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ABSTRACT

KEYWORDS: Medical Cost ; Counterfactual Inference ; Explainability ; Deep

Neural Network

Machine learning (ML) models that accurately predict treatment effects and related

healthcare costs can bring significant efficiencies in the healthcare industry. These

models could help reduce fatalities resulting from incorrect treatment allocations and

contribute to cost-effective healthcare delivery, which is crucial for both developed and

developing nations. However, existing literature does not provide any comprehensive

framework that effectively estimates both treatment effect and the overall medical ex-

penditure while considering individual treatment effects. To address this gap, we pro-

pose CFMedNet, a pioneering counterfactual inference framework that jointly estimates

treatment effect and medical costs. This novel framework not only predicts the poten-

tial impact and costs of a given treatment and its counterfactual but also provides indi-

vidual treatment effects for both outcomes. However, a considerable challenge in the

adoption of such ML models in healthcare is their perceived ’black box’ nature due to

limited transparency in decision-making processes. Since medical professionals bear

the responsibility for their decisions, it’s crucial to have Explainable AI (XAI) models,

especially in sensitive domains like healthcare. As an innovative contribution, we intro-

duce a post-hoc explainer, GMM-LIME, specifically designed for multi-output causal

inference based counterfactual neural networks. This explainer offers crucial expla-

nations and interpretations of our proposed model, thereby improving its transparency

and applicability. This dual contribution of a comprehensive estimation framework and

in-depth explanatory tools, holds great potential to significantly progress personalized

healthcare, balancing economic efficiency with treatment efficacy. Our work represents

an integration of Causal Inference, Deep Learning, and XAI, with results obtained from

a semi-synthetic dataset.
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CHAPTER 1

INTRODUCTION

1.1 Causal Inference

Causal inference (Neal (2020) , Pearl (2010)), as its name suggests, involves studying

the underlying cause of a particular effect or outcome. It entails analyzing interventions

or treatments to determine if they have indeed caused the observed effect. Additionally,

it explores counterfactual scenarios (Höfler (2005), Molnar (2022)), exploring what

would happen in an alternative world with a different intervention. This field is highly

significant in various domains, and here are some new examples:

• Healthcare: (Shi and Norgeot (2022), Prosperi et al. (2020))
For assessing the effectiveness of different COVID-19 vaccines, by conducting
rigorous studies and comparing outcomes between individuals who have been
vaccinated and those who have not (control group), researchers can establish a
causal relationship between the vaccines and their impact on preventing COVID-
19. This enables them to determine which vaccines are more effective in provid-
ing protection against the virus and informing vaccination strategies for popula-
tion health.

• Education: (Kaur et al. (2019), Murnane and Willett (2011))
If researchers are interested in examining how different teaching methods affect
student performance, causal inference can assist them. By comparing outcomes
between classrooms that use different teaching approaches, researchers can estab-
lish a causal relationship between the teaching method and its impact on academic
achievement. This can help identify which teaching method is more effective in
improving student outcomes and inform best practices for educators.

• Policy Making: (Athey (2015), Kreif and DiazOrdaz (2019))
Let’s consider the scenario of policy making to address unemployment rates. Pol-
icymakers need to identify the key factors that contribute to high unemployment.
By using causal inference techniques to examine the relationships between differ-
ent variables and unemployment, policymakers can gain insights into the causal
factors driving joblessness. This knowledge empowers them to develop targeted
interventions and policies that have the potential to effectively reduce unemploy-
ment and promote economic growth.



1.1.1 Statistical Notations and Definitions in Causal Inference

Let’s introduce some notation for our discussion. The symbol T will be used to rep-

resent the random variable for treatment, Y to represent the random variable for the

outcome of interest, and X to represent the covariates. It’s important to note that our

focus will primarily be on situations where T is binary. However, it’s worth mentioning

that we can extend our methods to accommodate settings where T can take on more

than two values or where T is continuous.

In our context, we define the potential outcome (Rubin (2005)), denoted as Y (t),

which represents the outcome that would be observed if a particular treatment, denoted

as t, is applied. It’s important to note that potential outcomes differ from the observed

outcome in the sense that we do not observe all potential outcomes for each individual.

Instead, we can potentially observe any of the potential outcomes based on the value of

the treatment variable, T .

Let’s consider the variables for an individual in the population: Ti represents the

treatment received by the ith individual, Xi represents the covariates for that individual,

and Yi represents the observed outcome. In this context, the individual treatment effect

(ITE) (Jin et al. (2023), Shalit et al. (2017)) is defined as the difference between the

potential outcomes under different treatment conditions.

τi = Yi(1)− Yi(0) (1.1)

1.1.2 Fundamental Problem of Causal Inference

In practical real-world scenarios, it is important to acknowledge that only one outcome

is observed among the various potential outcomes (Imbens and Rubin (2015)). For ex-

ample, when comparing the effects of different vaccines, a patient can only receive one

vaccine, and thus only one potential outcome is observed based on the assigned treat-

ment. This poses a fundamental problem because if we cannot observe both potential

outcomes, namely Yi(1) and Yi(0), we cannot directly observe the causal effect, which

is the difference between these potential outcomes (Yi(1)− Yi(0)).
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The unobserved potential outcomes are referred to as counterfactuals because they

represent what would have happened under alternative treatment conditions. In essence,

they depict the outcomes that we cannot directly observe or measure. The existence of

counterfactuals makes causal inference challenging as we aim to estimate the causal

effects of treatments or interventions based on the observed data.

1.1.3 Solution to the Fundamental Problem

Average Treatment Effect

ATE (Imbens (2004), González Ramírez and Kilic (2019)) is calculated by averaging

ITEs, which are the differences in outcomes between different treatment conditions for

individuals. It provides an estimate of the overall treatment effect on the population.

τ = E[Yi(1)− Yi(0)] = E[Y (1)− Y (0)] (1.2)

By linearity of expectation:

τ = E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)] (1.3)

The associational difference between the two outcomes is defined as follows:

E[Y | T = 1]− E[Y | T = 0] (1.4)

The ATE (average treatment effect)(1.2) is a causal measure, while the associational

difference is a statistical measure. They are not generally equal because association or

correlation does not always imply causation. For example,

• It is important to recognize that a high correlation exists between the number of
people drowning in swimming pools and the number of films featuring Nicolas
Cage each year. However, it would be erroneous and illogical to conclude that
Nicolas Cage is responsible for all those deaths. Correlation alone does not imply
causation, and it is crucial to exercise caution and consider other relevant factors
before attributing a causal relationship.

• In a study, it was observed that individuals who sleep with their shoes on expe-
rience severe headaches the following morning. However, it would be erroneous
to conclude that wearing shoes in bed directly causes headaches. Upon further
examination, it was discovered that people tend to sleep with their boots on when

3



they are intoxicated or drunk. The high alcohol consumption from the previous
night is more likely to be the cause of the headaches, rather than the act of wear-
ing shoes while sleeping. In this scenario, the common factor is drinking at night,
which is a confounding factor that influences both the behavior of sleeping with
shoes on and the occurrence of morning headaches. This example is depicted in
Fig. (1.1).

Figure 1.1: In the causal structure, the act of drinking the night before serves as a com-
mon cause for both waking up with headaches and sleeping without taking
shoes off.

Nevertheless, we can equate (1.3) with (1.4) under certain conditions each of which is

explained in subsequent sections.

Ignorability and Exchangeability

The condition of ignorability (Greenland and Robins (2009)) asserts that the potential

outcomes are independent of the treatment assignment. In simpler terms, this means

that the treatment assignment is completely random, and the potential outcomes are not

influenced by the specific treatment received. Mathematically, this condition can be

expressed as follows:

Y (1), Y (0) ⊥ T (1.5)

This simplifies the average treatment effect (ATE) (1.2) to:

E[Y (1)]− E[Y (0)] = E[Y (1) | T = 1]− E[Y (0) | T = 0] (1.6)

The condition of ignorability plays a pivotal role in addressing the issue of con-

founding variables, which can hinder the equivalence between the associational dif-

ference (a statistical quantity) and the average treatment effect (a causal quantity), as

discussed earlier. By assuming the condition of ignorability, we can eliminate the in-

fluence of confounding variables and establish a more accurate estimation of the causal

4



effect of the treatment. This condition helps ensure that the treatment assignment is

independent of any potential confounders, allowing us to draw valid causal inferences

based on the observed data.

Figure 1.2: The presence of a causal relationship between the variable X and the vari-
able Y is confounded by the variable T .

Figure 1.3: In a causal structure where ignorability is upheld, there is no causal link
from X to T , indicating the absence of confounding.

The condition of exchangeability states that the treatment groups, such as groups A

and B, are interchangeable. In other words, if we were to swap the groups, the partici-

pants who were originally in treatment group A would experience the same outcomes as

the participants in the new treatment group A, and likewise for group B. This condition

implies that the two treatment groups are comparable and similar in all aspects, except

for the specific treatment received. By assuming exchangeability, we can assume that

any differences in outcomes between the treatment groups are solely due to the treat-

ment itself, rather than other factors or characteristics of the groups. This allows for a

more valid comparison of treatment effects.

In mathematical sense, the condition of exchangeability can be expressed as follows:

E[Y (1) | T = 1] = E[Y (1) | T = 0]

E[Y (0) | T = 1] = E[Y (0) | T = 0]

5



which implies,

E[Y (1) | T = t] = E[Y (1)] (1.7)

E[Y (0) | T = t] = E[Y (0)] (1.8)

Equations 1.6, 1.7 and 1.8 evidently imply that the condition of exchangeability and

ignorability are mathematically the same.

Conditional Exchangeability and Unconfoundedness

It is not realistic to suppose that treatment groups in observational data are completely

interchangeable. In other words, we cannot expect the treatment groups to be identical

in all relevant characteristics except for the treatment itself. However, by controlling for

key factors through conditioning, we can achieve a form of interchangeability among

subgroups. LetX ′ represent a subset of covariatesX conditioned on for unconfounded-

ness. In this case, the concept of conditional exchangeability or ignorability is defined

as follows:

(Y (1), Y (0)) ⊥ T | X ′ (1.9)

Conditional exchangeability enables the investigation of the average treatment effect

within specific levels of conditioned covariates. It recognizes that while the treatment

and potential outcomes may be related without conditioning, they are not associated

within those specific levels of X . This concept helps address confounding and pro-

vides a framework for analyzing treatment effects while considering the influence of

covariates, as:

E[Y (1)− Y (0) | X] = E[Y (1) | X]− E[Y (0) | X]

= E[Y (1) | T = 1, X]− E[Y (0) | T = 0, X]

= E[Y | T = 1, X]− E[Y | T = 0, X]

(1.10)

We obtain 1.10 through linearity of expectation and conditional exchangeability

applied in the same order.

6



Positivity

Positivity, in the case of binary treatment, requires that every subgroup defined by con-

ditioned covariates has a mixture of treated and control participants. This ensures that

all possible treatment options are observed within each subgroup, allowing for a com-

prehensive analysis of treatment effects across the entire population. The condition

of positivity guarantees that the treatment assignment is not overly restricted to spe-

cific subgroups, promoting a more balanced and inclusive evaluation of treatment out-

comes.Mathematically,

0 < P (T = 1 | X) < 1 (1.11)

No Interference

The notion of no interference indicates that the outcome of every individual is deter-

mined only by the treatment provided to that individual and is unaffected by the treat-

ment of someone else. Mathematically,

Yi(t1, t2, . . . , ti−1, ti, ti+1, . . . , tn) = Yi(ti) (1.12)

Consistency

The assumption that the outcome observed Y is the potential outcome under the ob-

served treatment T is known as consistency. Mathematically,

T = t⇒ Y = Y (t) (1.13)

which implies

Y = Y (T ) (1.14)

1.1.4 Average Treatment Effect Estimation

Theorem 1.1 (Adjustment Formula) If the assumptions of unconfoundedness, positiv-

ity, consistency and no interference hold, the average treatment effect is:-

E[Y (1)Y (0)] = EX [E[Y |T = 1, X]− E[Y |T = 0, X]] (1.15)

7



Proof.

E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)]

= EX [E[Y (1)|X]− E[Y (0)|X]]

= EX [E[Y (1)|T = 1, X]− E[Y (0)|T = 0, X]]

= EX [E[Y |T = 1, X]− E[Y |T = 0, X]]

1.2 Explainable AI

Artificial Intelligence (AI) has become an influential player in multiple sectors of the

global economy, and the field of healthcare is no exception. The development of ad-

vanced machine learning algorithms has unlocked new possibilities in disease diag-

nosis, treatment personalization, and healthcare resource management. However, the

growing adoption of AI in healthcare comes with a unique set of challenges, the most

notable among them being the ’black box’ nature of complex models. This obscu-

rity results in a lack of transparency and understanding, which could hinder the trust-

worthiness of AI solutions, especially in healthcare, where decisions can have life-

altering consequences. This concern has spurred the growth of a new sub-field known

as Explainable AI (XAI) (Xu et al. (2019), Gunning et al. (2019), Doran et al. (2017),

Holzinger (2018)).

XAI refers to methods and techniques in the application of AI, such that the resulting

models are understandable and interpretable by human experts. It addresses the trans-

parency issue by revealing the inner workings of AI models and making the results they

produce easier to understand. XAI focuses on three primary aspects: interpretability,

explainability, and fairness.

Interpretability (Gilpin et al. (2018)) refers to the degree to which a human can

understand the cause of a decision. In the context of healthcare, this could mean under-

standing why a particular treatment was recommended by an AI model.

Explainability(Belle and Papantonis (2021), Roscher et al. (2020)), on the other

hand, refers to the ability to describe in understandable human terms why a model made

a certain prediction. For instance, if an AI model predicted a high risk of diabetes for

8



a patient, explainability would involve outlining the patient characteristics and patterns

that led to this conclusion.

Fairness (Arrieta et al. (2020), Hagras (2018)) in XAI concerns minimizing bias

and ensuring equal treatment across different groups in the data. This can involve steps

to remove or account for bias in the data, as well as designing models that treat similar

individuals similarly.

In healthcare, the role of XAI is pivotal. It empowers clinicians to comprehend AI

outcomes, reinforcing their decision-making processes. Furthermore, it fosters trust in

patients, who can better understand and accept AI-driven medical decisions. XAI also

contributes towards regulatory compliance and medical ethics by ensuring fairness and

transparency.

From enhancing patient trust to improving model accuracy and efficiency, XAI is

revolutionizing the use of AI in healthcare. By demystifying AI models and providing

clear, understandable explanations of their decisions, XAI paves the way for AI to fulfill

its potential in delivering more personalized, effective, and accountable healthcare.

1.2.1 Post-hoc XAI

Post-hoc explainable AI refers to the methods and techniques used to explain the de-

cisions or predictions made by AI models after they have been trained. These meth-

ods aim to provide retrospective explanations by examining the model’s internal work-

ings, such as feature importance, or by generating additional explanations based on the

model’s behavior for a given input.

Some post-hoc methods, like LIME (Ribeiro et al. (2016)), determine the impor-

tance of a feature by perturbing real samples, watching how the ML model’s output

changes, and then building a local simple model that closely resembles the original

model’s behavior close to the real samples. These approaches have one drawback:

they generate surrounding instances by randomly perturbing feature values, without

taking into account the local distribution of features or the density of nearby class la-

bels (Guidotti et al. (2018)). These methods support the predictions of opaque models

through feature attribution.

As we delve deeper into this thesis, we will explore the intricacies of XAI, its
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methodologies, and its impact on the healthcare industry. The following chapters aim

to provide a comprehensive understanding of XAI’s potential to transform healthcare

and the challenges that lie ahead.

1.3 Problem Definition

1.3.1 Treatment Effect and Medical Cost Estimation

The escalating healthcare costs and the necessity for effective treatment present signifi-

cant challenges within the healthcare system. A solution lies in the precise estimation of

treatment effects and corresponding medical costs, which emerges as a critical research

direction. Current methods for these estimations often have limitations, such as bias,

and inadequate consideration of patient heterogeneity, which is vital for personalized

care. The estimation of treatment impact is pivotal for patient outcomes, healthcare sys-

tems, policymakers, and payers. It enables identifying effective medical interventions,

enhancing clinical decision-making, designing evidence-based treatment protocols, and

improving health outcomes. Simultaneously, predicting healthcare costs is strategically

important for healthcare providers, payers, and patients. It aids in informed decision-

making, managing resources, planning services, policy formulation, risk adjustment,

and budgeting. However, the complexities of healthcare data pose challenges in cost

estimation, demanding innovative, accurate, and interpretable methodologies. This re-

search is thus a pressing imperative, impacting healthcare efficiency, care quality, and

patient experience.

1.3.2 Optimal Treatment Selection

The shift towards personalized patient care emphasizes optimal treatment selection, a

process of identifying the most suitable treatment for a patient based on their specific

health characteristics. However, due to the intricacy of health variables, the dynamic

nature of diseases, and the vast spectrum of treatment options, this process presents a

complex challenge. Yet, its importance is undeniable. Optimal treatment selection im-

proves health outcomes, reduces side effects, enhances the quality of life, and boosts

treatment adherence for patients. It also enhances clinical decision-making and health-

care delivery for providers by minimizing trial-and-error prescribing, reducing adverse
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drug reactions, and helping navigate the treatment landscape. At a system level, it

addresses major healthcare challenges such as rising costs, uneven care quality, and

inefficient resource allocation, contributing to the sustainability of the healthcare sys-

tem. Despite its significance, optimal treatment selection is fraught with difficulties,

necessitating sophisticated decision-making tools and approaches. The development of

innovative methodologies to support healthcare professionals in making complex deci-

sions is a compelling need, marking a critical direction for current research in medical

science.

1.3.3 Explainable artificial intelligence(XAI)

This thesis explores the importance of explainable AI in the implementation of deep

learning models for estimating treatment effects and medical costs through causal infer-

ence in healthcare research. Deep learning techniques offer accurate predictions, but the

black-box nature of these models hinders transparency and trust. Explainable AI meth-

ods enhance interpretability, allowing researchers to understand the factors influencing

treatment effects and costs, identify biases, and communicate findings effectively. In-

terpretable models ensure accountability and trust by providing justifications for predic-

tions, aiding decision-making by clinicians and patients. Furthermore, explainable AI

mitigates biases and unintended consequences by assessing fairness, ethics, and safety.

By integrating explainable AI techniques, researchers and practitioners can leverage

the power of deep learning while maintaining ethical standards and improving patient

outcomes in healthcare decision-making.
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CHAPTER 2

RELATED WORK

2.1 Literature Review

2.1.1 Causal Inference

Causal inference plays a vital role in multiple domains, including healthcare, social sci-

ences, and economics, as it involves the fundamental task of understanding cause-and-

effect relationships. Traditional causal inference methods often rely on assumptions and

limited flexibility. However, deep learning-based approaches have emerged as promis-

ing alternatives, offering the potential to capture complex causal relationships without

stringent assumptions. In this literature review, we will focus on three notable deep

learning-based causal inference models. Deep learning-based causal inference mod-

els, such as TARNet, Dragonnet and CFRNet, offer promising approaches to estimate

treatment effects and tackle complex causal inference problems. These models leverage

the flexibility and power of deep neural networks to capture intricate relationships and

handle challenges like unobserved confounders.

TARNet:

The Treatment Agnostic Regression Network (TARNet) proposed by Shalit et al. (2017)

addresses the challenge of estimating individual treatment effects. TARNet leverages

the power of deep neural networks to learn a treatment effect model that is invariant to

the specific treatment assignment mechanism. It achieves this by using a novel "dou-

bly robust" estimator that combines an outcome regression and a treatment propensity

model. By estimating both models simultaneously, TARNet can accurately estimate

the causal effect of a treatment on an individual’s outcome. The authors also provide

theoretical insights by establishing generalization bounds, ensuring the model’s perfor-

mance on unseen data. These bounds give a measure of confidence in the estimated

treatment effects. TARNet’s flexibility, scalability, and generalizability make it a valu-



able tool for causal inference tasks, particularly in domains where treatment assignment

mechanisms may vary.

Dragonnet:

Dragonnet, proposed by Shi et al. (2019), is another deep learning-based causal infer-

ence model that adapts neural networks for estimating treatment effects. Dragonnet

focuses on the scenario where confounding variables, which affect both treatment as-

signment and outcome, are unobserved or partially observed. It addresses this chal-

lenge by leveraging probabilistic modeling and the concept of doubly robust estima-

tion. Dragonnet uses a variational autoencoder (VAE) to learn a representation of the

confounders and combines this with a neural network-based outcome regression and

treatment propensity model. By jointly optimizing these models, Dragonnet can esti-

mate treatment effects robustly, even in the presence of unobserved or partially observed

confounders. The authors demonstrate the effectiveness of Dragonnet through experi-

ments on real-world datasets.

Counterfactual Regression Network (CFRNet):

Shalit et al. (2017) proposed CFRNet framework for estimation of individual treatment

effect in balanced representations. We discuss the approach briefly since our work is an

extension of this framework and all the assumptions involved hold true for our work as

well.

The notations used and assumptions involved are defined as follows:

• Space of covariates X , is a subset of d-dimensional real space Rd i.e. X ⊂ Rd

• The outcome space Y ⊂ Rd

• The treatment a is binary in nature {0, 1}

• It is assumed that strong ignorability (1.9) and positivity (1.11) holds.

• The covariates X are mapped to a representation space R using the function
ϕ : X → R. It is assumed that ϕ is a one-to-one, twice differentiable function.

• The hypothesis is defined as h : R × {0, 1} → Y while the loss function is
L : Y × Y → R+

Various definitions involved in the paper are as follows:
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• The treatment effect for an instance x is obtained using:

τ (x) = E [Y1 − Y0|(x)] (2.1)

• The hypothesis is proposed as f : X×{0, 1} → Y such that f(x, t) = h(ϕ(x), a).

• The estimated treatment effect of hypothesis f for an instance x is :

τ̂ (x) = f(x, 1)− f(x, 0) (2.2)

• The expectation of square of difference between estimated and actual treatment
effect , also called as expected Precision in Estimation of Heterogeneous Effect
(PEHE) (Hill (2011)) loss is calculated as:

ϵPEHE =

∫
X
(τ̂f(x)− τ(x))2p(x)dx (2.3)

• In order to compute the distance between treatment and control distributions, a
probability distribution metric called as Integral Probability Metric (IPM) is used
which is defined as :

IPMG = sup
g∈G

|
∫
S

g(s)(p(s)− q(s))ds | (2.4)

where p and q are two probability density functions defined over S ⊂ Rd and G
is a family of functions such that g : X → R.

The primary objective of CFRNet is to identify a representation ϕ : X → R and hy-

pothesis h : R× {0, 1} → Y that minimises the PEHE loss ϵPEHE. In order to achieve

this, Shalit et al. (2017) utilized a deep learning architecture to simultaneously model

ϕ(x) and h(ϕ(x), a). The covariates X are transformed to representation space, ϕ(x)

which then act as an input to the hypothesis layer segmented into two branches, h1 and

h0 based on whether treatment assigned is 1 or 0. Also, the difference between the

treatment and control distribution is minimized using an IPM term. The architecture is

represented in Fig. (2.1).

Figure 2.1: CFRNet Architecture
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The optimal solution is obtained by minimizing loss function as depicted in equation

(2.5) using stochastic gradient descent where the error is backpropagated via both hy-

pothesis and representation networks.

L =
β

n

n∑
i=1

siL(h(ϕ(xi), ai), yi) + λ · R(h) + γ · IPMG({ϕ(xi)}i:ai=0, {ϕ(xi)}i:ai=1)(2.5)

where si = ai
2v

+ 1−ai
2(1−v)

,v = 1
n

∑n
i=1 ai and R(·) is a model complexity term. Also v

refers to the proportion of treated instances (ai = 1), {β, λ, γ} are the hyperparameters

and L(., .) is squared error loss. The IPM term utilized Maximum Mean Discrepancy

(Sriperumbudur et al.Sriperumbudur et al. (2012)) distance metric.

2.1.2 Medical Cost Prediction

Machine learning techniques have seen extensive use in healthcare, spanning from dis-

ease prediction to treatment recommendations and healthcare cost forecasting. Predict-

ing healthcare costs using deep learning has been a burgeoning field in recent years,

capitalizing on the rise in available medical data and the surge in computational re-

sources. These predictive models are crucial in forecasting individual and population

health expenditures, informing healthcare policies, and optimizing resource allocation.

Ma et al. (2019) presented a deep learning framework based on the LSTM archi-

tecture to predict individual patient healthcare costs. Their work differed from previous

studies by capturing temporal relationships in patients’ medical histories. Using admin-

istrative claims data, the LSTM model significantly outperformed traditional regression

methods and was particularly adept at identifying high-cost patients. The authors Sun

et al. (2020) introduced CostNet, a novel deep learning framework designed specif-

ically for healthcare cost prediction. CostNet leverages attention mechanisms in its

architecture, allowing it to prioritize relevant medical events when predicting costs.

They demonstrated the model’s superior performance on two large healthcare datasets,

outperforming other deep learning models and traditional machine learning techniques.

Although Wang et al. (2020) study was not specifically focused on cost prediction, it

featured an innovative use of Convolutional Neural Networks (CNNs) for chronic dis-

ease diagnosis, which is inherently linked to healthcare costs. This work demonstrates

the flexibility and potency of CNNs in analyzing electronic health records. Despite

being primarily diagnostic, their model has substantial implications for cost prediction
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by improving early diagnosis and thus impacting subsequent healthcare costs.Kwon

and Kim (2021) addressed healthcare cost prediction by applying Gated Recurrent Unit

(GRU) networks. Their model showcased the ability to extract and utilize both static

features (like patient demographics) and dynamic features (like medical procedures)

from medical records, leading to significantly improved prediction accuracy. The au-

thors highlighted the importance of considering temporal dynamics in patient data when

predicting healthcare costs.

In their study, Mateo et al. (2021) utilized the Extreme Gradient Boosting (XG-

Boost) algorithm to predict the most effective treatment for patients with acute bron-

chiolitis, a common and potentially severe respiratory disease in children. The authors

demonstrated the algorithm’s effectiveness in understanding complex interdependen-

cies among numerous patient variables, enabling accurate and personalized treatment

predictions. In particular, the XGBoost model surpassed traditional machine learning

techniques in terms of predictive performance, while also ensuring interpretability via

feature importance scores. This study underscores the potential of XGBoost in person-

alized medicine, particularly in the context of acute diseases where rapid and accurate

treatment decisions are critical. In the research Tong et al. (2021), the authors explored

the use of Bayesian networks and regression methods for predicting healthcare treat-

ment costs. This study demonstrates an effective combination of probabilistic graphical

models (Bayesian networks) and regression methods, leveraging the strengths of both

approaches. Bayesian networks provided a comprehensive understanding of the prob-

abilistic relationships among various medical variables. On the other hand, regression

methods allowed for quantifying the relationships between these variables and the treat-

ment costs. Through this synergy, the model offered robust cost predictions that are crit-

ical for healthcare planning and resource allocation. Moreover, the study emphasized

the importance of interpretability. Both Bayesian networks, with their visual represen-

tation of variable relationships, and regression methods, with their clear mathematical

relationships, ensure transparency and interpretability in cost predictions.

2.1.3 Post-hoc Explanation methods

As machine learning models become increasingly complex, there is a growing need

for methods to interpret their decisions - a field of study known as explainable artifi-

cial intelligence (XAI). Post-hoc explanation methods are particularly valuable as they
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elucidate the reasoning of a model after it has made a prediction. We’ll be briefly dis-

cussing some popular post-hoc explanation methods below.

LIME

The LIME (Local Interpretable Model-Agnostic Explanations) framework is widely

recognized as a popular approach for generating interpretable explanations for machine

learning models after they have been trained. This framework offers explanations by

assigning feature importance scores as its output, which helps in understanding the

model’s decision-making process. The fundamental algorithm for LIME is depicted in

Fig. (2.2).

Figure 2.2: Algorithm for LIME (Ribeiro et al. (2016))

Mathematically, LIME (Local Interpretable Model-Agnostic Explanations) can be

described as follows. Let the sample to be explained be denoted as xk. The main ob-

jective of locally interpretable model-agnostic methods is to provide feature importance

specific to xk. To achieve this, LIME first creates a surrogate dataset by sampling in the

vicinity of xk. This surrogate dataset is denoted as D, where each entry xi, yi represents

a feature vector xi in Rn×1 and its corresponding target variable yi in R for the i-th

sample in the locality of xk. In other words, D can be represented as D ∈ Rm×(n+1),

where m is the number of samples in the surrogate dataset.

The target values in D are obtained using the given black-box prediction model

denoted as fp, such that fp(xi) = yi. To explain the decisions of fp for the instance

xk, an explainable AI method employs an explainer module fe, which is trained on the

surrogate dataset D using a fixed optimization objective.

In LIME, sparse linear models are used to explain the black-box model fp(·). It

considers a class of models denoted as G, and utilizes a locally weighted square loss
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function denoted as L(·). The goal is to find a sparse linear model g ∈ G that min-

imizes the loss function L(·), where the model’s complexity is controlled through a

regularization parameter. This sparse linear model serves as an interpretable approx-

imation of the black-box model and provides feature importance scores, enabling the

understanding of the decision-making process of fp for the instance xk.

L(fp, g, πx) =
∑

z,z′∈Z

πx(z)(fp(z)− g(z’))2 (2.6)

In LIME, a sparse linear model g(·) ∈ G is employed, where x ∈ Rn represents the

instance being explained. The perturbed sample z’ is created by randomly selecting a

fraction of non-zero elements from x, and z ∈ Rn represents the recovered sample in

the original representation.

To create the surrogate dataset Z , an exponential kernel π

x(z) = exp (−D(x, z)2/σ2) is used, where D(·, ·) is a distance function and σ is the

width of the kernel. The value of σ is chosen heuristically as it is not known for a given

dataset. The samples around the non-zero values of x are randomly drawn to obtain

a perturbed sample z’, along with the associated labels obtained using the black-box

model fp(·). This perturbed dataset Z is then used to optimize Equation (2.6), which

leads to obtaining an explanation within the LIME framework.

The algorithm outlined in Fig.(2.2) can be subdivided into three key steps for a

comprehensive understanding:

1. Sampling and Prediction:
• Firstly, samples are generated around a specific feature set using a similarity

kernel. This kernel function aids in distinguishing samples that differ from
the given feature set.

• Next, the prediction model is utilized to obtain target values for the gen-
erated sample sets. This step provides an approximation of the model’s
behavior on these samples.

2. Feature Selection:
• After obtaining the target values, a feature selection technique such as LASSO

(Least Absolute Shrinkage and Selection Operator) or forward selection is
applied to identify the most relevant features.

• These techniques help in choosing the top K features that have the strongest
impact on the model’s predictions. By selecting a subset of features, the
algorithm aims to provide a concise and interpretable explanation.
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3. Output Interpretation:
• The final step involves presenting the selected top K features in a meaningful

and interpretable manner.

• This output aims to provide insights into the factors that significantly influ-
ence the model’s predictions, aiding in the understanding and interpretation
of the model’s decision-making process.

By following these three steps, the algorithm aims to generate explanations that

highlight the most important features and their impact on the model’s predictions. It

facilitates the interpretability and comprehensibility of the machine learning model,

helping users gain insights into the key factors driving the model’s behavior.

KernelSHAP (SHapley Additive exPlanations)

KernelSHAP (SHapley Additive exPlanations) (Lundberg and Lee (2017)) is an inter-

pretable machine learning framework that provides explanations for individual predic-

tions by assigning importance values to each feature. It is based on the concept of

Shapley values from cooperative game theory and utilizes a kernel-based approach to

estimate feature contributions. Kernel SHAP offers a flexible and model-agnostic solu-

tion for generating reliable and meaningful explanations.

Mathematically, Kernel SHAP can be described as follows. Let fp represent the

black-box prediction model that takes an input instance x ∈ Rn and outputs a prediction.

The goal of Kernel SHAP is to estimate the Shapley values ϕi for each feature xi of x,

indicating the contribution of that feature to the prediction.

To compute the Shapley values, Kernel SHAP creates a set of coalitions, which are

subsets of features. Each coalition S is a combination of features excluding xi, and it

represents all possible feature subsets that exclude the feature xi. The coalitions are

randomly sampled to generate reference instances zS , which are similar to the input x

but with different combinations of features. The reference instances are used to approx-

imate the expected prediction difference by comparing the model’s predictions for the

reference instances with the predictions for the input instance.

The Shapley value ϕi for feature xi is computed as the average marginal contribution

of the feature across all coalitions. It measures the change in the prediction caused

by including feature xi compared to the average prediction change when considering

different feature subsets. This process is repeated for each feature, resulting in a set of
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Shapley values that quantify the impact of each feature on the prediction.

The kernel function in Kernel SHAP plays a crucial role in determining the similar-

ity between instances and coalitions. It defines the weighting scheme used to estimate

the contribution of each coalition to the Shapley value. A common choice is the Gaus-

sian kernel, given by πx(zS) = e−
||x−zS ||2

σ2 , where σ controls the width of the kernel.

The kernel assigns higher weights to coalitions that are closer to the input instance,

reflecting their greater relevance to the prediction.

By applying Kernel SHAP, explanations can be obtained at the individual prediction

level, allowing users to understand the importance of each feature in the context of a

specific prediction. These feature importance values provide valuable insights into the

factors influencing the model’s decision-making process and enhance the interpretabil-

ity of complex machine learning models.

We observe that significant strides have been made in developing post-hoc explana-

tion methods for machine learning whether by unifying various interpretation methods,

incorporating interpretability into the learning process, or using prior beliefs to shape

model learning, these contributions offer novel approaches to illuminate the ’black box’

of machine learning. As the field continues to evolve, these foundational works will un-

doubtedly guide future research in the quest for greater transparency and accountability

in AI.

2.2 Novelty

In existing literature, no single framework reliably estimates both treatment effect and

the total medical expenditure incurred. Our research addresses this lacuna by propos-

ing an innovative counterfactual inference frameworks. This framework allows for a

joint estimation of the treatment effect and medical cost, facilitating balanced repre-

sentations. Furthermore, we break new ground by introducing a post-hoc explainer,

specifically designed for a multi-output causal inference based counterfactual neural

networks. This explainer provides valuable explanations and interpretations of our pro-

posed model, enhancing its transparency and utility. This two-fold novel contribution

– a comprehensive estimation framework and a detailed explanatory tool – holds the

potential to significantly advance the field of personalized healthcare, promoting both

economic efficiency and treatment efficacy.
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CHAPTER 3

METHODOLOGY

Figure 3.1: Complete work Methodology.

We propose a counterfactual inference-based framework, CFMedNet for jointly es-

timating treatment outcomes and associated medical costs. Our framework incorporates

multi-objective optimization and introduces an explanation method: GMM LIME. We

conduct experiments on a semi-synthetic dataset generated through specific processes,

providing detailed explanations of each component in subsequent sections. By lever-

aging counterfactual inference, multi-objective optimization, and explanation meth-

ods, our framework offers insights into treatment effectiveness, costs, and interpretable

decision-making. The overall methodology is depicted in Fig. (3.1).

3.1 CFMedNet

We propose an approach that reliably estimates the treatment efficacy and medical cost

efficiency for patients. This work is an extension of CFRNet framework with an addi-

tional hypothesis layer used to model the associated medical costs. The assumptions of



positivity (1.11) and strong ignorability (1.9) in CFRNet holds for our case also. Fur-

ther, we assume that the censoring is random. The terminologies and notations used in

this work are defined as :-

• We define a representation mapping of covariates X to space R using one-to-one,
twice differentiable function ϕ : X → R. Also, let ψ : R → X be the inverse
function of ϕ, such that (ψ(ϕ(x))) = x for all x ∈ X

• The outcome space Y , C ⊂ R and the treatment a is binary in nature { 0,1}.
The outcome space in CFRNet refers to the range of possible outcomes or pre-
dictions that the model can generate. By defining two outcome spaces for our
proposed architecture i.e CFMedNet, we allow the model to provide separate
predictions or estimates for each category within those outcome spaces. This is
quite beneficial when we want to analyze and understand the differential effects
of treatments or interventions on different outcome categories.

• We define two hypothesis:
h1 : R× {0, 1} → Y
h2 : R× {0, 1} → C
Here h1, maps the input space R (which represents the features or covariates)
along with a binary treatment indicator {0, 1} to the outcome space Y , while h2,
maps the input space along with a binary treatment indicator to the outcome space
C.
By defining two hypotheses and corresponding outcomes in CFMedNet, the model
estimates both treatment effects and associated costs. This approach assesses the
impact of a treatment in terms of effectiveness and costs. Incorporating both
outcomes allows CFMedNet to provide predictions for both aspects, enabling a
comprehensive analysis of the treatment’s impact on effectiveness and economic
implications.

• The respective loss functions are :
L1 : Y × Y → R+

L2 : C × C → R+

where both the losses are root mean squared error (RMSE) loss functions.

Definition 3.1. Let pa=1(x) := p(x|a = 1) and pa=0(x) := p(x|a = 0) be the treatment

and control distributions respectively.

Definition 3.2. Let pϕ be the distribution induced by ϕ over R. Then pϕ
a=1(r) :=

pϕ(r|a = 1) and pϕa=0(r) := pϕ(r|a = 0) are the treatment and control distributions ϕ

induced over R.

Definition 3.3. Given the hypothesis h1 and h2, the respective expected loss for an

instance and treatment pair (x, a) is:

l1h,ϕ(x, t) =

∫
Y
L(Yt, h1(ϕ(x), a))p(Yt|x)dYt (3.1)

l2h,ϕ(x, t) =

∫
C
L(Ct, h2(ϕ(x), a))p(Ct|x)dCt (3.2)

22



Definition 3.4. ϵF1 and ϵCF1 denote the expected factual and counterfactual losses of

h1 and ϕ, defined as:

ϵF1(h1, ϕ) =

∫
X×{0,1}

l1h,ϕ(x, a)p(x, a)dxda (3.3)

ϵCF1(h1, ϕ) =

∫
X×{0,1}

l1h,ϕ(x, a)p(x, 1− a)dxda (3.4)

Definition 3.5. ϵF2 and ϵCF2 denote the expected factual and counterfactual losses of

h2 and ϕ, defined as:

ϵF2(h2, ϕ) =

∫
X×{0,1}

l2h,ϕ(x, a)p(x, a)dxda (3.5)

ϵCF2(h2, ϕ) =

∫
X×{0,1}

l2h,ϕ(x, a)p(x, 1− a)dxda (3.6)

Definition 3.6. On similar lines, the expected losses for treatment and control distribu-

tions are defined as:

ϵF1
a=1(h1, ϕ) =

∫
X
l1h,ϕ(x, 1)p

a=1(x)dx (3.7)

ϵF1
a=0(h1, ϕ) =

∫
X
l1h,ϕ(x, 0)p

a=0(x)dx (3.8)

ϵF2
a=1(h2, ϕ) =

∫
X
l2h,ϕ(x, 1)p

a=1(x)dx (3.9)

ϵF2
a=0(h2, ϕ) =

∫
X
l2h,ϕ(x, 0)p

a=0(x)dx (3.10)

ϵCF1
a=1(h1, ϕ) =

∫
X
l1h,ϕ(x, 1)p

a=0(x)dx (3.11)

ϵCF1
a=0(h1, ϕ) =

∫
X
l1h,ϕ(x, 0)p

a=1(x)dx (3.12)

ϵCF2
a=1(h2, ϕ) =

∫
X
l2h,ϕ(x, 1)p

a=0(x)dx (3.13)

ϵCF2
a=0(h2, ϕ) =

∫
X
l2h,ϕ(x, 0)p

a=1(x)dx (3.14)

Let v := p(a = 1) be the fraction of population that has been treated.

Since p(x, a) = v · pa=1(x) + (1v) · pa=0(x), we obtain the results as stated in Lemma

3.1 using Definition (3.4) and Definition (3.6).

23



Lemma 3.1.
ϵF (h1, h2, ϕ) = v · (ϵa=1

F1 (h1, ϕ) + ϵa=1
F2 (h2, ϕ))

+(1− v) · (ϵa=0
F1 (h1, ϕ) + ϵa=0

F2 (h2, ϕ))
(3.15)

ϵCF (h1, h2, ϕ) = (1− v) · (ϵa=1
CF1(h1, ϕ) + ϵa=1

CF2(h2, ϕ))

+v · (ϵa=0
CF1(h1, ϕ) + ϵa=0

CF2(h2, ϕ))
(3.16)

In Lemma 3.1, we postulate that the overall expected treated and control loss is a linear

combination of both the respective hypothesis losses.

Lemma 3.2. Let ϕ : X → R is an invertible representation with ψ as the inverse func-

tion. The distributions pa=1
ϕ and pa=0

ϕ are as defined in Definition 3.1. Let v := p(a = 1)

be the fraction of population that has been treated. Assume G is a family of func-

tions such that g : R → R and IPMG(., .) refers to the integral probability met-

ric induced by G. Let h1 and h2 are the two hypothesis as defined earlier. Also, let

there exists a constant Bϕ > 0 such that for a given treatment, a = {0, 1}, the function

g(r, a) := 1
Bϕ

· (l1h,ϕ(ψ(r), a) + (l2h,ϕ(ψ(r), a)) ∈ G. We obtain:

ϵCF (h1, h2, ϕ) ≤ (1− v){ϵa=1
F1 (h1, ϕ) + ϵa=1

F2 (h2, ϕ)} · v{ϵa=0
F1 (h1, ϕ) + ϵa=0

F2 (h2, ϕ)}

+Bϕ · IPMG(p
a=0
ϕ , pa=1

ϕ )

(3.17)

Proof.

ϵCF (h1, h2, ϕ)− (1− v) · {ϵa=1
F1 (h1, ϕ) + ϵa=1

F2 (h2, ϕ)} − v · {ϵa=0
F1 (h1, ϕ) + ϵa=0

F2 (h2, ϕ)}

= (1− v) · {ϵa=1
CF1(h1, ϕ) + ϵa=1

CF2(h2, ϕ)}+ v · {ϵa=0
CF1(h1, ϕ) + ϵa=0

CF2(h2, ϕ)}

− (1− v) · {ϵa=1
F1 (h1, ϕ) + ϵa=1

F2 (h2, ϕ)} − v · {ϵa=0
F1 (h1, ϕ) + ϵa=0

F2 (h2, ϕ)}
(3.18)

= (1− v) · {ϵa=1
CF1(h1, ϕ) + ϵa=1

CF2(h2, ϕ)− ϵa=1
F1 (h1, ϕ)− ϵa=1

F2 (h2, ϕ)}

+ v · {ϵa=0
CF1(h1, ϕ) + ϵa=0

CF2(h2, ϕ)− ϵa=0
F1 (h1, ϕ) + ϵa=0

F2 (h2, ϕ)}
(3.19)
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= (1− v) · {
∫
X
l1h,ϕ(x, 1)p

a=0(x)dx+ l2h,ϕ(x, 1)p
a=0(x)dx

−
∫
X
l1h,ϕ(x, 1)p

a=1(x)dx+ l2h,ϕ(x, 1)p
a=1(x)dx}

+ v · {
∫
X
l1h,ϕ(x, 0)p

a=1(x)dx+ l2h,ϕ(x, 0)p
a=1(x)dx

−
∫
X
l1h,ϕ(x, 0)p

a=0(x)dx+ l2h,ϕ(x, 0)p
a=0(x)dx}

(3.20)

= (1− v) · {(
∫
X
l1h,ϕ(x, 1) + l2h,ϕ(x, 0)) · (pa=1(x)− pa=0(x))dx}

+v · {(
∫
X
l1h,ϕ(x, 0) + l2h,ϕ(x, 1)) · (pa=0(x)− pa=1(x))dx}

(3.21)

= Bϕ · (1− v){
∫
R

1

Bϕ

· (l1h,ϕ(ψ(r), 1) + (l2h,ϕ(ψ(r), 1)) · (pa=1
ϕ (r)− pa=0

ϕ )(r)dr}

+Bϕ · v{
∫
R

1

Bϕ

· (l1h,ϕ(ψ(r), 0) + (l2h,ϕ(ψ(r), 0)) · (pa=1
ϕ (r)− pa=0

ϕ )(r)dr}

(3.22)

≤ Bϕ · (1− v) sup
g′∈G

|
∫
R

g
′
(r) · (pa=0

ϕ (r)− pa=1
ϕ (r))dr |

+Bϕ · v sup
g′∈G

|
∫
R

g
′
(r) · (pa=1

ϕ (r)− pa=0
ϕ (r))dr |

(3.23)

= Bϕ · IPMG(p
a=0
ϕ (r), pa=1

ϕ (r)) (3.24)

Here, equality (3.18) is as per Equation (3.16) of Lemma (3.1), while equality (3.20)

is by Definition 3.6 of the expected losses. Further, equality (3.22) is the change of

variables and inequalities (3.23) (3.24) are by the definition of function g and term

IPMG respectively.

Definition 3.7. For a = 0, 1, we define:

ma(x) = E[Ya | x]

na(x) = E[Ca | x]

We can rewrite the treatment effect as:

25



τ(x) = m1(x) + n1(x)−m0(x)− n0(x)

Recall that f1 : X × {0, 1} → Y and f2 : X × {0, 1} → C are the hypotheses

such that f1(x, a) = h1(ϕ(x), a) and f2(x, a) = h2(ϕ(x), a) for a representation ϕ and

hypotheses h1, h2 defined over the output of ϕ.

Definition 3.8. The treatment effect is estimated using:

τ̂ = f1(x, 1)− f1(x, 0) + β(f2(x, 1)− f2(x, 0))

where β is a scaling factor to balance the scales of both hypotheses.

Definition 3.9. The expectation of square of difference between estimated and actual

treatment effect, also called as expected Precision in Estimation of Heterogeneous Ef-

fect (PEHE) loss is calculated as:

ϵPEHE(f) =
∫
X (τ̂f(x)− τ(x))2p(x)dx

Definition 3.10. The expected variance of Ya andCa with respect to distribution p(x; a):

σ2
Ya(p(x, a)) =

∫
X×Y (Ya −ma(x))

2 p(Ya|x)p(x, a)dYadx

σ2
Ca(p(x, a)) =

∫
X×C (Ca − na(x))

2 p(Ca|x)p(x, a)dCadx

Lemma 3.3. Given two functions f1 : X × {0, 1} → Y and f2 : X × {0, 1} → C, and

distribution p(x, a) defined over X × {0, 1}:

∫
X×{0,1}

(f1(x, a)−ma(x))
2p(x, a)dxda+

∫
X×{0,1}

(f2(x, a)− na(x))
2p(x, a)dxda

= ϵF − σ2
Ya
(p(x, a))− σ2

Ca
(p(x, a))

(3.25)

∫
X×{0,1}

(f1(x, a)−ma(x))
2p(x, 1− a)dxda+

∫
X×{0,1}

(f2(x, a)− na(x))
2p(x, 1− a)dxda

= ϵCF − σ2
Ya
(p(x, 1− a))− σ2

Ca
(p(x, 1− a))

(3.26)
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Proof.

ϵF =

∫
X×{0,1}×Y

(f1(x, a)− Ya)
2 p(Ya|x)p(x, a)dYadxda

+

∫
X×{0,1}×C

(f2(x, a)− Ca)
2 p(Ca|x)p(x, a)dCadxda

(3.27)

=

∫
X×{0,1}×Y

(f1(x, a)−ma(x))
2 p(Ya|x)p(x, a)dYadxda

+

∫
X×{0,1}×Y

(ma(x)− Ya)
2 p(Ya|x)p(x, a)dYadxda

+ 2

∫
X×{0,1}×Y

(f1(x, a)−ma(x)) · (ma(x)− Ya) p(Ya|x)p(x, a)dYadxda

(3.28)

=

∫
X×{0,1}×C

(f2(x, a)− na(x))
2 p(Ca|x)p(x, a)dCadxda

+

∫
X×{0,1}×C

(na(x)− Ca)
2 p(Ca|x)p(x, a)dCadxda

+ 2

∫
X×{0,1}×C

(f2(x, a)− na(x)) · (na(x)− Ca) p(Ca|x)p(x, a)dCadxda

(3.29)

=

∫
X×{0,1}×Y

(f1(x, a)−ma(x))
2 p(Ya|x)p(x, a)dYadxda

+

∫
X×{0,1}×C

(f2(x, a)− na(x))
2 p(Ca|x)p(x, a)dCadxda

+ σ2
Ya
(p(x, a)) + σ2

Ca
(p(x, a))

(3.30)

ϵCF =

∫
X×{0,1}×Y

(f1(x, a)− Ya)
2 p(Ya|x)p(x, 1− a)dYadxda

+

∫
X×{0,1}×C

(f2(x, a)− Ca)
2 p(Ca|x)p(x, 1− a)dCadxda

(3.31)

=

∫
X×{0,1}×Y

(f1(x, a)−ma(x))
2 p(Ya|x)p(x, 1− a)dYadxda

+

∫
X×{0,1}×Y

(ma(x)− Ya)
2 p(Ya|x)p(x, 1− a)dYadxda

+ 2

∫
X×{0,1}×Y

(f1(x, a)−ma(x)) · (ma(x)− Ya) p(Ya|x)p(x, 1− a)dYadxda

(3.32)
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=

∫
X×{0,1}×C

(f2(x, a)− na(x))
2 p(Ca|x)p(x, 1− a)dCadxda

+

∫
X×{0,1}×C

(na(x)− Ca)
2 p(Ca|x)p(x, 1− a)dCadxda

+ 2

∫
X×{0,1}×C

(f2(x, a)− na(x)) · (na(x)− Ca) p(Ca|x)p(x, 1− a)dCadxda

(3.33)

=

∫
X×{0,1}×Y

(f1(x, a)−ma(x))
2 p(Ya|x)p(x, 1− a)dYadxda

+

∫
X×{0,1}×Y

(f2(x, a)− na(x))
2 p(Ya|x)p(x, 1− a)dYadxda

+ σ2
Ya
(p(x, 1− a)) + σ2

Ca
(p(x, 1− a))

(3.34)

Equality (3.27)is by the definition of ϵF while equality (3.28)is simple mathematical

manipulation. Equality (3.29) is due to Definition (3.10) and also because two integral

terms approach zero since ma(x) =
∫
X Yap(Ya|x)dx and na(x) =

∫
X Cap(Ca|x)dx

Theorem 3.1. Assume ϕ : X → R is a one-to-one representation function, and ψ is its

inverse. Further, assume that pϕa=0, pϕ
a=1 are defined as in Definition (3.2). Suppose

v = p(a = 1). Let G be a family of functions g : R → R , and IPMG(., .) indicate

the integral probability metric induced by G . Consider h1 : R × {0, 1} → Y , h2 :

R× {0, 1} → C

to be two hypotheses. Let the loss L(y1, y2) = (y1 − y2)
2. Assume there exists a con-

stantBϕ > 0, such that the functions gΦ,h := 1
Bϕ

· (l1h,ϕ(ψ(r), a) + (l2h,ϕ(ψ(r), a)) ∈ G

for a ∈ {0, 1}. We then have:

ϵPEHE ≤ 4 · {ϵF (h1, h2, ϕ) + ϵCF (h1, h2, ϕ)− 2 · (σ2
Y + σ2

C)} (3.35)

≤ 4 · {ϵF1a=1(h1, ϕ) + ϵF2
a=1(h2, ϕ) + ϵF1

a=0(h1, ϕ) + ϵF1
a=0(h2, ϕ)

+Bϕ · IPMG(p
a=0
ϕ , pa=1

ϕ )− 2 · (σ2
Y + σ2

C)}
(3.36)
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Proof.

ϵPEHE =

∫
X
(τ̂f(x)− τ(x))2p(x)dx (3.37)

=

∫
X
{(f1(x, 1) + f2(x, 1)− f1(x, 0)− f2(x, 0))

− (m1(x) + n1(x)−m0(x)− n0(x))}2p(x)dx
(3.38)

=

∫
X
{((f1(x, 1)− (m1(x)) + (f2(x, 1)− n1(x))

+ (m0(x)− f1(x, 0)) + (n0(x)− f2(x, 0))
2}p(x)dx

(3.39)

≤ 2 ·
∫
X
{(f1(x, 1)−m1(x) + f2(x, 1)− n1(x))

+ (m0(x)− f1(x, 0) + n0(x)− f2(x, 0))
2}p(x)dx

(3.40)

= 2 ·
∫
X
{(f1(x, 1)−m1(x) + f2(x, 1)− n1(x))

2p(x, a = 1)dx

+ 2 ·
∫
X
(m0(x)− f1(x, 0) + (n0(x)− f2(x, 0))

2p(x, a = 0)dx

+ 2 ·
∫
X
{(f1(x, 1)−m1(x) + f2(x, 1)− n1(x))

2p(x, a = 0)dx

+ 2 ·
∫
X
(m0(x)− f1(x, 0) + (n0(x)− f2(x, 0))

2p(x, a = 1)dx

(3.41)

= 2 ·
∫
X×{0,1}

(f1(x, a)−ma(x) + f2(x, a)− na(x))
2p(x, a)dxda

+ 2 ·
∫
X×{0,1}

(f1(x, a)−ma(x) + f2(x, a)− na(x))
2p(x, 1− a)dxda

(3.42)

≤ 4 · {
∫
X×{0,1}

(f1(x, a)−ma(x))
2p(x, a)dxda

+

∫
X×{0,1}

(f2(x, a)− na(x))
2p(x, a)dxda

+ 4 · {
∫
X×{0,1}

(f1(x, a)−ma(x))
2p(x, 1− a)dxda

+

∫
X×{0,1}

(f2(x, a)− na(x))
2p(x, 1− a)dxda}

(3.43)

ϵPEHE ≤ 4 · {ϵF (h1, h2, ϕ) + ϵCF (h1, h2, ϕ)− 2 · (σ2
Y + σ2

C)} (3.44)
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Inequality (3.40) and (3.43) are derived using the mathematical identity (a+ b)2 ≤

2 · (a2 + b2).The second inequality in the theorem can be proved by using Lemma (3.1)

and Lemma (3.2.) combined.

The architecture of proposed CFMedNet method includes a representation layer and

two hypothesis layers (each for medical cost and outcome) with respect to two treatment

arms as shown in Figure (3.2).

Φx

a

a=1

a=0

�(h2(Φ(x),a=1), � = C1)

a=1

a=0
h2

h1

h2

h1

�(h1(Φ(x),a=1), � = Y1)

�(h2(Φ(x),a=0), � = C0)

�(h1(Φ(x),a=0), � = Y0)

IPMG(Φa=0,Φa=1)

Figure 3.2: CFMedNet Architecture.

The optimal solution is obtained by minimizing loss function as depicted in equa-

tion(3.45) using Adam optimizer where the error is backpropagated via both hypotheses

layers and representation networks.

L =
β

n

n∑
i=1

si · (L(h1(ϕ(xi), ai), yi) + L(h2(ϕ(xi), ai), ci)) + λ · R(h)

+ γ · IPMG({ϕ(xi)}i:ai=0, {ϕ(xi)}i:ai=1) (3.45)

where si = ai
2v

+ 1−ai
2(1−v)

,v = 1
n

∑n
i=1 ai and R(·) is a model complexity term. Also v

refers to the proportion of treated instances (ai = 1), {β, λ, γ} are the hyperparameters

and L(., .) is squared error loss. The IPM term utilized MMD (Sriperumbudur et al.

(2012)) distance metric.
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The described approach involves using deep learning algorithms to estimate the effects

of treatment and medical costs for patients. The algorithms consist of multiple fully

connected neural networks that are trained separately on different treatment arms in

each epoch. The approach evaluates both factual and counterfactual cases to estimate

the effect of treatment on patients. To assess the performance of the model, various

metrics such as average treatment effect, mean squared error, and PEHE are calculated.

In summary, the approach is a complex and advanced method for estimating treatment

effects and medical costs, which could have practical applications in the field of health-

care and medicine.

3.2 XAI Models for Counterfactual Inference

The utilization of machine learning (ML) models, such as the one we propose, to pre-

dict treatment effects and corresponding medical costs can lead to substantial time and

resource savings in the healthcare sector. Notably, it also has the potential to decrease

mortality rates by preventing inappropriate treatment assignment. However, a signifi-

cant obstacle is that medical practitioners often possess limited understanding of ML

models, viewing them as "black boxes" due to the lack of transparency in the decision-

making process. The healthcare domain is a particularly sensitive area; the lack of

explainability or interpretability of AI/ML models makes their deployment in a clinical

setting a delicate task, especially when it comes to decision-making. Despite the fact

that AI/ML models are designed to assist doctors in their decision-making process, it is

the doctors who ultimately bear responsibility for the medical decisions made. There-

fore, the explainability of AI models becomes a crucial factor in the development and

deployment of AI-based healthcare solutions. Hence, efficient Explainable AI (XAI)

models are crucial for frameworks similar to our proposed architecture, CFMedNet, to

build trust among doctors regarding the decisions made by our model.

3.2.1 Approach Selection

Local Interpretable Model-Agnostic Explanations or LIME, is a technique developed

to elucidate the decisions of any machine learning model by offering localized expla-

nations for specific predictions. Surrogate sampling is a key component of LIME as it

facilitates the creation of an interpretable model around the prediction of interest. LIME
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emphasizes the local explanation of predictions, meaning it selects a particular data in-

stance for which we aim to decipher the prediction. This selection sets the stage for

surrogate sampling, where LIME generates a new dataset by introducing slight alter-

ations, or perturbations, to the selected data instance. Each of these modified versions

then receives a prediction from the original model. Following this, each perturbed in-

stance is allocated a weight based on its similarity to the original instance, with higher

weights given to those closer to the original. Subsequently, LIME trains an easily in-

terpretable model using this newly weighted dataset. The surrogate model, thus devel-

oped, replicates the actions of the black box model within the vicinity of the selected

instance, thereby shedding light on the reasons behind a particular prediction. There-

fore, surrogate sampling is fundamental in enabling local interpretability in machine

learning. Fundamentally, surrogate sampling empowers LIME to form a ’local neigh-

borhood’ around the instance we are trying to interpret. The surrogate model, trained

within this neighborhood, delivers a simplified and more interpretable approximation

of the original complex model’s behavior within this local scope.

3.2.2 GMM-LIME

Gaussian Mixture Model LIME (GMM-LIME) relies on surrogate sampling to generate

a set, D, composed of random samples (or perturbations) centered around a particular

instance, x. The need for surrogate sampling stems from the requirement for creating

local, classifier-based explanations that accurately reflect the class imbalances inherent

to the data.

Our objective is to form a surrogate dataset that is balanced and includes samples

from all classes, though in differing quantities. For this, we use a Gaussian sampling

technique, similar to the one mentioned in Ribeiro et al. (2016), where we expand the

standard deviation to increase the sampling neighborhood and thus secure surrogate

instances from all classes.

To further address class imbalance within D, we utilize Gaussian Mixture Models

(GMM). A GMM is a probabilistic model based on the assumption that all instances are

generated from a finite number of Gaussian distributions with parameters that are yet

to be determined Pedregosa et al. (2018). With the help of the bootstrapped samples,

we train a GMM of c Gaussians, which we then use to oversample the minority classes,
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ultimately achieving a balanced surrogate dataset. The following algorithm describes

the sampling process from a GMM. (Nanavati and Prasad (2023)).

Although these sampling techniques may not necessarily enhance the quality of the

samples, they are critical for reducing imbalance in D. In the following sections, we

show that GMM-LIME outperforms other perturbation-based methods such as LIME

in terms of stability. Following this, we implement a forward feature selection process

as proposed in LIME to select the top k features and present their corresponding expla-

nation scores. The initialization step of the algorithm involves specifying the black-box

model, denoted as f , and the instance x in the feature space. Additionally, the number

of surrogate samples, denoted as n, and the number of Gaussian Mixture components,

denoted as C, are set. The following step is to train a Gaussian Mixture Model (GMM)

using Algorithm[??]. This involves fitting the GMM to the entire dataset. After the

model training, the posterior probability of each GMM component for a specific in-

stance x is computed. This helps determine the probability that x belongs to each

cluster. Sampling is performed to generate N samples, denoted as x1, x2, ..., xN , based

on the posterior probabilities of the GMM components for x. The sampling process is

biased towards selecting instances that are close to x and gives more weight to more

probable clusters.

Once the samples are generated, the distance between each sample instance xi and

x is computed. A suitable distance metric, such as Euclidean distance, is used for this

purpose. Weighting is then performed by calculating weights, denoted as w, using the

formula w = exp (−d2/(2σ2)). The width parameter σ of the Gaussian kernel is set

as the median of the distances. The weights decrease as the distance increases, giving

more influence to samples that are closer to x. Next, a simple interpretable model,

such as linear regression, is trained using the samples, their corresponding target values

f(xi), and the sample weights w. This simple model approaches the behavior of the

complex model around the instance x.
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Finally, the explanation is extracted from the simple model. The explanation pro-

vides insights into how the complex model makes predictions specifically at the instance

x.

3.2.3 Weighted Multi-Objective Optimization (MOO)

We propose employing weighted multi-objective optimization to simultaneously opti-

mise multiple objectives in a problem by allocating weights to each. The approach of

using weighted multi-objective optimization to convert an n-tuple output from a neu-

ral network to a single-valued output can be particularly beneficial when we aim to

explain the model predictions using explainer models like LIME (Local Interpretable

Model-Agnostic Explanations). These models predominantly clarify single-value out-

put models, as these explanations are simpler to comprehend. Thus, by transforming the

n-tuple output to a single value, we enhance the simplicity of the model’s predictions.

Moreover, this method allows us to assign varied weights to different objectives ac-

cording to their significance. Therefore, we can adapt the single-value output to mirror

the trade-offs, such as treatment efficacy and medical cost efficiency, which hold the

highest relevance to the problem in focus. This structured approach to handle trade-

offs ensures that the ultimate model output and corresponding explanations bear sig-

nificance. This strategy also facilitates decision making, as it allows decision-makers

to effortlessly compare different instances for single-valued outputs. This becomes an

essential factor in sectors where interpretability and decision-making work synergisti-

cally, such as in healthcare.
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In the context of our multi-output network, which encompasses treatment efficacy

and medical cost efficiency, the output comprises a tuple of values. To convert this tuple

output into a single output, we utilize weighted multi-objective optimization. We use

survey-based weights derived from a survey Brenan (2022) that collects insights from

domain experts, defining the relative importance of each objective. These weights aid

in formulating an optimization problem that represents the trade-off between treatment

efficacy and medical cost efficiency. Considering the objectives and their associated

weights, a linear-weighted method is applied to convert the tuple output into a single

output, customized to meet the demands of the problem at hand. The process is eluci-

dated in the following algorithm.
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CHAPTER 4

EXPERIMENTATION AND EVALUATION

4.1 Dataset

We have used a semi-synthetic dataset for simulation of experiments. It is a type

of dataset that is generated by combining real-world data with synthetic data. This

dataset is curated by using the methodology of the Atlantic Causal Inference Confer-

ence (ACIC) Data Analysis Challenge 2017 (Hahn et al. (2019)) where the outcome

variable and treatment is generated through a data generating process (DGP) with co-

variates taken from Infant Health and Development Program, or IHDP (Gross et al.

(1993)). The outcome variable in the DGP is obtained depending on the following four

types of errors:-

• additive, independent, identically distributed,

• additive, group correlated,

• additive, heteroskedastic,

• non-additive, independent, identically distributed.

In all instances, the error terms were generated following Gaussian distributions.

Further the DGP has "high" or "low" settings depending on:

• magnitude of the causal effect, ξ (which can take value either 0.33 or 2)

• strength of the confounding, κ ( which can take value either (0.5,0) or (-1,3))

• noise level in the response variable, (which can take value either 0.25 or 1.25)

In the subsequent section generation process of treatment outcome and cost variable

is explained. It should be noted that in the DGP, only 8 features are utilized among a

total of 58 from the IHDP data:



• X1 : Age of mother (continuous),

• X3 : The number of cigarettes smoked by a mother in a day (continuous),

• X10 : The endocrine condition of the mother (binary),

• X14 : The nervous system condition of the mother (binary),

• X15 : Complications during childbirth experienced by mother (binary),

• X21 : Birth place of mother (categorical),

• X24 : Race of mother (binary),

• X43 : Bilirubin of child (continuous).

Table (4.1) provides the correlations among these variables for reference.

correlation X1 X3 X10 X14 X15 X21 X24 X43

X1 1.00 0.04 -0.07 -0.03 -0.04 -0.07 0.03 -0.01
X3 0.04 1.00 -0.02 0.03 -0.02 -0.10 -0.16 0.13
X10 -0.07 -0.02 1.00 0.04 0.09 -0.02 -0.10 -0.07
X14 -0.03 0.03 0.04 1.00 0.09 -0.03 -0.08 0.07
X15 -0.04 -0.02 0.09 0.09 1.00 -0.03 0.04 -0.04
X21 -0.07 -0.10 -0.02 -0.03 -0.03 1.00 0.20 -0.00
X24 0.03 - -0.16 -0.10 -0.08 0.04 0.20 1.00 -0.11
X43 -0.01 0.13 -0.07 0.07 -0.04 -0.00 -0.11 1.00

Table 4.1: Correlation matrix of control variables

Treatment Outcome Synthesis

The treatment outcome synthesis is done using the DGP as below :

f(x) = x1 + x43 + 0.3(x10 − 1) (4.1)

π(x) = Pr(Zi = 1) =
1

1 + exp(κ1f(x) + κ2)
(4.2)

µ(x) = −sin(ϕ(π(x))) + x43 (4.3)

τ(x) = ξ(x3x24 + (x14 − 1)− (x15 − 1)) (4.4)

σ(x) = 0.4 +
x21 − 1

15
(4.5)
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where xi is the ith covariate in the IHDP data, and ϕ(.) refers to a normal random

variable’s cumulative distribution function. It is assumed that the errors(ϵ), have an

independent, identical standard normal distribution. Let

σy = η
√

Var (µ(x) + π(x)τ(x))

where variance is taken over observed samples. The outcome variable is then com-

puted using:-

Y f
i = µ(xi) + τ(xi)Zi + σyϵi (4.6)

where Zi is the treatment value corresponding to ith instance. We have used the settings

such that κ1 = 3, κ2 = −1, η = 0.25 and ξ = 2. For counterfactual outcome generation,

the same process is followed except that in equation(4.6), counterfactual treatment value

is used such that the outcome generation equation becomes:

Y cf
i = µ(xi) + τ(xi)(1− Zi) + σyϵi (4.7)

The range of values for outcome generated by equation (4.6) is

{min: -6.093, max: 82.588}

while for counterfactual outcome generated by equation (4.7), it is

{min: -7.145, max: 88.213}

Medical Cost Synthesis

For medical cost synthesis, the DGP is modified as follows:-

f(x) = x1 + x43 + 0.3(x10 − 1) (4.8)

π(x) = Pr(Zi = 1) =
1

1 + exp(κ1f(x) + κ2)
(4.9)

µ(x) =| log(π(x)) | +x43 (4.10)
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τ(x) = α− ξ(x3x24+ | (x14 − 1)− (x15 − 1) |) (4.11)

σ(x) = 0.4 +
x21 − 1

15
(4.12)

where xi is the ith covariate in the IHDP data and α is a parameter to regulate the

overlapping of control and treatment cost distributions. Here, the value of α is kept

equal to 400. It is assumed that the errors(ϵ) in medical cost have an independent,

identical exponential distribution.

Then the factual cost and counterfactual cost is generated using equation (4.7) and

equation (4.8) respectively with the identical parametric settings as in outcome synthe-

sis.

The range of values for generated medical cost is

{min: 74.606, max: 539.082}

and for counterfactual medical cost, range is

{min: 49.228, max: 618.223}.

The final dataset consists of 4302 instances, 58 IHDP attributes, treatment column,

factual and counterfactual treatment outcome column as well as factual and counterfac-

tual medical cost column.

The histogram plots of factual and counterfactual medical costs with respect to

treated and control population are depicted in Fig. 4.1 and Fig. 4.2.
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Figure 4.1: Histogram plot of Factual Medical Cost in Semi-Synthetic Dataset
(Treated=1, Control=0)

Figure 4.2: Histogram plot of Counterfactual Medical Cost in Semi-Synthetic Dataset
(Treated=1, Control=0)
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4.2 CFMedNet

A series of experiments utilizing the CFMedNet method were conducted on our semi-

synthetic dataset. The factual treatment outcome values spanned from -6.093 to 82.588,

while the counterfactual treatment outcome values ranged from -7.145 to 88.213. Sim-

ilarly, the factual medical cost values ranged from 74.606 to 539.082, and the counter-

factual medical cost values varied between 49.228 and 618.223. Further, Scatter Plots

( Fig. 4.5)comparing Input and Representation Network Transformed Data have been

visualised (MasaAsami (2022)).

• The representation network used in the CFMedNet method consists of a multi-
layer perceptron with 3 hidden layers, each having 48 nodes, and an output layer
with 48 nodes.

• The dropout rate for the representation network is set to 0.145, and the Rectified
Linear Unit (ReLU) activation function is used for the hidden layers.

• The neural network architecture for outcome and medical cost hypotheses also
consists of a multi-layer perceptron with 3 hidden layers, each having 32 nodes.

• The dropout rate for these networks is again 0.145, and ReLU activation function
is used for the hidden layers.

• The same network architecture is applied to both the control and treated arms in
both treatment outcome and medical cost categories.

• The Adam optimizer is used with a weight decay of 0.5.

• The learning rate decay step size is set to 100, and the multiplicative factor for
learning rate decay is 0.97.

• Fig.(4.5) shows a scatter plot of the input data and the transformed data from the
representation network using t-SNE across two dimensions.

• A Maximum Mean Discrepancy value of zero indicates that the control and treated
groups are comparable in terms of representation layer output, indicating no treat-
ment bias.

• The dataset is split into an 80:20 train-test ratio. Further, grid search is performed
for 8000 epochs with hyperparameter γ values of 108,105 and 100, and learning
rate values of 0.1 and 0.01.

• The results of the grid search are presented in Table (4.2) and Table (4.3).

• The hyperparameter γ represents the importance of the IPM loss term, with
higher values indicating a higher contribution to the overall loss.
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Figure 4.3: Scatter Plot comparing Input and Representation Network Transformed
Data

Figure 4.4: Training loss vs epochs

Figure 4.5: Training cost loss vs epochs

where,
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γ = 108 γ = 105 γ = 102 γ = 108 γ = 105 γ = 102

Learning rate=0.1 Learning rate=0.01
ATE 430.406 314.222 296.615 466.354 466.109 467.644
ϵATE 45.268 70.915 88.522 81.216 80.972 82.506
ATT 430.727 310.735 297.297 466.651 465.662 466.213
ϵATT 47.585 72.405 85.844 83.510 82.520 83.072
ATC 430.074 317.832 295.909 466.047 466.573 469.125
ϵATC 42.869 69.373 91.295 78.842 79.368 81.920
RMSE 107.304 139.955 126.832 86.239 86.254 85.850√
PEHE 107.012 126.013 92.494 95.408 90.062 91.648

Table 4.2: CFMedNet results for Medical cost on semi-synthetic ACIC dataset

γ = 108 γ = 105 γ = 102 γ = 108 γ = 105 γ = 102

Learning rate=0.1 Learning rate=0.01
ATE 3.063 1.918 3.556 3.397 1.626 1.258
ϵATE 1.096 1.121 0.515 0.643 1.414 1.782
ATT 3.893 1.889 3.588 1.236 1.487 1.194
ϵATT 1.169 0.774 0.924 1.418 1.176 1.469
ATC 2.707 1.948 3.522 1.881 1.770 1.324
ϵATC 1.126 1.481 0.092 1.987 1.659 2.106
RMSE 5.090 5.523 5.532 5.6527 5.409 5.329√
PEHE 6.252 6.706 6.788 6.531 6.748 7.144

Table 4.3: CFMedNet results for Treatment outcome on semi-synthetic ACIC dataset

• ATE: Average Treatment Effect

• ϵATE : Error in Average Treatment Effect

• ATT : Average Treatment Effect on Treated Population

• ϵATT : Error in Average Treatment Effect on Treated Population

• ATC : Average Treatment Effect On Control Population

• ϵATC : Error in Average Treatment Effect on Control Population

• RMSE : Root Mean Square Error

•
√
PEHE: Error in Precision in Estimation of Heterogeneous Effect
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Figure 4.6:
√
PEHE vs γ

4.3 XAI Decision Models

4.3.1 GMM-LIME

GMM-LIME (Gaussian Mixture Model-LIME) and LIME (Local Interpretable Model-

agnostic Explanations) are compared for a specific instance in our dataset. Upon an-

alyzing the results on the test instance using LIME and GMM-LIME, we observed

notable differences in their local predictions and actual values. LIME’s local predic-

tion for Treatment efficacy for Yf was 10.022 while the actual value is 6.084 similarly

LIME’s local prediction for Treatment efficacy for Ycf was and 12.425 while the actual

is 10.514 (Fig.4.7), whereas GMM-LIME’s local prediction for Treatment efficacy for

Yf was 9.328 and for Ycf was 11.482 (Fig.4.8).It is evident that GMM-LIME results

are closer to the actual values.

Figure 4.7: LIME results (Random Sampling) for Treatment efficacy for Yf and Ycf
respectively

Figure 4.8: GMM-LIME (GMM sampling) for Treatment efficacy for Yf and Ycf re-
spectively
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Similarly, in the case of Medical cost efficiency, LIME yielded local predictions

for Cf and Ccf as 118.703 and 502.136 (Fig.4.9) while the actual values were 105.345

and 506.095 respectively, while GMM-LIME provided 112.244 and 505.271 as local

predictions for Cf and Ccf respectively (Fig.4.10).

Figure 4.9: LIME results (Random Sampling) for Medical cost efficiency for Cf and
Ccf respectively

Figure 4.10: GMM-LIME results (GMM sampling) for Medical cost efficiency for Cf

and Ccf respectively

Moving on to the weighted optimized output, combining Yf and Cf versus Ycf and

Ccf (factuals vs counterfactuals), LIME’s local predictions were 0.152 compared to ac-

tual values of 0.113 for factual outcome whereas the local predictions was 0.475 com-

pared to the counterfactual outcome actual value as 0.420 (Fig.4.11). Further GMM-

LIME resulted the local predict as 0.143 for the factual output whereas it gave 0.442

for the counterfactual output (Fig.4.12). These findings highlight the improved perfor-

mance of GMM-LIME over LIME in terms of producing predictions that are closer to

the actual values in our dataset.

Figure 4.11: LIME results (Random Sampling) for weighted optimized output i.e. com-
bining Treatment efficacy and Medical cost efficiency (factuals vs counter-
factuals)
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Figure 4.12: GMM-LIME results (GMM sampling) for weighted optimized output i.e.
combining Treatment efficacy and Medical cost efficiency (factuals vs
counterfactuals)

Figure 4.13: Visualizing 1000 test instances through Random sampling vs GMM Sam-
pling for T = 0 and T = 1

4.3.2 SHAP (SHapley Additive exPlanations)

The SHAP (SHapley Additive exPlanations) results demonstrate consistency in our ap-

proach of weighted optimized output, particularly regarding the features that contribute

to the final value. The SHAP framework provides insights into feature importance

and their individual contributions to the model’s predictions. By analyzing the SHAP

values, we can observe the consistent patterns in feature importance across different in-

stances. The features that consistently show high SHAP values indicate their significant

impact on the final output. This consistency in feature importance strengthens the va-

lidity of our weighted optimized output approach. Additionally, examining the SHAP

values helps us understand the direction and magnitude of each feature’s influence. Pos-

itive SHAP values indicate a positive contribution to the output, while negative values

imply a negative impact. Overall, the consistency observed in the SHAP results rein-

forces the effectiveness and reliability of our weighted optimized output approach, as it

aligns with the feature contributions consistently highlighted by the SHAP framework.

Figure 4.14: SHAP results on Treatment efficacy (Yf )
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Figure 4.15: SHAP results on Treatment efficacy (Ycf )

Figure 4.16: SHAP results on Medical cost efficiency (Cf )

Figure 4.17: SHAP results on Medical cost efficiency (Ccf )

Figure 4.18: SHAP results on weighted optimised output (i.e. Yf and Cf )

Figure 4.19: SHAP results on weighted optimised output (i.e. Ycf and Ccf )

4.4 Measuring XAI Effectiveness

4.4.1 Qualitative Results

User Experience

User experience plays a crucial role in assessing the utility of an explanation. Since

there is a qualitative way to measure, it involves collecting feedback from the domain

experts about their understanding of the explanation, whether it met their expectations,

and whether it provided valuable insights that were previously unknown or misunder-

stood.
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User Utility

It refers to the usefulness and value of the explanation to the user. It assesses whether

the provided explanation helps the user gain insights into why a specific treatment was

chosen over an alternative, and whether it aids in understanding the factors driving the

procedure by which decisions are made utilizing the counterfactual model.

Task Execution

By analyzing artificial decision tasks and the user’s comprehension, we can assess the

impact of the explanation on their decision and task performance. Understanding the

reasoning behind a decision enhances the user’s comprehension of the intelligent sys-

tem’s task performance. If necessary, the explanations can guide modifications to the

logic of autonomous systems based on the analyzed task performance, leading to im-

proved system performance.

Trust Assessment

Through a comprehensive assessment of clarity, utility, and their impact on decision-

making, users can develop a proper understanding of the system. This understanding

enables them to appropriately utilize the system, ensuring trust is maintained at a rea-

sonable level. By knowing when and how to use the system effectively, users can make

informed decisions and rely on its capabilities to achieve desired outcomes.

4.4.2 Quantitaive Results

Stability in repeated explanations

To assess the variability of explanations over several executions, we ran GMM-LIME

along with the baseline method LIME. We performed these runs using an incremen-

tally increasing number of surrogate samples: 500, 1000, 1500, 2000, and 2500. We

collected 20 successive explanations for 10 randomly chosen index samples for our

dataset. The consistency in explanations across different runs, specifically the ith and

jth runs, was evaluated using Jaccard’s Distance (J) (Saini and Prasad (2022),Zafar and

Khan (2019)). Computationally, Jaccard’s Distance between two feature sets, Xi and
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Xj , is defined as:

J(Xi, Xj) =
|Xi ∩Xj|
|Xi ∪Xj|

In this context, Xi and Xj represent the sets of top-5 features for the ith and jth iter-

ations, respectively. The interpretation of Jaccard’s Distance is straightforward: a value

of 1 suggests identical feature sets (perfect consistency), while a value of 0 indicates

no common features (complete inconsistency). Therefore, a highly consistent explainer

module would result in a higher value of this metric. We calculated the average Jac-

card’s Distance over all combinations of iterations and the selected index samples. The

results, visualized in Fig.(4.20), averaged over the varying surrogate sample sizes (500,

1000, 1500, 2000, 2500), demonstrated a discernible pattern. The outcome of this com-

parison was telling. Regardless of the surrogate sample size, GMM-LIME consistently

outperformed LIME. This result reinforces the efficacy of the GMM-LIME, affirming

its superiority in providing stable and faithful explanations.

Figure 4.20: Comparing average Jaccard scores for 10 random test instances using
varying numbers of GMM-LIME surrogate samples with a state-of-the-
art method.
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Prediction Closeness to Actual values

We calculate the error between the local predictions and the actual values of the in-

stances of interest. This allows us to assess the accuracy and performance of the inter-

pretable model generated by LIME and GMM-LIME. Similarly, to calculate the local

prediction error using SHAP, we first obtain the SHAP values for the instances of inter-

est. These values represent the contributions of each feature towards the prediction for

a particular instance. Using the SHAP values, we reconstruct the predicted values by

summing the contributions of each feature. Once we have the reconstructed predicted

values, we compare them with the actual values of the instances to calculate the predic-

tion error. The error between the local predictions and the actual values can be measured

using various metrics depending on the nature of the task. Here, for regression task, we

use the root mean square error (RMSE). This metric provides a quantitative measure of

the discrepancy between the predicted values and the ground truth values Table(4.4).

The Root Mean Square Error (RMSE) is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where n is the number of samples, yi represents the actual values, and ŷi represents the

predicted values.

XAI Model RMSEOf
RMSEOcf

LIME 0.058 0.062
GMM-LIME 0.011 0.019
SHAP 0.048 0.054

Table 4.4: RMSE scores for factual (Of ) and counterfactual (Ocf ) outcomes

whereRMSEOf
is the RMSE score in case of factual outcome whereasRMSEOcf

is the RMSE score in case of counterfactual outcome.

50



4.5 Conclusion

We have developed an innovative counterfactual inference framework, CFMedNet, to

simultaneously measure the effectiveness of a treatment and its cost efficiency. We as-

sessed this model using semi-synthetic data, yielding promising results. CFMedNet

produced semi-synthetic medical costs ranging from 49 to 619, with a root mean square

error as low as 85.850. Furthermore, the
√
PEHE reached a lower boundary of 90.062

for semi-synthetic tests, indicating that our methods are proficient at determining the

treatment impact in a multi-outcome prediction challenge, where one of the outcomes

is medical cost. As far as we know, no prior algorithm successfully assessed treat-

ment efficacy and cost efficiency for each alternative therapy, evaluating the impact of

each intervention on all desired outcomes. Our research fills this void by providing a

solution.

We also presented an explanation framework based on Gaussian Mixture Model

(GMM) sampling for our CFMedNet model, called GMM-LIME. GMM-LIME is an

enhancement of the pre-existing LIME framework that introduces a new sampling method

using GMM. It alters the reference sample to generate surrogate samples through the

oversampling of minority class instances using GMMs, aiming for a balanced dataset.

Feature based explanations are obtained through the same. Furthermore, considering

multi-output networks like ours, we proposed a weighted optimization algorithm that

can effectively explain multi-output situations based on established explainers such as

LIME and SHAP.

4.6 Future Work

This research has the potential for further extension in various aspects.

• In this study, we made the assumption of a binary treatment scenario. However,
there is potential for extending this work to encompass cases with multiple treat-
ments.

• In our research, we focused on tabular data as the input. However, there is an
opportunity to extend this work to incorporate multimodal models, which involve
multiple types of data such as text, images, and numerical features.
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