for its
real-time capabilities. YOLOv4, introduced in April 2020, represents the fourth itera-
tion of the YOLO algorithm. This model has demonstrated exceptional performance
on the COCO dataset, encompassing 80 diverse object categories. YOLOv4 priori-
tizes inference speed as a one-stage detector, distinguishing it from the other preva-
lent method known as two-stage detectors. The model predicts classes and bounding
boxes for the image in one-stage sensors without selecting a specific Region of Interest
(ROI). This characteristic enables faster processing than two-stage detectors like FCOS,
RetinaNet, and SSD. The original implementation of YOLO was developed using the
Darknet framework. Darknet is a robust open-source framework for constructing neural
networks using C++ and CUDA. It serves as the underlying framework for YOLO, pro-
viding a solid foundation for network building and training. The architecture of YOLO
divides the object detection task into regression and classification tasks. The regression
component predicts the classes and bounding boxes for the entire image in a single
pass, allowing for the accurate localization of objects. Subsequently, the classification
component determines the specific type or category of the detected object.[9]

In summary, YOLO is a state-of-the-art object detection model, with YOLOv4 be-
ing its latest version. It excels in real-time performance, achieving remarkable accuracy
on the COCO dataset. YOLO follows a one-stage detection approach, enabling faster

18

inference by predicting classes and bounding boxes for the entire image without ROI
selection. The model was initially implemented in the Darknet framework, providing
a reliable network development platform. The YOLO architecture splits the detec-
tion task into regression and classification, facilitating precise object localization and
identification.[10]

YOLO Algorithm

The YOLO architecture comprises several components: the input layer, backbone, neck,
detection neck, and detection head. The input layer is responsible for receiving the
training images and processing them in parallel by the GPU in batches. The back-
bone and neck layers perform feature extraction and aggregation. The object detector
consists of the detection neck and head layers responsible for identifying objects in the
input image The final stage of the architecture is the head layer, which is responsible
for making predictions and detecting objects. The head layer plays a crucial role in the
detection process, as it is accountable for the localization and classification of things in
the image.[9]

Figure 4.1: YOLO Architecture.

Due to its one-stage detection approach, YOLO performs object localization and
object recognition simultaneously, called Dense Detection. On the other hand, a two-

19

stage detector performs these tasks separately and then combines the results, known as
Sparse Detection.

Backbone Network

backbone network of their object detection model. Initially, they considered CSPRes-
Next50, CSPDarknet53, and EfficientNet-B3, but after extensive testing, they ulti-
mately chose CSPDarknet53. This network is designed based on the DenseNet model
and employs the Dense connectivity pattern, where previous inputs are concatenated
with the current information before proceeding to the dense layers. CSPDarknet53
comprises a Convolutional Base Layer and a Cross Stage Partial (CSP) Block. The
CSP strategy splits the feature map in the base layer into two parts and merges them
using Cross-stage hierarchy, allowing for more gradient to flow through the layers and
solving the ”Vanishing Gradient.” The CSP block divides the input into two halves,
one sent through the dense block, while the other is routed directly to the next step
without any processing. This strategy preserves fine-grained features, stimulates the
network to reuse components, and reduces the number of network parameters. The fi-
nal convolutional block in the backbone network is dense, as using more densely linked
convolutional layers may decrease the detection speed.

Neck

The neck serves as the location for feature aggregation within a system. It gathers
feature maps from different stages of the backbone and merges them to ready them
for the subsequent phase. Typically, the neck incorporates multiple bottom-up and
top-down paths to facilitate this process of combination and integration.

SPP-Additional Block

A supplementary SPP module (Spatial Pyramid Pooling) is inserted between the CSP-
DarkNet53 backbone and the feature aggregator network (PANet) to expand the recep-
tive field. This addition allows for extracting essential contextual features while having
minimal impact on network speed. The SPP module is connected to the final layers of
the densely connected convolutional layers of CSPDarkNet. The term ”receptive field”
refers to the image area influenced by a single kernel or filter at a given moment. When
stacking more convolutional layers, the receptive field grows linearly. However, incor-
porating dilated convolutions increases the receptive field exponentially, introducing
non-linearity to the model.

20

4.2 Training YOLOV4 Model

YOLOv4, an object detection algorithm, is the fourth iteration of the You Only Look
Once (YOLO) series. It builds upon the success of YOLOv3 and YOLOv2, introducing
several advancements to enhance the accuracy and performance of object detection.
One of the critical improvements in YOLOv4 is its upgraded backbone network, which
is responsible for extracting features from input images. It employs a more powerful
backbone architecture, such as CSPDarknet53, enabling it to capture intricate and
abstract object details. YOLOv4 incorporates various optimization techniques to boost
performance.

These techniques include advanced data augmentation, mosaic data augmentation
(combining multiple images into one), and methods like DropBlock regularization to
address overfitting. YOLOv4 introduces PANet (Path Aggregation Network) to en-
hance detection accuracy further. PANet combines features from different scales to
improve the model’s ability to detect objects of varying sizes. This improves detection
performance for small and large things within an image.

Another notable addition in YOLOv4 is the Mish activation function, which en-
hances the model’s non-linear capabilities and improves its representation learning.
The CSPDarknet architecture is introduced in YOLOv4, which facilitates better in-
formation flow within the network and reduces computational complexity. This leads
to faster inference times while maintaining accuracy. In summary, YOLOv4 strives to
achieve state-of-the-art performance in object detection by focusing on accuracy, speed,
and robustness. It has been widely adopted in various computer vision applications,
including autonomous vehicles, surveillance systems, and object recognition tasks.

The YOLOv4 Model was trained on a dataset containing 20 food classes, including
IndianBread, Biryani, Rasgulla, Uttapam, Paneer, Poha, Khichadi, Omellete, Plain
Rice, Dal Makhni, Rajma, Poori, Chole, Dal, Sambhar, Papad, Gulab Jamun, Idli,
Vada, and Dosa. The training process involved several steps, starting with preparing a
labelled dataset consisting of food images. Bounding boxes were annotated around the
objects of interest in the photos, and the dataset was split into training and validation
sets. The chosen framework for training was Darknet, and the YOLOv4 configuration
file (yolov4.cfg) was customized to suit the food dataset’s requirements. The number of
classes was adjusted to 20, and other parameters were fine-tuned based on the dataset’s
characteristics. Pre-trained weights for the Darknet-53 backbone network were utilized
to initialise the model. These weights provided a good starting point and facilitated
effective learning from the food dataset.

The model processed batches of training images during training and iterated over
the dataset multiple times. It updated its parameters to minimize the detection loss

21

by comparing predicted bounding boxes and class probabilities with ground truth an-
notations. This enabled the model to learn to detect and classify the 20 food classes
accurately. The periodic evaluation was performed on the validation set to assess the
model’s performance. mAP, precision, and recall were calculated. The achieved mAP
value of 0.79632 reflects the model’s overall accuracy in object detection across all
classes. Precision, with a value of 0.75712, represents the model’s ability to correctly
identify true positives among the predicted positive detections. Recall, at a value of
0.76731, demonstrates the model’s effectiveness in detecting the true positives among
all ground truth instances.

4.3 Training YOLOv5 Model

4.3.1 YOLOV5 Nano Model

The YOLOv5 Nano model is the most miniature version of the YOLOv5 architecture,
designed specifically for devices with limited computational power, like edge devices,
embedded systems, and mobile devices. It aims to balance model size, accuracy, and in-
ference speed. Although compact, the YOLOv5 Nano model can still perform real-time
object detection and classification. It utilizes a lightweight architecture that enables
faster inference times, albeit with a slight reduction in accuracy compared to larger
YOLOv5 models. Training the YOLOv5 Nano model involves using a deep convolu-
tional neural network (CNN) and applying the YOLO approach to object detection.
Divides the input image into the grid cell and find the probability for each grid cell.
While the Nano model may achieve a different level of accuracy than larger YOLOv5
models, it provides a practical solution for applications that require real-time object
detection on devices with limited computational resources. Its reduced complexity and
size make it well-suited for scenarios with a trade-off between accuracy and resource
consumption. It’s important to note that the YOLOv5 Nano model can detect and
classify a wide range of objects in various real-world scenarios, making it a valuable
option for lightweight object detection tasks.[11]

YOLOv5 Nano Model has a straightforward neural network for the convolution
part. In this network architecture, some neurons act as input nodes while others serve
as output nodes. There are no hidden layers in this straightforward neural network
design. The training process for 100 epochs with 61 food classes took approximately 2
to 2.5 hours. Due to its simplicity, this model exhibits a high Frames Per Second (FPS)
rate, ranging from 7 to 10 frames per second. The YOLOv5 Nano Model is particularly
well-suited for object detection in Android applications because of its high FPS rate. It
can quickly detect objects, making it suitable for real-time applications. However, the

22

high FPS rate can lead to instability in the system when observing objects. The model’s
detection speed is fast, but it lacks control. During testing, significant instability was
observed in this model. The Nano model exhibits lower accuracy than higher versions
of the YOLOv5 model.[12] It can be seen from Figure 4.3 and Figure 4.4 that the Mean
Average Precision (mAP) value obtained after training this model on 61 food classes
was 0.69441.

4.3.2 YOLOv5 Small Model

The YOLOv5 Small model is a variant of the YOLOv5 architecture designed to balance
model size and computational requirements while maintaining reasonable accuracy in
object detection tasks. Compared to larger versions like Medium, Large, and Extra
Large, the YOLOv5 Small model has a more minor architecture with fewer parame-
ters. This compact design allows for faster inference times and makes it well-suited
for resource-constrained devices or applications that require real-time object detection.
Like other YOLOv5 models, the Small variant follows the YOLO (You Only Look
Once) approach for object detection. While the YOLOv5 Small model may sacrifice a
small amount of accuracy compared to larger models, it still performs well in detecting
and classifying a wide range of objects in various real-world scenarios. It is commonly
used in mobile device applications such as surveillance systems, robotics, and object
recognition tasks.

The YOLOv5 Small Model’s reduced complexity and size make it suitable for scenar-
ios with a trade-off between model accuracy and computational resources. It provides
a practical solution for object detection tasks requiring a lightweight model without
significantly compromising performance. It’s important to note that the version of
the YOLOv5 Small model can vary depending on factors such as the specific dataset,
training configuration, and application requirements. Fine-tuning and customization
techniques can also be applied to adapt the model to particular use cases and optimize
its performance for different object detection scenarios.[13] It can be seen from Fig-
ure 4.3 and Figure 4.4 that the Mean Average Precision (mAP) value obtained after
training this model on 61 food classes was 0.78453.

4.3.3 YOLOv5 Medium Model

The YOLOv5 Medium Model is a variation of the YOLOv5 architecture that finds a
balance between accuracy and computational demands. It aims to achieve higher preci-
sion in object detection while maintaining reasonably fast inference speeds. Compared
to smaller models like Nano and Small, the YOLOv5 Medium model offers improved

23

detection performance. It accomplishes this by employing a more complex architecture
and a more significant number of parameters, enabling it to capture finer object de-
tails in images. Like other YOLOv5 models, the Medium variant follows the YOLO
(You Only Look Once) approach for object detection. Divides the input image in the
grid and predicts the probability of each grid. This methodology ensures efficient and
real-time object detection and classification.

The YOLOv5 Medium model is well-suited for applications prioritising higher accu-
racy without compromising real-time processing. It is commonly utilised in surveillance
systems, robotics, and autonomous vehicles, where accurate object detection is crucial
in decision-making.[14] While the Medium model provides enhanced accuracy compared
to smaller YOLOv5 versions, it may require more computational resources during infer-
ence. Nevertheless, it maintains a favourable trade-off between accuracy and inference
speed, making it a popular choice for various computer vision tasks. It’s worth noting
that the performance of the YOLOv5 Medium model can vary depending on the specific
dataset, training setup, and application requirements. Fine-tuning and customisation
can be applied to adapt the model to specific use cases, improving its performance for
particular object detection tasks. YOLOV5 medium has a little bit large number of
neurons in its convolution layers. This medium model is a little bit complex. It has an
input layer, hidden layer and output layer. This YOLOV5 medium model has complex
neural networks compared to the nano model, so it takes more time than the nano
model to train 61 data classes. YOLOV5 nano model took 2 to 2.5 hours to prepare 61
data types on 100 epochs. Compared to YOLOV5, this YOLOV5 medium model takes
4 to 5 hours to train 61 data classes on 100 epochs. It can be seen from Figure 4.3 and
Figure 4.4 that the Mean Average Precision (mAP) value obtained after training this
model on 61 food classes was 0.82784.

4.3.4 YOLOv5 Large Model

The YOLOv5 Large model is a version of the YOLOv5 architecture that prioritises
high accuracy in object detection. Its primary goal is to detect and classify objects
with improved precision while maintaining reasonable inference speeds. Compared to
minor YOLOv5 variants like Nano, Small, and Medium, the Large model offers en-
hanced detection performance. This is achieved by employing a more complex and
profound architecture, allowing it to capture intricate object details in images more
effectively. The YOLOv5 Large model is particularly suitable for applications that
require accurate object detection, even if it results in slightly slower inference times.
It is commonly employed in advanced robotics, self-driving vehicles, and high-security
surveillance systems. Although the Large model offers superior accuracy to more mi-

24

nor YOLOv5 variants, it may demand more computational resources during inference
due to its increased complexity. However, the trade-off between accuracy and inference
speed is generally favourable, making it a popular choice for various computer vision
tasks prioritising precision. It’s crucial to note that the performance of the YOLOv5
Large model can vary depending on factors such as the specific dataset, training con-
figuration, and application requirements. Fine-tuning and customisation can also be
applied to adapt the model to particular use cases and optimise its performance for
different object detection scenarios.[15] It can be seen from Figure 4.3 and Figure 4.4
that the Mean Average Precision (mAP) value obtained after training this model on 61
food classes was 0.84642.

4.3.5 YOLOv5 Extra Large Model

The YOLOv5 Extra Large model is the most substantial and powerful version of the
YOLOv5 architecture. Although it requires higher computational resources, it aims
to provide exceptional accuracy and detection performance in object recognition tasks.
Compared to more minor YOLOv5 variants like Nano, Small, Medium, and Large, the
Extra Large model takes detection capabilities to the next level. It achieves this by
employing a more intricate and profound architecture, enabling it to capture intricate
object details precisely.

The YOLOv5 Extra Large Model is particularly suitable for applications that prior-
itize uncompromising accuracy and outstanding detection performance. It is commonly
utilized in cutting-edge research, advanced computer vision systems, and demanding
tasks such as autonomous driving. Due to its significantly larger size and complexity,
the Extra Large model demands substantial computational resources during inference.
However, it provides an excellent trade-off between accuracy and inference speed for
applications requiring the highest precision level. It’s important to note that the per-
formance of the YOLOv5 Extra Large model can vary depending on factors such as the
specific dataset, training configuration, and application requirements. Fine-tuning and
customization techniques can be applied to adapt the model to particular use cases,[16]
further optimising its performance for various object recognition scenarios. It can be
seen from Figure 4.3 and Figure 4.4 that the Mean Average Precision (mAP) value
obtained after training this model on 61 food classes was 0.85125.

4.4 Performance Evaluation

From Figures 4.2 and 4.3, it can be seen that the performance of the wise YOLOv5
Extra Large model is very efficient. The mAP Value of the YOLOv5 Extra Large model

25

is 0.85125 (the average precision of object detection across different object classes and
levels of confidence thresholds is called Map Value). The performance evaluation shows
that the YOLOv5 models generally outperform YOLOv4 regarding mAP, precision, and
recall. Among the YOLOv5 models, the ”YOLOv5 Large” model achieves the high-
est mAP value of 0.85125, precision of 0.7966, and recall of 0.81973. It is essential to
consider both performance and computational resources for Android deployment. The
YOLOv5 models, especially minor variants like YOLOv5 Nano and YOLOv5 Small,
have balanced performance and efficiency scores, making them suitable for deployment
on Android devices with limited computational resources. Therefore, based on the given
information, the YOLOv5 Small model may be a preferable choice for Android deploy-
ment, as it gives very decent accuracy (high mAP, precision, and recall) and resource
efficiency, making it well-suited for real-time object detection on Android devices. After

Figure 4.2: Performance results of YOLO models

deploying all five YOLOv5 models in an Android application and conducting thorough
testing, it has been observed that the YOLOv5s model stands out in terms of perfor-
mance, efficiency, and FPS (Frames Per Second) rate. The YOLOv5s model, which

26

represents the ”Small” variant of YOLOv5, has proven to be highly efficient regarding
resource utilization and computational requirements. This efficiency is crucial when de-
ploying computer vision models on mobile devices with limited processing power, such
as Android smartphones. In terms of performance, the YOLOv5s model has exhibited
remarkable accuracy and speed. The model demonstrates superior object detection
capabilities, accurately identifying and localizing objects in real time. It achieves this
while maintaining a high FPS rate, ensuring a smooth and responsive user experience
within the Android application. The efficiency of the YOLOv5s model can be attributed
to several factors. First, the YOLOv5 architecture itself is designed to strike a balance
between accuracy and computational efficiency. The model leverages advanced tech-
niques such as a lightweight backbone network, efficient feature fusion mechanisms, and
optimized anchor boxes, contributing to its overall efficiency.

Furthermore, the YOLOv5s model benefits from extensive optimization efforts dur-
ing the training and deployment. Techniques like model quantization, which reduces
the model’s memory footprint, and hardware acceleration, such as utilizing the GPU
for inference, enhance the model’s efficiency without compromising performance. The
high FPS rate achieved by the YOLOv5s model is crucial for real-time applications, as
it allows for smooth and responsive object detection. The high FPS rate is precious in
augmented reality, live video processing, and interactive applications where the system
needs to detect objects rapidly and provide timely feedback. Overall, the deployment
and testing of the YOLOv5s model in the Android application have demonstrated its
exceptional performance and efficiency. Its ability to achieve high accuracy while main-
taining a high FPS rate makes it a compelling choice for real-time object detection on
resource-constrained mobile devices like Android smartphones. Hence, the YOLOv5s
model has been deployed as the final model in this project’s Android application.

27

Figure 4.3: Graphical Representation of Performance results for YOLOv5 models

28

Chapter 5

MOBILE APPLICATION
DEVELOPMENT

5.1 WhatDish Application Introduction

”WhatDish” is an Android application specifically designed for food detection, capable
of identifying a wide range of food items and categorizing them into up to 60 differ-
ent classes. The application offers users valuable insights into food items’ estimated
calorie, fat, protein, and carbohydrate content. To access the application’s features,
users must register by clicking on a floating button. During registration, users must
provide essential information such as weight, height, age, sex, and activity level. This
information is crucial for the application to determine the maximum number of daily
calories the user can consume. Once the registration is complete, users are directed to
the ”MainActivity” screen.

In the ”MainActivity” screen, users can utilize the application’s food detection ca-
pabilities by simply pointing their cameras at different food items. Users must click
on a dedicated capture button within the application to capture a food item. Once a
food item is captured, the application’s sophisticated algorithms analyze the image to
identify the type and quantity of the food item. Based on this analysis, the application
calculates and presents the captured food item’s corresponding calorie, fat, protein,
and carbohydrate content. Users can conveniently view these results in a table format
by scrolling up from the bottom of the application screen. This table provides a com-
prehensive overview of all the detected food items and their nutritional information.
Moreover, the application generates a ”.txt” file in the background, which stores the
total calories consumed by the user.[17]

One of the application’s key features is a progress bar indicator visually represent-

29

ing the user’s calorie consumption. This progress bar is displayed on the applica-
tion’s ”CameraActivity” screen. When the user closes and reopens the application, the
progress bar accurately reflects the total calories consumed by the user by reading the
stored information from the ”.txt” file.

The user interface (UI) of the ”CameraActivity” screen consists of a dedicated frame
for the Camera-2 API, which enables real-time camera preview and food detection.
Additionally, the screen includes a prominent white round button, which serves as the
primary action button for capturing food items. Clicking on this button triggers a cap-
tivating rotational animation that reveals two additional buttons. One of these buttons
allows users to update their personal information by navigating to the ”Takinginput-
fromuser” activity. This activity lets users modify their weight, height, age, sex, or
activity level. The other button displays the user’s activity history over the past 30
days, providing insights into their progress.[18]

The application incorporates a drop-down table component to assist users in obtain-
ing quick information about the detected food items. This table displays vital details
about the identified food items’ calories, fat, protein, and carbohydrates. Users can
refer to this table to gather accurate nutritional information about the captured food
items.

The ”WhatDish” Android application offers a comprehensive food detection and
nutritional tracking experience. With its user-friendly interface and advanced algo-
rithms, users can effortlessly capture food items, view nutritional details, track calorie
consumption, and make informed dietary choices.

5.2 Application UI

5.2.1 Camera Activity

Figure 5.1 illustrates the ”CameraActivity” as the main activity of the ”WhatDish”
Android application. Upon opening the application, the ”CameraActivity” is the first
screen that appears. This activity consists of a frame dedicated to the Camera-2 API,
a white round button, and a floating button. When the user clicks the floating button,
two additional buttons emerge through a rotational animation. One button allows
the user to navigate to the ”Takinginputfromuser” activity, while the other button
displays the user’s activity graph for the past 30 days. Within the ”CameraActivity,”
an additional component presents information about the detected food’s calories, fat,
protein, and carbohydrates. This component takes the form of a drop-down table,
providing a comprehensive overview of the nutritional content of the captured food
items. Users can view the number of calories consumed from the detected food through

30

Figure 5.1: WhatDish Android application with no progress in progress bar

this drop-down table.
The following is the user interface (UI) utilized in this activity:

Frame For Object Detection

The Android application’s screen is predominantly dedicated to object detection, ac-
counting for approximately 90% of the available space. This screen detects food objects
and stores information about them, including their quantities, in an array. To handle
this functionality, a separate fragment is used, which is utilized within the ”CameraAc-
tivity” of the application.

To create the object detection frame, a custom view is employed, which encom-
passes four key components: ”AutoFitTextureView,” ”OverLayView,” ”Recognition-
ScoreView,” and ”ResultView.” The ”AutoFitTextureView” incorporates a Texture-
View that serves as the display for the camera preview content. When the user launches
the ”WhatDish” application, this TextureView is presented within the ”CameraAc-
tivity.” As the user initiates the food detection process, the ”AutoFitTextureView”
captures the detected object’s content, displayed on the mainframe screen.

The ”OverLayView” component plays a crucial role by capturing the content of the
”AutoFitTextureView” on a canvas and presenting it on the TextureView. It acts as

31

the mechanism for displaying the detection overlay on the camera preview.
The ”RecognitionScoreView” determines the accuracy percentage of a particular

food detection. It provides valuable information about the reliability of the detected
object, allowing users to assess the confidence level of the detection.

After detecting the food objects, the ”ResultView” component displays the final
results on the mainframe screen. This class includes an array that stores comprehensive
information about the detected food items. These details are essential for showcasing
various nutritional aspects such as calories, fat, protein, and carbohydrates associated
with each detected food item.

All these views mentioned above are integrated and managed within a fragment
named ”CameraConnectionFragment,” which ensures smooth coordination and execu-
tion of the object detection process within the overall application flow.

Figure 5.2: WhatDish Android application with progress in progress bar

Round White Button

The application’s primary function is the round white button, allowing users to detect
and capture food using the Android camera. When the user has a stable camera view
of the food, they must click this round white button. Upon clicking, all the relevant
data about the detected food is stored within the Android application.

32

Users can access the stored data by scrolling up from the bottom of the appli-
cation frame screen, where they will find a table displaying information about each
captured food. The implementation of the round white button is handled on a sepa-
rate thread. Since the main thread is already occupied with the food detection process
using Camera2API, running another method concurrently would be problematic. An-
droid applications typically complete one process before starting the next. The round
white button is implemented on a secondary thread to ensure smooth operation and
avoid application crashes.

Now users can detect and capture food simultaneously using the round white button
while viewing the information about the captured food. The round white button’s user
interface is created using XML files. Android Studio provides XML file capabilities for
developers to design visually appealing buttons and other elements. The round white
button consists of three XML files:

1. The main XML file.

2. An XML file for drawing the round white disk.

3. Another XML file for animation.

The round white button appears white when the user is not capturing an image.
However, when the user captures an image, the button’s colour changes to light green.
While the user holds the capture button, the control remains green, indicating an
image is being captured. Once the button is unclicked, it reverts to white. This colour
animation feature informs the user about the image capture process and provides visual
feedback.

Float Button

The Float Button is a user interface element in an Android application that provides
additional functionality when clicked. When users click the Float Button, it triggers the
appearance of more buttons, each with its specific functionality. The primary purpose
of the Float Button is to allow users to update their personal information within the
application.

Upon clicking the Float Button, a circular animation is displayed, and two additional
buttons become visible. One button is dedicated to accessing the user profile, while
the second button provides access to the monthly user activity graph. The application
optimises screen space by utilizing the Float Button, as most of the screen is dedicated
to the Camera frame for food detection.

33

The Float Button is positioned within the application at the bottom right of the
Camera frame. It is easily identifiable by its light green colour and features a white
”+” symbol at its centre. Upon clicking the Float Button, the ”+” symbol transforms
into an ”X” symbol, and the circular animation reveals the two additional buttons.

Figure 5.3: WhatDish Android application with detected food information stored in
table

Progress Bar For Per Day Calories

The progress bar used in the application is a cylindrical shape bar that serves as a
tracker. Figure 5.1 depicts the progress bar without any progress, while Figure 5.2
illustrates the progress bar with an indication of progress. The cylindrical shape bar
tracks calorie consumption, where the maximum calorie intake allowed per day for the
user is set as the endpoint of the progress bar. The progress bar reacts and adjusts
accordingly based on this maximum calorie limit.

When the user captures a photo, and the model calculates the number of calories
in the specific food item, the progress bar indicator increases by a percentage corre-
sponding to the maximum allowed calorie consumption. This allows the user to visually
monitor whether their daily calorie intake falls within a safe range. The indicator colour
on the progress bar changes as calorie consumption increases. Initially, the colour is

34

green, indicating 40% of the maximum set calorie. As the user approaches 80% of the
set calorie, the indicator colour changes to orange. Finally, the indicator colour turns
red when the user reaches 100% of the maximum set calorie.

Below the progress bar, three values are displayed. The first value, located at the far
left of the progress bar, is always 0 and represents the starting point of the progress bar.
The second value, positioned in the middle of the progress bar, indicates the number of
calories consumed by the user thus far. The third value at the far right of the progress
bar represents the maximum daily calorie intake recommended for optimal health.

The application effectively handles the functions, and when the user captures a
photo, the calorie value of the detected food is calculated and stored in an output
”.txt” file on the user’s mobile device. This allows the application to keep track of
the total calories consumed by the user. If the user closes the application and opens
it again, the ”CameraActivity” is launched, and the total calories consumed by the
user are recalculated from 0. However, the previous total calorie value for the current
day is already stored in the user’s mobile device as a ”.txt” file. When the application
is reopened, the ”CameraActivity” reads the ”.txt” file and considers the previously
stored value of the total calories consumed, displaying the actual calorie count in the
progress bar.

As the user continues to detect and capture food items, the calories calculated from
each capture are added to the day’s previous calorie value. Consequently, the progress
bar indicator moves forward to reflect the increased calorie consumption.

5.2.2 User Activity

As the name implies, the ”User Activity” is implemented in the application’s code. This
activity is designed to gather input from the user, including weight, height, gender, and
regular exercise details. If the user leaves any of these fields unfilled and attempts to
proceed by pressing the ”Done” button, a toast message will prompt the user to enter
valid data in the required fields.

After filling out all the necessary fields and pressing the ”Done” button, the person’s
Basal Metabolic Rate (BMR) is calculated based on gender. Additionally, depending on
the user’s level of regular physical activity, the BMR is multiplied by a specific factor,
resulting in the number of calories required for that individual per day. These required
calories are stored in an output source file on the user’s mobile device, allowing the
application to access this value even if the user terminates the activity.

The fields and buttons created in this activity are as follows:

35

Figure 5.4: WhatDish Android application user Activity

Edit Text for required fields

The ”EditText” field is used to obtain input from the user in string format. In Android
Studio, this field is represented by the ”EditText” class. In the mentioned activity, I
have included two ”EditText” fields named ”Enter the height” and ”Enter the weight”.
These fields are designed to capture the user’s height and weight as input.

Using the ”EditText” class, developers can retrieve the user’s input as a string
variable. However, since the user provides the height and weight in numeric format,
string values have been converted into the double type. These corrected values are then
used to calculate the Basal Metabolic Rate (BMR).

Spinner drop-down list

Android provides the flexibility to allow users to select a single item from a list of
options. In the application, a spinner drop-down list displays and sets the units for the
entered quantity, such as height, weight, sex, and activity. This drop-down list presents
users with choices for selecting the desired unit of measurement.

For instance, users can choose to specify weight in either ”kg” or ”pound”, height
in either ”cm” or ”inch”, and select their gender as either ”male” or ”female”. The

36

spinner drop-down list facilitates the selection of the appropriate unit or category from
the available options.

Done button

Upon completing each field in this activity, the user must click the ’done’ button. This
action triggers the calculation of the maximum required calories per day based on the
input parameters provided by the user. The user’s Basal Metabolic Rate (BMR) is
calculated, and depending on the selected activity level, the BMR is multiplied by a
specific coefficient to determine the maximum daily calorie intake.

Once the user presses the ’done’ button, this maximum calorie value is stored in
a text file. Even if the user closes the application and opens it again, the application
retrieves and utilizes the stored calorie value as the maximum daily calorie intake for
the user. Consequently, there is no need to input these activity details daily, as the
stored value is a reference for the user’s maximum calorie requirement.

5.3 Deployment Of YOLO Model In An Android

Application

After training the dataset using the ”YOLOv5” model, the trained weights are saved
in the ”.pbt” (PyTorch) format. However, to deploy these weights in an Android
application, they need to be converted to the ”.tflite” (TensorFlow Lite) design, as
Android, only supports the ”.tflite” format for model deployment. This conversion
process allows for compatibility between the trained weights and the Android app.

Once the weights have been successfully converted to the ”.tflite” format, integrating
the trained weights into the Android application can begin. To connect either the
YOLOv4 or YOLOv5 model with an Android app, the following steps are typically
involved:

1. Preparing the YOLO Model: Obtain the YOLOv4 or YOLOv5 model trained
weights on the 61 food classes. These models are typically implemented in frame-
works like Darknet for YOLOv4 and PyTorch for YOLOv5. Model formate is
converted, which is compatible with the mobile device. Weights are converted
from .pbt format to .tflite format. ONNX tool is used to convert the model to
TensorFlow format.

2. Set Up the Android Development Environment: Install Android Studio, the
official IDE for Android app development, on a computer. Click on the new
Android project and name it ”WhatDish”.

37

3. Add Dependencies: Add the necessary dependencies in the Gradle file for inte-
grating deep learning frameworks. For YOLOv4, TensorFlow dependencies have
been added, while for YOLOv5, PyTorch dependencies have been added. Sync
the project to download the dependencies.

4. Load the YOLO Model in Android App: Copy the converted YOLO model
file to the Android project’s assets folder. In the Java code in the Android app,
load the YOLO model using the corresponding deep learning framework’s API.
This typically involves reading the model file from the assets folder and initializing
the model.

5. Implement Camera Functionality: Set up camera permissions in the Android-
Manifest.xml file to allow the app to use the device’s camera. Implement the
camera functionality using the Android Camera-2 API to capture frames from
the camera in real-time. This has been done in an Android application’s ”Cam-
eraactivity” file.

6. Perform Inference: Preprocess the camera frames by resizing and normalizing
them to match the input requirements of the YOLO model. Pass the preprocessed
frames through the YOLO model for object detection. The class labels, bounding
box coordinates, and confidence scores have been extracted for object detection.
This has been done in the ”BoundingBoxactivity” file.

7. Visualize and Display Results: Overlay the bounding boxes and class labels on
the camera frames to visualize the detected objects. This has been done in an
Android application’s ”Overlay” file.

38

Chapter 6

CONCLUSION

In conclusion, this thesis successfully implemented and evaluated an object detection
Android application based on the YOLOv4 and YOLOv5 training models for detect-
ing various food classes and objects. Integrating these state-of-the-art models into an
Android application has demonstrated their effectiveness in real-time object detection
and recognition tasks, focused explicitly on food detection. The application achieved
high accuracy in detecting and localising various food items by training the YOLOv4
and YOLOv5 models on a diverse dataset containing different food classes. The mod-
els proved robust and efficient, handling challenges such as occlusions, varying scales,
and complex backgrounds. The Android application showcased the potential of util-
ising these models on mobile devices, enabling real-time object detection directly on
the device without relying on server-side processing. This capability provided users
instant feedback and valuable information about food items, enhancing their dining
experiences, dietary monitoring, and nutritional analysis.

Furthermore, the application demonstrated the practicality of leveraging the de-
vice’s camera and sensor data to provide contextual information about food objects. It
enabled users to receive details about nutritional values in detecting food. The evalua-
tion of the YOLOv4 and YOLOv5 models on the Android application showcased their
superior performance in terms of accuracy and speed compared to previous versions.
The models successfully addressed the limitations of earlier models by incorporating
advancements in architecture, feature extraction, and optimisation techniques. This
thesis also highlighted the potential for further research and improvement in food de-
tection on mobile platforms. Future work can focus on expanding the dataset to include
a wider variety of food classes and exploring techniques to improve the models’ per-
formance in challenging scenarios, such as partial occlusions or low-light conditions.
In conclusion, the object detection Android application based on the YOLOv4 and

39

YOLOv5 models has proven a valuable tool for food detection and recognition. The
successful integration of these models into the application demonstrates their poten-
tial to enhance user experiences, support dietary choices, and contribute to advancing
mobile vision applications in food detection.

40

Bibliography

[1] “Object detection in computer vision: A comprehensive review,” Journal of Pat-
tern Recognition Research, vol. 6, pp. 80–97, 2011.

[2] “Opencv: Open source computer vision library,” Dr. Dobb’s Journal of Software
Tools, vol. 25, pp. 120–125, 2000.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” 2016.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[5] M. Phadtare, V. Choudhari, R. Pedram, and S. Vartak, “Comparison between yolo
and ssd mobile net for object detection in a surveillance drone,” Int. J. Sci. Res.
Eng. Manag, vol. 5, pp. 1–5, 2021.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” Lecture Notes in Computer Science, p.
21–37, 2016. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0 2

[7] Q. e. a. Wang, “Deep learning approach to peripheral leukocyte recognition,”
2019. [Online]. Available: doi:10.1371/journal.pone.0218808

[8] S. A. Choudhary R, “Potential use of hydroxychloroquine, ivermectin
and azithromycin drugs in fighting covid-19,” 2020. [Online]. Available:
doi:10.1016/j.nmni.2020.100684

[9] T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using yolo: Chal-
lenges, architectural successors, datasets and applications,” Multimedia Tools and
Applications, vol. 82, no. 6, pp. 9243–9275, 2023.

41

http://dx.doi.org/10.1007/978-3-319-46448-0_2
doi:10.1371/journal.pone.0218808
doi:10.1016/j.nmni.2020.100684

[10] D. Pandey, P. Parmar, G. Toshniwal, M. Goel, V. Agrawal, S. Dhiman, L. Gupta,
and G. Bagler, “Object detection in indian food platters using transfer learning
with yolov4,” 05 2022.

[11] S. Li, Y. Li, Y. Li, M. Li, and X. Xu, “Yolo-firi: Improved yolov5 for infrared
image object detection,” IEEE access, vol. 9, pp. 141 861–141 875, 2021.

[12] H.-K. Jung and G.-S. Choi, “Improved yolov5: Efficient object detection using
drone images under various conditions,” Applied Sciences, vol. 12, no. 14, p. 7255,
2022.

[13] J.-H. Kim, N. Kim, Y. W. Park, and C. S. Won, “Object detection and classifica-
tion based on yolo-v5 with improved maritime dataset,” Journal of Marine Science
and Engineering, vol. 10, no. 3, p. 377, 2022.

[14] Z. Li, “Road aerial object detection based on improved yolov5,” in Journal of
Physics: Conference Series, vol. 2171, no. 1. IOP Publishing, 2022, p. 012039.

[15] B. Mahaur and K. Mishra, “Small-object detection based on yolov5 in autonomous
driving systems,” Pattern Recognition Letters, vol. 168, pp. 115–122, 2023.

[16] A. Siouras, K. Stergiou, P. Karlsson, and S. Moustakidis, “Hybrid object detection
methodology combining altitude-dependent local deep learning models for search
and rescue operations,” Journal of Control and Decision, pp. 1–11, 2022.

[17] M. Goel, S. Dargar, S. Ghatak, N. Verma, P. Chauhan, A. Gupta, N. Vishnumo-
lakala, H. Amuru, E. Gambhir, R. Chhajed, M. Jain, A. Jain, S. Garg, N. Narwade,
N. Verhwani, A. Tiwari, K. Vashishtha, and G. Bagler, “Dish detection in food
platters: A framework for automated diet logging and nutrition management,”
2023.

[18] G. Wang, H. Ding, Z. Yang, B. Li, Y. Wang, and L. Bao, “Trc-yolo: A real-time
detection method for lightweight targets based on mobile devices,” IET Computer
Vision, vol. 16, no. 2, pp. 126–142, 2022.

42

	INTRODUCTION AND MOTIVATION
	LITERATURE SURVEY
	Object Detection
	Object Detection With OpenCV
	YOLO And Similar Models
	YOLO
	RCNN
	SSD

	Deep Learning (Classification)
	CNN
	RNN

	DATA COLLECTION AND DATA PREPARATION FOR DIFFERENT YOLO MODELS
	Food Classes
	Dataset Prepration

	IMAGE DETECTION FOR THE INDIAN DISHES
	YOLO Architecture
	Training YOLOV4 Model
	Training YOLOv5 Model
	YOLOV5 Nano Model
	YOLOv5 Small Model
	YOLOv5 Medium Model
	YOLOv5 Large Model
	YOLOv5 Extra Large Model

	Performance Evaluation

	MOBILE APPLICATION DEVELOPMENT
	WhatDish Application Introduction
	Application UI
	Camera Activity
	User Activity

	Deployment Of YOLO Model In An Android Application

	CONCLUSION

