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Abstract

Control and management plane applications such as serverless function orchestration and
4G/5G control plane functions are offloaded to smartNICs to reduce communication and
processing latency. Such applications involve multiple inter-host interactions that were
traditionally secured using SSL/TLS gRPC-based communication channels. Offloading the
applications to smartNIC implies the security algorithms must also be offloaded. Otherwise,
there is a need to send the application messages to the host VM/container for crypto operations,
negating offload benefits.

This work proposes crypto externs for Netronome Agilio smartNICs that implements
authentication and confidentiality (encryption/decryption) using the ChaCha stream cipher
algorithm. AES and ChaCha are two popular cipher suites, but ChaCha was chosen since none
of the smartNICs have ChaCha-based crypto accelerators. However, smartNICs have restricted
instruction set, and limited memory, making it difficult to implement security algorithms. This
work identifies and addresses several challenges to implement ChaCha crypto primitives
successfully. The evaluations show that the proposed crypto extern implementation satisfies the
scalability requirement of popular applications such as serverless management functions and
host in-band network telemetry.
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1. Introduction

Recent advancements in programmable data plane devices (e.g., programmable switches,
smartNICs) have created opportunities to save precious CPU cycles and achieve low latencies
by offloading applications to these devices [28/1, 32/2, 42/3]. Since smartNICs stay close to the
message data path, processing delays in the host/VM/container’s network stack can be
avoided.

Many recent works leverage this opportunity and offloaded control and management
applications [18, 25, 38, 39, 56] to smartNICs. By doing so, they observe a significant reduction
in latency (i.e., Round Trip Times (RTTs)) and savings in CPU usage. Some example offloaded
applications are distributed orchestrator for serverless applications [25, 39], failover manager
[39], load balancer [25], consensus manager [38], and replication manager [38].

Most of these applications are distributed across multiple VMs/containers and exchange control
messages frequently. Prior to offloading control/management applications to smartNICs,
frameworks such as gRPC with built-in SSL/TLS library [12] were used to secure
communication of application control messages. Thus, when offloading such applications, there
is a need for similar crypto-based security frameworks on smartNICs. Otherwise, the smartNIC
will forward the control messages to the application VM/container for crypto operations,
defeating the purpose of reducing latencies and saving host CPU cycles. Therefore, application
offloads bring a trade-off between security and performance.

To secure offloaded application’s communication, one popular crypto algorithm available on
today’s smartNICs is the AES-GCM block cipher. However, there is much less attention to
alternate stream ciphers, such as the ChaCha cipher. Currently, the Nvidia BlueField NICs [10]
support hardware public key accelerators using AES-GCM cipher suite. The ChaCha algorithm
is an Add-Rotate- XOR (ARX) cipher with a CPU-friendly design that provides the same or
better level of security as AES [48]. ChaCha is faster than the AES cipher as a result of the ARX
operations and has been designed to be resistant to side-channel cache-timing attacks [43].

In this paper, ChaCha-based crypto primitives (or APIs) are designed on smartNIC to enable
authentication, encryption, and decryption of application messages offloaded to the smartNIC
without using hardware co-processors. The Netronome’s pipeline is programmed using
P4/micro-C to support ChaCha primitives inline, so there are no digressions in the packet
processing flow. However, Netronome smartNICs have restricted instruction set and limited
memory, making it challenging to implement complex crypto operations. In the work presented
here, several challenges are identified and addressed, and ChaCha-based crypto primitives are
successfully implemented on Netronome smartNIC.

The key contributions of this work are as follows:

1. To motivate the need for in-network crypto primitives, the applications offloaded to
smartNICs are identified that benefit from using these crypto primitives.
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2. Identification and resolving the challenges in implementing the ChaCha algorithm for
authentication and confidentiality over Netronome smartNICs.

3. Performance evaluation of ChaCha algorithm offloaded to Netronome smartNICs.

2. Motivation

This section describes the use cases, the threat model, and the motivation of this work.

2.1 Usecase

In serverless computing, there are two main components: (1) Serverless Functions (SFs) that
comprise several microservices that can either run serially, in parallel, or a combination of both;
and (2) The management applications such as an orchestrator and a load balancer that manage
the execution of these SFs. For instance, an SF consists of several microservices, and each
microservice runs on individual containers. These containers communicate with an orchestrator
indicating the outcome, such as completion, output state, or an error message. The orchestrator
uses these messages to invoke the dispatcher and the load balancer to start the next
microservice in the SF’s workflow. Traditionally, these messages are communicated using a
secure gRPC-based SSL/TLS channel. Table 1 lists applications that have demonstrated
performance benefits via offloading processing to smartNICs. We must secure the control
messages in such offloaded systems; otherwise, the system is vulnerable to attacks on
confidentiality and authentication.

2.2 Threat model

Compromised VMs/containers in a cloud environment are vulnerable to posing a threat to other
VMs or containers [34, 36, 37, 52, 55]. The following assumptions are made (1) The VMs or
containers are not trusted as they can run untrusted code from external users. (2) When the
application (e.g. Orchestrator) is offloaded to smartNIC, the messages exchanged between the
smartNIC and the VM/container (microservices) are sent in plain text. In terms of attacks, an
adversary can listen to messages if a microservice (general-purpose user-written code) is
compromised. Another possible attack is if one of the servers is compromised at a hypervisor
level (e.g., by installing a backdoor), the adversary can listen to all the state messages of all
VMs/Containers running on the server.

2.3 Motivation for Chacha20

Encryption algorithms or “ciphers” guarantee data privacy, security, authentication, and integrity.
Ciphers that use the same key for encryption and decryption are symmetric ciphers; they can
further be classified into block ciphers and stream ciphers. Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) are two commonly seen block ciphers, while Rivest
Cipher (RC4), Salsa, and ChaCha20 are examples of stream ciphers. ChaCha is designed for
high performance (as it requires few resources and inexpensive operations) and to prevent
leakage of information through side-channel attacks[17]. Currently, TLS 1.3 [51] supports both
the AES-GCM cipher and ChaCha20/Poly1305 ciphers. A recent work (L5o [49]) offloads

9



TLS/AES-GCM processing (encryption/decryption/authentication) to smartNIC. This work
complements these efforts by offloading ChaCha-based algorithms to Netronome smartNICs.

Table 1: Example Applications

Applications that can be
offloaded to SmartNICs

Communicated message
details

Message state that requires
protection

Serverless
computing

Gateway
application [20]

Sends execution request to
specific NIC

Packet header with microservice
identifier

Distributed
orchestrator

[25, 39]
Receives workflow progress
updates from worker nodes

Serverless workflow’s progress
state

Dispatcher
application [25]

Requests execution of a
particular SF

Current SF output, worker node
identifier for the next function in
the workflow

Load balancer
[25]

Receives utilization metrics from
worker nodes Utilization metrics

Failover
manager[39] Periodic monitor

Health statistics of serverless
cluster

Replication Manager [39], [38] Replicate state for failover

Replicated state (Serverless
application: Workflow progress
state, execution results, worker
metadata)

Host In-band Network Telemetry [46]
Send/receive per-flow telemetry
packets Telemetry state

Consensus protocol [38], [24],
Distributed transactions [38]

Agreement protocol messages
between the proposer, acceptors,
and learner

Paxos protocol message state
(Phase1, Phase2), proposed
value

Real-time analytics [38]
Top-n data from workers to an
aggregator Top-n data

Congestion-aware load balancing at
the host hypervisor [30]

ECN messages communicated
between the hypervisors that host
VMs ECN messages
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3. Background

3.1 Programmable Networks

Programmable networks allow reconfigurability of the network. One of the major ideas that
enabled this is to categorize the functionalities of the network device into the control plane and
the data plane (also known as the forwarding plane)[63]. This logical separation then allowed
researchers to think about removing the control plane from the network device, a concept
known as Software Defined Networks (SDN).

In SDN, the control plane is implemented in controllers which interact with the data planes of
multiple devices. This allows the control plane to become directly programmable and provides a
network-wide view to the controller enabling the implementation of complex functionalities such
as monitoring and measurement tasks, security, dynamic routing for link failures and
virtualization[64]. The communication between the control plane in the controller and the data
plane in the network device can be done using different protocols such as OpenFlow[65], Cisco
Systems' Open Network Environment[66] and Nicira's network virtualization platform[67].

SDN focused on programming the control plane. To change how the packet is being processed
and forwarded in the network, the data plane needs to become programmable. The invent of
programmable hardware such as FPGAs, NPUs, CPUs and PISA ASICs has made it possible
for the data plane to be programmable as well since the data plane is directly implemented in
hardware.

Fig.1. Programming a P4 target[68]
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3.2 P4

P4 is a high-level language to program the data plane. This section will provide an overview of
the language in a brief manner and is not exhaustive.

3.2.1 Architecture and Externs

The P4 architecture model determines the structure of the P4 program since the architecture
defines which components of the packet processing pipeline are programmable. There is a v1
architectural model used in software switches such as BMV2 and the PSA architecture model
shown below, commonly used in hardware switches such as Intel Tofino. The aim is to have a
set of standard architecture models so that target independence can be achieved since the
same P4 program can possibly be run on another target which supports the same architecture.

Fig.2. PISA architecture[69] model. The boxes in white are programmable.

Externs are libraries the vendor provides and can be utilized to implement complex
functionalities like hash functions, meters, etc., at line rate. So the target hardware determines
which architecture model it supports and which externs it has.

3.2.2 P4Runtime

P4Runtime is an API used for communication between the control plane and the data plane
when the data plane is programmed using P4. It is only compatible with , not . The API𝑃4

16
𝑃4

14

is defined in the Protobuf format available at [70]. It uses gRPC to install the required rules in
the data plane and can be compiled using protoc to generate the client and server stubs. It
also supports multiple controllers.

P4Runtime uses the information available in P4Info metadata generated by the P4 compiler.
P4Info has information about tables and extern instances used in the program[71]. This API is
used to install rules in the match-action tables, read values of counters, configure meters, read
registers, etc.
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3.2.3 Stateful Data Structures

These data structures store information and persist across multiple packets. The data structures
listed below are specified by P4, but there may be more variations depending on the specific
network device.

Tables: These are match-action tables which define a key based on the header fields on which
an incoming packet needs to be matched. If a match is found against a key in the table, then the
corresponding action is carried out. If no match is found, then the table generally has a default
action specified in the P4 source code that is executed. The working of the table is
demonstrated in the below figure.

Fig.3. Match-Action Table Processing[72]

The type of match can be (1) exact match, (2) longest prefix match or (3) ternary match. Other
types of matches may also be possible depending on the target hardware. Rules in the match
action table can only be written by the control plane, possibly using the P4Runtime. The data
plane can only read the table entries.

Registers: Registers are externs that function as arrays (they can be used as a variable, an
array of size 1) and can be used to store small amounts of data. While declaring a register array,
the bit width of the data to be stored and the size of the array need to be specified. Registers
can be read and written from the data plane as well as the control plane.

Counter: Counters are used to keep track of how many bytes, packets, or bytes and packets,
seen by the network device. It can only be written from the data plane and read/reset by the
control plane. Counters can either be attached to the match action tables called as
DirectCounter or can be independent in the P4 program. They have a count function which can
be used to increment the counter value from the data plane.
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Meters: Meters are most commonly used as rate limiters. They can only be configured/reset
from the data plane. Based on the configuration, it assigns one of three colours to the packet:1)
green, 2) yellow, and 3) red, and based on the colour assignment, the P4 program changes how
the packet is handled. They can also be assigned in arrays and associated with tables called
DirectMeter. Meters have an execute function.

3.3 On and Off-path smartNICs

Multicore smartNICs can be characterized into On-path and Off-path smartNICs based on the
packet flow [19]. In on-path smart-NICs, all traffic is handled by the NIC cores and tasks are
executed on the smartNIC by adding logic to the processing pipeline [38]. The NIC cores are
able to invoke special hardware accelerators for tasks such as crypto and compression [23]. In
off-path smart-NICs, the NIC’s cores are not directly on the data path from the host to the
network, but instead, there exists a NIC-switch connecting the network ports, the host cores and
the NIC cores[54].

Fig.4. SmartNIC designs

The NIC-switch is a specialized hardware unit with match-action engines and
runtime-configurable rules for routing packets [23]. Marvell LiquidIO [7] and Netronome NICs[3]
are on-path smart- NICs, while Mellanox BlueField[8] and Broadcom Stingray [6] are off-path
smartNICs. On-path smartNICs have the advantage that the NIC cores have direct access to
packet memory, thus resulting in low latency packet processing, while the NIC switch in off-path
smartNICs allows packets to skip NIC cores and directly access host cores. Fig. 4 shows the
two smartNIC modes.
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3.4   Netronome architecture

In this work, the Netronome Agilio SoC smartNIC platform is used that belongs to the NFP-4000
device family. NFP-based Agilio Smart-NICs support a User Datapath Programming Model that
allows users to program and customize the datapath on the SmartNIC. The NFP-4000
processor includes 48 packet processing cores (PPCs) and 60 flow processing cores (FPCs).
The FPCs are programmable blocks that can run programs written in P4 and microC, while the
PPCs ensure basic functionality. Each FPC is an independent 32-bit core at 800 MHz with 8
hardware threads, 32 KB instruction memory, 4 KB data memory, and CRC acceleration. The
crypto accelerators shown in the figure are not yet supported by the network cards available to
us, but there are different types of hash functions available on the hash accelerator.

Fig.5 NFP-4000 Flow Processor Block Diagram

The NFP data path can be customized and programmed for custom packet/flow processing
using P4 and C languages. In this paper, we use the Netronome’s SDK, which offers an
environment supportive of both P4 and C software development. Along with code and data store
for the FPCs, the NFP-4000 includes four other kinds of memory available to FPCs [5]: (i) 64 KB
of Cluster Local Scratch (CLS); (ii) 256 KB of Cluster Target Memory (CTM); (iii) Internal
Memory Unit (IMEM) that provides 4 MB of SRAM; and (iv) External Memory (EMEM) that has 2
GB of DRAM with a 3 MB SRAM cache.
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Fig. 6 Netronome NFP-4000 Flow Processor Memory Hierarchy

3.5 The ChaCha algorithm

ChaCha [44] is a 256-bit stream cipher technique that uses the same key for encryption and
decryption. Figure 1 shows the working of the ChaCha algorithm. The inputs to the ChaCha
algorithm are a 256-bit key, a 96-bit nonce (pseudo-random number), and a 32-bit block counter.

State initialization: The ChaCha state is initialized with (a) four constant 32-bit words, (b) eight
32-bit key words, (c) a 32-bit block counter, and (d) three nonce words (96 bits). The incoming
message of arbitrary length is divided into 16-word (512-bit) blocks, and appropriate padding
bits are appended if the message length is not a multiple of 8 words. The counter is
incremented by one for each message block.

ChaCha rounds: For every message block (plaintext/ciphertext), the input state matrix is
transformed by alternating column quarter round and a diagonal quarter round. The figure
shows that each quarter round (Qround) updates four 32-bit state words (viz., a, b, c, d) using 4
additions, 4 XOR operations, and 4 rotations. The ChaCha<N> algorithm performs a total of N
quarter rounds. For example, ChaCha20 performs 10 column rounds and 10 diagonal rounds.
The result of each message block is added to the 16-word (512-bit) output block to generate the
16-word keystream.

ChaCha encryption/decryption: For every message block (plaintext/ciphertext), the 16 words
of the keystream are XORed to the 16 words of plaintext/ciphertext to obtain 16 words of
ciphertext/ plaintext.
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Fig.7 ChaCha algorithm for encryption and decryption

4. Related Work

With the rise of Programmable Data Planes (PDPs), a multitude of researchers have extensively
looked into authentication and confidentiality implementations on programmable hardware such
as Barefoot Tofino or smartNICs. The authors of P4Knocking [61] present the implementation of
a port knocking-based authentication mechanism as a network function that can be offloaded to
PDPs. Anonymization implementations in the PDP [31] include implementations on Barefoot
Tofino such as ONTAS [33] that enables anonymization of packet fields to hide Personally
Identifiable Information addresses, PANEL[41] manipulates certain header fields to anonymize
user information and PINOT [58] obfuscates packet headers of DNS traffic to disassociate client
IP addresses from DNS requests. Unlike these anonymization approaches, we rely on
encryption using the ChaCha algorithm to ensure that control packet data are not identifiable by
adversaries.
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PDPs have limited resources and computational capabilities, including a limited set of
operations supported, which means that sophisticated primitives for cryptography cannot be
realized [29]. This challenge has motivated researchers to propose workarounds that allow
cryptographic functions to be implemented in PDP devices. The authors of [60] present an
implementation of a secure keyed hash function, HalfSipHash, on Barefoot Tofino while [53]
implements SIP hash for three different P4 targets. In [19], the Advanced Encryption Standard
(AES) algorithm is extended to PDPs using the scrambled lookup table technique. Given the
relatively simpler operations required for the ChaCha algorithm than for AES, we implement the
algorithm on a Netronome Agilio SmartNIC and perform experiments to show encryption and
decryption using ChaCha on messages upto 256 bytes long.

In terms of offloading cryptographic functions to smartNICs, the work explored in [49] leverages
the presence of hardware accelerators on SmartNICs to offload TLS handshake and data path
encryption/decryption. Similarly, in [32], the TLS handshake and TCP connection setup process
are offloaded to the smartNIC while the rest of the TCP stack runs on the host. The work
presented here is different from the existing research. We propose three cryptographic
primitives − encryption, decryption, and authentication, using the ChaCha10 algorithm that is
offloaded to the smartNIC without leveraging hardware accelerators.

5. Implementation

5.1 Design Choices

When it comes to offloading a functionality such as ChaCha onto smartNICs, the available
design choices can be categorized as follows:

1. Fastest path - offload chacha functionality using a hardware accelerator on the smartNIC
2. Slower path - offload chacha functionality leveraging NIC cores
3. Slowest path - offload chacha functionality relying on a combination of NIC cores + host

CPU cores

As seen here, it's not suitable to send the crypto functionality to the host CPU cores since it is
the slowest path for offloading encryption/ decryption tasks. At the same time, however, no
hardware accelerators are currently available that implement the ChaCha algorithm, which
renders the first design choice not viable either. This leads us to the natural design choice of
implementing the algorithm in the processing pipeline (without using hardware co-processors) of
the on-path smartNIC. In this paper, the case is made that the smartNIC cores can support the
implementation of the ChaCha algorithm. This work designs the ChaCha algorithm and carries
out experiments to support this claim.

5.2 Realizing ChaCha crypto algorithm

This section describes the challenges, the design choices, the assumptions made to overcome
these challenges, and the implementation of crypto primitives.
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Here primitives are abstractions that a P4 or micro-C data plane programmer could leverage in
her offloaded program for secure communication between the network end-points (smart-NIC).
These abstractions are implemented using the ChaCha crypto algorithms and CRC-32 hash
functions for the Netronome CX4000 backend. A brief description of the API of this work is
provided in the Appendix.

5.2.1 Design challenges

Implementing the ChaCha algorithm for encryption/decryption, given the NIC hardware
limitations, such as constrained instruction set and limited processing and storage capabilities,
is challenging. We address the following challenges in this paper.

(a) Initial nonce generation: Nonces are random or pseudorandom numbers cryptographic
algorithms that secure communications from replay attacks. The nonce chosen for consecutive
packets should differ; otherwise, the implementation is susceptible to chosen-plaintext attacks.
The Netronome smartNIC has 48 micro engines (MEs), and each ME is loaded with the ChaCha
program and processes packets independently. It needs to be ensured that each ME uses a
different nonce so that the implementation is not susceptible to a chosen-plaintext attack. This
challenge is addressed by using the intrinsic function ME() [59] to initialize the value of the
nonce. The function ME() provides a 32-bit unique identifier for the micro engine. The
ChaCha20 standards [44] recommend a 96-bit nonce. If the micro engine’s identifier is ’x’, we
generate the 96-bit unique initial nonce for each ME as the concatenation, concat(x, x, x).
Therefore, the implementation is resistant to chosen-plaintext vulnerability.

(b) Pseudo-random number generation: The previous challenge was resolved by using a
unique identifier for each ME for the first time, but the nonce has to be generated for the next
set of messages too. This problem can be resolved based on the observation that ChaCha is
inherently a pseudo-random number generator. After encrypting a message, the 96 bits from the
unused ChaCha keystream can be used as the nonce for the next packet. That is, the initial
nonce (using ME()) is used to encrypt the first packet and the unused 96-bit keystream bits is
used as the nonce for the consecutive packets for resistance to chosen-plaintext attacks.

(c) Complex operations involved in ChaCha’s authentication algorithm: The widely used
authentication algorithm with ChaCha is Poly-1305. The Netronome NIC hardware does not
support modulo operations used by Poly-1305. However, the NIC supports the CRC-32 [1]
algorithm, but it is neither keyed nor collision-proof. That is, an attacker might be able to
generate an alternative message that satisfies the checksum. We secure the computed hash
using ChaCha encryption to overcome such probabilistic chosen-plaintext attacks. As part of
future work, the plan is to use approximation data structures to implement Poly-1305.
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5.2.2 Assumptions

1. The initial ChaCha secret key is shared with the smartNICs using an SSL/TLS-based
secure channel between the agent running in the host CPU (control plane) and the
smartNIC. It is assume that the secure OpenSSL version (>1.0.1) [2] is used for secure
communication.

2. ChaCha20 is considered to be secure as there are no proven attacks. However, there
are attacks on up to 8 rounds of ChaCha based on differential cryptanalysis [14, 16, 21,
22, 26, 27, 40]. Our ChaCha implementation uses 10 rounds for a secure, lightweight,
in-network solution.

5.2.3 Packet format

Fig. 8 shows the format of an incoming message that wants to leverage crypto primitives for
message protection. The sending application appends the primitive header after the transport
(layer 4) header. The primitive header contains information about the crypto operations
requested by the application and the corresponding parameter values.

Fig. 8 Format of an application message

Type: The first byte of the primitive header contains information about the requested crypto
operations. The first four bits are the flags, and the rest four bits are reserved for future use. The
first bit, AUTH_set, indicates if a secure hash should be computed and appended for packet
data authentication. The second bit, AUTH_test, indicates if an authentication check is
required. If authentication is unsuccessful, the packet is dropped. The third bit, ENC, indicates if
the payload needs to be encrypted. The fourth bit, DEC, indicates if the payload needs to be
decrypted.

Secure hash: If AUTH_test is set in the Type byte, the incoming packet already has the 32-bit
secure hash that was appended by another smartNIC (end-point).
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Proto: To indicate the presence of the primitive header, we set the protocol field of the IP
header to the special value "145" (unassigned port number [11]). The protocol field value of the
IP header is copied to the 8-bit proto field of the primitive header so that the original protocol
value can be copied back to the IP header when the primitive header is decapsulated.

Padding: Our ChaCha implementation generates the keystream of 64 bytes. To align the IP
payload to 64 bytes, some padding bytes are used. The count of padded bytes is specified in
the 8-bit padding field of the primitive header.

Nonce: The ChaCha algorithm uses a 96-bit nonce. The nonce is one of the inputs to generate
the keystream for encryption and decryption. The nonce value used during encryption is
appended in the nonce field since the same nonce value should be used for decryption.

5.2.4 Implementation of crypto primitives

Fig.9 Implementation of AUTH_set+ENC using ChaCha10 algorithm for Netronome smartNIC
(AUTH_test+DEC looks similar)

The following crypto primitives are supported by the implementation:
1. Encryption: The primitive ENC indicates encryption of an input message.
2. Decryption: The primitive DEC indicates the decryption of an input message.
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3. Authentication: Two authentication primitives are supported, AUTH_set and
AUTH_test. AUTH_set generates the secure hash for the message, and AUTH_test
validates the input message for authentication and integrity.

Compound primitives such as AUTH_set + ENC and AUTH_test + DEC are also supported.
Fig.9 shows the components involved in the implementation of ChaCha10 algorithm for
authentication, encryption, and decryption primitives on the Netronome smartNIC data plane.
We program the parser, match action tables, ingress/egress logic, and the deparser using P4
language, whereas the ChaCha encryption, decryption, and authentication algorithms are
implemented in the micro-C language.We use micro-C language for the constructs that are
either unsupported in P4 language or if the P4 implementation is complex. For example, we
cannot get the ME identifiers using P4.

The first step in the ChaCha algorithm is state initialization. The keystream generator has the
following inputs, the ChaCha secret key, nonce, counter, and a constant. The ChaCha secret is
initialized using an SSL/TLS-based secure channel as discussed in section 5.5.2. The counter is
reset to 0 for each input message and incremented for each 512-bit message block. The initial
and consecutive nonce initialization for message encryption is described in section 5.2.1. That
is, during the encryption process, the first message uses the ME identifier for the nonce, and
after that, each message uses the unused keystream bits of the previous message. During the
decryption
process, the nonce is parsed from the packet header.

For encryption, the ChaCha10 algorithm [17, 45] (more details in section 5.2.2) is used to
generate the keystream. The keystream generator generates a 512-bit keystream for each
message block (512 bits). The message and/or the hash are encrypted by XORing with the
keystream. The XOR process is done in blocks of 32-bits since the Netronome NIC supports
32-bit words (32-bit ARM processor). For decryption, the nonce is parsed from the packet
header, whereas the other parameters of the ChaCha10 state, viz., ChaCha secret key, counter,
and constant, are initialized as discussed in the encryption process. Since ChaCha is a stream
cipher, the decryption process is similar to the encryption process.

The Netronome NIC does not support cryptographic hash functions. To implement
authentication, we use the non-cryptographic hash function, CRC-32, and secure it with
ChaCha encryption (see section 5.2.1). custom_crc32 accelerator is used for hashing due to its
resistance to performance degradation at high loads compared to other available hash functions
[57]. The custom_crc32 function takes a maximum of 64 bytes of data for hashing; therefore, we
incrementally take 64-byte blocks from the packet header and the message to calculate the final
32-bit hash.
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Fig. 10 Workflow of AUTH_set, ENC, and AUTH_set+ENC primitives using ChaCha

The correctness of the implementation is further tested as follows. First, the message is
encrypted on the SmartNIC, followed by decryption on the SmartNIC, and the decrypted
message is compared with the original message on the host machine. Fig. 10 shows the
workflow for an incoming message. The P4 parser program parses the packet headers to derive
the message and the requested crypto primitive. If AUTH_set or AUTH_test flag is set, the
input message is hashed using custom_crc32. If the ENC or DEC flag is set, the ChaCha10
encryption or decryption process is computed by repeating the algorithm for each 64-byte
message block with the incremented counter value.

6. Evaluation

The experiments were designed to answer the following questions:
1. How does our crypto primitive implementation perform compared to the baselines?
2. Which class of applications will benefit by leveraging these crypto primitives?
3. After implementing the crypto primitives on the SmartNIC, how much memory is

available to offload other applications?

6.1 Experiment setup.

All our experiments are on two machines with AMD Ryzen 9 5950X (3.4 GHz, 16 cores, 32
threads) processor and 32GB RAM. The first machine ran a DPDK-based load generator
application (dpdk-21.11), pktgen 21.11 [4], that generates IP packets with configurable message
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sizes. It is ensured that the generated experiments traffic rate is enough to saturate the network
card in all experiments unless mentioned otherwise. A P4 program is written on the SmartNIC to
add the primitive header as shown in Fig. 8.

(a) Baseline:NIC - simple L2 forwarding

(b) Baseline:Host - ENC on host using container

AMD Ryzen 9 5950X (3.4 GHz, 16 cores, 32 threads) processor and 32GB RAM

Netronome Agilio CX 40 Gbit/s dual-port SmartNIC

Fig. 11 Baseline setup

The second machine hosts Netronome Agilio CX 40 Gbit/s dual-port SmartNIC [3] on which our
ChaCha10 crypto primitive program is offloaded. Two baselines are provided to demonstrate the
performance bounds of the system. A simple L2 forward program on the smartNIC copies the
packet from ingress to the egress port and does not involve crypto computations. This program
provides the performance upper bound, called the baseline:NIC. The performance of the
ChaCha algorithm (ENC primitive) is also evaluated on the host CPU inside a container to
demonstrate the crypto processing overheads when the NIC does not support crypto. This
program provides lower-bound performance, and we call it baseline:Host.

6.2 Parameters and Metrics

Different traffic load levels and message sizes are generated by configuring the parameters of
the pktgen application. All results reported are for an experiment conducted for 180 seconds.
The performance metrics measured are throughput (messages per sec) and processing latency
(휇𝑠𝑒𝑐). The throughput was reported by the pktgen application. The ingress and egress
timestamps (in nanoseconds) were added to the packet headers using Netronome’s extern
functions to compute processing latency.
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6.3 Results

Fig. 12 Expected control plane message rate (CPMR) is in the range of 100 to 3M requests per sec;
crypto processing throughput at the host ranges from 71K to 94K requests per sec; our

implementation meets the expected CPMR

Fig. 12 and Fig. 13 show the saturation throughput and the corresponding processing latency
for various packet sizes. Our system requires parsing of the packet payload to apply crypto
primitives, and the Netronome smartNIC parser has constrained memory to store packet
headers. Therefore, our system is limited to processing message size of 256 bytes.

The AUTH_set primitive provides 3x, 2.7x, and 2.3x lower throughput than baseline:NIC for
64-byte, 128-byte, and 256-byte packet sizes, respectively. The ENC primitive provides 2.8x,
3.5x, and 4.6x lower throughput than baseline:NIC for 64-byte, 128-byte, and 256-byte
packet sizes, respectively. The AUTH_set+ENC primitive provides 4.2x, 4.9x, and 5.8x lower
throughput than baseline:NIC for 64-byte, 128-byte, and 256-byte packet sizes, respectively.
We observe similar trends in AUTH_test, DEC, AUTH_test+DEC, and message processing
latency. However, our in-network crypto-system demonstrates 67x to 81x better throughput and
∼83% lower latency compared to baseline:Host.
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Fig. 13 Processing latency of the primitives ranges between 21 휇𝑠 to 170 휇𝑠 (∼ 83% lower than
processing at the host).

6.4 Observations

It is observed that these throughput numbers would satisfy most of the offloaded applications.
To be specific, the API invocation rate is 100 requests per sec [9] for serverless functions. With
a maximum of 1000 containers [50] or 200 VMs [13] per server, the required crypto throughput
ranges between 20K to 100K requests per second. Our authentication (AUTH_set) throughput
is 6M messages per second and can support up to 60K serverless workflows, much higher than
what is required. Consider the state replication use case for one of the popular key-value stores,
Twitter. Only 10% of the total traffic requires state replication [15], which indicates that our
system can scale linearly. Similarly, consider one INT packet generated per flow. With 3.3M
flows per second at a server [35, 47], our primitives can easily process them.

The input load was varied in another experiment and observed the corresponding message
processing throughput to understand system scalability. We observed that the baseline:NIC
program scaled linearly, and we observed the saturation throughput of ∼ 19M messages/sec,
while the AUTH_set and ENC primitives scaled linearly at low loads (up to 20% load) with
observed throughput of ∼ 4M messages per second; and the saturation throughput of ∼ 6.8M
messages per sec. The AUTH_set+ENC primitive does not scale linearly and saturates at ∼ 4M
messages per second.
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Fig. 14 Available memory for other offloads is up to 90%

The memory classes supported by Netronome smartNIC include: (1) the local memory (LM)
register is used for data that is used in every packet; (2) The cluster local scratch (CLS) is used
for data, which is needed for most packets and small shared tables; (3) The cluster target
memory (CTM) is used for packet headers and coordination between other sub-systems; (4)
The internal memory (IMEM) is used for packet bodies and medium-sized shared tables; and (5)
The external memory (EMEM) is used for large shared tables.

Fig. 14 shows that even after implementing crypto primitives on the NIC, we have free memory
resources of up to 44% LM, up to 67% of CLS, 55% CTM, 81% IMEM, and 90% EMEM. Note
that LM and CLS utilization increases for larger message sizes due to additional memory to
store the payload and crypto code. Although, the CTM, IMEM, and EMEM utilization is constant
as crypto processing does not use tables. The offloaded applications that utilize the crypto
primitives can use the free memory to store the code, packet data, and shared tables (both
small and large).

7. Discussion

Crypto code placement: Due to constrained smartNIC resources, the crypto code placement
depends on whether the smartNIC has enough CPU and memory resources to run crypto
functions alongside the offloaded applications. (1) If there are enough resources, we should
co-locate the crypto code and the offloaded applications on the same smartNIC; (2) Otherwise,
we should implement a bump in-the-wire design where the offloaded applications and the crypto
code run on two separate smartNICs, connected port-to-port via physical cables.

Handling MTU size messages: As discussed earlier, the current crypto implementation cannot
handle messages longer than 256 bytes due to parser memory constraints. In our future work,
we plan to handle MTU size messages by using design options such as (1) reducing the
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number of threads per ME; (2) fragmenting packet messages longer than 256 bytes; (3)
accessing the message payload without parsing.

Implement standard authentication algorithm: Our current implementation does not use
ChaCha’s standard authentication algorithm, Poly-1305, as this algorithm uses modulus
operation, which is not supported by the smartNIC hardware. Therefore, our system can be
used to secure control and management messages shared within the data center network
without using standard TLS connections. We plan to use approximation data structures to
implement Poly-1305 for message authentication as part of future work.

Portable cryptosystem design: This work is tightly bound to the target machine and is not
simple to port. In our future work, we plan to provide abstractions for target-dependent
components and design a portable cryptosystem.

8. Conclusion

We design and develop crypto primitives based on the ChaCha algorithm for applications
offloaded to the Netronome Agilio smart- NIC. We address challenges while implementing
cryptographic primitives - authentication, encryption, and decryption. From the evaluations, we
observe that our implementation meets the processing rates required for control messages of
offloaded applications.
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Appendix: API Details

This work can be used by a P4 programmer for Netronome SmartNIC as an API for
ENC+Auth_set, Auth_set, DEC+Auth_test and Auth_test crypto primitives.

API preprocessing: How to use?

1. Programmer needs to run the python script provided by the API named
add_chacha_crypto.py. The inputs required by the program include:

a. Data size on which the crypto primitives should work. As mentioned in section 7,
the work is limited to process upto 256B and does not allow for variable size
processing. The programmer can specify one of 4 options: 64, 128, 192
and 256. All values are in bytes.

b. Three program files:
i. File defining the Ingress, Egress, Parser and Deparser

controls[75].
ii. File defining the packet headers. In case this file is the same as in

previous, it should be specified again.
iii. File defining the micro C functions. In case, a micro C file does not exist,

None can be passed as an argument. A new file will be created.
2. The output of add_chacha_crypto.py are three new files (two in case the same file

has the controls, and the packet headers). The naming for the new files would be in the
form <old_name>_chacha.<old_extension>

3. The programmer can now build and load the program as usual using the generated files.
They can add rules statically or dynamically to the added tables(described below), which
will apply the crypto primitives to the required flows.

Details of preprocessing changes

1. A layer 4 header definition, as described in section 5.2.3, is added which can be
leveraged for utilising the crypto primitives. This header is added after the IP header and
before the transport layer header.

2. Four match action tables are added. :
a. ENC+Auth_set and Auth_set tables are added to the Egress control after

all user-defined tables are applied. Matching key includes <src IP, dst IP,
src port, dst port, IP proto> and the action parameters are
<ChaCha10 key>.

b. DEC+Auth_test and Auth_test are added to the Ingress control before
any user-defined tables are applied. Matching key includes <src IP, dst
IP, IP proto, Type> (Type is as described in section 5.2.3) and the action
parameters are <ChaCha10 key>.

3. The matching actions for each of the tables are added to the micro C file.
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