
 

Signatures and Utility of Epigenetic 

Memory at Enhancers 
 

 

By 

 

Rajat Talukdar 

 

Under the supervision of Dr. Vibhor Kumar 

 

Submitted in partial fulfilment of the requirements for the 

degree of Master of Technology in Computational Biology 

 

 

 

Center for Computational Biology, Indraprastha Institute 

of Information Technology - Delhi May 2023 



1 
 

 

Certificate 
 

This is to certify that the thesis titled "Signatures and Utility of Epigenetic Memory at 

Enhancers," being submitted by Rajat Talukdar to the Indraprastha Institute of Information 

Technology Delhi for the award of Master of Technology in Computational Biology, is an original 

research work carried out by him under my supervision. In my opinion, the thesis has reached 

the standards fulfilling the requirements of the regulations relating to the degree. 

 

The results contained in this thesis have not been submitted in part or full to any other university 

or institute for the award of any degree/diploma. 

 

 

May 2023  

Dr. Vibhor Kumar 

Department of Computational Biology  

Indraprastha Institute of Information Technology Delhi 

New Delhi 110 020 



2 
 

Acknowledgments 
 

 

I would like to express my sincere gratitude to my advisor, Dr. Vibhor Kumar, for his invaluable 

guidance, support, and encouragement throughout this journey. His expertise, insights, and 

feedbacks have been instrumental in shaping the direction of my research and helping me 

overcome the various challenges that I encountered. 

Further, I would also like to thank the faculty members of the Department of Computational 

Biology, IIITD for their inspiring lectures, discussions, and feedback that have greatly enriched 

my knowledge and understanding of the subject matter. 

Finally, I would like to extend my heartfelt thanks to my family and friends for their unwavering 

love, support, and motivation throughout my academic pursuits. 



3 
 

 

 

 

Abstract 
 

Epigenetic memory is a vital cellular process. It regulates the inheritance of certain efficient traits 

of normal cells and the traits attained lately by the cells affected by diseases like Cancer from 

parents to daughter cells. Understanding the epigenome profile and how the molecular basis of 

epigenetic memory governed by histone modifications and other epigenetic markers are erased 

and re-established during cellular processes such as embryogenesis and cell differentiation in the 

stem cells, somatic cells as well as disease cells will have a significant impact in a deeper 

understanding of cellular development and diseases such as Cancer. Here we try to comprehend 

the influence of distinct epigenetic marks, such as histone modifications and chromatin 

accessibility, in defining the chromatin state for having active or poised enhancers, which further 

influences cell type and physiological condition. In our study, we hypothesize that these 

epigenetic marks present in active enhancers in the past may not remain bound; however, there 

might be several residuals left, which influences the physiological condition of the Cell in the 

present. A profound understanding of how these epigenetic marks in enhancers affect the 

chromatin state would play a crucial role in advancing the prognostics and diagnostics of disease 

states and help the advancement of targeted therapeutics for diseases.
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Introduction 
 

Epigenetics studies heritable alterations in cellular phenotype or gene expression that occur 

without any changes to the underpinning DNA pattern. Before the discovery of DNA-based 

genetic inheritance, Conrad Waddington invented the phrase “epigenetics”, which is derived from 

the Greek word “epigenesis” to connect genetics to the phenotype determinants necessary for the 

embryo’s development from an undifferentiated condition [1]. Epigenetic events are caused by 

covalent alteration of DNA and histones, the proteins protecting DNA. Therefore, these 

alterations control particular gene expression patterns and, in certain instances, may be duplicated 

and transferred to daughter cells [2]. 

Epigenetic memory is the persistence of epigenetic alterations that can affect gene expression and 

cellular function across numerous cell divisions and occasionally across generations [3]. In a way, 

epigenetic memory describes the traits of germ cells and usually developed cells. It creates 

hereditary traits in embryonic cells, their offspring, and cells defining a disease condition [2]. 

Epigenetic memory is crucial for both health and illness development and for organism 

environmental adaptation. For instance, some environmental variables, like diet, stress, and toxin 

exposure, can cause epigenetic changes that last for generations and impact offspring's well-being 

and disease propensity. Epigenetic memory has also been linked to forming cell identity and 

lineage commitment and preserving stem cell pluripotency and differentiation. 

Overall, research on epigenetic memory has significant ramifications for comprehending the 

intricate interactions between heredity and environment and for creating novel disease prevention 

and treatment strategies. 
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Chapter 1 : Epigenetic Memory in 

Developmental Lineages 
 

1.1 Epigenetics determine cell functions. 
 

The epigenome comprises several epigenetic marks, such as an assortment of DNA methylation 

patterns particular to specific genes, unique combinations of transcription factors, non-coding 

RNAs, chromatin remodeling factors, polycomb group proteins, Histone post-translational 

modifications, and other epigenetic memory factors. A gene's expression status is assessed by the 

unique epigenome specifying the (epi)genomic code linked to that gene. Each gene may have an 

epigenomic code specific to a particular state of a disease or a cell type. As a result, similar 

genomes can accumulate various groups of epigenomic code to build the distinctive epigenome, 

which specifies the general cellular features [4]. 

In contrast to DNA, histone proteins are subject to several changes, such as acetylation, 

methylation, ubiquitylation, and phosphorylation.  Depending on the type of alteration and the 

particular amino acid changed, these mutations can result in either gene silence or activation [5]. 

The nucleosome core particle, chromatin's fundamental structural component, comprises an 

octamer of histones forming two peripheral heterodimers of H2A and H2B histones, and 146 base 

pairs of DNA surround a core tetramer of H3 and H4 histones. Covalent modification of DNA by 

DNA methyl transferases (DNMTs), primarily in the presence of CpG dinucleotides, to produce 

5- methylcytosine is associated with transcriptional silencing [6]. 

While DNA undergoes epigenetic changes due to cytosine methylation, histones with lysine and 

arginine residues are acetylated and methylated. In contrast, lysines are ubiquitylated and 

sumoylated, threonines and serines are phosphorylated, and the tails of glutamic acid are poly-

ADP-ribosylated [7]. 
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Furthermore, residues of arginines are mono and di-methylated, while lysine residues are mono, 

di, and tri-methylated, mounting to the intricateness of histone modifications. 

Methylation of K4 of H3, i.e., H3K4me2 and H3K4me3, as well as H3K79 and H3K36 

methylations and Histone acetylation, are linked to an increase in transcriptional activity, with 

H3K4 tri-methylation (H3K4me3) designating promoter. At the same time, H3K9me2 and 

H3K27me3 in the euchromatic area signify a suppressed state, and trimethylations of H3K9 or 

H4K20 generate heterochromatin [8]. Additionally,5- hydroxymethylcytosine (5-hmC), an 

oxidized version of 5-mC, has attracted much interest as an epigenetic mark that controls 

chromatin changes and gene transcriptionin embryonic phases, cellular differentiation, and 

various malignancies [9]. Overall, it has been discovered that these histone marks are related to 

the chromatin’s and cells’ functional condition. 

 

1.2 Epigenetic landscape related to stem cell characteristics. 
 

The transcription master regulators Nanog, Oct4, and Sox2 comprise most of the complex 

network that gives rise to pluripotency and stem cell identity. This network is also believed to 

possess a feedback system connected to some networks of cofactor-protein interactions [10]. In 

contrast to adult stem cells like mesenchymal stem cells, which can differentiate into adipocytes, 

osteocytes, etc., embryonic stem cells demonstrate the ability to differentiate into every cell type 

of the body, while mesenchymal stem cells exhibit the restricted potential to differentiate into 

only the parental organ’s cell types, these stem cells would display different epigenetic signatures 

as a result of DMRs, histone changes, and interactions with transcription factors. By controlling 

the post-translational modification of histones, Protein structures called the Polycomb and 

Trithorax groups either prevent or promote transcription, respectively [11] [12]. Evidence for the 

existence of epigenetic cellular memory may include bivalency caused by Polycomb group 

proteins mediated silencing associated with H3K27me3 and Trithorax group protein-dependent 

activation indicated by the presence of H3K4me3 in the same loci and co-occupation by 
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regulatory transcription factors such as Sox2 and Oct4 Additionally to the environment and 

concurrent transcription factors; the various DNA methylation patterns may also influence this 

process.[13] Based on the stochastic extrinsic and intrinsic signals, they may continue to be 

prepared for either repression or induction. These modifications and associations may serve as 

the epigenetic gatekeepers for controlling genes associated with development in pluripotency and 

pluripotency. Numerous chromatin remodeling and pluripotency- related transcription factors, 

including Oct and Sox2, the Polycomb group or Trithorax proteins, and others, are inherited from 

the mother and are most likely linked  to specific DNA sequences, which could enable the 

sequence of events to begin and advance instantly [14]. 

Table 1.1: Major histone marks and their association with transcription or other roles. 

Histone mark Position 

macroH2A Compact chromatin, X chromosome (Repressed) 

H2A.X Double-strand DNA breaks 

H2A.Z Promoters/transcription start sites (Active) 

H2BK5Ac Promoters 

H2BK120Ac CpG island promoters 

cenH3 (CENP- A) Centromere 

H3.3 Promoters (Active) 

H3K4Ac Enhancers 

H3K4Me1 Promoters and enhancers 

H3K4Me2 Transcription start sites, CpG islands, promoters, and enhancers 

H3K4Me3 CpG islands, promoters, and enhancers (Active) 

H3K9Ac Coding regions (Active) 

H3K9Me3 Promoters and enhancers, heterochromatin (Repressed) 

H3K14Ac CpG islands, promoters, and enhancers (Active) 

H3K27Ac Coding regions (Active) 

H3K27Me3 Coding regions, heterochromatin (Repressed) 

H3K36Me3 Coding regions (Active) 

H3K79Me1 Coding regions (Active) 

H3K79Me2 Coding regions (Active) 

H4K16Ac Euchromatin (Active) 

H4K20Me3 Heterochromatin (Repressed) 
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Reprogramming the encoded epigenetic memories during the development and differentiation 

process has opened up the possibility of putting one's cells in place of the damaged cells. Recent 

progress in this field could make it possible to convert or dedifferentiate developed somatic cells 

into pluripotent cells [15]. Similarly, it is simple to imagine how the dedifferentiation process 

brought on by the loss of epigenetic memories could produce the infamous cancer stem cells that 

can act as a pool for the disease’s relapse. 

In this study, we analyze the epigenetic profile involving various epigenetic marks such as histone 

modification marks, transcription factor, polycomb group proteins, chromatin modifiers, etc., in 

ESCs and K562 cells to detect potential epigenetic markers which can promote epigenetic 

memory during stem cell differentiation. Analyzing the epigenome of germ cells will reveal 

details about the biology of cells since combinatorial chromatin alterations can uncover cis-

regulatory areas [16]. We also examined the epigenome of human embryonic stem cell enhancers 

and tracked their state in other progenitor cells, such as neuronal progenitor cells, mesenchymal 

cells, BMP4 mesendoderm cells, and BMP4 trophoblast cells, all derived from human embryonic 

stem cells. The hypothesis for this study is that enhancers that were active in the past may not 

remain bound by the transcription factor, but there might be multiple residual marks left. The 

levels of these enduring residual epigenetic memories are influenced by the cells from which they 

were derived, and the experimental techniques used to produce pluripotency. Determining how to 

deal with these enduring epigenetic memories will be a significant obstacle for researchers as they 

work to create stem cell-based therapy. 

 

1.3 Chip-seq Analysis with Dfilter 
 

Dfilter is a generalized signal identification program that uses linear filters to optimize ROC-

AUC for next-generation massively parallel sequencing data analysis. Because of this, it is the 

perfect tool for spotting peaks in the tag profile of many sequencing methods, including ChIP-

seq, DNase-seq, ATAC-seq, etc. Additionally, GC bias correction and read-count estimation on a 

specific collection of peaks can be done using DFilter. 
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DFilter has been developed to find enriched states and regulatory regions using the tag count 

information produced by next-gen sequencing. It has been produced utilizing a generalization 

technique to analyze data from many assays. Our research used Dfilter to analyze chip-seq data 

and create a spatial heat map of different epigenetic markers in stem cells and their lineages to 

investigate the chromatin state in active enhancers. Four types of input files are supported by the 

DFilter version. A bam or sam file, bedgraph, and bed  format  for  raw  tags files is also an option. 

Combining tag profiles from many assays to uncover regulatory elements is a unique feature of 

DFilter that makes it a more versatile tool. This feature of DFilter is useful when two or more 

libraries represent the same regulatory element, such as many histone acetylations at enhancers 

or several tests to signify open-chromatin. Spatial heat maps can help visualize ChIP-seq data, 

allowing you to see signal intensity distribution across a genome or a genomic region. Outline of 

the steps to generate a Spatial heat map using Dfilter are as follows: 

1. Peak Files were generated by peak calling using the chip-seq data, a n d the input should 

contain filenames of a sample and control, containing tags from high throughput 

sequencing. The files can be in bam, bedgraph, or bed formats. Additional option '-pe' for 

paired-end bam or sam files should be added; otherwise, the tags will be treated as single-

end reads in peak calling. 

run_dfilter.sh -d=CHIPfiles.bed, -c=INPUTfiles.bed -o=OUTPUTPEAKfile.bed f=bed -

ks=100 -lpval=6 -nonzero –wig 

 -d=CHIPfiles.bed”: specifies the input file for the ChIP data. 

 -c=INPUTfiles.bed”: specifies the input file for the control data. 

 -o=OUTPUTPEAKfile.bed”: specifies the output file for the filtered peaks. 

 -f=bed”: specifies the input file format as BED. 

 -ks=100”: specifies the kernel size for the smoothing function. 

 -lpval=6”: specifies the log10 p-value cutoff for peak detection. 

 -nonzero”: specifies that only nonzero signals should be considered. 

 -wig”: specifies that a WIG file of the smoothed data should also be output. 
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2. Normcore was generated using the peak files in the above step. The normcore in ChIP-

seq data analysis typically refers to the normalization of read counts or peak intensities 

across different samples or experimental conditions. Normalization is crucial because it 

helps to account for differences in sequencing depthor observed variability that can affect 

the interpretation of ChIP-seq data. 

run_normscore.sh File_with_PeakFileNames* File_with_ChIP-

FileNames*File_with_Control-Filenames(or NA)*genome* 

fileformat∗same/NAdivide/NAtagcount−window− size/NAzero −mean = auto/filterSize 

 File with PeakFileNames (compulsory) is the file name containing (list)names of 

files having peaks. 

 File with PeakFileNames (compulsory) is the file name containing (list)names of 

files having peaks. 

 File with Control-Filenames (optional) is the file name containing (list)of tag- 

files for control. 

 Genome (compulsory) the genome and its version such as hg19, hg18, mm9, etc. 

 Format (compulsory) of tag files bed/bam/sam. 

 Divide/NA (optional with NA) divide option is passed when ChipSeq- data hasto 

be divided by the tag density of control. 

 tag-count-window-size/NA (optional with NA)if the user needs tag count ina 

larger or smaller window than the default (1kb) 

 

3. Clusters were generated using K-means clustering by taking the union of peak files and 

normalized peak scores. K-means clustering can be used to group these peaks into clusters 

based on their signal values. The technique operates by repeatedly allocating each peak to 

the closest cluster centroid (i.e., the cluster's center), then updating the cluster centroids  

depending on the mean signal levels of the peaks in each cluster. The process is repeated 

until the cluster assignments stop changing or the required number of iterations has been 

reached. run difcluster.sh unionPeak-file* peak score* number of classes* Fold 
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threshold/NA{pca} run  

 unionPeak-file is the file name containing the list of peaks in a 3-columned format 

(output from normscore function). 

 Peak score is the normalized tag counts (from different samples or chip) at peaks 

provided to the program (output from normscore function). 

 number of clases a integer value greater than 1(like 2 3 or 10) number of clusters 

wanted. 

 Fold_threshold, or NA is a numeric value (like 1.54 or 5) to cluster only those 

peaks which show fold change above the provided threshold; NA can also be 

provided if it is not wanted. 

 Pca if the principal component analysis has to be performed on the selected peaks; 

if this option is used, then the output will be saved. 

 

4. A spatial Heatmap was generated using the normalized data from the above steps. It 

helps to visualize the signal intensity across the genome or a genomic region of 

interest. 

run_plotmany.sh kmeanClusters.bed ChipfileNames ControlfileNames hg19 bam 

• kmeanClusters.bed: This BED file generated from the above step contains the 

results of a k-means clustering analysis on ChIP-seq data. It has four columns: 

chromosome, start position, end position, and cluster-ID. 

• ChipfileNames: This is a list of ChIP-seq BAM files containing aligned reads for 

the protein of interest. 

• ControlfileNames: This is a list of BAM files that contain the aligned reads for the 

control samples. 

• hg19: This is the genome assembly version used to align the reads. 
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• Bam: This indicates that the input files are BAM files, a compressed binary format 

for storing DNA sequencing data. 

Interpreting the spatial heat map results may involve identifying regions enriched for the protein 

of interest, comparing the signal intensity across different samples or conditions, or correlating 

the ChIP-seq signal with other genomic featuressuch as gene expression, DNA methylation, and 

histone modifications. 

 

1.4 Data Collection 
 

ChIP-seq data can be used to study various protein-DNA inter- actions, including transcription 

factor binding, histone modifications, and chromatin accessibility. By understanding these 

interactions, researchers can gain insights into how gene expression is regulated and how changes 

in gene expression may contribute to diseases like cancer. It's important to note that ChIP-seq data 

generation can be a technically challenging process, and some factors can affect the quality and 

reproducibility of the data, including antibody specificity, chromatin fragmentation, and 

sequencing depth. As a result, careful experimental design, quality control, and validation of the 

results are crucial for obtaining meaningful insights from ChIP-seq experiments. ChIP-seq signal 

data of various epigenetic marks for different developmental lineages were downloaded from 

several sources. 

• H1-ESC (https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone.) They 

are derived from the UCSC genome browser, Histone Modifications by ChIP-seq from 

ENCODE/Broad Institute. 

• K562 (https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone.) They are 

derived from the UCSC genome browser, Histone Modifications by ChIP-seq from 

ENCODE/Broad Institute. 

https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone
https://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHistone
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• NPC derived from H1-ESC (https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi). 

Derived from Gene Expression Omnibus by NCBI. The  dataset canbe accessed by their 

GSE accession number (i.e., GSM675542, GSM753429, GSM818039, GSM818056, 

GSM908957, GSM956010) and freely downloaded by command line utilities like wget. 

The dataset includes chip-seq signals of various histone modifications and DNA 

methylation from bisulfite-seq data. 

• Mesenchymal cells derived from H1 (https://www.ncbi.nlm.nih.gov/geo/ 

query/acc.cgi), derived from Gene Expression Omnibus by NCBI. The dataset can be 

accessed by their GSE accession number (i.e., GSM753437, GSM767344, GSM767352, 

GSM818041) and freely downloaded by command line utilities like wget. The dataset 

includes chip-seq signals of various histone modifications and DNA methylation from 

bisulfite-seq data. 

• BMP4 Mesendoderm Cells derived from H1 (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi). Derived from Gene Expression Omnibus by NCBI.The 

dataset can be accessed by their GSE accession number (i.e., GSM752968, GSM752978, 

GSM752982, GSM807401) and freely downloaded by command line utilities like wget. 

The dataset includes chip-seq signals of histone modifications and DNA methylation 

from bisulfite-seq data. 

• BMP4 Trophoblast Cells derived from H1 (https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi). Derived from Gene Expression Omnibus by NCBI. The dataset 

can be accessed by their GSE accession number (i.e., GSM753436, GSM753439, 

GSM818054) and freely downloaded by command line utilities like wget. The dataset 

includes chip-seq signals of histone modifications and DNA methylation from bisulfite-

seq data. 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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1.5 RESULTS 
 

1.5.1 Chromatin states of K562 cell line. 
 

 

Figure 1.1: Chromatin state of K562 cell line having different histone modifications and 

epigenetic marks.
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1.5.2 Chromatin states of H1-ESC cell line. 
 

 

 

Figure 1.2: Chromatin state of H1-ESC cell line having different histone modifications and 

epigenetic marks. 
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1.5.3 Tracking the chromatin state of Neuronal Progenitor cells derived 

from H1 ESC for human H1ESC Enhancers. 
 

  

 

Figure 1.3: Chromatin states of neural progenitor cells derived from H1-ESC having different 

histone modifications can be potential memory states during the differentiation of neural 

progenitor cells from embryonic stem cells. 
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1.5.4 Tracking the chromatin state of Mesenchymal cells derived from 

H1-ESC for human H1ESC Enhancers. 
 

 

Figure 1.4: Chromatin states of Mesenchymal cells derived from H1-ESC having different 

histone modifications can be potential memory states during the differentiation of neural 

progenitor cells from embryonic stem cells. 
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1.5.5 Tracking the chromatin state of BMP4 Mesendoderm cells derived 

from H1-ESC for human H1ESC Enhancers. 
 

 

Figure 1.5: Chromatin states of Mesendoderm cells derived from H1-ESC with different histone 

modifications can be potential memory states during the differentiation of Mesendoderm cells 

from embryonic stem cells. 
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1.5.6 Tracking the chromatin state of BMP4 Trophoblast cells derived 

from H1-ESC for human H1-ESC enhancers. 

1.1.1  
 

 

Figure 1.6: Chromatin states of Trophoblast cells derived from H1-ESC having different histone 

modifications can be potential memory states during the differentiation of Trophoblast cells 

from embryonic stem cells. 
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Chapter 2 : Epigenetic Memory in Disease 

Progression 
 

2.1 Cancer as an Epigenetic Disease 
 

Cancer is a chronic, curable disease threatening human life and has emerged as a significant 

worldwide health issue. The growth and spread of cancer, formally considered a genetic disorder, 

is now recognized to entail anomalies of the epigenome in addition to genetic alterations. In 

mammals, tissue-specific gene expression patterns demand epigenetic processes for adequate 

growth and sustenance. Disrupting epigenetic structure can lead to gene activity changes and 

cancer cells' biological transformation. One of the hallmarks of cancer is the global changes in 

the epigenetic landscape [17]. Recent developments in cancer epigenetics have revealed 

significant reprogramming of the epigenetic machinery in all disease aspects, including histone 

modification and DNA methylation. Cancer cells lack the specific methylation and chromatin 

state architecture that controls the normal cellular homeostasis of gene expression patterns. Dense 

hypermethylation of the CpG islands linked to gene regulatory areas occurs concurrently with a 

worldwide genomic hypomethylation in the transformed cell's genome. The chromosomal 

instability, activation of endogenous parasite sequences, loss of imprinting, unauthorized 

expression, aneuploidy, and mutations resulting from these abrupt changes may also contribute to 

the transcriptional suppression of tumor suppressor genes [18]. Understanding the role of 

epigenetics in cancer is vital for developing new diagnostic and therapeutic approaches. For 

example, drugs that target epigenetic modifications have shown promise in clinical trials for 

certain types of cancer. Oncogene activation or tumor suppressor gene (TSG) repression are 

thought to be contributing factors to the development of cancer, these genes are always persistent 

with epigenetic alterations. The status of the switch that controls the turning “open” and “off” 

states of gene expression is DNA methylation. The most well-known epigenetic modification 

pathway in cancer cells is the hypermethylation of CGI promoters, which has been strongly linked 

to numerous cancer types. Other than abnormal DNA methylation, malignancies that follow the 
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CSC model, having bidirectional conversions are crucial that take advantage of unbalanced 

histone modification. The development of embryonic stem cells (ESCs) is where the bivalent 

histone marks, activating H3K4me3 and repressive H3K27me3, are initially addressed [51]. 

Oncofetal genes can be partially deregulated in cancer cells by various forms of Cancer, which 

partially recapitulate this bivalency. Other than abnormal DNA methylation, malignancies that 

follow the CSC model, in which bidirectional interconversions are crucial, take advantage of 

unbalanced histone modification. The development of embryonic stem cells (ESCs) is where the 

two bivalent histone marks, the repressive H3K27me3, and the activating H3K4me3 mark, are 

initially pointed. [51]. Oncofetal genes can be partially deregulated in cancer cells by various 

forms of Cancer, which partially recapitulate this bivalency [9]. 

Environmental factors, which are diet, toxins exposure, and stress, can also impact the epigenetic 

marks on the DNA, potentially increasing the risk of developing cancer. Understanding the role 

of epigenetic changes in cancer development and progression is an essential area of research that 

may aid in developing novel solutions for cancer diagnosis and treatment [17]. The changeable 

nature of epigenetic aberrations has paved the way for the prospective field of epigenetic therapy, 

which has already advanced with the FDA's recent approval of three epigenetic medications for 

the treatment of cancer. 

 

2.2 Epigenetic Landscape in Cancer 
 

In cancer, epigenetic changes are often observed and can add to the progression of the disease. 

These changes can occur at various stages of cancer development, including initiation, promotion, 

and metastasis. A critical aspect of the epigenetic landscape in Cancer is DNA methylation. 

Methylation is a chemical modification of DNA that can silence genes by preventing their 

expression. In Cancer, hypermethylation of specific tumor suppressor genes can lead to their 

inactivation, allowing cancer cells to grow and divide uncontrollably. Another significant 

epigenetic change in Cancer is alterations in histone modifications. These changes can affect the 
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structure of chromatin, the proteins, and the DNA complex in the nucleus of a cell and ultimately 

impact gene expression. For example, alterations in histone acetylation or methylation may lead 

to the repression or activation of genes involved in Cancer development. Overall, understanding 

the epigenetic landscape in Cancer is an essential area of research, as it can aid in a deeper 

understanding of the underlying mechanisms of the disease and potentially lead to the discovery 

of novel treatments. 

 

2.2.1 DNA Methylation 
 

The most researched epigenetic mechanism is DNA methylation regulation, which can alter gene 

expression without changing genetic information and takes part in several biological processes, 

including genomic stability, regulation of transcription, embryogenesis, and progression of 

Cancer.[20] Human genomic DNA frequently undergoes DNA methylation alterations, which 

covalently link CpG dinucleotides' cytosine groups and modify by adding methyl groups to their 

fifth carbon to create 5-methyl-cytosine. The human genome's CpG dinucleotide distribution is 

uneven, and promoter regions are where they are most prevalent [21]. CpG islands are regions 

with a more significant percentage of CpG found in the promoters of more than 60% of genes. 

Genes can become inactive through hypermethylation of a CpG island. However, CpG islands of 

transcriptionally active DNA sequences are generally unmethylated. For instance, a tiny subset of 

CpG islands is methylation in a tissue-specific manner to limit gene expression, even though most 

CpG islands in developing and differentiated tissues remain methylated. DNA hypermethylation 

can occasionally result in aberrant gene activation [22]. 

DNA methyl-transferases (DNMTs) are required for the catalysis of DNA methylation. There are 

five different varieties of DNMTs, which are DNMT1, DNMT3a, DNMT3b, DNMT2, and 

DNMT3L. The first three types are thought to have methyl- transferase activity. De-novo 

methylation is used to methylate unmethylated DNA double-strands by Dnmt3 and Dnmt3b, 

while DNMT1 primarily controls maintenance methylation (i.e., detecting the modified DNA 

strand and methylating the corresponding strand followed by that) [23]. The epigenetic imbalance 
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caused by abnormal DNA methylation is a crucial element in the development of tumors. 

Compared to somatic cells, cancer cells have higher levels of methylation in the promoter regions 

of several cancer suppressor genes, including MGMT, CdH1, E- cadherin, and BRCA1. 

Conversely, cancer cells have lower levels of methylation throughout their entire genome, linked 

to higher levels of proto-oncogene expression such as PAX2, ABCB1, and cyclinD2 [22]. 

 

2.2.2 Histone Modification 

 

Histone modification is linked to replication, transcription, and repair of DNA through the 

interaction of Histone and DNA and Histone and Histone interaction. It affects the chromatin 

structure in contrast to DNA methylation, which occurs on gene sequences [24]. The free N-

terminal allows nucleosome histones to be subject to many epigenetic controls. Histone 

modification can be classified as acetylation, methylation phosphorylation, adenylation, 

ubiquitination, and ADP ribosylation based on the many ways of action. The regulatory 

mechanisms of acetylation and methylation are well- known [22]. Acetylation of histones The 

most well-studied histone alteration, histone acetylation, iscrucial for chromatin structure, Cancer, 

and gene regulation. It is widely acknowledged that high acetylation stimulates gene expression 

while low acetylation suppresses it [25]. Histone acetyltransferase (HAT) and HDAC control the 

frequent modification of histone acetylation on lysine sites of histone types H3 and H4. 

Acetylation of histones is crucial for the growth of Cancer.  Tumor suppressor genes and proto-

oncogenes can interact with HDAC and HAT, interfering with how these genes are 

regulatedthroughout tumor cell growth, metastasis, and apoptosis [26]. 

The methylation of histones is also another critical in epigenetic regulation. Histone de- methylase 

and histone methyl invertase catalyze the reversible modification of the N- terminal arginine and 

lysine residues of histones H3 and H4. The specific biological activity of histone methylation, 

which controls the activation and silencing of gene transcription, depends on various sections 

of lysine or arginine amino acid residue sites, as well as the type of methylation [27]. For instance, 
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histone H3 is trimethylated at lysine K4 and K9 (H3K4me3&H3K9me3), which activates 

transcription. In contrast, histone H3 is methylated at lysine 9 (H3K9me), suppressing 

transcription. Cancer is directly linked to dysregulation in histone methylation. For instance, 

LSD1 is considered a potential target for treating acute leukemia, and it removes the methyl group 

from H3K4 and H3K9 sites as an active lysine demethylase. MLL1can also cause H3K4 

methylation, which results in acute lymphoblastic leukemia. [22] 

 

2.3 Epigenetic Memory in Cancer 
 

H3K4me1 is a critical mark in promoting epigenetic memory. It is found in the genome frequently, 

is associated with enhancers, and has been enriched at enhancer regions throughout the genome. 

This modification is distinct from another known modification, such as H3K4me3m, associated 

with active gene promoters. This modification also aids in the recruitment of specific proteins and 

transcription factors to the enhancer site, where they can interact with the DNA and nearby 

promoters to increase or decrease gene expression. This way, H3K4me1 regulates gene expression 

and is a vital component in the epigenetic landscape that controls gene expression [28]. Open 

chromatin refers to the relaxed state of chromatin structure that allows access to DNA by 

transcription factors, DNA repair enzymes, and other proteins. Open chromatin is essentia l for 

controlling gene expression, as it enables the binding of transcription factors to specific regions 

of DNA and facilitates the initiation of transcription. DNAse enzymes are endonucleases that can 

cut the DNA backbone, and their activity is often used to identify open chromatin regions in the 

genome. DNAse hypersensitive sites (DHSs) are DNA regions more susceptible to cleavage by 

DNAse enzymes due to their open chromatin structure. 

Enhancers are DNA sequences essential in regulating gene expression by recruiting proteins and 

transcription factors to initiate gene transcription. Enhancer priming typically involves pioneer 

TF binding and H3K4me1 pre-marking, which can occur before and aid in activating the 

following enhancers. It has been seen enhancers activated in differentiated macrophages lose TF 
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binding and H3K27ac instantly while retaining H3K4me1 for much longer. H3K4me1 persistence 

was suggested to aid in the induction of faster and stronger enhancers upon restimulation. 

Enhancers, in part, maintain H3K4me1, accumulate fewer heterochromatin marks, and remain 

accessible and sensitive to transcriptional activators [29]. Overall, the presence of H3K4me1 in 

enhancers is a crucial indicator of their regulatory activity, and it provides insights into gene 

regulation mechanisms in various cellular processes and diseases. 

In this study, we are trying to discover whether H3K4me1and some transcription factors bind 

enhancers during different stages and progression of Cancer, but not DNAse binding, which is a 

lack of DNAse hypersensitive sites i.e., our hypothesis is during development and disease 

progression, H3K4me1 is persistent even once enhancers become decommissioned, lose their 

responsiveness to transcriptional activators and facilitate their eventual reactivation. 

 

2.4 Chip-Seq Analysis with ChromHMM 
 

ChromHMM is a tool used to learn and characterize chromatin states. ChromHMM may combine 

numerous datasets on chromatin, such as ChIP-seq data on diverse histone modifications, to 

identify the most common spatial and combinatorial markings in patterns. Under a multivariate 

Hidden Markov Model, ChromHMM explicitly models each chromatin mark’s existence or 

absence. The genome of different cells is systematically annotated using the model that is 

produced. ChromHMM facilitates the biological characterization of each state by utilizing.  A 

large amount of functional and annotation datasets to automatically calculate enrichment of states. 

ChromHMM is apowerful tool for analyzing chromatin state data because it uses a statistical 

approachto model the co-occurrence of multiple chromatin marks across the genome. It can 

identify different combinations of histone modifications that define specific chromatinstates, such 

as active promoters, enhancers, repressed regions, and transcriptionally active or inactive regions. 

ChromHMM can also integrate other data types, such as DNA accessibility or transcription factor 

binding, to improve the accuracy of its predictions. The out-put of ChromHMM analysis is a set 
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of chromatin state annotations for the genome, which can be viewed in a genome browser or used 

for downstream analyses, such as gene expression profiling or functional enrichment analysis. 

One of the strengths of ChromHMM is that it can handle large-scale chromatin profiling data 

from multiple cell types or conditions, enabling researchers to compare chromatin states across 

different samples or to identify cell-type-specific regulatory elements. This is particularly useful 

for studying developmental processes or disease states where changes inchromatin structure and 

gene expression patterns are expected. ChromHMM can handle missing or incomplete data shared 

in large-scale chromatin profiling experiments. ChromHMM uses an expectation-maximization 

algorithm to estimate each genomic region's most likely chromatin state, even when data is 

missing for some chromatin marks. ChromHMM has been used in many applications, such as 

identifying disease-associated variants affecting chromatin states, predicting enhancer-promoter 

interactions, and characterizing cell-type-specific gene regulation. It is a widely adopted tool in 

the epigenomics research community, and its output is highly reproducible across different 

datasets and analysis pipelines. Our study used ChromHMM to analyze the chromatin state of 

varying cancer stages and their cell types. The following steps were followed: 

• Data preprocessing: The first step is to preprocess the raw chromatin profiling data and 

generate files in the appropriate format for ChromHMM input. This typically involves 

aligning the sequencing reads to the reference genome, calling peaks for each chromatin 

mark, and converting the peak files to a binary for- mat indicating whether each genomic 

position is marked or unmarked for each chromatin mark. 

• Training the model: Next, the ChromHMM model is trained using the preprocessed data. 

This involves specifying the number of chromatin states to be identified, selecting the 

chromatin marks to be used, and running the ChromHMM training algorithm to learn the 

probabilities of each chromatin state based on theobserved chromatin profiles. 
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• State annotation: Once the ChromHMM model has been trained, it can annotate the 

chromatin states for the entire genome. This involves running the ChromHMM 

annotation algorithm on the preprocessed data to assign each genomic position to one of 

the identified chromatin states. 

• Visualization and interpretation: The final step is to visualize and interpret the results. 

This involves generating heatmaps of the chromatin states, identifying genomic regions 

enriched for particular states, and exploring the functional implications of the specified 

states using Gene ontology. 

ChromHMM is a powerful tool for analyzing chromatin states; it requires careful attention to data 

preprocessing and model selection to ensure accurate results. Several options and parameters can 

be adjusted to optimize the analysis for a particular dataset. Our study used Pancreatic Cancer 

metastatic and primary cell chip seq data and Breast cancer cells, both wild-type and mutant. 

 

2.5 Data Collection and Preprocessing 
 

2.5.1 Data Collection 
 

ChromHMM requires genome-wide chromatin data, such as ChIP-seq data for histone 

modifications or DNase-seq data for DNA accessibility. We obtain these data sets for our study's 

cell type for Cancer.ChromHMM also requires a control dataset (often referred to as input or 

background) to normalize the chromatin data. This is typicallya sample of the same cell type or 

tissue processed similarly but without the antibody used for ChIP-seq. The chromatin and input 

data should be in BAM or BED format, containing the reads mapped to the reference genome at 

specific genomic locations. 
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Chip-sq primary and metastatic pancreatic cancer and breast cancer wild-type and mutant data 

were obtained from Gene expression omnibus. To analyze ChIP-Seq data, SRA files were 

downloaded from NCBI Gene Expression Omnibus. GEO is a public data repository for gene 

expression data, and related metadata, generated from high- throughput molecular biology 

experiments. Datasets can be accessed using their GSE accession number and freely downloaded 

by command line utilities like wget. 

• Primary Pancreatic cancer cell Chip-seq Data (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE99311). Derived from Gene Expression Omnibus by 

NCBI. Chip-Ses data of the three pancreatic primary cancer cells T3, T6 and T23 having 

histone marks of H3K4me1, H3K27ac, and DNAse open chromatin be accessed by their 

GSE accession number and freely downloaded by command line utilities like wget. 

• Metastatic Pancreatic Cancer Cell Chip-seq Data.Derived from Gene Expression 

Omnibus by NCBI. Chip-Ses data of the three pancreatic metastatic cancer cells M1L, 

M10P, and M3P having histone marks of H3K4me1, H3K27ac and DNAse open 

chromatin be accessed by their GSE accession number and freely downloaded by 

command line utilities like wget. (https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE99311). 

• Wild-type Breast Cancer Cell Chip-Seq Data (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE159886). Derived from Gene Expression Omnibus 

by NCBI. Chip-Seq data of the three Wild-type Breast cancer cells Sample 3, Sample 4, 

and Sample 6, having histone marks of H3K4me1, H3K27ac, and DNAse open 

chromatin, be accessed by their GSE accession number and freely downloaded by 

command line utilities like wget. 

• Mutant Breast Cancer Cell Chip-Seq Data. (https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE159886). Derived from Gene Expression Omnibus by 

NCBI.Chip-Seq data of the three mutant Breast cancer cells Sample 9, Sample 12, and 

Sample 13 having histone marks of H3K4me1, H3K27ac, and DNAse open chromatin 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99311
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99311
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99311
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99311
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159886
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159886
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159886
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159886
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be accessed by their GSE accession number and freely downloaded by command line 

utilities like wget. 

 

2.5.2 Data Preprocessing 
 

The preprocessing of ChIP-seq data involves several steps to ensure the quality of the data before 

downstream analysis. 

• Quality control: Check the quality of the raw sequencing data using a tool such as 

FastQC. 

• Alignment: Align the trimmed reads to a reference genome using a read alignments tool 

such as Bowtie2, BWA, or HISAT2. The alignment file is typically stored in SAM/BAM 

format. 

• PCR duplicates removal: Removing PCR duplicates to avoid biases caused by over-

amplification of some areas of the genome. Software such as Picard or samtools can be 

used for this step. 

•  Peak calling: Identifies genome regions that are enriched for the protein of interest using 

peak calling software such as MACS2 or SICER. This step will generate a list of genomic 

regions with significantly more reads mapped to them than expected by chance. 

These preprocessing steps are critical for ensuring the accuracy and reliability of the downstream 

analysis of ChIP-seq data. Tools that were used for preprocessing steps are as follows: 

• Bigwig2bed: For downstream analysis of chip-seq data, we would be required to use 

either BAM alignment or BED format. Bigwig2bed is used to convert wig data or bigwig 

data to bed format. The wig2bed tool typically works by taking a wiggle file as input and 

outputting a bed file with the same data by Parsing the input wiggle file and extracting 
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the relevant information, such as chromosome, start position, end position, and score or 

coverage data. 

• SRA Toolkit: For fetching raw chip-seq data SRA toolkit was used. The SRA Toolkit is a 

software package developed by the National Center for Biotechnology Information 

(NCBI) to facilitate retrieving and analyzing data from the Sequence Read Archive 

(SRA). The SRA Toolkit has command-line tools for downloading, converting, and 

analyzing SRA data. These tools include fastq-dump, which can be used to convert SRA 

files into standard FASTQ format, and SRA Blast, which can be used to perform BLAST 

searches against SRA data. 

• STAT Aligner: For aligning raw reads, STAR aligner was used. STAR aligner is designed 

to align high-throughput sequencing accurately reads to a reference genome. STAR 

aligner uses a two-pass mapping algorithm that generates a genome index and then aligns 

the RNA sequencing reads to the index. The first pass generates a genome index that 

contains information on all possible splice junctions within the reference genome. In the 

second pass, the STAR aligner uses this index to map the reads to the genome, and it can 

detect novel and known splice junctions with high accuracy. 

• Bedtools: Bedtools is a software suite developed for working with genomic interval data. 

It provides tools for performing v a r i o u s operations on genomic intervals, including 

set operations such as union, intersection, difference, filtering, and annotation. The 

software is named after the “BED” file format, a simple tab- delimited text format used 

to represent genomic intervals. 
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2.6 RESULTS 
 

 

2.6.1 Tracing the chromatin states of Pancreatic Cancer cell 
 

 

 

(a) Chromatin states of 

Primary Pancreatic 

Cancer cell T3 

(b) Chromatin states of Metastatic 

Pancreatic   Cancer cell M1L 

 

Figure 2.1: Chromatin states of Primary (T3) and Metastatic (M1L) Pancreatic Cancer Cell 

having open chromatin with H3K4me1 is a possible site of memory. 
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(a) Chromatin states of 

Primary Pancreatic 

Cancer cell T23 

(b) Chromatin states of Metastatic 

Pancreatic Cancer cell M10P.

Figure 2.2: Chromatin states of Primary (T23) and Metastatic (M10P) Pancreatic Cancer Cell 

having open chromatin with H3K4me1 is a possible site of memory. 

 

 

(a) Chromatin states of 

Primary Pancreatic 

Cancer cell T6 

(b) Chromatin states of Metastatic 

Pancreatic Cancer cell M3P.

Figure 2.3: Chromatin states of Primary (T6) and Primary (M3P) Pancreatic Cancer Cell 

having open chromatin with H3K4me1 is a possible site of memory. 
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2.6.2 Tracing the chromatin states of Breast Cancer cell 
 

 

 

(a) Chromatin states of Wild-type Breast 

Cancer cell Sample 3 

(b) Chromatin states of Mutant Breast Cancer cell 

Sample 13 

 

Figure 2.4: Chromatin states of Wild-type (Sample 3) and Mutant (Sample 13) Breast Cancer 

Cell having open chromatin with H3K4me1 is a possible site of memory.
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(a) Chromatin states of Wild-type 

Breast Cancer cell Sample 5 

(b) Chromatin states of Mutant Breast Cancer cell 

Sample 12 

 

Figure 2.5: Chromatin states of Wild-type (Sample 5) and Mutant (Sample 12) Breast Cancer 

Cell having, having open chromatin with H3K4me1 is a possible site of memory.
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(a) Chromatin states of Wild-type Breast 

Cancer cell Sample 6 

(b) Chromatin states of Mutant Breast Cancer cell 

Sample 9 

 

Figure 2.6: Chromatin states of Wild-type (Sample 6) and Mutant (Sample 9) Breast Cancer 

Cell having, having open chromatin with H3K4me1 is a possible site of memory. 
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Chapter 3 : Post-hoc Analysis for the 

insights about cancer development 
 

Precision medicine is an idea and a practice that follows a deliberate and organized approach to 

treating illnesses like cancer [30]. The precision medicine project is heavily focused on treating 

cancer, but improvements in targeted, efficient therapies could also help treat a wide range of 

other chronic conditions. Precision oncology strives to match each cancer patient with the most 

precise and effective treatment based on the patient's genetic profile. Given that every cancer 

patient has a unique genetic profile and that the profile may change over time, more people may 

benefit if therapeutic alternatives can be tailored to the individual in cancer treatment [31]. 

Precision therapy, also known as personalized medicine, is an approach to cancer treatment that 

involves tailoring treatment plans to an individual’s unique genetic makeup, lifestyle, and other 

personal factors. Precision therapy aims to provide more effective and targeted treatment while 

minimizing side effects. One type of precision therapy used in cancer treatment is targeted 

therapy, which entails using medications that specifically target specific proteins or genes 

associated with the development and propagation of cancer. These drugs are often designed to 

block the activity of specific overactive or mutated molecules in cancer cells, leaving normal cells 

relatively unaffected. Another type of precision therapy is immunotherapy, which utilizes the 

immune system of the body to combat cancer cells. Cancer cells need specific proteins to avoid 

the immune system, and immunotherapy medications can either boost the immune system to 

attack such proteins or inhibit them. Overall, precision therapy has shown promise in improving 

outcomes for certain types of cancer, particularly those that are difficult to treat with traditional 

chemotherapy and radiation therapy. 
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3.1 Epigenetic Modifiers in Precision Therapy of Cancer 
 

Immune treatments have transformed the way that Cancer is treated in recent years. To improve 

patient outcomes, it is essential to increase sensitivity to immune therapies because most patients 

resist these treatments on a main or secondary level. Epigenetic modifiers might be helpful as 

therapeutic agents since, according to some recent lines of evidence, they have inherent 

immunomodulatory abilities [32]. Epigenetic modifiers are a class of drugs that can alter the 

structure and its associated proteins without changing the under- lying DNA sequence. Epigenetic 

changes can regulate gene expression, and alterations in epigenetic marks have been implicated 

in many diseases, including Cancer. Several epigenetic modifiers include DNA methylation 

inhibitors, histone deacetylase inhibitors, histone methyl-transferase inhibitors, histone 

demethylase inhibitors, and bromodomain and extra-terminal (BET) inhibitors. 

Histone deacetylase inhibitors (HDACis) and DNA methyl transferase inhibitors (DNMTis), 

which have been authorized for treatment in several types of hematologic malignancies, werethe 

first epigenetic modifiers to be created. DNMTis, which are cytidine analogs, prevent DNMT 

from functioning and make them degrade when integrated into DNA. The re-expression of 

abnormally repressed proteins, such as cancer-associated antigens, tumor suppressor genes, and 

parts of the antigen presentation apparatus, is encouraged by the subsequent loss of DNA 

methylation [33]. 

Histone deacetylase inhibitors, such as vorinostat and panobinostat, block the enzyme activity of 

removal of acetyl groups from histones, which changes the chromatin structure, thereby causing 

a change in gene expression. These drugs are authorized to treat cutaneous T-cell lymphoma and 

multiple myeloma. Histone methyl- transferase and histone demethylase inhibitors, such as 

tazemetostat and GSKJ4, target enzymes that add or remove methyl groups from histone proteins, 

leading to changes in chromatin structure and gene expression. Bromodomain and extra-terminal 

(BET) inhibitors, such as JQ1 and OTX015, target proteins called bromodomain and extra- 
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terminal (BET) proteins, which help to regulate gene expression. These drugs are being 

investigated to treat various cancers, including leukemia, lymphoma, and solid tumors. 

3.2 Targeting Neighbouring Enhancers for Cancer Hallmark 

Genes for Precision Therapy 

Over the past few decades, researchers have identified several “hallmark” genes and Master 

Regulator that play critical roles in the development and progression of cancer. One of the aims 

of this study is to find out such master regulators in different cancer profiles from the neighboring 

memory enhancers which have the memory mark (H3K4me1 without DNA hypersensitivity) and 

target them for personalized therapy for cancer. This study primarily focused on two hallmarks of 

Cancer for analysis: evasion of apoptosis and immune responsiveness. 

Apoptosis is a programmed cell death mechanism that plays a critical role in maintaining tissue 

homeostasis and preventing the growth of damaged or abnormal cells. Cancer cells, however, 

have developed several mechanisms to evade apoptosis, considered one of the hallmarks of 

cancer. Cancer cells can evade apoptosis through several means, such as mutations in genes that 

regulate apoptosis, upregulation of anti- apoptotic proteins, and downregulation of pro-apoptotic 

proteins. By evading apoptosis, cancer cells can survive and continue to grow and divide 

uncontrollably. Immune responsiveness is another hallmark of cancer, as cancer cells can evade 

the immune system and avoid destruction by immune cells. Cancer cells can do this through 

several mechanisms, including downregulating the expression of antigens on their surface, 

producing immunosuppressive molecules, and promoting the formation of an immunosuppressive 

microenvironment. Together, evasion of apoptosis and immune responsiveness enable cancer 

cells to grow and divide uncontrollably, invade surrounding tissues, and metastasize to distant 

sites in the body. Understanding these hallmarks of cancer is critical for developing new cancer 

therapies and identifying new targets for cancer treatment. 

Gene ontology, a standardized system used to describe genes and their products and to annotate 

and analyze gene function, was performed in different Cancer Profiles in neighboring memory 
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enhancers to find out the standard biological process among these profiles for further analysis. 

The genes common to these pathways could be a target in memory enhancers. 

 

Figure 3.1: Ven diagram showing standard gene function between three primary pancreatic 

cancer cell patients followed by the list of common biological functions among these cells. 
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Figure 3.2: Ven diagram showing standard gene function between three metastatic pancreatic 

cancer cell patients, followed by the list of common biological functions among these cells. 



45 
 

 

 

 

 

 

Figure 3.3: Ven diagram showing standard gene function between three wild-type breast cancer 

cell patients, followed by the list of common biological functions among these cells. 
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Figure 3.4: Ven diagram showing standard gene function between three mutant breast cancer 

cell patients, followed by the list of common biological functions among these cells. 
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Figure 3.5: Genes for apoptotic signaling and immunoregulation found through ontology in 

neighboring memory enhancers of Primary and Metastatic Pancreatic Cancer. 
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Figure 3.6: Genes for apoptotic signaling and immunoregulation found through ontology in 

neighboring memory enhancers of Wild-type and Mutant Breast Cancer memory enhancers.
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3.3 Motif Analysis using HOMER 
 

Homer comes with tools for analyzing sequencing data, including tools for quality checking, read 

mapping to a reference genome, differentially expressed genes identification, enriched motif 

identification, and transcription factor binding site identification. Examining regulatory elements 

in genomics applications (DNA only, no protein) was the motivation behind developing 

HOMER’s unique motif discovery method. It uses two groups of sequences and a differential 

motif discovery algorithm to find the regulatory elements that are especially enriched in one set 

compared to the other. It combines ZOOPS scoring (zero or one occurrence per sequence) with 

hypergeometric enrichment computations (or binomial) to calculate motif enrichment. 

Additionally, HOMER tries to take sequenced bias in the dataset into consideration. Although it 

was created with ChIP-Seq and promoter analysis in mind, it can be used to solve just about any 

nucleic acid pattern-finding issue. To identify the regulatory elements that are particularly 

abundant in one set of sequences when compared to the other, two groups of sequences are used, 

along with a differential motif identification technique. It combines binomial, hypergeometric 

enrichment calculations with a ZOOPS score (zero or one occurrence per sequence) to determine 

motif enrichment. HOMER makes a further effort to account for the dataset's sequencing bias. 

Although ChIP-Seq and promoter analysis were the two primary purposes for its creation, they 

may be applied to almost any nucleic acid pattern discovery problem. 

In this study, Homer was used to analyzing the motifs of the transcription factors, which is bound 

to the memory enhancers having apoptotic and immunoregulatory genes in different cancer 

profile of subjects. These transcription factors could act as a master regulator promoting 

epigenetic memory, which can be targeted in patients for personalized therapy for cancer. 

The following steps were used to analyze Motifs using HOMER: 

a. Preparing Input Data: It needs to be prepared in the appropriate format before analyzing 

data with Homer. This involves converting your data into a suitable file format or 
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organizing it in a specific way. 

 

b. Running Motif Discovery: The first step in motif analysis with Homer is to use its motif 

discovery tool to identify potential motifs in data. This tool uses various algorithms to 

identify patterns in data that are statistically significant. 

c. Motif Scanning: Once potential motifs have been identified with the motif discovery tool, 

Homer’s motif scanning tool is used to search your genomic sequences for these motifs. 

This can help identify potential transcription factor binding sites and other critical 

regulatory elements. 

d. Motif comparison: Homer’s motif comparison tool is used to compare the motifs that have 

been identified with known motifs in databases such as JASPAR or TRANSFAC. This 

helps to identify potential transcription factors that may be binding to the motifs. 

e. Motif annotation: Homer’s motif annotation tool annotates the motifs with additional 

information, such as gene ontology terms or pathway information. This helps in a better 

understanding of the functional significance of the motifs that have been identified. 

 

 



52 
 

 

 



53 
 

 

 

Figure 3.7: Motifs found in neighboring memory enhancers of primary pancreatic cancer cells 

T3, T6 & T23 respectively. 
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Figure 3.8: Motifs found in neighboring memory enhancers of metastatic pancreatic cancer 

cells M1L,M3P& M10P respectively. 
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Figure 3.9: Motifs found in neighboring memory enhancers of Wild-type breast cancer cells 

Sample 3, Sample 5 & Sample 6 respectively.
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Figure 3.10: Motifs found in neighboring memory enhancers of Mutant breast cancer cells 

Sample 9,Sample 12 & Sample 13 respectively.
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Chapter 4 : Conclusion & Future Scope 
 

4.1 Conclusion 

Epigenetic memory refers to the ability of cells to remember and maintain gene expression 

patterns established during development or in response to environmental cues. Epigenetic 

modifications, such as DNA methylation and histone modifications, can influence gene 

expression by regulating the accessibility of DNA to the transcription machinery. These 

modifications can be passed on to daughter cells during cell division, allowing them to inherit the 

same gene expression patterns as the parent cell. 

Epigenetic memory is crucial in the context of development, as it allows cells to differentiate into 

specific cell types and maintain their identity throughout the organism's lifespan. During early 

embryonic development, cells undergo a series of epigenetic modifications that bring about 

specific gene expression patterns required for forming different tissues and organs. Once 

established, these gene expression patterns can be maintained through cell division and passed to 

daughter cells. Epigenetic memory is also thought to play a role in disease development. Aberrant 

epigenetic modifications can result in gene expression alterations related to various diseases. Our 

study shows that H3K4me1 is critical in promoting epigenetic memory in cancer progression. 

This mark helps to recruit specific proteins and transcription factors to the enhancer site, where 

they can interact with the DNA and nearby promoters to increase or decrease gene expression. 

This way, H3K4me1 regulates gene expression and is an essential component of the epigenetic 

landscape that controls gene expression in diseases; cancer profiles of different subjects were used 

to study the importance of H3K4me1 in the cancer progression, sites having H3K4me1 but no 

DNA hypersensitivity is tagged as sites of epigenetic memory, These sites were further studied 

for the hallmarks of Cancer namely immunoregulation promotion of apoptosis. Master regulators 

or transcription factors were found from these memory sites, which could be targeted with specific 
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epigenetic modifiers such as HDAC is or DNMTs for personalized precision therapy in Cancer 

patients. 

Overall, epigenetic memory is an important mechanism that allows cells to maintain stable gene 

expression patterns over time and respond to changing environmental cues. Understanding how 

epigenetic memory is established and maintained is crucial for understanding normal 

development and disease pathogenesis. Our study suggests that targeting epigenetic memory sites 

could be potential therapeutics for cancer treatment. 

 

4.2 Future Scope 

Analyzing more data with different profiles of Cancer and other diseases to find the significance 

of the memory site (H3K4me1 without open-chromatin profile), and through which we might 

discover a new state. This may provide some data for ML etc. Study other residues that could act 

as potential epigenetic marks, such as a few small RNAs, few types of enzymes - like Histone 

modifying enzyme chromatin structure- based proximity, etc. 
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