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I - Abstract:

The cellular mechanisms in yeast are highly conserved with humans making it an

inexpensive, rapid and easier model organism to work with. Cell cycle checkpoints,

DNA repair pathways and CDKs are well studied in yeast and tweaking them have been

reported to mimic cancer phenotypes. These mutant strains of yeast mimicking cancer

phenotypes are used for studying anticancer activity of drugs and their interactions in

the genome. Presence of numerous distinct human tumor cell lines makes drug

screening exhaustive and expensive. In search of a universal cell line substituting most

of the cancer cell lines, we found a yeast mutant strain that could potentially replace

anticancer drug studies done on NCI60 human tumor cell lines. Yeast being

non-infectious makes it a suitable model organism for screening antifungal compounds.

The growth inhibition studies of several drugs in yeast mutant strains from the National

Cancer Institute website is a wonderful reservoir of datasets to be analyzed. Artificial

Intelligence could be effectively used to predict the growth inhibition patterns, anticancer

activity, antifungal activity, genetic targets of the drug and so on. We have built a

machine learning model that could potentially identify antifungal compounds from its

chemical space. Our ML model is novel as it predicts antifungal compounds requiring

fewer concentration (less half-maximal Inhibitory Concentration-IC50) in effectively

inhibiting the growth.
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II - Introduction:

II.1 - Yeast as a tool in molecular medicine:

Yeast is one of the most widely used eukaryotic organisms for studying fundamental

biological aspects like cell cycle control, DNA repair pathways, cancer studies,

autophagy, aging etc. Yeast was the first model organism to be completely sequenced.

30% of the human disease causing genes are in homology with yeast. The growth of

the yeast could be managed externally, fast doubling time (90 minutes), availability of

deletion strains, tagged proteins, databases on PPI (Protein Protein Interaction,

subcellular localization and gene regulation make it easier to understand the biological

aspects at a faster rate. Yeast has been extensively used to study the activity of drugs,

proteins and pathways being targeted by the drug, mutation rate of the cell towards

resisting the drug, and understanding the physiological outcomes to the drug. For the

absence of human targets in the yeast genome, human targets have been integrated in

the yeast genome and studied1.

II.2 - Yeast in cancer studies:

Cancerous cells usually have genetic alterations in pathways related to DNA damage

repair and cell cycle control. These pathways reported in yeast are highly conserved in

humans2.
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Table 1: Conservation of DNA repair pathways and proteins between yeast and human

Pathway Function S. cerevisiae H. sapiens

Base excision

repair

Damaged single DNA bases or a short

strand DNA is excised, polymerase fills

the gap and ligase connects the ends.

Apn1, Rad27,

Ogg1

APE1, FEN1, OGG1

Nucleotide

excision repair

Single-stranded DNA molecule of 24–30

nucleotides containing the lesion is

excised, DNA polymerase fills the gap

and ligase joins the ends.

Rad1, Rad10,

Rad14,

Rad4,

Rad2

RAD1, ERCC1, XPA,

XPC, XPG

Translesion

synthesis

During damage, DNA polymerase zeta

(Rev3 and Rev7) with Rev1 synthesize

DNA in opposite sites of DNA lesions.

Rev1, Rev3,

Rev7

Rev1, hRev3, hRev7

Mismatch repair DNA mismatches are rectified post the

proof reading by polymerase, recognizes

the non-canonical base pair and replaces

the offending nucleotide on the newly

strand by excision repair mechanism.

Mlh1, Pms1 MLH1, PMS2

Homologous

recombination

Repair DSBs by retrieving genetic

information from an undamaged homolog

(sister-chromatid or homologous

chromosome). Accurate repair

Rad52,

Mre11-

Rad50-Xrs2

RAD52,

MRE11-RAD50-NBS1

Non-homologous

end-joining

Repair DSBs by direct ligation of DNA

ends without any requirement for

sequence homology. Mutagenic process.

Yku70,

Yku80, Lif1,

Dnl4, Mre11-

Rad50-Xrs2

Ku70, Ku80, XRCC4,

DNA ligase IV,

MRE11-RAD50-

NBS1
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Table 2: Conservation of cell cycle control pathways and proteins between yeast and human

Function S. cerevisiae H. sapiens

Coates stretches of single stranded DNA synthesized by

decoupling helicase and polymerase activities at stalled

replication forks.

RFA RPA

PIKK acts as a damage sensor and signal transducer. Mec1 ATR

PIKK acts as a damage sensor and signal transducer. Tel1 ATM

Recruits Mec1 (ATR) to regions of RFA (RPA)-coated ssDNA. Ddc2 ATRIP

Involved in activation of Mec1-Ddc2 (ATR–ATRIP) complex. Dpb11 TOPBP1

Sensor (RFC-like complex). Rad24 Rad17

Damage sensor (PCNA-like protein), involved in the activation of

PIKK family members.

Ddc1-Rad17-

Mec3/Pso9

Ddc1-Rad17-

Mec3/Pso9

Damage sensor (MRX/MRN complex), recruits Tel1 (ATM) to

damage sites via its interaction with its terminal end-binding

domain.

Mre11-Rad50- Xrs2 Mre11-Rad50-

NBS1

Mediator, involved in Rad53 (CHK2) activation. Rad9 BRCA1/ 53BP1

Mediator, a component of the replication fork that seems

specifically to signal replication stress.

Mrc1 Claspin

Downstream kinase activated by PIKK proteins Rad53 CHK2

Downstream kinase activated by PIKK proteins Chk1 CHK1
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As the yeast genome is well annotated, desirable genetic mutations leading to cancer

phenotypes could be generated for cancer studies. Drugs are tested for anticancer

activity in the mutant background3.

II.3 - Limitations of yeast as a tool in drug studies:

The main limitation is the impermeable cell wall which hinders drug intake efficiently.

Cell wall could be made permeable by using cell wall digesters like zymolyase. This is

overcome using mutant strains like ISE1, ISE2, PDR1, and SNQ2. ISE1 and ISE2 are

involved in ergosterol synthesis and their mutants have altered membrane composition.

PDR1 and SNQ2 mutant strains increase drug sensitivity via the disruption in the efflux

pumps. Although the lack of human proteins in yeast could be compensated by

incorporating the human gene into the yeast genome, it requires proper planning and

execution of the experiment. Yeast can only partially replace mammalian models owing

to its unicellularity, and lack of studies in angiogenesis, metastasis, and tissue invasion.

But yeast is a powerful system for initial drug screening tests4.
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III - Literature Review:

III.1 - The NCI yeast Anticancer Drug screen:

The drug screen was started in 1977 to understand the single gene changes involved in

cancers, which might play a major role in drug sensitivity. A non-essential gene can

become essential due to the genetic alterations in the cancer-causing genes. Thus,

inhibiting this converted essential gene can cause cell death in cancer lines. This

synthetic lethality principle is used to screen potential drugs killing cancer cells

effectively. The yeast strains used in this study mainly targeted cell cycle checkpoints

and DNA repair pathways. The DNA damage repair pathways included in the study

were DNA Double Strand Break repair (rad50 and rad52), ultraviolet excision repair

(rad14), DNA mismatch repair (mlh1), O6-methylguanine removal (mgt1), and

post-replication repair (rad18). Human orthologs of the above genes were found to be

altered in cancer conditions. The genes targeting the cell cycle pathways used in the

study were bub3 (a part of mitotic spindle checkpoint. bub3 confirms the attachment of

the chromosomes to the mitotic spindle before entering mitosis), CLN2oe (G1 cyclin,

controlling the entry into S phase), mec2 (protein kinase required for the G2/M

checkpoint and the S-phase checkpoint) and sgs1 (involved in DNA replication,

telomere function and, recombination). All the strains used in the study had mutation in

the pdr1, pdr2 and erg6 gene. pdr1 and pdr2 encode transcription factors controlling

drug efflux pumps and erg6 alters the composition of the plasma membrane by varying

the ergosterol synthesis, thus increasing the sensitivity to drugs. An additional

rad50EPP+ strain was used harboring the mutation in rad50 gene and wild types for

pdr1, pdr2 and erg6 genes. Two wild types strains wt1 (wild type for rad14, rad18,

rad50, rad52, bub3 and CLN2oe) and wt2 (wild type for mgt1, mlh1 and mec2) were

used as controls along with rad50EPP+ in this study1.
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Table 3: NCI yeast strains

Yeast strain Genotype

wt1 pdr1∆ ; pdr2∆ ; erg∆

rad18 rad18∆ ; pdr1∆ ; pdr2∆ ; erg∆

rad14 rad14∆ ; pdr1∆ ; pdr2∆ ; erg∆

rad50 rad50∆ ; pdr1∆ ; pdr2∆ ; erg∆

rad52 rad52∆ ; pdr1∆ ; pdr2∆ ; erg∆

bub3 bub3∆ ; pdr1∆ ; pdr2∆ ; erg∆

CLN2oe CLN2oe∆ ; pdr1∆ ; pdr2∆ ; erg∆

mec2 mec2∆ ; pdr1∆ ; pdr2∆ ; erg∆

wt2 pdr1∆ ; pdr2∆ ; erg∆

mgt1 mgt1∆ ; pdr1∆ ; pdr2∆ ; erg∆

mlh1 mlh1∆ ; pdr1∆ ; pdr2∆ ; erg∆

sgs1 sgs1∆ ; pdr1∆ ; pdr2∆ ; erg∆

rad50 EPP+ rad50∆

III.2 - The NCI60 human tumor cell line anticancer drug screen:

National Cancer Institute 60 (NCI60) was developed in late 1980. The drugs are

screened for their anticancer potential, the growth inhibition and the tumor cell killing

patterns are studied using the NCI60 tool. Initially, it was designed to screen drugs for

the cure of lung cancers. Since the drug activity was different in wild type cells like renal

epithelial cells (became pan-sensitive) and fibroblasts (became pan-resistant), they

extended the study to test other distinct cancer cell lines like ovarian, colon, breast,

leukemia, renal, CNS, prostate, and, melanoma. They were looking for cell lines

mimicking HeLa banding pattern. However, not many cell lines had the similar banding
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pattern. Some cell lines like HCT-15(colon), TK-10 (renal) and UO-31 (renal) were

included in the screen as they were MDR (Multi Drug Resistant) lines. The screens

were also chosen based on their potential to propagate in athymic mice models. They

also neglected cell lines having similar chromosome banding patterns and hence having

unique cell lines5.

MTT colorimetric assay is used for the growth inhibition studies. Metabolically active

cells reduce MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow

tetrazolium salt to purple formazan crystals. The formazan crystals are solubilized and

the absorbance is measured at 500-600 nm. Due to this solubility limitation,

sulphorhod-amine B (SRB) assay was finally chosen to carry out growth inhibition

assays. Cell lines sensitivity towards the drug was linearly related to the growth

inhibition mechanism and cell killing. The compounds being high, an initial screening at

a single concentration was carried out in cell lines. Further compounds showing high

activity were chosen to screen on the full panel of cells at all 5 concentrations.

Compounds meeting specific growth inhibition towards tumors have been proceeded for

drug trial. Halichondrin B, a natural product showing sensitivity against the OVCAR-3

cell line was proceeded for pre-clinical trials. In 1990's, for rapid screening, a hollow

fiber implantation model was developed. The tumor cell lines were mounted on the

biocompatible hollow fibers. These mounted fibers were implanted into mice either

subcutaneously or in the peritoneal cavity. The drugs to be tested were given

intraperitoneally to the mice. The growth inhibition pattern was found on the recovered

cells by MTT assays. Active compounds were further tested in Xenograft models. In

1998, for synthetic compounds, they pre screened only three cell lines NCI-H460 (llung

cancer), MCF-7 (breast cancer), and SF-268 (glioblastoma) which had higher sensitivity.

The active drugs from this study were further tested in NCI-60 cell lines which increased

the efficiency and throughput. In 2001 the pre-screen study was done in 384 well plates

using sear blue assay endpoint. The concentration of the drug used was 2.5 UM. They

developed a COMPARE algorithm where the probable mechanism of the test compound

could be found by comparing with the drugs in the database. One such implication of

using the COMPARE algorithm is screening for compounds targeting P-glycoprotein.
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Most of the MDR lines were found to express P-glycoprotein. Even the mechanism of

anthrax inhibitor was found by COMPARE.

In 1997, NCI which was initially a drug screening pipeline turned to be a research tool

for supporting cancer research communities6.

Table 4: NCI60 cell lines

S.No NCI60 strain Cancer type S.No NCI60 strain Cancer type

1 HS 578T Breast cancer 31 NCI-H322M Lung cancer

2 MDA-MB-231/
ATCC

Breast cancer 32 HOP-92 Lung cancer

3 MCF7 Breast cancer 33 A549/ATCC Lung cancer

4 BT-549 Breast cancer 34 HOP-62 Lung cancer

5 T-47D Breast cancer 35 SK-MEL-2 Melanoma

6 MDA-N Breast cancer 36 LOX IMVI Melanoma

7 SF-268 CNS cancer 37 SK-MEL-28 Melanoma

8 SF-539 CNS cancer 38 MDA-MB-435 Melanoma

9 SNB-19 CNS cancer 39 M14 Melanoma

10 U251 CNS cancer 40 UACC-62 Melanoma

11 SF-295 CNS cancer 41 SK-MEL-5 Melanoma

12 SNB-75 CNS cancer 42 UACC-257 Melanoma

13 HT29 Colon cancer 43 MALME-3M Melanoma

14 COLO 205 Colon cancer 44 IGROV1 Ovarian cancer

15 HCC-2998 Colon cancer 45 NCI/ADR-RES Ovarian cancer

16 KM12 Colon cancer 46 OVCAR-5 Ovarian cancer

17 HCT-116 Colon cancer 47 OVCAR-3 Ovarian cancer

18 HCT-15 Colon cancer 48 OVCAR-8 Ovarian cancer

19 SW-620 Colon cancer 49 SK-OV-3 Ovarian cancer

20 K-562 Leukaemia 50 OVCAR-4 Ovarian cancer

21 MOLT-4 Leukaemia 51 PC-3 Prostate cncer
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22 CCRF-CEM Leukaemia 52 DU-145 Prostate cncer

23 RPMI-8226 Leukaemia 53 TK-10 Renal cancer

24 HL-60(TB) Leukaemia 54 SN12C Renal cancer

25 SR Leukaemia 55 UO-31 Renal cancer

26 EKVX Lung cancer 56 CAKI-1 Renal cancer

27 NCI-H460 Lung cancer 57 786-0 Renal cancer

28 NCI-H226 Lung cancer 58 RXF 393 Renal cancer

29 NCI-H522 Lung cancer 59 A498 Renal cancer

30 NCI-H23 Lung cancer 60 ACHN Renal cancer

III.3 - Artificial Intelligence (AI) in drug discovery:

Artificial Intelligence based drug discoveries are quicker, effective, and less expensive.

It is said that almost 2.6 billion dollars and 10 years is invested in developing a

therapeutic drug and only 1 out of 10 drugs pass the trial for approved therapeutic drugs

from phase II. Most drugs fail because of numerous reasons like toxicity, poor

pharmacokinetics and lack of clinical efficacy. Most of the pharmaceutical companies

have opted for AI. Pfizer uses IBM’s AI-Watson, Sanofi uses UK start-up Exscientia’s AI,

Genentech uses AI of GNS Healthcare in Cambridge and BERG (https://bpgbio.com)

uses their AI system and identified BPM31510, a potential drug for pancreatic cancer

which is currently under Phase II clinical trials7.
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Tabel 5: Artificial Intelligence driven pharmaceutical companies

AI company Technology Partnered
Company

Drugs against

Atomwise DL screening based on molecular structure
data

Merck Malaria

Benevolent DL and NLP of research literature Johnson &
Johnson

Multiple

Berg DL screening of biomarkers from patient data Berg Multiple

Exscientia Bispecific compounds via Bayesian models of
ligand activity from drug discovery data

Sanofi Metabolic
diseases

GNS
Healthcare

Bayesian probabilistic inference for
investigating efficacy

Genentech Oncology

Recursion, Salt
Lake City, Utah

Cellular phenotyping via image analysis Sanofi Rare genetic
diseases

Numerate DL from phenotypic data Takeda Oncology,
gastroenterolog
y and CNS
disorders

twoXAR, Palo
Alto, California

DL screening from literature and assay data Santen
Pharmaceuticals,
Osaka, Japan

Glaucoma

III.4 - Existing Artificial Intelligence based models in antifungal drug
discovery:

Thirty percent of Candida genus are highly resistant to the existing antifungal drugs.

Gao et al in UCSD developed ML based models for virtually screening drugs targeting

CaFKS1, 1,3-beta-glucan synthase’s subunit which is involved in the cell wall synthesis.

ML based model was on chemical descriptors and attained 96.72% accuracy8.

Deep learning model followed by molecular docking, X-score and similarity search

methods was generated to screen chemical compounds targetting the dihydrofolate

reductase of Candida albicans9. Deep Learning model was built based on Deep
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Screening, a user-friendly web server developed by Liu et al.10. DeepScreening

generated the target-focused new libraries.

Synergistic drug combinations are effective in reducing the drug resistance, increasing

the treatment efficacy, and reducing drug dosage. Chen et al developed an algorithm

NLLSS (Network-based Laplacian regularized Least Square Synergistic drug

combination prediction) to predict synergistic drug combinations based on drug-target

interactions, and drug chemical structures. 7 out of 13 predicted combinations were

confirmed to be antifungal via experiments 11.

III.5 - Existing Artificial Intelligence based models in anticancer drug
discovery:

There are several existing AI based prediction models for identifying potential

carcinogens and computer vision based models in prediction cancer based on images.

Most of the AI based models in predicting anti-cancer drugs hover around drug

repurposing as it saves time in clinical trials.

Kuenzi et al. developed DrugCell12, a deep learning model trained on the responses of

684 drugs in 1235 cancer cell lines. Drug responses in a mutational background helps

in predicting synergistic combinations of drugs via synthetic lethality concept. Synthetic

lethality is when two genes being singly mutated doesn’t have any lethal effect in cells,

but when doubly mutated, leads to lethality. This concept of two genes is replaced by

one gene and one drug targeting the other lethal pair gene. It is exploited to design

drugs that could specifically kill cancer cells carrying out mutations in the gene. As

normal cells are devoid of mutation, the drug won't affect the normal cell and thus being

specific in inhibiting cancer cells.

Kadurin et al used Adversarial AutoEncoders-AAE on dose response data of 6252

compounds in MCF-7 cell line from the NCI-60 and developed a deep learning model to

generate novel molecular fingerprints. The 7-layer AAE architecture was developed with
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the latent middle layer serving as a discriminator. Input and output of the AAE uses a

vector of binary fingerprints and concentration of the molecule. Neuron responsible for

the growth inhibition percentage was also introduced in the latent layer. Several drugs

were screened on the trained model13.
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IV - Methodology:

IV.1 - Experimental design of NCI yeast Anticancer Drug screen:

The drug screen consists of three steps.. In stage 0, 97261 compounds were screened

at a concentration of 50 µM in duplicates in 6 strains. Among the 6 strains, 3 yeast

strains had single mutations in rad50, mec2 and bub3 genes and the rest 3 strains had

double mutations in rad18 + mlh1, sgs1 + mgt1 and rad14 + CLN2oe. Compounds
(nearly 14466) with at least 70 % growth inhibition (GI) in at least one strain proceeded

for stage 1. 16885 Compounds (freshly added compounds along with stage 0) were

tested at concentrations 5 and 50 µM in duplicates in the same strains used in stage 0.

The toxic compounds inhibiting growth in all the strains were neglected. The

compounds showing at least five-fold growth inhibition difference between the least and

most sensitive strain were proceeded for stage 2. In stage 2, the compounds were

tested in all 13 strains at concentrations 1.2, 3.6, 11, 33, and 100 µM.

Figure 1: NCI Yeast Anti-cancer Drug Screen stages
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IV.2 - Experimental design of NCI60 Growth Inhibition Assay:

Initially, a single dose assay (5-10 Molar concentration) was used to filter the

compounds with better anti-proliferative activity. The values for the drug response data

denote the growth relative to zero drug concentration (control) and the time when the

number of cells is zero. A value between 0 to 100 indicates growth, and the value less

than zero denote lethality. For example, a value of 100 means no growth inhibition, a

value of 60 means 40% growth inhibition, zero means no net growth, -40 means 40%

lethal and 100 means no cells survived. The filtered compounds were then subjected to

a five dose assay. The same annotation of values is used for five dose assay.

IV.3 - Five-dose Assay:

The NCI60 cell lines are grown in RPMI (Roswell Park Memorial Institute) 1640 medium

with 2mM L-glutamine and 5% fetal bovine serum. With plating densities ranging from

5,000 to 40,000 cells/well, the cells are inoculated into 96-well microtiter plates in 100

μL. Later incubated at 95% air, 37°C, 100% relative humidity and 5% CO2 for 24 hours

prior to drug addition.

Post incubation, plates are fixed in situ with TCA(tricarboxylic acid), representing a

measurement of the cell population at the time of drug addition (Tz). Drugs were

dissolved in dimethyl sulfoxide at 400-fold times the test concentration and frozen. The

frozen drug is thawed and diluted to twice the test concentration with a complete

medium containing 50 μg/ml gentamicin. 100 μl of this aliquot is added to the wells

containing 100 μl of the medium, resulting in the required final drug concentrations.

Post-drug addition, the plates were incubated at 5% CO2, 95% air, 100% relative

humidity, and 37°C for 48 hours. Cells are fixed in situ 100μl by 10% tricarboxylic acid

and incubated at 4°C for 60 minutes. After discarding the supernatant, the plates are

washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100μl)

at 0.4% (w/v) in 1 % acetic acid is added and incubated for 10 minutes at room

temperature. Post-staining, unbound dye is removed by washing. Bound stain is
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solubilized with 10 mM trizma base, and the absorbance is read on an automated plate

reader at a wavelength of 515nm.

The percentage growth is calculated from the absorbance measurements growth at time

zero of drug addition (Tz), control growth (C), and test growth in the presence of drug at

the five concentration levels (Ti) at each of the drug concentration levels. Percentage

growth is calculated as:

[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti ≥Tz

[(Ti-Tz)/Tz] x 100 for concentrations for which Ti<Tz.

The IC50 values are interpolated from the percentage of cell growth as a fraction of

control cell growth.

IV.4 - IC50 Dataset Description:

IV.4.1 - NCI yeast Anticancer Drug screen:

IC50 values (in µM) for the NCI yeast Anticancer Drug screen were taken from the NCI

website (https://dtp.cancer.gov/YeastData/nscsearch). IC50 values for 1971 compounds

on 12 strains (rad50, rad52, rad50EPP+, rad14, rad18, sgs1, mec2, mgt1, wt1, wt2,

bub3, CLN2oe) except mlh1 were extracted from the website.

IV.4.2 - NCI60 Growth Inhibition Assay:

The IC50 for the compounds in NCI60 cell lines have been downloaded from the

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data. The drug

screening experiments were also done in additional cell lines apart from the usual 60

cell lines.

The raw data had columns for denoting the NSC number for compound identification,

concentration unit of the drug tested,NCI cell line used and , interpolated IC50 value, its

average and standard deviation.
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IV.4.3 - Processing the IC50 values:

IC50 values for the NCI yeast Anticancer Drug screen was complete and processing

wasn’t required.

The growth inhibition assay was repeated several times by serial diluting different initial

test concentrations. IC50 were interpolated for each experiment and reported. Due to

redundancy in the assay, we considered the average IC50 values for the assays with

highest initial concentration. 1099 compounds were found to be common between yeast

anticancer drug screen and NCI60 Growth Inhibition Assay. Approximately 7% of the

NCI60-IC50 matrix was incomplete. This incomplete matrix was completed by the matrix

completion method.

IV.5 - Matrix Completion Method:

Different matrix completion methods like Soft Impute, Iterative SVD, KNN were used to

complete the NCI60-IC50 matrix. Fancyimpute 0.7.0 package was used. The best

matrix completion method was chosen based on R square, Mean Absolute Error and

Mean Square Error values.

IV.5.1 - SoftImpute:

Softimpute works by nuclear norm regularization and fits a low rank matrix

approximation to the matrix with missing values. Missing values are filled by current

guesses, and the values filled are optimized via soft threshold SVD.

IV.5.2 - KNN (K Nearest Neighbors):

KNN finds similar data points near the missing value and completes the missing value

with the average value of all the similar points.

IV.5.3 - Iterative SVD (Singular Value Decomposition):

The matrix is filled by iterative low rank SVD. It is similar to SVDimpute from Missing

value estimation methods for DNA microarrays by Troyanskaya et. al.
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IV.6 - Evaluation of Matrix Completion Method:

NCI60 IC50 values for 231 drugs were complete and this matrix was used for evaluating

the best method. Randomly introducing NA values in 20% of the data and the NA

values are filled by matrix completion methods. This predicted 20 % of the value is

compared with the true value and the average of R2, MAE and RMSE values for 10

iterations was calculated. Soft impute was found to be the best method.

Figure 2: Workflow of matrix completion method - part1
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IV.6.1 - R2:

The coefficient of determination or R2 value indicates the variation between the

predicted and the true value. R2 ranges from 0 to 1. 1 indicates no variation in the

predicted values when compared to the true values and 0 indicates complete variation

in the predicted values when compared to the true values

R2 = 1 – residual sum of squares / total sum of squares

R2 = 1 – ∑ (true value- predicted value)2 /∑(true value – mean of true value)2

IV.6.2 - MAE (Mean Absolute Error):

MAE is also called as L1 loss function and its the average of the absolute errors.

Absolute error is the difference in magnitude between the predicted value and the true

value. MAE ranges from 0 to ∞ and smaller values of MAE is preferred as it indicates

very less difference between the true and predicted value

MAE = ∑ |true value- predicted value)| / number of observations

IV.6.3 - MSE (Mean Square Error):

The Mean Squared Error measures the proximity of a regression line to a set of data

points. Average of the squared errors is used for calculating MSE .

A higher MSE denotes that the data points are dispersed widely around its central

moment whereas a smaller MSE suggests the opposite. A lower MSE is preferred as it

means smaller the error and better the predicted value is.

MSE = (1/n) * Σ(actual value – predicted value)2

n is the sample size.
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IV.7 - Mutual Information (MI):

The filled matrix of NCI60 IC50 is compared with the IC50 NCI yeast study based on the

Mutual Information (MI) score. Mutual information gives the measure of how two

random variables are mutually dependent. It considers the non-linear relationship as

well unlike pearson correlation which considers only the linear relationship between two

variables.

Mutual Information of two random variables X and Y, whose joint distribution is defined

by P(X, Y ) is given by

MI (X; Y) = ∑ ∑ P(x, y) log P(x, y) / P(x)P(y)

x€X y€Y

In this definition, P(X) and P(Y) are the marginal distributions of X and Y obtained

through the marginalization process. X could be the IC50 in yeast strains and Y could

be IC50 in NCI60 human tumor cell lines.

Figure 3: Workflow of matrix completion method - part 2
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IV.8 - GIPCRT (Growth Inhibitory Percentage) Datasets of NCI yeast
Anticancer drug screen:

The stage 2 drug response datasets were taken from the

https://wiki.nci.nih.gov/display/NCID. The CSV file had the information on the strain

used, NSC number for compound identification, concentration of the drug used and the

average of the growth inhibition measurement.

To predict whether a drug could inhibit the yeast growth from the trained GIPCRT,

unsupervised clustering was done on GIPCRT and subsequent clusters would give

information on the drugs’ growth inhibition ability.

IV.8.1 - Unsupervised classification based on GIPCRT:

There were 13 yeast strains including 2 wild type strains. Unsupervised classification via

k means was done on their growth inhibitory percentage. The number of optimal classes

was determined based on elbow methods and silhouette score. The subsequent

classes were used as training datasets in supervised classification to predict the growth

inhibition ability.

Figure 4: Unsupervised Classification based on GIPCRT datasets
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IV.8.1.1 - K-means classification:

The growth inhibition pattern having five columns is dimensionally reduced to two

dimensions. The data points are then represented in a 2D plot. k distinct data points

representing k classes are randomly selected. The rest points are assigned to a

particular class based on lesser Euclidean distance. The mean (centroid) of each class

is found. We again classify the data points based on their distance from the centroid.

We keep repeating the classification until the labels of the classes remain unchanged.

The optimal k is found by the elbow and silhouette method. The unclassified dataset is

split into classes based on the similarities in their growth pattern within a class and

dissimilarities between classes.

IV.8.1.2 - Elbow method:

Sum of squared errors (SSE) within the clusters is measured in finding the optimal

clusters. SSE varies largely when k increases and converges later. The k at which it

converges forms an elbow. Elbow is used to find the optimal k for the unsupervised

classification.

IV.8.1.3 - Silhouette coefficient (SC):

Silhouette coefficient measures the similarities within a cluster and dissimilarities

between clusters. The value ranges between -1 to +1. +1 indicates that the

classification is the best. 0 indicates overlapping classes and -1 indicates worst

classification. K at which silhouette coefficient is maximum is the optimal k for the

unsupervised classification.

S(i) = a(i) – b(i) / max{a(i), b(i)}

SC = mean (S(i))

S(i) => silhouette score of a datapoint i

a(i) => mean distance of i from all the data points within a cluster

b(i) => mean distance of i from all the data points of other clusters
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IV.8.2 - Machine Learning – supervised classification:

The clusters/labels from the unsupervised clustering were based on the growth

inhibitory percentage. The chemical space of the drugs along with the labels are used to

build machine learning models in predicting the growth inhibition of a drug given its

SMILES. The chemical space of the drugs was extracted from the SMILES by the

feature generation method Signaturizer 1.1.11. Signaturizer extracts 3200 features and

hence feature selection method like Boruta was used to select significant features

contributing to the classification.

Figure 5: Supervised Classification on the Growth Inhibition datasets

36

https://pypi.org/project/signaturizer/1.1.11/
https://github.com/scikit-learn-contrib/boruta_py


Machine Learning models like Random Forest (RF), Stochastic Gradient Descent

(SGD), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision Tree

(DT), Extra Tree(ET) and AdaBoost (AB) were employed to train the model. The models

were trained on 80 % datasets and validated on the remaining 20 % datasets. The

scoring metrics used were Kappa, Recall, Precision, F1 score, Accuracy and AUC-

ROC score. Average of the 10 fold cross validation kappa scores were considered in

choosing the best model and the parameters of the best model were as well chosen

based on the average Kappa scores. The final model was trained on the entire dataset

and saved.

IV.8.2.1 - SMILES:

SMILES (Simplified Molecular Input Line Entry System) is a string format representing

the chemical structure of the compounds. SMILES format could be read by the

computer. SMILES supports all elements in the periodic table and follows hydrogen

suppression i.e CH3-CH3 is written as CC. Double bond is represented as “=” and triple

bond as “#”. There are prescribed representations for side chain, branched elements,

metals, aromatic rings etc. Softwares extracts features (numerical vectors) from the

SMILES.

IV.8.2.2 - Signaturizer:

Signaturizer generates features from SMILES for machine learning. Signaturizer

extracts both bioactivity and chemical descriptors (physicochemical and structural

properties). The signaturizer vector size is 3200. It has five main classes describing the

chemistry (A), targets (B), networks (C), cells (D) and clinics (E) and each main class is

further divided into 5 subclasses generating 128 features. The total number of features

sums up to 3200 (5 x 5 x 128 = 3200)14.

Figure 6: Features in Siganturizer
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IV.8.2.3 - Boruta:

Boruta is a feature selection method and it selects the features that are relevant for the

classification model. Boruta works on the Random Forest algorithm. It creates random

shadow copies of the features (noise) It iteratively removes the test features that are

statistically less relevant when compared to noise.

IV.8.2.4 - Random Forest (RF):

Bootstrapped dataset is constructed with the same size (rows and columns) of the

original dataset. Bootstrap dataset is made by randomly choosing samples i.e. rows

from the original dataset with repetition. Decision tree is created by randomly choosing

the variables i.e. columns/features from the bootstrapped dataset. The chosen variables

are the root node. Each root node is further branched with a set of random variables

called internal nodes/branches. The last internal node which is not further branched is

called a leaf node/ leaf. Many such decision trees are made. The majority of the

decision trees is considered as the output of RF. RF is robust and has better accuracy

and problem-solving ability because of many decision trees.

IV.8.2.5 - Stochastic Gradient Descent (SGD):

In SGG, few samples in the dataset are chosen randomly instead of the complete

dataset used in Gradient Descent (GD). SGD becomes computationally inexpensive

when compared to GD. The parameters are altered iteratively until the cost function is

minimized.

IV.8.2.6 - K-Nearest Neighbour (KNN):

A similar approach to KNN unsupervised clustering is used. But here k and the labels

are known. We decide the label for the test sample based on the majority of the

neighbors around the test sample.
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IV.8.2.7 - Support Vector Machine (SVM):

SVM creates the best decision boundary (hyperplane) that can segregate classes in

n-dimensional space. Datapoints are clearly separated from the hyperplane. Several

hyperplanes are possible and the best hyperplane is chosen based on the maximum

margin. The observations that lie close to the margins are called support vectors. If the

shortest distance between the support vectors and the margin is maximum, that margin

is the best hyperplane.

Figure 7: Schema for Support Vector Machine

IV.8.2.8 - Decision Tree (DT):

Decision tree is made with a root node (feature) at the top having the minimum impurity

(majority of the samples in a column are classified correctly based on that feature),

internal nodes (features/columns of the dataset) and the leaf (final output of the

classification). The impurity of the node is calculated by any one of the methods -

entropy, information gain and gini impurity. Pruning is also done in order to remove the

unnecessary branches.
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IV.8.2.9 - Extra Tree (ET):

Extremely randomized trees classifier is very similar to random forest. ET considers the

multiple decision trees constructed from the entire dataset unlike random forest

considering the decision trees constructed from boot strapped datasets.

IV.8.2.10 - Ada Boost (AB)/ Adaptive Boosting:

Tree with one node and two leaves is called a stump and several stumps are

constructed. Stumps are weak learners as the decision is made based on one feature

only. Initially, equal weights are assigned to all the samples. The stumps are arranged

one below the other in increasing Gini index. Total error of the stump is calculated. 0

means no error (perfect stump) and 1 means maximum error (imperfect stump). The

performance of the stump or amount of say is calculated from the total error. The

weights are updated based on the amount of say. The whole process is iterated until

less error is seen.

IV.8.3- Evaluation metrics for ML classifiers:

All the Machine learning metrics were calculated from the confusion matrix.

Figure 8: Confusion matrix for binary classifier
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IV.8.3.1 - Kappa:

Kappa compares the observed accuracy with the expected accuracy (by random

chance). Unlike accuracy, it takes imbalance class into consideration. In Observed

Accuracy, we add the number of instances the classifier synced with the ground truth

label and divide by the total number of instances. Expected accuracy is the number of

instances of each class, along with the number of instances that the classifier agreed with

the ground truth.

Kappa = (observed accuracy - expected accuracy)/(1 - expected accuracy)

IV.8.3.2 - Weighted Recall:

Calculates the proportion of the actual classes identified. Weighted average of the recall

of all the classes is used.

Recall 0 = TP / TP+FN considering positive to be one class

Recall 1 = TN / TN+TP considering negative to be another class

Weighted average of Recall 0 and Recall 1 is considered for the model evaluation.

IV.8.3.3 - Weighted Precision:

Calculates the proportion of the correctly identified class. Weighted average of precision

of all the classes is used.

Precision 0 = TP / TP+FP considering positive to be one class

Precision 1 = TN / TN+FN considering negative to be another class

Weighted average of Precision 0 and Precision 1 is considered for the model

evaluation.
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IV.8.3.4 - F1 score:

F1 score is the harmonic mean of Precision and Recall. It evaluates the class wise

performance rather than the overall performance of the model.

F1 score = 2 x Precision x Recall / Precision + Recall.

IV.8.3.5 - Accuracy:

It evaluates the overall performance of the model.

Accuracy = No of correct predictions / total number of predictions

IV.8.3.6 - AUC- ROC:

ROC (Receiver Operating Characteristics) is the probabilistic curve and AUC is the

measure of separability. AUC ranges from 0 to 1.Higher the AUC values, the better the

model predicts 0 as 0s and 1 as 1. ROC curve is obtained by plotting the true positive

rate vs false positive rate.

IV.9 - Unsupervised classification based on IC50 followed by
supervised classification:

The IC50 values for 12 yeast strains except mlh1 strain were available.The

unsupervised classification of IC50 values by k means gave two classes. One class of

drugs with higher IC50 values and one class with lower IC50 values. The significance of

the classification is validated by the Kolmogorov–Smirnov test.

Similar machine learning approach used in GIPCRT classification was used in

prediction of higher and lower IC50 values.
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Figure 9: Unsupervised classification based on IC50 datasets

Figure 10: Supervised classification on IC50 datasets
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IV.10- Machine Learning models in predicting novel antifungal agents:

By combining the ML classifiers in predicting the class with growth inhibition ability with

less IC50 values, around 15000 drugs from Drug Bank were tested.The top 25 drugs in

each classifier are further validated for their potential antifungal properties.

Figure 11: Machine Learning models in predicting novel antifungal compounds
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Results and Discussions

45



V - Results and Discussions:

V.1 - Matrix Completion:

The incomplete IC50 NCI60 cell lines were completed by different matrix completion

methods like Softimpute, KNN and Iterative SVD. The best method was Softimpute as it

had higher R2, lower MSE and MAE when compared to KNN and IterativeSVD.

Table 6: Evaluation of Matrix Completion methods

Evaluation metrics Softimpute KNN Iterative SVD

R2 0.72 0.57 0.62

MSE 5723.75 8912.32 7858.26

MAE 18.63 20.77 21.41

Figure 12: R square, Mean Squared Error and Mean Absolute error values in Matrix Completion
methods
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V.2 - Mutual Information:

MI scores and Pearson correlation coefficient between 12 yeast strains and the human

NCI60 cell lines are shown in the heat map. The heat map shows that rad52 yeast

strain had the highest MI score against 56 out of 60 NCI60 cell lines. rad50 and rad14

yeast strains had the highest MI score in the two NCI60 cell lines. Hence rad52 would

be a good substitute for carrying out anticancer studies in human cell lines/ animal

models.

Figure 13: Donut plot of highest scores of yeast strain

47



Figure 14: MI scores and Pearson correlation scores between yeast and NCI60 strains
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Similarly MI scores were calculated within the NCI60 cell lines. The calculated MI score

between two different NCI60 cell lines was less when compared the MI score between

the same strain. It suggests that NCI60 cell lines were distinct from each other thus

serving the purpose for a wide spectrum of NCI60 cell lines.

Figure 15 : MI scores within NCI60 cell lines -Part 1

Figure 15: Pearson correlation scores within NCI60 cell lines - Part 2
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MI scores were calculated within the 12 yeast strains as well. The MI score between

rad52 and rad50 was the second highest as the MI scores between the same yeast

strains was the highest. It suggests that the rad52 and rad50 are similar thus proving

the genetic similarity between rad50 and rad52 genes. This similarity is as well depicted

in the first heat map showing rad50 to be the second substitute for NCI60 cell lines after

rad52.

Figure 16: MI scores and Pearson correlation scores within the yeast strains

The density distribution plot of the MI scores between yeast strains and NCI60 cell lines

is shown for alternative visualization of the heat map. rad52 and rad50 are on the right

side of the plot indicating that they have higher MI scores with NCI60 cell lines when

compared to the rest yeast strains with NCI60 cell lines.

Figure 17: Density distribution plot of MI scores between yeast and NCI60 cell lines
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Kolmogorov–Smirnov test performed between the MI scores of rad50 with NCI60 and

other yeast strains with NCI60 suggests that rad50 and rad52 follow similar distribution

as d-value was 0.36 (closer to 0), whereas it was >0.76 with other strains. The test was

significant with a p value <0.05. This further adds to the point that rad52 and rad50 are

similar in their functioning.

Figure 18: ECDF plot of MI scores between yeast and NCI60 cell line
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V.3 - Unsupervised classification based on GIPCRT:

K-means unsupervised classification on GIPCRT yielded two clusters in all 13 yeast

strains. The optimal number of clusters is found by the elbow method and silhouette

score. In all 13 strains, the elbow point is seen when k=2 and the maximum silhouette

score was also at k=2. The concentration box plots between two clusters clearly show

the distinction between the two classes. The tSNE plot shows the two classes in

dimensional space. The classes from this unsupervised classification are used for

supervised classification of the drugs from their chemical space. The best model turned

out to be Random forest in all 13 strains. The best model and its parameters were

chosen based on the 10 fold cross validation of Kappa and Accuracy.

Table 7: Best parameter for Random Forest Classifier on GIPCRT values

Yeast Strain Silhouette score Best Parameters in Random Forest

rad52 0.45 criterion: gini, max_depth: 30,

max_features: auto, n_estimators: 150

rad14 0.45 criterion: gini, max_depth: 10,

max_features: auto, n_estimators: 50

rad18 0.45 criterion: gini, max_depth: 10,

max_features: auto, n_estimators: 50

rad50EPP+ 0.48 criterion: gini, max_depth: 20,

max_features: auto, n_estimators: 150

sgs1 0.43 criterion: entropy, max_depth: 20,

max_features: log2, n_estimators: 100

mlh1 0.45 criterion: gini, max_depth: 20,

max_features: auto, n_estimators: 150

mgt1 0.46 criterion: gini, max_depth: 20,

max_features: log2, n_estimators: 700
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mec2 0.46 criterion: gini, max_depth: 30,

max_features: auto, n_estimators: 800

bub3 0.45 criterion: entropy, max_depth: 20,

max_features: log2, n_estimators: 800

CLN2oe 0.48 criterion: gini, max_depth: 30,

max_features: auto, n_estimators: 400

wt1 0.48 criterion: gini, max_depth: 20,

max_features: log2, n_estimators: 600

wt2 0.46 criterion: gini, max_depth: 10,

max_features: auto, n_estimators: 100

Table 8: 10 CV evaluation metrics for all 13 yeast strains based on GIPCRT

Yeast strain Recall Precision F1 score Kappa Accuracy AUC

rad52 0.64 0.64 0.63 0.25 0.64 0.69

rad50 0.63 0.63 0.63 0.26 0.63 0.68

rad14 0.65 0.64 0.64 0.23 0.65 0.67

rad18 0.63 0.63 0.63 0.24 0.63 0.68

rad50EPP+ 0.68 0.68 0.68 0.34 0.68 0.73

sgs1 0.63 0.62 0.62 0.24 0.63 0.67

mgt1 0.63 0.62 0.62 0.22 0.63 0.67

mec2 0.65 0.65 0.64 0.25 0.65 0.68

bub3 0.62 0.61 0.61 0.22 0.62 0.66

CLN2oe 0.64 0.63 0.63 0.21 0.64 0.67

wt1 0.65 0.64 0.64 0.22 0.65 0.67

mlh1 0.63 0.62 0.62 0.21 0.63 0.66

wt2 0.63 0.63 0.63 0.22 0.63 0.66

53



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE) Average Silhouette value

Unsupervised Classification based on GIPCRT - bub3 strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
11

0 1
33

0 1
100

2 3 4 5 6 7 8 9

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

1.2 3.7 11 33 100

Silhouette Coefficient values

C
lu

st
er

 la
be

ls

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

1
0

40200- 40 - 20

40

20

0

- 40

- 20

- 60

- 80

60

Figure 20.1:

54



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - CLN2oe strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
33

0 1
11

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

-200

-150

-100

-50

0

50

100

150

200

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

1
0

40200- 40 - 20

40

20

0

- 40

- 20

60

60

Figure 20.2:

55



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - mec2 strain

conc(μM)

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

-200

-150

-100

-50

0

50

100

150

200

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

1
0

40200- 30 - 20

40

20

0

- 40

- 20

60

30- 10 10

- 60

- 80

80

Figure 20.3:

56



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

t-distributed stochastic neighbor embedding (t-SNE)

Unsupervised Classification based on GIPCRT - mgt1 strain

conc(μM)

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

Silhouette Coefficient values

Average Silhouette value

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

1
0

40200- 20

40

20

0

- 40

- 20

60

- 60

- 80
- 40

Figure 20.4:

57



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - mlh1 strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
33

0 1
11

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

0 1
100

1.2 3.7 11 33 100

Cl
us

te
r l

ab
el

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

1
0

40200- 20

40

20

0

- 40

- 20

60

- 60

- 40

Figure 20.5:

58



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - rad14 strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
33

0 1
11

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

1
0

200- 40 - 20

40

20

0

- 40

- 20

60

40

- 60

80

Figure 20.6:

59



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - rad18 strain

conc(μM)

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

Dim 1

-200

-150

-100

-50

0

50

100

150

200

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

-0.1 0 0.2 0.4 0.6 0.8 1

0

1

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

1
0

40200- 60 - 20

40

20

0

- 40

- 20

60

- 40

80

Figure 20.7:

60



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE) Average Silhouette value

Unsupervised Classification based on GIPCRT - rad52 strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
11

0 1
33

0 1
100

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

33113.71.2

2 3 4 5 6 7 8 9

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

100
-200

-150

-100

-50

0

50

100

150

200

-40 40200-20

-40

0

20

-20

40

60

-60

0
1

Silhouette Coefficient values

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Figure 20.8:

61



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - rad50EPP+ strain

conc(μM)

-200

-150

-100

-50

0

50

100

150

200

-200

-150

-100

-50

0

50

100

150

200

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)
1
0

40200- 40 - 20

40

20

0

- 40

- 20

60

- 60

- 80

Figure 20.9:

62



1 2 3 4 5 6 7 8 9
Clusters

0

2

4

6

8

10

12

14

SS
E 

(1
0*

6)

Elbow method

Clusters
2 3 4 5 6 7 8 9

0.25

0.30

0.35

0.40

0.45

0.50

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

10

Silhouette scores for the clusters

1.2 3.7 11 33 100
-200

-150

-100

-50

0

50

100

150

200

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution

-200

-150

-100

-50

0

50

100

150

200
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Dim 1

1
0

-40 40200-20

-40

0

20

-20

40

60

-60

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - rad52 strain

conc(μM)
0 1
1.2

0 1
3.7

0 1
11

0 1
33

0 1
100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Figure 20.10:

63



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - sgs1 strain

conc(μM)

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

1
0

-40 40200-20

-40

0

20

-20

40

60

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

 - 60

Figure 20.11:

64



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration (μM)

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - wt1 strain

conc(μM)

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

1
0

40200- 40 - 20

40

20

0

- 40

- 20

60

- 60

Figure 20.12:

65



Clusters

SS
E 

(1
0*

6)

Elbow method

Clusters

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t

Silhouette scores for the clusters

Pe
rc

en
ta

ge
 G

ro
w

th
 In

hi
bt

io
n

Concentration distribution
Pe

rc
en

ta
ge

 G
ro

w
th

 In
hi

bi
tio

n

class

Concentration distribution between classes

Silhouette Coefficient values

Average Silhouette value

Unsupervised Classification based on GIPCRT - wt2 strain

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

-200

-150

-100

-50

0

50

100

150

200

0 1
1.2

0 1
3.7

0 1
33

0 1
11

0 1
100

1.2 3.7 11 33 100

C
lu

st
er

 la
be

l

-0.1 0.0 0.2 0.4 0.6 0.8 1

1

0

Concentration (μM) conc(μM)

Dim 1

D
im

 2

t-distributed stochastic neighbor embedding (t-SNE)

40200- 40 - 20

40

20

0

- 40

- 20

60

- 60

- 80

80
0
1

2 3 4 5 6 7 8 9
0.25

0.30

0.35

0.40

0.45

0.50

10

Figure 20.13:

66



Model Evaluation (10 CV) based on GIPCRT - bub3 strain

Class 0 Class 1

9751214

Recall

Sc
or

es

Precision

Sc
or

es

F1 score

Sc
or

es

Kappa

AUC ROCAccuracy

RT DT
SGDC

AB ET
KNN

SVM
Sc

or
es

Sc
or

es

Sc
or

es

0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM

0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM

RT DT
SGDC

AB ET
KNN

SVM

Figure 21.1:

67



Model Evaluation (10 CV) based on GIPCRT - CLN2oe strain

Class 0 Class 1

1352837

Recall

Sc
or

es

Precision

Sc
or

es

F1 score

Sc
or

es

Kappa

AUC ROCAccuracy

RT DT
SGDC

AB ET
KNN

SVM
Sc

or
es

RT DT
SGDC

AB ET
KNN

SVM

RT DT
SGDC

AB ET
KNN

SVM

RT DT
SGDC

AB ET
KNN

SVM

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM

Sc
or

es

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 21.2:

68



Model Evaluation (10 CV) based on GIPCRT - mec2 strain
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Model Evaluation (10 CV) based on GIPCRT - mgt1 strain
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Model Evaluation (10 CV) based on GIPCRT - mlh1 strain
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Model Evaluation (10 CV) based on GIPCRT - rad14 strain
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Model Evaluation (10 CV) based on GIPCRT - rad18 strain
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Model Evaluation (10 CV) based on GIPCRT - rad50 strain
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Model Evaluation (10 CV) based on GIPCRT - rad50EPP+ strain
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Model Evaluation (10 CV) based on GIPCRT - sgs1 strain
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Model Evaluation (10 CV) based on GIPCRT - wt1 strain
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Model Evaluation (10 CV) based on GIPCRT - wt2 strain
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V.4 - Unsupervised Classification based on IC50:

The unsupervised classification on the IC50 in all 12 yeast strains (except mlh1) yielded

2 clusters with higher and lower values of IC50. The Kolmogorov–Smirnov test perfmed

between the two classes had d value ≅ 0 and a significance p-value of <0.05 suggesting

that the two classes are distinct.

The classes from this unsupervised classification are used for supervised classification

of the drugs from their chemical space. The best model turned out to be Random forest

in all 12 strains. The best model and its parameters were chosen based on the 10 fold

cross validation of Kappa and accuracy scores.

Table 9: Best parameter for Random Forest Classifier on IC50 values

Yeast Strain IC50 range Best Parameters in Random Forest

class0 class1

rad52 1.2 - 54.2 54.5 - 100 criterion: gini, max_depth: 12,

max_features: log2, n_estimators: 800

rad50 1.2 - 54.3 54.5 - 100 criterion: gini, max_depth: 16,

max_features: auto, n_estimators: 180

rad14 1.2 - 58.9 59.2 - 100 criterion: entropy, max_depth: 18, max_features: log2,

n_estimators: 700

rad18 1.2 - 51.6 51.8 - 100 criterion: gini, max_depth: 10,

max_features: auto, n_estimators: 100

rad50EPP+ 1.2 - 56.2 56.4 - 100 criterion: gini, max_depth: 18,

max_features: log2, n_estimators: 170

sgs1 1.2 - 55.6 55.8 - 100 criterion: gini, max_depth: 18,

max_features: auto, n_estimators: 180

mgt1 1.2 - 57.3 57.4 - 100 criterion: gini, max_depth: 14,

max_features: auto, n_estimators: 200
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mec2 1.2 - 57.0 57.1 - 100 criterion: gini, max_depth: 28,

max_features: log2, n_estimators: 700

bub3 1.2 - 57.9 58.5 - 100 criterion: entropy, max_depth: 10,

max_features: log2, n_estimators: 1000

CLN2oe 1.2 - 58.2 58.3 - 100 criterion: gini, max_depth: 18,

max_features: log2, n_estimators: 300

wt1 1.2 - 59.0 59.2 - 100 criterion: gini, max_depth: 14,

max_features: log2, n_estimators: 400

wt2 1.2 - 57.7 57.9 - 100 criterion: entropy, max_depth: 18,

max_features: auto, n_estimators: 300

Table 10: 10 CV evaluation metrics for all 12 yeast strains based on IC50

Yeast strain Recall Precision F1 Kappa Accuracy AUC

rad52 0.67 0.67 0.67 0.32 0.67 0.71

rad50 0.65 0.65 0.65 0.27 0.65 0.7

rad14 0.63 0.63 0.63 0.25 0.63 0.67

rad18 0.64 0.64 0.63 0.25 0.64 0.67

rad50EPP+ 0.67 0.68 0.67 0.34 0.67 0.74

sgs1 0.64 0.63 0.64 0.22 0.64 0.65

mgt1 0.60 0.61 0.60 0.21 0.60 0.65

mec2 0.62 0.62 0.62 0.23 0.62 0.66

bub3 0.60 0.60 0.60 0.2 0.60 0.64

CLN2oe 0.61 0.61 0.61 0.21 0.61 0.66

wt1 0.63 0.63 0.63 0.23 0.63 0.66

wt2 0.62 0.62 0.62 0.24 0.62 0.65
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Unsupervised Classification based on IC50
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Model Evaluation (10 CV) based on IC50 - bub3 strain
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Model Evaluation (10 CV) based on IC50 - mgt1 strain
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Model Evaluation (10 CV) based on IC50 - rad14 strain
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Model Evaluation (10 CV) based on IC50 - rad18 strain
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Model Evaluation (10 CV) based on IC50 - rad50 strain
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Model Evaluation (10 CV) based on IC50 - rad50EPP+ strain
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Model Evaluation (10 CV) based on IC50 - sgs1 strain

Class 0 Class 1

1218753

Recall

Sc
or

es

Precision

Sc
or

es

F1 score

Sc
or

es

Kappa

AUC ROCAccuracy

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

RT DT
SGDC

AB ET
KNN

SVM
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Sc
or

es

92

Figure 23.8: 



Model Evaluation (10 CV) based on IC50 - wt1 strain
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IC50 10 fold Cross Validation 
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V.5 - Machine Learning models in predicting novel antifungal agents:

The drug bank compounds of around 15000 were tested on the trained models based

on GIPCRT and IC50 of rad52 strain. Top 25 drugs of the class with growth inhibition

from the GIPCRT trained model and top 25 drugs of the class with lower IC50 from the

IC50 trained model are further studied. Top 25 drugs are chosen based on the

probability value of the class.

15 drugs were found to be common between top25 drugs of both the models and the

presence of relevant literature on their anticancer and antifungal properties is also

checked and reported.

Figure 24: Venn diagram for the top 25 predicted compounds in GIPCRT & IC50 ML model and the
literature survey on the common 15 drugs on its antifungal and anticancer properties

V.5.1 - GIPCRT based testing:
There was no overlap between the GIPCRT train and top25 tested drugs. 15 common

drugs with their p values for the growth inhibition class is shown in the donut plot.
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Figure 25: Venn diagram for the top 25 predicted compounds in GIPCRT & the NCI compounds
used in training and the p values for the common 15 compounds

V.5.2 - IC50 based testing:

Two drugs- 1,10-Phenanthroline and Pyrazolanthrone were common between the IC50

train and top25 tested drugs. 15 common drugs with their p values for lesser IC50 are

shown in the donut plot.

Figure 26: Venn diagram for the top 25 predicted compounds in IC50 & the NCI compounds used
in training and the p values for the common 15 compounds
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V.5.3 - Common 15 drugs:

Table 7: Literature review on top 15 common predicted compounds

Drugs
Literature availability on

antifungal activity
Literature availability on

anticancer activity

9-aminocamptothecin Not available Burnouf et al15

Topotecan Not available Kang et al16

10-hydroxycamptothecin Not available Yang et al17

Namitecan Not available De Cesare et al18

Epirubicin Not available Khasraw et al19

Doxorubicin Not available Rivankar et al20

Mitoxantrone Steverding et al21 Anderson et al22, Evison et al23

Teniposide Not available Yan et al24

Idarubicin Steverding et al21 Rafipour et al25

Zorubicin Not available Pignon et al26

Rubitecan Not available Patel et al27

Furvina Allas et al28 Not available

Daunorubicin Not available Lancet et al29

DRF-1042 Not available Chatterjee et al30

Camsirubicin Not available Song et al31

Among the common 15 drugs, only Furvina is not reported for their anticancer property

yet. 3 drugs Furvina, Mitoxantrone and Idarubicin have been reported to have

antifungal properties. The top 5 drugs 9-aminocamptothecin, Topotecan,

10-hydroxycamptothecin, Namitecan and Epirubicin should be tested for their antifungal

properties. The combined model could be used to predict novel antifungal agents from

their chemical space.
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VI - Conclusion:

Analyzing the NCI60 growth inhibition data and NCI yeast drug screen study, we were

able to relate the IC50 of 13 yeast strains with the IC50 of 60 human tumor cell lines via

Mutual information score. We found that rad52 mutant yeast strain could be used as a

good substitute for 56 human tumor cell lines. Thus rad52 mutant strain could be used

as a potential model for carrying out cancerous studies/ screens in the NCI60 cell lines.

It saves time and money. Based on the growth inhibition pattern in yeast strains, we

have built a machine learning model to predict potential antifungal agents. The machine

learning classification model was based on the growth pattern and IC50 values in rad52

mutant strain as it had better accuracy and kappa metrics. The model could predict

antifungal compounds with lower IC50 values. The top hits from the classifier have to be

evaluated experimentally for their antifungal activity.
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