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Abstract

The total wire length of a design affects various QoR measures such as timing, power, and

routability. Hence, it is a critical parameter to optimize in physical design. Post global

routing, the total wire length can be further minimized by incremental placement, i.e.,

moving the cell instances by a small amount to reduce the total wire length. Traditionally,

incremental placement is done by deterministically finding suitable locations for a cell in

its vicinity. Subsequently, the wire length for these locations is estimated by performing

global routing, and the move is accepted if it reduces the wirelength. However, most such

moves are rejected due to rout ability constraints, and the time spent in finding suitable

locations is wasted. As an alternative, we can randomly try locations in the vicinity of a

cell and accept the movement if it reduces the wire length. This method will allow us to

perform many such evaluations quickly. However, this method will have a low acceptance

rate.

In this work, we propose a fast Artificial Neural Network (ANN) based incre-

mental placement technique. We use an ANN to predict a good location for a cell using

various input features. An ANN can predict a movement very quickly, and we can try

many such movements in given time duration. Further, the acceptance rate for an ANN-

based incremental placer can be enhanced by employing a high-quality training set. In

this work, we generate training data set synthetically by choosing the right balance of

randomness and constraint. We obtain training data by first generating placement and

congestion scenarios for a small grid using a constrained-random strategy. Then, we deter-

mine the optimal solution for a cell in the generated problem. We refer to this approach of

training data generation as solution-directed. Further, we augment the training data set

by finding optimal problem-solution pairs by starting with a solution and then computing

a problem for which the given solution is guaranteed to be optimal. We refer to this ap-

proach of training data generation as problem-directed. We demonstrate that we can train
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an ANN efficiently by utilizing a mix of problem-directed and solution-directed training

sets. We observe that an incremental placer utilizing ANN trained with mixed training

data set produces around 15% more acceptance rate than using either problem-directed

or solution-directed training data set. Further, we benchmark the proposed incremental

placer against a random movement-based incremental placer on ICCAD2020 benchmark

designs [1]. For a given time limit of three hours, the number of trials that the ANN-

based incremental placer performs is of the same order as the random placement-based

incremental placer. Further, the proposed incremental placer has an acceptance rate of

approximately 5X of the random placement-based incremental placer. The wire length

reduced per accepted movement for the ANN-based placer is approximately 20% higher

than the random placement-based algorithm. Thus, the number of feasible solutions and

their quality is significantly better than the random incremental placer. Overall, the run-

time of the proposed placer is similar to the random incremental placer but produces a

wire length reduction of 3x more than the random incremental placer. Hence, the results

demonstrate that the proposed incremental placer can provide a good tradeoff between

accuracy and runtime over the traditional incremental placer.
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Chapter 1

Introduction

To arrive at the final layout of the design representing the digital circuit required for the
desired functionality, we perform the physical design step of the VLSI Design flow. The
gate level netlist defining the connections of the logic gates and the sequential elements
of the circuits is implemented in form of transistors and metal wires in the layout of the
design which is used by the foundry for fabricating the design. For placing these logic
gates on the design, we perform the placement step in two parts, global and detailed
placement. After the global placement, we have a fair idea of the overall wire length of
the design.

At this stage, we can move the cells or change the placement of the logic gates
by small incremental changes on the layout to optimize the overall design wire length.
Wire length is an important metric to optimize as it affects various QORs such as power,
area, and timing in the final design layout. This step is called Incremental Placement.
We perform only small changes in the incremental placement step so as to avoid changing
the design placement solution completely. We work only on the small part of the design
while performing the incremental placement because of this reason.
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1.1 Incremental Placement in IC Design

There are various factors that affect the wire length of the design. Of these factors,
congestion, placement, and connectivity are the major contributors. If these factors are
effectively managed then the obtained physical design scenario can be called optimized in
terms of wire length.

Generally, congestion in the grid represents the amount of space available for
routing wires and placing the standard cells in certain areas of the design. Congestion
results in detours and affects the wire length of the design in an adverse manner. When
the placement of the design is changed, then nets connected to the cells are affected and
the net length changes. Connectivity is useful information in the incremental placement
since it indicates which nets would be affected if a cell is moved from one position to
another in the design.

1.2 Motivation

Many conventional algorithms such as force-directed placement [2], simulated annealing [3]
and analytical model-based placement [4] are capable of providing better placement of cells
for optimized wire length. Also, these algorithms deterministically apply some heuristics
to arrive at the better placement of the design while performing the incremental placement
[5–12]. But, these algorithms involve complex mathematical computations which take a
large run time. A run-time efficient algorithm for incremental placement could be an
incremental placer that moves the cells to randomly selected positions and accepts the
movements as a solution if the design wire length reduction results from the random
movement. This is inherently fast as it does not involve any complex mathematical
computations and heuristics. But, this is also a non-directed/convergent approach to
arriving at a solution. This would not produce high-quality movements of the cells in
design and also most of the movements would not result into lower wire length and hence
would be discarded. This means this algorithm would have a low acceptance rate.

An algorithm involving ANN to produce the movement position for the cells
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would have the per trial run time of the same order as that of the random position
generation-based incremental placer. This is because the ANN involves very simple MAC
operations for inference once trained using the relevant data. This solution produced by
the machine learning model would be a directed approach to arriving at the solution if
the data used for training the ANN model for solving the incremental placement problem
is optimal and is able to model real case scenarios. Therefore the acceptance rate of this
algorithm is expected to be very high as compared to the random position generator-
based algorithm. This algorithm, therefore, is able to provide more total improvement
as compared to the conventional algorithm of incremental placement. While performing
incremental placement (incremental placement) in our work, we move one cell at a time
and keep trying movement for different cells to minimize the overall design wire length.
The run-time of the incremental placement algorithm can be expressed as: -

Runtime = Ntrials × Ttrial (1.1)

where, Ntrials is the number of trials made for moving the cells in a design, and Ttrial

is the average time taken to complete a single trial. It is desirable to maximize Ntrials

for a given Runtime for maximizing wire length optimization. Therefore we need a low
Ttrial for a given Runtime. A straightforward strategy for achieving low Ttrial could be to
move cells in a random manner and accept the movement as valid if the wire length of
the system reduces. This random position generation would have a low Ttrial. However,
this algorithm would still degrade the Total Improvement (TI) which can be expressed
as follows: -

TI = Ntrials × Arate × δWLPA (1.2)

Where Arate is the acceptance rate which is the number of acceptances per unit trial. δ

WLPA is the average wire length reduced per accepted movement. Random movement-
based incremental placement would have a low Arate and δ WLPA because of the non-
directed manner of solution generation. Therefore, there is a trade-off between Runtime

and TI. Whereas, a Machine Learning(ML) model such as an ANN trained with appro-
priate data can achieve Ntrials in order of what random algorithm would achieve given the
simple MAC (multiply and accumulation) operations that the ANN needs to perform in
a forward pass for predicting better positions of the cells. Also, high enough Arate and δ

WLPA can be achieved only if the ANN model is trained with optimal data. Therefore,
an ANN can provide a large wire length reduction for a given Runtime and hence a better
trade-off.
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1.3 Challenges

Major challenges involved in employing an ANN for incremental placement can be stated
as follows: -

1. Training data needs to be realistic. It should correlate with the designs that the
ANN model would see in the real world. Hence the training data has to be generated
in a constrained random manner.

2. To ensure high Arate, we need to ensure that the training data is optimal. Optimal
data is which provides the smallest wire length positions as a solution for the example
problems used to create the data-set.

3. ANN predictions and incremental placement algorithm using it should be fast enough
to achieve high Ntrials. Data pre-processing hence needs to be optimized.

Challenge 1 is addressed by controlling the randomness of the training data
generation algorithm to direct it towards generating data close to real design cases. Chal-
lenge 2 is addressed by using a problem-directed data generation algorithm and a simple
solution-directed data generation algorithm. To address challenge 3 we select the input
features judiciously to avoid a large input vector size for the ANN. Additionally, we per-
form incremental placement by devising a fast and efficient method to optimally place a
given cell in a small part of the design layout. Subsequently, we use this method over the
entire layout to derive a placement solution that minimizes the cost for the given design.

1.4 Contribution of this work

This work is in continuation with the previous work on the same topic [13]. This work
extends the previous work by performing the following tasks: -

1. Performing incremental placement in a grid of 10 × 10 to cover the complete design
using a sliding window scan.
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2. Generating problem solution examples to train the ANN model for its deployment
in the incremental placement.

3. Modelling the connectivity of the design in a more accurate manner.

4. Making the ANN congestion aware by using the grid congestion as a feature in the
ANN model.

5. Showing that using a different algorithm to generate additional training data im-
proves the performance of the incremental placer significantly.

6. Achieving better performance than a random placement-based incremental placer
by using a limited number of data samples as compared to the possible problem
space.

Also, other improvements related to biasing the placement towards being more clustered
and clustering while modeling the congestion have been incorporated.

1.5 Thesis Organization

We discuss the incremental placement problem formulation in chapter 2. The complete
methodology for deriving the incremental placer is then described in chapter 3. It de-
scribes how we proceed to perform incremental placement by using the ANN which is
used to infer the better positions of the cells in the design. In chapter 4, we describe the
methodologies derived to obtain the training data for the ANN synthetically. We use two
methods of data generation namely, Solution-Directed and Problem-Directed data gen-
eration approach. Once the data is generated, we need select and train an ANN model
to predict cell positions according to the data generation heuristic. To train the model,
we use a particular custom loss function and an ANN architecture which are described in
chapter 5. Finally, we take the trained ANN model from the training algorithm and use it
to predict better cell positions to perform the incremental placement which is explained
in chapter 6. Finally, we explain the obtained results in chapter 7 which is followed by
concluding the work in chapter 8.
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Chapter 2

Incremental placement problem
formulation

Incremental placement is performed post placement step. Once the global routing step
is completed, we have a fair idea of how the wire length changes with the incremental
changes in the design placement and congestion. Therefore the scenario present at the
time of the incremental placement step is similar to the one present in the global routing
step of the VLSI design.

For formulating the incremental placement scenario, we have used ICCAD 2020
problem as the reference to model the problem. Following are some important features of
the design according to the modeling.

2.1 Global Grid (GG)

The given design layout is divided into grids which we refer to as Global Grid (GG).
The GG can be visualized as a 3-D array of small cells which we refer to as GC. Third
dimension of the matrix models the different metal layers present in the design. In Fig.
2.1, L1, L2 and so on show the third dimension. The GG has LG Layers, RG rows and
CG columns describing its dimensions.
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Figure 2.1: Arrays used for modelling the design

2.2 Cells (Ci)

Cell instances that are placed on design may lie inside any GC. We assign a unique index
i to each cell in a design, and refer the cell as Ci. The position of a cell Ci is defined by
the row and column of the Grid Cell (GC) that contains Ci, and is denoted by row(Ci)

and col(Ci), respectively.

2.3 Nets (Ni)

Cells are connected to each other using connecting wires called nets. We assign a unique
index i to each net in a design, and refer the net as Ni. To connect two cells lying at
different location, nets are laid in the grid and the path it takes is called as a route.

Fig. 2.1 shows cells C1, C2 and C3 connected using nets N1 and N2 as the cells
lie in different GCs in layer L1. Inside each GC only a limited number of routing-tracks
are available. These routing-tracks define the path for the nets that cross the GC to
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connect various GCs in the GG together. The number of routing-tracks available in the
GC is the number of nets that can be routed using the GC. We term the number of
routing-tracks present in a GC as supply (SGC). The routing-tracks can be blocked by
the nets routed through the GC or the cells that lie inside the GC. Number of routing-
tracks blocked is termed as demands consumed inside the GC (DGC). Number of tracks
blocked by a cell is known as cell blockage (BCi

). A net while passing through a GC

consumes only one demand. Therefore, total number of demands created in the GC can
be expressed as follows: -

DGC = NGC +
∑

whereCibelongstoGC

BCi
(2.1)

The remaining number tracks which are not blocked by either a net or a cell inside the
GC is termed as unused supply (UGC). Therefore,

UGC = SGC −DGC (2.2)

Lower the value of UGC , higher is the congestion inside a GC.

2.3.1 Wire length measurement

We measure wire length of a particular net by counting the number of GCs that a net
crosses. We illustrate the wire length measurement using Fig. 2.2. Cells C1, C2 and C3 are
connected using a single net N1 which is routed aas shown. According to our definition,
since the route is crossing 13 GCs (excluding the C1, C2 & C3 GC locations), the wire
length is equal to 13 in this case.

2.3.2 Constraints for incremental placement

For a placement and routing to be valid, UGC must always be greater than or equal to zero.
If this condition is not satisfied, then the GC is said to be over-flown. While performing
incremental placement, we need to satisfy the following constraints to avoid over-flow:
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Figure 2.2: Routing and Wire length calculation

• Cell constraint : A cell Ci with blockage BCi
can be placed in a GC only if UGC is

greater than or equal to the sum of BCi
and the number of nets connected to the

cell Ci.

• Net constraint: A net can be passed through a GC only if UGC is greater than or
equal to 1.

All the connections should be preserved while performing incremental place-
ment. To ensure this, affected nets need to be re-routed after making incremental changes
to the placement.

2.3.3 Objective

The objective of incremental placement is to make small changes in the placement of an
already placed and routed design to decrease the overall wire length satisfying the above
constraints. Small changes are made locally to not affect the placement completely and
maintain the previously obtained placement solution.
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Chapter 3

The methodology for deriving ANN
based incremental placer

We derive an ANN based incremental placer and hence the quality of results depend upon
the quality of training that the ANN is provided in the process of deriving the ANN based
incremental placer. We shall now discuss what all steps we undertake for arriving at the
final ANN based incremental placer.

In this work, we carry out incremental placement by processing a part of global
grid (GG) at a time. We refer to a part of a GG as a slice. Similar to the GG, a slice
consists of grid cells (GCs). However, a slice is significantly smaller than the GG and
has less attributes/features than the corresponding GCs in the GG (these attributes are
described in the next section). The small size and fewer features allow us to devise a fast
and efficient incremental placement algorithm for the slice.

We apply the incremental placement algorithm of a slice to the entire layout
using the sliding window scan technique.

We extract slices from the layout (highlighted as yellow grids) and perform
incremental placement within the slice. Then, we extract another slice by including
adjacent grids on the right and excluding grids on the extreme left. After we cover all the
GCs horizontally, we move downward. We carry out this process until the entire layout
is covered.
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Fig. 3.1 illustrates the overall methodology. It consists of three main parts:
training data generation, ANN model creation and validation, and incremental placement.
In this work, we train an ANN to perform incremental placement for a slice. The ANN
can predict a position for a cell that reduces the total wire length for nets within a slice.

In this work, we train the ANN model using data internally generated by our
overall methodology. Due to small size of slices, we can quickly generate a large set of
optimal problem-solution pairs for incremental placement. Data partitioning is done after
the data generation to divide it into test (20%) and training (80%) data. Test data is
used to validate the model after training. The training data is provided as an input to
the ANN model training algorithm.

Model training algorithm trains the ANN model using the data generated in
the previous step. The ANN architecture is decided experimentally. Training algorithm
adjusts the weights of the ANN in such a way that it is able to predict position at which
the cells should be placed for lesser wire length. Once trained, the model is tested using
the test data obtained in the data partitioning step. Model is evaluated by predicting
the outputs for test data reserved during data partitioning step. Predicted values are
compared against the test data output expected values and the error is measured in terms
of deviation from the test value. Once these errors are in acceptable range, the model
is labelled as PASSED and can now be used for deploying in an incremental placement
algorithm.

Finally, the trained model is plugged into the incremental placement algorithm.
Incremental placer uses this ANN to predict optimal positions for cells in the slices created
during the sliding window scan.
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Figure 3.1: Overall Methodology
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Chapter 4

Developing ANN model for predicting
optimal locations

4.1 Data Generation

We train an ANN with relevant data such that it predicts positions for the cells in a slice
that reduce the total wire length.

To train the ANN for predicting the cell positions resulting in lower wire length,
we need a set of problem-solution pairs. Fig. 4.1 shows one of the example problem-
solution pairs. Fig. 4.1(a) shows the initial position of C1 along with connectivity in

Figure 4.1: Example problem-solution pair
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a slice. The initial wire length is 10 units (N1 = 10 and N2 = 10). Fig. 4.1(b) shows
the slice after C1 is moved. GCs highlighted in red are congested and therefore fail cell
constraint. This incremental placement change reduces the wire length to 6 units (N1

= 7 units and N2 = 7 units). Hence, we can consider the above incremental change in
the position of C1 as a solution for the slice. For this problem-solution pair to be ideal,
all other movements of C1 that satisfy the cell and net constraints must produce a wire
length of 6 units or more which is true about the example taken in Fig. 4.1 given the
congestion profile.

4.1.1 Feature Selection

We observe that the following features affect the total wire length of the nets in a slice.

Connectivity

We represent the connectivity of the cells in a slice using a connectivity-matrix (conMat).
Fig. 4.3 shows the connectivity matrix corresponding to design of Fig. 4.2

While forming the matrix conMat, if the cell Ci is connected to net Nj, then
the index (i, j) is assigned a value of 1. Otherwise, it is assigned a 0. Therefore, two cells
connected to the same net are said to be connected to each other. During data generation,
we fix the maximum number of cells in a slice to CellCountmax and a maximum number
of nets to NetCount. Therefore, largest connectivity-matrix would be of size equal to
CellCountmax ×NetCount.

Congestion

Fig. 4.4 shows how the wire length may change due to different congestion maps inside
a slice. Nets can take only the paths on which unused supply UGC are available and
hence may need to take a detour due to congested GC lying in the shortest connecting
path. Fig. 4.4(a) shows the routing of the nets when there is no fully congested GC in

14



Figure 4.2: Effect of connectivity on wire length

the complete slice. This means that at-least one routing-track is available in each of the
GCs. On the other hand, Fig. 4.4(b) shows how the nets change their route since the
highlighted GCs are fully congested. This detour of net N3 increases the wire length by
two units. Therefore, we use UGC to model congestion in the slice.

4.1.2 Complexity of data to be modelled

Tab. 4.1 lists the attributes of a slice and its components. We use these attributes as
features for training the ANN model that predicts optimal location for cells in a slice.

Tab. 4.1 also shows the range and number of possible values for each of the
attributes inside a slice considered in this work. We have taken CellCountmax=10 and
NetCount=9 in this work. Additionally, we have taken slices of size 10×10. We have
taken appropriate ranges for other attributes as shown in the table.
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Figure 4.3: Connectivity matrix for Fig. 4.2(a-b)

Figure 4.4: Effect of congestion on wire length

The above table suggests that we can generate ≈10243 slices by varying each
attribute independently. Thus, if we want to exhaustively list and train the ANN for
all possible slices, we will need ≈10243 examples. However, this is impractical. 106 We
want to train the ANN model using around half a million examples so that the run time
spent in training the model is reasonable. Therefore, we need to generate a small set
of training examples that capture the placement and routing scenarios realistically. We
achieve this by constraining the randomness of the data generation algorithm towards
realistic scenarios, as explained below.

For generating the training data containing problem-solution pairs, we would
need to generate random or constrained-random cell placement and connectivity. This is
discussed in following sub-section. Tab. 4.2 lists all the attributes and their of the slice
which would be used to explain the algorithms.
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Table 4.1: Training Data Complexity

Range Feature #Possibilities
3 to 10 Number of cells, CellCount 7
1 to 10 Number of nets, NetCount 9
1 to 10 Row Position of each cell, Ci.row 1010

1 to 10 Column Position of each cell, Ci.col 1010

1 to 30 Each cell’s blockage, BCi
3010

1 to 1023 Connectivity matrix, conMat 102310

1 to 10 Index of cell to be moved, m 10
1 to 10 Position of Cm, (Cm.row, Cm.col) 102

1 to 30 Blockages of cell Cm (BCm) 30
1 to 50 Unused supply, uSupMat 50100

Table 4.2: Attributes of a slice

Attribute Abbreviation Description
Cells Ci Cell with index, i
Nets Ni Net with index, i
Cell blockage BCi

Blockage of cell, Ci

Cell List cL Carries all the cells, Ci

Net List nL Carries all the nets, Ni

Connectivity Matrix conMat Net vs Cell connectivity
Unused supply matrix uSupMat UGC at all GCs
Supply Matrix sMat SGC at all GCs
Demand Matrix dMat DGC at all GCs

4.1.3 Constrained random placement and connectivity genera-

tion

To generate a slice, first we generate constrained-random placement of cells, and then
connect them systematically.

Constrained random placement generation

For a given list of cells in a slice (@cL), we first decide the cell to be moved (Cm). We place
Cm randomly in a GC within the slice. Then, we place other cells of the slice randomly
in the neighborhood of Cm. We use normal-distribution probability density function to
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bias the placement of other cells closer to Cm. The probability of the row position x being
generated for a cell is given as:

P (x) =
1

scF
√
2π

e−(x−Cm.row)2/2×scF 2

(4.1)

where, scF is the scattering-factor, Cm.row is the row of the GC in which Cm lies. If scF
is low, the location of a cell will be more probable to be closer to Cm. We use the above
method of generating placement because we perform incremental placement after global
routing. During the previous placement step, the connected cells would have been placed
in the neighborhood and not randomly [14–17]. Therefore, this method of generating
placement captures realistic scenario in a design. The Algo. 1 shows that pseudocode for
placement generation in a slice.

Algorithm 1: PLACE_SLICE
Input: -
1. Slice: cell list @cL, dimensions (Rs, Cs)
3. Cell to be moved, Cm

4. Scattering factor, scF
Output: -
1. positions for cells in @cL
START:
Cm.row = RAND(1, Rs)
Cm.col = RAND (1, Cs)
foreach cell in @cL do

if cell ̸= Cm then
cell.row = GAUSS_RAND(Cm.row, scF , 1, Rs)
cell.col = GAUSS_RAND(Cm.col, scF , 1, Cs)

Connectivity generation

We need to generate connectivity among cells in a slice randomly. However, when we
are determining the location for a cell Cm that minimizes the total wire length, the
connectivity of Cm with other cells is only relevant, as illustrated in Fig. 4.5. The slice
contains cells C1 − C6 connected using nets N1 −N4. Assume that we move the cell C1.
As a result, the original connectivity (shown as solid nets) and wire length will change
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Figure 4.5: Scanning design and moving cells

(shown as dotted nets). However, the nets that are not connected to C1 (such as N4) do
not have any change in the wire length. Hence, the nets connected to the cell to be moved
Cm are only relevant. Hence, while generating connectivity for a slice, we first connect all
the nets to the given cell Cm. Subsequently, we connect other cells to the nets randomly.
The pseudo-code for connectivity generation is shown in Algo. 1.

Algorithm 2: CONN_SLICE
Input: -
1. slice with empty connMat
2. Number of nets (NetCount) and number of cells (CellCount)
3. Cm cell index (m)
Output: -
1. slice with filled conMat
for i = 1 to i = NetCount do

for j = 1 to j = CellCount do
if i = m then

conMat[j][i] = 1
else

conMat[j][i] = RAND_SELECT(0, 1)

Th function CONN_SLICE takes maximum number of nets allowed for estab-
lishing the connectivity (NetCount), number of cells (CellCount), index of the cell to be
moved (m) and an empty conMat for the slice at input. We fill the elements of conMat
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based on the above method of generating connections.

We now discuss the two methods that we use in this work to generate problem-
solution pairs for training and testing of ANN-based incremental placer for a slice.

4.1.4 METHOD 1: Solution-directed data generation

In this method, we generate placement and connectivity, as described above. Then, we
generate constrained-random congestion in the slice, followed by finding the minimum
wire length position of a given cell in the slice.

Generating constrained-random congestion in a slice

First, we randomly generate cell blockages for each cell in the slice within the range [1,
BCMAX]. Then, we randomly allocate unused routing supply to each GC within the
range [1, USMAX]. Then, we randomly select a GC in the slice that has congestion.
Further, we create numTrialHS congestion hotspots around this GC. For creating a
congestion in a GS, we allocate unused supply less than what is need for the cell Cm

to be moved. We use normal-distribution probability density function shown in Eq. 4.1
to create clusters of congested GC. The pseudocode for generating constrained-random
congestion is shown in Algo. 3.

Determining optimal location for a cell

Given a slice with constrained-random placement, connectivity, and congestion, we de-
termine an optimal location of a given cell Cm. We temporarily place Cm at all the
non-congested GCs one by one and determine the resulting wire length by performing
virtual routing. The GC that achieves the minimum wire length is the required solution
for the given problem.

We use congestion-aware maze routing (MR) algorithm to determine minimum
wire length routes for a net [18]. However, due to constrained-random congestion in the
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Algorithm 3: RANDOM_CONSTRAINTS
Input: -
1. slice: Rs, Cs, Ls, Cm

2. Number of trials for making hot-spot, numTrialHS
3. Congestion scattering factor, congScF
4. Maximum cell blockage (BCMAX) and maximum unused supply USMAX.
START:
// Initializing cell blockages
foreach cell Ci in slice.@cL do

BCi
= RAND (1, BCMAX)

// Initializing unused supply for slice
foreach GC in slice do

uSupMat[GC] = RAND (1, USMAX)
demCm = BCm + Cm.NetCount
rowHS = RAND (1, Rs)
colHS = RAND (1, Cs)
// Creating congestion at the hot-spot seed
uSupMat[rowHS][colHS] = RAND (0, demCm - 1)
for j = 1 to numTrialHS do

r = GAUSS_RAND (rowHS, congScF , 1, Rs)
c = GAUSS_RAND (colHS, congScF , 1, Cs)
uSupMat[r][c] = RAND (0, demCm - 1)

grid, it is not always possible to route a net for an arbitrary position of Cm. Hence, wire
length cannot be determined for some positions of Cm and we discard those positions [19].

For Cm connected to multiple nets, we perform routing of each net sequentially.
However, the wire length will depend on the chosen sequence of routing because routing
a net changes the congestion profile for a slice. Further, routing for a net can fail because
of the routing resources consumed by the previously routed nets. We follow a one-level
rip-and-reroute strategy to avoid sequence of net that yields routing failure.

Wire lengths obtained by routing the nets after placing Cm at all locations
temporarily are compared to find locations (GCs) which result in minimum wire length.
These locations are regarded as solution to the constrained random problem generated in
the previous steps.

The 5×5 grid shown in Fig. 4.6 illustrates the process of determining the
optimal location for the cell C1. The cells C2 and C3 are connected to C1 using net N1.
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Figure 4.6: Solution directed data generation

The cell constraint fails for the GCs shown in red. First, we determine the total wire
length by placing C1 at each GC and performing congestion-aware virtual routing (wire
length annotated in Fig. 4.6(b)). The GC at (4, 4) and (3, 4) yields the minimum wire
length. Hence, these are the optimal positions for C1 (as shown in Fig. 4.6(c)). We will
treat the given problem and these two optimal locations as two data points for training
and testing of ANN-based incremental placer for a slice.

Limitation of solution-directed approach

Despite performing an exhaustive search over the slice, the above method can produce
locations that yield sub-optimal wire length. The optimality of solution depends upon
the chosen sequence of nets for carrying out virtual routing.

To overcome this limitation, we propose another data generation algorithm
(problem-directed) which ensures optimal problem-solution pairs while still using inher-
ently sequential MR algorithm for routing the nets.

4.1.5 METHOD 2: Problem-directed data generation

In this method, we first create a constrained-random placement and connectivity in a
slice. Further, we assume that the current position of a given cell Cm at GC(i, j) is
optimal (yields minimum wire length). Subsequently, we determine another position of
Cm at GC(x, y) and adjust the congestion profile in the slice such that GC(x, y) is sub-
optimal. Thus, we obtain a placement problem with Cm at GC(x, y) for which moving it
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Figure 4.7: Example to understand finding constraints function

to GC(i, j) is an optimal solution. Since we start with the solution GC(i, j) and determine
the problem GC(x, y), we refer to this approach as problem-directed. It is easier to ensure
that the position GC(i, j) is optimal because we can manipulate the congestion profile
such that all the superior solutions are ruled out for the generated problem.

We illustrate the above process in Fig. 4.7. Firstly, we generate random-
constrained placement and connections using Algo. 1 and 2. There are three cells C1, C2

and C3 all connected to each other using net N1. Assume that we consider cell C1 for
movement, i.e., Cm = C1. We consider the current position of C1, i.e. GC(3, 1) as the
optimal solution. Subsequently, we formulate a placement problem for C1 such that its
optimal location is GC(3, 1).

Firstly, we determine UGC constraints such that it is feasible to route nets
without detour when C1 is placed at GC(3, 1). We ensure that the net constraints and
cell constraints are honored for this configuration of the slice. Fig. 4.7(b) shows the
GCs that N1 passes and we need to ensure net constraint on these GCs. Next, we add
UGC constraints in the slice such that the superior solutions become infeasible for routing
(we ensure this by making the cell constraints fail for these GCs). To achieve this we
propagate wavefront from each connected cell (C2 and C3) towards C1 (as shown in Fig.
4.7(c) and (d)) using maze routing. The UGC for the set of GCs that yield superior
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solution than GC(3, 1) (shown in Fig. 4.7(e)) are adjusted such that routing becomes
infeasible for these positions of C1. Subsequently, we choose the locations of C1 from the
set of locations (shown as blue cells in Fig. 4.7(f)) for which GC(3, 1) will be an optimal
solution. Moreover, the location GC(3, 1) will be optimal because we ensure that a direct
path (without any detour) exists for nets between C1 and other cells.

For creating data samples for our data-set, the blue GCs in Fig. 4.7(f) become
GC(x, y) position candidates for the single optimal solution GC(i, j) highlighted in orange.

4.2 Training the model

We generate training and test data using both solution-directed and problem-directed
approaches. The solution-directed approach covers a wide range of problem space since
we allow position, connectivity, and congestion to vary in a wide range. However, the
solutions to these problems may be sub-optimal in some cases. The problem-directed
approach guarantees an optimal solution by tightly constraining the congestion profile.
However, it cannot capture the problem space widely because of the restriction in the
congestion profile. Hence, both these methods have their pros and cons, and we use a
combined data set for training and testing the ANN model. We have generated a total
of 500K problem-solution pairs. Further, we use 80% of them for training and 20% for
testing the model.

We train an ANN model to predict an optimal location for a cell Cm in a slice
with given cell positions, connectivity, and congestion profile.

ANN consists of multiple hidden layers between the input layer and the output
layer which define the architecture of the model. We select an architecture that achieves
an acceptable accuracy in predicting the optimal location for a cell Cm.

The training algorithm needs to calculate loss (error) by a given loss function for
the predicted position for adjusting the weights of the ANN. Assume that GC(rowtrue, coltrue)

denotes the true position (expected to be predicted) and the ANN produces GC(rowpred, colpred)

as the predicted position. In this work, we have defined a custom loss function based on
two measures:
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1. Position Loss: We define the position loss POSloss as the half perimeter wire length
(HPWL) between these two positions:

POSloss = |rowpred − rowtrue|+ |colpred − coltrue| (4.2)

The position loss denotes how far the predicted position is from the true expected
position.

2. Wire length Loss: We calculate the total wire lengths WLtrue and WLpred by car-
rying out virtual congestion-aware maze routing for the true and the predicted
positions, respectively. We define wire length based loss WLloss as:

WLloss =
WLpred −WLtrue

WL_CONST
(4.3)

When the ANN predicts a position where the cell-constraint or the net-constraint
are violated, we take the WLpred as infinity (a very high value). WL_CONST is a
scaling factor.

We combine the above loss function as follows:

Losstotal = (1− α)× POSloss + α×WLloss (4.4)

where, 0 < α < 1. We have used α = 0.3 in our work. By combining the two loss
functions, we ensure that the model is trained for the minimum wire length, rather than
the given position. This formulation is helpful in situations in which there are multiple
locations (GCs) that yield optimal wire length.

For selecting the ANN architecture, we try different architectures and evaluate
them after training them for same number of epochs with similar loss-function. Tab. 4.3
shows the mean-absolute position error (MAPE). MAPE can be expressed in terms of
row and column error for a batch of training data samples.

MAPE =
√
MAE2

row +MAE2
col (4.5)

Where, MAErow and MAEcol are mean absolute row and column errors for a batch of
training data samples. for different ANN architectures.
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Table 4.3: Architecture comparison for model evaluation (α = 0.3)

Architecture Error (MAPE)
248, 124, 2 7.58
248, 248, 248, 248, 2 7.58
248, 500, 248, 124, 2 0.566
248, 500, 500, 248, 248, 124, 2 0.5
300, 600, 300, 150, 100, 50, 25, 15, 5, 2 0.58

Starting from a simple ANN architecture, we keep modifying it until we arrive
at an architecture which has an acceptable error. We change the number of layers, the
number of nodes, and the sizes of individual layers experimentally to arrive at architecture
highlighted in green in Tab. 4.3. Changing this architecture further reduces the accuracy
and hence we use this architecture in the ANN-based incremental placement methodology.

4.3 Incremental Placement Algorithm using ANN model

As we have created a trained ANN model that can predict better placement for a cell
instance for a slice of dimension Rs × Cs. To perform incremental placement on large
dimension design, we scan the design to extract features of the design into a slice of small
dimension and perform incremental placement in the slice.

Algorithm 4: Incremental Placer
Input:
GG with all design info.
Output:
GG with incremental placement done.
START:
cond = True;
while cond = True do

$(slice, Cm) = GET_NEXT_SLICE (GG);
$GC(rpred, cpred) = ANN (slice, Cm);
if IMPROVE (Cm, $GC(rpred, cpred), GG) then

COMMIT_MOVE (Cm, $GC(rpred, cpred), GG);
cond = CHECK_COND (GG);

26



Algo. 4 shows the tasks that the ML based incremental placer performs. Input
to this design are derived from the ICCAD input design file which is the complete GG.

We perform a sliding window scan of the complete large design as illustrated
in Fig. 4.5. This sliding window extracts a slice at each step of the sliding window scan
(using GET_NEXT_SLICE). The sliding window scan continues until the condition,
cond is not false. This condition is checked at the end of each step of sliding window scan
(CHECK_COND) which returns false if any of the following conditions fail.

• I: Sliding window reaches the end of the dimensions of GG.

• II: Time limit put over the sliding window scan reached.

On the slice obtained at each step, we perform incremental placement by pre-
dicting the better position GC(rpred, cpred) for Cm from the trained ANN.

This prediction is checked for following conditions by IMPROVE function:

1. Cell and net constraints are satisfied after moving Cm to predicted GC.

2. Wire length of system is lesser that earlier when Cm is placed at GC(rpred, cpred).

IMPROVE returns true only of both these conditions are satisfied once Cm is moved.
Once checked, the movement is accepted as valid (by COMMIT function) and Cm is
moved to predicted position in the GG and Cm enters the list of cells (@MovedCells)
that are moved during sliding window scan based incremental placement.
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Chapter 5

Results

First, we train two ANN models using a data-set obtained from the problem-directed
mode and solution-directed mode data generation algorithm with an acceptable error.
Also, we create a data set by mixing data from both algorithms to train another model.

Figure 5.1: Acceptance rate comparison for ANN trained with different data generated from
different algorithms
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All three models are plugged into the incremental placement algorithm for com-
parison. Tab. 5.1 shows the performance of incremental placer based upon three different
ANN models. We have used ICCAD 2020 designs for bench-marking and comparing the
results. All experiments have been carried out on a 2.2 GHz Intel processor with Linux
OS and 32 GB RAM. The figure 5.1 compares the Arate for models trained with different
data sets. The number of trials was fixed to 10000 and 5000 in two different runs, and
we observed that the ANN-based upon Mix data evaluates to be best in both cases. We
obtain a 15% average improvement in acceptance rate after incremental placement by
using ANN trained with mixed data (P + S) compared to the ANN trained with a single
(P or S) data set.

Also, we have defined 3 hours as the upper run time limit for incremental
placement while noting the results. Since the mixed data-based ANN model evaluates
to be the best. We use this model to further benchmark the results against a random
position generation-based incremental placement algorithm. In this random positions-
based algorithm, the ANN model is replaced by the random position generator which
moves the Cm to random positions. The random position is checked for wire length
reduction and is accepted as a solution if the wire length reduces. Also, the new position
is checked for cell and net constraints before accepting it as a solution.

Tab. 5.1 shows the overall results with respect to TI expressed in terms of
equation 1.2. Wire length reduced is termed as Score (δWL) which is also equal to total
improvement (TI). Ntrialsacc is the number of trials that resulted in a movement actually
being accepted. The average Arate of the ANN-based algorithm is much high and Ntrials are
of the same order when compared to the random placement-based incremental placement
algorithm. This results in higher average total improvement TI (Arate× δWLPA×Ntrials

) for the ANN-based algorithm. ANN-based algorithm’s average TI is around 3 times the
random placement-based incremental placement algorithm’s average TI. A high δWLPA

indicates that the quality of the solutions provided by the ANN-based incremental placer
is much better than the random placement-based incremental placer.

Hence, as expected from the ANN model, it is able to achieve a number of trials
in a given run-time (Ntrials) of the same order as the inherently fast random position
generation-based algorithm. Also, the acceptance rate (Arate) is 5 times the random
placer and the wire length reduced per accepted movement (δWLPA) is 20% higher for
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the proposed incremental placement methodology.

This provides a better run time and QOR trade-off for the incremental place-
ment problem. The proposed algorithm/methodology can therefore provide a better so-
lution in terms of wire length in the same amount of run-time as compared to random
placement-based incremental placer.
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Chapter 6

Conclusions and Future Scope

The ANN-based approach is more directed/converging as compared to the random position-
based approach for incremental placement. Following are the conclusions that we can draw
from the obtained results.

1. We generate the training data for the ANN using two different algorithms which
have their own pros and cons. Both these algorithms are intentionally biased towards
realistic designs and an algorithm that is a combination of both models the real case
scenario more effectively.

2. Data generation is done independently of any pre-existing algorithms. This allows
us to generate any amount of data for training and testing the ANN. We can tweak
various variables of our algorithm to obtain data sets of different nature. This makes
this approach scalable.

3. This ANN-based incremental placer results in multiple times better wire length
reduction per movement and acceptance rate when compared to a random placer in
a given run time.

The major advantage of this methodology is that its run time is comparable to random
position-based incremental placer but with much better optimization capability.

We see a scope of improvement/expansion in various aspects of the proposed
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ANN-based incremental placement developed. Also, there is a scope of comparison against
some pre-existing conventional incremental placement algorithms. Following is the future
scope for the derived placer: -

1. Comparing the results for the ML-based incremental placer against the total im-
provement that would be provided by the incremental placer working with con-
ventional algorithms. The conventional algorithm is expected to arrive at a better
acceptance rate but the number of trials per unit time is expected to be lower.
Therefore, the overall TI is expected to be lower than the ML-based incremental
placer.

2. Embedding this incremental placer into open source tools that perform the complete
RTL to GDS flow.

3. Using CNN (Convolutional Neural Network) instead of ANN for deriving the in-
cremental placer. Using CNN is intuitive since we are working with a 2-D grid in
our problem formulation which can be handled in a better way by the CNN which
inherently works well with 2-D images and is commonly employed for the same.

4. We can partition the design into several parts and use multi-threading to run the
sliding window scan on each partition separately on each of the available CPU cores.
This would further increase the number of trials per unit time and hence the overall
QOR.
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Appendix A

Solution Directed Data generation

Algorithm 5: Data Generation - Solution Directed
Input: 1. slice, maximum Cells (numCellsmax) and, maximum nets (numNetsmax)
2. Number of samples to be generated maxSamples
3. List of scattering factors @scFactorList
Output: Training Data in CSV File named dataFile
START: INITIALIZE Ks, numSamples, scFactorIdx, numscFactors
while numSamples < maxSamples do

while Kwin > 2 do
while scFactorIdx < numscFactors do

numNetswin = numNetswinmax ;
while numNetswin > 2 do

connMat[numCellsmax][numNetsmax] = 0
slice.@cellList = PLACE_SLICE (slice.@cellList, Rs, Cs, cellm,
scFactorList[scFactorIdx]);

connMat = CONN_SLICE (connMat, numNets, numCells, m)
RANDOM_CONSTRAINTS (slice)
(@rowMinWL, @colMinWL) = MIN_WL_POS(design);
@minWLPos = (@rowMinWL, @colMinWL)
WRITE_DATA (slice, @minWLPos)
numSamples += SIZE (@minWLPos)
numNetswin–;

scFactorIdx++;
Kwin–;
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Appendix B

Problem Directed Data generation

Algorithm 6: Data Generation - Problem Directed
Input:-
1. Grid G of size Rwin rows, Cwin columns, Lwin layers, Max Number of Cells Kmaxwin

and, Maximum number of nets numNetswinmax

2. Number of samples to be generated maxSamples

3. List of scattering factors scFactorList

Output: Training Data in CSV File named dataFile
INITIALIZE: Kwin, numSamples, scFactorIdx, numscFactors

while numSamples < maxSamples do
while Kwin > 2 do

while scFactorIdx < numscFactors do
numNetswin = numNetsmaxwin ;
while numNets > 2 do

design = PLACE_SLICE (design, Kwin, numNetswin,
scFactorList[scFactorIdx]);

connMat = CONN_SLICE (connMat, numNets, numCells);
cstrMat = APPLY_CSTR (design);
ASSIGN_DEM (slice, cstrMat)
GENERATE_PLACEMENT_SCENARIOS (design, dataF ile);
numNetswin- -;

scFactorIdx++;
Kwin–;

numSamples++;
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